WO2013073498A1 - Fuel cell system and method for cooling fuel cell system - Google Patents

Fuel cell system and method for cooling fuel cell system Download PDF

Info

Publication number
WO2013073498A1
WO2013073498A1 PCT/JP2012/079269 JP2012079269W WO2013073498A1 WO 2013073498 A1 WO2013073498 A1 WO 2013073498A1 JP 2012079269 W JP2012079269 W JP 2012079269W WO 2013073498 A1 WO2013073498 A1 WO 2013073498A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
generation unit
heat medium
fuel cell
power generation
Prior art date
Application number
PCT/JP2012/079269
Other languages
French (fr)
Japanese (ja)
Inventor
翔 横山
水野 康
幸弘 川路
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2013544258A priority Critical patent/JP6114197B2/en
Publication of WO2013073498A1 publication Critical patent/WO2013073498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a fuel cell system cooling method.
  • Patent Document 1 discloses a power generation unit including a cell stack, a casing that houses the power generation unit, a fan that takes air into the casing from the outside of the casing, and the air as a cathode of the cell stack. And a blower for supplying to the machine. In this fuel cell system, air is taken into the casing from outside the casing to cool and ventilate the casing.
  • the casing that houses the power generation unit as described above may be required to ensure airtightness from the viewpoint of installation of the fuel cell system in a facility, for example.
  • a fan that takes air from outside the housing into the housing cannot be installed in the housing.
  • the present invention provides a fuel cell system and a cooling method for a fuel cell system that can efficiently cool the power generation unit housed in the housing even if the housing that houses the power generation unit has airtightness.
  • the issue is to provide.
  • a fuel cell system includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, a housing that houses the power generation unit, a combustion gas of off-gas discharged from the cell stack, and a liquid A heat exchanger that heats the heat medium by transferring heat from the combustion gas to the heat medium, and a heat medium passage that circulates the heat medium to the heat exchanger,
  • the medium flow path is provided to cool the power generation unit by transferring heat from the power generation unit to the heat medium.
  • a heat medium flow path is provided so as to cool the power generation section by transferring heat from the power generation section to the heat medium. Therefore, according to this fuel cell system, even if the casing housing the power generation unit is made airtight, the power generation unit accommodated in the casing can be efficiently cooled. Airtight means that it is airtight with respect to outside air other than the gas scheduled to be introduced into the housing.
  • a fuel cell system includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, a housing that houses the power generation unit, and an off-gas combustion gas discharged from the cell stack.
  • a heat exchanger that circulates the liquid heat medium, moves heat from the combustion gas to the heat medium to heat the heat medium, and a plurality of heat medium flow paths that circulate the heat medium to the heat exchanger; The heat medium flow path is provided so as to cool the power generation unit by transferring heat from the power generation unit to the heat medium.
  • each of the heat medium flow paths may distribute different types of heat medium to the heat exchanger.
  • each of the heat medium flow paths may distribute the same type of heat medium to the heat exchanger.
  • the heat medium flow path may be a flow path through which the heat medium flows into the heat exchanger. According to this, since heat is transferred from the power generation unit to the heat medium before being heated by the heat exchanger, the power generation unit accommodated in the housing can be cooled more efficiently.
  • the heat medium may be water.
  • heated water that is, hot water
  • the reforming water is preheated, and thus the reforming water can be efficiently vaporized. .
  • the heat medium may be glycols. Since glycols have a boiling point higher than that of water, the heat of the power generation unit can be recovered at a temperature higher than that of water.
  • the casing may have airtightness. Also in this case, the power generation unit accommodated in the housing can be efficiently cooled.
  • the heat medium flow path may be laid in a zigzag shape on the outer wall of the power generation unit. Furthermore, the heat medium flow path may be branched into a plurality on the outer wall of the power generation unit. According to these, since the contact area between the power generation unit and the heat medium flow path can be increased, heat exchange between the power generation unit and the heat medium flow path can be ensured.
  • a cooling method for a fuel cell system is a cooling method for a fuel cell system including a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and a housing that houses the power generation unit.
  • the heat generation unit is configured to distribute the heat medium of the liquid to be heated by transferring heat from the off-gas combustion gas discharged from the cell stack and transfer the heat from the power generation unit to the heat medium. Cool down.
  • the power generation unit accommodated in the casing can be efficiently cooled.
  • 1 is a block diagram of a fuel cell system according to a first embodiment of the present invention.
  • 1 is a conceptual diagram of a fuel cell system according to a first embodiment of the present invention. It is a conceptual diagram of the fuel cell system of 2nd Embodiment of this invention. It is a conceptual diagram of the fuel cell system of 3rd Embodiment of this invention.
  • the fuel cell system 1 of the first embodiment includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, and a hydrogen-containing fuel.
  • a supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and a control unit 11 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • a fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the fuel cell system 1 includes a casing 21 that is airtight to external air, as shown in FIG.
  • the casing 21 houses the above-described devices including the power generation unit 22.
  • the power generation unit 22 is modularized including the cell stack 5 that generates power using hydrogen-rich gas (hydrogen-containing gas).
  • the power generation unit 22 includes at least the cell stack 5, and may further include an off-gas combustion unit 6, a hydrogen generation unit 4, or the like, or may not include the off-gas combustion unit 6, the hydrogen generation unit 4, or the like. .
  • a heat exchanger 23 is accommodated in the housing 21.
  • the heat exchanger 23 circulates the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water, thereby moving the heat from the combustion gas to the water to heat the water.
  • This water is, for example, stored in a hot water tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water tank to the heat exchanger 23.
  • a water passage (heat medium passage) 24 through which water circulated and supplied from a hot water tank flows into the heat exchanger 23 and a water passage 25 through which the water flows out from the heat exchanger 23.
  • the water flow path 24 is laid in a zigzag manner on the outer wall of the power generation unit 22 so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to water. Thereby, the heat exchange between the electric power generation part 22 and the water flow path 24 can be ensured.
  • the water flow path 25 returns the water (that is, hot water) heated by the power generation unit 22 and the heat exchanger 23 to, for example, a hot water storage tank.
  • the water flow path 24 that allows water to flow into the heat exchanger 23 moves the heat from the power generation unit 22 to the water so as to cool the power generation unit 22.
  • the water to be heated is circulated from the off-gas combustion gas discharged from the cell stack 5, and the water to be heated is circulated to the water from the power generation unit 22.
  • a method for cooling the fuel cell system is performed in which heat is transferred to cool the power generation unit 22. Thereby, heat moves from the power generation unit 22 to the water before being heated by the heat exchanger 23.
  • the power generation unit 22 accommodated in the casing 21 having airtightness that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21
  • the power generation unit 22 accommodated in the casing 21 having airtightness that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21
  • It can cool well.
