WO2013071862A1 - 高强度可吸收复合骨内固定植入器械及其制备方法 - Google Patents

高强度可吸收复合骨内固定植入器械及其制备方法 Download PDF

Info

Publication number
WO2013071862A1
WO2013071862A1 PCT/CN2012/084578 CN2012084578W WO2013071862A1 WO 2013071862 A1 WO2013071862 A1 WO 2013071862A1 CN 2012084578 W CN2012084578 W CN 2012084578W WO 2013071862 A1 WO2013071862 A1 WO 2013071862A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
magnesium
alloy wire
polylactic acid
sheet
Prior art date
Application number
PCT/CN2012/084578
Other languages
English (en)
French (fr)
Inventor
储成林
薛烽
白晶
郭超
盛晓波
董寅生
林萍华
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110360819.5A external-priority patent/CN102552993B/zh
Priority claimed from CN2011103609304A external-priority patent/CN102397589A/zh
Priority claimed from CN2012104242369A external-priority patent/CN102871715A/zh
Priority claimed from CN2012104240630A external-priority patent/CN102920499A/zh
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2013071862A1 publication Critical patent/WO2013071862A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/128Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing other specific inorganic fillers not covered by A61L31/126 or A61L31/127
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to a high-strength absorbable composite bone internal fixation implanting device, in particular to a polylactic acid polymer mainly composed of a high-strength magnesium alloy wire or a magnesium alloy sheet having a through-through hole according to a set arrangement structure.
  • the composite device for the internal fixation of the material, the adjacent magnesium alloy wire or sheet is bonded by the polylactic acid polymer material at a high temperature, and has high strength and absorbable characteristics in the body, and the specific internal absorption can be controlled at a constant speed. It has the advantages of low degradation, low hydrogen evolution, neutralization of degradation products, and complete absorption. It is especially suitable for clinical applications such as bone trauma surgery, bone defect repair surgery, plastic surgery and other high strength requirements. Medical device technology field.
  • absorbable polymer internal fixation orthopedic devices with polylactic acid as a typical representative have been gradually promoted and applied clinically. After surgery, they can be degraded and absorbed in the body without secondary surgery. However, compared with metal orthopedic instruments, the strength of the polymer orthopedic device is insufficient. If it is used to fix the fracture end of the large force, the immobilization force is weakened with the absorption of the absorbable plate, which may lead to secondary fracture. Secondly, the degradation product of the absorbable polymer plate is acidic. During the degradation, the fracture zone is always in a low pH state, which is easy to cause local inflammation and affect the activity of osteoblasts. Again, the absorbable plate does not block the X-ray, which is inconvenient for the postoperative effect observation. In addition, the degradation rate of the absorbable plate is difficult to synchronize with the fracture healing speed. If the degradation is too fast, the fixation strength will be insufficient and the second fracture will occur, and too slow will affect the bone healing.
  • Magnesium alloys have many performance advantages for orthopedic devices, such as low elastic modulus, about 41 ⁇ 45GPa, which is closer to human bone than titanium; its density is about 1.7 ⁇ 1.9g/cm3, which is similar to human bone density. Its specific strength and specific stiffness are high, and the tensile strength is usually between 200MPa and 300MPa, which can meet the mechanical strength requirements of bone fixation materials; it has good biocompatibility, and magnesium is one of the main metal elements in the human body. It plays an important role in regulating cell growth and maintaining cell membrane structure; the excess magnesium that is decomposed can be excreted through the urine and has good safety.
  • the corrosion resistance of magnesium alloy is poor, and the biodegradation rate in the human body is too fast, which leads to a significant decrease in the early mechanical strength of the fracture fixation.
  • the strength of the magnesium alloy is lower than that of the titanium alloy and stainless steel, and the amount of the magnesium alloy for the fracture fixation device is large.
  • the large volume of magnesium alloy will release a large amount of magnesium metal ions due to degradation, which is easy to cause bone dissolution.
  • the larger the amount of magnesium alloy is the faster the amount of hydrogen is analyzed, and the body tissue cannot be absorbed. It can only cause a large amount of hydrogen to accumulate around the implanted device, forming a bubbling phenomenon.
  • the present invention proposes a completely new technical solution, that is, firstly drawing or rolling a degradable magnesium alloy material into a magnesium alloy wire or sheet, and then arranging the magnesium alloy wire or sheet in a set arrangement.
  • the structural form is compounded with the degradable polylactic acid polymer material and cured by high temperature bonding to prepare a high-strength absorbable medical composite material, and then various mechanically prepared various intramedullary implant devices are prepared.
  • Its performance has the advantages of both absorbable polymer materials and degradable magnesium alloys, but at the same time it can overcome their respective shortcomings, with high strength and absorbable properties in the body, and the specific internal absorption can be controlled at a constant rate, and the degradation is moderated. It has the advantages of less hydrogen evolution, neutralization of degradation products, and complete absorption. It is especially suitable for clinical applications such as bone trauma surgery, bone defect repair surgery, plastic surgery and beauty with high strength and volume.
  • Clinical stainless steel and titanium alloy orthopedic instruments have high strength, but can not be degraded and absorbed in the body; clinically absorbable polylactic acid orthopedic instruments can be degraded and absorbed in the body, but the strength is too low, and the application range is narrow; the surface is in the research stage.
  • the magnesium alloy orthopedic device with protective coating has high strength and can be degraded and absorbed in the body, and the protective coating can delay the early corrosion of the magnesium alloy device in the body, thereby avoiding the early mechanical strength of the fracture fixation device being greatly reduced, but in the later stage.
  • the invention aims to provide a high-strength absorbable composite internal fixation instrument and a preparation method thereof, and overcome the orthopedic internal fixation manufactured by medical titanium alloy, or magnesium alloy and coating technology, or absorbable polylactic acid polymer material. Clinical problems with implanted devices.
  • a high-strength absorbable composite intraosseous implant device which is mainly set by a high-strength magnesium alloy wire or a magnesium alloy sheet having a through-hole.
  • the arrangement structure is compounded with polylactic acid polymer material, and the adjacent magnesium alloy wire or sheet is cured by high temperature bonding with polylactic acid polymer material, wherein the diameter of the magnesium alloy wire is 0.05 mm to 1.5 mm.
  • the thickness of the magnesium alloy flakes is 0.01 mm to 1 mm, and the magnesium alloy wire or flakes account for 0.5% to 95% of the total volume, and the polylactic acid accounts for 5% to 99.5% of the total volume.
  • the arrangement form of the magnesium alloy wire exhibits a directional dispersion arrangement or a two-dimensional woven structure or a three-dimensional woven structure.
  • the arrangement pattern of the magnesium alloy flakes is in the form of mutually parallel or staggered and arranged at a certain angle.
  • the magnesium alloy wire or sheet is composed of one or a combination of magnesium alloy, magnesium manganese alloy, magnesium zinc alloy, magnesium zirconium alloy, magnesium rare earth alloy, magnesium lithium alloy, magnesium calcium alloy or magnesium silver alloy.
  • the multi-component magnesium alloy is formed by drawing or rolling.
  • the surface of the magnesium alloy wire or sheet is prepared by micro-arc oxidation, anodization, electrodeposition, plasma spraying, chemical conversion, ion implantation, sputtering, vapor deposition or biochemical method to prepare a biodegradable bioceramic protective layer.
  • the bioceramic protective layer is a hydroxyapatite coating, a tricalcium phosphate coating, a magnesium oxide coating or a fluorine-containing protective layer, and the thickness thereof is 0.1 ⁇ m ⁇ 100 ⁇ m.
  • the polylactic acid polymer material is poly L-lactic acid, or poly (D, L)-lactic acid or a copolymer or mixture of the two, or a copolymer of lactic acid and glycolic acid, the molecular weight of polylactic acid is 50,000 to 1.5 million.
  • the intraosseous implant device includes various structural forms of a bone plate and a matching screw, an intramedullary nail, a spinal fracture and dislocation fixation device, a bone needle or a screw for fixing the bone, and a bone filling material.
