WO2013075376A1 - 抑制铝电解槽非阳极效应全氟化碳产生的方法及其系统 - Google Patents

抑制铝电解槽非阳极效应全氟化碳产生的方法及其系统 Download PDF

Info

Publication number
WO2013075376A1
WO2013075376A1 PCT/CN2011/084417 CN2011084417W WO2013075376A1 WO 2013075376 A1 WO2013075376 A1 WO 2013075376A1 CN 2011084417 W CN2011084417 W CN 2011084417W WO 2013075376 A1 WO2013075376 A1 WO 2013075376A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
alumina
alumina concentration
current density
concentration
Prior art date
Application number
PCT/CN2011/084417
Other languages
English (en)
French (fr)
Inventor
李旺兴
陈喜平
邱仕麟
张艳芳
罗丽芬
吴许建
Original Assignee
中国铝业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铝业股份有限公司 filed Critical 中国铝业股份有限公司
Publication of WO2013075376A1 publication Critical patent/WO2013075376A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium

Definitions

  • the invention relates to the technical field of electrolytic aluminum greenhouse gas emission reduction, in particular to a method and a system for suppressing non-anode effect PFC production of an aluminum electrolytic cell. Background technique
  • the electrolytic reaction in normal production is that alumina undergoes a carbothermal reduction reaction to form aluminum to emit co 2 .
  • the cell produces two fluorocarbons: carbon tetrafluoride (CF 4 ) and hexafluoride (C 2 F 6 ), collectively referred to as perfluorocarbon (PFC). ).
  • the resulting reaction is as follows:
  • the CF 4 and C 2 F 6 compounds have lifetimes of up to 50,000 years and 10,000 years, respectively, and have a very high global warming potential (GWP), which is a strong greenhouse effect gas.
  • GWP global warming potential
  • the greenhouse effect of 1 kg of CF 4 is equivalent to 6,500 kg of carbon dioxide
  • the greenhouse effect of 1 kg of C 2 F 6 is equivalent to 9200. Kilograms of carbon dioxide.
  • Chinese Patent Application No. 200720190850.8 discloses an aluminum electrolysis cell gas extraction device, which relates to a device for extracting gas from an electrolytic cell of an aluminum electrolytic anode.
  • the structural composition of the device comprises: a gas collecting cover, the gas collecting cover is a metal box-shaped body which is inverted at the upper part of the fire eye of the aluminum electrolytic cell and has an open end; the side wall of the gas collecting cover box is opened
  • the air hole has a feeding hole on the upper top cover; the feeding hopper is in the shape of a funnel, is located above the air collecting cover, and the lower end opening of the hopper is coupled with the feeding hole of the top cover of the air collecting cover.
  • the gas collecting hood can separate the fire eye from the surrounding air, and form a positive pressure in the gas collecting hood to prevent the air from being mixed in.
  • the gas pipe can be inserted from the gas collecting hole into the gas collecting hood, and the gas is at a positive pressure. Under the action of the smooth entry into the gas pipe, the gas sample obtained is authentic, stable and representative, providing a true gas sample for the determination of instantaneous current efficiency.
  • Chinese Patent Application No. 201010554416.X discloses an analytical method for electronic grade CF 4 , which is essentially a method for analyzing impurities in carbon tetrafluoride.
  • the method achieves one injection by selecting a column and using a novel high-pressure discharge ionization detector, and can simultaneously analyze 7 kinds of impurities in the carbon tetrafluoride by using a set of detection equipment, and the detection precision reaches O.
  • lppmv which solves the present There are many problems with the technique of multiple injections and the detection accuracy is only 0.5ppmv.
  • Cida-rich adsorbent such as a FAU structure, a silica-rich adsorbent of a BEA structure, a silicon-rich adsorbent of a MOR structure.
  • Adsorption is carried out on one or more adsorbents to recover perfluorocarbons from the gas stream.
  • the adsorption method can better achieve pressure swing adsorption or temperature swing adsorption.
  • the technical problem to be solved by the present invention is to provide a method and system for suppressing the generation of non-anode effect PFC in an aluminum electrolytic cell which is easy to operate and easy to implement in an industrial manner.
  • the invention provides a method for suppressing the generation of non-anode effect PFC in an aluminum electrolytic cell, comprising: Step 1. continuously detecting a change in anode current density, when the current density of at least one anode continues to rise, the actual value exceeds a normal production value of at least 0.2. When the time is doubled, the alumina concentration estimation program is started to estimate the alumina concentration value;
  • Step 2 Verify the alumina concentration in the electrolytic cell.
  • the alumina concentration near the anode is less than 0.1 times the estimated alumina concentration value, start the small blanking procedure to make the hopper near the anode. Carry out small blanking, the amount of cutting does not exceed 0.5 times of the normal feeding amount;
  • Step 3 Observe the change of the anode current density of the block. If the normal production value is not restored, repeat steps 1 and 2 above until the current density of the anode returns to the above normal production value.
