WO2013071823A1 - 一种切换过程中路由优化的方法及系统及接入网元 - Google Patents

一种切换过程中路由优化的方法及系统及接入网元 Download PDF

Info

Publication number
WO2013071823A1
WO2013071823A1 PCT/CN2012/083925 CN2012083925W WO2013071823A1 WO 2013071823 A1 WO2013071823 A1 WO 2013071823A1 CN 2012083925 W CN2012083925 W CN 2012083925W WO 2013071823 A1 WO2013071823 A1 WO 2013071823A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network element
access network
communication peer
communication
Prior art date
Application number
PCT/CN2012/083925
Other languages
English (en)
French (fr)
Inventor
吴强
江华
符涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/358,080 priority Critical patent/US9572084B2/en
Priority to EP12850610.2A priority patent/EP2782395B1/en
Publication of WO2013071823A1 publication Critical patent/WO2013071823A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and system for routing optimization in a handover process and an access network element.
  • the traditional IP network does not support terminal mobility.
  • the related technologies propose various solutions, mainly including IETF Mobile IPv4, Mobile IPV6, Proxy Mobile IPV6, and 3GPP GPRS Tunneling Protocol (GTP).
  • the technology supports the mobility of the terminal by means of a fixed anchor point.
  • the GPRS support node (GGSN) is defined as the mobile anchor point of the terminal in WCDMA; the mobile IP protocol is used in the CDMA network, and the local proxy (HA) is used as an anchor point.
  • fixed anchor points can cause problems with packet path rounding, which increases transmission delay and bandwidth waste.
  • gateway devices such as GGSN are gradually moving down, which will make the problem of path rounding more serious.
  • Patent Application No. 200910174823.5 "Information Acquisition/Notification, Data Message Forwarding and Switching Method and Access Node”.
  • the access gateway on the cut-in side assigns a new location identifier to the mobile node, and the mobile node communicates with the communication peer with the new location identifier.
  • the access gateway on the hand-in side will initiate an update peer mapping process for the mobile node to implement route optimization.
  • the access gateway needs to obtain the communication peer information, and determine which communication peers initiate the update peer mapping process.
  • the method disclosed in the above patent application mainly acquires information of the communication peer end by monitoring the data flow by the access gateway, and maintains the communication peer information that is performing data communication with the mobile node.
  • Patent Application 1 The main issues in Patent Application 1:
  • the access gateway needs to monitor and detect the data flow to determine the existence of the end-to-end host connection to learn the communication peer information, so as to maintain the communication peer information that the mobile node is communicating with. This process consumes a lot of processing power of the access gateway.
  • the access gateway defines the aging method of the communication peer table.
  • the basic principle is to monitor the data flow at both ends of the communication. If there is data flow forwarding within a certain time period T1, communication is being performed with the communication peer. Otherwise, The communication peer in the peer list of the aging communication. 1) If the two ends of the communication maintain communication connection, but no data packet is sent within T2 for a certain period of time, T2>T1, the access gateway aging the connection at both ends of the communication. 2) If the value set by T1 is too large, and the service connection at both ends of the communication is interrupted, the access gateway needs a length of T1 to age the connection at both ends of the communication. In the above case, the communication peer table of the access gateway cannot reflect the end-to-end communication connection in real time.
  • the Location-ID Separation Protocol uses routing technology to change the existing routing topology. Combined with the existing transport network, it optimizes the existing with minimal transformation. Routing technology.
  • the host uses an IP address (called the End Identifier EID in the LISP system) to track socket connections, send and receive packets.
  • EID End Identifier
  • Routers pass packets based on IP destination addresses (routing locations RLOCs).
  • Tunnel routing is introduced in the LISP system, encapsulated when the host packet is initiated, and the packet is decapsulated before it is finally delivered to the destination.
  • the IP address of the "outer header" in the LISP packet is RLOCs.
  • the ITR encapsulates a new LISP header for each packet and strips the new headers in the egress channel.
  • the ITR performs an EID-to-RLOC lookup to determine the routing path to the ETR, which uses RLOC as one of his addresses.
  • Tunnel Routers are introduced in the LISP system, encapsulated when the host packet is initiated, and decapsulated before the final delivery to the destination.
  • IP of the "outer header" in the LISP packet The address is RLOCs.
  • the ITR encapsulates a new LISP header for each packet and strips the new headers in the egress channel.
  • the ITR performs an EID-to-RLOC lookup to determine the routing path to the ETR, which uses the RLOC as its address.
  • the proposal of LISP is not to solve the problem of mobility, but mainly solves the problem of network size. It is aimed at the problem that the routing table is too large. For mobility and multi-homing, it is a problem that is solved by the separation of identity locations. Now it is still There are no specific plans and implementation methods.
  • the technical problem to be solved by the present invention is to provide a method and system for routing optimization in a handover process and an access network element, which solves the problem that the access gateway monitors and detects and maintains communication peer information, resulting in poor processing performance and low real-time performance.
  • the present invention provides a method for routing optimization in a handover process, in which a terminal accesses a source access network element from a source access network element to a target access network element, and the target access network element is from the terminal. Obtaining identity identification information of the communication peer end of the terminal, and triggering the access network element of the communication peer end to update the peer mapping relationship.
  • the above method may also have the following features:
  • the source access network element and the target access network element forward the data packet between the terminal and the communication peer end, the data is forwarded by using a tunnel encapsulation manner.
  • the above method may also have the following features:
  • the obtaining, by the target access network element, the identity identification information of the communication peer end of the terminal includes: the target access network element initiating, by the target access network, the information of the communication peer end that is communicating with the terminal And the terminal sends the identity identification information of the communication peer end to the target access network element.
  • the above method may also have the following features:
  • the target access NE After receiving the access completion indication of the terminal, the target access NE sends the query flow to the terminal. Cheng.
  • the above method may also have the following features:
  • the access network element is an access service router (ASR) or an egress tunnel router (ETR).
  • ASR access service router
  • ETR egress tunnel router
  • the present invention provides a system for routing optimization in a handover process, including a source access network element, a target access network element, and a terminal, where the access network element includes a route optimization module;
  • the target access network element is configured to: when the terminal switches from the source access network element to the target access network element, obtain the identity identification information of the communication peer end of the terminal from the terminal, and trigger the connection of the communication peer end
  • the incoming NE updates the peer mapping relationship.
  • the above system may also have the following characteristics:
  • the target access network element is further configured to: forward the data packet between the terminal and the communication peer end to the source access network element by using a tunnel encapsulation manner;
  • the source access network element is further configured to: forward the data packet between the terminal and the communication peer end to the target access network element by using a tunnel encapsulation manner.
  • the above system may also have the following characteristics:
  • the target access network element is further configured to: initiate a process of querying, by the terminal, information of a communication peer that is communicating with the terminal, and receive identity identification information of the communication peer end returned by the terminal.
  • the above system may also have the following characteristics:
  • the target access network element is further configured to: after receiving the access completion indication of the terminal, send the query process to the terminal.
  • the present invention provides an access network element for route optimization in a handover process, wherein the access network element includes a route optimization module; and the route optimization module is configured to: When the target access network element is switched from the source access network element to the target access network element, the terminal obtains the identity identification information of the communication peer end of the terminal from the terminal, and triggers the access network element update of the communication peer end. End mapping relationship.
  • the access network element further has the following features:
  • the route optimization module is further configured to: access the network element to the source by using a tunnel encapsulation manner Forwarding a data packet between the terminal and the communication peer.
  • the access network element further has the following features:
  • the route optimization module is configured to: initiate a process of querying information of a communication peer that is communicating with the terminal to the terminal, and receive identity identification information of the communication peer end returned by the terminal.
  • the access network element further has the following features:
  • the route optimization module is further configured to: after receiving the access completion indication of the terminal, initiate the query process to the terminal.