  • water since water is heated by the power generation unit 22 and the heat exchanger 23, hot water can be used in the facility where the fuel cell system 1 is installed.
  • the fuel cell system 1 of the second embodiment is mainly different from the fuel cell system 1 of the first embodiment described above in that a plurality of water flow paths 24 are provided.
  • the fuel cell system 1 of the second embodiment will be described focusing on this difference.
  • the fuel cell system 1 of the second embodiment includes a plurality of water flow paths (heat medium flow paths) 24A and 24B.
  • the water flow path 24 ⁇ / b> A is connected to the heat exchanger 23, and for example, water circulated from a hot water storage tank flows into the heat exchanger 23.
  • the water that has flowed into the heat exchanger 23 through the water flow path 24 ⁇ / b> A is discharged from the heat exchanger 23 through the water flow path 25 ⁇ / b> A connected to the heat exchanger 23.
  • the water flow path 24B is connected to the heat exchanger 23, and for example, reforming water used in the hydrogen generator 4 (see FIG. 1) flows into the heat exchanger 23 to generate hydrogen-rich gas. Let The water that has flowed into the heat exchanger 23 through the water flow path 24B is caused to flow out of the heat exchanger 23 through the water flow path 25B connected to the heat exchanger 23.
  • the off-gas combustion gas discharged from the cell stack 5, the water circulated and supplied from the hot water storage tank, and the reforming water are circulated through the heat exchanger 23. Therefore, in the heat exchanger 23, heat is transferred from the combustion gas to the water circulated and supplied from the hot water tank and the reforming water, and the water circulated and supplied from the hot water tank and the reforming water are heated. Will be.
  • the water circulated and supplied from the hot water tank is, for example, a large amount of 200 L of tap water, and its flow rate is, for example, 100 to 2000 cc / min.
  • the reforming water is, for example, a small amount of about 1 L of pure water, and its flow rate is, for example, 1 to 100 cc / min.
  • each of the water flow paths 24 ⁇ / b> A and 24 ⁇ / b> B distributes different types of water to the heat exchanger 23.
  • Each of the water channels 24A and 24B includes a zigzag shape (the channel is folded at least once) on the outer wall of the power generation unit 22 so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to water. ).
  • the water flow path 25A returns the water (that is, hot water) heated by the power generation unit 22 and the heat exchanger 23 to, for example, a hot water storage tank.
  • the water flow path 25B introduces the water heated by the power generation unit 22 and the heat exchanger 23 into the water vaporization unit 3 (see FIG. 1).
  • the water flow paths 24A and 24B that allow water to flow into the heat exchanger 23 transfer heat from the power generation unit 22 to the water to cool the power generation unit 22. It is provided to do.
  • the water to be heated is transferred from the off-gas combustion gas discharged from the cell stack 5, and the water to be heated is circulated to the water from the power generation unit 22.
  • a method for cooling the fuel cell system is performed in which heat is transferred to cool the power generation unit 22.
  • heat moves from the power generation unit 22 to the water before being heated by the heat exchanger 23. Therefore, according to the fuel cell system 1, the power generation unit 22 accommodated in the casing 21 having airtightness (that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21) is efficiently used. It can cool well.
  • the water flow path 24A circulates water circulated and supplied from the hot water storage tank, heated water (that is, hot water) can be used in the facility where the fuel cell system 1 is installed.
  • the water flow path 24B distributes the water for reforming used in the hydrogen generating unit 4 to generate the hydrogen-rich gas, the water for reforming can be efficiently vaporized by the water vaporizing unit 3.
  • the fuel cell system 1 of the third embodiment is mainly different from the fuel cell system 1 of the first embodiment described above in that the water flow path 24 is branched.
  • the fuel cell system 1 of the third embodiment will be described focusing on this difference.
  • the fuel cell system 1 of the third embodiment includes a water flow path 24 branched into a plurality on the outer wall of the power generation unit 22.
  • the water channel 24 is branched into a water channel 24 1 and a water channel 24 2 on the upstream side of the power generation unit 22, and the water channel 24 1 and the water channel 24 2 merge on the downstream side of the power generation unit 22.
  • the water channel 24 is connected to the heat exchanger 23, and for example, water circulated and supplied from a hot water storage tank flows into the heat exchanger 23.
  • the water that has flowed into the heat exchanger 23 by the water channel 24 is caused to flow out of the heat exchanger 23 by the water channel 25 connected to the heat exchanger 23.
  • the off-gas combustion gas discharged from the cell stack 5 and the water circulated and supplied from the hot water storage tank are circulated in the heat exchanger 23. Therefore, in the heat exchanger 23, heat is transferred from the combustion gas to the water circulated and supplied from the hot water tank, and the water circulated and supplied from the hot water tank is heated.
  • Each of the water flow paths 24 1 and 24 2 which are branched portions of the water flow path 24, are laid in a zigzag manner on the outer wall of the power generation unit 22 so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to water. Has been. Thereby, reliably the heat exchange between the power generation portion 22 the contact area between the water flow path 24 1, 24 2 can be increased, the power generation unit 22 and the water passages 24 1, 24 2 Can do.
  • the water flow path 25 returns the water (that is, hot water) heated by the power generation unit 22 and the heat exchanger 23 to, for example, a hot water storage tank.
  • the water flow path 24 through which water flows into the heat exchanger 23 moves the heat from the power generation unit 22 to the water to cool the power generation unit 22.
  • water that is to be heated by transferring heat from the off-gas combustion gas discharged from the cell stack 5 is circulated to the water from the power generation unit 22.
  • a method for cooling the fuel cell system is performed in which heat is transferred to cool the power generation unit 22.
  • heat moves from the power generation unit 22 to the water before being heated by the heat exchanger 23. Therefore, according to the fuel cell system 1, the power generation unit 22 accommodated in the casing 21 having airtightness (that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21) is efficiently used. It can cool well.
  • the present invention is not limited to the first to third embodiments.
  • casing 21 does not need to have airtightness. Also in this case, it is not necessary to separately provide the casing 21 with a fan or the like for taking air into the casing 21 from the outside of the casing 21, so that the structure of the fuel cell system 1 can be simplified.
  • the water flowing through the water flow path 24 is not limited to the water circulated and supplied from the hot water storage tank, but for reforming supplied to the water vaporization unit 3.
  • Other water such as water may be used.
  • the water flowing through each of the water flow paths 24A and 24B is limited to water that is circulated and supplied from the hot water tank or water for reforming that is supplied to the water vaporization unit 3. It may be other water.
  • the water flowing through each of the water flow paths 24A and 24B may be the same type of water, such as water circulated and supplied from a hot water storage tank.
  • a heat medium flow path may be provided.
  • a liquid heat medium for example, glycols
  • the heat medium flow path may be provided so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to the heat medium.
  • circulates glycols is provided, since glycols have a boiling point higher than water, it becomes possible to collect
  • different types of water for example, water circulated and supplied from a hot water tank or water for reforming
  • different types of heat medium may be circulated or the same type of heat medium may be circulated.
  • the water channel 24 may be a channel through which water flows out from the heat exchanger 23.
  • the power generation unit 22 can be cooled if the temperature of the water heated by the heat exchanger 23 is lower than the temperature of the power generation unit 22.
  • the power generation unit accommodated in the casing can be efficiently cooled.

