WO2013069757A1 - Structure that utilizes hydrodynamic forces - Google Patents

Structure that utilizes hydrodynamic forces Download PDF

Info

Publication number
WO2013069757A1
WO2013069757A1 PCT/JP2012/079083 JP2012079083W WO2013069757A1 WO 2013069757 A1 WO2013069757 A1 WO 2013069757A1 JP 2012079083 W JP2012079083 W JP 2012079083W WO 2013069757 A1 WO2013069757 A1 WO 2013069757A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
hinge
fluid force
support member
rotating shaft
Prior art date
Application number
PCT/JP2012/079083
Other languages
French (fr)
Japanese (ja)
Inventor
拓樹 中村
博路 秋元
Original Assignee
Nakamura Takuju
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Takuju filed Critical Nakamura Takuju
Publication of WO2013069757A1 publication Critical patent/WO2013069757A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/18Air and water being simultaneously used as working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/212Rotors for wind turbines with vertical axis of the Darrieus type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/213Rotors for wind turbines with vertical axis of the Savonius type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/915Mounting on supporting structures or systems on a stationary structure which is vertically adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/02Transport, e.g. specific adaptations or devices for conveyance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a structure using fluid force that can be used for a vertical axis wind turbine, a vertical axis turbine, or the like.
  • a windmill receives strong wind power when it converts wind energy into rotational force, which generates a moment that causes the windmill to lie down, but a horizontal axis windmill developed on land has a single horizontal axis supported at a high position in the air.
  • a huge tipping moment is generated at the base of the vertical column.
  • a wind turbine that rotates around the top end of the wind turbine column is attached, and the wind turbine needs to constantly change its direction so that the wind turbine faces the wind. It is not possible to stretch the guy wire that supports the column to support the arm.
  • the turntable of a horizontal axis windmill is provided just under the nacelle of the upper end of a support
  • the functions necessary for horizontal axis wind power generation include equipment that needs to be installed around the rotation of the wind turbine axis, such as a horizontal axis bearing support system, speed increasing gear, generator, brake, blade pitch control device, etc.
  • FIG. 23 is a diagram schematically showing the relationship between the inclination and the restoring force when a horizontal axis wind turbine is mounted on a floating body as Comparative Example 1.
  • the floating body in order for the floating body to have a restoring force, it is necessary to have the center of gravity at a position lower than the metacenter in the vicinity of the floating body (the intersection of the buoyancy line and the floating body centerline). Since all heavy equipment is in a high position in the air, the center of gravity G is very high and it cannot have a restoring force. That is, when the land-type horizontal axis windmill 200 is fixed and installed on the floating body 201, as shown in FIG.
  • high-altitude cranes are frequently used for installation work and maintenance of the horizontal axis wind turbine 200.
  • it is considerably more difficult to use high-altitude cranes at the time of installation or operation than on land.
  • preparation work such as mooring and ballasting on site, restricted wave height for safety of crane work, etc.
  • the disadvantage is that it takes a much longer time to recover.
  • the turntable is installed at the upper end of the wind turbine column 202 unless the necessity of firmly fixing the wind turbine column 202 to the floating body 201 can be excluded. It is necessary to inevitably place all the upstream devices on the nacelle 203 above it, and it is difficult to lower the center of gravity G and the work place.
  • FIG. 24 is a diagram schematically showing the relationship between the inclination and the restoring force when a vertical axis wind turbine is mounted on a floating body as Comparative Example 2.
  • the floating body 301 is provided in the same manner as when all heavy equipment is provided on a normal foundation on land rather than at a high position in the air. Since the center of gravity G and the work place can be considerably lowered, the gravity F1 acting on the center of gravity is inside the buoyant force F2 acting on the floating body and tries to relieve the inclination. Resilience works.
  • the vertical axis windmill 300 has many advantages from the viewpoint of resilience, ease of installation work, safety of maintenance, and the like. Further, the vertical axis wind turbine 300 has an advantage that it is not necessary to change any setting for the wind from any wind direction, and it is not necessary to direct the wind turbine to the wind direction unlike the horizontal axis wind turbine 200.
  • the efficiency equivalent to that of the horizontal axis wind turbine 200 is obtained by a wind turbine using a lift type blade represented by the Darrieus type.
  • the inside visible from the vertical axis functions as the blade upper surface
  • the outside not visible from the vertical axis functions as the blade upper surface.
  • the blade makes a round trip around the vertical axis and periodically passes through the windward and leeward sides of the vertical axis.
  • a mechanism for continuously changing the pitch of the blade has been studied. For example, there is a four-bar linkage mechanism called a gyro mill developed by McDonnell Douglas in the 1970s (for example, see Non-Patent Document 1).
  • the present invention has been made in view of the above situation, and uses a lift-type blade that can handle wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to the wind direction and flow direction. It is an object of the present invention to provide a fluid force utilization structure. Another object of the present invention is to provide a hydrodynamic structure that does not require a crane ship in the case of a wind turbine or a water turbine on the ground, even in operations from installation to installation site and installation to removal.
  • the present invention is a fluid force utilization structure comprising a rotating shaft that extends along a vertical direction and is rotatable around a vertical axis, and a blade that receives a fluid force.
  • the blade approaches or moves away from the rotating shaft, and the turning radius of the blade is adjusted.
  • the sweep area of the blade, the effective rotation radius, and the like can be adjusted. Accordingly, it is possible to realize a fluid force utilization structure using a lift-type blade corresponding to wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to the wind direction / flow direction.
  • the present invention when the present invention is applied to a wind turbine or a water turbine on the water, by reducing the radius of rotation of the blade, even in the work from loading to installation site of the blade, installation to removal, Does not require a crane ship. This facilitates management work while reducing costs.
  • the blade is configured to approach or separate in a state substantially parallel to the rotation axis.
  • substantially parallel means that the rotating shaft and the blade are strictly parallel in addition to the state in which the rotating shaft and the blade are completely parallel, due to unavoidable manufacturing errors and the like. Including a slightly inclined state.
  • the blade since the blade has the same turning radius over the entire length of the blade by approaching or separating in a state substantially parallel to the rotation axis, the optimum rotation according to the wind speed / flow velocity is achieved.
  • the entire blade can be adjusted to a position where force (energy) can be obtained, and energy can be recovered efficiently.
  • one end is connected to one end side of the rotating shaft via a first hinge so as to be rotatable up and down, and the other end is connected to one end side of the blade via a second hinge.
  • the first support member and one end are connected to the other end side of the rotary shaft via a third hinge so as to be vertically rotatable, and the other end is connected to the other end side of the blade via a fourth hinge.
  • the angle adjusting means is provided on the rotating shaft, and is connected to a moving member that moves up and down along the rotating shaft and one end of the angle adjusting means that is rotatable up and down with respect to the moving member via a fifth hinge.
  • the other end is constituted by the other end side of the blade, the other end side of the second support member, and a third support member connected to any of the fourth hinges. .
  • the angle adjusting means has one end attached to any one of the other end side of the blade, the other end side of the second support member, and the fourth hinge, and the blade, the second A support member, a linear member that holds the fourth hinge, and a winding member that is attached to the other end of the linear member and can wind and unwind the linear member. It is preferable to do this.
  • the angle adjusting means is composed of a driving member that applies a rotational force to one of the first hinge and the third hinge.
  • the blade can be easily approached and separated from the rotating shaft.
  • a suspension member that can lift and suspend the first support member with respect to the rotation shaft, and a guide member that is attached to the rotation shaft and guides the suspension member.
  • the first support member can be lifted and lowered with respect to the rotating shaft by the suspension member, so that the first support member is suspended and, for example, the blade is attached and detached while lying at the height of the line of sight.
  • Work such as inspection, repair and reassembly. This eliminates the need for an aerial crane, diver, underwater robot, and the like, thus facilitating management work while reducing costs.
  • the first hinge includes a recess that opens to one end or the other end of the rotating shaft, and a protrusion that is provided on the first support member and engageable with the recess. Is preferred.
  • the first hinge has the recess that opens to one end or the other end of the rotation shaft, and the protrusion that is provided in the first support member and can be engaged with the recess. By allowing or releasing the engaged state, one end of the first support member can be easily attached to and detached from the rotation shaft.
  • the apparatus further comprises moving means for moving the guide member to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained. Is preferred.
  • the first hinge has a recess that opens to one end or the other end of the rotation shaft, and a protrusion that is provided on the first support member and can be engaged with the recess.
  • the protrusion when the first support member is suspended, the protrusion can be removed from the recess by moving the guide member to a position where the protrusion can be removed from the recess and pulling the suspension member toward the guide member.
  • the first support member can be suspended.
  • the protrusion when lifting the first support member, the protrusion can be engaged with the recess by moving the guide member to a position where the protrusion can be removed from the recess and extending the suspension member toward the first support member. As a result, the first support member can be lifted.
  • the blade, the first support member, and the second support member are configured to be foldable in the vicinity of the rotation shaft and in parallel with the rotation shaft.
  • the blade, the first support member, and the second support member are configured to be capable of being folded in a state in the vicinity of the rotation shaft and in parallel with the rotation shaft, so that an excessive wind speed / flow velocity is obtained. It can respond suitably.
  • the present invention when applied to a windmill or water turbine on the water, it can be folded during transportation work, installation work, removal work, etc. to the installation site. This makes it easy to set up and eliminates the need for on-site crane boat work, thus facilitating management work while reducing costs.
  • a magnet provided on the rotary shaft and for attracting and fixing the blade when the blade is folded.
  • the blade can be attracted and fixed when the blade is folded, so that the blade can be stably fixed and supported. Further, it is possible to prevent damage due to vibration of the blade. Furthermore, if an electromagnet is used as the magnet, the electromagnetic force can be cut off by remote operation when the blade is re-deployed, so that an excessive burden on the blade can be avoided.
  • the present invention is a fluid force utilization structure that includes a rotating shaft that extends along the vertical direction and is rotatable around the vertical axis, and a blade that receives fluid force.
  • One end of the blade is supported so as to be rotatable up and down with respect to the rotation axis via a first hinge, and the other end of the blade is rotatable up and down with respect to the rotation axis via a second hinge.
  • one end of the blade is supported so as to be rotatable up and down with respect to the rotation axis via the first hinge, and the other end of the blade is rotated up and down with respect to the rotation axis via the second hinge.
  • the middle of both ends of the blade approaches or separates from the rotation axis, and the shape of the blade is deformed to rotate the blade. Since the radius can be adjusted, the sweep area of the blade, the effective turning radius, the upper angle, the lower angle, and the like can be adjusted. Accordingly, it is possible to realize a fluid force utilization structure using a lift-type blade corresponding to wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to the wind direction / flow direction.
  • the present invention when the present invention is applied to a wind turbine or a water turbine on the water, by reducing the radius of rotation of the blade, even in the work from loading to installation site of the blade, installation to removal, Does not require a crane ship. This facilitates management work while reducing costs.
  • a suspension member capable of lifting and lowering the blade with respect to the rotation shaft, and a guide member attached to the rotation shaft and guiding the suspension member.
  • the blade can be lifted and lowered with respect to the rotating shaft by the suspension member, the blade is suspended, for example, the blade is mounted, removed, inspected, repaired, or relaid while lying at the height of the line of sight. Work such as assembly can be performed. This eliminates the need for an aerial crane, diver, underwater robot, and the like, thus facilitating management work while reducing costs.
  • the first hinge has a recess opening on one end side of the rotating shaft and a protrusion provided on the blade and engageable with the recess.
  • the first hinge has a recess that opens to one end of the rotating shaft and a protrusion that is provided on the blade and can be engaged with the recess. By releasing, one end of the blade can be easily attached to and detached from the rotating shaft.
  • a moving means for moving the guide member to a position where the protruding portion can be removed from the recessed portion and a position where the engaged state of the recessed portion and the protruding portion can be maintained. It is preferable to do this.
  • the first hinge has a recess opening on one end side of the rotating shaft and a protrusion provided on the blade and engageable with the recess
  • the guide member guides the suspension member by the moving means. Can be moved to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained, so that when the blade is lifted, the engagement state of the recess and the protrusion is maintained.
  • the guide member can be moved to a possible position to prevent the protrusion from dropping out.
  • the protrusion can be removed from the recess by moving the guide member to a position where the protrusion can be removed from the recess and pulling the suspension member toward the guide member. Can be hung down.
  • the guide member is moved to a position where the protrusion can be removed from the recess, and the suspension member is extended to the blade side so that the protrusion can be engaged with the recess, and consequently the blade is lifted. Can do.
  • the rotation shaft is configured to be vertically extendable and one of the first hinge and the second hinge is configured to move up and down according to the expansion and contraction of the rotation shaft.
  • the moving member which is provided in the said rotating shaft, and moves up and down along the said rotating shaft, Either one of the said 1st hinge and the said 2nd hinge is attached to the said moving member,
  • the said moving member It is preferable to be configured to move up and down in accordance with the movement.
  • the expansion / contraction of the rotating shaft is preferably configured to be performed by a hydraulic or hydraulic actuator mechanism in which the rotating shaft becomes a cylinder or a cylinder rod, or a ball screw.
  • the movement of the moving member is preferably configured to be performed by a hydraulic or hydraulic actuator mechanism in which the rotation shaft is a cylinder or a cylinder rod, or a ball screw.
  • the blade has a plurality of divided blades divided in the vertical direction, and the divided blades are connected to each other via an intermediate hinge and configured to be bent up and down with the intermediate hinge as a base point. It is preferable to do so.
  • the blade has a plurality of divided blades divided in the vertical direction, and the divided blades are connected to each other via the intermediate hinge and configured to be able to bend up and down with the intermediate hinge as a base point. Therefore, the sweep area, the effective turning radius, the dihedral angle and the dihedral angle can be adjusted without imposing an excessive burden on the blade.
  • a return member provided between the split blade and the intermediate hinge and returning the split blade to a predetermined bending angle.
  • the return member provided between the split blade and the intermediate hinge by providing the return member provided between the split blade and the intermediate hinge and returning the split blade to a predetermined bending angle, for example, when the blade is expanded from the folded state, the turning radius is increased.
  • the dividing blade can always bend in the spreading direction.
  • the divided blade is returned to a predetermined bending angle by the return member. Since the force to generate is generated, the statically indeterminate structure can be eliminated.
  • a rubber elastic support is used as the return member, the vibration when the shape of the blade is deformed can be damped by the flexibility of the rubber.
  • the split blade has a first split blade supported at one end through the first hinge so as to be rotatable up and down with respect to the rotation shaft, and an end at the rotation through the second hinge.
  • a second divided blade supported so as to be rotatable up and down with respect to a shaft; and provided between the first divided blade and the second divided blade, and the other end of the first divided blade via the first intermediate hinge
  • a third divided blade connected to the other end of the second divided blade via the second intermediate hinge, and changing the position of the first hinge with respect to the second hinge
  • a support member that supports the first intermediate hinge with respect to the rotation shaft and is provided in parallel with the second divided blade, and the rotation shaft and the third divided blade are configured in parallel with each other, in front
  • the second hinge is supported with respect to the rotating shaft and provided in parallel with the first divided blade, and the rotating shaft and
  • the third divided blades are preferably configured to be parallel to each other.
  • the first divided blade and the third divided blade are connected by the first intermediate hinge
  • the second divided blade and the third divided blade are connected by the second intermediate hinge
  • the first divided blade Since four hinges are provided for the second divided blade, the third divided blade, and the four sides of the rotating shaft, an indefinite structure is obtained.
  • the first intermediate hinge is positioned outside the second intermediate hinge or positioned inside the second intermediate hinge. .
  • the first intermediate hinge is supported with respect to the rotation shaft, and a support member provided in parallel with the second divided blade is provided, and the rotation shaft and the third divided blade are configured in parallel with each other, so that the first It is possible to prevent the position of the intermediate hinge from moving in and out, and it is possible to adjust the sweep area of the blade, the effective turning radius, the upper angle, the lower angle, and the like only by changing the position of the first hinge. That is, it is possible to eliminate the statically indeterminate structure generated by providing four hinges for the four sides of the first divided blade, the second divided blade, the third divided blade, and the rotating shaft.
  • the second intermediate hinge is supported with respect to the rotating shaft, and the supporting member is provided in parallel with the first divided blade, and the rotating shaft and the third hinge are provided. Since the split blades are configured in parallel with each other, the position of the second intermediate hinge can be prevented from changing inward and outward.
  • the blade approaches the rotating shaft, and the blade is in the vicinity of the rotating shaft and substantially parallel to the rotating shaft. It is preferable to be configured to be foldable.
  • the blade approaches the rotating shaft, and the blade can be folded in the vicinity of the rotating shaft and substantially parallel to the rotating shaft.
  • the present invention when applied to a windmill or water turbine on the water, it can be folded during transportation work, installation work, removal work, etc. to the installation site. This makes it easy to set up and eliminates the need for on-site crane boat work, thus facilitating management work while reducing costs.
  • a magnet provided on the rotary shaft and for attracting and fixing the blade when the blade is folded.
  • the blade can be attracted and fixed when the blade is folded, so that the blade can be stably fixed and supported. Further, it is possible to prevent damage due to vibration of the blade. Furthermore, if an electromagnet is used as the magnet, the electromagnetic force can be cut off by remote operation when the blade is re-deployed, so that an excessive burden on the blade can be avoided.
  • a fluid force utilization structure using a lift type blade that can handle wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to wind direction and flow direction. it can.
  • a wind turbine or a water turbine on the water it is possible to provide a fluid force utilization structure that does not require a crane ship even in operations from loading to installation site and installation to removal.
  • (A) is a side view which shows the expansion
  • (b) is a top view of (a)
  • (c) is a cross section of a water turbine FIG. It is a side view which shows the folding state of the vertical axis windmill which concerns on the 1st Embodiment of this invention. It is sectional drawing which expanded and showed the connection part of an assembly and a floating body, (a) has shown the state at the time of erecting, and (b) at the time of inclination, respectively. It is a side view showing a spline nut partly broken.
  • (A) is a side view which shows the engagement state of the braid
  • (b) is a top view of (a). It is a side view which shows the procedure at the time of removing a braid
  • (A) is a side view which shows the procedure at the time of removing a braid
  • (b) is a top view of (a).
  • (A) is a side view which shows the procedure at the time of removing a braid
  • (A) is a side view which shows the procedure at the time of removing a braid
  • (b) is a top view of (a). It is a side view which shows the procedure at the time of hanging a braid
  • (A) is a side view which shows the folding state of the vertical axis windmill which concerns on a modification
  • (b) is a side view which shows the state which further expanded the vertical axis windmill which concerns on the modification from the state of FIG. .
  • (a) is the partial expansion side view which shows the expansion
  • (b) is the folding state of a vertical axis windmill.
  • (c) is a partial expanded side view which shows the state which expand
  • FIG. 17 is a partially enlarged cross-sectional view showing the configuration of the lower side of the vertical axis wind turbine shown in FIG. (A) is a side view which shows the folding state of the vertical axis windmill which concerns on 2nd Embodiment, (b) is the state which expand
  • FIG. (A) is a side view which shows the engagement state of the 1st support member with respect to the upper support
  • FIG. 1 is a side view which shows the expansion
  • (b) is a top view of (a)
  • (c) is It is sectional drawing of a water wheel.
  • FIG. 2 is a side view showing a folded state of the vertical axis wind turbine 100 according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the connecting portion between the assembly 10 and the floating body 20, wherein (a) shows a state when it is upright and (b) shows a state when it is inclined.
  • FIG. 4 is a side view showing the spline nut 42 partially broken.
  • FIG. 1 is a side view which shows the expansion
  • (b) is a top view of (a)
  • (c) is It is sectional drawing of a water wheel.
  • FIG. 2
  • FIG. 5A is a side view showing an engaged state of the blade 60 with the upper support column 40
  • FIG. 5B is a plan view of FIG.
  • a vertical axis wind turbine 100 is a Darrieus type wind turbine that is a kind of a lift type vertical axis wind turbine, and an assembly 10 that extracts energy from the wind and a swingable support of the assembly 10.
  • the floating body 20 is provided.
  • fluctuation is possible a pin joint, a universal joint, a spherical surface support, an elastic body support etc. can be considered.
  • an elastic body support structure is employed will be described as an example.
  • the assembly 10 includes a column 30, a blade 60, a lifting / lowering means 70 (see FIGS. 6 and 7A), and a Savonius type water wheel 80.
  • the support column 30 includes an upper support column 40, a lower support column 50, and a spherical portion 31 (see FIG. 3) provided in the middle thereof.
  • the upper support column 40 that is a rotation axis is a cylindrical member that is rotatably connected to the floating body 20 around the vertical axis and supports the blade 60.
  • An upper bracket 41, a spline nut 42, and a lower bracket 43 are provided on the outer peripheral surface of the upper support column 40.
  • the upper bracket 41 is a member that is provided on the outer periphery on the upper end side of the upper support column 40 and connects an upper blade 61 described later to the upper support column 40. As shown in FIGS. 5A and 5B, the upper bracket 41 has three connecting portions 41a and 41a and three attachment portions 41b and 41b.
  • the connecting portion 41a is a plate-like portion fixed to the outer peripheral surface of the upper support column 40 by welding or the like.
  • the connecting portions 41 a are provided at equal angular intervals in the circumferential direction of the upper support column 40.
  • the connecting portion 41 a is provided so as to protrude radially outward from the outer peripheral surface of the upper support column 40.
  • the attachment part 41b is a part to which the upper blade 61 is attached.
