WO2013071462A1 - 经纬十维xyz数显光谱仪 - Google Patents

经纬十维xyz数显光谱仪 Download PDF

Info

Publication number
WO2013071462A1
WO2013071462A1 PCT/CN2011/001921 CN2011001921W WO2013071462A1 WO 2013071462 A1 WO2013071462 A1 WO 2013071462A1 CN 2011001921 W CN2011001921 W CN 2011001921W WO 2013071462 A1 WO2013071462 A1 WO 2013071462A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitude
latitude
digital display
dimensional
axis
Prior art date
Application number
PCT/CN2011/001921
Other languages
English (en)
French (fr)
Inventor
李秋山
沈素珍
Original Assignee
Lee Chiu-San
Shen Su-Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Chiu-San, Shen Su-Chen filed Critical Lee Chiu-San
Priority to PCT/CN2011/001921 priority Critical patent/WO2013071462A1/zh
Publication of WO2013071462A1 publication Critical patent/WO2013071462A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles

Definitions

  • the invention relates to an X ⁇ ⁇ digital display spectrometer, in particular to a ⁇ ⁇ ⁇ reference value which can be directly set on the object to be tested, and can be measured and corrected, so as to save the effect.
  • the technology applied to civil measurement in general, it is generally necessary to use horizontally aligned objects, such as door panels and other objects, relying mostly on the hanging weight to observe the vertical line or the moisture bubble tube base, or transparent plastic.
  • the hose is filled with water to observe parallel points, especially when the required angle line or more difficult angle surface is often used in the measurement technology without the enthalpy. Although there is a progressively effective measuring instrument, it is still used.
  • the water bubble horizontal pipe base is used as a reference auxiliary construction, but if the slope is required, such as when the water is directed on the plane, due to the visual drop, occasionally after completion,
  • the measured focus can not be agreed, especially for measuring instruments such as theodolite, camera, ranging, altimetry, high-precision mechanical or military range, and only the plane basis
  • the main technical problem to be solved by the present invention is to overcome the above-mentioned defects existing in the prior art, and to provide a ⁇ 10-dimensional ⁇ ⁇ ⁇ digital display spectrometer, which can be directly disposed on the object to be tested, and can measure the sag Straight, horizontal, angle, etc. ⁇ ⁇ ⁇ reference value, and it is effective, to save the complicated work and restrictions, through the camera and display components on the frame, and at the same time with the coordinate processing unit and the shaft position processing unit
  • the integrated data display component is also implemented to achieve accurate horizontal level calculation and display for the compass mechanism, and to achieve accurate interpretation of the ten-dimensional angle.
  • a latitude and longitude ten-dimensional ⁇ ⁇ digital display spectrometer characterized in that the digital display spectrometer mainly comprises: a body, the frame is provided with a frame body, and the side of the joint between the seat body and the frame body is provided with a number of a display element for observing the X-axis and the paraxial plane gene; a circular ring frame is provided with a first positioning bearing pivotally disposed on the two sides of the crucible and the shaft, respectively, and the shaft is axially disposed, and 3 ⁇ 4
  • the annular frame is formed with a first positioning hole on both sides of the XX axial direction;
  • a housing is provided with a second positioning bearing pivotally disposed on the two sides of the XX axial direction, and the housing is a second positioning hole is formed on each side of the axial direction of the ⁇ , and a first weight body is disposed at the bottom of the housing; a compass mechanism is provided with a ⁇ axis of the housing on both
  • the aforementioned latitude and longitude ten-dimensional X ⁇ ⁇ digital display spectrometer wherein the digital display spectrometer is provided with at least one camera device at a predetermined position.
  • the aforementioned latitude and longitude ten-dimensional ⁇ ⁇ digital display spectrometer wherein the seat body is placed on a floating body appliance for
  • the warp and weft Z 0 is used on each side of the compass mechanism. The verification of the digital interpretation.
  • the aforementioned latitude and longitude ten-dimensional X Y Z digital display spectrometer wherein the base body is provided with a comprehensive data display element for displaying X, ⁇ , and ⁇ axis inclination angles, and the integrated data display element is coupled with the coordinate processing unit and the ⁇ axis position processing unit information.
  • the main structure of the digital display spectrometer of the present invention comprises an image pickup device and a body disposed at a predetermined position of the digital display spectrometer, the frame body is provided with a frame body, and the side of the joint between the seat body and the frame body is provided with a number a display element for observing the X-axis (X 0.-X 0.) and the ⁇ -axis ( ⁇ 0.
  • the first locating bearing of the ⁇ axial direction of the frame is pivoted, and a first positioning hole is formed on each side of the XX axial direction of the ring frame, and the first positioning hole and a XX with a first weight body casing
  • the second axial positioning bearing is pivoted, and a second positioning hole is formed on both sides of the axial direction, and the second positioning hole is pivoted with the third positioning bearing of the winding mechanism of the compass mechanism.
  • a beam emitting element and a second weight body are disposed in the compass mechanism, and the beam emitting element is coupled to an axis position processing unit and a coordinate processing unit, and the coordinate processing unit is coupled to the display element information, and the axis is coupled to the axis Position processing unit and coordinate processing unit and a comprehensive data display
  • the component information is connected; thereby, when the seat body is placed on the object to be tested, the first weight body and the second weight body drive the compass mechanism to generate a self-swinging motion due to the relationship between the gravity and the above-mentioned structure. It is stationary and stops on the horizontal reference plane, so that the compass reaches the ten-dimensional horizontal state.
  • the beam emitting element emits a beam vertically, and then the image is captured by the camera and the coordinate processing unit is used to calculate the horizontal reference plane.
  • the ⁇ display element shows the ⁇ angle of the current X-axis and ⁇ -axis plane genes (if ⁇ 0., ⁇ 0, that is, the compass mechanism is currently in a horizontal state), and the image of the beam is captured and matched by the camera device.
  • the ⁇ axis position processing unit interprets and calculates the displacement state of the ⁇ axis (by the vertical focus of the ⁇ beam emitting unit, and performs the ⁇ axis angle check), and thereafter the angles of ⁇ , ⁇ , ⁇ are displayed together by the ⁇ comprehensive data display element, so that