  • the invention also discloses a system for suppressing non-anode effect PFC generation of an aluminum electrolytic cell, comprising an anode current density detecting module, an alumina concentration estimating module and a small blanking control module; the anode current density detecting module, continuously detecting an anode current density a change, when the current density of at least one of the anodes continues to rise, and the actual value exceeds the normal production value by at least 0.2 times, sending a start signal to the alumina concentration estimation module; the alumina concentration estimation module receiving the The start signal initiates an alumina concentration estimation program to estimate the alumina concentration value, and sends a control to the small blanking control module when the alumina concentration near the anode is less than 0.1 times the estimated alumina concentration value.
  • the start signal; the small blanking control module controls the blanker near the anode to perform small blanking, and the amount of the blanking does not exceed 0.5 times of the normal cutting amount.
  • the method and system for suppressing non-anodizing effect PFC provided by the invention provide rapid replenishment of alumina into the electrolytic cell by means of continuous detection of anode current density, estimation of alumina concentration, and small blanking operation, and elimination of localization in the electrolytic cell
  • the alumina concentration is too low, which effectively suppresses the non-anode
  • the purpose of the effect of PFC production is convenient to operate, does not need to change the original electrolysis process, and is easy to implement and promote industrial application. detailed description
  • Embodiments of the present invention provide a method for suppressing the generation of non-anode effect PFC in an aluminum electrolytic cell, which is controlled by an electrolytic cell control module.
  • the cell control module includes an anode current density detecting module, an alumina concentration estimating module, a small blanking control module, and an electrolyte flow rate adjusting module.
  • the anode current density detecting module continuously detects the change in the anode current density. When the current density of at least one of the anodes continues to rise and the actual value exceeds the normal production value by at least 0.2 times, an activation signal is sent to the alumina concentration estimating module.
  • An alumina concentration estimation module receiving the start signal to initiate an alumina concentration estimation program to estimate an alumina concentration value, when an alumina concentration near the anode is less than 0.1 times the estimated alumina concentration value, A control start signal is sent to the small blanking control module.
  • the small blanking control module controls the hopper near the anode of the block to perform small blanking, and the amount of discharging is not more than 0.5 times of the normal feeding amount.
  • the electrolyte flow rate adjustment module controls the external force to increase the flow rate of the electrolyte after the blanking, and controls the external force to increase the flow rate of the electrolyte, causing the alumina to move rapidly to the vicinity of the anode having a too low alumina concentration.
  • Step 1 Continuously detect the change of anode current density. If the current density of a certain piece or some anodes continues to rise, the actual value exceeds the normal production value by at least 0.2 times (the normal production value of electrolytic aluminum anode current density is generally 0.73-0.78). A/cm 2 ), start the alumina concentration estimation program.
  • Step 2 Verify the alumina concentration in the electrolytic cell. If the alumina concentration near the anode is at least 0.1 times lower than the normal production value (the normal production value of the alumina concentration in the electrolytic cell is generally 2.0%-3.0% (mass percentage).
  • the small blanking program is started to make the blanking device near the anode of the block to be smallly cut, and the feeding amount is usually not more than 0.5 times of the normal feeding amount, which is determined by the alumina concentration near the anode of the block. Step 3, along the direction of electrolyte flow in the tank, external force intervention to increase the electrolyte flow rate, driving the alumina to the anode quickly.
  • Step 4 Observe the change of the anode current density of the block. If the normal value is not restored, repeat the above operation until the current density of the anode returns to the above normal operating range (for example, 0.73-0.78 A/cm 2 ).
  • the small feeder can be fixedly installed or can be moved.
  • the small feeder is fixedly installed between the original feeders on the upper structure of the electrolytic cell, or has the function of shelling and blanking, and carries a small size.
  • Aluminium storage bin unit (which can be mounted on a mobile trolley or mounted on a multi-function crane).