  • the attachment portion 41b is composed of a pair of plate-like portions that are open at the upper and lower ends and project outward in the radial direction from the outer ends of the adjacent connecting portions 41a and 41a and extend substantially in parallel.
  • the attachment part 41b includes a wide part 41b1 closer to the connecting part 41a, a narrow part 41b2 narrower than the wide part 41b1, and a step part 41b3 connecting the wide part 41b1 and the narrow part 41b2.
  • a pair of substantially J-shaped recesses 41b4 and 41b4 are formed in the narrow portion 41b2.
  • the recess 41b4 opens upward, and has a shape that inclines toward the upper support column 40 from the lower side toward the upper side. In addition, you may change suitably the shape of the recessed part 41b4 to a U shape etc., for example.
  • the spline nut 42 as a moving member is a member configured to be movable in the vertical direction along the upper support column 40 as shown in FIG.
  • a gap 44 is formed between the inner peripheral surface of the spline nut 42 and the outer peripheral surface of the upper support column 40.
  • the vertical movement of the spline nut 42 can be controlled by introducing hydraulic oil, water, or the like into the gap 44 or discharging it from the gap 44 and appropriately adjusting the hydraulic pressure or the water pressure.
  • the lower bracket 43 is a member that is provided on the outer periphery on the lower end side of the upper column 40 via the spline nut 42 and connects the lower blade 62 to the upper column 40.
  • the lower bracket 43 is configured to be movable in the vertical direction according to the vertical movement of the spline nut 42.
  • the lower bracket 43 has a substantially vertical symmetrical shape with the upper bracket 41 and has a hole 43a penetrating in the horizontal direction.
  • the lower support 50 is a member that supports the Savonius-type water turbine 80. As shown in FIGS. 3A and 3B, the lower support 50 is installed in the opening 20 a provided at the approximate center of the floating body 20 so as to penetrate the floating body 20.
  • the spherical portion 31 is placed on a donut-shaped lower elastic rubber bearing 33 and vulcanized and bonded, and similarly, a donut-shaped upper elastic rubber bearing 34 is mounted on and vulcanized and bonded. Further, the outer end portions of both elastic rubber supports 33 and 34 are vulcanized and bonded to the spherical inner surface 24 a of the support frame 24.
  • the spherical inner surface 24 a is formed in a concentric spherical shape having a common center with the spherical portion 31.
  • Both elastic rubber bearings 33 and 34 are members used for, for example, building seismic bearings, and are configured by laminating a rubber plate and a metal plate in the radial direction of the spherical portion 31. Since both elastic rubber bearings 33 and 34 are flexibly deformed with respect to a shearing force but have a high rigidity with respect to compression, the spherical portion 31 has a vertical movement, a lateral movement and the like. Although firmly constrained by the compression characteristics of the donut-shaped rubber, the rotation about the center of the spherical portion 31 and the spherical inner surface 24a is flexibly supported by the shear deformation characteristics of the donut-shaped rubber. For this reason, as shown in FIG. 3B, the assembly 10 can be supported so as to be swingable with respect to the floating body 20.
  • the support frame 24 is connected to the floating body 20 via the coil spring 21 so as to be flexibly received when the assembly 10 tries to swing beyond the design swing range.
  • the coil spring 21 may be provided as necessary and may be omitted.
  • the upper support column 40 is integrally coupled to the upper portion of the connecting member 32 at the lower end portion thereof by a taper shank.
  • the lower end side of the connecting member 32 is inserted into the upper end portion of the lower support column 50 and is rotatably connected.
  • the upper end side of the connecting member 32 is formed in a tapered shape having a diameter that decreases toward the upper side, and is inserted into a hole 40 a having a reverse tapered shape formed in the lower end portion of the upper support column 40.
  • the upper end portion 32a of the connecting member 32 is formed with a thread groove, and the lower support 50 is attracted to the upper support 40 via the connecting member 32 by tightening the nut N, and is integrally coupled. Yes.
  • a bearing B is installed at an appropriate position between the connecting member 32 and the lower support column 50, and can be rotated relative to each other.
  • a spherical portion 31 is fitted on the outer side of the upper end portion of the lower support column 50.
  • a bearing B is provided between the spherical portion 31 and the lower support column 50 and can rotate relative to each other.
  • the spherical portion 31 is swingably supported by the support frame 24 via elastic rubber supports 33 and 34.
  • the upper support column 40, the lower support column 50, and the spherical portion 31 can be rotated relative to each other while being firmly connected in a rigid state in the axial direction, and as shown in FIG. 20 is swingable with respect to 20.
  • a cylindrical part 35 having a cylindrical shape with an upper opening is formed at the upper end of the lower support column 50. And between this cylindrical part 35 and the connection member 32 (namely, between the upper support
  • the gear system 37 is composed of, for example, a planetary gear system, and has a function of rotating the upper support column 40 and the lower support column 50 coaxially in the reverse direction.
  • the gear system 37 is disposed between a sun gear 37a engraved around the connecting member 32, a ring gear 37c connected to the cylindrical portion 35 via a ratchet mechanism 37d, and the sun gear 37a and the ring gear 37c.
  • a plurality of planetary gears 37b is movably connected to the spherical portion 31 by a carrier (not shown).
  • the Savonius-type turbine 80 and the lower support column 50 start to rotate clockwise as viewed from above due to tidal currents
  • the upper prop 40 and the blade 60 start to rotate counterclockwise as viewed from above by the gear system 37. Will be activated. Thereby, the startability of the blade 60 can be improved.
  • the gear system 37 also has a function as a speed increasing device for increasing the rotation of the lower support 50 and transmitting it to the upper support 40.
  • a function as a speed increasing device for increasing the rotation of the lower support 50 and transmitting it to the upper support 40.
  • the gear ratio of the planetary gear system when the Savonius type water wheel 80 (that is, the ring gear 37c) makes one rotation, the upper support column 40 and the blade 60 (that is, the sun gear 37a) are moved a plurality of times (for example, eight times). Can be set to rotate.
  • the design rotational speed of a windmill and the design rotational speed of a water turbine can each be set appropriately according to a wind speed and a flow velocity.
  • the ratchet mechanism 37d has a function of not transmitting the rotation of the upper support column 40 to the lower support column 50 under a predetermined condition. Specifically, when the Savonius type turbine 80 starts to rotate from a stopped state, the rotation of the Savonius type turbine 80 is transmitted to the ring gear 37c via the ratchet mechanism 37d, and to the sun gear 37a along with the rotation of the ring gear 37c. The connected upper support column 40 and blade 60 start rotating at a speed eight times in the reverse direction to the Savonius type turbine 80.
  • a power generator 38 having a rotor 38a and a stator 38b is installed inside the cylindrical portion 35 and below the gear system 37.
  • the rotor 38 a is fixed to the connecting member 32, and the stator 38 b is fixed to the cylindrical portion 35.
  • the electric power generating apparatus 38 can generate electric power efficiently by the differential speed between them.
  • a counter torque acts between the rotor 38a and the stator 38b, but the rotor 38a and the stator 38b are respectively fixed to the upper column 40 and the lower column 50 that rotate in reverse, so the counter torque is canceled out. Therefore, the mooring equipment for preventing the rotation of the floating body 20 can be simplified and downsized.
  • a ratchet 36 is also provided between the cylindrical portion 35 and the spherical portion 31.
  • the blades 60 are lift-type blades that are arranged in the air and receive wind, and three blades 60 are arranged at equal angular intervals in the circumferential direction of the upper support column 40.
  • the blade 60 has an upper blade 61 whose upper end portion 61a is supported by the upper bracket 41 so as to be rotatable in the vertical direction, a lower blade 62 whose lower end portion 62a is supported by the lower bracket 43 so as to be rotatable in the vertical direction, and an upper blade. 61 and an intermediate hinge 63 provided between the lower blade 62.
  • the blade 60 is configured to be bent with the intermediate hinge 63 as a central axis by moving the lower bracket 43 up and down, and the rotation radius r thereof can be changed.
  • the upper blade 61 is a part that is connected to the upper support column 40 via the upper bracket 41 so as to be rotatable in the vertical direction.
  • a horizontal pin 61 b that can be engaged with the recess 41 b 4 of the upper bracket 41 extends in the horizontal direction at the upper end portion 61 a of the upper blade 61 more than the other portions.
  • the width dimension of the horizontal pin 61b is formed smaller than the width dimension of the wide part 41b1, while being formed larger than the width dimension of the narrow part 41b2.
  • the upper blade 61 rotates in the vertical direction with the horizontal pin 61b as the central axis.
  • the horizontal pin 61b and the recess 41b4 constitute the first hinge H1.
  • the lower blade 62 is a portion that is rotatably connected to the upper support column 40 via the lower bracket 43 in the vertical direction.
  • the lower blade 62 has a vertically symmetrical shape with the upper blade 61, and a horizontal pin 62b that can be engaged with the hole 43a of the lower bracket 43 extends in the horizontal direction at the lower end 62a. It is done.
  • the lower blade 62 rotates in the vertical direction about the horizontal pin 62b as a central axis.
  • the horizontal pin 62b and the hole 43a constitute the second hinge H2.
  • the upper blade 61 and the lower blade 62 of this embodiment are formed in the same length, they may be formed in different lengths.
  • the intermediate hinge 63 is arranged at a position eccentric to the upper side or the lower side from the intermediate part in the length direction of the blade 60.
  • the lifting / lowering means 70 is a means for lifting and lowering the blade 60 with respect to the upper support column 40, and includes a holding member 71, three pulleys 72, 72, and three Halyards 73, 73.
  • the holding member 71 is a cylindrical member that is inside the upper column 40 and is accommodated so as to be able to protrude and retract from the upper end of the upper column 40.
  • the holding member 71 is configured to be movable in the vertical direction with respect to the upper support column 40 by a hydraulic actuator mechanism (not shown).
  • a cutout portion 71 a that communicates the inside and outside of the holding member 71 is cut out.
  • the holding member 71 and the hydraulic actuator mechanism correspond to “moving means” in the claims.
  • the pulley 72 as a guide member is a roller-like member that guides the halyard 73.
  • the pulley 72 is accommodated in the notch 71a of the holding member 71, and is provided to be rotatable around the horizontal axis.
  • the halyard 73 as a suspension member is a linear member having one end attached to the horizontal pin 61b of the upper blade 61 and the other end attached to a winding device (not shown) installed on the deck of the floating body 20 so as to be able to wind and unwind. It is.
  • the halyard 73 is bent downward by the pulley 72 and inserted into the holding member 71 and the upper support column 40. As shown in FIG. 5, in the state where the blade 60 is lifted from the upper support column 40, tension is applied to the halyard 73 to pull the horizontal pin 61b downward (to the side in contact with the inner surface of the recess 41b4). As a result, it is possible to prevent the horizontal pin 61b from falling off from the recess 41b4.
  • the Savonius type turbine 80 also functions as a ballast for disposing the center of gravity of the assembly 10 below the water surface, and the upper end portion thereof is supported by the lower support column 50.
  • the Savonius type water turbine 80 includes blades 81 and 81 having a shape obtained by dividing a cylindrical body in the axial direction. The two blades 81 and 81 are coupled in a shape shifted from each other along the dividing surface. The Savonius-type water turbine 80 rotates when the tidal current passes through the space 81a surrounded by the blades 81 and 81.
  • the Savonius-type water turbine 80 has such a structure that the blades 81 and 81 are stacked in two stages in the vertical direction and are shifted by 90 degrees from each other.
  • the product of the distance from the center of swing of the support column 30 to the center of gravity of the Savonius type turbine wheel 80 and the underwater mass of the Savonius type turbine wheel 80 is the center of gravity of the upper support 40 and the blade 60 from the center of swing of the support 30.
  • the arrangement, dimensions, mass, and the like are set so as to be larger than the product of the distance up to and the air mass of the upper support column 40 and the blade 60.
  • mold water wheel 80 functions also as a ballast
  • the floating body 20 is a member that floats on the sea surface. As shown in FIGS. 3A and 3B, the opening 20a of the floating body 20 is formed in a tapered shape having an inner diameter that increases toward the bottom. A support frame 24 for supporting the support column 30 is installed on the upper portion of the opening 20a.
  • the floating body 20 is connected to an anchor (not shown) by a mooring line 22 (see FIG. 1A).
  • the floating body 20 has a chain stopper 23 for fixing the mooring line 22.
  • the vertical axis wind turbine 100 is basically configured as described above. Next, with reference to FIGS. 1, 2, and 4, the vertical axis wind turbine 100 The operation of the blade 60 will be described.
  • the lower blade 62 rotates downward with the horizontal pin 62b as the central axis.
  • the intermediate hinge 63 moves away from the upper support column 40, and the upper blade 61 rotates upward with the horizontal pin 61b as the central axis (see FIGS. 1 and 2).
  • the blade 60 has a horizontally long shape in which the intermediate hinge 63 projects outward and spreads in the horizontal direction, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are reduced.
  • the lower blade 62 rotates upward with the horizontal pin 62b as the central axis.
  • the intermediate hinge 63 approaches the upper support column 40, and the upper blade 61 rotates downward about the horizontal pin 61b (see FIGS. 1 and 2).
  • the blade 60 has a vertically long shape that spreads in the vertical direction, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are increased.
  • the blade 60 extends in a straight line and substantially parallel to the upper support column 40 and is folded (see FIG. 2).
  • the lower bracket 43 approaches the upper bracket 41, the lower angle of the upper blade 61 and the upper angle of the lower blade 62 gradually increase, while the lower bracket 43 is separated from the upper bracket 41.
  • the lower angle of the upper blade 61 and the upper angle of the lower blade 62 become gradually smaller. That is, the shape of the blade 60 can be freely changed by changing the position of the lower bracket 43 with respect to the upper bracket 41.
  • the blade 60 when the wind speed is slow, the blade 60 is formed in a vertically long shape, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are reduced, so that the lift generated can be efficiently used as the rotational force. Since the rotation radius r is small, the number of rotations can be increased for the wind speed.
  • the blade 60 when the wind speed is high, the blade 60 is formed in a horizontally long shape, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are increased, whereby the wind speed from the side is used as a component that gives the blade 60 an angle of attack.
  • the forward speed required to obtain an ideal angle of attack that is, the peripheral speed is decreased, and the average rotational radius r is increased, so that the number of rotations required for the peripheral speed is further reduced. Therefore, it is possible to protect by reducing the rotational speed for the wind speed and reducing the centrifugal force applied to the blade 60.
  • the optimum wind shape of the blade 60 is also related to the torque characteristics of the power generation device 38, and therefore the shape of the blade 60 is appropriately set in accordance with the specifications of the power generation device 38. For example, when the wind speed is high, if the average rotation radius r is decreased and the number of rotations is rather increased, even a small power generator (generator) 38 can cope with a large amount of power generation.
  • the anchor handling tag 90 functions to tow the vertical axis windmill 100 assembled on the quay and to draw the mooring cable 22 into the floating body 20.
  • the anchor handling tag 90 includes an A frame 91 installed at the stern, a pulley 92 disposed at the upper end of the A frame 91, one end connected to the hull, and the other end connected to the mooring line 22 via the pulley 92.
  • Main winch wire 93 Main winch wire 93.
  • the anchor handling tag 90 scoops its stern toward the floating body 20 and projects the A frame 91 above the chain stopper 23 of the floating body 20.
  • the main winch wire 93 is fed out to the sea side through the pulley 92 and the chain stopper 23. And the main winch wire 93 is connected to the upper end of the mooring line 22 which has floated on the sea surface beforehand by the buoy.
  • the anchor handling tag 90 can approach the vertical axis windmill 100 while avoiding interference between the A frame 91 and the blade 60.
  • work which connects the main winch wire 93 to the upper end of the rope 22 can be performed easily.
  • the mooring line 22 is gradually drawn to the sea side (chain stopper 23) by the main winch wire 93, and the mooring line 22 is fixed by operating the chain stopper 23 at a position where a desired initial tension is applied to the mooring line 22. To do.
  • this operation can be performed by the anchor handling tag 90 that does not include the A frame 91, but if the A frame 91 that can be extended outward from the stern is mounted, the work efficiency can be improved.
  • the holding member 71 is moved upward by the hydraulic actuator mechanism, and exposed from the upper end portion of the upper support column 40 to the outside. At this time, the holding member 71 is moved to a position where the pulley 72, the opening surface of the recess 41b4, and the horizontal pin 61b are on a straight line.
  • the blade 60 bends with the intermediate hinge 63 as a base point and rotates downward with the horizontal pin 62b as a base point.
  • the intermediate hinge 63 moves while drawing an arcuate locus (see the two-dot chain line in FIG. 11).
  • the lower blade 62 and the intermediate hinge 63 are placed on the bridge structure D at the height of the line of sight.
  • the upper blade 61 rotates downward with the intermediate hinge 63 as a base point.
  • the horizontal pin 61b of the upper blade 61 moves while drawing an arcuate locus (see a two-dot chain line in FIG. 12).
  • the upper blade 61 is placed on the bridge structure D at the height of the line of sight.
  • the upper blade 61, the intermediate hinge 63, and the lower blade 62 are arranged on a straight line.
  • the intermediate hinge 63 starts to lift and the lower blade 62 rotates upward with the horizontal pin 62b as a base point. At this time, the intermediate hinge 63 moves while drawing an arcuate locus (see the two-dot chain line in FIG. 11).
  • the intermediate hinge 63 of the blade 60 approaches or separates from the upper support column 40 by moving the spline nut 42 up and down and adjusting the distance between the upper bracket 41 and the lower bracket 43. Since the shape of the blade 60 is deformed and the rotation radius r of the blade 60 can be adjusted, the sweep area, the effective rotation radius, the upper angle, the lower angle, and the like of the blade 60 can be adjusted. Thereby, it is possible to realize a fluid force utilization structure using a lift-type blade 60 corresponding to wind speeds in a wide design range with a simple structure without requiring any adjustment according to the wind direction.
  • the blade 60 is composed of two members, an upper blade 61 and a lower blade 62, and an intermediate hinge 63 is provided between the upper blade 61 and the lower blade 62, and is bent up and down with the intermediate hinge 63 as a base point. Since it is configured to be possible, the sweep area, the effective turning radius, the dihedral angle, the dihedral angle, and the like can be adjusted without imposing an excessive burden on the blade 60. Furthermore, by folding the blade 60 in the vicinity of the upper support column 40 and substantially parallel to the upper support column 40, it is possible to appropriately cope with an excessive wind speed.
  • the lower bracket 43 moves in accordance with the movement of the spline nut 42, the interval adjustment between the upper bracket 41 and the lower bracket 43 can be easily performed.
  • the blade 60 is moved by moving the spline nut 42 downward and widening the interval between the upper bracket 41 and the lower bracket 43 (the interval between the first hinge H1 and the second hinge H2). It can be folded in the vicinity of the upper support column 40 and substantially parallel to the upper support column 40. This makes it easy to carry in after the blade 60 has been assembled beforehand on land, so that on-site crane ship work is not required for transporting work to the installation site, installation work, removal work, etc. Management work is facilitated while reducing costs.
  • the blade 60 can be lifted and lowered with respect to the upper support column 40, so that the blade 60 is suspended, for example, while lying at the height of the line of sight. Operations such as attachment, removal, inspection, repair, and reassembly of the blade 60 can be performed. This eliminates the need for an aerial crane, diver, underwater robot, and the like, thus facilitating management work while reducing costs.
  • the pulley 72 when the blade 60 is lifted with respect to the upper support column 40, the pulley 72 is moved to a position where the engaged state of the recess 41b4 and the horizontal pin 61b can be maintained, and the halyard 73 is wound up.
  • the pulley 72 when the blade 60 is suspended from the upper support column 40, the pulley 72 is moved to a position where the horizontal pin 61 b can be removed from the recess 41 b 4 and the halyard 73 is wound up, whereby the horizontal pin 61 b is removed from the recess 41 b 4.
  • the blade 60 can be hung down.
  • the hydrodynamic structure of the present invention is applied to an offshore vertical axis wind turbine.
  • the present invention is not limited to this, and wind power generation is possible regardless of whether on land or offshore. It can be used for vertical axis wind turbines and turbines such as wind pumping, hydroelectric power generation, hydropower pumping, and wind propulsion boats, and all systems that use them.
  • the fluid force utilization structure of the present invention when the fluid force utilization structure of the present invention is applied to a water turbine, the lower end of the blade 60 is supported by the first hinge H1 so as to be vertically rotatable, and the upper end of the blade 60 is supported by the second hinge H2. Is configured to be rotatably supported in the vertical direction. That is, the vertical positions of the first hinge H1 and the second hinge H2 may be changed as appropriate.
  • the blade 60 has the intermediate hinge 63 and is bent with the intermediate hinge 63 as the central axis so that the rotation radius r can be changed.
  • the intermediate hinge 63 is omitted, and the blade 60 may be configured to be flexible, and the entire blade 60 may be bent so that the radius of rotation r can be changed.
  • a permanent magnet or an electromagnet as a magnet may be installed at an appropriate position of the upper support column 40.
  • a steel intermediate hinge 63 is used. In this way, when the blade 60 is folded, the blade 60 can be sucked and fixed via the intermediate hinge 63, so that the blade 60 can be stably fixed and supported. Further, damage due to vibration of the blade 60 can be prevented. Further, in the case of an electromagnet, when the blade 60 is re-deployed, the electromagnetic force can be cut off by remote operation, so that an excessive burden on the blade 60 can be avoided.
  • the blade 60 is sucked and fixed using the steel blade 60, or the surface of the aluminum or resin blade 60 is used, for example.