  • the compass mechanism can rotate in eight directions: east, west, south, north, northeast, southwest, southeast, northwest, etc., and the circumference is straight.
  • the longitude and the two-dimensional orbit on the latitude of the circumferential direction make a logical ten-dimensional reading of each angle.
  • the invention can be applied to civil measurement, door panels, buildings, offshore construction, accessories, gifts, Sports equipment, scientific coordinates, textbooks or other hardware can be used for disaster prediction, such as river flood forecasting, land slope dumping forecasting, etc.
  • disaster prediction such as river flood forecasting, land slope dumping forecasting, etc.
  • the existing horizontal measuring technology can be used cumbersomely.
  • the visual measurement is out of focus and inaccurate, so that it must be corrected afterwards; if the ink line is ejected under the object to be tested by the ink line, the technical needs of the slope
  • due to the visual drop occasionally the problem of the shortcomings of the low-lying water is broken, and the practical advantages of the above technical advantages of the present invention are achieved.
  • the invention has the beneficial effects that the XYZ reference value such as vertical, horizontal and angle can be measured directly on the object to be tested, and the XYZ reference value can be measured to save the complicated work and restrictions, and pass through the frame.
  • the camera device and the display component, together with the coordinate processing unit, the z-axis position processing unit and the integrated data display component, are also implemented to achieve accurate horizontal level calculation and display for the compass mechanism, and to achieve accurate interpretation of the ten-dimensional angle.
  • Figure 1 is a perspective view of a preferred embodiment of the present invention.
  • Figure 2 is an exploded perspective view of a preferred embodiment of the present invention.
  • Figure 3 is a schematic illustration of the implementation of a preferred embodiment of the present invention.
  • Fig. 4 is a first schematic view showing the implementation of the compass mechanism of the present invention inclined at the circumference of the Z-axis.
  • Fig. 5 is a second embodiment of the embodiment of the compass mechanism of the present invention tilted on the circumference of the Z-axis.
  • Fig. 6 is a third embodiment of the embodiment in which the compass mechanism of the present invention is inclined at the circumference of the Z-axis.
  • Fig. 7 is a fourth embodiment of the embodiment in which the compass mechanism of the present invention is inclined at the circumference of the Z-axis.
  • Fig. 8 is a perspective view showing the fifth embodiment of the compass mechanism of the present invention which is inclined at the circumference of the Z-axis.
  • Fig. 9 is a perspective view showing the implementation of the compass mechanism of the present invention inclined at the circumference of the Z-axis.
  • Fig. 10 is a schematic view showing the implementation of the compass mechanism of the present invention inclined at the circumference of the Z-axis.
  • Fig. 1 is a schematic view showing the implementation of the compass mechanism of the present invention tilted on the Z-axis circumference.
  • Figure 12 is a schematic view showing the implementation of the first preferred embodiment of the present invention.
  • Figure 13 is a schematic view showing the implementation of the second preferred embodiment of the present invention.
  • Figure 14 is a schematic view showing the implementation of the third preferred embodiment of the present invention.
  • Figure 15 is a schematic view showing the implementation of the fourth preferred embodiment of the present invention.
  • the figure shows the following: 1 seat, la seat, lb seat, 11 frame, 111 camera, 12 Display element, 12 d display element, 13 integrated data display element, 2 ring frame, 2 a ring frame, 21 first positioning bearing, 22 first positioning hole, 3 housing, 3 a housing, 31 second positioning Bearing, 32 second positioning hole, 33 first weight body, 4 compass mechanism, 4 a compass mechanism, 4 b compass mechanism, 4 c compass mechanism, 4 d compass mechanism, 41 third positioning bearing, 42 beam emitting element, 42 a beam emitting element, 43 pointer, 44 balance displacement block, 45 second heavy body, 5 coordinate processing unit, 5 b coordinate processing unit, 6 Z axis position processing unit, 6 a Z axis position processing unit, 6 b Z Axis position processing unit, 61 a warning reporting component, 61 b warning reporting component, 62 a computer screen, 7 test object, 8 b floating body appliance, 9 c satellite, 91 c information processing unit.
  • FIG. 1 , FIG. 2 and FIG. 3 are perspective views, exploded views and implementation diagrams of a preferred embodiment of the present invention. It can be clearly seen from the drawings that the digital display spectrometer of the present invention has at least one position at a predetermined position.
  • the frame 1 is provided with a frame 1 1 having a coordinate scale, and the frame 1 1 is provided with a camera 1 1 1 and a side of the joint between the block 1 and the frame 1 1
  • a circular ring frame 2 is provided with a first positioning bearing 2 1 which is axially disposed with respect to the ⁇ axial direction of the seat body 1 on both sides of the ⁇ axial direction, and the circular ring frame 2 has its XX axial sides
  • a first positioning hole 2 2 and a housing 3 are respectively formed, and a second positioning bearing 3 1 is disposed on the two sides of the XX axial direction, and the first positioning hole 23 is pivoted.
  • a second positioning hole 3 2 is formed on both sides of the axial direction, and a first weight body 3 3 is disposed at the bottom of the housing 3;
  • a compass mechanism 4 is provided with a third positioning bearing 4 1 pivoted to the second positioning hole 32 of the casing 3 in the axial direction of the crucible, and the compass mechanism 4 is internally provided a beam emitting element 4 2 and a second weight body 45, and at least one pointer 4 3 on the compass mechanism 4 and at least one balance displacement block 4 4;
  • a coordinate processing unit 5 is coupled to the display element 1 2 and the beam emitting unit 4 2 for calculating ⁇ 0 at the level of the north, south, north, and the periphery of the compass mechanism 4 . From various angles ⁇ display element 1 2 is displayed;
  • An axis position processing unit 6 is coupled to the beam emitting unit 42. Further, the base 1 is provided with a comprehensive data display element 13 for displaying X, Y, and ⁇ inclination angles, and the integrated data display element 13 is information-coupled to the coordinate processing unit 5 and the yaw position processing unit 6.
  • FIG. 1 is a perspective view, an exploded view, an implementation schematic diagram, and a perspective view of the compass mechanism tilted on the circumference of the boring shaft, which can be clearly seen from the figure.