  • the preparation method of the high-intensity absorbable composite bone internal fixation implanting device may be: firstly, the selected magnesium alloy is drawn or rolled into a magnesium alloy wire or a sheet; and the ceramic coating technology is used in magnesium. Preparing a desired biodegradable bioceramic protective layer on the surface of the alloy wire or sheet; superimposing the magnesium alloy wire or sheet in a desired arrangement on the hot pressing mold or the injection mold; and placing an appropriate amount of polylactic acid polymer The material is injected into a hot press mold or an injection mold, and is subjected to hot press densification solidification molding or injection molding solidification molding, and is machined into an intraosseous implant device of a desired structure.
  • the preparation method of the high-intensity absorbable composite bone internal fixation implanting device may also be: firstly, the selected magnesium alloy is drawn or rolled into a magnesium alloy wire or a sheet; using ceramic coating technology, Preparing a desired biodegradable bioceramic protective layer on the surface of the magnesium alloy wire or sheet; using a dip-coating, brushing or spraying method, further on the surface of the magnesium alloy wire or sheet surface having a biodegradable bioceramic protective layer Preparing a polylactic acid pre-coating layer, or arranging the magnesium alloy wire in a preforming mold in a set manner, and then pouring the polylactic acid solution or the high-temperature molten polylactic acid into the preform mold, and then drying and solidifying or Cooling and solidifying, first preparing a pre-formed composite blank of flaky polylactic acid and magnesium alloy wire; and superimposing and arranging the above-mentioned magnesium alloy wire or sheet coated with a polylactic acid pre-coating layer in a desired arrangement form Hot extrusion
  • the use of metal magnesium alloy wire or sheet with excellent strength and plasticity as the reinforcing phase can significantly improve the toughness of the absorbable polylactic acid composite material.
  • the magnesium alloy wire or the surface of the bioceramic protective layer has a microscopic porous structure, which can be further improved.
  • the interfacial bonding force between magnesium alloy wire or flake and polylactic acid, and the directional strengthening effect peculiar to metal wire or flake, is also not available as general bioceramic particles or metal particles (including magnesium particles) as a reinforcing phase. .
  • the magnesium alloy wire or sheet in the composite material is increased to more than 50% of the total volume of the material, the magnesium alloy wire or sheet is changed from a low content of the reinforcement to a high content of the matrix;
  • the polylactic acid content is reduced to less than 50% of the total volume of the material, and the polylactic acid is changed from a high content matrix to a low content binder which only forms a curing bond between the magnesium alloy wire or the sheet.
  • the absorbable composite internal fixation device has higher toughness and can meet the mechanical safety requirements of large load fracture fixation with higher strength requirements.
  • the magnesium alloy wire or the sheet is cured by high temperature bonding using polylactic acid, and the polylactic acid between the magnesium alloy wire or the sheet has adhesive curing effect, and at the same time, the surrounding magnesium alloy wire or sheet It forms a good protection. Because polylactic acid, especially polylactic acid with high molecular weight, degrades at a relatively slow rate, even if the outer magnesium alloy wire or sheet is exposed to the physiological environment, the adjacent inner layer of magnesium alloy wire Or the polylactic acid film that is still surrounded by the flakes is well protected, and corrosion degradation does not occur at the same time.
  • the degradation rate of the orthopedic device of the present invention can be effectively controlled, and the The whole process of degradation in the body maintains a stable degradation rate.
  • the magnesium ions and hydrogen generated by corrosion are released by slow release, which is easy to be absorbed and excreted in the body at low speed, which overcomes the rapid corrosion degradation of large magnesium alloy and leads to rapid release of a large amount of time in a short time. Osteolytic phenomena and gas bubbling problems caused by magnesium ions and hydrogen.
  • the invention has the advantage of acid-base neutralization of corrosion products.
  • the invention has little influence on the local acidity and alkalinity of the surrounding physiological environment in the process of degradation in the body, because the degradation product of the magnesium alloy wire or the sheet substrate exhibits alkaline characteristics, and the binder polylactic acid degradation is well neutralized.
  • the acidic environment formed by the product overcomes the problem of excessive local acidity caused by degradation of traditional polylactic acid orthopedic devices.
  • the composite material is composed of a magnesium alloy and a polylactic acid which have good biocompatibility and degradability
  • the ceramic protective layer of the magnesium alloy wire or the sheet surface is also It is composed of biodegradable bioceramics such as magnesia, tricalcium phosphate and hydroxyapatite with good biocompatibility and absorbability. It is a good solution to overcome the common reports that the reinforcing phase of polylactic acid composites and carbon fiber cannot be completely degraded. The problem of falling.
  • the invention discloses a high-strength absorbable composite internal fixation device, which is mainly composed of a high-strength magnesium alloy wire or a magnesium alloy sheet having a through-hole through a set arrangement structure and a polylactic acid polymer.
  • the material is compounded, and the adjacent magnesium alloy wire or sheet is cured by high temperature bonding with polylactic acid polymer material, wherein the diameter of the magnesium alloy wire is 0.05 mm to 1.5 mm, and the thickness of the magnesium alloy sheet is 0.01 mm. ⁇ 1mm, calculated by volume percentage, magnesium alloy wire or sheet accounts for 0.5% ⁇ 95% of the total volume, and polylactic acid accounts for 5% ⁇ 99.5% of the total volume.
  • the arrangement form of the magnesium alloy wire exhibits a directional dispersion arrangement or a two-dimensional woven structure or a three-dimensional woven structure.
  • the arrangement pattern of the magnesium alloy flakes is in the form of mutually parallel or staggered and arranged at a certain angle.
  • the magnesium alloy wire or sheet is composed of one or a combination of magnesium alloy, magnesium manganese alloy, magnesium zinc alloy, magnesium zirconium alloy, magnesium rare earth alloy, magnesium lithium alloy, magnesium calcium alloy or magnesium silver alloy.
  • the multi-component magnesium alloy is formed by drawing or rolling.
  • the magnesium alloy wire or sheet material involved mainly includes: magnesium aluminum series (excluding binary system mainly including Mg-Al-Zn, Mg-Al-Mn, Mg-Al-Si, Mg-Al-RE four ternary System and multi-system, representative alloys such as AZ31, AZ61, AZ91, AM60, AE21, AS21, etc., in which the aluminum content is less than 10%, Zn, Mn, Si, RE mass is less than 5%); magnesium manganese series (mainly binary Mg-0.1 ⁇ 2.5% Mn and adding a small amount of rare earth, calcium a ternary or multi-component system composed of elements such as zinc, representing alloys such as domestic grades MB1 and MB8); magnesium-zinc series (excluding binary systems mainly including Mg-Zn-Zr and Mg-Zn-Cu series, representative alloys) ZK21, ZK60, ZC62, etc.; Magnesium-Zirconium series (mainly binary Mg-0.1 ⁇ 2% Zr
  • the surface of the magnesium alloy wire or sheet is prepared by micro-arc oxidation, anodization, electrodeposition, plasma spraying, chemical conversion, ion implantation, sputtering, vapor deposition or biochemical method to prepare a biodegradable bioceramic protective layer.
  • the bioceramic protective layer is a hydroxyapatite coating, a tricalcium phosphate coating, a magnesium oxide coating or a fluorine-containing protective layer, and the thickness thereof is 0.1 ⁇ m ⁇ 100 ⁇ m.
  • the polylactic acid polymer material is poly L-lactic acid, or poly (D, L)-lactic acid or a copolymer or mixture of the two, or a copolymer of lactic acid and glycolic acid, the molecular weight of polylactic acid is 50,000 to 1.5 million.
  • the intraosseous implant device includes various structural forms of a bone plate and a matching screw, an intramedullary nail, a spinal fracture and dislocation fixation device, a bone needle or a screw for fixing the bone, and a bone filling material.
  • the preparation method of the high-intensity absorbable composite bone internal fixation implanting device may be: firstly, the selected magnesium alloy is drawn or rolled into a magnesium alloy wire or a sheet; and the ceramic coating technology is used in magnesium. Preparing a desired biodegradable bioceramic protective layer on the surface of the alloy wire or sheet; superimposing the magnesium alloy wire or sheet in a desired arrangement on the hot pressing mold or the injection mold; and placing an appropriate amount of polylactic acid polymer The material is injected into a hot press mold or an injection mold, and is subjected to hot press densification solidification molding or injection molding solidification molding, and is machined into an intraosseous implant device of a desired structure.
