WO2013072541A9 - Sistema para mejorar la producción de polihidroxialcanoatos (bioplástico) por fermentación a partir de glicerol utilizando una cepa de pseudomonas putida modificada genéticamente - Google Patents

Sistema para mejorar la producción de polihidroxialcanoatos (bioplástico) por fermentación a partir de glicerol utilizando una cepa de pseudomonas putida modificada genéticamente Download PDF

Info

Publication number
WO2013072541A9
WO2013072541A9 PCT/ES2012/070793 ES2012070793W WO2013072541A9 WO 2013072541 A9 WO2013072541 A9 WO 2013072541A9 ES 2012070793 W ES2012070793 W ES 2012070793W WO 2013072541 A9 WO2013072541 A9 WO 2013072541A9
Authority
WO
WIPO (PCT)
Prior art keywords
glycerol
pseudomonas putida
genetically modified
fermentation
polyhydroxyalkanoates
Prior art date
Application number
PCT/ES2012/070793
Other languages
English (en)
French (fr)
Other versions
WO2013072541A1 (es
Inventor
Isabel FERNÁNDEZ ESCAPA
Carlos DEL CERRO SÁNCHEZ
José Luis GARCÍA LÓPEZ
María Auxiliadora PRIETO JIMÉNEZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2013072541A1 publication Critical patent/WO2013072541A1/es
Publication of WO2013072541A9 publication Critical patent/WO2013072541A9/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/32Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/40Pseudomonas putida
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention falls within the Area of Industrial Biotechnology in the Chemical Industry sector, and in particular the so-called Sustainable Chemistry or Green Chemistry, being able to affect both the subsector of primary chemical substances and the subsector of specialized chemical substances .
  • the system developed for Pseudomonas putida makes it applicable to the production of any substance by fermentation in this microorganism, but especially for the biosynthesis of polyhydroxyalkanoates (PHAs).
  • Bioprocess technology has undergone considerable progress in recent years trying to improve and adapt modern biotechnology to classical fermentation technologies. In this sense, recombinant DNA technology or, in a broader concept, molecular biology techniques, have been decisive so that we can exploit and manipulate a large number of organisms for the production of substances of interest. To a large extent, this success has been possible thanks to the development of systems for gene expression in heterologous organisms that are easier to manipulate and multiply.
  • PHAs commonly known as “bioplastics” are biodegradable polymers produced by certain bacteria, which accumulate inside the cell in the form of carbon-source reserve granules when culture conditions are not optimal for growth (reviewed in Madison and Huisman (1999) Microbiol. Mol. Biol. Rev. 63: 21-53; Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos , JL and Filloux, A. Springer. 397-428).
  • biopolymers are biodegradable and bacteria synthesize them from renewable sources such as glucose, fructose or fatty acids that are part of vegetable oils (Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos, JL and Filloux, A. Springer. 397-428). Therefore, the term bioplastic can be defined as a biopolymer synthesized from renewable sources, which can be biodegraded under controlled conditions and that presents physicochemical characteristics similar to plastics derived from the petrochemical industry (Sarasa et al. (2009) Bioresour Technol. 100: 3764-3768.).
  • PHA granules are composed of a polyester (93-97% of the dry weight of the granule (PSG) surrounded by phospholipids (1-6% of PSG) and granule-associated proteins (GAPs) (1-2% of the PSG), which form a thin layer on the surface of the granule (Steinbüchel et al. (1995) Can. J. Microbiol. 41: 94-105).
  • GAPs GAPs that have been defined in bacteria: i) PHA synthases, involved in the polymerization of PHA, i) PHA depolymerases, responsible for the degradation of bioplastic and i) the fasines, the most abundant GAPs, with a structural or regulatory function (Prieto et al. (1999a) Appl. Environ. Microbiol. 65: 3265-3271; Moldes et al. (2004) Appl. Environ. Microbiol. 70: 3205-3212).
  • PHAs are classified into two main types according to their chemical structure: short chain PHAs (scl-PHAs) obtained from monomers with 4 or 5 carbon atoms and medium chain (mcl-PHAs) monomers from monomers with 6 to 14 carbon atoms.
  • the different PHAs identified to date are linear polymers composed of 3-hydroxy fatty acids exclusively of the R configuration. The molecular weight of these polymers varies between 50,000-1,000,000 and their diversity lies in the substitutions in the asymmetric carbon in position 3, which gives the polymer the chiral character.
  • the biopolyester is formed solely by the enantiomeric form R of hydroxyalkanoates (RHA) (Prieto et al. (1999b) J. Bacteriol. 181: 858-868).
  • the mcl-PHA produced by the genus Pseudomonas are mainly composed of hydroxyoctanoic acid monomers, but a great diversity of monomers containing as substituents aromatic, aliphatic, unsaturated, saturated, branched, etc. groups can also be found to a lesser extent.
  • composition of the polymer depends on the source of carbon present in the culture medium used during the fermentation of the producing bacteria (Durner, et al. (2001) Biotechnol. Bioeng. 72: 278-288; Jung et al. (2001) Biotechnol. Bioeng. 72: 19-24).
  • PHA can be considered as a source of new chiral compounds (synthons) of great utility as precursors in the pharmaceutical industry, since they are difficult to achieve in pure state by conventional chemical processes.
  • P. putida KT2440 bacteria is capable of producing mcl-PHA from a wide variety of carbon sources such as glucose, fructose, glycerol, octanoate, succinate and others (Huijberts et al. (1994) J Bacteriol
  • WO201 1/08621 1 A1 describes a bacterial strain of P. putida KT2440 genetically modified in tol-pal genes to improve the PHA extraction process.
  • glycerol is metabolized through a series of stages that include: the transport of glycerol into the cell, its transformation into glycerol 3-P (G3P) and its subsequent conversion to dihydroxyacetone phosphate (DHAP), intermediate glycolysis compound.
  • G3P glycerol 3-P
  • DHAP dihydroxyacetone phosphate
  • glycerol metabolism has been biochemically characterized in the opportunistic human pathogen Pseudomonas aeruginosa, a bacterium in which glycerol can be used as a carbon source in the lungs (Williams et al. (1994) Microbiology. 140: 2961-2969 ).
  • the first step in the assimilation of glycerol in this bacterium is mediated by the OprB protein, an outer membrane porin, which serves to facilitate the passage of these substances into the periplasmic space (Williams et al, 1994).
  • G3P glycerol transport facilitator
  • GlpK glycerol kinase
  • PTS phosphoenolpyruvate (PEP) -carbohydrate phosphotransferase transport system
  • PTS phosphoenolpyruvate (PEP) -carbohydrate phosphotransferase transport system
  • US2009325243A1 describes the process of producing amino acids from glycerol, by bacterial fermentation from biodiesel residues, characterized in that the microorganism used for said production is a genetically modified Escherichia coli bacterium to improve glycerol metabolism by the deactivation of the glpR gene.
  • This document also cites as a possible amino acid producing bacterium from glycerol a strain of Pseudomonas, but US2009325243A1 only demonstrates the regulatory effect of the glpR gene in E. coli.
  • E coli (Zeng and Larson, (1996) J Bactenol 178 (24): 7080-7089).
  • E coli does not have a long latency phase when it grows in a culture medium with glycerol.
  • no data is recorded in the literature on how the glpR gene works in P. putida KT2440 and therefore the uncertainty about the role of this gene in glycerol metabolism is absolute.
  • the present invention consists in the design and implementation of a process for improving and shortening the production of any substance by fermentation in Pseudomonas putida from glycerol and in particular for the production of polyhydroxyalkanoates (PHAs).
  • the procedure is based on the construction of a mutant strain of P. putida that practically eliminates the latency phase in glycerol and therefore significantly reduces the production time of biomass.
  • the present invention describes the design and implementation of a process for facilitating the production of substances, and in particular polyhydroxyalkanoates (PHAs), in Pseudomonas putida from glycerol.
  • PHAs polyhydroxyalkanoates
  • a mutant strain derived from P. putida carrying a mutation in the chromosome of the glpR gene has been constructed that allows the bacteria to use glycerol as a source of carbon and energy in a more efficient way and therefore allows to improve the production of biomass and substances from glycerol, such as improving the production of PHA granules by halving the production time.
  • the present invention protects a bacterial strain of genetically modified Pseudomonas putida KT2440, characterized in that it improves the production of bioproducts by fermentation from glycerol, compared to wild lineage, it is understood that said wild lineage lacks said genetic modification.
  • improvement of the production of bioproducts by fermentation from glycerol refers to the fact that the genetic modification of said bacterial strain of Pseudomonas putida KT2440 facilitates the growth of the bacteria when using glycerol as a carbon source , shortens the growth initiation period and allows the production of bioproducts using this substrate as a precursor at 24 hours of growth. It also increases the accumulation of bioproducts at 48 hours of cultivation when compared to wild lineage.
  • said bioproducts are bioplastics, more preferably said bioplastics are polyhydroxyalkanoates (PHAs), and even more preferably, said PHAs are mcl-polyhydroxyalkanoates (mcl-PHAs).
  • PHAs polyhydroxyalkanoates
  • mcl-PHAs mcl-polyhydroxyalkanoates
  • a preferred embodiment of the present invention refers to the genetically modified strain of Pseudomonas putida KT2440 described above, characterized in that said genetic modification is a mutation in the glpR gene.
  • the glpR gene is comprised in the glp cluster in Pseudomonas putida KT2440 defined by SEQ ID No 1, specifically between nucleotides at positions 2505 and 3260 (SEQ ID No 2).