  • the balance state, and the structure in which the compass mechanism 4 reaches the horizontal state passes through the first positioning bearing 2 1 , the first positioning hole 2 2 , the second positioning bearing 3 1 , the second positioning hole 3 2 and the third positioning bearing 4 1
  • the pivoting action causes the universal mechanism to be formed.
  • the spectrum and coordinate processing unit 5 that is emitted by the imaging device 11 1 in combination with the beam emitting element 4 is the compass mechanism 4 X, ⁇
  • the axis is angle-interpreted. If the object to be tested 7 has reached the horizontal balance state, the image capturing device 11 1 captures the image and transmits it to the coordinate processing unit 5 to perform calculation and interpretation on the compass mechanism 4.
  • the display device 1 1 1 also transmits the captured image to the axis position processing unit 6 to interpret the axis position. If the interpretation data matches the internal function of the axis position processing unit 6, the compass mechanism 4 is a horizontal balance on time. On, called X 0. , ⁇ 0. , ⁇ 0. On the plane gene ⁇ 0. And the integrated data display component 13 displays the values of the X, ⁇ , and ⁇ axes, so that the user can directly view the output, and can output different directions according to requirements, and can output the vertical spectral focus data of more orientations ( As shown in FIG.
  • the compass mechanism 4 will reach the horizontal state through the first weight body 3 3 and the second weight body 45.
  • the compass mechanism 4 and the base 1 are caused to have a height difference, and then a spectrum is emitted by the beam emitting element 42 to be recorded by the image capturing device 1 1 1 and captured, and then the coordinate processing unit 5 is used to determine the relative position of the spectrum and the image.
  • the compass mechanism 4 X the ⁇ axis angle interpretation, ⁇ display element 1 2 shows the current X axis and ⁇ axis angle, when the accurate interpretation finds the X-axis, ⁇ axis angle negative discrimination, for example: ⁇ 1. , ⁇ 0.
  • the digital display spectrometer is composed of a body 1 a and a ring pivoted with the seat 1 a a frame 2a, a housing 3a pivoted to the ring frame 2a, a compass mechanism 4a and a pivoting mechanism with the housing 3a, and a compass mechanism
  • the planar gene shows that the ⁇ axis position processing unit 6
  • FIG. 13 which is a schematic view of a second preferred embodiment of the present invention, it can be clearly seen from the figure that the seat body 1 b is disposed on a floating body device 8 b for monitoring the water level of the river.
  • the compass mechanism 4b is tilted by the extreme impact of the water volume, so that the angles read by the coordinate processing unit 5b and the Z-axis position processing unit 6b are negative, thus representing the increase of the river flow. It is too big and urgent. Therefore, the warning sending component 6 1 b sends a message to inform the river that it is a dangerous water area, and it is strictly forbidden to enter, and it can effectively prevent and prevent disasters.
  • FIG. 14 which is a schematic diagram of a third preferred embodiment of the present invention
  • the digital display spectrometer further links the latitude and longitude area on a satellite 9 c (this embodiment is The satellite 9 c is not limited to this, to provide Z 0 of the Z-axis coordinate.
  • the latitude and longitude Z 0 is used on the positions of the compass mechanism.
  • the digital display is read, and the digital display spectrometer and the satellite display 9 c are respectively provided with information processing units 9 1 c, and are mutually coupled with each other, whereby when the compass mechanism 4 c of the digital display spectrometer reaches a horizontal balance state
  • the information processing unit 9 1 c also determines whether the Z-axis data corresponds to the information processing unit 9 1 c data of the satellite 9 c, and can also know the precise level, so as to achieve the coordinate tilt relative to the object. Dynamic static measurement, or static coordinate observation of the coordinate level relative to the theodolite.
  • FIG. 15 a schematic diagram of a fourth preferred embodiment of the present invention is shown.
  • the compass mechanism 4 d is further provided with a plurality of display elements 12d for displaying the displays.
  • Element 1 2 d shows the X-axis (X 0. - X 0.) and Y-axis (Y 0. - Y 0.) planar genes.
  • the latitude and longitude ten-dimensional XYZ digital display spectrometer of the present invention can improve the existing technology, and the present invention can be applied to a seismic plotter, a warning instrument, an observatory, a radar station, a wind gauge, a building structure, a marine construction, and a decoration. , models, gifts, sports equipment, scientific coordinates, textbooks, etc., have a wide range of applications. Furthermore, the present invention has the following advantages: 1.
  • the ten-dimensional digital display spectrometer of the present invention can directly be placed on the object to be tested 7, and can be used for vertical, horizontal and angle to obtain the reference value of ⁇ ⁇ , which can save complicated work and restrictions.
  • ⁇ ⁇ ⁇ ten-dimensional devices used in advanced machinery such as land, sea and air navigation, such as aircraft body coordinates and motor engine coordinate observation, wheel positioning, gun, gun, range finder, charting machine, Laser, boundary measurement, camera, ranging, altimetry, direction compass, medical instrument ⁇ ⁇ ⁇ coordinates, observatory X ⁇ ⁇ observation, evolution cost invention can be further evolved into the longitude of the ten-dimensional coordinates of the seismograph The latitude-linked plotter is used for more scientific interpretation.
  • the latitude and longitude X-ray X ⁇ ⁇ digital display spectrometer can interpret X 0 on the eight azimuth orbits of Dongpu, West W, South 3, North N, Northeast E N, Southwest W S, Southeast E S, and Northwest W N . , Y 0.
  • the Z-position angle of the planar gene and can be logically ten-dimensionally interpreted in the circumferential straightness of the eight directions and the two directions of the circumferential latitude.
  • the present invention fully meets the needs of industrial development in terms of structural design, practicality and cost-effectiveness, and the disclosed structure is also an unprecedented innovative structure, novel, creative, practical, and relevant.
  • the provisions of the patent requirements for inventions are therefore filed in accordance with the law.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种经纬十维XYZ数显光谱仪,包括有:座体(1),座体(1)上设有一框体(11),座体(1)与框体(11)接合处的侧边设有数个供观察X轴及Y轴平面基因的显示元件(12);圆环框(2),以其YY轴向两侧分别设有一与座体(1)的YY轴向相枢设的第一定位轴承(21),圆环框(2)以其XX轴向两侧分别形成一第一定位孔(22);壳体(3),以其XX轴向两侧分别设有一与第一定位孔(22)相枢设的第二定位轴承(31),壳体(3)的YY轴向两侧分别形成一第二定位孔(32);罗盘机构(4),以其YY轴向两侧分别设有一与壳体(3)的YY轴向第二定位孔(32)相枢设的第三定位轴承(41),罗盘机构(4)内设有光束发射单元(42)及第二重锤体(45);坐标处理单元(5),与显示元件(12)及光束发射单元(42)信息连结;Z轴位置处理单元(6),与光束发射单元(42)信息连结;该经纬十维XYZ数显光谱仪能达到十维角度的精准判读。