  • the preparation method of the high-intensity absorbable composite bone internal fixation implanting device may also be: firstly, the selected magnesium alloy is drawn or rolled into a magnesium alloy wire or a sheet; using ceramic coating technology, Preparing a desired biodegradable bioceramic protective layer on the surface of the magnesium alloy wire or sheet; using a dip-coating, brushing or spraying method, further on the surface of the magnesium alloy wire or sheet surface having a biodegradable bioceramic protective layer Preparing a polylactic acid pre-coating layer, or arranging the magnesium alloy wire in a preforming mold in a set manner, and then pouring the polylactic acid solution or the high-temperature molten polylactic acid into the preform mold, and then drying and solidifying or Cooling and solidifying, first preparing a pre-formed composite blank of flaky polylactic acid and magnesium alloy wire; and superimposing and arranging the above-mentioned magnesium alloy wire or sheet coated with a polylactic acid pre-coating layer in a desired arrangement form Hot extrusion
  • the high-temperature molten polylactic acid polymer material is extruded into an injection mold, and is subjected to injection molding densification and solidification to form a rod. Finally, it is processed into an intramedullary nail, a screw, or the like by mechanical processing. Fixation devices for orthopedics such as bone nails.
  • the QE22 magnesium alloy was rolled into a 0.1 mm thick magnesium alloy flake and a number of through-hole through holes were formed on the magnesium alloy flake; 10 g/L sodium silicate, 4 g/L hydroxyapatite nanopowder, 3 g /L
  • NaOH is used to immerse the magnesium alloy flakes in it, apply 350V voltage, and perform micro-arc oxidation treatment for 10 minutes to form a layer of magnesium oxide and hydroxyapatite composite of about 10 ⁇ m thick in situ.
  • the ceramic bottom layer 80% of the magnesium alloy flakes accounted for 20% by volume and 80% of the polylactic acid having a molecular weight of 300,000, and an appropriate amount of magnesium alloy flakes and polylactic acid polymer materials were respectively weighed, and the magnesium alloy flakes were dispersed in parallel directions.
  • the arrangement method is uniformly fixed in the hot pressing mold; the high-temperature molten polylactic acid polymer material is injected into the hot pressing mold, and is formed into a plate by hot pressing densification, and finally, processed into a bone by mechanical processing. Orthopedic instruments such as plates and bone fillers.
  • the AE21 magnesium alloy was drawn and processed into a magnesium alloy wire with a diameter of ⁇ 0.2 mm; 10 g/L sodium silicate, 3 g/L hydroxyapatite nano powder, 2 g/L
  • NaOH is used to immerse the magnesium alloy wire in it, apply 400V voltage, and perform micro-arc oxidation treatment for 15 minutes to form a layer of 20 ⁇ m thick magnesium oxide and hydroxyapatite composite in situ.
  • Ceramic underlayer 60% by volume of magnesium alloy wire and 60% of polylactic acid with a molecular weight of 500,000, respectively, weigh the appropriate amount of magnesium alloy wire and polylactic acid polymer material, and weave the magnesium alloy wire into two Dimensional mesh structure, and the two-dimensional woven structure of magnesium alloy wire is placed in the preform mold, and then the polylactic acid solution or the high-temperature molten polylactic acid is poured into the preform mold, and then dried or solidified or cooled and solidified, first prepared.
  • the AE21 magnesium alloy is rolled into a 0.2mm magnesium alloy flake and a plurality of through-holes are formed on the magnesium alloy flake; 10g/L sodium silicate, 3g/L hydroxyapatite nanopowder, 3g/L NaOH is used as the micro-arc oxidation electrolyte system.
  • the magnesium alloy flakes are immersed in it, and a voltage of 400V is applied to perform micro-arc oxidation treatment for 15 minutes to form a layer of magnesium oxide and hydroxyapatite composite of about 20 ⁇ m thick in situ.
  • Ceramic underlayer 60% of the content of magnesium alloy flakes and 60% of polylactic acid with a molecular weight of 500,000, respectively, weigh the appropriate amount of magnesium alloy flakes and polylactic acid polymer materials, and use the dip coating method on the surface of magnesium alloy flakes
  • a polylactic acid pre-coating layer is prepared; the magnesium alloy sheet pre-formed material having a polylactic acid pre-coating layer on the surface is cut as required, then stacked, arranged in a hot extrusion die, and finally subjected to hot press densification solidification molding to The composite material sheet of the required size specification; finally, the orthopedic equipment such as the bone plate and the bone filling material is processed by mechanical processing.
  • the MB8 magnesium alloy was drawn and processed into a magnesium alloy wire with a diameter of ⁇ 0.4 mm.
  • the surface of the magnesium alloy wire was electrodeposited by 20 ⁇ m thick by electrodeposition.
  • the bottom layer of hydroxyapatite bioceramic 40% of the content of magnesium alloy wire and 60% of polylactic acid with a molecular weight of 700,000, respectively, weigh the appropriate amount of magnesium alloy wire and polylactic acid polymer material, magnesium alloy
  • the wire is woven into a three-dimensional pipe network structure, and the three-dimensional braided structure of the magnesium alloy wire is fixed in the injection mold; the high-temperature molten polylactic acid polymer material is extruded into the injection mold, and the injection molding is solidified into a bar. Finally, it is processed into an orthopedic nail, screw, bone nail and other orthopedic fixation devices by mechanical processing.
  • the AZ31B magnesium alloy was rolled into a 0.3 mm thick magnesium alloy flake and a number of through-square through holes were machined on the magnesium alloy flake; 10 g/L sodium silicate and 2 g/L were used. NaOH is used as the micro-arc oxidation electrolyte system, the magnesium alloy flakes are immersed therein, 400V voltage is applied, and micro-arc oxidation treatment is performed for 10 minutes to form a layer of 10 ⁇ m thick magnesium oxide bioceramic underlayer on the surface; Magnesium alloy flakes accounted for 60%, and the molecular weight of 700,000 polylactic acid accounted for 40%.
  • magnesium alloy flakes and polylactic acid polymer materials were weighed, and the magnesium alloy flakes were arranged in parallel and evenly dispersed in the injection molding.
  • the high-temperature molten polylactic acid polymer material is extruded into an injection mold, and is injection-molded and solidified into a rod. Finally, it is processed into an intramedullary nail, a screw, a bone nail, etc. by mechanical processing. Use a fixed device.
  • the QE22 magnesium alloy is drawn and processed into a magnesium alloy wire with a diameter of ⁇ 0.5 mm; 10 g/L sodium silicate, 3 g/L hydroxyapatite nano powder, 2 g/L
  • NaOH is used to immerse the magnesium alloy wire in it, apply 400V voltage, and perform micro-arc oxidation treatment for 15 minutes to form a layer of 20 ⁇ m thick magnesium oxide and hydroxyapatite composite in situ.
  • Ceramic underlayer 20% by volume of magnesium alloy wire and 80% of polylactic acid with a molecular weight of 900,000, respectively, weigh the appropriate amount of magnesium alloy wire and polylactic acid polymer material, and disperse the magnesium alloy wire according to orientation
  • the arrangement method is uniformly fixed in the hot pressing mold; the high-temperature molten polylactic acid polymer material is injected into the hot pressing mold, and is subjected to hot pressing densification, solidification molding into a sheet material, and finally, processed into a mechanical processing method.
  • Orthopedic instruments such as bone plates and bone filling materials.
  • the MB8 magnesium alloy is rolled into a 0.4 mm thick magnesium alloy flake, and a plurality of through-holes are formed on the magnesium alloy flakes; in an electrolyte system containing 6 g/L of hydroxyapatite nanopowder, electricity is used.
  • the deposition technique electrodeposits a 20 ⁇ m thick hydroxyapatite bioceramic underlayer on the surface of magnesium alloy flakes; 20% of the content of magnesium alloy flakes and 20% of polylactic acid with a molecular weight of 900,000, respectively, and weigh the appropriate amount of magnesium alloy flakes and Polylactic acid polymer material, and the magnesium alloy flakes are uniformly arranged in the injection mold according to the parallel arrangement of the magnesium alloy flakes; the polylactic acid polymer material in the high temperature molten state is extruded and injected into the injection mold, and is molded and solidified into a rod. Finally, it is processed into an orthopedic nail, bone plate, bone nail and other orthopaedic fixation devices by mechanical processing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种骨内固定植入器械及其制备方法,植入器械由镁合金丝材或薄片和聚乳酸组成,其中,按体积百分比,镁合金占0.5%-95%,聚乳酸占5%-99.5%。制备方法包括,将镁合金丝材或薄片按照设定的排形式排列,然后在相邻的镁合金丝材或薄片之间注入聚乳酸进行粘结,并固化成型。镁合金丝材或薄片的表面可以制备一层可降解生物陶瓷保护层。植入器械具备高强度和可吸收的特性。