  • the anode current density detecting module, the alumina concentration estimating module, the small blanking control module and the auxiliary facilities thereof are set in a control system of a 400 kA electrolytic cell; continuously detecting the change of the anode current density, if a piece or pieces The current density of the anode continues to increase.
  • the alumina concentration is estimated and the alumina concentration in the electrolytic cell is checked. If the alumina concentration near the anode is lower than 0.1 of the normal production value.
  • the time is small, the small blanking operation is performed, and the blanking amount is 0.18 times of the normal feeding amount.
  • the flow rate of the electrolyte is increased along the direction of the electrolyte flow in the tank, and the flow rate of the electrolyte is increased by the effect rod to drive the alumina to rapidly move to the alumina concentration.
  • Near the anode observe the change in the anode current density of the block. If the normal value is not restored (for example, 0.73-0.78 A/cm 2 ), repeat the above operation until the current density of the anode returns to the normal operating range.
  • the anode current density detecting module, the alumina concentration estimating module and the small blanking control module and the auxiliary facilities thereof are set in a control system of a 300 kA electrolytic cell; continuously detecting the change of the anode current density, if a certain piece or pieces The current density of the anode continues to increase.
  • the alumina concentration is estimated and the alumina concentration in the electrolytic cell is checked. If the alumina concentration near the anode is lower than 0.2 of the normal production value.
  • the small blanking operation is performed, and the feeding amount is 0.25 times of the normal feeding amount.
  • the flow of the electrolyte is increased along the direction of the electrolyte in the tank, and the flow rate of the electrolyte is increased to drive the alumina to rapidly move to the alumina concentration.
  • Near the low anode observe the change in the anode current density of the block. If the normal value is not restored, repeat the above operation until the current density of the anode returns to the normal operating range.
  • the anode current density detecting module, the alumina concentration estimating module, the small blanking control module and the auxiliary facilities thereof are set in a control system of a 200 kA electrolytic cell; continuously detecting the change of the anode current density, if a piece or pieces The current density of the anode continues to increase.
  • the alumina concentration is estimated to verify the alumina concentration in the electrolytic cell. If the alumina concentration near the anode is lower than 0.3 of the normal production value.
  • the time is small, the small blanking operation is performed, and the blanking amount is 0.33 times of the normal feeding amount.
  • the flow rate of the electrolyte is increased along the direction of the electrolyte flow in the tank, and the flow rate of the electrolyte is increased to drive the alumina to rapidly move to the alumina concentration.
  • Near the anode observe the change in the anode current density of the block. If the normal value is not restored, repeat the above operation until the current density of the anode returns to the normal operating range.
  • the anode current density detecting module, the alumina concentration estimating module, the small blanking control module and the auxiliary facilities thereof are set in a control system of a 200 kA electrolytic cell; continuously detecting the change of the anode current density, if a piece or pieces The current density of the anode continues to increase.
  • the alumina concentration is estimated to verify the alumina concentration in the electrolytic cell. If the alumina concentration near the anode is lower than 0.4 of the normal production value.
  • the amount of blanking is 0.5 times of the normal feeding amount. After the material is discharged, the flow direction of the electrolyte in the tank is increased.
  • the flow rate of the electrolyte is increased by the pulling of the scorpion, and the alumina is rapidly moved to the vicinity of the anode having a too low alumina concentration; If the current density does not return to normal, repeat the above operation until the current density of the anode returns to the normal operating range.
  • the method and system for suppressing non-anodizing effect PFC provided by the invention provide rapid replenishment of alumina into the electrolytic cell by means of continuous detection of anode current density, estimation of alumina concentration, and small blanking operation, and elimination of localization in the electrolytic cell
  • the alumina concentration is too low, thereby effectively suppressing the purpose of non-anodizing PFC production.
  • the method is convenient to operate, does not need to change the original electrolysis process, and is easy to implement and promote industrial application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种铝电解槽抑制非阳极效应全氟化碳(PFC)产生的方法及其系统,该方法包括步骤1、连续检测阳极电流密度的变化,当至少一块阳极的电流密度持续升高,实际值超过正常生产值至少0.2倍时,启动氧化铝浓度预估程序预估氧化铝浓度值;步骤2、校验电解槽内氧化铝浓度,当该块阳极附近氧化铝浓度低于上述预估的氧化铝浓度值至少0.1倍时,启动小下料程序,使该块阳极附近的下料器进行小下料,下料量不超过正常下料量的0.5倍;步骤3、观察该块阳极电流密度的变化,如果没有回复正常值,重复进行步骤1和2,直至该块阳极的电流密度回复到正常生产值。