Description

说明书 经纬十维 X Y Z数显光谱仪
技术领域
本发明涉及一种 X Υ ζ数显光谱仪,尤其涉及一种得以直接设置于待测物上 , 即可测量出垂直、 水平、 角度等 Χ Υ Ζ参考值, 并予以进行效正, 以省去繁复 工作与限制的经纬十维 X Υ ζ数显光谱仪。
背景技术
应用于土木测量上的技术, 以目前一般必须用到水平对位的物体来说, 如门 板等其它物体, 所依赖的多为吊线重锤以观察垂直线或水分气泡管基座, 或透明 塑料软管装水以观察平行点, 尤其于所要求的角度线或更困难的角度面时, 常会 受到未进歩的量测技术的中, 虽然目前有逐渐成效的测量仪,但于使用上仍然非 常的繁琐复杂,依据尚无可达到使用上的共识性, 而更有可能因个人素养的不同 或熟练度不够, 使致目测失焦、 不准, 使其门板无法密闭, 借此还必须再使用刨 刀于门与门拱上互相刨合, 才能使门板使其密合; 再者, 以地砖、 墙面为例, 若 铺设地面或墙面的磁砖或大理石, 则是依靠水分管于墙角下,依两端水分水位标 水平点, 再依水平点用墨斗线弹出墨线标示于墙脚下, 再依墨线标示处延伸线条 布局于地面上,依此线条作为贴物的水平,如要求高的再依水分气泡水平管基作 参考辅助施工, 但若遇上斜度的需求, 如于平面上导水流向时, 因目视落差, 偶 有完工后, 低洼积水的缺点; 而传统的测量器具, 如重锤, 其亦仅能以垂直方向 测量, 而另一水分气泡则仅能水平测量, 而水管同样仅能水平测量, 亦即全部仅 限于局部测量, 虽有辅助仪, 但测量到的焦点亦无法得到共识, 尤其于测量仪器 如经纬仪、 摄像仪、 测距、 测高、 高精密机械或军事射程若干用途上的水平仪, 亦仅求平面基础, 虽然有垂直点参考, 亦因人而异, 无法找到一个共识点。
是以, 要如何解决上述现有的问题与缺点, 即为本发明人与从事此行业的相 关厂商所亟欲研究改善的方向所在。
发明内容
本发明所要解决的主要技术问题在于, 克服现有技术存在的上述缺陷, 而提 供一种经炜十维 Χ Υ ζ数显光谱仪, 其得以直接设置于待测物上, 即可测量出垂 直、 水平、 角度等 χ γ ζ参考值, 并予以进行效正, 以省去繁复工作与限制, 通 过框体上的摄像装置及显示元件、并同时搭配坐标处理单元及 ζ轴位置处理单元 与综合数据显示元件, 亦实行达到针对罗盘机构进行精确的水平准位计算并显 示, 且得以达到十维角度的精准判读。
本发明解决其技术问题所采用的技术方案是:
一种经纬十维 Χ Υ Ζ数显光谱仪, 其特征在于, 该数显光谱仪主要包括有: 一座体, 该座体上设有一框体, 且该座体与框体接合处的侧边设有数个供观察 X 轴及 Υ轴平面基因的显示元件; 一圆环框, 是以其 Υ Υ轴向两侧分别设有一与座 体的 Υ Υ轴向相枢设的第一定位轴承,而¾圆环框以其 X X轴向两侧分别形成一 第一定位孔; 一壳体, 是以其 X X轴向两侧分别设有一与第一定位孔相枢设的第 二定位轴承, 且该壳体的 Υ Υ轴向两侧分别形成一第二定位孔, 并该壳体底部设 有第一重锤体; 一罗盘机构, 是以其 Υ Υ轴向两侧分别设有一与壳体的 Υ Υ轴向 第二定位孔相枢设的第三定位轴承,且该罗盘机构内设有光束发射元件及第二重 锤体; 一坐标处理单元, 是与显示元件及光束发射单元信息连结,以供计算罗盘 机构的水平位准而由显示元件显示出; -一 ζ轴位置处理单元, 是与光束发射单元 信息连结。
前述的经纬十维 X Υ ζ数显光谱仪 ,其中数显光谱仪于一预定位置处设有至 少一摄像装置。
前述的经纬十维 X Υ ζ数显光谱仪 , 其中框体上具有坐标刻度。
前述的经纬十维 X Υ ζ数显光谱仪 , 其中罗盘机构上设有至少一指针。 述的经纬十维 X Υ ζ数显光谱仪,其中罗盘机构上进一歩设有至少一平衡 位移块。
前述的经纬十维 X Υ ζ数显光谱仪 ,其中显示元件进一歩为数字显示器或光 谱输出显示器。
前述的经纬十维 X Υ ζ数显光谱仪 ,其中 ζ轴位置处理单元进一歩信息连结 一警告发报元件, 并该警告发报元件是信息连结一电脑荧幕, 亦作为灾害预报系 统。
前述的经纬十维 Χ Υ Ζ数显光谱仪, 其中座体进一歩设于一浮体器具上,供 前述的经纬十维 X Y z数显光谱仪,其中数显光谱仪进一歩信息连结一卫星 ,以提供 z轴向坐标的 Z 0。在罗盘机构上的各方位上作经纬 Z 0。的核对数显的 判读。
前述的经纬十维 X Y Z数显光谱仪, 其中座体上设有一供显示 X、 Υ、 ζ轴 倾角的综合数据显示元件,该综合数据显示元件与坐标处理单元及 ζ轴位置处理 单元信息连结。
前述的经纬十维 X γ ζ数显光谱仪,其中罗盘机构上进一歩设有数个显示元 件。