  • said mutation in the glpR gene is a mutation of loss of function, even more preferably said mutation of loss of function is a deletion, which may be partial but preferably total.
  • mutation refers to one is an alteration or change in the genetic information (genotype) of a living being and, therefore, will produce a change of characteristics, which occurs suddenly and spontaneously. , and that can be transmitted or inherited to the offspring.
  • loss of function mutation refers to those mutations that usually determine that the function of the gene in question cannot be carried out correctly, so that some function of the organism that presents it disappears.
  • deletion refers to that mutation that consists in the loss of a DNA fragment.
  • partial deletion of the glpR gene refers to the loss of a fragment of the glpR gene identified as SEQ ID No 2. While the term “total deletion of the glpR gene” refers to the total loss of the gene. glpR identified as SEQ ID No 2.
  • the genetically modified Pseudomonas putida KT2440 bacterial strain described above is characterized as the Pseudomonas putida strain KT40GlpR, with CECT deposit number 8037.
  • the present invention also refers to the use of the bacterial strain of Pseudomonas putida KT2440 modified genetically defined above, for the production of bioproducts by fermentation from glycerol.
  • said bioproducts are bioplastics, more preferably said bioplastics are polyhydroxyalkanoates (PHAs), and even more preferably, said PHAs are mcl-polyhydroxyalkanoates (mcl-PHAs).
  • the present invention also refers to a method of producing bioproducts comprising the following steps:
  • bioproducts are bioplastics, more preferably said bioplastics are polyhydroxyalkanoates (PHAs), and even more preferably, said PHAs are mcl-polyhydroxyalkanoates (mcl-PHAs).
  • a preferred embodiment of the present invention refers to the bioproduct production method described above, characterized in that the glycerol medium described in a) is obtained from residues from biodiesel production.
  • the present invention also refers to a bioproduct obtained by fermentation from glycerol, characterized in that said fermentation is carried out by a bacterial strain of Pseudomonas putida KT2440 genetically modified and defined above.
  • said bioproduct is a bioplastic, more preferably said bioplastic is a polyhydroxyalkanoate (PHA), and even more preferably, said PHA is an mcl-polyhydroxyalkanoate (mcl-PHA).
  • said bioproduct obtained by fermentation from glycerol is characterized to be used as a biomaterial in biomedical applications and / or as a source of new chiral compounds as precursors in the pharmaceutical industry.
  • FIGURE 1 Turbimetric profiles (D0 6 3rd) in M63 0.1 N medium of P. putida KT2440 (white circles) and P. putida KT40GlpR ⁇ black circles) using 40 mM glycerol as carbon source. The values represented are the mean (n> 6) of the DÜ630 data obtained in multiwell plates. BIBLIOGRAPHY
  • PhaF a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181: 858-868.
  • Pseudomonas a model system in biology. Pseudomonas, vol. V, Eds, Ramos, JL and Filloux, A. Springer. pp 397-428.
  • Example 1 Description of the microorganisms and plasmids used
  • the rich medium used to grow E. coli and P. putida cells was Luria-Bertani (LB) (Sambrook and Russell, (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY).
  • the minimum medium used to grow the cells was the medium called M63 (13.6 g KH 2 P0 4 ; 2 g (NH 4 ) 2 S0; 0.5 mg S0 Fe 7 H 2 0 per liter, pH 7) (Miller , 1972).
  • the strains were stored at 4 ° C in LB plates or minimum medium.
  • the bactenas were frozen in the corresponding culture medium with 15% glycerol (v / v) and kept at -80 ° C.
  • P. putida KT2440 cells were cultured for 24 h in 0.1 M M63 medium whose composition is similar to that of M63 but with 0.2 g / l of (NH 4 ) 2 S0 4 instead of 2 g / l, using 15 mM octanoate or 40 mM glycerol as the sole carbon source and supplemented with 1 mM MgS0 4 and a trace element solution (Moldes et al., 2004).
  • E. coli cells were genetically modified by transformation after making them competent by the RbCI method (Sambrook and Russell, (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY), or by electroporation.
  • P. putida cells were genetically modified by electroporation transformed. To electroporate the P. putida cells, cells were collected in liquid culture or cell mass from agar plates and five washes were carried out with sterile water at 4 ° C. The conditions of the Gene Pulser / Pulse Controller electroporation equipment (Bio-Rad) were 2.5 kV, 25 ⁇ and 200 ⁇ .
  • plasmids were mobilized to P. putida by b ⁇ - or tri-parental conjugation following the method described by de Herrero et al. (1990, J. Bacteriol 172: 6557-6567) and using E. coli strain HB101 (pRK600) as an auxiliary strain.
  • P. putida conjugates were selected in LB medium plates with the corresponding antibiotics or in minimum medium plates with 0.2% citrate and the corresponding 5% antibiotic and sucrose to select the conjugants after double recombination of plasmid pK18mo?> sacB-GlpR.
  • Plasmid DNA extraction was carried out using the High Puré Plasmid Purification Kit (Roche) system, according to the manufacturer's protocol.
  • GenomicPrepTM Cells and Tissue DNA Isolation Kit (GE Healthcare) according to the manufacturer's instructions.
  • DNA amplification was performed on a Mastercycler Gradient device from Eppendorf.
  • the reaction mixtures contained 1.5 mM MgC, 0.2 mM dNTPs, 10% dimethylsulfoxide, 0.5 units of DNA polymerase, 100 ng of template DNA and oligonucleotides at a final concentration of 0.5 ⁇ .
  • the DNA fragments were purified using agarose gels, using the GeneClean kit (BIO 101) or the "High Puré TM PCR Product Purification Kit '(Roche).
  • nucleotide sequences of 833 and 793 base pairs, from zones 5 ' and 3 ' of the glpR gene in Pseudomonas putida KT2440 that were cloned to construct the pk18 / 7? or?> sacB-GlpR vector are respectively identified as SEQ ID No. 3 and SEQ ID No. 4.
  • the glpR gene was deactivated by exchange of alleles by homologous recombination with the mobilizable plasmid pK18 / 7? Or?> SacB (Scháfer et al., (1994) Gene 145 (1): 69-73).
  • the pairs of PCR primers used for this construct, as well as the size of the PCR fragments, are listed in Table 2.
  • the fragments were digested with the appropriate restriction enzymes and ligated with the T4 ligase, of which the corresponding deleted gene results. This fragment was cloned into the corresponding unique sites of pK18 / 7? Or?> SacB to produce plasmid pK18 / 7? Or?> SacB-GlpR (Table 1).
  • This plasmid is used to integrate the mutation into the chromosome of the recipient strain by homologous recombination. Triparental conjugation was performed following the protocol described by de Herrero et al. (1990, J. Bacteriol 172: 6557-6567.), Using E. coli DH10B as donor strain, E. coli HB101 (pRK600) as helper strain and P. putida KT2440 as recipient strain. The strains resulting from this recombination event were first confirmed by PCR and the selected colonies were grown in LB for 6 hours and then seeded in M63 plates with 10 mM citrate supplemented with 5% sucrose.
  • Kanamycin-resistant and sucrose-sensitive transconjugants were isolated and the second cross-linking event was confirmed by PCR.
  • the resulting mutant strain is listed in Table 1.
  • the mutant strain KT40GlpR of Table 1 has been deposited in the Spanish Type Culinary Collection as CECT 8037
  • Example 7 Study of the behavior of the P. putida CECT 8037 strain in a minimal medium with glycerol
  • some fermentation parameters were initially checked, such as biomass production, optical crop density and PHA production when cells are grown during 48 hours in glycerol (20mM) and one of the preferred carbon sources of this bacterium such as octanoic acid (7.5mM) (Table 3).
  • strain KT2440 can use glycerol to produce biomass in 48 hours without accumulating PHA, but the process is much slower than when octanoic acid is used as a carbon source.
  • putida strain KT40GlpR begins to increase at 2 hours of growth while the OD630nm of the wild strain begins to increase at 13 hours ( Figure 1).
  • the activation of the Entner-Doudoroff route indicating an active catabolism of glycerol was demonstrated by the determination of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at 6 and 22 hours of growth in the wild lineage and in the CECT mutant 8037 (Table 4) demonstrating that this enzymatic step is active at 6 hours in the mutant lineage, unlike the wild strain, where it was detected after 22 hours of culinary.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • Glyceraldehyde-3-phosphate dehydrogenase Glyceraldehyde-3-phosphate dehydrogenase
  • the biomass and PHA content of the two lines were analyzed after 24 hours and 48 hours of culture, determining that, at 24 hours, the mutant line is capable of accumulating 0.9 mg / ml of biomass and 0.21 mg / ml of PHA while wild spirits produces only 0.5 mg / ml of biomass and does not produce PHA.
  • the mu ⁇ rieir spirits is capable of accumulating 1.1 mg / ml of biomass and 0.3 mg / ml of PHA and the wild spirits produces only 0.8 mg / ml of biomass and 0.14 mg of PHA
  • An example shows that the mutation in the glpR gene of P.
  • putida KT2440 facilitated the growth of the bacterial age when using glycerol as a carbon source, shortens the period of initiation of the growth and allows the production of PHA by using it as a precursor at 24 hours of growth. It also increases the accumulation of PHA and biomass at 48 hours of cultivation when compared to wild lineage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

En la presente invención se describe el diseño y realización de un procedimiento para facilitar la producción de sustancias, y en particular de polihidroxialcanoatos (PHAs),en Pseudomonas putida a partir de glicerol. A tal fin se ha construido una cepa mutante derivada de P. putida portadora de una mutación en el cromosoma del gen glpR que permite que la bacteria pueda utilizar el glicerol como fuente de carbono y energía de una manera más eficiente y por lo tanto permite mejorar la producción de biomasa y de sustancias a partir de glicerol como por ejemplo mejorar la producción de los gránulos de PHA reduciendo a la mitad el tiempo de producción.