  • the access network element further has the following features:
  • the access network element is an Access Service Router (ASR) or an Egress Tunnel Router (ETR).
  • ASR Access Service Router
  • ERR Egress Tunnel Router
  • the communication peer information is obtained, so that the communication peer information of the ongoing data communication is obtained in real time, and the subsequent data flow route optimization process is performed in time to solve the access gateway.
  • the scheme fully considers the simplified handover process.
  • the access gateway does not need to monitor and detect the data flow to maintain the communication peer information, reduces the complexity of the access gateway data stream processing, and improves the real-time communication peer information in the mapping update process.
  • FIG. 1 is a schematic diagram of a switching scenario in the first embodiment
  • FIG. 2 is a schematic diagram of a network topology in the first embodiment
  • FIG. 3 is a flowchart of a method and a handover management flowchart in the first embodiment
  • FIG. 4 is a schematic diagram of a topology of a LISP network according to Embodiment 2;
  • FIG. 5 is a schematic diagram of a LISP data forwarding process in Embodiment 2.
  • FIG. 6 is a flowchart of a route optimization method and a handover management method in Embodiment 2.
  • the method for the route optimization in the handover process includes: when the terminal switches from the source access network element to the target access network element, the target access network element obtains the identity identification information of the communication peer end of the terminal from the terminal, and triggers The access network element of the communication peer end updates the peer mapping relationship.
  • the target access network element obtains the identity identification information of the communication peer end of the terminal from the terminal, which can save the processing flow of monitoring the data of the two ends of the target access network element, and can timely and accurately obtain the information of the communication peer end.
  • the source access network element and the target access network element forward the data packet between the terminal and the communication peer end, the data is forwarded by using a tunnel encapsulation manner.
  • This method is simple and effective compared to the prior art in which the communication peer table is transmitted.
  • the obtaining, by the target access network element, the identity identification information of the communication peer end of the terminal includes: the target access network element initiating, by the target access network, the information of the communication peer end that is communicating with the terminal And the terminal sends the identity identification information of the communication peer end to the target access network element.
  • the target access NE After receiving the access completion indication of the terminal, the target access NE sends the query process to the terminal.
  • the access network element is an access service router (ASR) or an egress tunnel router (ETR).
  • a system for routing optimization in a handover process corresponding to the foregoing method including a source access network element, a target access network element, and a terminal, where
  • the target access network element is configured to obtain identity identification information of the communication peer end of the terminal from the terminal during the process of the terminal accessing the target access network element from the source access network element, triggering the communication peer end
  • the access NE updates the peer mapping relationship.
  • the target access network element is further configured to forward, by using a tunnel encapsulation manner, a data packet between the terminal and the communication peer end to the source access network element; the source access network element, And transmitting, by using the tunnel encapsulation, the data packet between the terminal and the communication peer to the target access NE.
  • the target access network element is further configured to initiate, to the terminal, a process for querying information of a communication peer that is communicating with the terminal, and receive identity identification information of the communication peer end returned by the terminal.
  • the target access network element is further configured to: after receiving the access completion indication of the terminal, initiate the location to the terminal The query process.
  • the access optimization network element in the handover process corresponding to the foregoing method wherein the access network element includes a route optimization module, and the route optimization module is configured to: source the access network element from the source during the terminal handover process
  • the terminal identifies the identity identification information of the communication peer end of the terminal, and triggers the access network element of the communication peer end to update the peer mapping relationship.
  • the route optimization module is further configured to forward the data between the terminal and the communication peer to the source access NE by using a tunnel encapsulation manner.
  • the route optimization module is configured to initiate, to the terminal, a process for querying information of a communication peer that is communicating with the terminal, and receive identity identification information of the communication peer end returned by the terminal.
  • the route optimization module is further configured to initiate the query process to the terminal after receiving the access completion indication of the terminal.
  • the access network element is an access service router (ASR) or an egress tunnel router (ETR).
  • ASR access service router
  • ERR egress tunnel router
  • the access service router is an access gateway, which is responsible for service functions such as access management and handover management of the host, and receives and receives data packets of the host; (ILR) preserves the correspondence between the identity AID of the host and the location identifier RID.
  • HOST1 is managed by access gateway ASR1, and HOST3 is managed by access gateway ASR3.
  • the access gateway ASR1 assigns HOST1 a location identifier RID1 (11 in the figure).
  • the host HOST1 is communicating with the communication peer HOST3. At this time, HOST1 uses the location identifier RID1 to encapsulate data with the communication peer.
  • the data packet transmission and reception path is as shown in Figure 12, and is forwarded via ASR1 and ASR3.
  • ASR2 assigns a new location identifier RID2 to HOST1 (21 in the figure); ASR2 registers a new location identifier with the mapping server for HOST1 (22 in the figure); ASR2 accesses the communication peer
  • the access gateway ASR3 initiates the mapping update process (23 in the figure).
  • HOST1 uses the location identifier RID2 to encapsulate the data and send and receive data to the communication peer.
  • the data packet transmission and reception path is as shown in Figure 24. Show, via ASR2, ASR3 forwarding.
  • ASR1 and ASR2 establish a forwarding tunnel (31 in the figure) to forward data packets between HOST1 and HOST2.
  • the network topology in the above scenario is shown in Figure 2.
  • the registration process is initiated to the ILR through the ASR, so that the mapping relationship of the real-time AIDm-RIDm of the mobile node MN is saved in the corresponding ILRm, and the corresponding ILRc is saved.
  • the ASR After receiving the data packet sent by the mobile node MN, the ASR queries the local storage area according to the communication peer, that is, the destination AIDc, and obtains the AIDc-RIDc mapping, and encapsulates the data packet encapsulation source and destination location identifier RID, and the data packet is received. Deliver generalized forwarding in-plane routing and forwarding. If the AIDc-RIDc mapping is not obtained in the local storage area, the data packet is routed to the mapping forwarding plane for processing. At the same time, the ASR sends a query mapping process to the mapping forwarding plane, and obtains the corresponding AIDc-RIDc mapping from the mapping forwarding plane and saves it in the local cache for later packet forwarding.
  • Step 1 Step of establishing a communication relationship between the communication peer node CN and the mobile node MN, after the communication peer node CN queries the location of the mobile node MN , Receive and send data packets.
  • Step 2 This step is a step of initiating a handover. After the radio link detects the mobility of the mobile terminal, the handover process is triggered.
  • the wireless access system initiates the handover according to the wireless signal strength and system load of the mobile user terminal MN, and combines the distribution of the wireless resources, and carries the target coverage area and the user terminal information in the handover request message sent by the wireless access system.
  • the ASR1 on the cut-out side finds the ASR2 on the cut-in side according to the target coverage area, and sends a handover request message to the ASR2, where the handover request message carries the user terminal information.
  • ASR2 After receiving the handover request message, ASR2 assigns a new routing location identifier to the user MN.
  • RIDm2 establishes the mapping relationship of the user AIDm-RIDm2 in ASR2.
  • ASR2 interacts with the wireless access system message to allocate radio resources.
  • ASR2 sends a handover response message to ASR1.
  • Step 3 The gateway ASR1 is cut out to establish a forwarding relationship with the gateway ASR2.
  • ASR1 and ASR2 will save the handover status for the mobile subscriber MN.
  • ASR1 acts as a handover proxy node and will forward data packets from or to ASR2 for the mobile subscriber MN.
  • the path for transmitting and receiving data packets is: CN ASRc ASR1 ⁇ ASR2 ⁇ MN, where ASRc is an access service node accessed by the communication peer CN.
  • the possible forwarding mode between ASR1 and ASR2 is tunnel encapsulation.
  • ASR1 strips the tunnel encapsulation between ASR1-ASR2 and sends it to the communication peer CN.
  • the ASR1 adds the tunnel encapsulation between ASR1 and ASR2 to the ASR2 in the header of the packet, and decapsulates it from the ASR2 and sends it to the mobile terminal.
  • Step 4 The system updates the terminal identity mapping relationship stored on the identity location register.
  • ASR1 Upon receiving the handover response message from ASR2, ASR1 issues a handover command to the mobile node MN. ASR1 buffers the data message sent to the MN.
  • the system initiates the process of updating the mapping relationship between ASR2 and ILR.
  • ASR2 assigns a new RIDm2 to the mobile terminal MN,