  • a steel plate may be installed (attached) to the blade 60 to be fixed by suction.
  • the mounting portion 41b has the wide portion 41b1, and the horizontal pin 61b passes through the wide portion 41b1 when the blade 60 is lifted and lowered, but from the state shown in FIG.
  • the holding member 71 may be moved further upward so that the upper blade 61 (horizontal pin 61b) passes outside the mounting portion 41b.
  • the wide portion 41b1 of the attachment portion 41b may be omitted.
  • the pair of plate-like portions constituting the attachment portion 41b are not connected at the end portion on the narrow portion 41b2 side, but the attachment portion 41b is provided at the end portion on the narrow portion 41b2 side. It is good also as a structure which connects a pair of plate-shaped part to comprise. Thereby, it is possible to prevent the width of the recess 41b4 from expanding due to the bending of the upper bracket 41.
  • the lower bracket 43 is moved according to the movement of the spline nut 42.
  • the upper bracket 41 may be moved according to the movement of the spline nut 42.
  • the spline nut 42 is configured to move up and down by a hydraulic or hydraulic actuator mechanism, but may be configured to move up and down by a ball screw.
  • the spline nut 42 in order to transmit the lift generated in the blade 60 to the upper support column 40 as a rotational force, it is preferable to hold it so that it can move up and down with respect to the upper support column 40 but cannot rotate.
  • the spline nut 42 the function of transmitting the lift generated in the blade 60 to the upper column 40 is assumed to be performed only by the upper bracket 41, and the spline nut 42 may not be used. That is, the spline mechanism that holds the upper support column 40 so as not to rotate may be omitted.
  • the plurality of blades 60 are suspended at the same time.
  • the halyards 73 may be operated one by one and the blades 60 may be suspended one by one.
  • the blade 60 is placed on the bridge structure D connected to the floating body 20.
  • a work ship or a trolley moored to the floating body 20 is used.
  • the blade 60 may be placed on the surface.
  • the blade 60 is divided into the upper blade 61 and the lower blade 62, but the present invention is not limited to this and may be changed as appropriate.
  • the upper end of the lower blade 62 is positioned above the first hinge H1, and the upper blade 61 is omitted, and a support member (not a wing shape) that supports the lower blade 62 with respect to the upper support column 40 is provided.
  • a support member (not a wing shape) that supports the lower blade 62 with respect to the upper support column 40 is provided.
  • one end of the support member is connected to the upper support column 40 via the first hinge H1 so as to be rotatable up and down, and the other end is connected to the lower blade 62 via the hinge (not shown) so as to be rotatable up and down.
  • the upper blade 61 may be replaced with a linear member such as halyard.
  • FIG. 13 is a side view showing a developed state of the vertical axis wind turbine 110 according to the modification.
  • FIG. 14A is a side view showing a folded state of the vertical axis windmill 110 according to the modification
  • FIG. 14B is a state in which the vertical axis windmill 110 according to the modification is further expanded from the state of FIG. FIG.
  • the upper support column 40 includes a cylinder 45 that uses a part of the upper support column 40 and a cylinder rod 46 that can expand and contract in the vertical direction with respect to the cylinder 45.
  • a lower bracket 43 is provided on the outer periphery on the lower end side of the cylinder 45, and an intermediate bracket 47 is provided on the outer periphery on the upper end side.
  • the middle bracket 47 has the same shape as the lower bracket 43 and has a hole 47a penetrating in the horizontal direction.
  • An upper bracket 41 is provided on the outer periphery on the upper end side of the cylinder rod 46.
  • the upper bracket 41 is configured to be movable up and down in accordance with the vertical movement (extension / contraction) of the cylinder rod 46.
  • the blade 60 is different from the above embodiment in that a middle blade 64 is provided between the upper blade 61 and the lower blade 62.
  • the middle blade 64 is connected to the upper blade 61 and the lower blade 62 via intermediate hinges 63a and 63b, respectively.
  • the upper blade 61 and the lower blade 62 are bent with the intermediate hinges 63a and 63b as the center axes by extending and retracting the cylinder rod 46 and moving the upper bracket 41 up and down, and the rotation radius r is changed. Configured to be possible.
  • a rod 65 is provided between the middle bracket 47 and the intermediate hinge 63a.
  • the rod 65 supports the intermediate hinge 63 a with respect to the upper support column 40 and is provided in parallel with the lower blade 62.
  • a horizontal pin 65 b that can be engaged with the hole 47 a of the middle bracket 47 is provided at the lower end portion 65 a of the rod 65 so as to extend in the horizontal direction from other portions.
  • the rod 65 rotates in the vertical direction with the horizontal pin 65b as the central axis.
  • the horizontal pin 65b and the hole 47a constitute the third hinge H3.
  • the upper blade 61, the lower blade 62, and the rod 65 are formed to have the same length.
  • a wire or the like may be used instead of the rod 65, or a blade similar to the lower blade 62 may be used.
  • the blade 60 in the state where the cylinder rod 46 is most extended, the blade 60 is in a state of extending linearly and substantially parallel to the upper support column 40 and being folded. Become.
  • the upper blade 61, the lower blade 62, and the rod 65 are substantially horizontal, while the middle blade 64 is vertical and has a turning radius. r is maximized. Incidentally, in this state, it is possible to lower the center of the wind force to suppress the overturning moment and to lower the blade 60 near the water surface where the wind speed is low.
  • the blade 60 when the blade 60 is divided into three, the upper blade 61 and the middle blade 64 are connected by the intermediate hinge 63a, and the lower blade 62 and the middle blade 64 are connected by the intermediate hinge 63b, the upper blade 61 and the lower blade 62 are connected. Since the four hinges H1, H2, 63a, and 63b are provided on the four sides of the middle blade 64 and the upper support column 40, the static blade structure is obtained.
  • the intermediate hinge 63a is positioned outside the intermediate hinge 63b, or more than the intermediate hinge 63b. Will also be located inside.
  • the intermediate hinge 63a is supported with respect to the upper column 40, and the rod 65 is provided in parallel with the lower blade 62, and the upper column 40 and the middle blade 64 are configured in parallel to each other.
  • the position of the intermediate hinge 63a can be prevented from fluctuating in and out, and the adjustment of the sweep area, the effective turning radius, the upper angle, the lower angle, and the like of the blade 60 can be adjusted by simply changing the position of the upper bracket 41. Can be done. That is, it is possible to eliminate the indefinite structure generated by providing the four hinges H1, H2, 63a, and 63b for the four sides of the upper blade 61, the lower blade 62, the middle blade 64, and the upper support column 40.
  • the upper blade 61 and the lower blade 62 are connected by a link mechanism 66, and the upper blade 61 and the lower blade 62 are always bent at substantially the same angle by the link mechanism 66.
  • You may comprise as follows. In this manner, even when the blade 60 is divided into a plurality of parts and a plurality of intermediate hinges 63a and 63b are provided as described above, the statically indeterminate structure can be eliminated and the rod 65 can be omitted.
  • the middle blade 64 has a hollow shape, and a link mechanism 66 is disposed therein.
  • the link mechanism 66 is configured by, for example, a push-pull rod, and upper and lower end portions thereof are rotatably attached to pivots P1 and P2 of the upper blade 61 and the lower blade 62, respectively.
  • FIG. 16 is a partially enlarged side view showing a vertical axis wind turbine 110 according to another modification
  • (a) is a partially enlarged side view showing a neutral state of the vertical axis wind turbine 110
  • (b) is a partially enlarged side view showing a neutral state of the vertical axis wind turbine 110
  • FIG. 4 is a partially enlarged side view showing a folded state of the vertical axis wind turbine 110
  • FIG. 4C is a partially enlarged side view showing a state in which the vertical axis wind turbine 110 is further expanded from the state of FIG.
  • elastic rubber supports 67a to 67d are provided between the upper blade 61 and the intermediate hinge 63a and between the intermediate blade 64 and the intermediate hinge 63a, respectively.
  • the elastic rubber supports 67a to 67d as return members are the same members as the elastic rubber supports 33 and 34 described above, and are configured by laminating a rubber plate and a metal plate in the radial direction of the intermediate hinge 63a.
  • the elastic rubber bearings 67a to 67d have a characteristic that they are flexibly deformed against a shearing force but are highly rigid against compression.
  • the upper blade 61 is firmly restrained by the compression characteristics of the elastic rubber bearings 67a-67d in terms of vertical movement, left-right movement, etc., but with respect to rotation about the center of the intermediate hinge 63a, the elastic rubber bearings 67a-67d Flexible support by shear deformation characteristics. Further, the upper blade 61 is set to have a predetermined bending angle shown in FIG. 16A in a state where the elastic rubber supports 67a to 67d are not expanded and contracted.
  • the upper blade 61 when the blade 60 is unfolded from the folded state, the upper blade 61 extends in the direction in which the rotation radius r (see FIG. 13) is expanded by the elastic rubber bearings 67a to 67d. Will always bend. That is, since the upper blade 61 is assisted by the restoring force (elastic force) of the elastic rubber bearings 67a to 67d so as to bend in the direction in which the rotation radius r increases, the blade 60 is reliably guided from the folded state to the expanded state. Can do.
  • the structure of this modification is also applied between the lower blade 62 and the intermediate hinge 63b and between the intermediate blade 64 and the intermediate hinge 63b (see FIG. 13). Although illustration is omitted, even if a tensile force is applied between the upper blade 61 and the lower blade 62, the hinge shafts of the upper blade 61 and the lower blade 62 are prevented so that the intermediate hinges 63a and 63b do not extend. The position is fixed.
  • the upper blade 61 and the lower blade 62 can always bend in the direction in which the rotation radius r increases. Further, as described above, when the blade 60 is divided into a plurality of parts and a plurality of intermediate hinges 63a and 63b are provided, the structure is indefinite. However, according to this modification, the elastic rubber bearings 67a to 67d Since a force for returning the upper blade 61 and the lower blade 62 to a predetermined bending angle is generated, the statically indefinite structure can be eliminated. In particular, when the elastic rubber bearings 67a to 67d are used, the vibration when the shape of the blade 60 is deformed can be damped by the flexibility of the rubber.
  • FIG. 17 is a side view showing a developed state of the vertical axis wind turbine 120 according to the second embodiment of the present invention.
  • 18 is a partially enlarged side view showing the configuration of the upper side of the vertical axis wind turbine 120 shown in FIG. 19A is a cross-sectional view taken along the line BB of FIG. 17, and FIG.
  • FIG. 19B is a partially enlarged cross-sectional view showing the configuration of the lower side of the vertical axis wind turbine 120 shown in FIG.
  • FIG. 20A is a side view showing the folded state of the vertical axis windmill 120 according to the second embodiment
  • FIG. 20B shows the vertical axis windmill 120 according to the second embodiment from the state shown in FIG. It is a side view which shows the state which expand
  • FIGS. 18 and 20 show only a pair of opposed blades 60 among the four blades 60, and in FIGS. 18 to 20B, the lower support 50 is omitted. ing.
  • This embodiment is different from the first embodiment described above in that the blade 60 approaches and separates in a state parallel to the upper support column 40 and the rotation radius r of the blade 60 is adjusted.
  • the upper support column 40 serving as the rotation shaft is a cylindrical member that is coupled to the floating body 20 so as to be rotatable about the vertical axis.
  • the upper support column 40 is provided with an upper bracket 48a, a lower bracket 48b, and an intermediate bracket 48c.
  • the upper bracket 48a is a member that is provided at the upper end of the upper support column 40 and connects the blade 60 to the upper support column 40 via a first support member 68a described later.
  • the upper bracket 48a includes a cylindrical holding portion 48a1 attached to the outer peripheral surface of the upper support column 40, and a substantially rectangular plate in plan view that is fixed to the upper end of the holding portion 48a1 and extends radially outward from the holding portion 48a1. And a support portion 48a2 made of a member.
  • the lower bracket 48b is a member that is provided at the lower end of the upper support column 40 and connects the blade 60 to the upper support column 40 via a second support member 68b described later.
  • the lower bracket 48b includes a cylindrical holding portion 48b1 attached to the outer peripheral surface of the upper support column 40, and a substantially rectangular plate in plan view that is fixed to the lower end of the holding portion 48b1 and extends radially outward from the holding portion 48b1. And a support portion 48b2 made of a member.
  • the middle bracket (moving member) 48c constituting a part of the angle adjusting means is a member disposed between the upper bracket 48a and the lower bracket 48b, and is configured to be movable in the vertical direction along the upper support column 40. It is a member.
  • the middle bracket 48c includes a cylindrical holding portion 48c1 attached to the outer peripheral surface of the upper support column 40, and a substantially rectangular plate in plan view that is fixed to the lower end of the holding portion 48c1 and extends radially outward from the holding portion 48c1. And a support portion 48c2 made of a member. A hole (not shown) through which the upper support column 40 is inserted is formed in the center of the support portion 48c2 so as to penetrate vertically.
  • the blade 60 is a lift type blade that is arranged in the air and receives wind in a cross-sectional view, and is spaced equiangularly in the circumferential direction of the upper support column 40.
  • the blade 60 is connected to the upper support column 40 in a state of being able to approach and separate via a first support member 68a-third support member 68c.
  • the number of blades 60 may be changed as appropriate.
  • the first support member 68a is a hollow cylindrical member that supports the blade 60 with respect to the upper bracket 48a.
  • the first support members 68a are provided at equal angular intervals in the circumferential direction of the upper bracket 48a.
  • One end of the first support member 68a is attached to the upper bracket 48a via the first hinge H1 ′ so as to be rotatable in the vertical direction, and the other end is vertically moved with respect to the blade 60 via the second hinge H2 ′. It is mounted so as to be rotatable in the direction.
  • the first support member 68a is configured to rotate in the range of 0 (zero) degrees to 90 degrees with respect to the horizontal axis.
  • the second support member 68b is a member that supports the blade 60 with respect to the lower bracket 48b.
  • the second support member 68b of the present embodiment is configured with the same cross-sectional shape and material as the blade 60, and also functions as a blade that receives wind power.
  • the second support members 68b are provided at equal angular intervals in the circumferential direction of the lower bracket 48b.
  • One end of the second support member 68b is rotatably attached to the lower bracket 48b via the third hinge H3 ′, and the other end is attached to the lower end of the blade 60 via the fourth hinge H4 ′. On the other hand, it is attached to be rotatable in the vertical direction.
  • the second support member 68b is configured to rotate in the range of 0 (zero) degrees to 90 degrees with respect to the horizontal axis.
  • the second support member 68b is formed to have the same length as the first support member 68a. Thereby, the blade 60 can be moved toward and away from the upper support column 40 in a parallel state.
  • the third support member 68c that constitutes a part of the angle adjusting means is a hollow cylindrical member that supports the blade 60 with respect to the middle bracket 48c.
  • the third support members 68c are provided at equal angular intervals in the circumferential direction of the middle bracket 48c.
  • One end of the third support member 68c is attached to the middle bracket 48c via the fifth hinge H5 'so as to be rotatable in the vertical direction, and the other end is attached to the fourth hinge H4'.
  • the other end portion of the third support member 68c may be attached to the lower end side of the blade 60 or the other end portion side of the second support member 68b.
  • the first support member 68a and the second support member 68b rotate around the first hinge H1 ′ and the third hinge H3 ′ as the central axes, and this rotation operation is performed.
  • the rotation radius r of the blade 60 is configured to be deformable.
  • a tapered portion 82 is formed on the upper part of the Savonius type water turbine 80 so as to be inclined upward as it goes from the radially inner side to the outer side.
  • a streamlined tapered portion 20b is formed that is inclined so as to be positioned upward from the inner side toward the outer side in the radial direction.
  • the tapered portion 20 b is formed in a shape corresponding to the tapered portion 82 of the Savonius type water turbine 80.
  • the Savonius type turbine 80 swings while the tapered portion 82 slides on the tapered portion 20 b of the floating body 20. It is possible to suppress the generation of a gap. Thereby, for example, it can suppress that drifting objects, such as a rope, get entangled with the lower support
  • the tapered portion 20 b in a streamline shape, fluid such as seawater can be smoothly flowed into the Savonius type water turbine 80.
  • an annular speed increasing member 25 is provided on the top of the floating body 20 so as to surround the periphery of the opening 20a. As shown in FIG. 17, the speed increasing member 25 is disposed below the blade 60, and the upper portion of the speed increasing member 25 has a tapered shape that inclines so as to be positioned upward from the radially outer side toward the inner side. It is formed. As a result, the wind flowing through the speed increasing member 25 is increased while being increased and then hits the second support member 68b, so that the rotation of the second support member 68b can be improved.
  • the vertical axis wind turbine 120 is basically configured as described above. Next, refer to FIGS. 18, 20A, and 20B. The operation of the blade 60 of the vertical axis wind turbine 120 will be described.
  • the first support member 68a rotates upward with the first hinge H1 'as the central axis
  • the second support member 68b rotates upward with the third hinge H3' as the central axis.
  • the blade 60 approaches the upper support column 40 in a parallel state, and the rotation radius r of the blade 60 becomes smaller (FIGS. 18 and 20). (See (a)).
  • the middle bracket 48c is moved to the vicinity of the upper bracket 48a, the first support member 68a and the second support member 68b are linearly extended in parallel with the upper support column 40, and the blade 60 is folded. It becomes. At this time, the blade 60 is placed on the upper part of the second support member 68b, and the blade 60 and the second support member 68b overlap each other in the vertical direction.
  • the first support member 68a rotates downward with the first hinge H1 'as the central axis
  • the second support member 68b rotates downward with the third hinge H3' as the central axis.
  • the blade 60 is separated in a state parallel to the upper support column 40, and the rotation radius r of the blade 60 is increased (FIGS. 18 and 20). (See (a)).
  • the rotation radius r of the blade 60 can be freely changed. It should be noted that whether the rotation radius r of the blade 60 is optimum for the wind is also related to the torque characteristics of the power generation device 38, and therefore the rotation radius r of the blade 60 is appropriately set according to the specifications of the power generation device 38. To do.
  • the blade 60 is parallel to the upper support column 40 by moving the middle bracket 48c up and down and adjusting the angles of the first support member 68a and the second support member 68b. Since the rotation radius r of the blade 60 can be adjusted by approaching or separating, the sweep area of the blade 60, the effective rotation radius, and the like can be adjusted. Thereby, it is possible to realize a fluid force utilization structure using a lift-type blade 60 corresponding to wind speeds in a wide design range with a simple structure without requiring any adjustment according to the wind direction. In particular, according to the present embodiment, the blade 60 approaches or separates in parallel with the upper support column 40, so that the blade 60 has the same turning radius r over the entire length of the blade 60.
  • the entire blade 60 can be adjusted to a position where an optimum rotational force (energy) can be obtained, and energy can be recovered efficiently. Further, by folding the blade 60 in the vicinity of the upper support column 40 and parallel to the upper support column 40, it is possible to cope with an excessive wind speed.
  • the blade 60 since the blade 60 approaches and separates according to the movement of the middle bracket 48c, the blade 60 can be easily approached and separated from the upper support column 40.
  • the middle bracket 48c by moving the middle bracket 48c upward, the blade 60, the first support member 68a, and the second support member 68b are located in the vicinity of the upper support column 40 with respect to the upper support column 40. Can be folded in parallel. This makes it easy to carry in after the blade 60 has been assembled beforehand on land, so that on-site crane ship work is not required for transporting work to the installation site, installation work, removal work, etc. Management work is facilitated while reducing costs.
  • the angle of the first support member 68a and the second support member 68b is adjusted by the middle bracket 48c and the third support member 68c, and the blade 60 approaches and separates from the upper support column 40.
  • the present invention is not limited to this.
  • the angle of the first support member 68a and the second support member 68b is adjusted by a linear member such as a wire and a winding member that can wind and unwind the linear member,
  • the blade 60 may be configured to approach and separate.
  • one end of the linear member is attached to any one of the lower end side of the blade 60, the other end side of the second support member 68b, and the fourth hinge H4 ′, and the other end is a deck of the floating body 20 It is attached to the winding member installed in the.
  • the linear member is bent downward by the pulley and inserted into the upper support column 40.
  • the angle of the first support member 68a and the second support member 68b may be adjusted by a drive member such as a hydraulic motor so that the blade 60 approaches and separates from the upper support column 40.
  • a drive member such as a hydraulic motor
  • the output shaft of the drive member is attached to one or both of the first hinge H1 'and the third hinge H3' and applies a rotational force.
  • the rotational force of the drive member may be applied to the first hinge H1 'or the like via a gear.
  • the blade 60 is brought close to and away from the upper support column 40 in a state where the upper support column 40 and the blade 60 are completely parallel. For this reason, a configuration is also included in which the blade 60 approaches and separates from the upper column 40 in a state where the upper column 40 and the blade 60 are not strictly parallel but are slightly inclined.
  • the second support member 68b of the present embodiment is configured with the same cross-sectional shape and material as the blade 60 and functions as a blade that receives wind force, but the present invention is not limited to this,
  • the blade 60 is configured with a different cross-sectional shape and material, and may not function as a blade.
  • the second support member 68b may be configured with the same shape and material as the first support member 68a.
  • a permanent magnet or an electromagnet as a magnet may be installed at a proper position of the upper support column 40.
  • the blade 60 is sucked and fixed using the steel blade 60, or the blade 60 is sucked and fixed by placing (sticking) a steel plate on the surface of the aluminum or resin blade 60, for example. May be.
  • FIGS. 21 and 22 the first support member 68a may be lifted and lowered with respect to the upper support column 40 using the lifting / lowering means 70 as in the first embodiment.