Description

SISTEMA PARA MEJORAR LA PRODUCCIÓN DE POLIHIDROXIALCANOATOS (BIOPLÁSTICO) POR FERMENTACIÓN A PARTIR DE GLICEROL UTILIZANDO UNA CEPA DE Pseudomonas putida MODIFICADA GENÉTICAMENTE.
SECTOR DE LA TÉCNICA
La presente invención se encuadra dentro del Área de la Biotecnología Industrial en el sector de la Industria Química, y en particular de la denominada Química Sostenible o Química Verde, pudiendo afectar tanto al subsector de las sustancias químicas primarias como al subsector de las sustancias químicas especializadas. El sistema desarrollado para Pseudomonas putida hace que sea aplicable a la producción de cualquier sustancia por fermentación en este microorganismo, pero especialmente para la biosíntesis de polihidroxialcanoatos (PHAs).
ESTADO DE LA TÉCNICA ANTERIOR
La tecnología de los bioprocesos ha experimentado en los últimos años un avance considerable tratando de mejorar y adaptar la moderna biotecnología a las tecnologías clásicas de fermentación. En este sentido, la tecnología del DNA recombinante o, en un concepto más amplio, las técnicas de biología molecular, han sido determinantes para que podamos explotar y manipular un gran número de organismos para la producción de sustancias de interés. En gran medida, este éxito ha sido posible gracias al desarrollo de sistemas para expresión de genes en organismos heterólogos más fáciles de manipular y multiplicar. Dentro de las diferentes opciones que se pueden estudiar, cabe destacar aquéllas que no sólo pretenden la expresión de un gen o conjunto de genes sino que, además, tratan de facilitar la obtención de un producto de interés biotecnológico y de alto valor añadido, como es el bioplástico. Sin embargo, el uso de este tipo de biopolímeros no se ha implantado hasta ahora en el mercado de forma competitiva debido al bajo coste que aún mantiene la síntesis de los polímeros plásticos derivados del petróleo (Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos, J. L. y Filloux, A. Springer. 397-428). Actualmente, como consecuencia del problema de contaminación medioambiental que ha generado el uso del plástico convencional y el incremento del precio del petróleo, se está haciendo una apuesta clara por la implantación de procesos de tipo sostenible para la obtención de energía y la producción de materiales de alto consumo como son los biopolímeros plásticos, y en particular los polihidroxialcanoatos (PHAs) (Gavrilescu y Chisti (2005). Biotechnology Advances 23: 471 -499).
Los PHAs, conocidos comúnmente como "bioplásticos", son polímeros biodegradables producidos por ciertas bacterias, que se acumulan en el interior celular en forma de gránulos de reserva de fuente de carbono cuando las condiciones de cultivo no son óptimas para el crecimiento (revisado en Madison y Huisman (1999) Microbiol. Mol. Biol. Rev. 63: 21 -53; Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos, J. L. y Filloux, A. Springer. 397-428). Estos biopolímeros son biodegradables y las bacterias los sintetizan a partir de fuentes renovables como por ejemplo la glucosa, la fructosa o los ácidos grasos que forman parte de los aceites vegetales (Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos, J. L. y Filloux, A. Springer. 397-428). Por tanto, se puede definir el término bioplástico como biopolímero sintetizado a partir de fuentes renovables, que puede ser biodegradado en condiciones controladas y que presenta características físico-químicas similares a los plásticos derivados de la industria petroleoquímica (Sarasa et al. (2009) Bioresour. Technol. 100: 3764-3768.).
En general, los gránulos de PHA están compuestos por un poliéster (93- 97% del peso seco del gránulo (PSG) rodeado por fosfolípidos (1 -6% del PSG) y proteínas asociadas al gránulo (GAPs) (1 -2% del PSG), las cuales forman una fina capa en la superficie del gránulo (Steinbüchel et al. (1995) Can. J. Microbiol. 41 : 94-105). Hasta el momento se han definido tres clases de GAPs en bacterias: i) las PHA sintasas, involucradas en la polimerización del PHA, ¡i) las PHA despolimerasas, responsables de la degradación del bioplástico y i¡¡) las fasinas, las GAPs más abundantes, con una función estructural o reguladora (Prieto et al. (1999a) Appl. Environ. Microbiol. 65: 3265-3271 ; Moldes et al. (2004) Appl. Environ. Microbiol. 70: 3205-3212). La presencia de una monocapa fosfolipídica en la superficie del gránulo es consecuente con la naturaleza hidrofóbica del PHA, ya que confiere estabilidad al gránulo inmerso en el ambiente hidrofílico del citoplasma celular (de Smet et al. (1983). J. Bacteriol. 154: 870-878).
Los PHAs se clasifican en dos tipos principales de acuerdo a su estructura química: los PHAs de cadena corta (scl-PHAs) obtenidos a partir de monómeros con 4 o 5 átomos de carbono y los de cadena media (mcl-PHAs) procedentes de monómeros con 6 a 14 átomos de carbono. Los diferentes PHAs identificados hasta la fecha son polímeros lineales compuestos de 3-hidroxiácidos grasos exclusivamente de la configuración R. El peso molecular de estos polímeros varía entre 50.000-1 .000.000 y su diversidad radica en las sustituciones en el carbono asimétrico en posición 3, que le confiere al polímero el carácter quiral. El biopoliéster está formado únicamente por la forma enantiomérica R de los hidroxialcanoatos (RHA) (Prieto et al. (1999b) J. Bacteriol. 181 : 858-868).
Los mcl-PHA producidos por el género Pseudomonas están compuestos mayoritariamente por monómeros de ácido hidroxioctanoico, pero también se pueden encontrar en menor porcentaje una gran diversidad de monómeros que contienen como sustituyentes grupos aromáticos, alifáticos, insaturados, saturados, con ramificaciones, etc. (Steinbüchel et al. (1995) Can. J. Microbiol. 41 : 94-105; García et al. (1999) J. Biol. Chem. 274: 29228-29241 ; Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos, J. L. y Filloux, A. Springer. 397-428). Esto es debido principalmente a la gran diversidad metabólica que caracteriza a estos microorganismos ya que pueden transformar una gran variedad de sustratos en intermediarios 3-hidroxialcanoicos mediante la ruta de β- oxidación y de síntesis de novo de ácidos grasos (Madison y Huisman (1999) Microbiol. Mol. Biol. Rev. 63: 21 -53; Prieto et al. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a Model System in Biology. Pseudomonas, vol. V, Eds, Ramos, J. L. y Filloux, A. Springer. 397-428).
Se sabe que la composición del polímero depende de la fuente de carbono presente en el medio de cultivo utilizado durante la fermentación de la bacteria productora (Durner, et al. (2001 ) Biotechnol. Bioeng. 72: 278-288; Jung et al. (2001 ) Biotechnol. Bioeng. 72: 19-24). Por otra parte, es importante resaltar que las características físico-químicas de los polímeros varían según la naturaleza química de los monómeros que los componen (Madison y Huisman (1999) Microbiol. Mol. Biol. Rev. 63: 21 -53; Kessler y Witholt (2001 ) J. Biotechnol. 86: 97- 104). Teniendo en cuenta que se han descrito más de 140 RHAs diferentes en PHAs producidos por bacterias (Steinbüchel et al. (1995) Can. J. Microbiol. 41 : 94-105; Sudesh et al. (2000) Prog. Polym. Sci. 25: 1503-1555), y que el biopolímero después de su obtención por fermentación puede ser sometido a 5 posteriores modificaciones químicas, como a su entrecruzamiento y a la adición de grupos funcionales (Lageveen et al. (1988) Appl. Environ. Microbiol. 54: 2924- 2932) es fácil imaginar la gran diversidad de bioplásticos y RHAs diferentes que pueden generarse mediante la combinación de todos estos procesos. Es importante señalar que los PHAs también pueden ser útiles para aplicaciones 10 biomédicas como biomatenales (Zinn et al. (2001 ) Adv. Drug. Deliv. Rev. 53:5-21 ).
Además, el PHA puede ser considerado como una fuente de nuevos compuestos quirales (sintones) de gran utilidad como precursores en la industria farmacéutica, ya que son difíciles de conseguir en estado puro mediante procesos químicos convencionales.
15 La bacteria Pseudomonas putida KT2440 es una cepa productora de mcl-
PHA que posee unas excelentes características para ser utilizada en la producción de bioplásticos a escala industrial ya que, además de su gran diversidad metabólica, esta bacteria está certificada como bacteria GRAS (Generally Recognized As Safe) por la American Food and Drug Administration
20 (FDA) para ser utilizada en procesos biotecnológicos en sistemas confinados (Nelson er a/. (2002) Environ Microbiol. 4:799-808).
Se sabe que la bacteria P. putida KT2440 es capaz de producir mcl-PHA a partir de una gran variedad de fuentes de carbono como por ejemplo, glucosa, fructosa, glicerol, octanoato, succinato y otras (Huijberts et al. (1994) J Bacteriol.
25 176: 1661 -6; de Waard et al. (1993) J Biol Chem. 268:315-9; Huijberts et al. (1992) Appl Environ Microbiol. 58:536-44, Escapa et al. (201 1 ) Appl Microbiol Biotechnol. 89: 1583-98). WO201 1 /08621 1 A1 describe una cepa bacteriana de P. putida KT2440 modificada genéticamente en los genes tol-pal para mejorar el proceso de extracción del PHA.