Description

高强度可吸收复合骨内固定植入器械及其制备方法 技术领域
本发明涉及一种高强度可吸收复合骨内固定植入器械,特别是一种主要由高强度镁合金丝材或具有贯穿通孔的镁合金薄片按设定的排列结构形式与聚乳酸高分子材料复合而成的骨内固定植入器械,相邻镁合金丝材或薄片之间通过聚乳酸高分子材料进行高温粘结固化,具有高强度和体内可吸收特性,兼具体内吸收匀速可控、降解缓和、析氢量少、降解产物酸碱中和、完全可吸收等优点,特别适用于强度要求高、体积大的骨创伤外科、骨缺损修复外科、整形美容等临床应用,属于骨科植入医疗器械技术领域。
背景技术
目前临床使用骨科植入器械以钛合金、不锈钢、钴基合金制作的最为常用,具有稳定的固定效果和优越的生物相容性,但也存在弹性模量高、密度大、不能降解吸收等缺点。
近年来,以聚乳酸为典型代表的可吸收高分子内固定骨科器械逐渐在临床上得到推广应用,手术愈合后可在体内被降解吸收掉,无需二次手术取出。但相对于金属骨科器械,高分子骨科器械的强度不足,若用于固定受力较大的骨折断端,随着可吸收板降解,固定力减弱,可能导致二次骨折。其次,可吸收高分子板降解产物为酸性,在降解期间,骨折区一直处于低pH值状态,易引起局部炎症反应,影响成骨细胞活性。再次,可吸收板对X线不阻射,这对手术后疗效观察造成一定的不便。另外,可吸收板的降解速度与骨折愈合速度较难同步,若降解过快,将导致固定强度不足而二次骨折,过慢则影响骨愈合。
近年来,可降解镁合金在可吸收骨科植入器械方面的应用前景受到了全世界研究者的广泛关注。镁合金用于骨科器械具有很多性能优势,例如弹性模量低,约为41~45GPa,比钛金属更接近于人骨;其密度在1.7~1.9g/cm3左右,和人骨密质骨密度相近;其比强度、比刚度较高,拉伸强度通常在200MPa到300MPa之间,能满足骨固定材料的力学强度要求;具有良好的生物相容性,镁是人体内几个主要的金属元素之一,对于调节细胞的生长和维持细胞膜结构有重要作用;降解析出的过量镁可以通过尿液排出体外,具有良好的安全性。
但是,镁合金耐腐蚀性能较差,在人体内生物降解速度过快,易导致骨折固定早期力学强度大幅降低;其次,镁合金的强度比钛合金、不锈钢低,骨折固定器械镁合金的用量大,大体积的镁合金因为降解会快速释放出大量的镁金属离子,易造成溶骨现象,并且,镁合金用量越大,降解析出的氢气量也越大越快,机体组织没法吸收,只能导致氢气在植入器械周围大量聚集,形成鼓泡现象。
目前,国内外研究者采用等离子喷涂、微弧氧化、电沉积、气相沉积等表面涂层技术对镁合金进行表面改性处理,有大量的研究报道,也取得了很多研究进展。制备保护涂层能延缓镁合金器械在体内的早期腐蚀,从而避免骨折固定器械的早期力学强度大幅降低。但在后期,由于外表面涂层的逐渐降解,大体积的镁合金基体裸露在生理环境中,失去有效保护,必然导致大量的镁离子和氢气在短时间内快速释放,因此,表面涂层技术不能从根本上解决镁合金骨科器械存在各种问题。
为此,本发明提出了一种全新解决技术方案,即首先将可降解镁合金材料拉拔或轧制加工成镁合金丝材或薄片,然后再将镁合金丝材或薄片以设定的排列结构形式与可降解聚乳酸高分子材料进行复合并经高温粘结固化,制备出高强度可吸收医用复合材料,再提过机械加工制备出所需结构形式的各种骨内固定植入器械,其性能兼具可吸收高分子材料和可降解镁合金的各自的优势,但同时又能克服两者各自的缺点,具有高强度和体内可吸收特性,兼具体内吸收匀速可控、降解缓和、析氢量少、降解产物酸碱中和、完全可吸收等优点,特别适用于强度要求高、体积大的骨创伤外科、骨缺损修复外科、整形美容等临床应用。
技术问题
临床用不锈钢、钛合金骨科器械强度高,但在体内不可被降解吸收;临床用可吸收聚乳酸类骨科器械在体内能被降解吸收,但强度太低,应用范围窄;正处于研究阶段的表面有保护涂层的镁合金骨科器械强度高,且能在体内被降解吸收,而且保护涂层能延缓镁合金器械在体内的早期腐蚀,从而避免骨折固定器械的早期力学强度大幅降低,但在后期,由于外表面涂层的逐渐降解,大体积的镁合金基体裸露在生理环境中,失去有效保护,必然导致大量的镁离子和氢气在短时间内快速释放,带来溶骨现象和气体鼓泡问题。
本发明旨在提供一种高强度可吸收复合骨内固定植入器械及其制备方法,克服由医用钛合金、或镁合金及涂层技术、或可吸收聚乳酸高分子材料制造的骨科内固定植入器件的在临床上存在的问题。
技术解决方案
本发明通过如下技术方案实现,一种高强度可吸收复合骨内固定植入器械,该骨内固定植入器械主要由高强度镁合金丝材或具有贯穿通孔的镁合金薄片按设定的排列结构形式与聚乳酸高分子材料复合而成,相邻镁合金丝材或薄片之间通过聚乳酸高分子材料进行高温粘结固化,其中,镁合金丝材的直径为0.05mm~1.5mm,镁合金薄片的厚度为0.01mm~1mm,按体积百分比计算,镁合金丝材或薄片占总体积的0.5%~95%,聚乳酸占总体积的5%~99.5%。
所述镁合金丝材的排列结构形式呈现为定向分散排列或为二维编织结构或是三维编织结构。
所述镁合金薄片的排列结构形式呈现为相互平行的形式或以一定的角度相互错开分散排列。
所述及的镁合金丝材或薄片由镁铝合金、镁锰合金、镁锌合金、镁锆合金、镁稀土合金、镁锂合金、镁钙合金或镁银合金的一种或由这些体系组合而成的多元系镁合金经拉拔或轧制加工而成。
所述及的镁合金丝材或薄片表面通过微弧氧化、阳极氧化、电沉积、等离子喷涂、化学转化、离子注入、溅射、气相沉积或生物化学方法制备了一层可降解生物陶瓷保护层,以控制镁合金丝材或薄片的降解速度和镁离子的溶出速度,生物陶瓷保护层为羟基磷灰石涂层、磷酸三钙涂层、氧化镁涂层或含氟防护层,其厚度为0.1μm ~100μm。
所述聚乳酸高分子材料为聚L-乳酸,或者聚(D, L)-乳酸或者是两者的共聚物或混合物,或者为乳酸同乙醇酸的共聚物,聚乳酸分子量为5万~150万。
所述骨内固定植入器械包括各种结构形式的接骨板及配套螺钉、髓内钉、脊柱骨折脱位固定器材、骨针或单独起固定作用的螺钉、骨填充材料。
所述高强度可吸收复合骨内固定植入器械的制备方法可以是:首先将选好成分的镁合金经拉拔或轧制加工成镁合金丝材或薄片;采用陶瓷涂层技术,在镁合金丝材或薄片表面制备出所需的可降解生物陶瓷保护层;将镁合金丝材或薄片以所需排列结构形式进行叠加固定在热压模具或注塑模具中;将适量的聚乳酸高分子材料注入到热压模具或注塑模具中,进行热压致密化固化成型或注塑固化成型,并机械加工成所需结构的骨内固定植入器械。