  • FIG. 21 is a side view showing an engagement state of the first support member 68a with the upper support column 40 according to a modification of the second embodiment.
  • FIG. 22 is a side view showing a procedure for removing the first support member 68a from the upper support column 40.
  • the upper bracket 48a is formed in a shape substantially similar to that of the upper bracket 41 of the first embodiment, and a pair of substantially U-shaped concave portions 48a3 and 48a3 are formed.
  • the recess 48a3 opens upward, and has a shape that inclines toward the upper support column 40 (rotation center axis) from the lower side toward the upper side.
  • a horizontal pin 68a1 that can be engaged with the recess 48a3 of the upper bracket 48a is provided so as to extend in the horizontal direction from other portions.
  • the horizontal pin 68a1 and the recess 48a3 constitute a first hinge H1 '. In addition, you may open the recessed part 48a3 below.
  • the halyard 73 has one end attached to the horizontal pin 68a1 of the first support member 68a and the other end capable of winding and unwinding to a winding device (not shown) installed on the deck of the floating body 20. It is attached.
  • tension is applied to the halyard 73 to pull the horizontal pin 68a1 downward (to the side in contact with the inner surface of the recess 48a3). The Thereby, it is possible to prevent the horizontal pin 68a1 from falling off from the recess 48a3.
  • the holding member 71 when lowering the first support member 68a, as shown in FIG. 22, the holding member 71 is moved upward by the hydraulic actuator mechanism and exposed from the upper end of the upper support column 40 to the outside. At this time, the holding member 71 is moved to a position where the pulley 72, the opening surface of the recess 48a3, and the horizontal pin 68a1 are on a straight line.
  • the middle bracket 48c When the middle bracket 48c is moved downward after the first support member 68a is suspended (see FIGS. 18 and 20B), the second support member 68b is centered on the third hinge H3 ′. And the blade 60 rotates downward about the fourth hinge H4 ′ as a central axis. As a result, the second support member 68b and the blade 60 are overlapped in the horizontal direction, and the blade 60 is suspended from the upper support column 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Provided is a structure that utilizes hydrodynamic forces that is capable of responding to wind velocities and flow velocities in a broad design range by means of a simple structure, without needing any adjustments according to wind orientation and flow orientation, and that uses lift-type blades that do not require a crane ship, even for work ranging from delivery to, installation at, and removal from an installation site, for wind turbines and waterwheels on water. A vertical axis wind turbine (100) is provided with an upper strut (40), which extends vertically and is capable of rotating around a vertical shaft, and blades (60) that receive wind power. The blades (60) are in proximity to or separated from the upper strut (40), and the radius of rotation (r) of the blades (60) is adjusted.

Description

流体力利用構造物Fluid power structure
 本発明は、垂直軸風車や垂直軸水車等に使用できる流体力利用構造物に関する。 The present invention relates to a structure using fluid force that can be used for a vertical axis wind turbine, a vertical axis turbine, or the like.
 風力発電システムとして、陸上では水平軸風車が普及している。風車の先進国においては、既に陸上では安定した風力エネルギーがあってかつ風車の設置に適した土地は足りなくなりつつあり、安定した風力が得られてかつ広大な面積がある洋上での設置が不可欠となっているが、今のところ水深10m程度までのごく浅い海岸線近くの海域に、陸上同様に海底に固定設置される方法でしか実施されていない。 As a wind power generation system, horizontal axis wind turbines are widely used on land. In advanced windmill countries, land that already has stable wind energy on land and is suitable for installation of windmills is becoming scarce, and it is essential to install on the ocean where stable wind power can be obtained and there is a large area However, it has been implemented only by the method of being fixedly installed on the seabed in the same way as the land in the sea area near the shallow coastline to a depth of about 10m.
 今後洋上設置の更なる拡大が期待されているため浮体に設置する実用的な方法の開発が求められている。 In the future, further expansion of the offshore installation is expected, so the development of a practical method for installation on the floating body is required.
 風車は、風力エネルギーを回転力に転換する際に、強い風力を受け、それが風車を横倒しにさせるモーメントを生むが、陸上で発達した水平軸風車は、空中の高い位置に支持した水平軸一点で風力を受けるため、鉛直の支柱の根元では巨大な転倒モーメントが発生している。水平軸風車では、風車支柱の上端近辺を中心に回転する風車が取り付けられており、かつその風車は、常時風車を風に正対させるよう向きを変え続ける必要があるため、前述の巨大なモーメントを支えるために、支柱を支えるガイワイヤーを張ることができない。従って水平軸風車の支柱はできる限り強固に地面に固定する必要があり、風車の向きを変えるために支柱ごと回すことは困難であり、仮にターンテーブルを地上レベルに設けても、ターンテーブルの直径を極端に大きくしない限り、支柱の転倒モーメントを支えることはできない。このため、通常、水平軸風車のターンテーブルは支柱上端のナセルの直下に設けられている。一方、水平軸風力発電に必要な機能として、水平軸のベアリング支持システム、増速ギア、発電機、ブレーキ、ブレードピッチコントロール装置等、風車軸回転の周囲に設ける必要がある機器があるが、その回転トルクの変動とターンテーブル回転の干渉を避けるため、それらの機器はターンテーブルより風車側に設けるのが都合がよく、これら全ての主要機器のみならず潤滑油システム、制御盤等に至る周辺機器まで、空中のナセルに設けられている。その結果、水平軸風車の重心は非常に高い位置になる。また、水平軸風車を浮体に強固に取り付けた場合、支柱上端では浮体を中心とする揺れが増幅されるために、過大な横Gが発生するため、ナセルに設置する機器にはそれに耐えうる強度や潤滑システム等が必要となるという欠点がある。 A windmill receives strong wind power when it converts wind energy into rotational force, which generates a moment that causes the windmill to lie down, but a horizontal axis windmill developed on land has a single horizontal axis supported at a high position in the air. In order to receive wind power at the base, a huge tipping moment is generated at the base of the vertical column. In a horizontal axis wind turbine, a wind turbine that rotates around the top end of the wind turbine column is attached, and the wind turbine needs to constantly change its direction so that the wind turbine faces the wind. It is not possible to stretch the guy wire that supports the column to support the arm. Therefore, it is necessary to fix the pillar of the horizontal axis windmill as firmly as possible to the ground, and it is difficult to rotate the whole pillar to change the direction of the windmill. Even if the turntable is provided at the ground level, the diameter of the turntable Unless it is made extremely large, it cannot support the falling moment of the column. For this reason, normally, the turntable of a horizontal axis windmill is provided just under the nacelle of the upper end of a support | pillar. On the other hand, the functions necessary for horizontal axis wind power generation include equipment that needs to be installed around the rotation of the wind turbine axis, such as a horizontal axis bearing support system, speed increasing gear, generator, brake, blade pitch control device, etc. In order to avoid fluctuations in rotational torque and turntable rotation, it is convenient to install these devices on the windmill side of the turntable. Peripheral devices that include not only all these main devices, but also lubricant systems, control panels, etc. Up to the nacelle in the air. As a result, the center of gravity of the horizontal axis wind turbine is at a very high position. In addition, when the horizontal axis wind turbine is firmly attached to the floating body, the swing centered on the floating body is amplified at the upper end of the support column, and an excessive lateral G is generated, so that the equipment installed in the nacelle can withstand it. And a lubrication system are required.
 図23は、比較例1として、水平軸風車を浮体に載せた場合の傾斜と復元力の関係を模式的に示した図である。
 一般に浮体が復元力を持つためには重心を浮体近辺にあるメタセンター(浮力線と浮体中心線の交点)より低い位置に持つ必要があるが、前述のような構成の水平軸風車200では、重量機器が全て空中の高い位置にあるために重心Gがとても高く、復元力を持てない。すなわち、陸上型の水平軸風車200を浮体201に固定し設置しようとすると、図23に示すように、重心Gが高いために、少しでも浮体201が傾斜すると、その重力F1は浮体201に働く浮力F2よりも外側で働くため、より傾斜させようとする力が働く。加えて、図23に示すように、高い位置で受ける風力F3による巨大かつ変動する転倒モーメントを受ける。
 つまり、浮体201として必要な復元力を持たない上に、風力F3による巨大かつ変動する転倒モーメントを受けるため、浮体構造物として成立しないという問題がある。
FIG. 23 is a diagram schematically showing the relationship between the inclination and the restoring force when a horizontal axis wind turbine is mounted on a floating body as Comparative Example 1.
In general, in order for the floating body to have a restoring force, it is necessary to have the center of gravity at a position lower than the metacenter in the vicinity of the floating body (the intersection of the buoyancy line and the floating body centerline). Since all heavy equipment is in a high position in the air, the center of gravity G is very high and it cannot have a restoring force. That is, when the land-type horizontal axis windmill 200 is fixed and installed on the floating body 201, as shown in FIG. 23, since the center of gravity G is high, if the floating body 201 tilts even a little, the gravity F1 acts on the floating body 201. Since it works outside the buoyancy F2, a force that makes it more inclined acts. In addition, as shown in FIG. 23, a huge and fluctuating tipping moment is received by the wind power F3 received at a high position.
That is, there is a problem that the floating body 201 does not have a restoring force and is not formed as a floating body structure because it receives a huge and fluctuating overturning moment due to the wind force F3.
 また、このような水平軸風車200の場合、主要機器が全て高所に設置されているため、現実的には少しでも波や風力により揺れているときにはメンテナンスのためにナセルまで登ることができないためタイムリーな点検やメンテナンスはできないという欠点がある。 Also, in the case of such a horizontal axis windmill 200, since all the main equipment is installed at a high place, in reality, it is impossible to climb up to the nacelle for maintenance when it is shaken by waves or wind power even a little. There is a disadvantage that timely inspection and maintenance cannot be performed.
 更に、一般に、水平軸風車200の設置工事やメンテナンスでは高所クレーンが多用されるが、設置時や運転期間中に高所クレーンを使用するのは洋上では陸上と比べかなり困難で、高いコストを伴うという欠点があり、またひとたび故障するとクレーン船の動員と現場での係留やバラスティング等の準備作業、クレーン作業の安全のための制限波高等、居住区の容量による作業人員制限等の条件により、復旧までに格段に多くの日数を費やすという欠点がある。 Furthermore, in general, high-altitude cranes are frequently used for installation work and maintenance of the horizontal axis wind turbine 200. However, it is considerably more difficult to use high-altitude cranes at the time of installation or operation than on land. In addition, once a breakdown occurs, it depends on conditions such as mobilization of the crane ship and preparation work such as mooring and ballasting on site, restricted wave height for safety of crane work, etc. The disadvantage is that it takes a much longer time to recover.
 このような問題を解決するためには、主要機器をすべて浮体上の低い位置に設け、重心Gとともにメンテナンスの作業場所を極力下げることが必要である。
 水平軸風車200の場合、先に陸上風車の例で見たように、風車支柱202を浮体201に強固に固定する、という必要性を排除できない限り、ターンテーブルを風車支柱202の上端に設置する必要があり、必然的にすべての上流機器をその上のナセル203に載せることになってしまい、重心Gや作業場所を下げるのは困難である。
In order to solve such a problem, it is necessary to provide all the main devices at a low position on the floating body, and to lower the maintenance work place together with the center of gravity G as much as possible.
In the case of the horizontal axis wind turbine 200, as seen in the example of the land wind turbine, the turntable is installed at the upper end of the wind turbine column 202 unless the necessity of firmly fixing the wind turbine column 202 to the floating body 201 can be excluded. It is necessary to inevitably place all the upstream devices on the nacelle 203 above it, and it is difficult to lower the center of gravity G and the work place.
 図24は、比較例2として、垂直軸風車を浮体に載せた場合の傾斜と復元力の関係を模式的に示した図である。
 比較例1の水平軸風車200に対して、図24に示すような垂直軸風車300であれば、すべての重量機器を空中の高い位置ではなく陸上において通常基礎上に設けるのと同様に浮体301上に設けることができ、重心Gや作業場所をかなり低くすることができるため、一定の傾斜の範囲では、重心に働く重力F1が浮体に働く浮力F2より内側にあり、傾斜を和らげようとする復元力が働く。
FIG. 24 is a diagram schematically showing the relationship between the inclination and the restoring force when a vertical axis wind turbine is mounted on a floating body as Comparative Example 2.
In the case of the vertical axis wind turbine 300 as shown in FIG. 24 with respect to the horizontal axis wind turbine 200 of the comparative example 1, the floating body 301 is provided in the same manner as when all heavy equipment is provided on a normal foundation on land rather than at a high position in the air. Since the center of gravity G and the work place can be considerably lowered, the gravity F1 acting on the center of gravity is inside the buoyant force F2 acting on the floating body and tries to relieve the inclination. Resilience works.
 従って、浮体式の風車としては、復元力の問題や設置工事の容易さ、メンテナンスの安全等の点から、垂直軸風車300に利点が多い。また、垂直軸風車300には、どの風向からの風に対してもなんら設定を変える必要がないという利点もあり、水平軸風車200のように風車を風向に向ける必要がない。 Therefore, as a floating type windmill, the vertical axis windmill 300 has many advantages from the viewpoint of resilience, ease of installation work, safety of maintenance, and the like. Further, the vertical axis wind turbine 300 has an advantage that it is not necessary to change any setting for the wind from any wind direction, and it is not necessary to direct the wind turbine to the wind direction unlike the horizontal axis wind turbine 200.
 このような垂直軸風車300の中で、水平軸風車200と同等の効率が得られるのは、ダリウス型に代表される、揚力型のブレードを使うタイプの風車であるが、その欠点として、ブレードが垂直軸の風上側を通過する際には垂直軸から見える内側が翼上面として機能する反面、垂直軸の風下側を通過する際には垂直軸から見えない外側が翼上面として機能するために、翼ピッチは略中立に取り付けられる結果、ピッチの調整がないために自己起動力に乏しいこと、風速の変化に対応してピッチコントロールされず、最適な風速範囲が狭いことがあげられる。 Among such vertical axis wind turbines 300, the efficiency equivalent to that of the horizontal axis wind turbine 200 is obtained by a wind turbine using a lift type blade represented by the Darrieus type. When passing through the windward side of the vertical axis, the inside visible from the vertical axis functions as the blade upper surface, while when passing through the windward side of the vertical axis, the outside not visible from the vertical axis functions as the blade upper surface. As a result of the fact that the blade pitch is attached in a substantially neutral manner, the self-starting force is poor because there is no pitch adjustment, and the optimum wind speed range is narrow because the pitch is not controlled in response to changes in the wind speed.
 従来、このようなダリウス型の欠点を補う方法として、ヘリコプターのローターのように、ブレードが垂直軸の周囲の軌道を一周して垂直軸の風上側、風下側を通過する間に、周期的にブレードのピッチを変え続ける機構が研究されている。例えば、マクダネルダグラス社が1970年代に開発したジャイロミルと呼ばれる4節リンク機構方式などが挙げられる(例えば、非特許文献1参照)。 Conventionally, as a method of compensating for the drawbacks of the Darrieus type, like a helicopter rotor, the blade makes a round trip around the vertical axis and periodically passes through the windward and leeward sides of the vertical axis. A mechanism for continuously changing the pitch of the blade has been studied. For example, there is a four-bar linkage mechanism called a gyro mill developed by McDonnell Douglas in the 1970s (for example, see Non-Patent Document 1).
 しかしながら、このようなリンク機構では構造が複雑になり、かつそれを風力を受けながら高速で回転するブレードの取り付け部に設けるために信頼性を上げるのは難しく、普及するには至っていない。 However, such a link mechanism has a complicated structure, and it is difficult to increase the reliability because it is provided at the attachment portion of the blade that rotates at high speed while receiving wind power, and has not been widely used.
 また、起動特性を改善するなど、低速側の性能向上は期待できるが、高速側においては、結局のところリンク機構がなかった場合と同じようにピッチ調整幅を略ゼロにするだけであり、高速側の性能向上や過剰風速への適応が望めるものではない。 In addition, it is expected to improve the performance on the low speed side, such as by improving the start-up characteristics. However, on the high speed side, the pitch adjustment width is simply reduced to almost zero just as in the case without the link mechanism. It is not possible to improve the performance on the side and adapt to excessive wind speed.
 更に、風向を検知してリンク機構にフィードバックするシステムが必要になり、風向に対してなんら調整を必要としないという垂直軸風車300の折角の利点が失われてしまうことになる。 Furthermore, a system that detects the wind direction and feeds back to the link mechanism is required, and the advantage of the folding angle of the vertical axis wind turbine 300 that does not require any adjustment to the wind direction is lost.
 本発明は、上記の状況を鑑みてなされたものであり、風向・流向に応じた調整をなんら必要としないままに、簡易な構造で広い設計範囲の風速・流速に対応できる揚力型ブレードを用いた流体力利用構造を提供することを課題とする。
 また、水上の風車や水車にあっては、設置現場への搬入、設置から撤去までの作業においても、クレーン船を必要としない流体力利用構造を提供することを課題とする。
The present invention has been made in view of the above situation, and uses a lift-type blade that can handle wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to the wind direction and flow direction. It is an object of the present invention to provide a fluid force utilization structure.
Another object of the present invention is to provide a hydrodynamic structure that does not require a crane ship in the case of a wind turbine or a water turbine on the ground, even in operations from installation to installation site and installation to removal.
 前記課題を解決するため、本発明は、垂直方向に沿って延在し、垂直軸周りに回転可能な回転軸と、流体力を受けるブレードと、を備える流体力利用構造物であって、前記ブレードが前記回転軸に対し接近又は離間し、前記ブレードの回転半径が調節されることを特徴とする。 In order to solve the above-mentioned problem, the present invention is a fluid force utilization structure comprising a rotating shaft that extends along a vertical direction and is rotatable around a vertical axis, and a blade that receives a fluid force. The blade approaches or moves away from the rotating shaft, and the turning radius of the blade is adjusted.
 本発明によれば、ブレードが回転軸に対し接近又は離間し、ブレードの回転半径が調節できるため、ブレードの掃過面積、有効回転半径等を調節できる。これにより、風向・流向に応じた調整をなんら必要としないままに、簡易な構造で広い設計範囲の風速・流速に対応する揚力型ブレードを用いた流体力利用構造物を実現できる。 According to the present invention, since the blade approaches or separates from the rotation axis and the rotation radius of the blade can be adjusted, the sweep area of the blade, the effective rotation radius, and the like can be adjusted. Accordingly, it is possible to realize a fluid force utilization structure using a lift-type blade corresponding to wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to the wind direction / flow direction.
 また、本発明によれば、水上の風車や水車に本発明を適用した場合には、ブレードの回転半径を小さくすることにより、ブレードの設置現場への搬入、設置から撤去までの作業においても、クレーン船を必要としない。これにより、コストの低減を図りつつ、管理作業が容易になる。 In addition, according to the present invention, when the present invention is applied to a wind turbine or a water turbine on the water, by reducing the radius of rotation of the blade, even in the work from loading to installation site of the blade, installation to removal, Does not require a crane ship. This facilitates management work while reducing costs.
 また、前記ブレードは、前記回転軸に対し実質的に平行な状態で接近又は離間するように構成するのが好ましい。
 なお、本発明において、「実質的に平行」とは、回転軸とブレードとが完全に平行である状態の他、不可避的な製造誤差等に起因して回転軸とブレードとが厳密には平行でなく僅かに傾斜した状態を含む。
Further, it is preferable that the blade is configured to approach or separate in a state substantially parallel to the rotation axis.
In the present invention, “substantially parallel” means that the rotating shaft and the blade are strictly parallel in addition to the state in which the rotating shaft and the blade are completely parallel, due to unavoidable manufacturing errors and the like. Including a slightly inclined state.
 かかる構成によれば、ブレードは、回転軸に対し実質的に平行な状態で接近又は離間することにより、ブレードの全長に亘って同一の回転半径となるので、風速・流速に応じて最適な回転力(エネルギー)を得られる位置にブレード全体を合わせることが可能となり、エネルギーを効率良く回収できる。 According to such a configuration, since the blade has the same turning radius over the entire length of the blade by approaching or separating in a state substantially parallel to the rotation axis, the optimum rotation according to the wind speed / flow velocity is achieved. The entire blade can be adjusted to a position where force (energy) can be obtained, and energy can be recovered efficiently.
 また、本発明は、一端が第1ヒンジを介して前記回転軸の一端側に対し上下に回転可能に連結されると共に、他端が第2ヒンジを介して前記ブレードの一端側に連結される第1支持部材と、一端が第3ヒンジを介して前記回転軸の他端側に対し上下に回転可能に連結されると共に、他端が第4ヒンジを介して前記ブレードの他端側に連結される第2支持部材と、前記回転軸に対する前記第1支持部材及び前記第2支持部材の角度を調整する角度調整手段と、を更に備えた構成とするのが好ましい。 Further, according to the present invention, one end is connected to one end side of the rotating shaft via a first hinge so as to be rotatable up and down, and the other end is connected to one end side of the blade via a second hinge. The first support member and one end are connected to the other end side of the rotary shaft via a third hinge so as to be vertically rotatable, and the other end is connected to the other end side of the blade via a fourth hinge. It is preferable to further include a second support member that is configured and an angle adjusting unit that adjusts the angles of the first support member and the second support member with respect to the rotation shaft.