30 Sin embargo, también se sabe que la velocidad de crecimiento y por lo tanto la producción de mcl-PHA en esta bacteria P. putida KT2440 depende de la fuente de carbono elegida, ya que se ha observado que el crecimiento en algunas de estas fuentes es muy lento, como por ejemplo sucede utilizando como fuente de carbono el glicerol (Velázquez et al. (2007) J Bacteriol. 189:4529-4533). El glicerol es una fuente de carbono de gran interés en estos momentos pues como consecuencia de la producción de biodiesel se ha generado una gran cantidad de residuos de glicerol de bajo coste que pueden ser revalorizados a través de la fermentación del mismo y su transformación en productos de mayor valor añadido como es el mcl-PHA (da Silva et al. (2009) Biotechnol Adv. 27:30-39; Solaiman et al. (2006). Appl Microbiol Biotechnol. 71 :783-789).
En algunas de las bacterias que emplean el glicerol como fuente de carbono y energía, el glicerol se metaboliza a través de una serie de etapas que comprenden: el transporte del glicerol al interior celular, su transformación en glicerol 3-P (G3P) y su posterior conversión en dihidroxiacetona fosfato (DHAP), compuesto intermediario de la glicolisis.
En Pseudomonas el metabolismo del glicerol se ha caracterizado bioquímicamente en el patógeno humano oportunista Pseudomonas aeruginosa, bacteria en la que el glicerol puede ser utilizado como una fuente de carbono en los pulmones (Williams et al. (1994) Microbiology. 140:2961 -2969). El primer paso en la asimilación del glicerol en esta bacteria esta mediado por la proteína OprB, una porina de membrana externa, que sirve para facilitar el paso de estas sustancias al espacio periplásmico (Williams et al, 1994). Posteriormente para transportar el glicerol al interior de las células se necesita un facilitador del transporte de glicerol (GlpF) y una quinasa de glicerol (GlpK) que convierte el glicerol a G3P (Schweizer et al. , (1997) Microbiology. 143: 1287-1297). Luego, bajo la acción de la G3P deshidrogenasa (GlpD) asociada a la membrana (Schweizer y Po (1994) J Bacteriol. 176 (8):2184-2193), el G3P se transforma DHAP, que se cataboliza por una rama de la via Entner-Doudoroff (McCowen et al. (1981 ) Current Microbiology 5 (3): 191 -196; Cuskey y Phibbs, (1985) J Bacteriol. 162 (3):872-880). Todo este sistema está controlado por un complejo sistema de proteínas reguladoras del que se conoce aun muy poco. Además, se ha sugerido que el G3P es probablemente el inductor del sistema en P. aeruginosa (Schweizer y Po, (1996) J Bacteriol. 178 (17):5215-5221 ).
Por otro lado se ha demostrado que el sistema PTS (sistema de transporte fosfoenolpiruvato (PEP)-carbohidrato fosfotransferasa) de P. putida KT2440 puede influir en el metabolismo del glicerol, ya que algunas mutaciones en este sistema retrasan aún más la fase de latencia en glicerol hasta unas 60 horas o la avanzan un poco hasta unas 24 horas, si bien aún sigue siendo mucho tiempo con respecto a los mejores sustratos (Velázquez et al. (2007) J Bactenol. 189:4529-4533). Por consiguiente, parece que la regulación del metabolismo del glicerol en P. putida es muy compleja, ya que intervienen varios sistemas al mismo tiempo.
En la patente US2009325243A1 se describe el proceso de producción de amino ácidos a partir de glicerol, mediante fermentación bacteriana a partir de residuos de biodiesel, caracterizado porque el microorganismo empleado para dicha producción es una bacteria Escherichia coli modificada genéticamente para mejorar el metabolismo del glicerol mediante la desactivación del gen glpR. Este documento también cita como posible bacteria productora de amino ácidos a partir de glicerol una cepa de Pseudomonas, pero US2009325243A1 sólo demuestra el efecto regulador del gen glpR en E. coli. Es ampliamente conocido que los elementos reguladores no funcionan igual en todas las bacterias, de hecho, el papel regulador del gen glpR en Pseudomonas es aún motivo de discusión puesto que existen evidencias contradictorias sobre su papel activador o represor en el metabolismo bacteriano. Algunos estudios preliminares postulan el papel de GlpR como regulador positivo en P. aeruginosa (Cuskey y Phibbs, (1985) J Bactenol. 162 (3):872-880), pero otros sugieren que GlpR es un regulador negativo (Schweizer y Po, (1996) J Bactenol. 178 (17):5215-5221 ), de manera análoga a como sucede en E. coli (Zeng y Larson, (1996) J Bactenol 178 (24):7080-7089). Sin embargo, a diferencia de P. putida KT2440, E coli no presenta una larga fase de latencia cuando crece en un medio de cultivo con glicerol. En este contexto hay que señalar que no se registra en la literatura ningún dato sobre cómo funciona el gen glpR en P. putida KT2440 y por consiguiente la incertidumbre sobre el papel de este gen en el metabolismo del glicerol es absoluta.
Se ha comprobado que el crecimiento de P. putida KT2440 en glicerol es especialmente lento dado que en presencia de este sustrato la bacteria presenta una fase de latencia muy larga de casi 40 horas cuando se compara con la fase de latencia en succinato de apenas 2 horas o de algo menos de 10 horas en glucosa (Velázquez et al. (2007) J Bactenol. 189:4529-4533). Evidentemente, esto supone que la fermentación en glicerol de P. putida KT2440 debe extenderse por encima de las 48 horas de cultivo para poder obtener una biomasa similar a la que se obtiene en presencia de otros sustratos mejores en apenas 10 horas, lo que sin duda constituye un gran hándicap a la hora de realizar cultivos en glicerol con esta bacteria a escala industrial.
Por lo tanto, actualmente existe la necesidad de desarrollar mediante ingeniería genética un derivado de la bacteria P. putida KT2440 que presente una fase de latencia muy corta en un medio de cultivo que contenga glicerol como única fuente de carbono y que por consiguiente sea capaz de producir grandes cantidades de biomasa y por añadidura de mcl-PHA en la mitad de tiempo que la cepa salvaje y sin necesidad de añadir ningún estimulador de crecimiento al medio de cultivo.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención consiste en el diseño y realización de un procedimiento para mejorar y acortar la producción de cualquier sustancia por fermentación en Pseudomonas putida a partir de glicerol y en particular para la producción de polihidroxialcanoatos (PHAs). El procedimiento se fundamenta en la construcción de una cepa muíante de P. putida que prácticamente elimina la fase de latencia en glicerol y que por lo tanto reduce de manera muy significativa el tiempo de producción de biomasa. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En la presente invención se describe el diseño y realización de un procedimiento para facilitar la producción de sustancias, y en particular de polihidroxialcanoatos (PHAs), en Pseudomonas putida a partir de glicerol. A tal fin se ha construido una cepa muíante derivada de P. putida portadora de una mufación en el cromosoma del gen glpR que permite que la bacteria pueda utilizar el glicerol como fuente de carbono y energía de una manera más eficiente y por lo tanto permite mejorar la producción de biomasa y de sustancias a partir de glicerol como por ejemplo mejorar la producción de los gránulos de PHA reduciendo a la mitad el tiempo de producción.
Con el fin de diseñar nuevos enfoques biotecnológicos para la producción de PHA a partir de glicerol en P. putida era necesario también desentrañar cómo estaban reguladas estos procesos de asimilación del glicerol, de los cuales por el momento nada se conocía en esta bacteria. Como ya se ha comentado, en P. putida el crecimiento en glicerol es especialmente lento cuando se compara con P. aeruginosa u otras bacterias como E. coli, ya que la P. putida entra en una fase de latencia muy larga de unas 24 horas que no se produce en estas otras bacterias. Las razones de esta fase de latencia tan larga eran desconocidas pero una de las posibles explicaciones es que la bacteria necesitase mucho tiempo para expresar las proteínas de transporte del glicerol o las enzimas metabolizadoras del mismo.
Mediante un rastreo del genoma de P. putida con herramientas bioinformáticas se detectó la existencia de un marco de lectura abierto codificante de una proteína similar al regulador antes mencionado GlpR lo que podría significar que esta proteína actuase como regulador de los genes del metabolismo del glicerol en P. putida. Si esta era la proteína reguladora se podría hipotetizar que si GlpR actuase como un regulador positivo una sobreexpresión de esta proteína podría favorecer la expresión de los genes del metabolismo del glicerol, en tanto que si se trataba de un regulador negativo, su eliminación podría activar el metabolismo del glicerol y quizás reducir la fase de latencia en uno u otro caso. Hay que señalar que no se ha demostrado en P. putida que la alteración de este regulador GlpR no mejora ni perjudica el crecimiento en glicerol, ni la fase de latencia y por lo tanto el hecho de alterarlo en dicha bacteria no era una garantía de éxito para solucionar los problemas de su lento crecimiento. La incertidumbre de esta hipótesis era aun mayor si se tiene en cuenta que tampoco se había demostrado la funcionalidad en P. putida del posible gen regulador {glpR) localizado mediante técnicas bioinformáticas. Por consiguiente, el efecto en P. putida de la alteración del regulador GlpR era absolutamente imprevisible y en esto radica el principal elemento inventivo de la presente invención.