本发明的数显光谱仪主要结构包括一设于该数显光谱仪预定位置处的摄像 装置及一座体, 该座体上设有一框体, 并于该座体与框体接合处的侧边设有数个 供观察 X轴的(X 0。一 X 0。)及 Υ轴的( Υ 0。一 Υ 0 ° )平面基因的显示元件 , 再该座体的 Υ Υ轴向两侧处与一圆环框的 Υ Υ轴向的第一定位轴承相枢设, 且 圆环框的 X X轴向两侧分别形成一第一定位孔,该第一定位孔与一具第一重锤体 壳体的 X X轴向的第二定位轴承相枢设,并 Υ Υ轴向两侧又分别形成一第二定位 孔, 第二定位孔与一罗盘机构的 Υ Υ轴向的第三定位轴承相枢设,该罗盘机构内 设有光束发射元件及第二重锤体,且该光束发射元件与一 ζ轴位置处理单元及坐 标处理单元信息连结,再该坐标处理单元得以与显示元件信息连结, 又该 ζ轴位 置处理单元及坐标处理单元与一综合数据显示元件信息连结; 借此, 当将座体放 置于待测物上时, 因地心引力及上述组构的关系, 使第一重锤体及第二重锤体带 动罗盘机构产生自 ώ摆动而静止、并停落于水平基准面上, 使罗盘达到万向十维 的水平状态, 而后, 光束发射元件垂直发射一光束, 再由摄像装置将光束影像撷 取并搭配坐标处理单元计算水平基准面并 ώ显示元件显示出目前 X轴及 γ轴平 面基因上的 Ζ角度 (若 Χ 0。、 Υ 0。即表示罗盘机构目前为水平状态), 又, 通 过摄像装置将光束影像撷取并搭配搭配 ζ轴位置处理单元判读计算 Ζ轴的位移 状态 (经 ώ光束发射单元的上下垂直焦点, 予以进行 ζ轴角度核对), 此后 χ、 γ、 ζ的角度即 ώ综合数据显示元件共同显示出, 使得罗盘机构得以对东、 西、 南、 北、 东北、 西南、 东南、 西北等八个方位旋转, 及, 圆周直向的经度与圆周 横向的纬度上的二方位轨道做各角度逻辑性的十维读取。
而本发明得以应用于土木测量、 门板、 建筑物、 海上建构、 饰物、 礼品、 运动器材、 科学坐标、 教材或其它硬件上, 更可以运用于灾害预报上, 如河川洪 水预报、 土地边坡倾塌预报等; 借由上述技术, 可针对现有水平测量技术所存在 的使用繁琐复杂, 且依据个人素养的不同或熟练度不够, 使致目测失焦、 不准, 使事后还必须互相刨合修正; 若利用墨斗线弹出墨线标示于待测物下,此技术遇 斜度的需求时, 因目视落差, 偶有完工后, 低洼积水的缺点的问题点加以突破, 达到本发明上述技术优势的实用进歩性。
本发明的有益效果是,其得以直接设置于待测物上,即可测量出垂直、水平、 角度等 X Y Z参考值, 并予以进行效正, 以省去繁复工作与限制, 通过框体上的 摄像装置及显示元件、并同时搭配坐标处理单元及 z轴位置处理单元与综合数据 显示元件,亦实行达到针对罗盘机构进行精确的水平准位计算并显示, 且得以达 到十维角度的精准判读。
附图说明
下面结合附图和实施例对本发明进一歩说明。
图 1是本发明较佳实施例的立体示意图。
图 2是本发明较佳实施例的分解示意图。
图 3是本发明较佳实施例的实施示意图。
图 4是本发明罗盘机构于 Z轴圆周倾斜的实施示意图一。
图 5是本发明罗盘机构于 Z轴圆周倾斜的实施示意图二。
图 6是本发明罗盘机构于 Z轴圆周倾斜的实施示意图三。
图 7是本发明罗盘机构于 Z轴圆周倾斜的实施示意图四。
图 8是本发明罗盘机构于 Z轴圆周倾斜的实施示意图五。
图 9是本发明罗盘机构于 Z轴圆周倾斜的实施示意图六。
图 1 0是本发明罗盘机构于 Z轴圆周倾斜的实施示意图七。
图 1 1是本发明罗盘机构于 Z轴圆周倾斜的实施示意图八。
图 1 2是本发明第一较佳实施例的实施示意图。
图 1 3是本发明第二较佳实施例的实施示意图。
图 1 4是本发明第三较佳实施例的实施示意图。
图 1 5是本发明第四较佳实施例的实施示意图。
图中标号说明: 1 座体、 l a座体、 l b座体、 11 框体、 111 摄像装置、 12 显示元件、 12 d显示元件、 13综合数据显示元件、 2圆环框、 2 a圆环框、 21第 一定位轴承、 22第一定位孔、 3壳体、 3 a壳体、 31第二定位轴承、 32第二定位 孔、 33第一重锤体、 4罗盘机构、 4 a罗盘机构、 4 b罗盘机构、 4 c罗盘机构、 4 d罗盘机构、 41第三定位轴承、 42光束发射元件、 42 a光束发射元件、 43指针、 44平衡位移块、 45第二重棰体、 5坐标处理单元、 5 b坐标处理单元、 6 Z轴位 置处理单元、 6 a Z轴位置处理单元、 6 b Z轴位置处理单元、 61 a警告发报元件、 61 b警告发报元件、 62 a电脑荧幕、 7待测物、 8 b浮体器具、 9 c卫星、 91 c信 息处理单元。