所述高强度可吸收复合骨内固定植入器械的制备方法也可以是:首先将选好成分的镁合金经拉拔或轧制加工成镁合金丝材或薄片;采用陶瓷涂层技术,在镁合金丝材或薄片表面制备出所需的可降解生物陶瓷保护层;采用浸渍提拉涂覆、刷涂或喷涂方法,在表面有可降解生物陶瓷保护层的镁合金丝材或薄片表面进一步制备出聚乳酸预涂覆层,或将镁合金丝材先按设定方式排列在预制坯模具中,后将聚乳酸溶液或高温熔融态聚乳酸浇注入预制坯模具中,再进行干燥固化或冷却固化,先制备出薄片状聚乳酸与镁合金丝材的预制复合坯料;将上述表面涂覆有聚乳酸预涂覆层的镁合金丝材或薄片按所需排列结构形式进行叠加、排列在热挤压模具;或将薄片状聚乳酸与镁合金丝材的预制复合坯料按要求进行裁剪,然后再叠加、排列在热挤压模具,最后进行热压致密化固化成型,并机械加工成所需结构的骨内固定植入器械。
有益效果
该发明的有益效果如下:
1、具有强度高且力学性能可在较宽的范围内调节的优势。采用强度和塑性俱佳的金属镁合金丝材或薄片作为增强相,能显著提高可吸收聚乳酸复合材料的强韧性,镁合金丝材或薄片表面生物陶瓷保护层具有微观多孔结构,能进一步提高镁合金丝材或薄片和聚乳酸之间的界面结合力,同时,金属丝材或薄片所特有的定向强化效果,也是一般生物陶瓷颗粒或金属颗粒(包括镁颗粒)作为增强相所不具备的。此外,如果将复合材料中镁合金丝材或薄片的含量提高到占材料总体积的50%以上,将镁合金丝材或薄片从低含量的增强体变为高含量的基体;将复合材料中的聚乳酸含量降低到占材料总体积的50%以下,将聚乳酸从高含量的基体变为低含量的仅在镁合金丝材或薄片之间起固化粘结作用的粘结剂,所制备出来的可吸收复合骨内固定植入器械具有更高的强韧性,能满足强度要求更高的大受载骨折固定的力学安全要求。
2、具有体内吸收匀速可控、降解缓和、析氢量少等优点。本发明中镁合金丝材或薄片之间采用聚乳酸进行高温粘结固化,镁合金丝材或薄片之间的聚乳酸既有粘结固化作用,同时,又对周围的镁合金丝材或薄片形成很好的保护,由于聚乳酸,特别是分子量高的聚乳酸的降解速度相对较慢,即使外层镁合金丝材或薄片被暴露在生理环境中,与其相邻的内层镁合金丝材或薄片依然会被包围的聚乳酸薄膜很好的保护着,不会同时发生腐蚀降解。并且,通过调整粘结剂聚乳酸与基体镁合金丝材或薄片的相对含量以及镁合金丝材或薄片表面陶瓷保护层的厚度,可以有效控制本发明骨科器械在体内的降解速度,保障其在体内整个降解过程中保持较稳定的降解速度,腐蚀产生的镁离子和氢气通过缓释方式释放,便于在体内被低速吸收和排泄,克服了大块镁合金快速腐蚀降解导致短时间快速释放大量的镁离子和氢气带来的溶骨现象和气体鼓泡问题。
3、具有腐蚀产物自身酸碱中和的优势。本发明在体内降解的过程中,对其周围生理环境的局部酸碱性影响小,因为镁合金丝材或薄片基体降解产物呈现碱性的特征,很好的中和了粘结剂聚乳酸降解产物形成的酸性环境,克服了传统聚乳酸骨科器械降解后造成的局部酸性过强的问题。
4、具有能在体内被完全可吸收的特点。本发明所有组分均可在体内完全生物降解吸收掉,该复合材料由均具有良好生物相容性和可降解性的镁合金和聚乳酸组成,其中镁合金丝材或薄片表面陶瓷保护层亦由具有良好生物相容性和可吸收性的氧化镁、磷酸三钙、羟基磷灰石等可降解生物陶瓷组成,很好的克服了常见报道聚乳酸复合材料添加碳纤维等增强相不能被完全降解掉的问题。
本发明的实施方式
一种高强度可吸收复合骨内固定植入器械,该骨内固定植入器械主要由高强度镁合金丝材或具有贯穿通孔的镁合金薄片按设定的排列结构形式与聚乳酸高分子材料复合而成,相邻镁合金丝材或薄片之间通过聚乳酸高分子材料进行高温粘结固化,其中,镁合金丝材的直径为0.05mm~1.5mm,镁合金薄片的厚度为0.01mm~1mm,按体积百分比计算,镁合金丝材或薄片占总体积的0.5%~95%,聚乳酸占总体积的5%~99.5%。
所述镁合金丝材的排列结构形式呈现为定向分散排列或为二维编织结构或是三维编织结构。所述镁合金薄片的排列结构形式呈现为相互平行的形式或以一定的角度相互错开分散排列。
所述及的镁合金丝材或薄片由镁铝合金、镁锰合金、镁锌合金、镁锆合金、镁稀土合金、镁锂合金、镁钙合金或镁银合金的一种或由这些体系组合而成的多元系镁合金经拉拔或轧制加工而成。所涉及镁合金丝材或薄片材质主要包括:镁铝系列(除二元体系外主要包括Mg-Al-Zn,Mg-Al-Mn,Mg-Al-Si,Mg-Al-RE四个三元体系以及多元体系,代表性合金如AZ31,AZ61,AZ91, AM60,AE21,AS21等,其中含铝质量低于10%,Zn、Mn、Si、RE质量小于5%);镁锰系列(主要是二元Mg-0.1~2.5%Mn以及添加少量稀土、钙、锌等元素组成的三元系或多元系,代表合金如国内牌号MB1和MB8);镁锌系列(除二元体系外主要包括Mg-Zn-Zr和Mg-Zn-Cu系列,代表性合金ZK21,ZK60,ZC62等);镁锆系列(主要是二元Mg-0.1~2%Zr及添加少量稀土、锌等元素组成的三元系或多元系,代表合金如K1A等);镁稀土系列(主要是二元Mg-0.1~5%RE)及添加少量铝、锆、钙、锌等元素组成的三元系或多元系);镁锂合金(主要是二元Mg-1~15%Li及添加少量铝、稀土、锌和硅等元素组成的三元系或多元系,代表合金如LA91,LAZ933等);镁钙系列(主要是二元Mg-0.1~10%Ca及添加少量稀土、锆、锌等元素组成的三元系或多元系);镁银系列(主要是二元Mg-0.1~12%Ag及添加少量稀土、锆、锌等元素组成的三元系或多元系,代表合金如QE22等)等不同的合金体系的一种或者由这些体系组成的三元系和多元系镁合金。
所述及的镁合金丝材或薄片表面通过微弧氧化、阳极氧化、电沉积、等离子喷涂、化学转化、离子注入、溅射、气相沉积或生物化学方法制备了一层可降解生物陶瓷保护层,以控制镁合金丝材或薄片的降解速度和镁离子的溶出速度,生物陶瓷保护层为羟基磷灰石涂层、磷酸三钙涂层、氧化镁涂层或含氟防护层,其厚度为0.1μm ~100μm。
所述聚乳酸高分子材料为聚L-乳酸,或者聚(D, L)-乳酸或者是两者的共聚物或混合物,或者为乳酸同乙醇酸的共聚物,聚乳酸分子量为5万~150万。
所述骨内固定植入器械包括各种结构形式的接骨板及配套螺钉、髓内钉、脊柱骨折脱位固定器材、骨针或单独起固定作用的螺钉、骨填充材料。
所述高强度可吸收复合骨内固定植入器械的制备方法可以是:首先将选好成分的镁合金经拉拔或轧制加工成镁合金丝材或薄片;采用陶瓷涂层技术,在镁合金丝材或薄片表面制备出所需的可降解生物陶瓷保护层;将镁合金丝材或薄片以所需排列结构形式进行叠加固定在热压模具或注塑模具中;将适量的聚乳酸高分子材料注入到热压模具或注塑模具中,进行热压致密化固化成型或注塑固化成型,并机械加工成所需结构的骨内固定植入器械。