  • ASR2 sends RIDm2 to the ILR, and the ILR update record AID-RIDml is AID-RIDm2.
  • the ASR1 may also initiate a process of updating the mapping relationship between the ASR1 and the ILR.
  • ASR1 obtains RIDm2 from ASR2, ASR1 sends RIDm2 to ILR, and ILR updates record AID-RIDml to AID-RIDm2.
  • Step 5 The mobile node accesses the handover target cell
  • the mobile node After receiving the handover command sent by ASR1, the mobile node accesses the handover target cell, establishes a communication link with the ASR2 through the target RAN, and transmits and receives data from the communication link.
  • the target RAN After receiving the access indication from the MN, the target RAN sends a handover complete message to ASR2.
  • ASR2 sends a handover complete message to ASR1, and ASR1 starts the handover timer Th.
  • the switching timer Th can also be set in ASR2.
  • Step 6 The gateway ASR1 is cut out to forward the data packet sent by the communication peer to the gateway ASR2, and the ASR2 initiates the "communication peer query" process.
  • the ASR2 After receiving the indication of the MN access, the ASR2 initiates a "query communication peer information" process to the terminal MN according to the handover completion message sent by the RAN-target in the process of FIG. 3, and the ASR2 asks the terminal for data communication with the MN at the moment.
  • the communication peer CN the MN sends the identification information of the communication CN of the communication partner that is currently in data communication with the MN to the ASR2, and the ASR2 knows the communication CN identification information of the communication peer that is currently in data communication with the MN.
  • the data packet sent by the communication peer CN to the mobile terminal MN will still be sent to the ASR1 through the ASRc, and the ASR1 receives the data packet. Then, the data packet is sent to the ASR2 through the forwarding relationship established between the ASR1 and the ASR2.
  • the ASR2 processes the data packet and sends it to the mobile terminal through the RAN.
  • Step 7 ASR2 initiates the "Update Peer Mapping" process
  • ASR2 learns the communication end-to-end CN identity information that is currently in data communication with the MN, and then initiates an "update peer mapping" process to the ASRc where the communication peer CN is located.
  • ASRc obtains the latest mapping relationship AIDm-RIDm2 of the mobile node MN, and replaces the mapping AIDm-RIDml of the mobile node MN locally saved by ASRc with AIDm-RIDm2, and the data sent by the subsequent ASRc to the mobile node MN.
  • the message will be sent directly by the ASRc ⁇ ASR2 ⁇ RAN ⁇ MN path and will no longer be forwarded by ASR1.
  • Step 8 Cut out the gateway ASR1 and cut in the gateway ASR2 to delete the forwarding relationship.
  • ASR1 deletes the forwarding relationship between the mobile node MN and ASR1 and ASR2. At the same time, ASR1 sends a deletion and forwarding relationship to ASR2. In the process of deleting the forwarding relationship, ASR2 deletes the forwarding relationship between the mobile node MN and ASR1 and ASR2.
  • the ASR2 deletes the forwarding relationship between the mobile node MN and the ASR1 and the ASR2.
  • ASR2 sends a delete forwarding relationship to ASR1.
  • ASR1 deletes the forwarding relationship between the mobile node MN and ASR1 in the process of deleting the forwarding relationship.
  • Embodiment 2 4 is a schematic diagram of a network topology based on LISP in the prior art 2.
  • Devices in the LISP system include a host (Host), a border router ITR, an ETR, and a core router.
  • a tunnel router (TR) is deployed at the edge of the network site.
  • the router at the tunnel entrance is an Ingress Tunnel Router (ITR).
  • the router at the tunnel exit is called an Egress Tunnel Router (ETR).
  • the ITR is responsible for the encapsulation and mapping of data, and searches for the corresponding RLOC information according to the destination EID information.
  • the LISP header is encapsulated on the outside of the original host.
  • the ETR in LISP is responsible for the decapsulation of data packets.
  • the LISP ALT plane MAP server/MAP Resolver preserves the mapping of EID-to-RLOC.
  • the data forwarding process of the LISP protocol is shown in Figure 5.
  • the encapsulation of the LISP data message is done on the ingress tunnel router ITR and encapsulated in an "IP-IN-IP" manner.
  • the source IP address and the destination IP address field of the inner IP address are represented by the source EID and the destination EID
  • the source IP address and destination IP address of the outer IP packet header are represented by the source RLOC and the destination RLOC, respectively.
  • the ITR receives the first message from the host 1, it searches the LISP ALT plane for the mapping of the EID-to-RLOC according to the destination EID and saves it in the cache table.
  • the subsequent host 1 sends the data packet and encapsulates the RLOC.
  • the packet needs to be routed and forwarded according to the destination RLOC of the outer IP packet header.
  • the inner IP packet header remains unchanged during the transmission process.
  • the decapsulation of the text is completed on the egress router ETR, and the decapsulated data packet is sent by the ETR to the host 2.
  • this embodiment describes a handover processing mechanism by taking the host 2 from ETR1 to ETR2 as an example, and includes the following steps:
  • Step 601 Host 2 moves from ETR1 to ETR2, and assigns a new RLOC to Host 2.
  • the data communication relationship between the host 1 and the host 2 is established by the communication process shown in FIG.
  • Host 2 accesses ETR1, ETR1 assigns RLOC2 to host 2, and host 1 and host 2 use EIDl/RLOCl ⁇ -> EID2/RLOC2 for communication.
  • ETR2 detects host 2 access, assigns host 2 a new ROLC3, and RLOC3 routes to ETR2.
  • the method for detecting the access of the host 2 by the ETR2 includes but is not limited to:
  • ETR is the access gateway (such as SGSN/GGSN in WCDMA, PGW/SGW in EPC network, etc.).
  • the gateway ETR1 establishes a signaling connection with the cut-in side gateway ETR2, and the gateway side ETR2 will detect the area where the host 2 moves to the ETR2 through the existing mechanism of the mobile cellular network.
  • the ETR periodically broadcasts a route advertisement to the access network managed by itself.
  • the host 2 listens and receives the announcement message, and detects whether it has moved according to the content of the advertisement message. After the move, the host 2 initiates an access request to the ETR2, and the ETR2 detects the access of the host 2.
  • the host 2 monitors the state time of its own underlying communication link to discover its own movement. After the move, the host 2 initiates an access request to the ETR2, and the ETR2 detects the access of the host 2.
  • Step 602 Update the ETR2 mapping EID-to-RLOC, and register the mapping relationship EID-to-RLOC to the ALT plane.
  • ETR2 After ETR2 allocates a new RLOC3 to host 2, ETR2 updates the EID2-to-RLOC2 saved on the local end to EID2-to-RLOC3, and registers a new mapping relationship EID2-to-RLOC3 to the ALT plane.
  • the ITR of the subsequent host will query the host 2 new mapping relationship EID2-to-RLOC3.
  • Step 603 Obtain communication peer information
  • the data communication relationship between host 1 and host 2 is used. Host 1 and host 2 use EID 1 /RLOC 1 - ⁇ > EID2/RLOC2 for communication. At this time, the data message between host 1 and host 2 will be sent and received via ITR -- > ETR1. ETR2 will inform all ITRs of the host that is communicating with host 2, and inform host 2 of the new mapping relationship EID2-to-RLOC3. ETR2 sends a communication peer query flow to host 2. Host 2 has mastered the EID information of the host it is communicating with. Through the communication peer query process between ETR2 and host 2, ETR2 obtains the host EID information of all communicating with host 2.
  • Step 604 Notifying the ITR where the communication peer is located
  • the ETR2 Based on the learned EID information of all the hosts that are communicating with the host 2, the ETR2 obtains the communication peer EID-to-RLOC information by querying the cache table, and initiates a mapping update process to the ITR where the communication peer host is located.
  • the ITR where the communication peer is located refreshes the original mapping relationship EID2-to-RLOC2 according to the new mapping relationship EID2-to-RLOC3 carried in the mapping update process.
  • Subsequent data messages between Host 1 and Host 2 will be sent and received via ITR --> ETR2.
  • Step 605 Delete ETR1 mapping information
  • ETR2 After host 2 accesses ETR2, ETR2 will notify ETR1 to delete host 2 information, including the saved mapping relationship EID2-to-RLOC2.
  • ETR2 notification ETR1 delete host 2 information methods include but are not limited to:
  • the ETR2 detects the access of the host 2 in the step 1).
  • the ETR acts as the access gateway for the terminal.
  • the cut-off side gateway ETR1 establishes a communication link with the cut-in side gateway ETR2.
  • ETR2 notifies ETR1 by adding a separate message flow or by extending the field in the existing message flow: Host 2 has access to ETR2.
  • ETR1 will delete the information of host 2, including the saved mapping relationship EID2-to-RLOC2.
  • ETR2 detects the access of the host 2 in step 1 2) and the method 3).
  • no communication connection is established between ETR1 and ETR2.
  • the ETR2 on the cutting side needs to know the location information of the ETR1 on the side to be sent, so as to send a message to delete the host 1 to ETR1.
  • ETR2 interacts with the ALT plane, and takes the original mapping relationship EID2-to-RLOC2 from ALT.
  • the location of ETR1 is determined by RLOC2.
  • ETR2 interacts with ETR1 message, and ETR1 is notified to delete host 2 information. , including the saved mapping relationship EID2-to-RLOC2.
  • ETR1 executes this command.
  • ETR1 refreshes the timer T1 when receiving the data message of the host 2, and does not send and receive the data message of the host 2 during the timer T1, and the ETR1 deletes the information of the host 2, including the saved mapping relationship EID2-to-RLOC2.
  • the communication peer information is obtained, so that the communication peer information of the ongoing data communication is obtained in real time, and the subsequent data flow route optimization process is performed in time to solve the access gateway.
  • the scheme fully considers the simplified handover process.
  • the access gateway does not need to monitor and detect the data flow to maintain the communication peer information, reduces the complexity of the access gateway data stream processing, and improves the real-time communication peer information in the mapping update process. Sex.