Abstract

This fuel cell system (1) is provided with: an electricity generation unit (22) containing a cell stack (5) that generates electricity using a hydrogen-containing gas; a casing (21) that houses the electricity generation unit (22); a heat exchanger (23) that causes the circulation of water and combustion gas of the off-gas discharged from the cell stack (5), transferring the heat from the combustion gas to the water, thus heating the water; and a water duct (24) that causes the inflow of water to the heat exchanger (23). The water duct (24) is provided in a manner so as to cool the electricity generation unit (22) by transferring heat from the electricity generation unit (22) to the water.

Description

燃料電池システム及び燃料電池システムの冷却方法Fuel cell system and cooling method for fuel cell system
 本発明は、燃料電池システム及び燃料電池システムの冷却方法に関する。 The present invention relates to a fuel cell system and a fuel cell system cooling method.
 従来の燃料電池システムとして、例えば特許文献1には、セルスタックを含む発電部と、発電部を収容する筐体と、筐体外から筐体内に空気を取り込むファンと、その空気をセルスタックのカソードに供給するブロアと、を備えるものが記載されている。この燃料電池システムでは、筐体外から筐体内に空気を取り込むことで、筐体内の冷却及び換気を行っている。 As a conventional fuel cell system, for example, Patent Document 1 discloses a power generation unit including a cell stack, a casing that houses the power generation unit, a fan that takes air into the casing from the outside of the casing, and the air as a cathode of the cell stack. And a blower for supplying to the machine. In this fuel cell system, air is taken into the casing from outside the casing to cool and ventilate the casing.
特開2007-207441号公報JP 2007-207441 A
 ところで、上述したような発電部を収容する筐体には、例えば燃料電池システムの施設内への設置等の観点から、気密性の確保が要求される場合がある。そのような場合には、筐体外から筐体内に空気を取り込むファンを筐体に設置することはできない。 By the way, the casing that houses the power generation unit as described above may be required to ensure airtightness from the viewpoint of installation of the fuel cell system in a facility, for example. In such a case, a fan that takes air from outside the housing into the housing cannot be installed in the housing.
 そこで、本発明は、発電部を収容する筐体に気密性を持たせたとしても、筐体に収容された発電部を効率良く冷却することができる燃料電池システム及び燃料電池システムの冷却方法を提供することを課題とする。 Therefore, the present invention provides a fuel cell system and a cooling method for a fuel cell system that can efficiently cool the power generation unit housed in the housing even if the housing that houses the power generation unit has airtightness. The issue is to provide.
 本発明の一観点の燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、発電部を収容する筐体と、セルスタックから排出されるオフガスの燃焼ガスと、液体の熱媒体とを流通させ、燃焼ガスから熱媒体に熱を移動させて熱媒体を加熱する熱交換器と、熱交換器に対して熱媒体を流通させる熱媒体流路と、を備え、熱媒体流路は、発電部から熱媒体に熱を移動させて発電部を冷却するように設けられている。 A fuel cell system according to an aspect of the present invention includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, a housing that houses the power generation unit, a combustion gas of off-gas discharged from the cell stack, and a liquid A heat exchanger that heats the heat medium by transferring heat from the combustion gas to the heat medium, and a heat medium passage that circulates the heat medium to the heat exchanger, The medium flow path is provided to cool the power generation unit by transferring heat from the power generation unit to the heat medium.
 この燃料電池システムでは、発電部から熱媒体に熱を移動させて発電部を冷却するように熱媒体流路が設けられている。従って、この燃料電池システムによれば、発電部を収容する筐体に気密性を持たせたとしても、筐体に収容された発電部を効率良く冷却することができる。なお、気密性とは、筐体への導入が予定されている気体以外の外気に対して気密であることを意味する。 In this fuel cell system, a heat medium flow path is provided so as to cool the power generation section by transferring heat from the power generation section to the heat medium. Therefore, according to this fuel cell system, even if the casing housing the power generation unit is made airtight, the power generation unit accommodated in the casing can be efficiently cooled. Airtight means that it is airtight with respect to outside air other than the gas scheduled to be introduced into the housing.
 また、本発明の別観点の燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、発電部を収容する筐体と、セルスタックから排出されるオフガスの燃焼ガスと、液体の熱媒体とを流通させ、燃焼ガスから熱媒体に熱を移動させて熱媒体を加熱する熱交換器と、熱交換器に対して熱媒体を流通させる複数の熱媒体流路と、を備え、熱媒体流路は、発電部から熱媒体に熱を移動させて発電部を冷却するように設けられている。 In addition, a fuel cell system according to another aspect of the present invention includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, a housing that houses the power generation unit, and an off-gas combustion gas discharged from the cell stack. A heat exchanger that circulates the liquid heat medium, moves heat from the combustion gas to the heat medium to heat the heat medium, and a plurality of heat medium flow paths that circulate the heat medium to the heat exchanger; The heat medium flow path is provided so as to cool the power generation unit by transferring heat from the power generation unit to the heat medium.
 この燃料電池システムによれば、発電部を収容する筐体に気密性を持たせたとしても、筐体に収容された発電部を効率良く冷却することができる。この場合、熱媒体流路のそれぞれは、熱交換器に対して異なる種類の熱媒体を流通させてもよい。あるいは、熱媒体流路のそれぞれは、熱交換器に対して同じ種類の熱媒体を流通させてもよい。 According to this fuel cell system, even if the casing housing the power generation section is made airtight, the power generation section accommodated in the casing can be efficiently cooled. In this case, each of the heat medium flow paths may distribute different types of heat medium to the heat exchanger. Alternatively, each of the heat medium flow paths may distribute the same type of heat medium to the heat exchanger.
 ここで、熱媒体流路は、熱交換器に熱媒体を流入させる流路であってもよい。これによれば、熱交換器で加熱される前の熱媒体に発電部から熱が移動することになるので、筐体に収容された発電部をより効率良く冷却することができる。 Here, the heat medium flow path may be a flow path through which the heat medium flows into the heat exchanger. According to this, since heat is transferred from the power generation unit to the heat medium before being heated by the heat exchanger, the power generation unit accommodated in the housing can be cooled more efficiently.
 また、熱媒体は、水であってもよい。この場合、当該水が、貯湯槽から循環供給される水であれば、この燃料電池システムが設置された施設において、加熱された水(すなわち、湯)を利用することができる。また、当該水が、水素含有ガスを発生させるために用いられる改質用の水であれば、改質用の水が予め加熱されるため、改質用の水を効率良く気化させることができる。 Further, the heat medium may be water. In this case, if the water is circulated and supplied from the hot water storage tank, heated water (that is, hot water) can be used in the facility where the fuel cell system is installed. Further, if the water is a reforming water used for generating a hydrogen-containing gas, the reforming water is preheated, and thus the reforming water can be efficiently vaporized. .
 また、熱媒体は、グリコール類であってもよい。グリコール類は、水よりも沸点が高いため、水よりも高温で発電部の熱を回収することができる。 Also, the heat medium may be glycols. Since glycols have a boiling point higher than that of water, the heat of the power generation unit can be recovered at a temperature higher than that of water.
 また、筐体は、気密性を有していてもよい。この場合にも、筐体に収容された発電部を効率良く冷却することができる。 Further, the casing may have airtightness. Also in this case, the power generation unit accommodated in the housing can be efficiently cooled.
 また、熱媒体流路は、発電部の外壁にジグザグ状に敷設されていてもよい。さらに、熱媒体流路は、発電部の外壁において複数に分岐していてもよい。これらによれば、発電部と熱媒体流路との接触面積を増加させることができるので、発電部と熱媒体流路との間における熱交換を確実化することができる。 Further, the heat medium flow path may be laid in a zigzag shape on the outer wall of the power generation unit. Furthermore, the heat medium flow path may be branched into a plurality on the outer wall of the power generation unit. According to these, since the contact area between the power generation unit and the heat medium flow path can be increased, heat exchange between the power generation unit and the heat medium flow path can be ensured.