具体实施方式
请参阅图 1、 图 2及图 3所示, 为本发明较佳实施例的立体图、 分解图及实 施示意图, ώ图中可清楚看出本发明数显光谱仪于一预定位置处设有至少一摄像 装置, 其中数显光谱仪包括有:
一座体 1, 该座体 1上设有一具有坐标刻度的框体 1 1, 且该框体 1 1上设 有一摄像装置 1 1 1,并于该座体 1与框体 1 1接合处的侧边设有数个供观察 X 轴的 ( X 0。一 X 0。) 及 Υ轴的 ( Υ 0。一 Υ 0。) 平面基因的显示元件 1 2, ¾ 显示元件 1 2进一歩为数字显示器或光谱输出显示器;
一圆环框 2 ,是以其 Υ Υ轴向两侧分别设有一与座体 1的 Υ Υ轴向相枢设的 第一定位轴承 2 1, 该圆环框 2以其 X X轴向两侧分别形成一第一定位孔 2 2 一壳体 3,是以其 X X轴向两侧分别设有一与第一定位孔 2 2相枢设的第二 定位轴承 3 1, 且该壳体 3的 Υ Υ轴向两侧分别形成一第二定位孔 3 2, 并该壳 体 3底部设有第一重锤体 3 3;
一罗盘机构 4,是以其 Υ Υ轴向两侧分别设有一与壳体 3的 Υ Υ轴向第二定 位孔 3 2相枢设的第三定位轴承 4 1,且该罗盘机构 4内设有光束发射元件 4 2 及第二重锤体 4 5,并于罗盘机构 4上设有至少一指针 4 3及进一歩设置至少一 平衡位移块 4 4 ;
一坐标处理单元 5, 是与显示元件 1 2及光束发射单元 4 2信息连结, 以供 针对罗盘机构 4的水平位准上计算东西南北及周围的水平上的 Ζ 0。各角度而 ώ 显示元件 1 2显示出;
一 Ζ轴位置处理单元 6, 是与光束发射单元 4 2信息连结。 再者该座体 1上设有一供显示 X、 Y、 Ζ轴倾角的综合数据显示元件 1 3, 该综合数据显示元件 1 3与坐标处理单元 5及 Ζ轴位置处理单元 6信息连结。
请同时配合参阅图 1〜图 1 1所示,为本发明较佳实施例立体图、 分解图、 实施示意图、 罗盘机构于 Ζ轴圆周倾斜的实施示意图 1〜图 8,由图中可清楚看 出, 当将座体 1设于待测物 7上时, 即壳体 3内的第一重锤体 3 3及第二重锤体 4 5会因地心引力的牵引而使罗盘机构 4呈水平平衡状态,而罗盘机构 4得以达 到水平状态的结构通过第一定位轴承 2 1、第一定位孔 2 2、第二定位轴承 3 1 、第二定位孔 3 2及第三定位轴承 4 1相互的枢接动作使其形成万向机构, 当待 测物 7已于水平平衡状态时,通过摄像装置 1 1 1搭配光束发射元件 4 2发射的 光谱与坐标处理单元 5即对罗盘机构 4 X、 Υ轴进行角度判读,若待测物 7已达 水平平衡状态时,摄像装置 1 1 1即撷取影像并传递给坐标处理单元 5以对罗盘 机构 4进行计算判读, 若确定 X、 Υ轴皆为 0。时, 即传递讯息给显示元件 1 2 进行 0。显示,摄像装置 1 1 1亦同时传递撷取影像给 Ζ轴位置处理单元 6判读 Ζ轴位置,若判读数据与 Ζ轴位置处理单元 6的内部函数相符,即表示罗盘机构 4为一水平平衡准点上,即称 X 0。、 Υ 0。、 Ζ 0。的平面基因上的 Ζ 0。, 并由 综合数据显示元件 1 3显示 X、 Υ、 Ζ轴角度的数值, 以方便使用者直接观看, 且可依需求作出不同方位的输出, 并可作更多方位的输出垂直光谱焦点数据(如 图 4所示); 若座体 1所摆放的待测物 7非水平平衡时, 此时罗盘机构 4即会通 过第一重锤体 3 3及第二重锤体 4 5达到水平状态,使罗盘机构 4与座体 1产生 高度落差,而后经 光束发射元件 4 2发射一光谱由摄像装置 1 1 1摄录并撷取 影像, 再 ώ坐标处理单元 5进行判读光谱与影像的相对位置而对罗盘机构 4 X、 Υ轴进行角度判读, 以 ώ显示元件 1 2显示目前 X轴及 Υ轴的角度, 当精准判读 发现 X轴、 Υ轴角度的负数判别时, 例如: Χ 1。、 Υ 0。、 Ζ 0。的负数, 或者 X 0。、 Y l。、 Ζ Ο。的负数, 此时则借由平衡位移块 4 4于罗盘机构 4上作调 整归零, 并归位在准位上, 由 Ζ轴坐标 Ζ 0。核对准数(如图 5〜图 12所示), 亦 完成十维 X Υ Ζ同歩测量可共识性的实用进歩性。