所述高强度可吸收复合骨内固定植入器械的制备方法也可以是:首先将选好成分的镁合金经拉拔或轧制加工成镁合金丝材或薄片;采用陶瓷涂层技术,在镁合金丝材或薄片表面制备出所需的可降解生物陶瓷保护层;采用浸渍提拉涂覆、刷涂或喷涂方法,在表面有可降解生物陶瓷保护层的镁合金丝材或薄片表面进一步制备出聚乳酸预涂覆层,或将镁合金丝材先按设定方式排列在预制坯模具中,后将聚乳酸溶液或高温熔融态聚乳酸浇注入预制坯模具中,再进行干燥固化或冷却固化,先制备出薄片状聚乳酸与镁合金丝材的预制复合坯料;将上述表面涂覆有聚乳酸预涂覆层的镁合金丝材或薄片按所需排列结构形式进行叠加、排列在热挤压模具;或将薄片状聚乳酸与镁合金丝材的预制复合坯料按要求进行裁剪,然后再叠加、排列在热挤压模具,最后进行热压致密化固化成型,并机械加工成所需结构的骨内固定植入器械。
实施例1
将AZ31B镁合金拉拔、加工成直径为φ0.32mm镁合金丝材;用10g/L硅酸钠和2g/L NaOH作为微弧氧化电解液体系,将镁合金丝材浸于其中,施加400V电压,进行10分钟的微弧氧化处理,使其表面原位生成一层10μm厚的氧化镁生物陶瓷底层;按体积百分比镁合金丝材占20%、分子量20万的聚乳酸占80%计,分别称取适量的镁合金丝材和聚乳酸高分子材料,并将镁合金丝材按定向分散排列方式,均匀固定在注塑模具中;将高温熔融态的聚乳酸高分子材料挤压注入到注塑模具中,进行注塑致密化固化成型成棒材,最后,通过机械加工的方法将其加工成髓内钉、螺钉、骨钉等骨科用固定器件。
实施例2
将QE22镁合金轧制加工成厚度为0.1mm镁合金薄片,并在镁合金薄片上加工出若干贯穿方形通孔;用10g/L硅酸钠、4g/L羟基磷灰石纳米粉体、3g/L NaOH作为微弧氧化电解液体系,将镁合金薄片浸于其中,施加350V电压,进行10分钟的微弧氧化处理,使其表面原位生成一层约10μm厚的氧化镁和羟基磷灰石复合陶瓷底层;按体积百分比镁合金薄片占20%、分子量30万的聚乳酸占80%计,分别称取适量的镁合金薄片和聚乳酸高分子材料,并将镁合金薄片材按相互平行定向分散排列方式,均匀固定在热压模具中;将高温熔融态的聚乳酸高分子材料注入到热压模具中,进行热压致密化固化成型成板材,最后,通过机械加工的方法将其加工成接骨板、骨填充材料等骨科器械。
实施例3
将AE21镁合金拉拔、加工成直径为φ0.2mm镁合金丝材;用10g/L硅酸钠、3g/L羟基磷灰石纳米粉体、2g/L NaOH作为微弧氧化电解液体系,将镁合金丝材浸于其中,施加400V电压,进行15分钟的微弧氧化处理,使其表面原位生成一层20μm厚的氧化镁和羟基磷灰石复合陶瓷底层;按体积百分比镁合金丝材占40%、分子量50万的聚乳酸占60%计,分别称取适量的镁合金丝材和聚乳酸高分子材料,并将镁合金丝材编织成二维网孔结构,并将镁合金丝材二维编织结构放置在预制坯模具中,后将聚乳酸溶液或高温熔融态聚乳酸浇注入预制坯模具中,再进行干燥固化或冷却固化,先制备出薄片状聚乳酸与镁合金丝材的预制复合坯料;再将薄片状聚乳酸与镁合金丝材的预制复合坯料按要求进行裁剪,然后再叠加、排列在热挤压模具,最后进行热压致密化固化成型为所需尺寸规格的复合材料板材;最后,通过机械加工的方法将其加工接骨板、骨填充材料等骨科器械。
实施例4
将AE21镁合金轧制加工成厚度为0.2mm镁合金薄片,并在镁合金薄片上加工出若干贯穿圆形通孔;用10g/L硅酸钠、3g/L羟基磷灰石纳米粉体、3g/L NaOH作为微弧氧化电解液体系,将镁合金薄片浸于其中,施加400V电压,进行15分钟的微弧氧化处理,使其表面原位生成一层约20μm厚的氧化镁和羟基磷灰石复合陶瓷底层;按体积百分比镁合金薄片占40%、分子量50万的聚乳酸占60%计,分别称取适量的镁合金薄片和聚乳酸高分子材料,并采用浸渍涂覆方法在镁合金薄片表面制备出聚乳酸预涂覆层;再将表面有聚乳酸预涂覆层的镁合金薄片预制坯料按要求进行裁剪,然后再叠加、排列在热挤压模具,最后进行热压致密化固化成型为所需尺寸规格的复合材料板材;最后,通过机械加工的方法将其加工接骨板、骨填充材料等骨科器械。
实施例5
将MB8镁合金拉拔、加工成直径为φ0.4mm镁合金丝材;在含有6g/L羟基磷灰石纳米粉体的电解液体系,用电沉积技术在镁合金丝材表面电沉积20μm厚的羟基磷灰石生物陶瓷底层;按体积百分比镁合金丝材占60%、分子量70万的聚乳酸占40%计,分别称取适量的镁合金丝材和聚乳酸高分子材料,将镁合金丝材编织成三维管网状结构,并将镁合金丝材三维编织结构固定在注塑模具中;将高温熔融态的聚乳酸高分子材料挤压注入到注塑模具中,进行注塑固化成型成棒材,最后,通过机械加工的方法将其加工成髓内钉、螺钉、骨钉等骨科用固定器件。
实施例6
将AZ31B镁合金轧制加工成厚度为0.3mm镁合金薄片,并在镁合金薄片上加工出若干贯穿方形通孔;用10g/L硅酸钠和2g/L NaOH作为微弧氧化电解液体系,将镁合金薄片浸于其中,施加400V电压,进行10分钟的微弧氧化处理,使其表面原位生成一层10μm厚的氧化镁生物陶瓷底层;按体积百分比镁合金薄片占60%、分子量70万的聚乳酸占40%计,分别称取适量的镁合金薄片和聚乳酸高分子材料,并将镁合金薄片按相互平行定向分散排列方式,均匀固定在注塑模具中;将高温熔融态的聚乳酸高分子材料挤压注入到注塑模具中,进行注塑固化成型成棒材,最后,通过机械加工的方法将其加工成髓内钉、螺钉、骨钉等骨科用固定器件。
实施例7
将QE22镁合金拉拔、加工成直径为φ0.5mm镁合金丝材;用10g/L硅酸钠、3g/L羟基磷灰石纳米粉体、2g/L NaOH作为微弧氧化电解液体系,将镁合金丝材浸于其中,施加400V电压,进行15分钟的微弧氧化处理,使其表面原位生成一层20μm厚的氧化镁和羟基磷灰石复合陶瓷底层;按体积百分比镁合金丝材占80%、分子量90万的聚乳酸占20%计,分别称取适量的镁合金丝材和聚乳酸高分子材料,并将镁合金丝材按定向分散排列方式,均匀固定在热压模具中;将高温熔融态的聚乳酸高分子材料注入到热压模具中,进行热压致密化、固化成型成板材,最后,通过机械加工的方法将其加工成接骨板、骨填充材料等骨科器械。
实施例8
将MB8镁合金轧制加工成厚度为0.4mm镁合金薄片,并在镁合金薄片上加工出若干贯穿圆形通孔;在含有6g/L羟基磷灰石纳米粉体的电解液体系,用电沉积技术在镁合金薄片表面电沉积20μm厚的羟基磷灰石生物陶瓷底层;按体积百分比镁合金薄片占80%、分子量90万的聚乳酸占20%计,分别称取适量的镁合金薄片和聚乳酸高分子材料,并将镁合金薄片按相互平行定向分散排列方式,均匀固定在注塑模具中;将高温熔融态的聚乳酸高分子材料挤压注入到注塑模具中,进行注塑固化成型成棒材,最后,通过机械加工的方法将其加工成髓内钉、接骨板、骨钉等骨科用固定器件。