Atendiendo a esta hipótesis se probó en primer lugar el efecto que tendría la eliminación del gen que codifica para el regulador GlpR. Para ello se delecionó el supuesto gen glpR mediante el sistema de intercambio de alelos mediante recombinación homologa con el plásmido movilizable pK18/7?o¿>sacB (Scháfer et al. , (1994) Gene 145 (1 ):69-73). De esta manera se construyo la cepa muíante P. putida KT40GlpR depositada en la Colección Española de Cultivos Tipo como CECT 8037.
Cuando esta bacteria se cultivo en un medio de cultivo que contenía glicerol como única fuente de carbono y energía se pudo comprobar que las células comenzaban a crecer sin sufrir el largo periodo de latencia que sufría la bacteria salvaje y por lo tanto eran capaces de producir en 24 horas la misma cantidad de biomasa y de PHA que la bacteria salvaje en 48 horas (Figura 1 , Tabla 5). Es decir se había reducido a la mitad el tiempo de fermentación ganado un día completo en el proceso, lo que supone un incremento enorme en la eficiencia y por lo tanto una reducción enorme en el coste de la fermentación, dado que se puede producir el doble de PHA en la mima cantidad de tiempo.
Como resultado de la presente invención se describe a modo de ejemplo un procedimiento mediante el cual se puede producir sustancias de interés y en particular de PHA, de forma más rápida y económica a partir de una bacteria muíante de P. putida cultivada en un medio de cultivo con glicerol como única fuente de carbono y energía.
La presente invención protege una cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente, caracterizada porque mejora la producción de bioproductos mediante fermentación a partir de glicerol, comparada con la estirpe salvaje, se entiende que dicha estirpe salvaje carece de la citada modificación genética.
En la presente invención, se entiende que "mejora de la producción de bioproductos mediante fermentación a partir de glicerol" se refieren a que la modificación genética de dicha cepa bacteriana de Pseudomonas putida KT2440 facilita el crecimiento de la bacteria cuando usa glicerol como fuente de carbono, acorta el periodo de iniciación del crecimiento y permite la producción de bioproductos utilizando este sustrato como precursor a las 24 horas de crecimiento. Además incrementa la acumulación de bioproductos a las 48 horas de cultivo cuando se compara con la estirpe salvaje. Preferentemente, dichos bioproductos son bioplásticos, más preferentemente dichos bioplásticos son polihidroxialcanoatos (PHAs), y aún más preferentemente, dichos PHAs son mcl- polihidroxialcanoatos (mcl-PHAs).
Una realización preferente de la presente invención, hace referencia a la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente descrita anteriormente, caracterizada porque dicha modificación genética es una mutación en el gen glpR. En la presente invención el gen glpR se encuentra comprendido en el cluster glp en Pseudomonas putida KT2440 definido por SEQ ID No 1 , concretamente entre los nucleótidos en las posiciones 2505 y 3260 (SEQ ID No 2). Preferentemente, dicha mutación en el gen glpR es una mutación de pérdida de función, aún más preferentemente dicha mutación de pérdida de función es una deleción, la cual puede ser parcial pero preferentemente total.
En la presente invención el término "mutación" se refiere a una es una alteración o cambio en la información genética (genotipo) de un ser vivo y que, por lo tanto, va a producir un cambio de características, que se presenta súbita y espontáneamente, y que se puede transmitir o heredar a la descendencia.
En la presente invención el término "mutación de pérdida de función" se refiere a aquellas mutaciones que suelen determinar que la función del gen en cuestión no se pueda llevar a cabo correctamente, por lo que desaparece alguna función del organismo que la presenta.
En la presente invención el término "deleción" se refiere a aquella mutación que consiste en la pérdida de un fragmento de ADN.
En la presente invención el término "deleción parcial del gen glpR" se refiere a la pérdida de un fragmento del gen glpR identificado como SEQ ID No 2. Mientras que el término "deleción total del gen glpR" se refiere a la pérdida total del gen glpR identificado como SEQ ID No 2.
En otra realización preferente de la presente invención, la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente descrita anteriormente se caracteriza por ser la cepa Pseudomonas putida KT40GlpR, con número de depósito CECT 8037.
Cepa Pseudomonas putida KT40GIDR (CECT 8037)
La siguientes cepa ha sido depositada el 8 de octubre de 201 1 , en la Colección Española de Cultivos Tipo (CECT) en el Edificio 3 CUE del parque científico de la Universidad de Valencia, Catedrático Agustín Escardino n°9, 46980 Paterna, Valencia (España), por Isabel Fernández Escapa, Centro de Investigaciones Biológicas, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC), Calle Ramiro de Maeztu, 9, 28006 (Madrid), ESPAÑA. El depósito de la cepa depositada cuya referencia es Pseudomonas putida KT40GlpR, fue recibido por la CECT con el número de acceso CECT 8037 una vez dicha Autoridad Internacional para el Depósito declaró que dicha cepa en cuestión era viable.
La presente invención también hace referencia al uso de la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente definida anteriormente, para la producción de bioproductos mediante fermentación a partir de glicerol. Preferentemente, dichos bioproductos son bioplásticos, más preferentemente dichos bioplásticos son polihidroxialcanoatos (PHAs), y aún más preferentemente, dichos PHAs son mcl-polihidroxialcanoatos (mcl-PHAs).
La presente invención también hace referencia a un método de producción de bioproductos que comprende las siguientes etapas:
a) añadir a un medio con glicerol, la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente y definida anteriormente, b) fermentación del glicerol y obtención de los bioproductos, preferentemente dichos bioproductos son bioplásticos, más preferentemente dichos bioplásticos son polihidroxialcanoatos (PHAs), y aún más preferentemente, dichos PHAs son mcl-polihidroxialcanoatos (mcl-PHAs).
Una realización preferente de la presente invención, hace referencia al método de producción de bioproductos descrito anteriormente, caracterizado porque el medio con glicerol descrito en a) se obtiene de residuos procedentes de la producción de biodiesel.
La presente invención también hace referencia a un bioproducto obtenido mediante fermentación a partir de glicerol, caracterizado porque dicha fermentación la realiza una cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente y definida anteriormente. Preferentemente dicho bioproducto es un bioplástico, más preferentemente dicho bioplástico es un polihidroxialcanoato (PHA), y aún más preferentemente, dicho PHA es un mcl- polihidroxialcanoato (mcl-PHA).
Aún más preferentemente, dicho bioproducto obtenido mediante fermentación a partir de glicerol, se caracteriza para ser usado como biomaterial en aplicaciones biomédicas y/o como fuente de nuevos compuestos quirales como precursores en la industria farmacéutica.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS FIGURA 1. Perfiles turbidimétricos (D063o) en medio M63 0.1 N de células de P. putida KT2440 (círculos blancos) and P. putida KT40GlpR {círculos negros) utilizando 40 mM glicerol como fuente de carbono. Los valores representados son la media (n > 6) de los datos de DÜ630 obtenidos en placas multipocillo. BIBLIOGRAFÍA
Bagdasarian, M. , Lurz, R. , Ruckert, B. , Franklin, F.C. , Bagdasarian, M.M. , Frey, J. , and Timmis, K. N. (1981 ) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16: 237-247.
Cuskey SM, Phibbs PV (1985) Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO. J Bacteriol 162 (3):872-880 da Silva, G. P. , Mack, M. , Confiero, J. (2009). Glycerol: A Promising and Abundant Carbón Source for Industrial Microbiology. Biotechnology Advances, Vol. 27, No. 1 , (January-February 2009), pp. 30-39, ISSN 0734-9750 de Smet, M. , Eggink, G. , Witholt, B. , Kingma, J. , Wynberg, H. (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J. Bacteriol. 154: 870-878. de Waard P, van der Wal H, Huijberts GN, Eggink G. (1993) Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkanoates). Study of beta- oxidation in Pseudomonas putida. J. Biol. Chem. 268:315-319. de Waard P, van der Wal H, Huijberts GN, Eggink G. (1993) Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkanoates). Study of beta- oxidation in Pseudomonas putida. J. Biol. Chem. 268:315-319. Durner, R. , Zinn M. , Witholt B. , Egli T.. (2001 ) Accumulation of poly[(R)-3- hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbón sources. Biotechnol. Bioeng. 72: 278-288.
Escapa IF, Morales V, Martirio VP, Pollet E, Avérous L, García JL, Prieto MA.(201 1 ) Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol. 89: 1583-98