Abstract

一种切换过程中路由优化的方法及系统及接入网元,终端从源接入网元切换入目标接入网元过程中,所述目标接入网元从所述终端获得所述终端的通信对端的身份标识信息,触发所述通信对端的接入网元更新对端映射关系。本方案中通过增加网络与终端主机间的信令交互流程,获得通信对端信息,从而实时获得正在进行数据通信的通信对端信息,及时进行后续的数据流路由优化过程,可以解决接入网关监测检测维护通信对端信息导致的处理性能低实时性差的问题。

Description

一种切换过程中路由优化的方法及系统及接入网元
技术领域
本发明涉及通信技术领域, 尤其涉及一种切换过程中路由优化的方法及 系统及接入网元。
背景技术
传统 IP网络不支持终端移动性, 相关技术提出了各种不同的解决方案, 主要有 IETF的移动 IPv4、 移动 IPV6、 代理移动 IPV6, 3GPP的 GPRS隧道 协议(GPRS Tunneling Protocol, 简称 GTP )方式等。 该技术釆用固定锚点 的方式支持终端的移动性, 比如 WCDMA中规定 GPRS支持节点 (GGSN ) 作为终端的移动锚点; CDMA网络中釆用移动 IP协议, 把本地代理(HA ) 作为锚点。 但是固定锚点会带来数据包路径迂回的问题, 从而加重传输延时 和带宽浪费。 随着 2G/3G/4G等移无线分组技术的发展, 移动互联网用户数 和流量逐渐增加, GGSN等网关设备逐渐下移, 将使得路径迂回的问题更加 严重。
与本发明相关的技术 1 :
申请号为 200910174823.5的专利申请 1 : 《信息获取 /通知、 数据报文转 发和切换的方法及接入节点》 。
上述专利申请 1中提出了基于网络的身份位置分离架构下的切换管理方 法及数据报文转发方法, 解决了移动终端数据通信过程中的路由迂回问题。 在切换过程中涉及到:
( 1 )移动节点位置发生变化后,切入一侧的接入网关为该移动节点分配 了新的位置标识, 该移动节点将以新的位置标识与通信对端进行通信。
( 2 )为了保证该移动节点与通信对端之间的数据转发路径的最优,切入 一侧的接入网关将为该移动节点发起更新对端映射流程以实现路由优化。
( 3 )在更新对端映射流程中,接入网关需要获取通信对端信息, 确定向 哪些通信对端发起更新对端映射流程。 ( 4 )在上述的专利申请中揭示的方法,主要由接入网关通过监测检测数 据流的方式来获取通信对端的信息, 维护正在与该移动节点进行数据通信的 通信对端信息。
专利申请 1中的主要问题:
( 1 )接入网关为获知通信对端信息,需要监测检测数据流以判断端到端 主机连接的存续情况, 以维护与移动节点正在通信的通信对端信息。 这一过 程耗费了接入网关大量的处理能力。
( 2 )接入网关定义了通信对端表的老化方法,其基本原理为监测通信两 端的数据流, 如一定时间段 T1 内有数据流转发, 则与该通信对端正在进行 通信, 否则, 老化通信对端表中的该通信对端。 1 )如果通信两端保持通信连 接, 但一定时间段 T2内无数据报文发送, T2〉 T1 , 此时接入网关将该通信 两端的连接老化。 2 )如果 T1设置的数值过大,通信两端的业务连接中断后, 接入网关最长需要 T1 时长才能老化该通信两端的连接。 在以上情况下, 接 入网关的通信对端表不能实时反映端到端通信连接的情况。
与本发明相关的技术 2:
身份地址分离网络协议( Location-ID Separation Protocol,简称 LISP ) 釆用了路由技术, 对现有的路由拓朴结构有了一定的改变, 结合现有的传送 网, 利用最小的改造优化了现有的路由传送技术。
主机使用 IP地址(在 LISP系统中称为端标识 EID )来跟踪 socket连接、 发送和接收数据包。
路由器基于 IP目的地址(路由位置 RLOCs )传递数据包。
在 LISP 系统中引入了隧道路由, 在发起主机包时进行封装并且在最终 传递到目的地前对数据包进行解封装。 在 LISP数据包中 "外层报头" 的 IP 地址是 RLOCs。 在两个网络的主机之间进行端到端的包交换过程中, ITR为 每个包封装一个新 LISP头,在出口通道路由剥去新头。 ITR执行 EID-to-RLOC 查找以确定到 ETR的路由路径, ETR以 RLOC作为他的一个地址。 在 LISP 系统中引入了隧道路由 ( Tunnel Routers ) , 在发起主机包时封装并且在最终 传递到目的地前对数据包进行解封装。 在 LISP数据包中 "外层报头" 的 IP 地址是 RLOCs , 在两个网络的主机之间进行端到端的包交换过程中, ITR为 每个包封装一个新 LISP头,在出口通道路由剥去新头。 ITR执行 EID-to-RLOC 查找以确定到 ETR的路由路径 , ETR以 RLOC作为它的一个地址。
LISP 的提出不是解决移动性的问题, 而主要解决的是网络规模的问题, 针对的是路由表过大的问题, 对于移动性和多穴性是由身份位置分离后附带 解决的问题, 现在还没有具体的方案和实现方法。
专利申请 1的解决方案中定义的由接入网关监测检测维护通信对端信息 的方法, 耗费了接入网关的大量处理性能, 实时性差; 相关技术 2未见实现 切换过程中路由优化的解决办法。 发明内容
本发明要解决的技术问题是提供一种切换过程中路由优化的方法及系统 及接入网元, 解决接入网关监测检测维护通信对端信息导致的处理性能低实 时性差的问题。
为了解决上述技术问题,本发明提供了一种切换过程中路由优化的方法, 其中, 终端从源接入网元切换入目标接入网元过程中, 所述目标接入网元从 所述终端获得所述终端的通信对端的身份标识信息, 触发所述通信对端的接 入网元更新对端映射关系。
优选地, 上述方法还可以具有以下特点:
所述源接入网元和所述目标接入网元之间转发所述终端与所述通信对端 间的数据报文时, 釆用隧道封装的方式转发。
优选地, 上述方法还可以具有以下特点:
所述目标接入网元从所述终端获得所述终端的通信对端的身份识别信息 具体包括: 所述目标接入网元向所述终端发起查询正在与所述终端进行通信 的通信对端的信息的流程, 所述终端将通信对端的身份标识信息发送至所述 目标接入网元。
优选地, 上述方法还可以具有以下特点:
目标接入网元收到终端的接入完成指示后, 向所述终端发起所述查询流 程。
优选地, 上述方法还可以具有以下特点:
所述接入网元是接入服务路由器(ASR )或出口隧道路由器(ETR ) 。 为了解决上述技术问题 ,本发明提供了一种切换过程中路由优化的系统 , 包括源接入网元、 目标接入网元和终端, 其中, 所述接入网元包括路由优化 模块; 所述目标接入网元, 设置为: 在终端从源接入网元切换入目标接入网 元过程中, 从所述终端获得所述终端的通信对端的身份标识信息, 触发所述 通信对端的接入网元更新对端映射关系。
优选地, 上述系统还可以具有以下特点:
所述目标接入网元, 还设置为: 釆用隧道封装的方式向所述源接入网元 转发所述终端与所述通信对端间的数据报文;
所述源接入网元, 还设置为: 釆用隧道封装的方式向所述目标接入网元 转发所述终端与所述通信对端间的数据报文。
优选地, 上述系统还可以具有以下特点:
所述目标接入网元, 还设置为: 向所述终端发起查询正在与所述终端进 行通信的通信对端的信息的流程, 并接收所述终端返回的通信对端的身份标 识信息。
优选地, 上述系统还可以具有以下特点:
目标接入网元, 还设置为: 收到终端的接入完成指示后, 向所述终端发 起所述查询流程。
为了解决上述技术问题, 本发明提供了一种切换过程中路由优化的接入 网元,其中,所述接入网元包括路由优化模块; 所述路由优化模块,设置为: 在所属接入网元是终端切换过程中从源接入网元切换入的目标接入网元时, 从所述终端获得所述终端的通信对端的身份标识信息, 触发所述通信对端的 接入网元更新对端映射关系。
优选地, 上述接入网元还可以具有以下特点:
所述路由优化模块, 还设置为: 釆用隧道封装的方式向所述源接入网元 转发所述终端与所述通信对端间的数据报文。
优选地, 上述接入网元还可以具有以下特点:
所述路由优化模块, 设置为: 向所述终端发起查询正在与所述终端进行 通信的通信对端的信息的流程, 并接收所述终端返回的通信对端的身份标识 信息。
优选地, 上述接入网元还可以具有以下特点:
所述路由优化模块, 还设置为: 在收到所述终端的接入完成指示后, 向 所述终端发起所述查询流程。
优选地, 上述接入网元还可以具有以下特点:
所述接入网元是接入服务路由器( ASR )或出口隧道路由器( ETR ) 。
本方案中通过增加网络与终端主机间的信令交互流程, 获得通信对端信 息, 从而实时获得正在进行数据通信的通信对端信息, 及时进行后续的数据 流路由优化过程, 可以解决接入网关监测检测维护通信对端信息导致的处理 性能低实时性差的问题。 本方案充分考虑了简化切换流程, 接入网关无需通 过监测检测数据流来维护通信对端信息, 降低了接入网关数据流处理的复杂 性, 提高了映射更新过程中的通信对端信息的实时性。 附图概述
图 1是实施例一中切换场景示意图;
图 2 是实施例一中网络拓朴示意图;