Claims (9)

  1. 一种高强度可吸收复合骨内固定植入器械,其特征在于:该骨内固定植入器械由高强度镁合金丝材或具有贯穿通孔的镁合金薄片按设定的排列结构形式与聚乳酸高分子材料复合而成,相邻镁合金丝材或薄片之间通过聚乳酸高分子材料进行高温粘结固化,其中,镁合金丝材的直径为0.05mm~1.5mm,镁合金薄片的厚度为0.01mm~1mm,按体积百分比计算,镁合金丝材或薄片占总体积的0.5%~95%,聚乳酸占总体积的5%~99.5%。
  2. 根据权利要求1所述的高强度可吸收复合骨内固定植入器械,其特征在于:所述镁合金丝材的排列结构形式呈现为定向分散排列或为二维编织结构或是三维编织结构。
  3. 根据权利要求1所述的高强度可吸收复合骨内固定植入器械,其特征在于:所述镁合金薄片的排列结构形式呈现为相互平行的形式或以一定的角度相互错开分散排列。
  4. 根据权利要求1所述的高强度可吸收复合骨内固定植入器械,其特征在于:所述及的镁合金丝材或薄片由镁铝合金、镁锰合金、镁锌合金、镁锆合金、镁稀土合金、镁锂合金、镁钙合金或镁银合金的一种或由这些体系组合而成的多元系镁合金经拉拔或轧制加工而成。
  5. 如权利要求1所述的高强度可吸收复合骨内固定植入器械,其特征在于,所述及的镁合金丝材或薄片表面通过微弧氧化、阳极氧化、电沉积、等离子喷涂、化学转化、离子注入、溅射、气相沉积或生物化学方法制备了一层可降解生物陶瓷保护层,以控制镁合金丝材或薄片的降解速度和镁离子的溶出速度,生物陶瓷保护层为羟基磷灰石涂层、磷酸三钙涂层、氧化镁涂层或含氟防护层,其厚度为0.1μm ~100μm。
  6. 根据权利要求1所述的高强度可吸收复合骨内固定植入器械,其特征在于:所述聚乳酸高分子材料为聚L-乳酸,或者聚(D, L)-乳酸或者是两者的共聚物或混合物,或者为乳酸同乙醇酸的共聚物,聚乳酸分子量为5万~150万。
  7. 根据权利要求1所述的高强度可吸收复合骨内固定植入器械,其特征在于:所述骨内固定植入器械包括各种结构形式的接骨板及配套螺钉、髓内钉、脊柱骨折脱位固定器材、骨针或单独起固定作用的螺钉、骨填充材料。
  8. 一种如权利要求1所述高强度可吸收复合骨内固定植入器械的制备方法,其特征在于制备步骤如下:
    1)首先将选好成分的镁合金经拉拔或轧制加工成镁合金丝材或薄片;
    2)采用陶瓷涂层技术,在镁合金丝材或薄片表面制备出所需的可降解生物陶瓷保护层;
    3)将镁合金丝材或薄片以所需排列结构形式进行叠加固定在热压模具或注塑模具中;
    4)将适量的聚乳酸高分子材料注入到热压模具或注塑模具中,进行热压致密化固化成型或注塑固化成型,并机械加工成所需结构的骨内固定植入器械。
  9. 一种如权利要求1所述高强度可吸收复合骨内固定植入器械的制备方法,其特征在于制备步骤如下:
    1)首先将选好成分的镁合金经拉拔或轧制加工成镁合金丝材或薄片;
    2)采用陶瓷涂层技术,在镁合金丝材或薄片表面制备出所需的可降解生物陶瓷保护层;
    3)采用浸渍提拉涂覆、刷涂或喷涂方法,在表面有可降解生物陶瓷保护层的镁合金丝材或薄片表面进一步制备出聚乳酸预涂覆层,或将镁合金丝材先按设定方式排列在预制坯模具中,后将聚乳酸溶液或高温熔融态聚乳酸浇注入预制坯模具中,再进行干燥固化或冷却固化,先制备出薄片状聚乳酸与镁合金丝材的预制复合坯料;
    4)将上述表面涂覆有聚乳酸预涂覆层的镁合金丝材或薄片按所需排列结构形式进行叠加、排列在热挤压模具;或将薄片状聚乳酸与镁合金丝材的预制复合坯料按要求进行裁剪,然后再叠加、排列在热挤压模具,最后进行热压致密化固化成型,并机械加工成所需结构的骨内固定植入器械。
PCT/CN2012/084578 2011-11-15 2012-11-14 高强度可吸收复合骨内固定植入器械及其制备方法 WO2013071862A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201110360819.5A CN102552993B (zh) 2011-11-15 2011-11-15 镁合金薄片增强可吸收骨内固定复合材料及其制备方法
CN201110360819.5 2011-11-15
CN201110360930.4 2011-11-15
CN2011103609304A CN102397589A (zh) 2011-11-15 2011-11-15 生物可吸收医用复合材料及其制备方法
CN201210424236.9 2012-10-30
CN2012104242369A CN102871715A (zh) 2012-10-30 2012-10-30 高强度可吸收丝材复合骨内固定植入器械及其制备方法
CN201210424063.0 2012-10-30
CN2012104240630A CN102920499A (zh) 2012-10-30 2012-10-30 高强度可吸收层状复合骨内固定器械及其制备方法