 なお、前記角度調節手段は、前記回転軸に設けられ、前記回転軸に沿って上下に移動する移動部材と、一端が第5ヒンジを介して前記移動部材に対し上下に回転可能に連結されると共に、他端が前記ブレードの他端側、前記第2支持部材の他端側、及び前記第4ヒンジのいずれかに連結される第3支持部材と、から構成されるようにするのが好ましい。
 或いは、前記角度調節手段は、一端が前記ブレードの他端側、前記第2支持部材の他端側、及び前記第4ヒンジのいずれかに取り付けられ、前記回転軸に対し前記ブレード、前記第2支持部材、及び前記第4ヒンジを保持する線状部材と、前記線状部材の他端が取り付けられ、前記線状部材を巻き取り及び巻き出し可能な巻取部材と、から構成されるようにするのが好ましい。
 或いは、前記角度調節手段は、前記第1ヒンジ及び前記第3ヒンジのいずれか一方に回転力を付与する駆動部材から構成されるようにするのが好ましい。
The angle adjusting means is provided on the rotating shaft, and is connected to a moving member that moves up and down along the rotating shaft and one end of the angle adjusting means that is rotatable up and down with respect to the moving member via a fifth hinge. In addition, it is preferable that the other end is constituted by the other end side of the blade, the other end side of the second support member, and a third support member connected to any of the fourth hinges. .
Alternatively, the angle adjusting means has one end attached to any one of the other end side of the blade, the other end side of the second support member, and the fourth hinge, and the blade, the second A support member, a linear member that holds the fourth hinge, and a winding member that is attached to the other end of the linear member and can wind and unwind the linear member. It is preferable to do this.
Alternatively, it is preferable that the angle adjusting means is composed of a driving member that applies a rotational force to one of the first hinge and the third hinge.
 かかる構成によれば、回転軸に対するブレードの接近及び離間を簡易に行うことができる。 According to this configuration, the blade can be easily approached and separated from the rotating shaft.
 また、前記回転軸に対し前記第1支持部材を吊り上げ及び吊り降ろし可能な吊り部材と、前記回転軸に取り付けられ、前記吊り部材を案内する案内部材と、を更に備えた構成とするのが好ましい。 In addition, it is preferable to further include a suspension member that can lift and suspend the first support member with respect to the rotation shaft, and a guide member that is attached to the rotation shaft and guides the suspension member. .
 かかる構成によれば、吊り部材によって、回転軸に対し第1支持部材を吊り上げ及び吊り降ろし可能であるため、第1支持部材を吊り降ろし、例えば、目線の高さに横たえながらブレードの取り付け、取り外し、点検、修理、再組み立て等の作業を行うことができる。これにより、高所クレーン、ダイバー、及び水中ロボット等が不要となるため、コストの低減を図りつつ、管理作業が容易になる。 According to such a configuration, the first support member can be lifted and lowered with respect to the rotating shaft by the suspension member, so that the first support member is suspended and, for example, the blade is attached and detached while lying at the height of the line of sight. Work such as inspection, repair and reassembly. This eliminates the need for an aerial crane, diver, underwater robot, and the like, thus facilitating management work while reducing costs.
 また、前記第1ヒンジは、前記回転軸の一端側又は他端側に開口する凹部と、前記第1支持部材に設けられ、前記凹部に係合可能な突部と、を有するように構成するのが好ましい。 The first hinge includes a recess that opens to one end or the other end of the rotating shaft, and a protrusion that is provided on the first support member and engageable with the recess. Is preferred.
 かかる構成によれば、第1ヒンジは、回転軸の一端側又は他端側に開口する凹部と、第1支持部材に設けられ凹部に係合可能な突部とを有するため、凹部に対する突部の係合状態を許容又は解除することで、回転軸に対し第1支持部材の一端を簡易に着脱させることができる。 According to this configuration, the first hinge has the recess that opens to one end or the other end of the rotation shaft, and the protrusion that is provided in the first support member and can be engaged with the recess. By allowing or releasing the engaged state, one end of the first support member can be easily attached to and detached from the rotation shaft.
 また、前記凹部から前記突部を抜脱可能な位置と、前記凹部及び前記突部の係合状態を保持可能な位置と、に前記案内部材を移動する移動手段を更に備えた構成とするのが好ましい。 Further, the apparatus further comprises moving means for moving the guide member to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained. Is preferred.
 かかる構成によれば、第1ヒンジは、回転軸の一端側又は他端側に開口する凹部と、第1支持部材に設けられ凹部に係合可能な突部とを有すると共に、移動手段によって、吊り部材を案内する案内部材を、凹部から突部を抜脱可能な位置と、凹部及び突部の係合状態を保持可能な位置と、に移動できることにより、第1支持部材を吊り上げたときには、凹部及び突部の係合状態を保持可能な位置に、案内部材を移動させ、凹部からの突部の脱落を防止できる。
 一方、第1支持部材を吊り降ろすときには、凹部から突部を抜脱可能な位置に、案内部材を移動させ、吊り部材を案内部材側に引き寄せることで、凹部から突部を抜脱でき、ひいては、第1支持部材を吊り降ろすことができる。なお、第1支持部材を吊り上げるときには、凹部から突部を抜脱可能な位置に、案内部材を移動させ、吊り部材を第1支持部材側に繰り出すことで、凹部に突部を係合でき、ひいては、第1支持部材を吊り上げることができる。
According to such a configuration, the first hinge has a recess that opens to one end or the other end of the rotation shaft, and a protrusion that is provided on the first support member and can be engaged with the recess. When the first support member is lifted by being able to move the guide member that guides the suspension member to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained, The guide member can be moved to a position where the engagement state between the recess and the protrusion can be maintained, and the protrusion from the recess can be prevented from falling off.
On the other hand, when the first support member is suspended, the protrusion can be removed from the recess by moving the guide member to a position where the protrusion can be removed from the recess and pulling the suspension member toward the guide member. The first support member can be suspended. In addition, when lifting the first support member, the protrusion can be engaged with the recess by moving the guide member to a position where the protrusion can be removed from the recess and extending the suspension member toward the first support member. As a result, the first support member can be lifted.
 また、前記ブレードと前記第1支持部材と前記第2支持部材とは、前記回転軸の近傍であって、前記回転軸に対し平行な状態に折り畳み可能に構成されるようにするのが好ましい。 Further, it is preferable that the blade, the first support member, and the second support member are configured to be foldable in the vicinity of the rotation shaft and in parallel with the rotation shaft.
 かかる構成によれば、ブレードと第1支持部材と第2支持部材とは、回転軸の近傍であって、回転軸に対し平行な状態に折り畳み可能に構成されることにより、過大な風速・流速に対し好適に対応することができる。また、水上の風車や水車に本発明を適用した場合には、設置現場への運搬作業、設置作業、撤去作業等の際には、折り畳んでおくことができるため、陸上であらかじめブレードを組み上げておくことが容易に可能になり、現地でのクレーン船作業が不要となるため、コストの低減を図りつつ、管理作業が容易になる。 According to such a configuration, the blade, the first support member, and the second support member are configured to be capable of being folded in a state in the vicinity of the rotation shaft and in parallel with the rotation shaft, so that an excessive wind speed / flow velocity is obtained. It can respond suitably. In addition, when the present invention is applied to a windmill or water turbine on the water, it can be folded during transportation work, installation work, removal work, etc. to the installation site. This makes it easy to set up and eliminates the need for on-site crane boat work, thus facilitating management work while reducing costs.
 また、前記回転軸に設けられ、前記ブレードが折り畳まれる際に前記ブレードを吸着固定する磁石を更に備えた構成とするのが好ましい。 Further, it is preferable to further include a magnet provided on the rotary shaft and for attracting and fixing the blade when the blade is folded.
 かかる構成によれば、ブレードを吸着固定する磁石を、回転軸に設けることにより、ブレードを折り畳む際に、ブレードを吸着固定できるため、ブレードを安定して固定支持できる。また、ブレードの振動による破損等を防止することができる。更に、磁石として電磁石を使用すれば、ブレードを再展開する際には遠隔操作によって電磁力を切ることができるため、ブレードに過大な負担をかけることを回避できる。 According to such a configuration, by providing the magnet for attracting and fixing the blade on the rotating shaft, the blade can be attracted and fixed when the blade is folded, so that the blade can be stably fixed and supported. Further, it is possible to prevent damage due to vibration of the blade. Furthermore, if an electromagnet is used as the magnet, the electromagnetic force can be cut off by remote operation when the blade is re-deployed, so that an excessive burden on the blade can be avoided.
 また、前記課題を解決するため、本発明は、垂直方向に沿って延在し、垂直軸周りに回転可能な回転軸と、流体力を受けるブレードと、を備える流体力利用構造物であって、前記ブレードの一端は、第1ヒンジを介して、前記回転軸に対し上下に回転可能に支持され、前記ブレードの他端は、第2ヒンジを介して、前記回転軸に対し上下に回転可能に支持され、前記第1ヒンジと前記第2ヒンジとの相対的な位置を変更することにより、前記ブレードの両端の途中が前記回転軸に対し接近又は離間し、前記ブレードの形が変形して、前記ブレードの回転半径が調節されることを特徴とする。 In order to solve the above-mentioned problem, the present invention is a fluid force utilization structure that includes a rotating shaft that extends along the vertical direction and is rotatable around the vertical axis, and a blade that receives fluid force. One end of the blade is supported so as to be rotatable up and down with respect to the rotation axis via a first hinge, and the other end of the blade is rotatable up and down with respect to the rotation axis via a second hinge By changing the relative positions of the first hinge and the second hinge, the middle of both ends of the blade approaches or separates from the rotation shaft, and the shape of the blade is deformed. The rotation radius of the blade is adjusted.
 本発明によれば、ブレードの一端は、第1ヒンジを介して、回転軸に対し上下に回転可能に支持され、ブレードの他端は、第2ヒンジを介して、回転軸に対し上下に回転可能に支持され、第1ヒンジと第2ヒンジとの相対的な位置を変更することにより、ブレードの両端の途中が回転軸に対し接近又は離間し、ブレードの形が変形して、ブレードの回転半径が調節できるため、ブレードの掃過面積、有効回転半径、上反角、及び下反角等を調節できる。これにより、風向・流向に応じた調整をなんら必要としないままに、簡易な構造で広い設計範囲の風速・流速に対応する揚力型ブレードを用いた流体力利用構造物を実現できる。 According to the present invention, one end of the blade is supported so as to be rotatable up and down with respect to the rotation axis via the first hinge, and the other end of the blade is rotated up and down with respect to the rotation axis via the second hinge. By changing the relative position of the first hinge and the second hinge, the middle of both ends of the blade approaches or separates from the rotation axis, and the shape of the blade is deformed to rotate the blade. Since the radius can be adjusted, the sweep area of the blade, the effective turning radius, the upper angle, the lower angle, and the like can be adjusted. Accordingly, it is possible to realize a fluid force utilization structure using a lift-type blade corresponding to wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to the wind direction / flow direction.
 また、本発明によれば、水上の風車や水車に本発明を適用した場合には、ブレードの回転半径を小さくすることにより、ブレードの設置現場への搬入、設置から撤去までの作業においても、クレーン船を必要としない。これにより、コストの低減を図りつつ、管理作業が容易になる。 In addition, according to the present invention, when the present invention is applied to a wind turbine or a water turbine on the water, by reducing the radius of rotation of the blade, even in the work from loading to installation site of the blade, installation to removal, Does not require a crane ship. This facilitates management work while reducing costs.
 また、前記回転軸に対し前記ブレードを吊り上げ及び吊り降ろし可能な吊り部材と、前記回転軸に取り付けられ、前記吊り部材を案内する案内部材と、を更に備えた構成とするのが好ましい。 Further, it is preferable to further include a suspension member capable of lifting and lowering the blade with respect to the rotation shaft, and a guide member attached to the rotation shaft and guiding the suspension member.
 かかる構成によれば、吊り部材によって、回転軸に対しブレードを吊り上げ及び吊り降ろし可能であるため、ブレードを吊り降ろし、例えば、目線の高さに横たえながらブレードの取り付け、取り外し、点検、修理、再組み立て等の作業を行うことができる。これにより、高所クレーン、ダイバー、及び水中ロボット等が不要となるため、コストの低減を図りつつ、管理作業が容易になる。 According to such a configuration, since the blade can be lifted and lowered with respect to the rotating shaft by the suspension member, the blade is suspended, for example, the blade is mounted, removed, inspected, repaired, or relaid while lying at the height of the line of sight. Work such as assembly can be performed. This eliminates the need for an aerial crane, diver, underwater robot, and the like, thus facilitating management work while reducing costs.
 また、前記第1ヒンジは、回転軸の一端側に開口する凹部と、前記ブレードに設けられ、前記凹部に係合可能な突部と、を有するように構成するのが好ましい。 Further, it is preferable that the first hinge has a recess opening on one end side of the rotating shaft and a protrusion provided on the blade and engageable with the recess.
 かかる構成によれば、第1ヒンジは、回転軸の一端側に開口する凹部と、ブレードに設けられ凹部に係合可能な突部とを有するため、凹部に対する突部の係合状態を許容又は解除することで、回転軸に対しブレードの一端を簡易に着脱させることができる。 According to such a configuration, the first hinge has a recess that opens to one end of the rotating shaft and a protrusion that is provided on the blade and can be engaged with the recess. By releasing, one end of the blade can be easily attached to and detached from the rotating shaft.
 また、前記凹部から前記突部を抜脱可能な位置と、前記凹部及び前記突部の係合状態を保持可能な位置と、に前記案内部材を移動する移動手段と、を更に備えた構成とするのが好ましい。 And a moving means for moving the guide member to a position where the protruding portion can be removed from the recessed portion and a position where the engaged state of the recessed portion and the protruding portion can be maintained. It is preferable to do this.
 かかる構成によれば、第1ヒンジは、回転軸の一端側に開口する凹部と、ブレードに設けられ凹部に係合可能な突部とを有すると共に、移動手段によって、吊り部材を案内する案内部材を、凹部から突部を抜脱可能な位置と、凹部及び突部の係合状態を保持可能な位置と、に移動できることにより、ブレードを吊り上げたときには、凹部及び突部の係合状態を保持可能な位置に、案内部材を移動させ、凹部からの突部の脱落を防止できる。
 一方、ブレードを吊り降ろすときには、凹部から突部を抜脱可能な位置に、案内部材を移動させ、吊り部材を案内部材側に引き寄せることで、凹部から突部を抜脱でき、ひいては、ブレードを吊り降ろすことができる。なお、ブレードを吊り上げるときには、凹部から突部を抜脱可能な位置に、案内部材を移動させ、吊り部材をブレード側に繰り出すことで、凹部に突部を係合でき、ひいては、ブレードを吊り上げることができる。
According to such a configuration, the first hinge has a recess opening on one end side of the rotating shaft and a protrusion provided on the blade and engageable with the recess, and the guide member guides the suspension member by the moving means. Can be moved to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained, so that when the blade is lifted, the engagement state of the recess and the protrusion is maintained. The guide member can be moved to a possible position to prevent the protrusion from dropping out.
On the other hand, when the blade is suspended, the protrusion can be removed from the recess by moving the guide member to a position where the protrusion can be removed from the recess and pulling the suspension member toward the guide member. Can be hung down. When the blade is lifted, the guide member is moved to a position where the protrusion can be removed from the recess, and the suspension member is extended to the blade side so that the protrusion can be engaged with the recess, and consequently the blade is lifted. Can do.
 また、前記回転軸は、上下に伸縮可能に構成され、前記第1ヒンジ及び前記第2ヒンジのいずれか一方は、前記回転軸の伸縮に応じて上下に移動するように構成するのが好ましい。
 或いは、前記回転軸に設けられ、前記回転軸に沿って上下に移動する移動部材を更に備え、前記第1ヒンジ及び前記第2ヒンジのいずれか一方は、前記移動部材に取り付けられ、前記移動部材の移動に応じて上下に移動するように構成するのが好ましい。
Further, it is preferable that the rotation shaft is configured to be vertically extendable and one of the first hinge and the second hinge is configured to move up and down according to the expansion and contraction of the rotation shaft.
Or it is further provided with the moving member which is provided in the said rotating shaft, and moves up and down along the said rotating shaft, Either one of the said 1st hinge and the said 2nd hinge is attached to the said moving member, The said moving member It is preferable to be configured to move up and down in accordance with the movement.
 かかる構成によれば、第1ヒンジ及び第2ヒンジの間隔調整を簡易に行うことができる。 According to such a configuration, it is possible to easily adjust the distance between the first hinge and the second hinge.
 また、前記回転軸の伸縮は、前記回転軸がシリンダ若しくはシリンダロッドとなる油圧若しくは水圧アクチュエータ機構、又はボールねじによってなされるように構成するのが好ましい。
 或いは、前記移動部材の移動は、前記回転軸がシリンダ若しくはシリンダロッドとなる油圧若しくは水圧アクチュエータ機構、又はボールねじによってなされるように構成するのが好ましい。
Further, the expansion / contraction of the rotating shaft is preferably configured to be performed by a hydraulic or hydraulic actuator mechanism in which the rotating shaft becomes a cylinder or a cylinder rod, or a ball screw.
Alternatively, the movement of the moving member is preferably configured to be performed by a hydraulic or hydraulic actuator mechanism in which the rotation shaft is a cylinder or a cylinder rod, or a ball screw.
 かかる構成によれば、第1ヒンジ及び第2ヒンジの間隔調整を簡易に行うことができる。 According to such a configuration, it is possible to easily adjust the distance between the first hinge and the second hinge.
 また、前記ブレードは、垂直方向に分割された複数の分割ブレードを有し、前記分割ブレード同士は、中間ヒンジを介して互いに連結されると共に、前記中間ヒンジを基点として上下に屈曲可能に構成されているようにするのが好ましい。 Further, the blade has a plurality of divided blades divided in the vertical direction, and the divided blades are connected to each other via an intermediate hinge and configured to be bent up and down with the intermediate hinge as a base point. It is preferable to do so.
 かかる構成によれば、ブレードは垂直方向に分割された複数の分割ブレードを有し、分割ブレード同士は、中間ヒンジを介して互いに連結されると共に、中間ヒンジを基点として上下に屈曲可能に構成されていることにより、ブレードに過大な負担をかけることなく掃過面積、有効回転半径、上反角や下反角等を調節できる。 According to such a configuration, the blade has a plurality of divided blades divided in the vertical direction, and the divided blades are connected to each other via the intermediate hinge and configured to be able to bend up and down with the intermediate hinge as a base point. Therefore, the sweep area, the effective turning radius, the dihedral angle and the dihedral angle can be adjusted without imposing an excessive burden on the blade.
 また、前記分割ブレードと前記中間ヒンジとの間に設けられ、前記分割ブレードを所定の屈曲角度に復帰させる復帰部材を更に備えた構成とするのが好ましい。 Further, it is preferable to further include a return member provided between the split blade and the intermediate hinge and returning the split blade to a predetermined bending angle.
 かかる構成によれば、分割ブレードと中間ヒンジとの間に設けられ、分割ブレードを所定の屈曲角度に復帰させる復帰部材を備えることにより、例えば、ブレードを折り畳んだ状態から展開するときには、回転半径が広がる方向に分割ブレードが必ず屈曲することができる。また、後記するようにブレードを複数に分割し、複数の中間ヒンジを設ける場合には、不静定構造になるが、かかる構成によれば、復帰部材によって、分割ブレードを所定の屈曲角度に復帰させる力が発生するため、不静定構造を解消できる。更に、復帰部材としてゴムの弾性支持体を使用した場合、ゴムの柔軟性によってブレードの形が変形する際の振動を減衰させることができる。 According to such a configuration, by providing the return member provided between the split blade and the intermediate hinge and returning the split blade to a predetermined bending angle, for example, when the blade is expanded from the folded state, the turning radius is increased. The dividing blade can always bend in the spreading direction. Also, as will be described later, when the blade is divided into a plurality of parts and a plurality of intermediate hinges are provided, a statically indeterminate structure is obtained. According to such a configuration, the divided blade is returned to a predetermined bending angle by the return member. Since the force to generate is generated, the statically indeterminate structure can be eliminated. Furthermore, when a rubber elastic support is used as the return member, the vibration when the shape of the blade is deformed can be damped by the flexibility of the rubber.
 また、前記分割ブレードは、一端が、前記第1ヒンジを介して、前記回転軸に対し上下に回転可能に支持される第1分割ブレードと、一端が、前記第2ヒンジを介して、前記回転軸に対し上下に回転可能に支持される第2分割ブレードと、前記第1分割ブレード及び前記第2分割ブレードの間に設けられ、前記第1分割ブレードの他端に前記第1中間ヒンジを介して連結され、前記第2分割ブレードの他端に前記第2中間ヒンジを介して連結される第3分割ブレードと、を有し、前記第2ヒンジに対し前記第1ヒンジの位置を変更するときには、前記回転軸に対し第1中間ヒンジを支持し、かつ前記第2分割ブレードと平行に設けられる支持部材を備えると共に、前記回転軸及び前記第3分割ブレードは、互いに平行に構成される一方、前記第1ヒンジに対し前記第2ヒンジの位置を変更するときには、前記回転軸に対し第2中間ヒンジを支持し、かつ前記第1分割ブレードと平行に設けられる支持部材を備えると共に、前記回転軸及び前記第3分割ブレードは、互いに平行に構成されるようにするのが好ましい。 The split blade has a first split blade supported at one end through the first hinge so as to be rotatable up and down with respect to the rotation shaft, and an end at the rotation through the second hinge. A second divided blade supported so as to be rotatable up and down with respect to a shaft; and provided between the first divided blade and the second divided blade, and the other end of the first divided blade via the first intermediate hinge And a third divided blade connected to the other end of the second divided blade via the second intermediate hinge, and changing the position of the first hinge with respect to the second hinge And a support member that supports the first intermediate hinge with respect to the rotation shaft and is provided in parallel with the second divided blade, and the rotation shaft and the third divided blade are configured in parallel with each other, in front When changing the position of the second hinge with respect to the first hinge, the second hinge is supported with respect to the rotating shaft and provided in parallel with the first divided blade, and the rotating shaft and The third divided blades are preferably configured to be parallel to each other.