图 3 是实施例一中路由优化的方法及切换管理流程图;
图 4 是实施例二 LISP网络拓朴示意图;
图 5 是实施例二中 LISP数据转发过程示意图;
图 6是实施例二中路由优化的方法及切换管理流程图。
本发明的较佳实施方式 切换过程中路由优化的方法包括: 终端从源接入网元切换入目标接入网 元过程中, 所述目标接入网元从所述终端获得所述终端的通信对端的身份标 识信息, 触发所述通信对端的接入网元更新对端映射关系。
本方法中, 目标接入网元从终端获得所述终端的通信对端的身份标识信 息, 可以节省目标接入网元监测两端数据的处理流程, 并能够及时准确的获 知通信对端的信息。
所述源接入网元和所述目标接入网元之间转发所述终端与所述通信对端 间的数据报文时, 釆用隧道封装的方式转发。 此方式相比现有技术中两者传 输通信对端表的方式简洁有效。
所述目标接入网元从所述终端获得所述终端的通信对端的身份识别信息 具体包括: 所述目标接入网元向所述终端发起查询正在与所述终端进行通信 的通信对端的信息的流程, 所述终端将通信对端的身份标识信息发送至所述 目标接入网元。
目标接入网元收到终端的接入完成指示后, 向所述终端发起所述查询流 程。
所述接入网元是接入服务路由器(ASR )或出口隧道路由器(ETR ) 。 与上述方法对应的切换过程中路由优化的系统, 包括源接入网元、 目标 接入网元和终端, 其中,
所述目标接入网元, 用于在终端从源接入网元切换入目标接入网元过程 中, 从所述终端获得所述终端的通信对端的身份标识信息, 触发所述通信对 端的接入网元更新对端映射关系。
所述目标接入网元, 还用于釆用隧道封装的方式向所述源接入网元转发 所述终端与所述通信对端间的数据报文; 所述源接入网元, 还用于釆用隧道 封装的方式向所述目标接入网元转发所述终端与所述通信对端间的数据报文。
所述目标接入网元, 还用于向所述终端发起查询正在与所述终端进行通 信的通信对端的信息的流程, 并接收所述终端返回的通信对端的身份标识信 息。
目标接入网元, 还用于收到终端的接入完成指示后, 向所述终端发起所 述查询流程。
与上述方法对应的切换过程中路由优化的接入网元, 其中, 所述接入网 元包括路由优化模块; 所述路由优化模块, 用于在所属接入网元是终端切换 过程中从源接入网元切换入的目标接入网元时, 从所述终端获得所述终端的 通信对端的身份标识信息,触发所述通信对端的接入网元更新对端映射关系。
所述路由优化模块, 还用于釆用隧道封装的方式向所述源接入网元转发 所述终端与所述通信对端间的数据 >¾文。
所述路由优化模块, 用于向所述终端发起查询正在与所述终端进行通信 的通信对端的信息的流程,并接收所述终端返回的通信对端的身份标识信息。
所述路由优化模块, 还用于在收到所述终端的接入完成指示后, 向所述 终端发起所述查询流程。
所述接入网元是接入服务路由器(ASR )或出口隧道路由器(ETR ) 。 本发明实施例结合现有背景技术提出了一种切换过程中路由优化的实现 方法, 以下结合具体场景说明。
实施例一
如图 1所示现有技术 1场景下切换管理示意图中,接入服务路由器( ASR ) 为接入网关, 负责主机的接入管理和切换管理等业务功能, 收发主机的数据 报文; 映射服务器( ILR )保存了主机的身份标识 AID与位置标识 RID之间 的对应关系。 HOST1 由接入网关 ASR1进行接入管理, HOST3由接入网关 ASR3进行接入管理。 接入网关 ASR1为 HOST1分配了位置标识 RID1 (图 中 11 )。 主机 HOST1与通信对端 HOST3正在进行数据通信。 此时, HOST1 釆用位置标识 RID1 的封装与通信对端进行数据收发, 数据报文的收发路径 如图中 12所示, 经由 ASR1 , ASR3转发。
HOST1位置由 ASR1移动到 ASR2后, ASR2为 HOST1分配了新的位 置标识 RID2 (图中 21 ) ; ASR2为 HOST1向映射服务器登记新的位置标识 (图中 22 ); ASR2向通信对端接入的接入网关 ASR3发起映射更新流程 (图 中 23 ) ; 映射更新流程结束后, 此时, HOST1釆用位置标识 RID2的封装与 通信对端进行数据收发, 数据报文的收发路径如图中 24所示, 经由 ASR2, ASR3转发。
切换过程中, ASR1 与 ASR2建立转发隧道(图中 31 ) , 转发 HOST1 与 HOST2之间的数据报文。
上述场景下网络拓朴如图 2所示。 移动节点 MN、 通信对端 CN在开机 或者位置变化时,将通过 ASR向 ILR发起注册过程,这样对应的 ILRm中就 保存了移动节点 MN的实时 AIDm-RIDm的映射关系, 对应的 ILRc中就保 存了通信对端 CN的实时 AIDc-RIDc的映射关系。 ASR收到移动节点 MN发 出的数据报文后, 根据通讯对端即目的 AIDc 查询本地存储区, 得到 AIDc-RIDc映射后, 将数据报文封装源端及目的端位置标识 RID, 将数据报 文送达广义转发平面内路由转发。 如果在本地存储区中没有得到 AIDc-RIDc 映射,将数据报文路由到映射转发平面进行处理。 同时 ASR向映射转发平面 发出查询映射流程,从映射转发平面获得对应的 AIDc-RIDc映射后保存在本 地緩存中, 以备后续报文转发时查询。
如图 3所示, 本实施例一中针对上述场景的具体实现方法包括: 步骤 1 : 通信对端节点 CN与移动节点 MN建立通信关系的步骤, 通信 对端节点 CN查询移动节点 MN的位置后, 接收发送数据报文。
步骤 2: 此步骤为发起切换的步骤, 无线链路检测到移动终端的移动性 后, 触发切换流程;
无线接入系统根据移动用户终端 MN的无线信号强弱、系统负荷等信息, 结合无线资源分布情况, 发起切换, 在无线接入系统发出的切换请求消息中 携带了目标覆盖区及用户终端信息。 切出一侧的 ASR1收到由无线接入系统发出的切换请求消息后, 根据目 标覆盖区找到切入一侧的 ASR2, 向 ASR2发出切换请求消息, 该切换请求 消息中携带了用户终端信息。
ASR2 收到切换请求消息后, 为该用户 MN 分配新的路由位置标识
RIDm2, 在 ASR2中建立该用户 AIDm-RIDm2的映射关系。 ASR2与无线接 入系统消息交互分配无线资源。
ASR2向 ASR1发出切换响应消息。 步骤 3: 切出网关 ASR1与切入网关 ASR2建立转发关系。
ASR1收到 ASR2发出的切换响应消息后, ASR1 , ASR2将为该移动用 户 MN保存切换状态。 在切换状态期间, ASR1作为切换代理节点, 将为该 移动用户 MN转发来自或送往 ASR2的数据报文。 此时, 作为移动节点 MN 的数据报文传送路径之一, 收发数据报文的路径为: CN ASRc ASRl^^ ASR2^^ MN,其中 ASRc为通信对端 CN接入的接入服务节点。
ASR1、 ASR2 之间可能的转发方式为隧道封装方式。 ASR1 收到来自 ASR2由 MN发出的数据报文时, 剥离 ASR1-ASR2间的隧道封装, 发往通 信对端 CN。 ASR1收到来自通信对端 CN发往 MN的数据报文时, 在报文头 部增加 ASR1-ASR2间的隧道封装发往 ASR2,由 ASR2解封装后发往移动终 端。
步骤 4: 系统更新身份位置寄存器上存储的终端标识映射关系。
收到 ASR2发出的切换响应消息后, ASR1向移动节点 MN发出切换命 令。 ASR1緩存发向 MN的数据报文。
系统发起 ASR2与 ILR间的更新映射关系的流程, ASR2为移动终端 MN 分配了新的 RIDm2, ASR2发送 RIDm2给 ILR, ILR更新记录 AID-RIDml 为 AID-RIDm2。
可选的, 作为 ASR2与 ILR间更新映射关系的流程的替代流程, ASR1 也可以发起 ASR1 与 ILR 间的更新映射关系的流程。 ASR1 从 ASR2得到 RIDm2, ASR1发送 RIDm2给 ILR, ILR更新记录 AID-RIDml为 AID-RIDm2。
步骤 5: 移动节点接入切换目标小区
移动节点 MN收到 ASR1发出的切换命令后接入切换目标小区, 通过目 标 RAN建立与 ASR2之间的通讯链路, 从该通讯链路收发数据 ^艮文。 目标 RAN收到 MN的接入指示后, 向 ASR2发出切换完成消息。 ASR2向 ASR1 发出切换完成消息, ASR1启动切换定时器 Th。
可选的, 该切换定时器 Th也可在 ASR2中设置。
ASR2发出的切换完成消息与步骤 6中的更新映射关系流程, 并无严格 的时序上的先后顺序。 步骤 6: 切出网关 ASR1为切入网关 ASR2转发通信对端发出的数据报 文, ASR2发起 "通讯对端查询" 流程。
ASR2收到 MN接入的指示后, 如图 3流程中 RAN-target发出的切换完 成消息, 向终端 MN发起 "查询通讯对端信息" 的流程, ASR2向终端询问 此刻正在与 MN进行数据通信的通信对端 CN, MN将此刻正在与 MN进行 数据通信的通信对端 CN的身份识别信息发送给 ASR2, ASR2获知此刻正在 与 MN进行数据通信的通信对端 CN身份识别信息。