 本発明の一観点の燃料電池システムの冷却方法は、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、発電部を収容する筐体と、を備える燃料電池システムの冷却方法であって、当該冷却方法では、セルスタックから排出されるオフガスの燃焼ガスから熱を移動させて加熱する対象となる液体の熱媒体を流通させて、発電部から熱媒体に熱を移動させて発電部を冷却する。 A cooling method for a fuel cell system according to an aspect of the present invention is a cooling method for a fuel cell system including a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and a housing that houses the power generation unit. In this cooling method, the heat generation unit is configured to distribute the heat medium of the liquid to be heated by transferring heat from the off-gas combustion gas discharged from the cell stack and transfer the heat from the power generation unit to the heat medium. Cool down.
 この燃料電池システムの冷却方法によれば、発電部を収容する筐体に気密性を持たせたとしても、筐体に収容された発電部を効率良く冷却することができる。 According to this cooling method of the fuel cell system, even if the casing that houses the power generation section is made airtight, the power generation section accommodated in the casing can be efficiently cooled.
 本発明によれば、筐体に収容された発電部を効率良く冷却することができる。 According to the present invention, the power generation unit accommodated in the casing can be efficiently cooled.
本発明の第1実施形態の燃料電池システムのブロック図である。1 is a block diagram of a fuel cell system according to a first embodiment of the present invention. 本発明の第1実施形態の燃料電池システムの概念図である。1 is a conceptual diagram of a fuel cell system according to a first embodiment of the present invention. 本発明の第2実施形態の燃料電池システムの概念図である。It is a conceptual diagram of the fuel cell system of 2nd Embodiment of this invention. 本発明の第3実施形態の燃料電池システムの概念図である。It is a conceptual diagram of the fuel cell system of 3rd Embodiment of this invention.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
[First Embodiment]
 図1に示されるように、第1実施形態の燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 As shown in FIG. 1, the fuel cell system 1 of the first embodiment includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, and a hydrogen-containing fuel. A supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and a control unit 11 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガスを発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 上述した第1実施形態の燃料電池システム1は、図2に示されるように、外部の空気に対して気密性を有する筐体21を備えている。筐体21は、発電部22をはじめとして、上述した各機器類を収容している。発電部22は、水素リッチガス(水素含有ガス)を用いて発電を行うセルスタック5を含んでモジュール化されたものである。発電部22は、少なくともセルスタック5を含むものであって、さらにオフガス燃焼部6や水素発生部4等を含む場合もあれば、オフガス燃焼部6や水素発生部4等を含まない場合もある。 The fuel cell system 1 according to the first embodiment described above includes a casing 21 that is airtight to external air, as shown in FIG. The casing 21 houses the above-described devices including the power generation unit 22. The power generation unit 22 is modularized including the cell stack 5 that generates power using hydrogen-rich gas (hydrogen-containing gas). The power generation unit 22 includes at least the cell stack 5, and may further include an off-gas combustion unit 6, a hydrogen generation unit 4, or the like, or may not include the off-gas combustion unit 6, the hydrogen generation unit 4, or the like. .
 筐体21内には、熱交換器23が収容されている。熱交換器23は、セルスタック5から排出されるオフガスの燃焼ガス(すなわち、オフガス燃焼部6からの排ガス)、及び水を流通させることで、燃焼ガスから水に熱を移動させて水を加熱する。この水は、例えば、燃料電池システム1が設置された施設に湯を供給するための貯湯槽に貯留されて、その貯湯槽から熱交換器23に循環供給されたものである。 A heat exchanger 23 is accommodated in the housing 21. The heat exchanger 23 circulates the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water, thereby moving the heat from the combustion gas to the water to heat the water. To do. This water is, for example, stored in a hot water tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water tank to the heat exchanger 23.
 熱交換器23には、例えば貯湯槽から循環供給された水を熱交換器23に流入させる水流路(熱媒体流路)24、及びその水を熱交換器23から流出させる水流路25が接続されている。水流路24は、発電部22から水に熱を移動させて発電部22を冷却するように、発電部22の外壁にジグザグ状に敷設されている。これにより、発電部22と水流路24との間における熱交換を確実化することができる。一方、水流路25は、発電部22及び熱交換器23で加熱された水(すなわち、湯)を例えば貯湯槽に帰還させる。 Connected to the heat exchanger 23 are, for example, a water passage (heat medium passage) 24 through which water circulated and supplied from a hot water tank flows into the heat exchanger 23 and a water passage 25 through which the water flows out from the heat exchanger 23. Has been. The water flow path 24 is laid in a zigzag manner on the outer wall of the power generation unit 22 so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to water. Thereby, the heat exchange between the electric power generation part 22 and the water flow path 24 can be ensured. On the other hand, the water flow path 25 returns the water (that is, hot water) heated by the power generation unit 22 and the heat exchanger 23 to, for example, a hot water storage tank.
 以上説明したように、第1実施形態の燃料電池システム1では、熱交換器23に水を流入させる水流路24が、発電部22から水に熱を移動させて発電部22を冷却するように設けられている。換言すれば、第1実施形態の燃料電池システム1では、セルスタック5から排出されるオフガスの燃焼ガスから熱を移動させて加熱する対象となる水を流通させて、発電部22から当該水に熱を移動させて発電部22を冷却する燃料電池システムの冷却方法が実施される。これにより、熱交換器23で加熱される前の水に発電部22から熱が移動することになる。従って、燃料電池システム1によれば、気密性(筐体21への導入が予定されている気体以外の外気に対して気密であること)を有する筐体21に収容された発電部22を効率良く冷却することができる。その一方で、発電部22及び熱交換器23で水が加熱されるので、燃料電池システム1が設置された施設において、湯を利用することができる。
[第2実施形態]
As described above, in the fuel cell system 1 according to the first embodiment, the water flow path 24 that allows water to flow into the heat exchanger 23 moves the heat from the power generation unit 22 to the water so as to cool the power generation unit 22. Is provided. In other words, in the fuel cell system 1 of the first embodiment, the water to be heated is circulated from the off-gas combustion gas discharged from the cell stack 5, and the water to be heated is circulated to the water from the power generation unit 22. A method for cooling the fuel cell system is performed in which heat is transferred to cool the power generation unit 22. Thereby, heat moves from the power generation unit 22 to the water before being heated by the heat exchanger 23. Therefore, according to the fuel cell system 1, the power generation unit 22 accommodated in the casing 21 having airtightness (that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21) is efficiently used. It can cool well. On the other hand, since water is heated by the power generation unit 22 and the heat exchanger 23, hot water can be used in the facility where the fuel cell system 1 is installed.
[Second Embodiment]
 第2実施形態の燃料電池システム1は、水流路24が複数設けられている点で、上述した第1実施形態の燃料電池システム1と主に相違している。以下、この相違点を中心に、第2実施形態の燃料電池システム1について説明する。 The fuel cell system 1 of the second embodiment is mainly different from the fuel cell system 1 of the first embodiment described above in that a plurality of water flow paths 24 are provided. Hereinafter, the fuel cell system 1 of the second embodiment will be described focusing on this difference.