García, B. , Olivera, E. R. , Miñambres, B. , Fernández-Valverde, M. , Cañedo, L. M. , Prieto, M. A. , García, J. L , Martínez, M. y Luengo, J. M. (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J. Biol. Chem. 274: 29228- 29241 .
Gavrilescu, M. y Chisti Y. (2005) Biotechnology; a sustainable alternative for chemical industry. Biotechnol. Adv. 23: 471 -499. Herrero, M. , de Lorenzo, V., Timmis, K. N. (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertions of foreign genes in Gram negative bacteria. J. Bacteriol 172: 6557-6567.
Huijberts GN, de Rijk TC, de Waard P, Eggink G. (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J. Bacteriol. 176: 1661 -1666.
Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B. (1992)
Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3- hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58:536-544. Jung, K. , Hazenberg W. , Prieto M.A. , Witholt B. (2001 ) Two-stage continuous process development for the production of medium-chain-length poly(3- hydroxyalkanoates). Biotechnol. Bioeng. 72: 19-24.
Kessler, B. , V. de Lorenzo, and K. N. Timmis. 1992. A general system to intégrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233:293-301 . Kessler, B. , Witholt, B. (2001 ) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J. Biotechnol. 86: 97-104.
Lageveen, R. G. , Huisman, G. W. , Preusting, H. , Ketelaar, P. , Eggink, G. , Witholt B. (1988) Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924-2932.
Madison, L. L , Huisman, G. W. (1999) Metabolic engineering of poly(3- hydroxyalkanoates): from DNA to plástic. Microbiol. Mol. Biol. Rev. 63: 21 -53.
McCowen SM, Phibbs PV, Feary TW (1981 ) Glycerol catabolism in wild-type and mutant strains of Pseudomonas aeruginosa. Current Microbiology 5 (3): 191 -196.
Mermod N. , Ramos J. L , Lehrbach, P. R. , Timmis K. N. (1986) Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria. J. Bacteriol. 167: 447-454.
Moldes, C, García, P. , García, J. L. , Prieto, M. A. (2004) In vivo immobilization of fusión proteins on bioplastics by the novel tag BioF. Appl. Environ. Microbiol. 70: 3205-3212.
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gilí SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhóft A, Tümmler B, Fraser CM. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4:799-808. Erratum in: Environ Microbiol. (2003) 5:630.
Prieto, M. A. , Buhler, B. , Jung, K. , Witholt, B. , Kessler, B. (1999b) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181 : 858-868. Prieto, M. A. , de Eugenio, L. I. , Galán, B. , Luengo, J. M., Witholt, B. (2007) Synthesis and degradation of polyhydroxyalkanoates. In Pseudomonas: a model system in biology. Pseudomonas, vol. V, Eds, Ramos, J. L. y Filloux, A. Springer. pp 397-428.
Prieto, M. A. , Kellerhals, M. B. , Bozzato, G. B., Radnovic, D. , Witholt, B. , Kessler, B. (1999a) Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl. Environ. Microbiol. 65: 3265-3271 .
Sambrook J, Russell DW (2001 ) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY
Sarasa, J. , Gracia, J. M. , Javierre, C. (2009) Study of the biodisintegration of a bioplastic material waste. Bioresour. Technol. 100: 3764-3768.
Scháfer a, Tauch a, Jáger W, Kalinowski J, Thierbach G, Pühler a (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145 (1 ):69-73 Schweizer HP, Jump R, Po C (1997) Structure and gene-polypeptide relationships of the región encoding glycerol diffusion Pseudornonas aeruginosa. Microbiology 143: 1287-1297
Schweizer HP, Po C (1994) Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa. J Bacteriol 176 (8):2184-2193
Schweizer HP, Po C (1996) Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. J Bacteriol. 178 (17): 5215-5221
Solaiman, D. K.Y.; Ashby, R. D. , Foglia, T. , Marmer, W. N. (2006). Conversión of agricultura! feedstock and coproducts into poly(hydroxyalkanoates). Appl. Microbiol Biotechnol. 71 : 783-789.
Steinbüchel, A. , Aerts, K. , Babel, W. , Follner, C , Liebergesell, M. , Madkour, M. H. , Mayer, F. , Pieper-Furst, U. , Pries, A. , Valentín, H. E. (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can. J. Microbiol. 41 : 94-105. Sudesh, K. , Abe, H. , Doi, Y. (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25: 1503-1555.
Velázquez, F. , Pflüger, K. , Cases, I., De Eugenio, L. I. , de Lorenzo. V. (2007) The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J Bacteriol. 189:4529-33.
Williams SG, Greenwood Ja, Jones CW (1994) The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa. Microbiology 140:2961 -2969 Zeng G, Ye S, Larson TJ (1996) Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identificaron of the DNA- binding domain. J Bacteriol 178 (24):7080-7089
EJEMPLOS
Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ¡lustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descntos más adelante ¡lustran la invención sin limitar el campo de aplicación de la misma.
Ejemplo 1. Descripción de los microorganismos y plásmidos empleados
Las cepas de Pseudomonas putida y de Escherichia coli utilizadas en este trabajo se detallan en la Tabla 1 , donde también se describen los plásmidos utilizados en este trabajo y sus características más relevantes.
Tabla 1. Cepas y plásmidos empleados
Strains Phenotype Reference
P. putida
KT2440 P. putida mt-2 sin plásmido TOL, hsdR. Bagdasarian et al., 1981
KT40GlpR AglpR KT2440 Este trabajo
E. coli
DH10B Donador durante la conjugación y huésped para la Invitrogen construcción del plásmido pK18/wo6sacB-GlpR HB101 Portador del plásmido pKR600 Sambrook and
Russell, 2001
Plasmids
pRK600 Cmr ColElor/V RK2 Mob+ Tra+; Kessler et al.,
1992 pK18/wo¿sacB Kmr, ColE oriV, Mob+, lacZa, sacB; Schafer et al.,
1994 pK18/wo£sacB-GlpR Derivado de pK18/wo6sacB utilizado para delecionar glpR Este trabajo
Ejemplo 2. Medios y condiciones de cultivo empleados
El medio rico utilizado para cultivar las células de E. coli y P. putida fue el Luria-Bertani (LB) (Sambrook y Russell, (2001 ) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY). El medio mínimo utilizado para cultivar las células fue el medio denominado M63 (13,6 g KH2P04; 2 g (NH4)2S0 ; 0,5 mg S0 Fe 7 H20 por litro, pH 7) (Miller, 1972).
Los cultivos en medio líquido se realizaron en matraces en un agitador orbital (New Brunswick Scientific) a 200 rpm. Las células de E. coli y P. putida se incubaron a 37°C y 30°C, respectivamente.
El crecimiento en medio líquido fue seguido por turbidimetría a 600 nm (ϋθβοο) empleando un espectrofotómetro Beckman DU-520.
Durante periodos inferiores a un mes las cepas se conservaron a 4°C en placas de LB o medio mínimo. Para la conservación a largo plazo, las bactenas se congelaron en el medio de cultivo correspondiente con glicerol al 15% (v/v) y se mantuvieron a -80°C.
Para producir PHA se cultivaron las células de P. putida KT2440 durante 24 h en medio M63 0.1 N cuya composición es similar a la del M63 pero con 0,2 g/l de (NH4)2S04 en lugar de 2 g/l, utilizando 15 mM de octanoato o 40 mM de glicerol como única fuente de carbono y suplementado con 1 mM de MgS04 y una solución de elementos traza (Moldes et al., 2004).
Ejemplo 3. Transformación genética de las células utilizadas
Las células de E. coli fueron modificadas genéticamente por transformación tras hacerlas competentes mediante el método de RbCI (Sambrook y Russell, (2001 ) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY), o bien mediante electroporación. Las células de P. putida se modificaron genéticamente por transformaron por electroporacion. Para electroporar las células de P. putida se recogieron células en cultivo líquido o masa celular proveniente de placas de agar y se realizaron cinco lavados con agua estéril a 4°C. Las condiciones del equipo de electroporacion Gene Pulser/Pulse Controller (Bio-Rad) fueron 2.5 kV, 25 μΡ y 200 Ω.
En algunas circunstancias los plásmidos se movilizaron a P. putida por conjugación b¡- o tri-parental siguiendo el método descrito por de Herrero et al. (1990, J. Bacteriol 172: 6557-6567) y utilizando la cepa E. coli HB101 (pRK600) como cepa auxiliar. Los conjugantes de P. putida fueron seleccionados en placas de medio LB con los correspondientes antibióticos o en placas de medio mínimo con citrato al 0.2% y el correspondiente antibiótico y sacarosa al 5% para seleccionar los conjugantes tras la doble recombinación del plásmido pK18mo¿>sacB-GlpR.
Ejemplo 4. Técnicas de manipulación de DNA utilizadas
Las técnicas utilizadas para la preparación y manipulación del DNA han sido descritas por Sambrook y Rusell (2001 , Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY). Las enzimas de restricción se obtuvieron de Amersham, Takara y New England Biolabs. La enzima T4 DNA ligasa fue proporcionada por USB (Amersham), la DNA polimerasa I de Thermus sp. y la Pfu polimerasa fueron suministradas por Biotools B&M Labs. S. A. Todas las enzimas se emplearon atendiendo a las especificaciones de las diferentes casas comerciales. Los fragmentos de DNA se purificaron empleando geles de agarosa, mediante el kit GeneClean (BIO 101 ) o el "High Puré PCR Product Purification Kit (Roche).