 ブレードを3分割し、第1分割ブレード及び第3分割ブレードを第1中間ヒンジによって連結し、第2分割ブレード及び第3分割ブレードを第2中間ヒンジによって連結する場合には、第1分割ブレード、第2分割ブレード、第3分割ブレード、及び回転軸の4辺に対し4つのヒンジを設けるため、不静定構造になる。つまり、仮に、第2ヒンジに対し第1ヒンジの位置を変更すると、第1中間ヒンジが第2中間ヒンジよりも外側に位置したり、第2中間ヒンジよりも内側に位置したりすることになる。そこで、回転軸に対し第1中間ヒンジを支持し、かつ第2分割ブレードと平行に設けられる支持部材を備えると共に、回転軸及び第3分割ブレードは、互いに平行に構成されることにより、第1中間ヒンジの位置が内外に変動するのを抑制でき、第1ヒンジの位置を変更するだけでブレードの掃過面積、有効回転半径、上反角、及び下反角等の調節を行うことできる。つまり、第1分割ブレード、第2分割ブレード、第3分割ブレード、及び回転軸の4辺に対し4つのヒンジを設けることにより発生する不静定構造を解消できる。
 ちなみに、第1ヒンジに対し第2ヒンジの位置を変更するときには、回転軸に対し第2中間ヒンジを支持し、かつ第1分割ブレードと平行に設けられる支持部材を備えると共に、回転軸及び第3分割ブレードは、互いに平行に構成されることにより、第2中間ヒンジの位置が内外に変動するのを抑制できる。
When the blade is divided into three, the first divided blade and the third divided blade are connected by the first intermediate hinge, and the second divided blade and the third divided blade are connected by the second intermediate hinge, the first divided blade, Since four hinges are provided for the second divided blade, the third divided blade, and the four sides of the rotating shaft, an indefinite structure is obtained. In other words, if the position of the first hinge is changed with respect to the second hinge, the first intermediate hinge is positioned outside the second intermediate hinge or positioned inside the second intermediate hinge. . Therefore, the first intermediate hinge is supported with respect to the rotation shaft, and a support member provided in parallel with the second divided blade is provided, and the rotation shaft and the third divided blade are configured in parallel with each other, so that the first It is possible to prevent the position of the intermediate hinge from moving in and out, and it is possible to adjust the sweep area of the blade, the effective turning radius, the upper angle, the lower angle, and the like only by changing the position of the first hinge. That is, it is possible to eliminate the statically indeterminate structure generated by providing four hinges for the four sides of the first divided blade, the second divided blade, the third divided blade, and the rotating shaft.
Incidentally, when the position of the second hinge is changed with respect to the first hinge, the second intermediate hinge is supported with respect to the rotating shaft, and the supporting member is provided in parallel with the first divided blade, and the rotating shaft and the third hinge are provided. Since the split blades are configured in parallel with each other, the position of the second intermediate hinge can be prevented from changing inward and outward.
 また、前記第1ヒンジ及び前記第2ヒンジが互いに離間するにつれて、前記ブレードが前記回転軸に接近し、前記ブレードは、前記回転軸の近傍であって、前記回転軸に対し略平行な状態に折り畳み可能に構成されるようにするのが好ましい。 Further, as the first hinge and the second hinge are separated from each other, the blade approaches the rotating shaft, and the blade is in the vicinity of the rotating shaft and substantially parallel to the rotating shaft. It is preferable to be configured to be foldable.
 かかる構成によれば、第1ヒンジ及び第2ヒンジが互いに離間するにつれて、ブレードが回転軸に接近し、当該ブレードは、回転軸の近傍であって、回転軸に対し略平行な状態に折り畳み可能に構成されることにより、過大な風速・流速に対し好適に対応することができる。また、水上の風車や水車に本発明を適用した場合には、設置現場への運搬作業、設置作業、撤去作業等の際には、折り畳んでおくことができるため、陸上であらかじめブレードを組み上げておくことが容易に可能になり、現地でのクレーン船作業が不要となるため、コストの低減を図りつつ、管理作業が容易になる。 According to such a configuration, as the first hinge and the second hinge are separated from each other, the blade approaches the rotating shaft, and the blade can be folded in the vicinity of the rotating shaft and substantially parallel to the rotating shaft. By being configured in this way, it is possible to suitably cope with an excessive wind speed / flow velocity. In addition, when the present invention is applied to a windmill or water turbine on the water, it can be folded during transportation work, installation work, removal work, etc. to the installation site. This makes it easy to set up and eliminates the need for on-site crane boat work, thus facilitating management work while reducing costs.
 また、前記回転軸に設けられ、前記ブレードが折り畳まれる際に前記ブレードを吸着固定する磁石を更に備えた構成とするのが好ましい。 Further, it is preferable to further include a magnet provided on the rotary shaft and for attracting and fixing the blade when the blade is folded.
 かかる構成によれば、ブレードを吸着固定する磁石を、回転軸に設けることにより、ブレードを折り畳む際に、ブレードを吸着固定できるため、ブレードを安定して固定支持できる。また、ブレードの振動による破損等を防止することができる。更に、磁石として電磁石を使用すれば、ブレードを再展開する際には遠隔操作によって電磁力を切ることができるため、ブレードに過大な負担をかけることを回避できる。 According to such a configuration, by providing the magnet for attracting and fixing the blade on the rotating shaft, the blade can be attracted and fixed when the blade is folded, so that the blade can be stably fixed and supported. Further, it is possible to prevent damage due to vibration of the blade. Furthermore, if an electromagnet is used as the magnet, the electromagnetic force can be cut off by remote operation when the blade is re-deployed, so that an excessive burden on the blade can be avoided.
 本発明によれば、風向・流向に応じた調整をなんら必要としないままに、簡易な構造で広い設計範囲の風速・流速に対応できる揚力型ブレードを用いた流体力利用構造を提供することができる。
 また、水上の風車や水車にあっては、設置現場への搬入、設置から撤去までの作業においても、クレーン船を必要としない流体力利用構造を提供することができる。
According to the present invention, it is possible to provide a fluid force utilization structure using a lift type blade that can handle wind speed and flow velocity in a wide design range with a simple structure without requiring any adjustment according to wind direction and flow direction. it can.
Moreover, in the case of a wind turbine or a water turbine on the water, it is possible to provide a fluid force utilization structure that does not require a crane ship even in operations from loading to installation site and installation to removal.
(a)は、本発明の第1の実施形態に係る垂直軸風車の展開状態を示す側面図であり、(b)は、(a)の平面図であり、(c)は、水車の断面図である。(A) is a side view which shows the expansion | deployment state of the vertical axis windmill which concerns on the 1st Embodiment of this invention, (b) is a top view of (a), (c) is a cross section of a water turbine FIG. 本発明の第1の実施形態に係る垂直軸風車の折り畳み状態を示す側面図である。It is a side view which shows the folding state of the vertical axis windmill which concerns on the 1st Embodiment of this invention. アッセンブリと浮体の連結部を拡大して示した断面図であり、(a)は正立時、(b)は傾斜時、の状態をそれぞれ示している。It is sectional drawing which expanded and showed the connection part of an assembly and a floating body, (a) has shown the state at the time of erecting, and (b) at the time of inclination, respectively. スプラインナットを一部破断して示す側面図である。It is a side view showing a spline nut partly broken. (a)は、上支柱に対するブレードの係合状態を示す側面図であり、(b)は、(a)の平面図である。(A) is a side view which shows the engagement state of the braid | blade with respect to an upper support | pillar, (b) is a top view of (a). 上支柱からブレードを抜脱する際の手順を示す側面図である。It is a side view which shows the procedure at the time of removing a braid | blade from an upper support | pillar. (a)は、上支柱からブレードを抜脱する際の手順を示す側面図であり、(b)は、(a)の平面図である。(A) is a side view which shows the procedure at the time of removing a braid | blade from an upper support | pillar, (b) is a top view of (a). (a)は、上支柱からブレードを抜脱する際の手順を示す側面図であり、(b)は、(a)の平面図である。(A) is a side view which shows the procedure at the time of removing a braid | blade from an upper support | pillar, (b) is a top view of (a). (a)は、上支柱からブレードを抜脱する際の手順を示す側面図であり、(b)は、(a)の平面図である。(A) is a side view which shows the procedure at the time of removing a braid | blade from an upper support | pillar, (b) is a top view of (a). ブレードを吊り降ろす際の手順を示す側面図である。It is a side view which shows the procedure at the time of hanging a braid | blade. ブレードを吊り降ろす際の手順を示す側面図である。It is a side view which shows the procedure at the time of hanging a braid | blade. ブレードを吊り降ろす際の手順を示す側面図である。It is a side view which shows the procedure at the time of hanging a braid | blade. 変形例に係る垂直軸風車の展開状態を示す側面図である。It is a side view which shows the expansion | deployment state of the vertical axis windmill which concerns on a modification. (a)は、変形例に係る垂直軸風車の折り畳み状態を示す側面図であり、(b)は、変形例に係る垂直軸風車を図13の状態から更に展開した状態を示す側面図である。(A) is a side view which shows the folding state of the vertical axis windmill which concerns on a modification, (b) is a side view which shows the state which further expanded the vertical axis windmill which concerns on the modification from the state of FIG. . 他の変形例に係る垂直軸風車を示す部分拡大側面図であり、(a)は、垂直軸風車の展開状態を示す部分拡大側面図であり、(b)は、垂直軸風車の折り畳み状態を示す部分拡大側面図であり、(c)は、垂直軸風車を(a)の状態から更に展開した状態を示す部分拡大側面図である。It is the partial expansion side view which shows the vertical axis windmill which concerns on another modification, (a) is the partial expansion side view which shows the expansion | deployment state of a vertical axis windmill, (b) is the folding state of a vertical axis windmill. It is the partial expanded side view shown, (c) is a partial expanded side view which shows the state which expand | deployed the vertical axis windmill further from the state of (a). 他の変形例に係る垂直軸風車を示す部分拡大側面図であり、(a)は、垂直軸風車の中立状態を示す部分拡大側面図であり、(b)は、垂直軸風車の折り畳み状態を示す部分拡大側面図であり、(c)は、垂直軸風車を(a)の状態から更に展開した状態を示す部分拡大側面図である。It is the partial expansion side view which shows the vertical axis windmill which concerns on another modification, (a) is the partial expansion side view which shows the neutral state of a vertical axis windmill, (b) is the folding state of a vertical axis windmill. It is the partial expanded side view shown, (c) is a partial expanded side view which shows the state which expand | deployed the vertical axis windmill further from the state of (a). 本発明の第2の実施形態に係る垂直軸風車の展開状態を示す側面図である。It is a side view which shows the expansion | deployment state of the vertical axis windmill which concerns on the 2nd Embodiment of this invention. 図17に示す垂直軸風車の上部側の構成を示す部分拡大側面図である。It is a partial expanded side view which shows the structure of the upper part side of the vertical axis windmill shown in FIG. (a)は、図17のB-B線断面図であり、(b)は、図17に示す垂直軸風車の下部側の構成を示す部分拡大断面図である。(A) is a cross-sectional view taken along the line BB of FIG. 17, and (b) is a partially enlarged cross-sectional view showing the configuration of the lower side of the vertical axis wind turbine shown in FIG. (a)は、第2の実施形態に係る垂直軸風車の折り畳み状態を示す側面図であり、(b)は、第2の実施形態に係る垂直軸風車を図18の状態から更に展開した状態を示す側面図である。(A) is a side view which shows the folding state of the vertical axis windmill which concerns on 2nd Embodiment, (b) is the state which expand | deployed further the vertical axis windmill which concerns on 2nd Embodiment from the state of FIG. FIG. (a)は、第2の実施形態の変形例に係る上支柱に対する第1支持部材の係合状態を示す側面図である。(A) is a side view which shows the engagement state of the 1st support member with respect to the upper support | pillar which concerns on the modification of 2nd Embodiment. 上支柱から第1支持部材を抜脱する際の手順を示す側面図である。It is a side view which shows the procedure at the time of removing the 1st supporting member from an upper support | pillar. 比較例1として、水平軸風車を浮体に載せた場合の傾斜と復元力の関係を模式的に示した図である。It is the figure which showed typically the relationship between the inclination at the time of mounting a horizontal axis windmill on a floating body as a comparative example 1, and a restoring force. 比較例2として、垂直軸風車を浮体に載せた場合の傾斜と復元力の関係を模式的に示した図である。It is the figure which showed typically the relationship between the inclination at the time of mounting a vertical axis windmill on a floating body, and restoring force as the comparative example 2. FIG.
 本発明の実施形態について、図面を参照して詳細に説明する。説明において、同一の要素には同一の符号を付し、重複する説明は省略する。
 なお、本実施形態では、本発明の流体力利用構造物を洋上用の垂直軸風車に適用する場合について説明するが、流体力利用構造物の使用目的を限定するものではない。
Embodiments of the present invention will be described in detail with reference to the drawings. In the description, the same elements are denoted by the same reference numerals, and redundant description is omitted.
In addition, although this embodiment demonstrates the case where the fluid force utilization structure of this invention is applied to the offshore vertical axis windmill, the intended purpose of the fluid force utilization structure is not limited.
《第1の実施形態》
 図1(a)は、本発明の第1の実施形態に係る垂直軸風車100の展開状態を示す側面図であり、(b)は、(a)の平面図であり、(c)は、水車の断面図である。図2は、本発明の第1の実施形態に係る垂直軸風車100の折り畳み状態を示す側面図である。図3は、アッセンブリ10と浮体20の連結部を拡大して示した断面図であり、(a)は正立時、(b)は傾斜時、の状態をそれぞれ示している。図4は、スプラインナット42を一部破断して示す側面図である。図5(a)は、上支柱40に対するブレード60の係合状態を示す側面図であり、(b)は、(a)の平面図である。
 図1(a)に示すように、垂直軸風車100は、揚力型の垂直軸風車の一種であるダリウス型風車であって、風からエネルギーを取り出すアッセンブリ10と、アッセンブリ10を揺動可能に支持する浮体20と、を備える。
 なお、アッセンブリ10を浮体20に揺動可能に支持する支持構造としては、ピンジョイント、ユニバーサルジョイント、球面支持、弾性体支持等が考えられる。以下では、弾性体支持構造を採用した場合を例にとって説明する。
<< First Embodiment >>
Fig.1 (a) is a side view which shows the expansion | deployment state of the vertical axis windmill 100 which concerns on the 1st Embodiment of this invention, (b) is a top view of (a), (c) is It is sectional drawing of a water wheel. FIG. 2 is a side view showing a folded state of the vertical axis wind turbine 100 according to the first embodiment of the present invention. FIG. 3 is an enlarged cross-sectional view of the connecting portion between the assembly 10 and the floating body 20, wherein (a) shows a state when it is upright and (b) shows a state when it is inclined. FIG. 4 is a side view showing the spline nut 42 partially broken. FIG. 5A is a side view showing an engaged state of the blade 60 with the upper support column 40, and FIG. 5B is a plan view of FIG.
As shown in FIG. 1A, a vertical axis wind turbine 100 is a Darrieus type wind turbine that is a kind of a lift type vertical axis wind turbine, and an assembly 10 that extracts energy from the wind and a swingable support of the assembly 10. The floating body 20 is provided.
In addition, as a support structure which supports the assembly 10 to the floating body 20 so that rocking | fluctuation is possible, a pin joint, a universal joint, a spherical surface support, an elastic body support etc. can be considered. Hereinafter, a case where an elastic body support structure is employed will be described as an example.
 アッセンブリ10は、支柱30と、ブレード60と、揚降手段70(図6、図7(a)参照)と、サボニウス型水車80と、を備える。 The assembly 10 includes a column 30, a blade 60, a lifting / lowering means 70 (see FIGS. 6 and 7A), and a Savonius type water wheel 80.
<支柱>
 支柱30は、上支柱40と、下支柱50と、その中間に設けられた球形部31(図3参照)と、を有する。
<Support>
The support column 30 includes an upper support column 40, a lower support column 50, and a spherical portion 31 (see FIG. 3) provided in the middle thereof.
<上支柱>
 回転軸たる上支柱40は、図1(a)及び図2に示すように、浮体20に対し垂直軸周りに回転可能に連結され、ブレード60を支持する円筒状の部材である。
 上支柱40の外周面には、上ブラケット41と、スプラインナット42と、下ブラケット43と、が設けられる。
<Upper column>
As shown in FIG. 1A and FIG. 2, the upper support column 40 that is a rotation axis is a cylindrical member that is rotatably connected to the floating body 20 around the vertical axis and supports the blade 60.
An upper bracket 41, a spline nut 42, and a lower bracket 43 are provided on the outer peripheral surface of the upper support column 40.
 上ブラケット41は、上支柱40の上端側外周に設けられ、後記する上ブレード61を上支柱40に連結する部材である。上ブラケット41は、図5(a),(b)に示すように、3つの連結部41a,41aと、3つの取付部41b,41bと、を有する。 The upper bracket 41 is a member that is provided on the outer periphery on the upper end side of the upper support column 40 and connects an upper blade 61 described later to the upper support column 40. As shown in FIGS. 5A and 5B, the upper bracket 41 has three connecting portions 41a and 41a and three attachment portions 41b and 41b.
 連結部41aは、上支柱40の外周面に溶接等で固定された板状部分である。連結部41aは、上支柱40の周方向に等角度離間して設けられる。連結部41aは、上支柱40の外周面から径方向外側に突出するように設けられる。 The connecting portion 41a is a plate-like portion fixed to the outer peripheral surface of the upper support column 40 by welding or the like. The connecting portions 41 a are provided at equal angular intervals in the circumferential direction of the upper support column 40. The connecting portion 41 a is provided so as to protrude radially outward from the outer peripheral surface of the upper support column 40.
 取付部41bは、上ブレード61が取り付けられる部分である。取付部41bは、上下端が開口し、隣り合う連結部41a,41aの外端から径方向外側に突出して略平行に延在する一対の板状部分から成る。取付部41bは、連結部41a寄りの幅広部41b1と、幅広部41b1よりも幅狭の幅狭部41b2と、幅広部41b1及び幅狭部41b2を繋ぐ段差部41b3と、を有する。幅狭部41b2には、略J字状の一対の凹部41b4,41b4が形成される。凹部41b4は、上側に開口し、下側から上側に向かうにつれて上支柱40側に傾斜する形状を呈する。なお、凹部41b4の形状は、例えば、U字状等に適宜変更してよい。 The attachment part 41b is a part to which the upper blade 61 is attached. The attachment portion 41b is composed of a pair of plate-like portions that are open at the upper and lower ends and project outward in the radial direction from the outer ends of the adjacent connecting portions 41a and 41a and extend substantially in parallel. The attachment part 41b includes a wide part 41b1 closer to the connecting part 41a, a narrow part 41b2 narrower than the wide part 41b1, and a step part 41b3 connecting the wide part 41b1 and the narrow part 41b2. A pair of substantially J-shaped recesses 41b4 and 41b4 are formed in the narrow portion 41b2. The recess 41b4 opens upward, and has a shape that inclines toward the upper support column 40 from the lower side toward the upper side. In addition, you may change suitably the shape of the recessed part 41b4 to a U shape etc., for example.
 移動部材たるスプラインナット42は、図4に示すように、上支柱40に沿って上下方向に移動可能に構成された部材である。スプラインナット42の内周面及び上支柱40の外周面の間には、空隙44が形成される。本実施形態では、作動油や水等を空隙44に導入又は空隙44から排出し、油圧や水圧を適宜調節することにより、スプラインナット42の上下移動が制御可能に構成される。 The spline nut 42 as a moving member is a member configured to be movable in the vertical direction along the upper support column 40 as shown in FIG. A gap 44 is formed between the inner peripheral surface of the spline nut 42 and the outer peripheral surface of the upper support column 40. In the present embodiment, the vertical movement of the spline nut 42 can be controlled by introducing hydraulic oil, water, or the like into the gap 44 or discharging it from the gap 44 and appropriately adjusting the hydraulic pressure or the water pressure.
 下ブラケット43は、スプラインナット42を介して上支柱40の下端側外周に設けられ、下ブレード62を上支柱40に連結する部材である。下ブラケット43は、スプラインナット42の上下移動に応じて上下方向に移動可能に構成される。下ブラケット43は、上ブラケット41と略上下対称形状を呈し、水平方向に貫通する孔部43aを有する。 The lower bracket 43 is a member that is provided on the outer periphery on the lower end side of the upper column 40 via the spline nut 42 and connects the lower blade 62 to the upper column 40. The lower bracket 43 is configured to be movable in the vertical direction according to the vertical movement of the spline nut 42. The lower bracket 43 has a substantially vertical symmetrical shape with the upper bracket 41 and has a hole 43a penetrating in the horizontal direction.
<下支柱>
 図1(c)に戻り、下支柱50は、サボニウス型水車80を支持する部材である。図3(a),(b)に示すように、下支柱50は、浮体20の略中央に設けられた開口部20aに、浮体20を貫通するように設置される。
<Lower support>
Returning to FIG. 1C, the lower support 50 is a member that supports the Savonius-type water turbine 80. As shown in FIGS. 3A and 3B, the lower support 50 is installed in the opening 20 a provided at the approximate center of the floating body 20 so as to penetrate the floating body 20.