Description

抑制铝电解槽非阳极效应全氟化碳产生的方法及其系统
技术领域
本发明涉及电解铝温室气体减排技术领域, 特别涉及一种抑制铝电解 槽非阳极效应 PFC产生的方法及其系统。 背景技术
在电解铝生产过程中, 正常生产时的电解反应是氧化铝进行碳热还原 反应生成铝排放出 co2。 但在电解槽发生 "阳极效应" 期间, 电解槽会产 生两种碳氟化合物: 四氟化碳(CF4 )和六氟化二碳(C2F6 ) , 统称为全氟 化碳(PFC ) 。 其生成反应如下:
Na3AlF6+3/4C=3/4CF4+Al+3NaF (E=2.55V)
Na3 A1F6+C= 1/2C2F6+ Al+3NaF (E=2.68V)
CF4和 C2F6两种化合物的寿命分别高达 5万年和 1万年, 而且具有极 高的全球变暖潜力 (GWP ) , 属于强温室效应气体。 根据政府间气候变化 专门委员会 IPCC第二次评估报告,按照 100年全球变暖趋势来看, 1公斤 CF4的温室效应相当于 6500公斤二氧化碳,而 1公斤 C2F6的温室效应相当 于 9200公斤二氧化碳。
在研究电解铝排放的 PFC过程中,发现了低浓度、连续排放的 PFC(称 为非阳极效应 PFC排放 ) , 该种 PFC与阳极效应无关, 而且只有 CF4, 没 有 C2F6 , 其产生原因主要是电解槽内局部氧化铝浓度过低或个别阳极电流 密度偏高导致个别阳极过电压升高达到了 CF4的生成电位。 该种 CF4的浓 度极低, 通常在 0.001-l.Oppmv (体积浓度) 。 而阳极效应产生的 CF4的浓 度通常在 50-300ppmv。
阳极电流密度与氧化铝浓度之间存在一定的依赖关系, 可由以下经验 公式计算: Icr= [5.5 + 0.018(T—1323)]A—0 1[(Al2O3%)。 · 0.4] , 式中 icr表示 阳极极限电流密度, A为单块阳极面积, T为电解温度 (K)。 在一定的氧化 铝浓度下, 当某块阳极电流密度高于阳极极限电流密度时, 电解槽就会有 PFC生成。 这是因为, 如果阳极的电流密度高, 该块阳极附近的氧化铝浓 度消耗加快, 会造成该块阳极下部氧化铝浓度偏低, 氧化铝不足将导致阳 极反应异常, 诱发产生非阳极效应 PFC。
对国内外专利文献进行了检索, 未见抑制非阳极效应 PFC产生的方法 及其系统 4艮道。 检索的专利文献如下:
中国专利申请号为 200720190850.8公开了一种铝电解槽取气装置, 涉 及一种用于铝电解阳极中缝火眼取出电解槽内排放气体的装置。 该装置的 结构组成包括: 集气罩 该集气罩为一倒扣在铝电解槽火眼上部的、 下 端为敞口的金属盒状体; 在集气罩盒状体的侧壁上开有取气孔, 上顶盖上 开有进料孔; 进料料斗为漏斗状, 位于集气罩上方, 其料斗下端开口与集 气罩上顶盖进料孔联接。 该集气罩能够把火眼和周围的空气隔开, 在集气 罩内形成正压, 阻止了空气的混入, 取气的铁管可以从取气孔伸入到取气 罩里面, 气体在正压的作用下顺利进入到取气管里, 使取到的气体样品具 有真实性、稳定性和代表性, 为瞬时电流效率的测定提供真实的气体样本。
中国专利申请号为 201010554416.X公开了一种电子级 CF4的分析方 法, 其实质是一种分析四氟化碳中的杂质的方法。 该方法通过选用色谱柱 和利用新颖的氦高压放电离子化检测器实现一次进样, 利用一套检测设备 可同时分析四氟化碳中的 7种杂质, 检测精度达到 O. lppmv, 解决了现有 技术多次进样、 而且检测精度仅为 0.5ppmv的问题。
中国专利申请号为 95105244.6公开了一种从气流中脱除全氟化碳的方 法, 通过将气流在诸如 FAU结构的富硅吸附剂、 BEA结构的富硅吸附剂、 MOR结构的富硅吸附剂的一种或多种吸附剂上进行吸附 ,从气流中回收全 氟化碳。 该吸附方法可较好地实现变压吸附或变温吸附。 发明内容
本发明所要解决的技术问题是提供一种操作方便、 易于工业实施的抑 制铝电解槽非阳极效应 PFC产生的方法及其系统。
本发明提供一种抑制铝电解槽非阳极效应 PFC产生的方法, 其包括: 步骤 1、 连续检测阳极电流密度的变化, 当至少一块阳极的电流密度 持续升高, 实际值超过正常生产值至少 0.2倍时, 启动氧化铝浓度预估程 序预估氧化铝浓度值;