La extracción de DNA plasmídico se llevó a cabo empleando el sistema High Puré Plasmid Purification Kit (Roche), de acuerdo con el protocolo del fabricante.
La extracción de DNA genómico se llevó a cabo empleando el
GenomicPrepTM Cells and Tissue DNA Isolation Kit (GE Healthcare) de acuerdo a las instrucciones del fabricante.
La amplificación del DNA se realizó en un equipo Mastercycler Gradient de Eppendorf. Las mezclas de reacción contenían MgC 1 .5 mM, dNTPs 0.2 mM, dimetilsulfóxido al 10%, 0.5 unidades de DNA polimerasa, 100 ng de DNA molde y oligonucleótidos a una concentración final de 0.5 μΜ. Los fragmentos de DNA se purificaron empleando geles de agarosa, usando el kit GeneClean (BIO 101 ) o el kit "High Puré PCR Product Purification Kit' (Roche). Las secuencias nucleotídicas de 833 y 793 pares de bases, de las zonas 5'y 3'del gen glpR en Pseudomonas putida KT2440 que se clonaron para construir el vector pk18/7?o¿>sacB-GlpR, se identifican respectivamente como SEQ ID No 3 y SEQ ID No 4.
Los distintos oligonucleótidos empleados en las reacciones de PCR fueron adquiridos en Sigma-Genosys y se indican en la Tabla 2.
Tabla 2. Oligonucleótidos utilizados
Fragment
Nombre Cebador nucleotido secuencia o tamaño Descripción
(bp)
FR1 - GlpR -5 ' SEQ ID NO 5
GCTCTAGAGGCCAAGCCAAGAATACCTACGG
833
FR1 - GlpR -3 ' SEQ ID NO 6 Clonación de las
CGGGATCCGGGCGGTCCTTTGGGGCTG regiones flanqueantes de
FR2- GlpR -5 ' SEQ ID NO 7 glpR en
CGGGATCCGGGCTGGTGGGTGCATGC pK18/wo¿>SacB
793
FR2- GlpR -3 ' SEQ ID NO 8
CCCAAGCTTCCTCTACACGTTCGGCGCG
Ejemplo 5. Cuantificación de PHA
Para cuantificar el PHA presente en los sedimentos celulares se tomaron de 5 a 10 mg de muestra liofilizada que se metanolizaron durante 4 h a 100°C en presencia de 2 mi de cloroformo y 2 mi de metanol:ácido sulfúrico (85: 15, v:v) con 0,5 mg/ml de 3-MB como estándar interno. Tras enfriar los tubos, se añadió 1 mi de agua, se mezcló por agitación vigorosa (vórtex) y se separaron las fases centrifugando suavemente. La fase orgánica obtenida se analizó en un sistema cromatográfico compuesto por un cromatógrafo de gases Agilent (Waldbronn, Alemania) serie 7890 A acoplado a un detector de masas 5975.
1 μΙ de la fase orgánica fue inyectada en el cromatógrafo con un split 50: 1 . La separación de los compuestos se llevó a cabo en una columna capilar HP5 MS (5% fenil-95% metil siloxano, 30 m x 0,25 mm i.d. x 0,25 mm). Como gas portador se utilizó helio a un flujo de 0.9 ml/min. Las temperaturas del inyector y la línea de transferencia fueron de 275 y 300°C, respectivamente. El programa de temperatura de la columna fue el siguiente: temperatura inicial 80°C durante 2 min tras lo cual se aplicó una rampa de 10°C/min hasta alcanzar los 200°C. El espectro de masas se recogió en modo full sean (m/z 40-550). El análisis cuantitativo se llevó a cabo calculando los factores de respuesta de los monómeros con respecto al 3-MB. Para el cálculo de los factores se utilizaron mezclas de concentraciones conocidas de PHA, obteniéndose para cada uno de los monómeros cuantificados un factor de respuesta cuyo coeficiente de variación no superó el 5%. Ejemplo 6. Construcción de las cepas mutantes de P. putida KT2440
El gen glpR fue desactivado por intercambio de alelos mediante recombinación homologa con el plásmido movilizable pK18/7?o¿>sacB (Scháfer et al. , (1994) Gene 145 (1 ):69-73). Las parejas de cebadores de PCR utilizados para esta construcción, así como el tamaño de los fragmentos de PCR, se listan en la Tabla 2. Los fragmentos fueron digeridos con las enzimas de restricción apropiadas y se ligaron con la ligasa de T4, de lo que resulta el correspondiente gen delecionado. Este fragmento fue clonado en los correspondientes sitios únicos de pK18/7?o¿>sacB para producir el plásmido pK18/7?o¿>sacB-GlpR (Tabla 1 ). Este plásmido se utiliza para integrar la mutación en el cromosoma de la cepa receptora mediante recombinación homologa. La conjugación triparental se realizó siguiendo el protocolo descrito por de Herrero et al. (1990, J. Bacteriol 172: 6557-6567.), utilizando E. coli DH10B como cepa donante, E. coli HB101 (pRK600) como cepa ayudante y P. putida KT2440 como cepa receptora. Las cepas resultantes de este evento de recombinación primero fueron confirmadas por PCR y las colonias seleccionadas se cultivaron en LB durante 6 horas y luego se sembraron en placas de M63 con 10 mM citrato suplementado con 5% de sacarosa. Los transconjugantes resistentes a la kanamicina y sensibles a la sacarosa fueron aislados y el evento de entrecruzamiento segundo fue confirmado por PCR. La cepa muíante resultante se lista en la Tabla 1 . La cepa muíante KT40GlpR de la Tabla 1 se ha depositado en la Colección Española de Culíivos Tipo como CECT 8037
Ejemplo 7. Estudio del comportamiento de la cepa P. putida CECT 8037 en un medio mínimo con glicerol Con el objetivo de mejorar las estrategias de fermentación de la cepa P. putida KT2440 en glicerol con fines biotecnológicos, se comprobaron inicialmente algunos parámetros de la fermentación como la producción de biomasa, densidad óptica del cultivo y producción de PHA cuando las células se cultivan durante 48 horas en glicerol (20mM) y una de las fuentes de carbono preferidas de esta bacteria como el ácido octanoico (7,5 mM) (Tabla 3).
Tabla 3. Parámetros de crecimiento de cultivos de P. putida KT2440 en medio M63 a las 48 horas de crecimiento
Biomasa PHA
Substrato D060o
(g i) (% peso seco)
No detectado
20 mM Glicerol 2,12 0,93
(<1%)
7,5 mM Octanoato 2,15 0,97 21%
A las 48 horas de crecimiento, se observa acumulación de PHA de 21 % en relación al peso seco incluso cuando no hay limitaciones de nutrientes (como en el medio M63) lo que no ocurre cuando las células se cultivan en glicerol como fuente de carbono. Esto implica que la biomasa final libre de PHA en las células cultivadas en ácido octanoico es de 0,76 mg/ml. La biomasa total (biomasa del peso seco sin tener en cuenta la correspondiente al contenido en PHA) producida a las 48 horas de la fermentación es similar en ambos casos (aproximadamente 0.9 mg/ml). La tasa de crecimiento en las primeras 9 horas es 0, 132 h"1 cuando las células se cultivan en ácido octanoico y de 0,058 h"1 cuando el glicerol se utiliza como única fuente de carbono. Además cuando el glicerol es utilizado como fuente de carbono se detecta una fase de latencia con mucho retraso en el inicio del crecimiento de hasta 15 horas. Estos experimentos indican que la cepa KT2440 puede utilizar el glicerol para producir biomasa en 48 horas sin acumular PHA, pero el proceso es mucho más lento que cuando se utiliza ácido octanoico como fuente de carbono.
Con el objetivo de analizar el papel del regulador transcripcional GlpR en el metabolismo de glicerol de la cepa P. putida KT2440, se comparó la capacidad de utilizar este sustrato como fuente de carbono y como precursor de PHA en la estirpe salvaje y en la cepa P. putida KT40GlpR (CECT 8037), muíante en el gen glpR. Cuando las bacterias se cultivan en medio M63 0.1 N esta bacteria tiene un perfil de crecimiento en glicerol similar a la observada en la cepa de tipo salvaje cuando se cultiva en ácido octanoico en cuanto a la ausencia de fase lag en la curva de crecimiento. La densidad óptica a 630 nm (DO630nm) del cultivo de la cepa P. putida KT40GlpR comienza a aumentar a las 2 horas de crecimiento mientras que la DO630nm de la estirpe salvaje comienza a aumentar a las 13 horas (Figura 1 ). La activación de la ruta de Entner-Doudoroff que indica un catabolismo activo de glicerol se demostró mediante la determinación de la enzima gliceraldehído-3-fosfato deshidrogenasa (GAPDH) a las 6 y 22 horas de crecimiento en la estirpe salvaje y en la muíante CECT 8037 (Tabla 4) demostrándose que este paso enzimático es activo a las 6 horas en la estirpe muíante, a diferencia de la cepa salvaje, donde se detecía a partir de las 22 horas de culíivo.
Tabla 4. Actividad enzimática gliceraldehído-3 -fosfato deshidrogenasa (GAPDH) (nmol mg"1 min"1) a las 6 y 22 horas de cultivo
P. putida KT2440 P. putida KT40GlpR
Tiempo 6 h 22 h 6 h 22 h
Gliceraldehído-3 -fosfato deshidrogenasa (GAPDH)
Substrato (nmol mg"1 min"1)
40 mM Glicerol
36 ± 2 525 ± 16 238 ± 6 88 ± 6
Por úlfimo, se analizó la biomasa y contenido de PHA de las dos estirpes tras 24 horas y 48 horas de cultivo determinándose que, a las 24 horas, la estirpe muíante es capaz de acumular 0,9 mg/ml de biomasa y 0,21 mg/ml de PHA mientras que la esíirpe salvaje produce sólo 0,5 mg/ml de biomasa y no produce PHA. A las 48 horas de culíivo la esíirpe muíaníe es capaz de acumular 1 , 1 mg/ml de biomasa y 0,3 mg/ml de PHA y la esíirpe salvaje produce sólo 0,8 mg/ml de biomasa y 0, 14 mg de PHA. Esíe ejemplo demuesíra que la mufación en el gen glpR de P. putida KT2440 faciliía el crecimienfo de esía bacíeria cuando usa glicerol como fueníe de carbono, acorta el periodo de iniciación del crecimienfo y permife la producción de PHA uíilizando esíe susíraío como precursor a las 24 horas de crecimienfo. Además incremenfa la acumulación de PHA y biomasa a las 48 horas de cultivo cuando se compara con la estirpe salvaje.