 図3に示されるように、第2実施形態の燃料電池システム1は、複数の水流路(熱媒体流路)24A,24Bを備えている。水流路24Aは、熱交換器23に接続されており、例えば貯湯槽から循環供給された水を熱交換器23に流入させる。水流路24Aによって熱交換器23に流入させられた水は、熱交換器23に接続された水流路25Aによって、熱交換器23から流出させられる。また、水流路24Bは、熱交換器23に接続されており、例えば水素リッチガスを発生させるために水素発生部4(図1を参照)で用いられる改質用の水を熱交換器23に流入させる。水流路24Bによって熱交換器23に流入させられた水は、熱交換器23に接続された水流路25Bによって、熱交換器23から流出させられる。 As shown in FIG. 3, the fuel cell system 1 of the second embodiment includes a plurality of water flow paths (heat medium flow paths) 24A and 24B. The water flow path 24 </ b> A is connected to the heat exchanger 23, and for example, water circulated from a hot water storage tank flows into the heat exchanger 23. The water that has flowed into the heat exchanger 23 through the water flow path 24 </ b> A is discharged from the heat exchanger 23 through the water flow path 25 </ b> A connected to the heat exchanger 23. In addition, the water flow path 24B is connected to the heat exchanger 23, and for example, reforming water used in the hydrogen generator 4 (see FIG. 1) flows into the heat exchanger 23 to generate hydrogen-rich gas. Let The water that has flowed into the heat exchanger 23 through the water flow path 24B is caused to flow out of the heat exchanger 23 through the water flow path 25B connected to the heat exchanger 23.
 これにより、熱交換器23には、セルスタック5から排出されるオフガスの燃焼ガス、並びに、貯湯槽から循環供給された水及び改質用の水がそれぞれ流通させられることになる。従って、熱交換器23では、貯湯槽から循環供給された水及び改質用の水に燃焼ガスから熱が移動させられて、貯湯槽から循環供給された水及び改質用の水が加熱されることになる。なお、貯湯槽から循環供給された水は、例えば量の多い~200Lの水道水であり、その流量は、例えば100~2000cc/minである。一方、改質用の水は、例えば量の少ない1L程度の純水であり、その流量は、例えば1~100cc/minである。このように、第2実施形態の燃料電池システム1では、各水流路24A,24Bが、熱交換器23に対して異なる種類の水を流通させる。 Thus, the off-gas combustion gas discharged from the cell stack 5, the water circulated and supplied from the hot water storage tank, and the reforming water are circulated through the heat exchanger 23. Therefore, in the heat exchanger 23, heat is transferred from the combustion gas to the water circulated and supplied from the hot water tank and the reforming water, and the water circulated and supplied from the hot water tank and the reforming water are heated. Will be. The water circulated and supplied from the hot water tank is, for example, a large amount of 200 L of tap water, and its flow rate is, for example, 100 to 2000 cc / min. On the other hand, the reforming water is, for example, a small amount of about 1 L of pure water, and its flow rate is, for example, 1 to 100 cc / min. Thus, in the fuel cell system 1 of the second embodiment, each of the water flow paths 24 </ b> A and 24 </ b> B distributes different types of water to the heat exchanger 23.
 各水流路24A,24Bは、発電部22から水に熱を移動させて発電部22を冷却するように、発電部22の外壁にジグザグ状(流路が少なくとも1回折り返されている状態を含む)に敷設されている。これにより、発電部22と各水流路24A,24Bとの接触面積を増加させることができるので、発電部22と各水流路24A,24Bとの間における熱交換を確実化することができる。一方、水流路25Aは、発電部22及び熱交換器23で加熱された水(すなわち、湯)を例えば貯湯槽に帰還させる。また、水流路25Bは、発電部22及び熱交換器23で加熱された水を水気化部3(図1を参照)に導入させる。 Each of the water channels 24A and 24B includes a zigzag shape (the channel is folded at least once) on the outer wall of the power generation unit 22 so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to water. ). Thereby, since the contact area of the electric power generation part 22 and each water flow path 24A, 24B can be increased, the heat exchange between the power generation part 22 and each water flow path 24A, 24B can be ensured. On the other hand, the water flow path 25A returns the water (that is, hot water) heated by the power generation unit 22 and the heat exchanger 23 to, for example, a hot water storage tank. Moreover, the water flow path 25B introduces the water heated by the power generation unit 22 and the heat exchanger 23 into the water vaporization unit 3 (see FIG. 1).
 以上説明したように、第2実施形態の燃料電池システム1では、熱交換器23に水を流入させる各水流路24A,24Bが、発電部22から水に熱を移動させて発電部22を冷却するように設けられている。換言すれば、第2実施形態の燃料電池システム1では、セルスタック5から排出されるオフガスの燃焼ガスから熱を移動させて加熱する対象となる水を流通させて、発電部22から当該水に熱を移動させて発電部22を冷却する燃料電池システムの冷却方法が実施される。これにより、熱交換器23で加熱される前の水に発電部22から熱が移動することになる。従って、燃料電池システム1によれば、気密性(筐体21への導入が予定されている気体以外の外気に対して気密であること)を有する筐体21に収容された発電部22を効率良く冷却することができる。 As described above, in the fuel cell system 1 according to the second embodiment, the water flow paths 24A and 24B that allow water to flow into the heat exchanger 23 transfer heat from the power generation unit 22 to the water to cool the power generation unit 22. It is provided to do. In other words, in the fuel cell system 1 of the second embodiment, the water to be heated is transferred from the off-gas combustion gas discharged from the cell stack 5, and the water to be heated is circulated to the water from the power generation unit 22. A method for cooling the fuel cell system is performed in which heat is transferred to cool the power generation unit 22. Thereby, heat moves from the power generation unit 22 to the water before being heated by the heat exchanger 23. Therefore, according to the fuel cell system 1, the power generation unit 22 accommodated in the casing 21 having airtightness (that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21) is efficiently used. It can cool well.
 さらに、水流路24Aが、貯湯槽から循環供給される水を流通させるので、燃料電池システム1が設置された施設において、加熱された水(すなわち、湯)を利用することができる。また、水流路24Bが、水素リッチガスを発生させるために水素発生部4で用いられる改質用の水を流通させるので、改質用の水を水気化部3で効率良く気化させることができる。
[第3実施形態]
Furthermore, since the water flow path 24A circulates water circulated and supplied from the hot water storage tank, heated water (that is, hot water) can be used in the facility where the fuel cell system 1 is installed. Moreover, since the water flow path 24B distributes the water for reforming used in the hydrogen generating unit 4 to generate the hydrogen-rich gas, the water for reforming can be efficiently vaporized by the water vaporizing unit 3.
[Third Embodiment]
 第3実施形態の燃料電池システム1は、水流路24が分岐している点で、上述した第1実施形態の燃料電池システム1と主に相違している。以下、この相違点を中心に、第3実施形態の燃料電池システム1について説明する。 The fuel cell system 1 of the third embodiment is mainly different from the fuel cell system 1 of the first embodiment described above in that the water flow path 24 is branched. Hereinafter, the fuel cell system 1 of the third embodiment will be described focusing on this difference.
 図4に示されるように、第3実施形態の燃料電池システム1は、発電部22の外壁において複数に分岐した水流路24を備えている。水流路24は、発電部22の上流側において水流路24と水流路24とに分岐しており、水流路24と水流路24とは、発電部22の下流側において合流している。水流路24は、熱交換器23に接続されており、例えば貯湯槽から循環供給された水を熱交換器23に流入させる。水流路24によって熱交換器23に流入させられた水は、熱交換器23に接続された水流路25によって、熱交換器23から流出させられる。 As shown in FIG. 4, the fuel cell system 1 of the third embodiment includes a water flow path 24 branched into a plurality on the outer wall of the power generation unit 22. The water channel 24 is branched into a water channel 24 1 and a water channel 24 2 on the upstream side of the power generation unit 22, and the water channel 24 1 and the water channel 24 2 merge on the downstream side of the power generation unit 22. Yes. The water channel 24 is connected to the heat exchanger 23, and for example, water circulated and supplied from a hot water storage tank flows into the heat exchanger 23. The water that has flowed into the heat exchanger 23 by the water channel 24 is caused to flow out of the heat exchanger 23 by the water channel 25 connected to the heat exchanger 23.
 これにより、熱交換器23には、セルスタック5から排出されるオフガスの燃焼ガス、及び貯湯槽から循環供給された水がそれぞれ流通させられることになる。従って、熱交換器23では、貯湯槽から循環供給された水に燃焼ガスから熱が移動させられて、貯湯槽から循環供給された水が加熱されることになる。 Thus, the off-gas combustion gas discharged from the cell stack 5 and the water circulated and supplied from the hot water storage tank are circulated in the heat exchanger 23. Therefore, in the heat exchanger 23, heat is transferred from the combustion gas to the water circulated and supplied from the hot water tank, and the water circulated and supplied from the hot water tank is heated.