步骤 2、 校验电解槽内氧化铝浓度, 当该块阳极附近氧化铝浓度低于 上述预估的氧化铝浓度值至少 0.1倍时, 启动小下料程序, 使该块阳极附 近的下料器进行小下料, 下料量不超过正常下料量的 0.5倍;
步骤 3、 观察该块阳极电流密度的变化, 如果没有回复正常生产值, 重复进行上述步骤 1和 2 , 直至该块阳极的电流密度回复到上述正常生产 值。
本发明还公开一种抑制铝电解槽非阳极效应 PFC产生的系统包括阳极 电流密度检测模块、 氧化铝浓度预估模块和小下料控制模块; 所述阳极电 流密度检测模块, 连续检测阳极电流密度的变化, 当至少一块阳极的电流 密度持续升高, 实际值超过正常生产值至少 0.2倍时, 向所述氧化铝浓度 预估模块发送启动信号; 所述氧化铝浓度预估模块, 接收所述启动信号启 动氧化铝浓度预估程序预估氧化铝浓度值, 当一块所述阳极附近氧化铝浓 度低于上述预估的氧化铝浓度值至少 0.1倍时, 向所述小下料控制模块发 送控制启动信号; 所述小下料控制模块, 控制所述阳极附近的下料器进行 小下料, 下料量不超过正常下料量的 0.5倍。
本发明提供的抑制非阳极效应 PFC产生的方法及其系统,通过阳极电 流密度连续检测、 氧化铝浓度预估、 小下料操作, 达到了快速向电解槽内 补充氧化铝, 消除电解槽内局部氧化铝浓度过低, 从而有效抑制了非阳极 效应 PFC产生的目的。 该方法操作方便, 不需要改变原有电解工艺, 易于 工业实施和推广应用。 具体实施方式
本发明实施例提供一种抑制铝电解槽非阳极效应 PFC产生的方法, 由 电解槽控制模块控制执行该方法。 电解槽控制模块包括阳极电流密度检测 模块、 氧化铝浓度预估模块、 小下料控制模块和电解质流速调节模块。 阳 极电流密度检测模块连续检测阳极电流密度的变化, 当至少一块阳极的电 流密度持续升高, 实际值超过正常生产值至少 0.2倍时, 向所述氧化铝浓 度预估模块发送启动信号。 氧化铝浓度预估模块, 接收所述启动信号启动 氧化铝浓度预估程序预估氧化铝浓度值, 当一块所述阳极附近氧化铝浓度 低于上述预估的氧化铝浓度值至少 0.1倍时, 向所述小下料控制模块发送 控制启动信号。 小下料控制模块, 控制所述块阳极附近的下料器进行小下 料, 下料量不超过正常下料量的 0.5倍。 电解质流速调节模块在下料后沿 着槽内电解质流动方向, 控制外力增加电解质的流速, 带动氧化铝快速移 动至氧化铝浓度过低的阳极附近。
本发明实施例提供的抑制铝电解槽非阳极效应 PFC产生的方法包括以 下步骤:
步骤 1、 连续检测阳极电流密度的变化, 如果某块或某几块阳极的电 流密度持续升高, 实际值超过正常生产值至少 0.2倍时 (电解铝阳极电流 密度正常生产值一般是 0.73-0.78A/cm2 ) , 启动氧化铝浓度预估程序。
步骤 2、 校验电解槽内氧化铝浓度, 如果该块阳极附近氧化铝浓度低 于正常生产值至少 0.1 倍时 (电解槽中氧化铝浓度正常生产值一般为 2.0%-3.0% (质量百分数), 启动小下料程序, 使该块阳极附近的下料器进 行小下料, 下料量通常不超过正常下料量的 0.5倍, 具体由该块阳极附近 的氧化铝浓度决定。 步骤 3、 沿着槽内电解质流动方向, 借外力干预来增加电解质流速, 带动氧化铝快速至该块阳极处。
步骤 4、 观察该块阳极电流密度的变化, 如果没有回复正常值, 重复 进行上述操作, 直至该块阳极的电流密度回复到上述正常操作范围 (例如 0.73-0.78A/cm2 ) 。
氧化铝浓度预估基于以下原理进行: (CA1203 - Co) = (dR/dt)! x (T _ T x (dCA1203/dt) ÷ [(dR/dt) - (dR/dt)!] + dCA1203/dt χ (Ί - Ί1) , 式中 CA1203表示 电解槽内氧化铝预估浓度(%), C0表示电解槽内氧化铝正常浓度(例如 2.0%-3.0% ) , (dR/dt)!表示 Ύ1时刻的槽电阻随时间的变化率, dCA1203/dt 表示 T1至 T期间的氧化铝浓度变化率。 可以使用原有下料器或另外增加 小下料器实施小下料, 该小下料器可以固定安装, 也可以是可移动装置。 小下料器是固定安装在电解槽上部结构上原有下料器之间, 或是具有打壳 下料功能、 携带小型氧化铝储仓的装置 (该装置可安装在移动式小车上, 也可以安装在多功能天车上) 。