请参阅图 1 2所示, 为本发明第一较佳实施例的实施示意图, 由图中可清楚 看出,此数显光谱仪由一座体 1 a、 一与座体 1 a枢设的圆环框 2 a、 一与圆环 框 2 a枢设的壳体 3 a、一与壳体 3 a枢设的罗盘机构 4 a及一与设于罗盘机构 4 a内的光束发射元件 4 2 a信息连结的 Z轴位置处理单元 6 a,其中该 Z轴位 置处理单元 6 a进一歩信息连结一警告发报元件 6 1 a,并该警告发报元件 6 1 a信息连结一电脑荧幕 6 2 a (正常为 Z 0度 = X 0。、 Y 0。、 Ζ 0。),亦作为 灾害预报系统, 当座体 1 a所在的位置倾斜在罗盘机构 4 a平面基因上显示, 并 且 ώ Ζ轴位置处理单元 6 a判读出 X轴及 Υ轴平面基因上的 Ζ 0。的角度为倾斜 时(例: Z 5。= X 0。、 Y 0。、 Ζ 5。; 是代表电脑荧幕 6 2 a所监控的物体己 倾斜 5。), 则借 ώ警告发报元件 6 1 a发出警告讯息, 且 ώ电脑荧幕 6 2 a显示 目前欲发生灾害位置, 进而因此达到防灾预报目的。
请参阅图 1 3所示, 为本发明第二较佳实施例的实施示意图, 由图中可清楚 看出, 该座体 1 b进一歩设于一浮体器具 8 b上、 供监控川流水位量, 当河川流 量变得涌急时, 罗盘机构 4 b则受水量极速冲击产生倾斜, 使坐标处理单元 5 b 及 Z轴位置处理单元 6 b所判读出的角度呈负数, 因而代表河川水流增大且急, 因此则借由警告发报元件 6 1 b发出讯息, 以通知河川目 为危险水域, 严禁进 入, 达到有效预警防灾的作用。
请参阅图 1 4所示, 为本发明第三较佳实施例的实施示意图, 由图中可清楚 看出, 该数显光谱仪进一歩信息连结一卫星 9 c上的经纬区域(此实施例为卫星 9 c , 然不局限于此), 以提供 Z轴向坐标的 Z 0。在罗盘机构上的各方位上作经 纬 Z 0。的核对数显的判读, 并且该数显光谱仪及卫呈 9 c分别设有信息处理单 元 9 1 c, 且得以相互讯息连结, 借此, 当数显光谱仪的罗盘机构 4 c达水平平 衡状态时,亦借由信息处理单元 9 1 c判读 Z轴向数据与卫星 9 c的信息处理单 元 9 1 c数据是否对应, 亦可得知精确的位准, 以达论之于坐标倾斜相对标的物 的动态于静的测量, 或论之坐标水平相对经纬仪的静态于静的观察。
请参阅图 1 5所示, 为本发明第四较佳实施例的实施示意图, 由图中可看出 , 该罗盘机构 4 d上进一步设有数个显示元件 1 2 d ,以借由该些显示元件 1 2 d来显示 X轴的 (X 0。一 X 0。) 及 Y轴的 ( Y 0。一 Y 0。) 平面基因。
是以,本发明的经纬十维 X Y Z数显光谱仪为可改善现有的技术关键在于本 发明得以运用于地震绘图仪、 警告仪、 天文台、 雷达站、 测风仪、 建筑结构、 海 上建构、 饰物、 模型、 礼品、 运动器材、 科学坐标、 教材等, 运用范围极大, 再 者, 本发明具有如下优点: 一、 ώ本发明的十维数显光谱仪可直接靠上待测物 7上,用于垂直、 水平、 角度均可获得 χ γ ζ参考值, 可以省去繁复的工作与限制。
二、 应用于产业界的水平, 有效于车床、 压床、 冲床、 治具的水平与角度上 的制程, 因上下制成的点合、 磨合、 冲合、 压合, 上下要有水平值的依靠, 始可 做出精密的产品, 否则常有不良制品。
三、 应用定位与监控观测, 有效于各种险地的定位观测, 如建筑大楼的 Χ Υ ζ坐标、 水库坝门、 山坡, 预防水土流失或地震及其它灾害的了解, 可由 Χ Υ Ζ 坐标上得知, 予作防患未然。
四、 应用于高级机械的 χ γ ζ十维装置,如陆、 海、 空导航, 如飞机机身的 坐标及马达引擎坐标观测,轮子定位、 炮仪、 枪仪、 射程导航仪、 制图仪、 激光 仪、 地界测量、 摄像仪、 测距、 测高、 方向的罗盘仪、 医疗仪器 Χ Υ Ζ坐标, 天 文台的 X Υ Ζ观测,进化成本发明可更深层的演变为地震仪十维坐标的经度纬度 连结绘图仪作更科研的解读。
五、 经纬十维 X Υ Ζ数显光谱仪可在东 Ε、 西 W, 南3、 北 N, 东北 E N、 西南 W S, 东南 E S、 西北 W N的八方位轨道上判读 X 0。、 Y 0。的平面基因上 的 Z位角度,且又可在八方位上下的圆周直向的经度与圆周横向的纬度的二方位 做逻辑十维的判读。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的限 制, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与 修饰, 均仍属于本发明技术方案的范围内。
综上所述, 本发明在结构设计、 使用实用性及成本效益上, 完全符合产业发 展所需, 且所揭示的结构亦是具有前所未有的创新构造, 具有新颖性、 创造性、 实用性, 符合有关发明专利要件的规定, 故依法提起申请。