切换期间 ,在通信对端 CN所在的 ASRc没有收到更新通信对端消息前, 通信对端 CN发往移动终端 MN的数据报文,将依旧通过 ASRc发往 ASR1 , ASR1收到这些数据报文后,通过 ASR1 -ASR2之间建立的转发关系,将数据 报文发往 ASR2, ASR2 将数据报文做例行处理后通过 RAN发往移动终端 匪。
步骤 7: ASR2发起 "更新对端映射" 流程;
ASR2获知此刻正在与 MN进行数据通信的通信对端 CN身份识别信息 后, 向通信对端 CN所在的 ASRc发起 "更新对端映射" 流程。 在更新对端 映射流程过程中 , ASRc获得移动节点 MN最新的映射关系 AIDm-RIDm2, 将 ASRc本地保存的移动节点 MN的映射 AIDm-RIDml替换为 AIDm-RIDm2, 后 续 ASRc 发 往 移 动 节 点 MN 的 数 据 报 文 将 直 接 由 ASRc^ ASR2^ RAN< MN路径发送, 不再由 ASR1转发。
步骤 8: 切出网关 ASR1与切入网关 ASR2删除转发关系。
ASR1 中的切换定时器 Thl到时后, ASR1删除移动节点 MN在 ASR1 与 ASR2之间的转发关系。同时 ASR1向 ASR2发出删除转发关系流程, ASR2 在删除转发关系流程中删除移动节点 MN在 ASR1与 ASR2之间的转发关系。
可选的, 对应于步骤 5中的可选方法, ASR2中的切换定时器到时后, ASR2删除移动节点 MN在 ASR1与 ASR2之间的转发关系。 同时 ASR2向 ASR1 发出删除转发关系流程, ASR1 在删除转发关系流程中删除移动节点 MN在 ASR1与 ASR2之间的转发关系。
实施例二: 图 4是现有技术 2基于 LISP的网络拓朴示意图。 LISP系统中的设备有 主机(Host ) 、 边界路由器 ITR、 ETR及核心路由器。 在网络站点的边缘部 署隧道路由器(TR ) , 隧道入口的路由器为入口隧道路由器( Ingress Tunnel Router, 简称 ITR ) , 隧道出口的路由器称为出口隧道路由器( Egress Tunnel Router, 简称 ETR ) 。 LISP中 ITR负责数据的封装和映射的查找, 根据目的 EID信息查找对应的 RLOC信息。在原主机"¾文的外面再封装一层 LISP头。 LISP 中 ETR 负责数据报文的解封装。 LISP ALT 平面 MAP server/MAP Resolver保存了 EID-to-RLOC的映射关系。
LISP协议的数据转发流程如图 5所示。 LISP数据报文的封装在入口隧 道路由器 ITR上完成, 釆用一种 "IP-IN-IP" 的方式进行封装。 内层 IP · ^艮文 头部的源 IP地址和目的 IP地址字段分别用源 EID和目的 EID表示,外层 IP 报文头部的源 IP地址和目的 IP地址分别用源 RLOC和目的 RLOC表示。 ITR 收到主机 1 发出的首个 文时, 根据目的 EID 向 LISP ALT 平面查询 EID-to-RLOC的映射关系并保存在緩存表中, 后续的主机 1发出数据报文将 封装 RLOC后发出。 报文在网络的传递过程中, 只需要根据外层 IP报文头 部的目的 RLOC进行路由寻址和转发, 内层 IP报文头在传递过程中保持不 变, 身份标识与位置分离数据报文的解封装在出口路由器 ETR上完成,解封 装后的数据报文由 ETR发往主机 2。
如图 6所示, 本实施例以主机 2从 ETR1移动到 ETR2为例描述切换处 理机制, 包括如下步骤:
步骤 601: 主机 2从 ETR1移动到 ETR2 , 为主机 2分配新的 RLOC。 由图 5所示的通信过程, 主机 1与主机 2 建立的数据通信关系。 主机 2 接入 ETR1 , ETR1 为主机 2 分配了 RLOC2, 主机 1 与主机 2 之间釆用 EIDl/RLOCl ^-> EID2/RLOC2进行通信。
主机 2的位置从 ETR1的区域移动到 ETR2的区域。 ETR2检测到主机 2 接入, 为主机 2分配新的 ROLC3 , RLOC3的路由指向 ETR2。
ETR2检测到主机 2接入的方法包括但不限于:
( 1 ) 釆用移动蜂窝网机制。 ETR 即接入网关 (例如 WCDMA 中的 SGSN/GGSN, EPC网络中的 PGW/SGW等) 。 终端跨网关切换时, 切出侧 网关 ETR1与切入侧网关 ETR2建立信令联系 , 切入一侧网关 ETR2将通过 移动蜂窝网既有机制检测到主机 2移动到 ETR2的区域。
( 2 )釆用类似 MIPV4移动性检测机制。 ETR周期性的向自己管理的接 入网广播路由通告, 主机 2监听并接收通告消息, 根据通告消息中的内容检 测自身是否发生移动。 在移动后, 主机 2向 ETR2发起接入请求, ETR2检 测到主机 2接入。
( 3 )主机 2监视自身底层通信链路的状态时间来发现自身的移动。在移 动后, 主机 2向 ETR2发起接入请求, ETR2检测到主机 2接入。
步骤 602: 更新 ETR2的映射 EID-to-RLOC, 向 ALT平面注册映射关系 EID-to-RLOC。
ETR2 为主机 2 分配新的 RLOC3 后 , ETR2 更新本端保存的 EID2-to-RLOC2 映射为 EID2-to-RLOC3 , 向 ALT 平面注册新的映射关系 EID2-to-RLOC3。 后续主机与主机 2建立的新的数据通讯关系时, 后续主机 所在的 ITR, 将查询得到主机 2新的映射关系 EID2-to-RLOC3。
步骤 603: 获取通信对端信息
主机 1 与主机 2 建立的数据通信关系, 主机 1 与主机 2 之间釆用 EID 1 /RLOC 1 - ~> EID2/RLOC2进行通信。 此时主机 1与主机 2之间的数据 报文将经由 ITR -- >ETR1收发。 ETR2将通知所有与主机 2正在通信的主机 所在的 ITR, 告知主机 2新的映射关系 EID2-to-RLOC3。 ETR2向主机 2发 起通信对端查询流程。 主机 2 掌握了与其正在通信的主机 EID信息。 通过 ETR2与主机 2间的通信对端查询流程, ETR2获取了与主机 2所有正在通信 的主机 EID信息。
步骤 604: 通知通信对端所在的 ITR
ETR2根据获知的与主机 2所有正在通信的主机 EID信息, 查询緩存表 获知通信对端 EID-to-RLOC信息 ,向通信对端主机所在的 ITR发起映射更新 流程。 通信对端所在的 ITR 根据映射更新流程携带的新的映射关系 EID2-to-RLOC3 , 刷新原有的映射关系 EID2-to-RLOC2。 后续的主机 1与主 机 2之间的数据报文将经由 ITR -- >ETR2收发。 步骤 605: 删除 ETR1映射信息,
主机 2接入 ETR2后, ETR2将通知 ETR1删除主机 2的信息, 包括保存 的映射关系 EID2-to-RLOC2。
ETR2通知 ETR1删除主机 2信息的方法包括但不限于:
( 1 )例如步骤 1中 ETR2检测到主机 2接入的方法 1 )的情形。 釆用移 动蜂窝网机制, ETR作为终端的接入网关。 移动性检测过程中, 切出一侧网 关 ETR1与切入一侧网关 ETR2建立了通信联系。主机 2接入 ETR2后 , ETR2 通过增加单独的消息流程,或者在已有的消息流传中扩展字段,通知 ETR1 : 主机 2 已接入 ETR2。 ETR1 将删除主机 2 的信息, 包括保存的映射关系 EID2-to-RLOC2。
( 2 )例如步骤 1中 ETR2检测到主机 2接入的方法 2 ) 、 方法 3 ) 的情 形。 在切换管理过程中, ETR1 与 ETR2之间没有建立通信联系, 切入一侧 ETR2需要掌握切出一侧 ETR1 的位置信息, 以便向 ETR1发送删除主机 1 消息。 主机 2接入 ETR2后, ETR2与 ALT平面交互, 从 ALT拿到主机 2 原有的映射关系 EID2-to-RLOC2 , 通过 RLOC2确定 ETR1的位置, ETR2与 ETR1 消息交互, 通知 ETR1 删除主机 2 的信息, 包括保存的映射关系 EID2-to-RLOC2。 ETR1执行该命令。
( 3 ) ETR1中设置定时器 Tl。 ETR1在收发主机 2的数据报文时, 刷新 该定时器 T1 , 定时器 T1期间没有收发主机 2的数据报文, ETR1将删除主 机 2的信息, 包括保存的映射关系 EID2-to-RLOC2。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本方案中通过增加网络与终端主机间的信令交互流程, 获得通信对端信 息, 从而实时获得正在进行数据通信的通信对端信息, 及时进行后续的数据 流路由优化过程, 可以解决接入网关监测检测维护通信对端信息导致的处理 性能低实时性差的问题。 本方案充分考虑了简化切换流程, 接入网关无需通 过监测检测数据流来维护通信对端信息, 降低了接入网关数据流处理的复杂 性, 提高了映射更新过程中的通信对端信息的实时性。