 水流路24のうち分岐した部分である各水流路24,24は、発電部22から水に熱を移動させて発電部22を冷却するように、発電部22の外壁にジグザグ状に敷設されている。これにより、発電部22と各水流路24,24との接触面積を増加させることができるので、発電部22と各水流路24,24との間における熱交換を確実化することができる。一方、水流路25は、発電部22及び熱交換器23で加熱された水(すなわち、湯)を例えば貯湯槽に帰還させる。 Each of the water flow paths 24 1 and 24 2 , which are branched portions of the water flow path 24, are laid in a zigzag manner on the outer wall of the power generation unit 22 so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to water. Has been. Thereby, reliably the heat exchange between the power generation portion 22 the contact area between the water flow path 24 1, 24 2 can be increased, the power generation unit 22 and the water passages 24 1, 24 2 Can do. On the other hand, the water flow path 25 returns the water (that is, hot water) heated by the power generation unit 22 and the heat exchanger 23 to, for example, a hot water storage tank.
 以上説明したように、第3実施形態の燃料電池システム1では、熱交換器23に水を流入させる水流路24が、発電部22から水に熱を移動させて発電部22を冷却するように設けられている。換言すれば、第3実施形態の燃料電池システム1では、セルスタック5から排出されるオフガスの燃焼ガスから熱を移動させて加熱する対象となる水を流通させて、発電部22から当該水に熱を移動させて発電部22を冷却する燃料電池システムの冷却方法が実施される。これにより、熱交換器23で加熱される前の水に発電部22から熱が移動することになる。従って、燃料電池システム1によれば、気密性(筐体21への導入が予定されている気体以外の外気に対して気密であること)を有する筐体21に収容された発電部22を効率良く冷却することができる。 As described above, in the fuel cell system 1 according to the third embodiment, the water flow path 24 through which water flows into the heat exchanger 23 moves the heat from the power generation unit 22 to the water to cool the power generation unit 22. Is provided. In other words, in the fuel cell system 1 of the third embodiment, water that is to be heated by transferring heat from the off-gas combustion gas discharged from the cell stack 5 is circulated to the water from the power generation unit 22. A method for cooling the fuel cell system is performed in which heat is transferred to cool the power generation unit 22. Thereby, heat moves from the power generation unit 22 to the water before being heated by the heat exchanger 23. Therefore, according to the fuel cell system 1, the power generation unit 22 accommodated in the casing 21 having airtightness (that is, airtight with respect to outside air other than the gas scheduled to be introduced into the casing 21) is efficiently used. It can cool well.
 以上、本発明の第1~第3実施形態について説明したが、本発明は、上記第1~第3実施形態に限定されるものではない。例えば、筐体21は、気密性を有していなくてもよい。この場合にも、筐体21外から筐体21内に空気を取り込むためのファン等を別途筐体21に設ける必要がないので、燃料電池システム1の構造の単純化を図ることができる。 The first to third embodiments of the present invention have been described above. However, the present invention is not limited to the first to third embodiments. For example, the housing | casing 21 does not need to have airtightness. Also in this case, it is not necessary to separately provide the casing 21 with a fan or the like for taking air into the casing 21 from the outside of the casing 21, so that the structure of the fuel cell system 1 can be simplified.
 また、第1及び第3実施形態の燃料電池システム1において、水流路24を流通する水は、貯湯槽から循環供給される水に限定されず、水気化部3に供給される改質用の水等、その他の水であってもよい。また、第2実施形態の燃料電池システム1において、各水流路24A,24Bを流通する水は、貯湯槽から循環供給される水や、水気化部3に供給される改質用の水に限定されず、その他の水であってもよい。さらに、第2実施形態の燃料電池システム1において、各水流路24A,24Bを流通する水は、貯湯槽から循環供給される水等、同じ種類の水であってもよい。 Further, in the fuel cell system 1 of the first and third embodiments, the water flowing through the water flow path 24 is not limited to the water circulated and supplied from the hot water storage tank, but for reforming supplied to the water vaporization unit 3. Other water such as water may be used. In the fuel cell system 1 of the second embodiment, the water flowing through each of the water flow paths 24A and 24B is limited to water that is circulated and supplied from the hot water tank or water for reforming that is supplied to the water vaporization unit 3. It may be other water. Furthermore, in the fuel cell system 1 of the second embodiment, the water flowing through each of the water flow paths 24A and 24B may be the same type of water, such as water circulated and supplied from a hot water storage tank.
 また、第1及び第3実施形態の燃料電池システム1において、水流路24と共に、あるいは水流路24に代えて、他の液体の熱媒体(例えばグリコール類等)を流通させる1ライン又は複数ラインの熱媒体流路を設けてもよい。また、第2実施形態の燃料電池システム1において、水流路24A,24Bと共に、あるいは水流路24A,24Bの少なくとも1ラインに代えて、他の液体の熱媒体(例えばグリコール類等)を流通させる1ライン又は複数ラインの熱媒体流路を設けてもよい。これらの場合にも、発電部22から熱媒体に熱を移動させて発電部22を冷却するように熱媒体流路を設ければよい。なお、グリコール類を流通させる熱媒体流路を設ければ、グリコール類は、水よりも沸点が高いため、水よりも高温で発電部22の熱を回収することが可能となる。 Further, in the fuel cell system 1 of the first and third embodiments, one line or a plurality of lines through which another liquid heat medium (for example, glycols or the like) circulates together with or in place of the water flow path 24. A heat medium flow path may be provided. Further, in the fuel cell system 1 of the second embodiment, a liquid heat medium (for example, glycols) is circulated together with the water flow paths 24A and 24B or in place of at least one line of the water flow paths 24A and 24B. You may provide the heat-medium flow path of a line or multiple lines. In these cases, the heat medium flow path may be provided so as to cool the power generation unit 22 by transferring heat from the power generation unit 22 to the heat medium. In addition, if the heat medium flow path which distribute | circulates glycols is provided, since glycols have a boiling point higher than water, it becomes possible to collect | recover the heat | fever of the electric power generation part 22 at higher temperature than water.
 さらに、第2実施形態の燃料電池システム1において、異なる種類の水(例えば、貯湯槽から循環供給された水や改質用の水等)を流通させてもよいし、同じ種類の水を流通させてもよいのと同様に、複数ラインの熱媒体流路を設ける場合には、異なる種類の熱媒体を流通させてもよいし、同じ種類の熱媒体を流通させてもよい。 Furthermore, in the fuel cell system 1 according to the second embodiment, different types of water (for example, water circulated and supplied from a hot water tank or water for reforming) may be circulated, or the same type of water may be circulated. Similarly to the case where a plurality of lines of heat medium flow paths are provided, different types of heat medium may be circulated or the same type of heat medium may be circulated.
 また、水流路24は、水を熱交換器23から流出させる流路であってもよい。この場合にも、熱交換器23で加熱された水の温度が発電部22の温度よりも低ければ、発電部22を冷却することができる。そして、複数ラインの水流路24を設ける場合には、全ての水流路24において同じ方向に水を流通させる必要はない。これらのことは、上述した熱媒体流路についても同様である。 Further, the water channel 24 may be a channel through which water flows out from the heat exchanger 23. Also in this case, the power generation unit 22 can be cooled if the temperature of the water heated by the heat exchanger 23 is lower than the temperature of the power generation unit 22. And when providing the water flow path 24 of multiple lines, it is not necessary to distribute | circulate water in the same direction in all the water flow paths 24. FIG. The same applies to the heat medium flow path described above.
 本発明によれば、筐体に収容された発電部を効率良く冷却することができる。 According to the present invention, the power generation unit accommodated in the casing can be efficiently cooled.
 1…燃料電池システム、5…セルスタック、21…筐体、22…発電部、23…熱交換器、24,24A,24B…水流路(熱媒体流路)。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 5 ... Cell stack, 21 ... Housing | casing, 22 ... Power generation part, 23 ... Heat exchanger, 24, 24A, 24B ... Water flow path (heat medium flow path).