Claims

REIVINDICACIONES
1 . Una cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente, caracterizada porque mejora la producción de bioproductos mediante fermentación a partir de glicerol, comparada con la estirpe salvaje.
2. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según la reivindicación 1 , caracterizada porque dichos bioproductos son bioplásticos.
3. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según la reivindicación 2, caracterizada porque dichos bioplásticos son polihidroxialcanoatos, 4. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según la reivindicación 3, caracterizada porque dichos polihidroxialcanoatos son mcl-polihidroxialcanoatos.
5. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según las reivindicaciones 1 a 4, caracterizada porque dicha modificación genética es una mutación en el gen glpR.
6. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según las reivindicaciones 1 a 5, caracterizada porque dicha mutación en el gen glpR es una mutación de pérdida de función.
7. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según las reivindicaciones 1 a 6, caracterizada porque dicha mutación de pérdida de función es una deleción.
8. La cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según las reivindicaciones 1 a 7, caracterizada porque es la cepa Pseudomonas putida KT40GlpR, depositada el 18 de octubre de 201 1 en la Colección Española de Cultivos Tipo (CECT) y cuya referencia es 8037.
9. Uso de la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente definida en cualquiera de las reivindicaciones 1 a 8, para la producción de bioproductos mediante fermentación a partir de glicerol.
5
10. Uso de la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según la reivindicación 9, caracterizada porque dichos bioproductos son bioplásticos.
10 1 1 . Uso de la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente según la reivindicación 10, caracterizada porque dichos bioplásticos son polihidroxialcanoatos.
12. Uso de la cepa bacteriana de Pseudomonas putida KT2440 modificada 15 genéticamente según la reivindicación 1 1 , caracterizada porque dichos polihidroxialcanoatos son mcl-polihidroxialcanoatos.
13. Un método de producción de bioproductos que comprende las siguientes etapas:
20 a) añadir a un medio con glicerol, la cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente definida en cualquiera de las reivindicaciones 1 a 8,
b) fermentación del glicerol y obtención de los bioproductos.
25 14. El método de producción de bioproductos según la reivindicación 13, caracterizada porque dichos bioproductos son bioplásticos.
15. El método de producción de bioproductos según la reivindicación 14, caracterizada porque dichos bioplásticos son polihidroxialcanoatos.
30
16. El método de producción de bioproductos según la reivindicación 15, caracterizada porque dichos polihidroxialcanoatos son mcl-polihidroxialcanoatos.
17. El método de producción de bioproductos según cualquiera de las reivindicaciones 13 a 16, caracterizado porque el medio con glicerol descrito en a) se obtiene de residuos de biodiesel.
5 18. Un bioproducto obtenido mediante fermentación a partir de glicerol, caracterizado porque dicha fermentación la realiza una cepa bacteriana de Pseudomonas putida KT2440 modificada genéticamente definida en cualquiera de las reivindicaciones 1 a 8.
10 19. El bioproducto obtenido mediante fermentación a partir de glicerol según la reivindicación 18, caracterizado porque dicho bioproducto es un bioplástico.
20. El bioproducto obtenido mediante fermentación a partir de glicerol según la reivindicación 19, caracterizado porque dicho bioplástico es un
15 polihidroxialcanoato.
21 . El bioproducto obtenido mediante fermentación a partir de glicerol según la reivindicación 20, caracterizado porque dicho polihidroxialcanoato es un mcl- polihidroxialcanoato.
20
22. El bioproducto obtenido mediante fermentación a partir de glicerol según cualquiera de las reivindicaciones 18 a 21 , para su uso como biomaterial en aplicaciones biomédicas.
25 23. El bioproducto obtenido mediante fermentación a partir de glicerol según cualquiera de las reivindicaciones 18 a 21 , para su uso como fuente de nuevos compuestos quirales como precursores en la industria farmacéutica.
PCT/ES2012/070793 2011-11-16 2012-11-15 Sistema para mejorar la producción de polihidroxialcanoatos (bioplástico) por fermentación a partir de glicerol utilizando una cepa de pseudomonas putida modificada genéticamente WO2013072541A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201131846A ES2423499B1 (es) 2011-11-16 2011-11-16 Sistema para mejorar la producción de polihidroxialcanoatos (bioplástico) por fermentación a partir de glicerol utilizando una cepa de pseudomonas putida modificada genéticamente.
ESP201131846 2011-11-16

Publications (2)

Publication Number Publication Date
WO2013072541A1 WO2013072541A1 (es) 2013-05-23
WO2013072541A9 true WO2013072541A9 (es) 2013-12-27

Family

ID=48429026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070793 WO2013072541A1 (es) 2011-11-16 2012-11-15 Sistema para mejorar la producción de polihidroxialcanoatos (bioplástico) por fermentación a partir de glicerol utilizando una cepa de pseudomonas putida modificada genéticamente

Country Status (2)

Country Link
ES (1) ES2423499B1 (es)
WO (1) WO2013072541A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008131A1 (en) * 2017-07-06 2019-01-10 Consejo Superior De Investigaciones Científicas PSEUDOMONAS PUTIDA RECOMBINANT FOR THE PRODUCTION OF D-XYLONATE FROM D-XYLOSE
EP3819380A1 (en) 2019-11-05 2021-05-12 Consejo Superior De Investigaciones Científicas (CSIC) Recombinant pseudomonas putida strains for the production of polyhydroxyalkanoate

Also Published As

Publication number Publication date
ES2423499B1 (es) 2014-09-15
WO2013072541A1 (es) 2013-05-23
ES2423499A1 (es) 2013-09-20

Similar Documents

Publication Publication Date Title
Zheng et al. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction
Liu et al. Biosynthesis of poly (3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida
Singh et al. Advances in cyanobacterial polyhydroxyalkanoates production
Możejko-Ciesielska et al. Bacterial polyhydroxyalkanoates: Still fabulous?
Carpine et al. Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction
Fu et al. Development of Halomonas TD01 as a host for open production of chemicals
López et al. Polyhydroxyalkanoates: much more than biodegradable plastics
Escapa et al. Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups
Tan et al. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01
Sato et al. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate
Murugan et al. Biosynthesis of P (3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113
Zhang et al. Engineering of Ralstonia eutropha for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose
Insomphun et al. Modification of β-oxidation pathway in Ralstonia eutropha for production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil
Shen et al. Production and characterization of homopolymer poly (3-hydroxyvalerate)(PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4
US20130288323A1 (en) Microbial production of polyhydroxyalkanoates
JP2013510572A (ja) 高い中鎖長モノマー含有量を有するポリヒドロキシルアルカノアートコポリマーを製造する方法
Li et al. Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli
Zhao et al. Metabolic engineering of Pseudomonas mendocina NK-01 for enhanced production of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer
Yoon et al. Metabolic engineering of Methylorubrum extorquens AM1 for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production using formate
Flores-Sánchez et al. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expression of fadE and phaJ genes in Cupriavidus necator
Chen et al. White biotechnology for biopolymers: hydroxyalkanoates and polyhydroxyalkanoates: production and applications
ES2423499B1 (es) Sistema para mejorar la producción de polihidroxialcanoatos (bioplástico) por fermentación a partir de glicerol utilizando una cepa de pseudomonas putida modificada genéticamente.
Liu et al. CRISPR-Cas9 editing of the synthesis of biodegradable polyesters polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440
JP6249456B2 (ja) 藍藻においてプラスチック原料を生産する方法
Zheng et al. Production of 3-hydroxydecanoic acid by recombinant Escherichia coli HB101 harboring phaG gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850091

Country of ref document: EP

Kind code of ref document: A1