Publications (1)

Publication Number Publication Date
WO2013071862A1 true WO2013071862A1 (zh) 2013-05-23

Family

ID=48428978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084578 WO2013071862A1 (zh) 2011-11-15 2012-11-14 高强度可吸收复合骨内固定植入器械及其制备方法

Country Status (1)

Country Link
WO (1) WO2013071862A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112192919A (zh) * 2020-10-16 2021-01-08 珠海中科先进技术研究院有限公司 具有抗菌功能、可降解、强韧性的复合材料及其制备方法
CN112336923A (zh) * 2020-10-16 2021-02-09 珠海中科先进技术研究院有限公司 一种可降解、强韧性的复合材料及其制备方法
CN112371983A (zh) * 2020-10-16 2021-02-19 珠海中科先进技术研究院有限公司 具有抗菌性、强韧性的合金材料及其制备方法和应用
CN113425457A (zh) * 2021-06-24 2021-09-24 中山大学 一种具高强度和抗腐蚀的新型带袢镁板
CN115671400A (zh) * 2022-10-27 2023-02-03 牛瑞瑞 一种复合可吸收植入物及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919361A (zh) * 2005-08-26 2007-02-28 中国科学院金属研究所 生物医用可控降解吸收高分子金属复合植入材料及其应用
CN101254314A (zh) * 2007-03-02 2008-09-03 北京奥精医药科技有限公司 羟基磷灰石涂层镁合金医用内植入材料及其制备方法
WO2010119443A1 (en) * 2009-04-13 2010-10-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Process for electrochemical coating of conductive surfaces by organic nanoparticles
CN102397589A (zh) * 2011-11-15 2012-04-04 东南大学 生物可吸收医用复合材料及其制备方法
CN102552993A (zh) * 2011-11-15 2012-07-11 东南大学 镁合金薄片增强可吸收骨内固定复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919361A (zh) * 2005-08-26 2007-02-28 中国科学院金属研究所 生物医用可控降解吸收高分子金属复合植入材料及其应用
CN101254314A (zh) * 2007-03-02 2008-09-03 北京奥精医药科技有限公司 羟基磷灰石涂层镁合金医用内植入材料及其制备方法
WO2010119443A1 (en) * 2009-04-13 2010-10-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Process for electrochemical coating of conductive surfaces by organic nanoparticles
CN102397589A (zh) * 2011-11-15 2012-04-04 东南大学 生物可吸收医用复合材料及其制备方法
CN102552993A (zh) * 2011-11-15 2012-07-11 东南大学 镁合金薄片增强可吸收骨内固定复合材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112192919A (zh) * 2020-10-16 2021-01-08 珠海中科先进技术研究院有限公司 具有抗菌功能、可降解、强韧性的复合材料及其制备方法
CN112336923A (zh) * 2020-10-16 2021-02-09 珠海中科先进技术研究院有限公司 一种可降解、强韧性的复合材料及其制备方法
CN112371983A (zh) * 2020-10-16 2021-02-19 珠海中科先进技术研究院有限公司 具有抗菌性、强韧性的合金材料及其制备方法和应用
CN112336923B (zh) * 2020-10-16 2022-05-20 珠海中科先进技术研究院有限公司 一种可降解、强韧性的复合材料及其制备方法
CN113425457A (zh) * 2021-06-24 2021-09-24 中山大学 一种具高强度和抗腐蚀的新型带袢镁板
CN115671400A (zh) * 2022-10-27 2023-02-03 牛瑞瑞 一种复合可吸收植入物及其制备方法和用途
CN115671400B (zh) * 2022-10-27 2024-02-02 牛瑞瑞 一种复合可吸收植入物及其制备方法和用途

Similar Documents

Publication Publication Date Title
Yang et al. Mg bone implant: Features, developments and perspectives
Kiani et al. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review
Nasr Azadani et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications
Chandra et al. Preparation strategies for Mg-alloys for biodegradable orthopaedic implants and other biomedical applications: a review
Radha et al. Insight of magnesium alloys and composites for orthopedic implant applications–a review
Tian et al. Surface modification of biodegradable magnesium and its alloys for biomedical applications
Bommala et al. Magnesium matrix composites for biomedical applications: A review
Canillas et al. Calcium phosphates for biomedical applications
Uppal et al. Magnesium based implants for functional bone tissue regeneration–A review
Khorashadizade et al. Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties
Ibrahim et al. Resorbable bone fixation alloys, forming, and post-fabrication treatments
Yin et al. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications
Agarwal et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications
Guo et al. Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy
CN102397588B (zh) 多孔镁合金三维增强可吸收医用复合材料及其制备方法
CN102871715A (zh) 高强度可吸收丝材复合骨内固定植入器械及其制备方法
Zheng et al. Biodegradable metals
Feng et al. Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites
CA3151230C (en) Composite material, implant comprising thereof, use of the composite material and methods for preparing the composite material and a medical device
CN102908672A (zh) 高强度可吸收镁基复合骨科内固定器及其制备方法
Patel et al. Manufacturing, characterization and applications of lightweight metallic foams for structural applications
WO2013071862A1 (zh) 高强度可吸收复合骨内固定植入器械及其制备方法
CN102397589A (zh) 生物可吸收医用复合材料及其制备方法
Kannan Hydroxyapatite coating on biodegradable magnesium and magnesium-based alloys
CN111068106A (zh) 一种医用可降解抗菌复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850363

Country of ref document: EP

Kind code of ref document: A1