Claims (13)

  1.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、
     前記発電部を収容する筐体と、
     前記セルスタックから排出されるオフガスの燃焼ガスと、液体の熱媒体とを流通させ、前記燃焼ガスから前記熱媒体に熱を移動させて前記熱媒体を加熱する熱交換器と、
     前記熱交換器に対して前記熱媒体を流通させる熱媒体流路と、を備え、
     前記熱媒体流路は、前記発電部から前記熱媒体に熱を移動させて前記発電部を冷却するように設けられている、燃料電池システム。
    A power generation unit including a cell stack that generates power using a hydrogen-containing gas;
    A housing for housing the power generation unit;
    A heat exchanger for circulating off-gas combustion gas discharged from the cell stack and a liquid heat medium, transferring heat from the combustion gas to the heat medium, and heating the heat medium;
    A heat medium flow path for circulating the heat medium to the heat exchanger,
    The fuel cell system, wherein the heat medium flow path is provided to cool the power generation unit by transferring heat from the power generation unit to the heat medium.
  2.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、
     前記発電部を収容する筐体と、
     前記セルスタックから排出されるオフガスの燃焼ガスと、液体の熱媒体とを流通させ、前記燃焼ガスから前記熱媒体に熱を移動させて前記熱媒体を加熱する熱交換器と、
     前記熱交換器に対して前記熱媒体を流通させる複数の熱媒体流路と、を備え、
     前記熱媒体流路は、前記発電部から前記熱媒体に熱を移動させて前記発電部を冷却するように設けられている、燃料電池システム。
    A power generation unit including a cell stack that generates power using a hydrogen-containing gas;
    A housing for housing the power generation unit;
    A heat exchanger for circulating off-gas combustion gas discharged from the cell stack and a liquid heat medium, transferring heat from the combustion gas to the heat medium, and heating the heat medium;
    A plurality of heat medium flow paths for circulating the heat medium to the heat exchanger,
    The fuel cell system, wherein the heat medium flow path is provided to cool the power generation unit by transferring heat from the power generation unit to the heat medium.
  3.  前記熱媒体流路のそれぞれは、前記熱交換器に対して異なる種類の前記熱媒体を流通させる、請求項2記載の燃料電池システム。 The fuel cell system according to claim 2, wherein each of the heat medium flow paths distributes different types of the heat medium to the heat exchanger.
  4.  前記熱媒体流路のそれぞれは、前記熱交換器に対して同じ種類の前記熱媒体を流通させる、請求項2記載の燃料電池システム。 The fuel cell system according to claim 2, wherein each of the heat medium flow paths distributes the same kind of the heat medium to the heat exchanger.
  5.  前記熱媒体流路は、前記熱交換器に前記熱媒体を流入させる流路である、請求項1~4のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the heat medium passage is a passage through which the heat medium flows into the heat exchanger.
  6.  前記熱媒体は、水である、請求項1~5のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 5, wherein the heat medium is water.
  7.  前記水は、貯湯槽から循環供給される水である、請求項6記載の燃料電池システム。 The fuel cell system according to claim 6, wherein the water is water circulated from a hot water tank.
  8.  前記水は、前記水素含有ガスを発生させるために用いられる改質用の水である、請求項6記載の燃料電池システム。 The fuel cell system according to claim 6, wherein the water is reforming water used for generating the hydrogen-containing gas.
  9.  前記熱媒体は、グリコール類である、請求項1~5のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 5, wherein the heat medium is glycols.
  10.  前記筐体は、気密性を有している、請求項1~9のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 9, wherein the casing is airtight.
  11.  前記熱媒体流路は、前記発電部の外壁にジグザグ状に敷設されている、請求項1~10のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 10, wherein the heat medium flow path is laid in a zigzag shape on an outer wall of the power generation unit.
  12.  前記熱媒体流路は、前記発電部の外壁において複数に分岐している、請求項1~11のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 11, wherein the heat medium flow path is branched into a plurality of portions on an outer wall of the power generation unit.
  13.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、前記発電部を収容する筐体と、を備える燃料電池システムの冷却方法であって、
     前記セルスタックから排出されるオフガスの燃焼ガスから熱を移動させて加熱する対象となる液体の熱媒体を流通させて、前記発電部から前記熱媒体に熱を移動させて前記発電部を冷却する、燃料電池システムの冷却方法。
    A fuel cell system cooling method comprising: a power generation unit including a cell stack that generates power using a hydrogen-containing gas; and a housing that houses the power generation unit,
    A liquid heat medium to be heated is transferred from the off-gas combustion gas discharged from the cell stack, and heat is transferred from the power generation unit to the heat medium to cool the power generation unit. And cooling method of fuel cell system.
PCT/JP2012/079269 2011-11-15 2012-11-12 Fuel cell system and method for cooling fuel cell system WO2013073498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544258A JP6114197B2 (en) 2011-11-15 2012-11-12 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-249810 2011-11-15
JP2011249810 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073498A1 true WO2013073498A1 (en) 2013-05-23