Claims

权 利 要 求 书
1、 一种切换过程中路由优化的方法, 其中,
终端从源接入网元切换入目标接入网元过程中, 所述目标接入网元从所 述终端获得所述终端的通信对端的身份标识信息, 触发所述通信对端的接入 网元更新对端映射关系。
2、 如权利要求 1所述的方法, 其中,
所述源接入网元和所述目标接入网元之间转发所述终端与所述通信对端 间的数据报文时, 釆用隧道封装的方式转发。
3、 如权利要求 1所述的方法, 其中,
所述目标接入网元从所述终端获得所述终端的通信对端的身份识别信息 具体包括: 所述目标接入网元向所述终端发起查询正在与所述终端进行通信 的通信对端的信息的流程, 所述终端将通信对端的身份标识信息发送至所述 目标接入网元。
4、 如权利要求 3所述的方法, 其中,
目标接入网元收到终端的接入完成指示后, 向所述终端发起所述查询流 程。
5、 如权利要求 1所述的方法, 其中,
所述接入网元是接入服务路由器(ASR )或出口隧道路由器(ETR ) 。
6、 一种切换过程中路由优化的系统, 包括源接入网元、 目标接入网元 和终端, 其中, 所述接入网元包括路由优化模块;
所述目标接入网元, 设置为: 在终端从源接入网元切换入目标接入网元 过程中, 从所述终端获得所述终端的通信对端的身份标识信息, 触发所述通 信对端的接入网元更新对端映射关系。
7、 如权利要求 6所述的系统, 其中,
所述目标接入网元, 还设置为: 釆用隧道封装的方式向所述源接入网元 转发所述终端与所述通信对端间的数据报文;
所述源接入网元, 还设置为: 釆用隧道封装的方式向所述目标接入网元 转发所述终端与所述通信对端间的数据报文。
8、 如权利要求 6所述的系统, 其中,
所述目标接入网元, 还设置为: 向所述终端发起查询正在与所述终端进 行通信的通信对端的信息的流程, 并接收所述终端返回的通信对端的身份标 识信息。
9、 如权利要求 8所述的系统, 其中,
目标接入网元, 还设置为: 收到终端的接入完成指示后, 向所述终端发 起所述查询流程。
10、 一种切换过程中路由优化的接入网元, 其中, 所述接入网元包括 路由优化模块;
所述路由优化模块, 设置为: 在所属接入网元是终端切换过程中从源接 入网元切换入的目标接入网元时, 从所述终端获得所述终端的通信对端的身 份标识信息, 触发所述通信对端的接入网元更新对端映射关系。
11、 如权利要求 10所述的接入网元, 其中,
所述路由优化模块, 还设置为: 釆用隧道封装的方式向所述源接入网元 转发所述终端与所述通信对端间的数据报文。
12、 如权利要求 10所述的接入网元, 其中,
所述路由优化模块, 设置为: 向所述终端发起查询正在与所述终端进行 通信的通信对端的信息的流程, 并接收所述终端返回的通信对端的身份标识 信息。
13、 如权利要求 12所述的接入网元, 其中,
所述路由优化模块, 还设置为: 在收到所述终端的接入完成指示后, 向 所述终端发起所述查询流程。
14、 如权利要求 10所述的接入网元, 其中,
所述接入网元是接入服务路由器( ASR )或出口隧道路由器( ETR ) 。
PCT/CN2012/083925 2011-11-14 2012-11-01 一种切换过程中路由优化的方法及系统及接入网元 WO2013071823A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/358,080 US9572084B2 (en) 2011-11-14 2012-11-01 Method and system for route optimization during handover and access network element
EP12850610.2A EP2782395B1 (en) 2011-11-14 2012-11-01 Method and system for route optimization during handover and access network element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110358549.4 2011-11-14
CN2011103585494A CN103108375A (zh) 2011-11-14 2011-11-14 一种切换过程中路由优化的方法及系统及接入网元