下面结合实例对本发明的方法作进一步说明。
实施例 1
将阳极电流密度检测模块、 氧化铝浓度预估模块和小下料控制模块及 其辅助设施设置在某台 400kA电解槽的控制系统中; 连续检测阳极电流密 度的变化, 如果某块或某几块阳极的电流密度持续升高, 实际值超过正常 生产值的 0.2倍时, 进行氧化铝浓度预估, 校验电解槽内氧化铝浓度; 如 果该块阳极附近氧化铝浓度低于正常生产值的 0.1倍时, 进行小下料操作, 下料量为正常下料量的 0.18倍, 下料后沿着槽内电解质流动方向, 用效应 棒搅动增加电解质的流速, 带动氧化铝快速移动至氧化铝浓度过低的阳极 附近; 观察该块阳极电流密度的变化, 如果没有回复正常值 (例如 0.73-0.78A/cm2 ) , 重复进行上述操作, 直至该块阳极的电流密度回复到正 常操作范围。 实施例 2
将阳极电流密度检测模块、 氧化铝浓度预估模块和小下料控制模块及 其辅助设施设置在某台 300kA电解槽的控制系统中; 连续检测阳极电流密 度的变化, 如果某块或某几块阳极的电流密度持续升高, 实际值超过正常 生产值的 0.28倍时, 进行氧化铝浓度预估, 校验电解槽内氧化铝浓度; 如 果该块阳极附近氧化铝浓度低于正常生产值的 0.2倍时, 进行小下料操作, 下料量为正常下料量的 0.25倍, 下料后沿着槽内电解质流动方向, 吹入氮 气增加电解质的流速,带动氧化铝快速移动至氧化铝浓度过低的阳极附近; 观察该块阳极电流密度的变化,如果没有回复正常值, 重复进行上述操作, 直至该块阳极的电流密度回复到正常操作范围。
实施例 3
将阳极电流密度检测模块、 氧化铝浓度预估模块和小下料控制模块及 其辅助设施设置在某台 200kA电解槽的控制系统中; 连续检测阳极电流密 度的变化, 如果某块或某几块阳极的电流密度持续升高, 实际值超过正常 生产值的 0.33倍时, 进行氧化铝浓度预估, 校验电解槽内氧化铝浓度; 如 果该块阳极附近氧化铝浓度低于正常生产值的 0.3倍时, 进行小下料操作, 下料量为正常下料量的 0.33倍, 下料后沿着槽内电解质流动方向, 吹入氩 气增加电解质的流速,带动氧化铝快速移动至氧化铝浓度过低的阳极附近; 观察该块阳极电流密度的变化,如果没有回复正常值, 重复进行上述操作, 直至该块阳极的电流密度回复到正常操作范围。
实施例 4
将阳极电流密度检测模块、 氧化铝浓度预估模块和小下料控制模块及 其辅助设施设置在某台 200kA电解槽的控制系统中; 连续检测阳极电流密 度的变化, 如果某块或某几块阳极的电流密度持续升高, 实际值超过正常 生产值的 0.35倍时, 进行氧化铝浓度预估, 校验电解槽内氧化铝浓度; 如 果该块阳极附近氧化铝浓度低于正常生产值的 0.4倍时, 进行小下料操作, 下料量为正常下料量的 0.5倍, 下料后沿着槽内电解质流动方向, 用耙子 牽引增加电解质的流速, 带动氧化铝快速移动至氧化铝浓度过低的阳极附 近; 观察该块阳极电流密度的变化, 如果没有回复正常值, 重复进行上述 操作, 直至该块阳极的电流密度回复到正常操作范围。
本发明提供的抑制非阳极效应 PFC产生的方法及其系统,通过阳极电 流密度连续检测、 氧化铝浓度预估、 小下料操作, 达到了快速向电解槽内 补充氧化铝, 消除电解槽内局部氧化铝浓度过低, 从而有效抑制了非阳极 效应 PFC产生的目的。 该方法操作方便, 不需要改变原有电解工艺, 易于 工业实施和推广应用。
而非限制, 尽管参照实例对本发明进行了详细说明, 本领域的普通技术人 员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离 本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1. 一种抑制铝电解槽非阳极效应 PFC产生的方法, 其特征在于, 包 括:
步骤 1、 连续检测阳极电流密度的变化, 当至少一块阳极的电流密度 持续升高, 实际值超过正常生产值至少 0.2倍时, 启动氧化铝浓度预估程 序预估氧化铝浓度值;
步骤 2、 校验电解槽内氧化铝浓度, 当该块阳极附近氧化铝浓度低于 上述预估的氧化铝浓度值至少 0.1倍时, 启动小下料程序, 使该块阳极附 近的下料器进行小下料, 下料量不超过正常下料量的 0.5倍;