<球形部>
 球形部31は、ドーナツ状の下弾性ゴム支承33に載せられ加硫接着されるとともに、上にも同様にドーナツ形状の上弾性ゴム支承34が載せられ加硫接着される。更に両方の弾性ゴム支承33,34の外側端部は、支持架台24の球形内面24aに加硫接着される。球形内面24aは、球形部31と共通の中心をもつ同心球状に形成される。
<Spherical part>
The spherical portion 31 is placed on a donut-shaped lower elastic rubber bearing 33 and vulcanized and bonded, and similarly, a donut-shaped upper elastic rubber bearing 34 is mounted on and vulcanized and bonded. Further, the outer end portions of both elastic rubber supports 33 and 34 are vulcanized and bonded to the spherical inner surface 24 a of the support frame 24. The spherical inner surface 24 a is formed in a concentric spherical shape having a common center with the spherical portion 31.
 両方の弾性ゴム支承33,34は、例えば、ビルの面震支承などに用いられる部材であり、ゴム板と金属板とを球形部31の径方向に積層して構成される。両方の弾性ゴム支承33,34は、剪断力に対しては柔軟に変形するが、圧縮に対しては高剛性であるという特性があるため、球形部31は、上下動、左右動等についてはドーナツ状ゴムの圧縮特性により強固に拘束されるが、球形部31と球形内面24aの中心を回転中心とする回転に関してはドーナツ状ゴムの剪断変形特性により柔軟に支持される。このため、図3(b)に示すように、アッセンブリ10を浮体20に対して揺動可能に支持することができる。 Both elastic rubber bearings 33 and 34 are members used for, for example, building seismic bearings, and are configured by laminating a rubber plate and a metal plate in the radial direction of the spherical portion 31. Since both elastic rubber bearings 33 and 34 are flexibly deformed with respect to a shearing force but have a high rigidity with respect to compression, the spherical portion 31 has a vertical movement, a lateral movement and the like. Although firmly constrained by the compression characteristics of the donut-shaped rubber, the rotation about the center of the spherical portion 31 and the spherical inner surface 24a is flexibly supported by the shear deformation characteristics of the donut-shaped rubber. For this reason, as shown in FIG. 3B, the assembly 10 can be supported so as to be swingable with respect to the floating body 20.
 支持架台24は、アッセンブリ10が設計揺動範囲を超えて揺動しようとしたときに柔軟に受け止めるため、コイルばね21を介して浮体20に連結される。なお、コイルばね21は必要に応じて設ければよく、省略してもよい。 The support frame 24 is connected to the floating body 20 via the coil spring 21 so as to be flexibly received when the assembly 10 tries to swing beyond the design swing range. The coil spring 21 may be provided as necessary and may be omitted.
 ここで、図3(a),(b)を参照して、上支柱40、下支柱50、及び球形部31の構造について詳細に説明する。
 上支柱40は、その下端部において連結部材32の上部とテーパーシャンクで一体に結合されている。連結部材32の下端側は、下支柱50の上端部に挿入されて回転可能に連結されている。また、連結部材32の上端側は、上に向かうほど径が小さくなるテーパ形状に形成されており、上支柱40の下端部に形成された逆テーパ形状の孔部40aに挿入されている。連結部材32の上端部32aにはねじ溝が形成されており、ナットNを締め付けることで連結部材32を介して下支柱50が上支柱40に引き付けられるようになっていて、一体に結合されている。連結部材32と下支柱50との間の適所にはベアリングBが設置されており、互いに相対回転可能になっている。また、下支柱50の上端部のさらに外側には、球形部31が外嵌されている。球形部31と下支柱50の間にはベアリングBが設けられており、互いに相対回転可能になっている。球形部31は、弾性ゴム支承33,34を介して支持架台24に揺動可能に支持されている。これにより、上支柱40と下支柱50と球形部31とが、軸方向に剛な状態で強固に連結されたまま、互いに相対回転可能になるとともに、図3(b)に示すように、浮体20に対して揺動可能になっている。
Here, with reference to FIG. 3 (a), (b), the structure of the upper support | pillar 40, the lower support | pillar 50, and the spherical part 31 is demonstrated in detail.
The upper support column 40 is integrally coupled to the upper portion of the connecting member 32 at the lower end portion thereof by a taper shank. The lower end side of the connecting member 32 is inserted into the upper end portion of the lower support column 50 and is rotatably connected. Further, the upper end side of the connecting member 32 is formed in a tapered shape having a diameter that decreases toward the upper side, and is inserted into a hole 40 a having a reverse tapered shape formed in the lower end portion of the upper support column 40. The upper end portion 32a of the connecting member 32 is formed with a thread groove, and the lower support 50 is attracted to the upper support 40 via the connecting member 32 by tightening the nut N, and is integrally coupled. Yes. A bearing B is installed at an appropriate position between the connecting member 32 and the lower support column 50, and can be rotated relative to each other. Further, a spherical portion 31 is fitted on the outer side of the upper end portion of the lower support column 50. A bearing B is provided between the spherical portion 31 and the lower support column 50 and can rotate relative to each other. The spherical portion 31 is swingably supported by the support frame 24 via elastic rubber supports 33 and 34. As a result, the upper support column 40, the lower support column 50, and the spherical portion 31 can be rotated relative to each other while being firmly connected in a rigid state in the axial direction, and as shown in FIG. 20 is swingable with respect to 20.
 下支柱50の上端部には、上部が開口する円筒形状の円筒部35が形成されている。そして、この円筒部35と連結部材32の間(すなわち上支柱40と下支柱50の間)には、ギアシステム37と発電装置38とが設置されている。 At the upper end of the lower support column 50, a cylindrical part 35 having a cylindrical shape with an upper opening is formed. And between this cylindrical part 35 and the connection member 32 (namely, between the upper support | pillar 40 and the lower support | pillar 50), the gear system 37 and the electric power generating apparatus 38 are installed.
 ギアシステム37は、例えば遊星ギアシステムで構成されており、上支柱40と下支柱50とを同軸逆回転させる機能を有している。ギアシステム37は、連結部材32の周囲に刻設されたサンギア37aと、円筒部35に後記するラチェット機構37dを介して連結されたリングギア37cと、サンギア37aとリングギア37cの間に配置された複数のプラネタリギア37bと、で構成されている。プラネタリギア37bは、図示しないキャリアによって球形部31に対して移動不能に接続されている。これにより、例えば、潮流によってサボニウス型水車80及び下支柱50が上方からみて時計回りに回転を開始すると、ギアシステム37によって、上支柱40及びブレード60が上方から見て反時計回りに回転を開始する(起動する)ことになる。これにより、ブレード60の起動性を向上させることができる。 The gear system 37 is composed of, for example, a planetary gear system, and has a function of rotating the upper support column 40 and the lower support column 50 coaxially in the reverse direction. The gear system 37 is disposed between a sun gear 37a engraved around the connecting member 32, a ring gear 37c connected to the cylindrical portion 35 via a ratchet mechanism 37d, and the sun gear 37a and the ring gear 37c. And a plurality of planetary gears 37b. The planetary gear 37b is movably connected to the spherical portion 31 by a carrier (not shown). Thus, for example, when the Savonius-type turbine 80 and the lower support column 50 start to rotate clockwise as viewed from above due to tidal currents, the upper prop 40 and the blade 60 start to rotate counterclockwise as viewed from above by the gear system 37. Will be activated. Thereby, the startability of the blade 60 can be improved.
 また、ギアシステム37は、下支柱50の回転を増速して上支柱40に伝達する増速装置としての機能も有している。例えば、遊星ギアシステムのギア比を調節することにより、サボニウス型水車80(すなわちリングギア37c)が1回転したときに、上支柱40及びブレード60(すなわちサンギア37a)が複数回(例えば8回)回転するように設定することができる。これにより、風車の設計回転速度と水車の設計回転速度を、風速と流速に合わせて、それぞれ適切に設定することができる。 The gear system 37 also has a function as a speed increasing device for increasing the rotation of the lower support 50 and transmitting it to the upper support 40. For example, by adjusting the gear ratio of the planetary gear system, when the Savonius type water wheel 80 (that is, the ring gear 37c) makes one rotation, the upper support column 40 and the blade 60 (that is, the sun gear 37a) are moved a plurality of times (for example, eight times). Can be set to rotate. Thereby, the design rotational speed of a windmill and the design rotational speed of a water turbine can each be set appropriately according to a wind speed and a flow velocity.
 ラチェット機構37dは、所定条件の下で上支柱40の回転を下支柱50に伝達しない機能を有している。具体的には、サボニウス型水車80が停止状態から回転を開始すると、サボニウス型水車80の回転は、ラチェット機構37dを介してリングギア37cに伝達され、リングギア37cの回転に伴ってサンギア37aに連結された上支柱40及びブレード60がサボニウス型水車80と逆方向に8倍の速さで回転を開始する。そして、上支柱40及びブレード60が、風力によってサボニウス型水車80の8倍以上の速度(すなわちサボニウス型水車80の増速後の回転速度以上)で回転するようになると、ラチェット機構37dに対してリングギア37cが空回りする。これにより、上支柱40及びブレード60の回転がサボニウス型水車80に伝達されなくなる。よって、サボニウス型水車80が、上支柱40及びブレード60の負荷(ブレーキ)になることがない。 The ratchet mechanism 37d has a function of not transmitting the rotation of the upper support column 40 to the lower support column 50 under a predetermined condition. Specifically, when the Savonius type turbine 80 starts to rotate from a stopped state, the rotation of the Savonius type turbine 80 is transmitted to the ring gear 37c via the ratchet mechanism 37d, and to the sun gear 37a along with the rotation of the ring gear 37c. The connected upper support column 40 and blade 60 start rotating at a speed eight times in the reverse direction to the Savonius type turbine 80. When the upper support column 40 and the blade 60 are rotated at a speed that is eight times or more that of the Savonius type turbine 80 by wind power (that is, the rotational speed after the speed increase of the Savonius type turbine 80), the upper strut 40 and the blade 60 are moved against the ratchet mechanism 37d. The ring gear 37c is idle. Thereby, the rotation of the upper support column 40 and the blade 60 is not transmitted to the Savonius type water turbine 80. Therefore, the Savonius type turbine 80 does not become a load (brake) of the upper support column 40 and the blade 60.
 円筒部35の内部であってギアシステム37の下方には、ローター38aとステーター38bとを有する発電装置38が設置されている。ローター38aは、連結部材32に固定されており、ステーター38bは、円筒部35に固定されている。これにより、発電装置38は、ローター38aとステーター38bとが逆回転するので、両者の差速によって効率よく発電することができる。
 このとき、ローター38aとステーター38bとの間で反トルクが作用するが、ローター38a及びステーター38bは、逆回転する上支柱40及び下支柱50にそれぞれ固定されているので、反トルクが打ち消される。そのため、浮体20の回転を防止するための係留設備の簡略化、小型化を図ることができる。
Inside the cylindrical portion 35 and below the gear system 37, a power generator 38 having a rotor 38a and a stator 38b is installed. The rotor 38 a is fixed to the connecting member 32, and the stator 38 b is fixed to the cylindrical portion 35. Thereby, since the rotor 38a and the stator 38b rotate reversely, the electric power generating apparatus 38 can generate electric power efficiently by the differential speed between them.
At this time, a counter torque acts between the rotor 38a and the stator 38b, but the rotor 38a and the stator 38b are respectively fixed to the upper column 40 and the lower column 50 that rotate in reverse, so the counter torque is canceled out. Therefore, the mooring equipment for preventing the rotation of the floating body 20 can be simplified and downsized.
 なお、本実施形態では、円筒部35と球形部31との間にもラチェット36が設置されている。これにより、例えば潮流が止んでしまっている場合でも、下支柱50が上支柱40と共回りすることなく、発電することができる。 In this embodiment, a ratchet 36 is also provided between the cylindrical portion 35 and the spherical portion 31. Thereby, even when the tidal current has stopped, for example, power can be generated without the lower strut 50 rotating together with the upper strut 40.
<ブレード>
 図1(a),(b)に戻り、ブレード60は、空中に配置されて風を受ける揚力型ブレードであって、上支柱40の周方向に等角度離間して3枚配設される。
 ブレード60は、上端部61aが上ブラケット41に上下方向に回転可能に支持された上ブレード61と、下端部62aが下ブラケット43に上下方向に回転可能に支持された下ブレード62と、上ブレード61及び下ブレード62の間に設けられた中間ヒンジ63と、を有する。この場合、ブレード60は、下ブラケット43を上下に移動させることにより、中間ヒンジ63を中心軸として屈曲され、その回転半径rを変更可能に構成される。
<Blade>
Returning to FIGS. 1A and 1B, the blades 60 are lift-type blades that are arranged in the air and receive wind, and three blades 60 are arranged at equal angular intervals in the circumferential direction of the upper support column 40.
The blade 60 has an upper blade 61 whose upper end portion 61a is supported by the upper bracket 41 so as to be rotatable in the vertical direction, a lower blade 62 whose lower end portion 62a is supported by the lower bracket 43 so as to be rotatable in the vertical direction, and an upper blade. 61 and an intermediate hinge 63 provided between the lower blade 62. In this case, the blade 60 is configured to be bent with the intermediate hinge 63 as a central axis by moving the lower bracket 43 up and down, and the rotation radius r thereof can be changed.
<上ブレード>
 上ブレード61は、上ブラケット41を介して、上支柱40に対し上下方向に回転可能に連結される部分である。図5(a),(b)に示すように、上ブレード61の上端部61aには、上ブラケット41の凹部41b4に係合可能な水平ピン61bが他の部位よりも水平方向に延出して設けられる。水平ピン61bの幅寸法は、幅広部41b1の幅寸法よりも小さく形成される一方、幅狭部41b2の幅寸法よりも大きく形成される。上ブレード61は、水平ピン61bを中心軸として上下方向に回転する。水平ピン61b及び凹部41b4が第1ヒンジH1を構成する。
<Upper blade>
The upper blade 61 is a part that is connected to the upper support column 40 via the upper bracket 41 so as to be rotatable in the vertical direction. As shown in FIGS. 5A and 5B, a horizontal pin 61 b that can be engaged with the recess 41 b 4 of the upper bracket 41 extends in the horizontal direction at the upper end portion 61 a of the upper blade 61 more than the other portions. Provided. The width dimension of the horizontal pin 61b is formed smaller than the width dimension of the wide part 41b1, while being formed larger than the width dimension of the narrow part 41b2. The upper blade 61 rotates in the vertical direction with the horizontal pin 61b as the central axis. The horizontal pin 61b and the recess 41b4 constitute the first hinge H1.
<下ブレード>
 下ブレード62は、図4に示すように、下ブラケット43を介して、上支柱40に対し上下方向に回転可能に連結される部分である。下ブレード62は、上ブレード61と上下対称形状を呈し、その下端部62aには、下ブラケット43の孔部43aに係合可能な水平ピン62bが他の部位よりも水平方向に延出して設けられる。下ブレード62は、水平ピン62bを中心軸として上下方向に回転する。水平ピン62b及び孔部43aが第2ヒンジH2を構成する。なお、本実施形態の上ブレード61及び下ブレード62は、同一の長さに形成されるが、異なる長さで形成されてもよい。この場合、中間ヒンジ63は、ブレード60の長さ方向の中間部分から上側又は下側に偏心した位置に配置される。
<Lower blade>
As shown in FIG. 4, the lower blade 62 is a portion that is rotatably connected to the upper support column 40 via the lower bracket 43 in the vertical direction. The lower blade 62 has a vertically symmetrical shape with the upper blade 61, and a horizontal pin 62b that can be engaged with the hole 43a of the lower bracket 43 extends in the horizontal direction at the lower end 62a. It is done. The lower blade 62 rotates in the vertical direction about the horizontal pin 62b as a central axis. The horizontal pin 62b and the hole 43a constitute the second hinge H2. In addition, although the upper blade 61 and the lower blade 62 of this embodiment are formed in the same length, they may be formed in different lengths. In this case, the intermediate hinge 63 is arranged at a position eccentric to the upper side or the lower side from the intermediate part in the length direction of the blade 60.
<揚降手段>
 揚降手段70は、図6及び図7に示すように、上支柱40に対しブレード60を揚げ降ろしするための手段であって、保持部材71と、3つのプーリ72,72と、3本のハリヤード73,73と、を有する。
<Elevation means>
As shown in FIGS. 6 and 7, the lifting / lowering means 70 is a means for lifting and lowering the blade 60 with respect to the upper support column 40, and includes a holding member 71, three pulleys 72, 72, and three Halyards 73, 73.
 保持部材71は、上支柱40の内側にあって、上支柱40の上端から出没自在に収容された円筒状の部材である。保持部材71は、図示しない油圧アクチュエータ機構によって、上支柱40に対し上下方向に移動可能に構成される。保持部材71の上端には、保持部材71の内外を連通する切欠部71aが切り欠いて形成される。保持部材71及び油圧アクチュエータ機構は、請求の範囲でいう「移動手段」に相当する。 The holding member 71 is a cylindrical member that is inside the upper column 40 and is accommodated so as to be able to protrude and retract from the upper end of the upper column 40. The holding member 71 is configured to be movable in the vertical direction with respect to the upper support column 40 by a hydraulic actuator mechanism (not shown). At the upper end of the holding member 71, a cutout portion 71 a that communicates the inside and outside of the holding member 71 is cut out. The holding member 71 and the hydraulic actuator mechanism correspond to “moving means” in the claims.
 案内部材たるプーリ72は、ハリヤード73を案内するローラ状部材である。プーリ72は、保持部材71の切欠部71a内に収容され、水平軸周りに回転可能に設けられる。 The pulley 72 as a guide member is a roller-like member that guides the halyard 73. The pulley 72 is accommodated in the notch 71a of the holding member 71, and is provided to be rotatable around the horizontal axis.
 吊り部材たるハリヤード73は、一端が上ブレード61の水平ピン61bに取り付けられ、他端が浮体20のデッキに設置された図示しない巻取装置に巻き取り及び巻き出し可能に取り付けられた線状部材である。ハリヤード73は、プーリ72によって下向きに曲げられ、保持部材71内及び上支柱40内に挿入される。図5に示すように、上支柱40に対しブレード60を吊り上げた状態において、ハリヤード73には、水平ピン61bを下向きに(凹部41b4の内面に接触する側に)引っ張る張力が付与される。これにより、凹部41b4からの水平ピン61bの脱落を防止できる。 The halyard 73 as a suspension member is a linear member having one end attached to the horizontal pin 61b of the upper blade 61 and the other end attached to a winding device (not shown) installed on the deck of the floating body 20 so as to be able to wind and unwind. It is. The halyard 73 is bent downward by the pulley 72 and inserted into the holding member 71 and the upper support column 40. As shown in FIG. 5, in the state where the blade 60 is lifted from the upper support column 40, tension is applied to the halyard 73 to pull the horizontal pin 61b downward (to the side in contact with the inner surface of the recess 41b4). As a result, it is possible to prevent the horizontal pin 61b from falling off from the recess 41b4.
<サボニウス型水車>
 図1(a)に戻り、サボニウス型水車80は、アッセンブリ10の重心を水面下に配置するためのバラストとしての機能を兼ねるものであり、その上端部を下支柱50に支持される。サボニウス型水車80は、図1(c)に示すように、円筒体を軸方向に半割りした形状のブレード81,81を備える。2つのブレード81,81は、分割面に沿って互いにずらした形状に結合されている。サボニウス型水車80は、ブレード81,81に囲まれた空間81aを潮流が通過することによって回転する。サボニウス型水車80は、このようなブレード81,81を上下に2段重ねて、互いに90度ずつ位相をずらして配置した構造となっている。
<Savonius type turbine>
Returning to FIG. 1A, the Savonius type turbine 80 also functions as a ballast for disposing the center of gravity of the assembly 10 below the water surface, and the upper end portion thereof is supported by the lower support column 50. As shown in FIG. 1C, the Savonius type water turbine 80 includes blades 81 and 81 having a shape obtained by dividing a cylindrical body in the axial direction. The two blades 81 and 81 are coupled in a shape shifted from each other along the dividing surface. The Savonius-type water turbine 80 rotates when the tidal current passes through the space 81a surrounded by the blades 81 and 81. The Savonius-type water turbine 80 has such a structure that the blades 81 and 81 are stacked in two stages in the vertical direction and are shifted by 90 degrees from each other.
 サボニウス型水車80は、支柱30の揺動中心からサボニウス型水車80の重心までの距離とサボニウス型水車80の水中質量との積が、支柱30の揺動中心から上支柱40及びブレード60の重心までの距離と上支柱40及びブレード60の空中質量との積よりも大きくなるように、例えば配置、寸法、質量などが設定されている。これにより、サボニウス型水車80がバラストとしても機能し、アッセンブリ10の重心が水面下に配置され、復元力を得ることができる。 In the Savonius type turbine 80, the product of the distance from the center of swing of the support column 30 to the center of gravity of the Savonius type turbine wheel 80 and the underwater mass of the Savonius type turbine wheel 80 is the center of gravity of the upper support 40 and the blade 60 from the center of swing of the support 30. For example, the arrangement, dimensions, mass, and the like are set so as to be larger than the product of the distance up to and the air mass of the upper support column 40 and the blade 60. Thereby, the Savonius type | mold water wheel 80 functions also as a ballast, the gravity center of the assembly 10 is arrange | positioned under the water surface, and a restoring force can be acquired.