Family

ID=48429557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079269 WO2013073498A1 (en) 2011-11-15 2012-11-12 Fuel cell system and method for cooling fuel cell system

Country Status (2)

Country Link
JP (1) JP6114197B2 (en)
WO (1) WO2013073498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176818A (en) * 2014-03-17 2015-10-05 大阪瓦斯株式会社 Fuel battery system
JP6171114B1 (en) * 2017-05-18 2017-07-26 東京瓦斯株式会社 Fuel cell system
WO2017126699A1 (en) * 2016-01-23 2017-07-27 京セラ株式会社 Fuel cell device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190393522A1 (en) * 2018-06-25 2019-12-26 Saint-Gobain Ceramics & Plastics, Inc. Electrochemical assembly including heat exchanger
EP4078705A1 (en) 2019-12-20 2022-10-26 Saint-Gobain Ceramics & Plastics Inc. Apparatus including electrochemical devices and heat exchanger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142769A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Fuel battery
JPH1055812A (en) * 1996-08-07 1998-02-24 Honda Motor Co Ltd Fuel cell
JP2000231929A (en) * 1999-02-09 2000-08-22 Honda Motor Co Ltd Fuel cell
JP2001313053A (en) * 2000-04-28 2001-11-09 Daikin Ind Ltd Fuel cell system
JP2004362800A (en) * 2003-06-02 2004-12-24 Mitsubishi Materials Corp Fuel cell
JP2005100821A (en) * 2003-09-25 2005-04-14 Toto Ltd High temperature type fuel cell system
JP2005216488A (en) * 2004-01-27 2005-08-11 Fuji Electric Holdings Co Ltd Operation method of fuel cell power generation device
JP2007317559A (en) * 2006-05-26 2007-12-06 Kawamura Electric Inc Temperature control device of fuel cell
JP2008021636A (en) * 2006-06-12 2008-01-31 Mitsubishi Materials Corp Fuel cell
WO2009028169A1 (en) * 2007-08-27 2009-03-05 Mitsubishi Materials Corporation Fuel cell
JP2009170307A (en) * 2008-01-17 2009-07-30 Nippon Oil Corp Fuel cell module, and operation method of fuel cell module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352716B2 (en) * 1992-03-31 2002-12-03 株式会社東芝 Solid polymer electrolyte fuel cell device
JP2005203254A (en) * 2004-01-16 2005-07-28 Mitsubishi Materials Corp Solid oxide fuel cell
JP2006179386A (en) * 2004-12-24 2006-07-06 Kyocera Corp Fuel cell system
JP2007128717A (en) * 2005-11-02 2007-05-24 Mitsubishi Materials Corp Operation method of fuel cell
JP5382408B2 (en) * 2008-07-22 2014-01-08 アイシン精機株式会社 Fuel cell system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142769A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Fuel battery
JPH1055812A (en) * 1996-08-07 1998-02-24 Honda Motor Co Ltd Fuel cell
JP2000231929A (en) * 1999-02-09 2000-08-22 Honda Motor Co Ltd Fuel cell
JP2001313053A (en) * 2000-04-28 2001-11-09 Daikin Ind Ltd Fuel cell system
JP2004362800A (en) * 2003-06-02 2004-12-24 Mitsubishi Materials Corp Fuel cell
JP2005100821A (en) * 2003-09-25 2005-04-14 Toto Ltd High temperature type fuel cell system
JP2005216488A (en) * 2004-01-27 2005-08-11 Fuji Electric Holdings Co Ltd Operation method of fuel cell power generation device
JP2007317559A (en) * 2006-05-26 2007-12-06 Kawamura Electric Inc Temperature control device of fuel cell
JP2008021636A (en) * 2006-06-12 2008-01-31 Mitsubishi Materials Corp Fuel cell
WO2009028169A1 (en) * 2007-08-27 2009-03-05 Mitsubishi Materials Corporation Fuel cell
JP2009170307A (en) * 2008-01-17 2009-07-30 Nippon Oil Corp Fuel cell module, and operation method of fuel cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176818A (en) * 2014-03-17 2015-10-05 大阪瓦斯株式会社 Fuel battery system
WO2017126699A1 (en) * 2016-01-23 2017-07-27 京セラ株式会社 Fuel cell device
JP6239198B1 (en) * 2016-01-23 2017-11-29 京セラ株式会社 Fuel cell device
US11843139B2 (en) 2016-01-23 2023-12-12 Kyocera Corporation Fuel cell apparatus
JP6171114B1 (en) * 2017-05-18 2017-07-26 東京瓦斯株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPWO2013073498A1 (en) 2015-04-02
JP6114197B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2012091096A1 (en) Fuel cell system
JP5065628B2 (en) Indirect internal reforming solid oxide fuel cell system
JP5852011B2 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
WO2012091029A1 (en) Fuel cell system
WO2012091121A1 (en) Fuel cell system
JP2008285355A (en) Reformer and indirect internal reforming high temperature type fuel cell
JP5939858B2 (en) Fuel cell module
JP5782458B2 (en) Fuel cell system
WO2012090875A1 (en) Fuel cell system and desulfurization device
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
WO2012090865A1 (en) Desulfurization device and fuel cell system
WO2012091131A1 (en) Fuel cell system
WO2012091132A1 (en) Fuel cell system
JP5738319B2 (en) Fuel cell system
JP2014107186A (en) Solid oxide fuel cell system
JP5738317B2 (en) Desulfurization apparatus and fuel cell system
WO2012091094A1 (en) Fuel cell system
WO2012090964A1 (en) Fuel cell system
JP5331596B2 (en) Fuel cell system
JP5728497B2 (en) Fuel cell system
JP6224329B2 (en) Fuel cell system
JP2015191785A (en) reformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849614

Country of ref document: EP

Kind code of ref document: A1