步骤 3、 观察该块阳极电流密度的变化, 如果没有回复正常生产值, 重复进行上述步骤 1和 2 , 直至该块阳极的电流密度回复到上述正常生产 值。
2. 根据权利要求 1所述的方法,其特征在于,在步骤 2和步骤 3之间 , 还包括以下步骤:
沿着槽内电解质流动方向, 借外力干预来增加电解质流速, 带动氧化 铝快速至该块阳极处。
3. 根据权利要求 2所述的方法, 其特征在于:
所述借外力干预来增加电解质流速是通过效应棒搅动增加电解质的 流速。
4. 根据权利要求 2所述的方法, 其特征在于:
所述借外力干预来增加电解质流速是通过吹入氮气增加电解质的流 速。
5. 根据权利要求 2所述的方法, 其特征在于:
所述借外力干预来增加电解质流速是通过耙子牽引增加电解质的流 速。
6. 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述氧化铝浓 度预估基于以下原理进行:
(CAi203 - Co) = (dR/dt)! x (T - T x (dCA1203/dt) ÷ [(dR/dt) - (dR/dt ] + dCA1203/dt x (T - T , 式中 CA1203表示电解槽内氧化铝预估浓度(%), C0表 示电解槽内氧化铝正常浓度, (dR/dt 表示 1\时刻的槽电阻随时间的变化 率, dCA1203/dt表示 1\至 T期间的氧化铝浓度变化率。
7. 根据权利要求 1-5任一项所述的方法, 其特征在于:
使用原有下料器或另外增加小下料器实施小下料。
8. 根据权利要求 7所述的方法, 其特征在于:
所述小下料器是固定安装在电解槽上部结构上原有下料器之间, 或是 具有打壳下料功能、 携带小型氧化铝储仓的装置。
9. 一种抑制铝电解槽非阳极效应 PFC产生的系统, 其特征在于, 包 括:
阳极电流密度检测模块、 氧化铝浓度预估模块和小下料控制模块; 所述阳极电流密度检测模块, 连续检测阳极电流密度的变化, 当至少 一块阳极的电流密度持续升高, 实际值超过正常生产值至少 0.2倍时, 向 所述氧化铝浓度预估模块发送启动信号;
所述氧化铝浓度预估模块, 接收所述启动信号启动氧化铝浓度预估程 序预估氧化铝浓度值, 当一块所述阳极附近氧化铝浓度低于上述预估的氧 化铝浓度值至少 0.1倍时, 向所述小下料控制模块发送控制启动信号; 所述小下料控制模块, 控制所述阳极附近的下料器进行小下料, 下料 量不超过正常下料量的 0.5倍。
10. 根据权利要求 9所述的系统, 其特征在于, 还包括:
电解质流速调节模块, 在下料后沿着槽内电解质流动方向, 控制外力 增加电解质的流速, 带动氧化铝快速移动至氧化铝浓度过低的阳极附近。
11. 根据权利要求 10所述的系统, 其特征在于, 所述控制外力是通过控制效应棒搅动增加电解质的流速。
12. 根据权利要求 10所述的系统, 其特征在于:
所述控制外力是通过控制吹入氮气的流量增加电解质的流速。
13. 根据权利要求 10所述的系统, 其特征在于:
所述控制外力是通过控制耙子牽引增加电解质的流速。
14. 根据权利要求 10-13任一项所述的系统, 其特征在于, 所述氧化 铝浓度预估模块基于以下原理进行氧化铝浓度值的预估:
(CAi203 - Co) = (dR/dt)! x (T - T x (dCA1203/dt) ÷ [(dR/dt) - (dR/dt ] + dCA1203/dt x (T - T , 式中 CA1203表示电解槽内氧化铝预估浓度(%), C0表 示电解槽内氧化铝正常浓度, (dR/dt 表示 1\时刻的槽电阻随时间的变化 率, dCA1203/dt表示 1\至 T期间的氧化铝浓度变化率。
PCT/CN2011/084417 2011-11-22 2011-12-22 抑制铝电解槽非阳极效应全氟化碳产生的方法及其系统 WO2013075376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110372203.X 2011-11-22
CN201110372203.XA CN102400183B (zh) 2011-11-22 2011-11-22 一种抑制非阳极效应pfc产生的方法