Claims

权利要求书
1、 一种经纬十维 χ γ ζ数显光谱仪, 其特征在于, 主要包括有: 一座体, 该座体上设有一框体, 且该座体与框体接合处的侧边设有数个供观 察 X轴及 Υ轴平面基因的显示元件;
一圆环框,是以其 Υ Υ轴向两侧分别设有一与座体的 Υ Υ轴向相枢设的第一 定位轴承, 而该圆环框以其 X X轴向两侧分别形成一第一定位孔;
一壳体,是以其 X X轴向两侧分别设有一与第一定位孔相枢设的第二定位轴 承, 且该壳体的 Υ Υ轴向两侧分别形成一第二定位孔, 并该壳体底部设有第一重 锤体;
一罗盘机构,是以其 Υ Υ轴向两侧分别设有一与壳体的 Υ Υ轴向第二定位孔 相枢设的第三定位轴承, 且该罗盘机构内设有光束发射元件及第二重缍体; 一坐标处理单元, 是与显示元件及光束发射单元信息连结, 以供计算罗盘机 构的水平位准而 ώ显示元件显示出;
一 ζ轴位置处理单元, 是与光束发射单元信息连结。
2、 根据权利要求 1所述的经纬十维 Χ Υ Ζ数显光谱仪, 其特征在于, 其于 一预定位置处设有至少一摄像装置。
3、 根据权利要求 1所述的经纬十维 Χ Υ Ζ数显光谱仪, 其特征在于, 所述 框体上具有坐标刻度。
4、 根据权利要求 1所述的经纬十维 X Υ Ζ数显光谱仪, 其特征在于, 所述 罗盘机构上设有至少一指针。
5、 根据权利要求 1所述的经纬十维 Χ Υ Ζ数显光谱仪, 其特征在于, 所述 罗盘机构上进一歩设有至少一平衡位移块。
6、 根据权利要求 1所述的经纬十维 X Υ Ζ数显光谱仪, 其特征在于, 所述 显示元件进一歩为数字显示器或光谱输出显示器。
7、 根据权利要求 1所述的经纬十维 Χ Υ Ζ数显光谱仪, 其特征在于, 所述 Ζ轴位置处理单元进一歩信息连结一警告发报元件,所述警告发报元件是信息连 结一电脑荧幕, 亦作为灾害预报系统。
8、根据权利要求 1所述的经纬十维 X Y Z数显光谱仪, 其特征在于, 所述 座体进一歩设于一浮体器具上, 供监控川流水位。
9、 根据权利要求 1所述的经纬十维 X Y Z数显光谱仪, 其特征在于, 所述 数显光谱仪进一歩信息连结一卫星,以提供 Z轴向坐标的 Z 0。在罗盘机构上的 各方位上作经纬 Z 0。的核对数显的判读。
1 0、 根据权利要求 1所述的经纬十维 X Y Z数显光谱仪, 其特征在于,所 述座体上设有一供显示 x、 Y、 ζ轴倾角的综合数据显示元件, 该综合数据显示 元件与坐标处理单元及 ζ轴位置处理单元信息连结。
1 1、 根据权利要求 1所述的经纬十维 Χ Υ Ζ数显光谱仪, 其特征在于, 所 述罗盘机构上进一歩设有数个显示元件。
PCT/CN2011/001921 2011-11-17 2011-11-17 经纬十维xyz数显光谱仪 WO2013071462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001921 WO2013071462A1 (zh) 2011-11-17 2011-11-17 经纬十维xyz数显光谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001921 WO2013071462A1 (zh) 2011-11-17 2011-11-17 经纬十维xyz数显光谱仪

Publications (1)

Publication Number Publication Date
WO2013071462A1 true WO2013071462A1 (zh) 2013-05-23

Family

ID=48428913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001921 WO2013071462A1 (zh) 2011-11-17 2011-11-17 经纬十维xyz数显光谱仪

Country Status (1)

Country Link
WO (1) WO2013071462A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1228468A (zh) * 1968-07-11 1971-04-15
CN1053676A (zh) * 1990-01-24 1991-08-07 李秋山 三度空间之同步判读系统
US5138771A (en) * 1989-11-24 1992-08-18 Lee Chiu Shan Three dimensional homologous surveying instrument
CN1210254A (zh) * 1998-02-24 1999-03-10 李秋山 X、y、z轴相对判读检测方法及其装置
CN2350726Y (zh) * 1999-01-14 1999-11-24 中国矿业大学(北京校区) 球面圆环栅云纹定向测斜仪
CN202066507U (zh) * 2011-05-13 2011-12-07 李秋山 经纬十维xyz数显光谱仪
CN102322846A (zh) * 2011-05-13 2012-01-18 李秋山 经纬十维xyz数显光谱仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1228468A (zh) * 1968-07-11 1971-04-15
US5138771A (en) * 1989-11-24 1992-08-18 Lee Chiu Shan Three dimensional homologous surveying instrument
CN1053676A (zh) * 1990-01-24 1991-08-07 李秋山 三度空间之同步判读系统
CN1210254A (zh) * 1998-02-24 1999-03-10 李秋山 X、y、z轴相对判读检测方法及其装置
CN2350726Y (zh) * 1999-01-14 1999-11-24 中国矿业大学(北京校区) 球面圆环栅云纹定向测斜仪
CN202066507U (zh) * 2011-05-13 2011-12-07 李秋山 经纬十维xyz数显光谱仪
CN102322846A (zh) * 2011-05-13 2012-01-18 李秋山 经纬十维xyz数显光谱仪

Similar Documents

Publication Publication Date Title
CN104541129B (zh) 倾角传感器
Schneider Terrestrial laser scanning for area based deformation analysis of towers and water dams
US10323941B2 (en) Offshore positioning system and method
CN102706361B (zh) 一种高精度多惯导系统姿态精度评定方法
CN105571636B (zh) 一种用于定位目标的方法及测量设备
Muralikrishnan Performance evaluation of terrestrial laser scanners—A review
TWI629452B (zh) 無線傾角感測系統
JP2007263689A (ja) 外部情報を得られない環境における装置の方位計測方法
US10794692B2 (en) Offshore positioning system and method
CN113253285B (zh) 定点式三维全景成像声呐系统升级为走航式系统的方法
US8594973B2 (en) Longitude/latitude ten-dimension XYZ digital-displaying spectrometer
CN108152838A (zh) 一种基于观瞄测定目标位置的装置和方法
CN102322846B (zh) 经纬十维x y z数显光谱仪
CN107063180A (zh) 便携式岩土工程双轴测斜仪
Gibeaut et al. Increasing the accuracy and resolution of coastal bathymetric surveys
CN104978476A (zh) 利用智能手机进行室内地图现场补测的方法
JP2018017569A (ja) 放電発生箇所検出装置
WO2013071462A1 (zh) 经纬十维xyz数显光谱仪
CN203422089U (zh) 卫星定位测量对中杆倾斜改正装置
CN204630568U (zh) 低动态水平/方位角在线测量装置
CN115014297A (zh) 一种压力式水位高程辅助观测装置及使用方法
CN202066507U (zh) 经纬十维xyz数显光谱仪
CN105004315A (zh) 低动态水平/方位角在线测量装置及测量方法
JP2001194143A (ja) X、y、z軸相対判断検出方法とその装置
Cook et al. Validation of Geodetic Seafloor Benchmark Stability Using Structure‐From‐Motion and Seafloor Pressure Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875804

Country of ref document: EP

Kind code of ref document: A1