Publications (1)

Publication Number Publication Date
WO2013071823A1 true WO2013071823A1 (zh) 2013-05-23

Family

ID=48315871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083925 WO2013071823A1 (zh) 2011-11-14 2012-11-01 一种切换过程中路由优化的方法及系统及接入网元

Country Status (4)

Country Link
US (1) US9572084B2 (zh)
EP (1) EP2782395B1 (zh)
CN (1) CN103108375A (zh)
WO (1) WO2013071823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064786A (zh) * 2019-12-17 2020-04-24 联通物联网有限责任公司 账户标识管理方法及设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150040113A (ko) * 2013-10-04 2015-04-14 한국전자통신연구원 식별자 위치지시자 매핑 서비스의 라우팅 제어 방법
CN104811966A (zh) * 2014-01-24 2015-07-29 中国移动通信集团辽宁有限公司 实现移动节点上下行数据负载均衡与切换的方法及系统
CN103973574B (zh) * 2014-05-19 2017-12-15 新华三技术有限公司 位置与身份分离协议网络中的数据报文转发方法及装置
KR20150145327A (ko) * 2014-06-18 2015-12-30 한국전자통신연구원 블룸 필터를 이용한 식별자/위치자 매핑 시스템 및 방법
CN105591998B (zh) * 2014-10-21 2019-01-08 新华三技术有限公司 抑制周期性注册通信端点标识eid的方法和设备
US10630552B2 (en) 2017-06-08 2020-04-21 Huawei Technologies Co., Ltd. Wireless communication access node (WCAN) device based policy enforcement and statistics collection in anchorless communication systems
CN114079870B (zh) * 2020-08-13 2023-06-02 华为技术有限公司 通信方法及装置
CN112689010B (zh) * 2020-12-23 2023-03-28 青岛海尔科技有限公司 设备消息的传输方法及装置、存储介质、电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119312A (zh) * 2007-09-13 2008-02-06 北京交通大学 一种一体化网络移动切换管理的实现方法
CN102026318A (zh) * 2009-09-17 2011-04-20 中兴通讯股份有限公司 切换管理及切换时用户数据管理的方法、系统和agr
CN102045693A (zh) * 2009-10-16 2011-05-04 中兴通讯股份有限公司 信息上报/通知、切换和数据转发方法、an及ilr
CN102196402A (zh) * 2010-03-08 2011-09-21 中兴通讯股份有限公司 无线通信系统中终端切换的方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999436B2 (en) * 2001-04-16 2006-02-14 Nokia Corporation Method and apparatus for efficient routing of mobile node packets
GB0312681D0 (en) * 2003-06-03 2003-07-09 Ericsson Telefon Ab L M IP mobility
JP4574193B2 (ja) * 2004-03-04 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ 移動通信ネットワークシステム及びモビリティ管理装置
US7961683B2 (en) * 2004-09-30 2011-06-14 Alcatel-Lucent Usa Inc. Active session mobility solution for point-to-point protocol
US7864732B2 (en) * 2006-01-27 2011-01-04 Mediatek Inc. Systems and methods for handoff in wireless network
CN101005444B (zh) * 2006-06-24 2011-12-07 华为技术有限公司 一种快速切换的方法及装置
CN101523765B (zh) * 2006-09-28 2013-06-12 三星电子株式会社 异构无线网络中提供用户设备发起和协助反向切换的系统及方法
ATE517489T1 (de) * 2008-01-08 2011-08-15 Ericsson Telefon Ab L M Technik zur routenoptimierung in einem kommunikationsnetz
US8432870B2 (en) * 2008-07-11 2013-04-30 Nokia Siemens Networks Oy Handover techniques between legacy and updated wireless networks
US8706118B2 (en) * 2011-09-07 2014-04-22 Telefonaktiebolaget L M Ericsson (Publ) 3G LTE intra-EUTRAN handover control using empty GRE packets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119312A (zh) * 2007-09-13 2008-02-06 北京交通大学 一种一体化网络移动切换管理的实现方法
CN102026318A (zh) * 2009-09-17 2011-04-20 中兴通讯股份有限公司 切换管理及切换时用户数据管理的方法、系统和agr
CN102045693A (zh) * 2009-10-16 2011-05-04 中兴通讯股份有限公司 信息上报/通知、切换和数据转发方法、an及ilr
CN102196402A (zh) * 2010-03-08 2011-09-21 中兴通讯股份有限公司 无线通信系统中终端切换的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782395A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064786A (zh) * 2019-12-17 2020-04-24 联通物联网有限责任公司 账户标识管理方法及设备
CN111064786B (zh) * 2019-12-17 2022-09-20 联通物联网有限责任公司 账户标识管理方法及设备

Also Published As

Publication number Publication date
CN103108375A (zh) 2013-05-15
EP2782395B1 (en) 2016-08-17
EP2782395A4 (en) 2015-06-24
EP2782395A1 (en) 2014-09-24
US9572084B2 (en) 2017-02-14
US20140341186A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
WO2013071823A1 (zh) 一种切换过程中路由优化的方法及系统及接入网元
KR101410836B1 (ko) 무선통신 시스템 중의 터미널 핸드오버의 방법 및 시스템
US8804746B2 (en) Network based on identity identifier and location separation architecture backbone network, and network element thereof
US20120063428A1 (en) Interface Switching System, Mobile Node, Proxy Node, and Mobile Management Node
CN101951589B (zh) 信息获取/通知、数据报文转发和切换的方法及接入节点
JP2009529265A (ja) 動的ルータ広告を使用する高速ハンドオーバのための方法及びシステム
WO2008098439A1 (fr) Procédé et système pour commutation d&#39;acheminement
CN104735734B (zh) 一种业务处理的方法、网络控制器及转发设备
WO2013083034A1 (zh) 触发更新移动节点映射信息的方法、ms和mn
US20110134885A1 (en) Route optimization method and system
WO2011085618A1 (zh) 一种终端切换的方法及相应的通信网络
JPWO2009057296A1 (ja) 移動端末及びネットワークノード並びにパケット転送管理ノード
WO2011032455A1 (zh) 切换管理及切换时用户数据管理的方法、系统和agr
CN101964968B (zh) 一种移动网络中域名查询的方法及系统
US9629059B2 (en) Mobile node registration method, intercommunication method, switching method and network element
WO2011153777A1 (zh) 移动通信控制方法、系统、映射转发服务器及接入路由器
KR101680137B1 (ko) Sdn 기반의 단말 이동성 제어 시스템 및 그 방법
KR100928276B1 (ko) 노드에 대한 네트워크 기반 이동성 지원 방법 및 장치
WO2013007133A1 (zh) 报文转发路径管理方法、系统及网元
JP2006005607A (ja) ネットワークシステムおよび移動ルータ
WO2011050679A1 (zh) 基于Wimax网络架构实现的通信网络及终端接入方法
WO2013026297A1 (zh) 一种切换实现方法、系统和源出口隧道路由器
WO2013034003A1 (zh) 一种移动性管理方法和系统
WO2011088606A1 (zh) 实现无固定锚点切换的wimax系统及其切换方法
US20130163561A1 (en) Fast handover method using l2/l3 combination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012850610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012850610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14358080

Country of ref document: US