Publications (1)

Publication Number Publication Date
WO2013075376A1 true WO2013075376A1 (zh) 2013-05-30

Family

ID=45882810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084417 WO2013075376A1 (zh) 2011-11-22 2011-12-22 抑制铝电解槽非阳极效应全氟化碳产生的方法及其系统

Country Status (2)

Country Link
CN (1) CN102400183B (zh)
WO (1) WO2013075376A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014773A (zh) * 2012-11-26 2013-04-03 中国铝业股份有限公司 一种均衡铝电解槽氧化铝浓度的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088001A1 (en) * 2003-04-03 2004-10-14 Alcan International Limited Method and apparatus for dispersing alumina in a molten electrolyte contained in an aluminum reduction cell
US20070095672A1 (en) * 2005-11-02 2007-05-03 Shaidulin Eugeniy E Method of controlling aluminum reduction cell with prebaked anodes
CN101275249A (zh) * 2007-12-20 2008-10-01 中国铝业股份有限公司 一种实时预测铝电解槽内氧化铝浓度的方法
CN201634783U (zh) * 2009-12-17 2010-11-17 沈阳铝镁设计研究院 铝电解槽区域控制系统
CN102102212A (zh) * 2009-12-17 2011-06-22 沈阳铝镁设计研究院有限公司 铝电解槽区域控制系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275248A (zh) * 2007-12-20 2008-10-01 中国铝业股份有限公司 一种控制电解槽物料平衡的方法
CN101275246A (zh) * 2007-12-20 2008-10-01 中国铝业股份有限公司 一种铝电解槽下料系统故障实时检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088001A1 (en) * 2003-04-03 2004-10-14 Alcan International Limited Method and apparatus for dispersing alumina in a molten electrolyte contained in an aluminum reduction cell
US20070095672A1 (en) * 2005-11-02 2007-05-03 Shaidulin Eugeniy E Method of controlling aluminum reduction cell with prebaked anodes
CN101275249A (zh) * 2007-12-20 2008-10-01 中国铝业股份有限公司 一种实时预测铝电解槽内氧化铝浓度的方法
CN201634783U (zh) * 2009-12-17 2010-11-17 沈阳铝镁设计研究院 铝电解槽区域控制系统
CN102102212A (zh) * 2009-12-17 2011-06-22 沈阳铝镁设计研究院有限公司 铝电解槽区域控制系统和方法

Also Published As

Publication number Publication date
CN102400183A (zh) 2012-04-04
CN102400183B (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
CA3085965C (en) A method for recycling lithium batteries
Zhan et al. Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation
JP5360118B2 (ja) 有価金属回収方法
KR101275849B1 (ko) 리튬이온전지의 재생공정을 위한 전처리방법
JP2024100996A (ja) バッテリの拡張可能な直接リサイクルのための方法およびシステム
JP2014526953A (ja) リチウムイオン電池からの酸化リチウムコバルトの回収方法
CA3075424C (en) Method for treating lithium ion battery waste
CN103111354B (zh) 熔盐电解精炼的阴极析出物的预处理方法
WO2013075376A1 (zh) 抑制铝电解槽非阳极效应全氟化碳产生的方法及其系统
JP2012102350A (ja) 有価金属回収方法
CN103721781A (zh) 冲击式半自动多晶硅破碎设备
CN206793825U (zh) 一种太阳能电池生产废弃壳体破碎设备
CN102495006A (zh) 一种非阳极效应cf4的检测方法
KR101086715B1 (ko) 니켈 재생 방법
Thonstad et al. On the mechanism behind low voltage PFC emissions
WO2023240334A1 (en) Improved lithium batteries recycling process
CN203635242U (zh) 冲击式半自动多晶硅破碎设备
CN209034452U (zh) 固废破碎机
JP2009263779A (ja) フッ素ガスの生成において用いられる電解質セルから汚染された電解質を再生するための方法
KR101513746B1 (ko) 플라즈마 절단방법
EP4282547A1 (en) Sealing tool cleaning apparatus and cleaning method
CN207738864U (zh) 一种电解铝尾气收集处理系统
CN208928562U (zh) 一种适宜氧化铝粉用的除渣装置
CN111157482B (zh) 一种铝钙系脱氧剂中氧含量的检测方法
CN205437464U (zh) 一种带有警报功能的等离子切割装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876331

Country of ref document: EP

Kind code of ref document: A1