<浮体>
 浮体20は、海面に浮遊する部材である。浮体20の開口部20aは、図3(a),(b)に示すように、下方に向かうほど内径が大きくなるテーパ形状に形成される。開口部20aの上部には、支柱30を支持するための支持架台24が架設される。なお、浮体20は、係留索22(図1(a)参照)によって図示しないアンカーに連結される。また、浮体20は、係留索22を固定するためのチェーンストッパ23を有する。
<Floating body>
The floating body 20 is a member that floats on the sea surface. As shown in FIGS. 3A and 3B, the opening 20a of the floating body 20 is formed in a tapered shape having an inner diameter that increases toward the bottom. A support frame 24 for supporting the support column 30 is installed on the upper portion of the opening 20a. The floating body 20 is connected to an anchor (not shown) by a mooring line 22 (see FIG. 1A). The floating body 20 has a chain stopper 23 for fixing the mooring line 22.
 本発明の実施形態に係る垂直軸風車100は、基本的には以上のように構成されるものであり、次に、図1、図2、及び図4を参照して、垂直軸風車100のブレード60の動作について説明する。 The vertical axis wind turbine 100 according to the embodiment of the present invention is basically configured as described above. Next, with reference to FIGS. 1, 2, and 4, the vertical axis wind turbine 100 The operation of the blade 60 will be described.
 はじめに、作動油や水等を空隙44に導入し、スプラインナット42を上支柱40に沿って上側に移動させると、下ブラケット43が上側に移動する(図4参照)。 First, when hydraulic oil or water is introduced into the gap 44 and the spline nut 42 is moved upward along the upper support column 40, the lower bracket 43 is moved upward (see FIG. 4).
 このとき、下ブレード62は、水平ピン62bを中心軸として下側に回転する。また、この下ブレード62の回転に伴って、中間ヒンジ63が上支柱40から離間すると共に、上ブレード61は、水平ピン61bを中心軸として上側に回転する(図1、図2参照)。 At this time, the lower blade 62 rotates downward with the horizontal pin 62b as the central axis. As the lower blade 62 rotates, the intermediate hinge 63 moves away from the upper support column 40, and the upper blade 61 rotates upward with the horizontal pin 61b as the central axis (see FIGS. 1 and 2).
 そして、ブレード60は、中間ヒンジ63が外側に張り出し、水平方向に広がった横長形状になり、上ブレード61の下反角及び下ブレード62の上反角が小さくなる。 The blade 60 has a horizontally long shape in which the intermediate hinge 63 projects outward and spreads in the horizontal direction, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are reduced.
 一方、作動油や水等を空隙44から排出し、スプラインナット42を上支柱40に沿って下側に移動させると、下ブラケット43が下側に移動する(図4参照)。 On the other hand, when the hydraulic oil or water is discharged from the gap 44 and the spline nut 42 is moved downward along the upper support column 40, the lower bracket 43 moves downward (see FIG. 4).
 このとき、下ブレード62は、水平ピン62bを中心軸として上側に回転する。また、この下ブレード62の回転に伴って、中間ヒンジ63が上支柱40に接近すると共に、上ブレード61は、水平ピン61bを中心軸として下側に回転する(図1、図2参照)。 At this time, the lower blade 62 rotates upward with the horizontal pin 62b as the central axis. As the lower blade 62 rotates, the intermediate hinge 63 approaches the upper support column 40, and the upper blade 61 rotates downward about the horizontal pin 61b (see FIGS. 1 and 2).
 そして、ブレード60は、上下方向に広がった縦長形状になり、上ブレード61の下反角及び下ブレード62の上反角が大きくなる。 The blade 60 has a vertically long shape that spreads in the vertical direction, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are increased.
 更に、下ブラケット43が浮体20近傍まで移動すると、ブレード60は直線状にかつ上支柱40と略平行に延在する状態になり、折り畳まれることとなる(図2参照)。 Further, when the lower bracket 43 moves to the vicinity of the floating body 20, the blade 60 extends in a straight line and substantially parallel to the upper support column 40 and is folded (see FIG. 2).
 すなわち、上ブラケット41に対し下ブラケット43を接近させていくと、上ブレード61の下反角及び下ブレード62の上反角が段々大きくなる一方、上ブラケット41に対し下ブラケット43を離間させていくと、上ブレード61の下反角及び下ブレード62の上反角が段々小さくなる。
 つまり、上ブラケット41に対する下ブラケット43の位置を変化させることにより、ブレード60の形状を自在に変化させることができる。
That is, as the lower bracket 43 approaches the upper bracket 41, the lower angle of the upper blade 61 and the upper angle of the lower blade 62 gradually increase, while the lower bracket 43 is separated from the upper bracket 41. As a result, the lower angle of the upper blade 61 and the upper angle of the lower blade 62 become gradually smaller.
That is, the shape of the blade 60 can be freely changed by changing the position of the lower bracket 43 with respect to the upper bracket 41.
 この場合、風速が遅いときには、ブレード60を縦長形状にし、上ブレード61の下反角及び下ブレード62の上反角を小さくすることにより、それぞれに発生する揚力を効率良く回転力として利用できると共に、回転半径rが小さくなるため、風速の割に回転数を増加させることができる。 In this case, when the wind speed is slow, the blade 60 is formed in a vertically long shape, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are reduced, so that the lift generated can be efficiently used as the rotational force. Since the rotation radius r is small, the number of rotations can be increased for the wind speed.
 一方、風速が速いときには、ブレード60を横長形状にし、上ブレード61の下反角及び下ブレード62の上反角を大きくすることにより、横からの風速をブレード60に迎角を与える成分として利用できる割合を下げ、理想的な迎角を得るために必要な前進速度、即ち周速度を落とすと共に、平均回転半径rが大きくなるため、その周速度に対して必要な回転数を更に減少させ、従って風速の割に回転数を減少させブレード60にかかる遠心力を減じて保護することができる。 On the other hand, when the wind speed is high, the blade 60 is formed in a horizontally long shape, and the lower angle of the upper blade 61 and the upper angle of the lower blade 62 are increased, whereby the wind speed from the side is used as a component that gives the blade 60 an angle of attack. The forward speed required to obtain an ideal angle of attack, that is, the peripheral speed is decreased, and the average rotational radius r is increased, so that the number of rotations required for the peripheral speed is further reduced. Therefore, it is possible to protect by reducing the rotational speed for the wind speed and reducing the centrifugal force applied to the blade 60.
 更に、風速が速いとき(例えば、台風等のとき)には、ブレード60を折り畳むことにより、3枚のブレード60,60が互いの後流に入り始めるため、揚力及び発生トルクが低下して、自然に停止することとなる。
 なお、ブレード60の形状がどのような風に最適であるかどうかは、発電装置38のトルク特性も関係するため、ブレード60の形状は、発電装置38の仕様と合わせて適宜設定する。例えば、風速が速いときには平均回転半径rを小さくしてむしろ回転数を上げれば、小型の発電装置(発電機)38であっても大きな発電量に対応させることができる。
Furthermore, when the wind speed is high (for example, in the case of a typhoon or the like), by folding the blade 60, the three blades 60, 60 begin to enter the wake of each other, so that the lift force and generated torque are reduced, It will stop naturally.
Note that the optimum wind shape of the blade 60 is also related to the torque characteristics of the power generation device 38, and therefore the shape of the blade 60 is appropriately set in accordance with the specifications of the power generation device 38. For example, when the wind speed is high, if the average rotation radius r is decreased and the number of rotations is rather increased, even a small power generator (generator) 38 can cope with a large amount of power generation.
 次に、図2を参照して、アンカーハンドリングタグ90を用いて、垂直軸風車100を洋上に設置する場合について説明する。 Next, the case where the vertical axis windmill 100 is installed on the ocean using the anchor handling tag 90 will be described with reference to FIG.
 アンカーハンドリングタグ90は、岸壁で組み立てられた垂直軸風車100を曳航し、係留索22を浮体20に引き込む役割を果たす。アンカーハンドリングタグ90は、船尾に設置されたAフレーム91と、Aフレーム91の上端に配設されたプーリ92と、一端が船体に繋げられ、他端がプーリ92を介して係留索22に繋げられるメインウィンチワイヤ93と、を備える。 The anchor handling tag 90 functions to tow the vertical axis windmill 100 assembled on the quay and to draw the mooring cable 22 into the floating body 20. The anchor handling tag 90 includes an A frame 91 installed at the stern, a pulley 92 disposed at the upper end of the A frame 91, one end connected to the hull, and the other end connected to the mooring line 22 via the pulley 92. Main winch wire 93.
 この場合、はじめに、アンカーハンドリングタグ90は、その船尾を浮体20に向けて舫い、浮体20のチェーンストッパ23の上方にAフレーム91を張り出す。 In this case, first, the anchor handling tag 90 scoops its stern toward the floating body 20 and projects the A frame 91 above the chain stopper 23 of the floating body 20.
 続いて、プーリ92及びチェーンストッパ23を通して、メインウィンチワイヤ93を海側へ繰り出す。
 そして、予めブイによって海面に浮かんでいる係留索22の上端に、メインウィンチワイヤ93を繋げる。
Subsequently, the main winch wire 93 is fed out to the sea side through the pulley 92 and the chain stopper 23.
And the main winch wire 93 is connected to the upper end of the mooring line 22 which has floated on the sea surface beforehand by the buoy.
 このとき、本実施形態では、ブレード60が折り畳まれた状態になっているため、Aフレーム91とブレード60との干渉を回避しつつ、アンカーハンドリングタグ90が垂直軸風車100に接近できることから、係留索22の上端にメインウィンチワイヤ93を繋げる作業を容易に行うことができる。 At this time, in this embodiment, since the blade 60 is in a folded state, the anchor handling tag 90 can approach the vertical axis windmill 100 while avoiding interference between the A frame 91 and the blade 60. The operation | work which connects the main winch wire 93 to the upper end of the rope 22 can be performed easily.
 続いて、メインウィンチワイヤ93によって係留索22を海上側(チェーンストッパ23)に徐々に引き込み、所望の初期張力が係留索22に与えられる位置で、チェーンストッパ23を作動させて係留索22を固定する。 Subsequently, the mooring line 22 is gradually drawn to the sea side (chain stopper 23) by the main winch wire 93, and the mooring line 22 is fixed by operating the chain stopper 23 at a position where a desired initial tension is applied to the mooring line 22. To do.
 なお、この作業は、Aフレーム91を搭載しないアンカーハンドリングタグ90でも可能であるが、船尾よりも外側に張り出すことができるAフレーム91を搭載していれば作業効率を向上させることができる。 Note that this operation can be performed by the anchor handling tag 90 that does not include the A frame 91, but if the A frame 91 that can be extended outward from the stern is mounted, the work efficiency can be improved.
 次に、図6乃至図12を参照して、垂直軸風車100のブレード60の揚げ降ろし作業について説明する。最初に降ろし作業について説明する。 Next, with reference to FIG. 6 to FIG. 12, an operation of lifting and lowering the blade 60 of the vertical axis wind turbine 100 will be described. First, the lowering work will be described.
 はじめに、図6に示すように、油圧アクチュエータ機構によって保持部材71を上側へ移動させ、上支柱40の上端部から外部へ露出させる。
 このとき、プーリ72、凹部41b4の開口面、及び水平ピン61bが直線上になる位置まで保持部材71を移動させる。
First, as shown in FIG. 6, the holding member 71 is moved upward by the hydraulic actuator mechanism, and exposed from the upper end portion of the upper support column 40 to the outside.
At this time, the holding member 71 is moved to a position where the pulley 72, the opening surface of the recess 41b4, and the horizontal pin 61b are on a straight line.
 続いて、図7(a)に示すように、ハリヤード73を巻き取ると、上ブレード61が保持部材71側に引き寄せられ、凹部41b4から水平ピン61bが抜脱する。
 このとき、図7(b)に示すように、水平ピン61bが幅広部41b1の上方に位置するまで上ブレード61を引き寄せる。
Subsequently, as shown in FIG. 7A, when the halyard 73 is wound up, the upper blade 61 is drawn toward the holding member 71 and the horizontal pin 61b is pulled out from the recess 41b4.
At this time, as shown in FIG. 7B, the upper blade 61 is pulled until the horizontal pin 61b is positioned above the wide portion 41b1.
 続いて、図8に示すように、油圧アクチュエータ機構によって保持部材71を下側へ移動させると、水平ピン61bの幅寸法が幅広部41b1の幅寸法よりも小さいため、水平ピン61bが幅広部41b1を通過し、凹部41b4よりも下側に位置する。
 そして、図9に示すように、ハリヤード73を繰り出すと、ブレード60が上支柱40に対し吊り降ろされることとなる。
Subsequently, as shown in FIG. 8, when the holding member 71 is moved downward by the hydraulic actuator mechanism, the horizontal pin 61b is smaller than the wide portion 41b1 and thus the horizontal pin 61b is wide portion 41b1. Is located below the recess 41b4.
Then, as shown in FIG. 9, when the halyard 73 is extended, the blade 60 is suspended from the upper support column 40.
 続いて、図10及び図11に示すように、ハリヤード73を繰り出していくと、ブレード60は、中間ヒンジ63を基点にして屈曲すると共に、水平ピン62bを基点にして下側に回転する。
 このとき、中間ヒンジ63は、円弧状の軌跡を描きつつ移動する(図11の二点差線参照)。そして、下ブレード62及び中間ヒンジ63は、橋梁構造物D上に目線の高さで載置される。
Subsequently, as shown in FIGS. 10 and 11, when the halyard 73 is fed out, the blade 60 bends with the intermediate hinge 63 as a base point and rotates downward with the horizontal pin 62b as a base point.
At this time, the intermediate hinge 63 moves while drawing an arcuate locus (see the two-dot chain line in FIG. 11). The lower blade 62 and the intermediate hinge 63 are placed on the bridge structure D at the height of the line of sight.
 続いて、図12に示すように、ハリヤード73を更に繰り出していくと、上ブレード61は、中間ヒンジ63を基点にして下側に回転する。
 このとき、上ブレード61の水平ピン61bは、円弧状の軌跡を描きつつ移動する(図12中の二点鎖線参照)。そして、上ブレード61は、橋梁構造物D上に目線の高さで載置される。その結果、上ブレード61、中間ヒンジ63、及び下ブレード62は、直線上に配置される。
 以上の工程を経て、ブレード60の降ろし作業が完了する。
Subsequently, as shown in FIG. 12, when the halyard 73 is further extended, the upper blade 61 rotates downward with the intermediate hinge 63 as a base point.
At this time, the horizontal pin 61b of the upper blade 61 moves while drawing an arcuate locus (see a two-dot chain line in FIG. 12). The upper blade 61 is placed on the bridge structure D at the height of the line of sight. As a result, the upper blade 61, the intermediate hinge 63, and the lower blade 62 are arranged on a straight line.
Through the above steps, the operation of lowering the blade 60 is completed.
 一方、ブレード60を揚げる場合は、図12の状態からハリヤード73を巻き取ると、上ブレード61の上端部61aから持ち上がり始め、上ブレード61は、中間ヒンジ63を基点にして上側に回転する。このとき、上ブレード61の水平ピン61bは、円弧状の軌跡を描きつつ移動する(図12中の二点鎖線参照)。 On the other hand, when the blade 60 is lifted, when the halyard 73 is wound up from the state of FIG. 12, the blade 60 starts to lift from the upper end 61 a of the upper blade 61, and the upper blade 61 rotates upward with the intermediate hinge 63 as a base point. At this time, the horizontal pin 61b of the upper blade 61 moves while drawing an arcuate locus (see a two-dot chain line in FIG. 12).
 続いて、上ブレード61及びハリヤード73が直線上になる位置を越えると、中間ヒンジ63が持ち上がり始めると共に、下ブレード62が水平ピン62bを基点にして上側に回転する。
 このとき、中間ヒンジ63は、円弧状の軌跡を描きつつ移動する(図11の二点差線参照)。
Subsequently, when the upper blade 61 and the halyard 73 exceed a straight line, the intermediate hinge 63 starts to lift and the lower blade 62 rotates upward with the horizontal pin 62b as a base point.
At this time, the intermediate hinge 63 moves while drawing an arcuate locus (see the two-dot chain line in FIG. 11).
 そして、ハリヤード73を更に巻き取ると、上ブレード61、中間ヒンジ63、及び下ブレード62は、直線状にかつ上支柱40と略平行に延在する状態になる(図10参照)。
 その後、図5乃至図9と逆の手順で、水平ピン61bを凹部41b4に係合させる。
 以上の工程を経て、ブレード60の揚げ作業が完了する。
When the halyard 73 is further wound, the upper blade 61, the intermediate hinge 63, and the lower blade 62 are in a state of extending linearly and substantially parallel to the upper support column 40 (see FIG. 10).
Then, the horizontal pin 61b is engaged with the recessed part 41b4 in the reverse order of FIG. 5 thru | or FIG.
Through the above steps, the frying operation of the blade 60 is completed.
 以上説明した本実施形態によれば、スプラインナット42を上下に移動させ、上ブラケット41及び下ブラケット43の間隔を調節することにより、ブレード60の中間ヒンジ63が上支柱40に対し接近又は離間し、ブレード60の形が変形して、ブレード60の回転半径rが調節できるため、ブレード60の掃過面積、有効回転半径、上反角、及び下反角等を調節できる。これにより、風向に応じた調整をなんら必要としないままに、簡易な構造で広い設計範囲の風速に対応する揚力型ブレード60を用いた流体力利用構造物を実現できる。
 特に、本実施形態では、ブレード60は、上ブレード61及び下ブレード62の二部材で構成され、上ブレード61及び下ブレード62の間に中間ヒンジ63を設け、中間ヒンジ63を基点として上下に屈曲可能に構成されるため、ブレード60に過大な負担をかけることなく掃過面積、有効回転半径、上反角や下反角等を調節できる。
 更に、ブレード60を、上支柱40の近傍であって上支柱40に対し略平行な状態に折り畳むことにより、過大な風速に対し好適に対応することができる。
According to this embodiment described above, the intermediate hinge 63 of the blade 60 approaches or separates from the upper support column 40 by moving the spline nut 42 up and down and adjusting the distance between the upper bracket 41 and the lower bracket 43. Since the shape of the blade 60 is deformed and the rotation radius r of the blade 60 can be adjusted, the sweep area, the effective rotation radius, the upper angle, the lower angle, and the like of the blade 60 can be adjusted. Thereby, it is possible to realize a fluid force utilization structure using a lift-type blade 60 corresponding to wind speeds in a wide design range with a simple structure without requiring any adjustment according to the wind direction.
In particular, in this embodiment, the blade 60 is composed of two members, an upper blade 61 and a lower blade 62, and an intermediate hinge 63 is provided between the upper blade 61 and the lower blade 62, and is bent up and down with the intermediate hinge 63 as a base point. Since it is configured to be possible, the sweep area, the effective turning radius, the dihedral angle, the dihedral angle, and the like can be adjusted without imposing an excessive burden on the blade 60.
Furthermore, by folding the blade 60 in the vicinity of the upper support column 40 and substantially parallel to the upper support column 40, it is possible to appropriately cope with an excessive wind speed.
 また、本実施形態によれば、スプラインナット42の移動に応じて下ブラケット43が移動するため、上ブラケット41及び下ブラケット43の間隔調整を簡易に行うことができる。 Further, according to the present embodiment, since the lower bracket 43 moves in accordance with the movement of the spline nut 42, the interval adjustment between the upper bracket 41 and the lower bracket 43 can be easily performed.
 また、本実施形態によれば、スプラインナット42を下側に移動させ、上ブラケット41及び下ブラケット43の間隔(第1ヒンジH1及び第2ヒンジH2の間隔)を広げることにより、ブレード60を、上支柱40の近傍であって上支柱40に対し略平行な状態に折り畳むことができる。これにより、陸上であらかじめブレード60を組み上げてからの搬入が容易になるため、水上の設置現場への運搬作業、設置作業、撤去作業等において、現地でのクレーン船作業が不要となることから、コストの低減を図りつつ、管理作業が容易になる。 Further, according to the present embodiment, the blade 60 is moved by moving the spline nut 42 downward and widening the interval between the upper bracket 41 and the lower bracket 43 (the interval between the first hinge H1 and the second hinge H2). It can be folded in the vicinity of the upper support column 40 and substantially parallel to the upper support column 40. This makes it easy to carry in after the blade 60 has been assembled beforehand on land, so that on-site crane ship work is not required for transporting work to the installation site, installation work, removal work, etc. Management work is facilitated while reducing costs.
 また、本実施形態によれば、ハリヤード73を操作することによって、上支柱40に対しブレード60を吊り上げ及び吊り降ろし可能であるため、ブレード60を吊り降ろして、例えば、目線の高さに横たえながらブレード60の取り付け、取り外し、点検、修理、再組み立て等の作業を行うことができる。これにより、高所クレーン、ダイバー、及び水中ロボット等が不要となるため、コストの低減を図りつつ、管理作業が容易になる。 Further, according to the present embodiment, by operating the halyard 73, the blade 60 can be lifted and lowered with respect to the upper support column 40, so that the blade 60 is suspended, for example, while lying at the height of the line of sight. Operations such as attachment, removal, inspection, repair, and reassembly of the blade 60 can be performed. This eliminates the need for an aerial crane, diver, underwater robot, and the like, thus facilitating management work while reducing costs.
 また、本実施形態によれば、上支柱40に対しブレード60を吊り上げたときには、凹部41b4及び水平ピン61bの係合状態を保持可能な位置に、プーリ72を移動させ、かつハリヤード73を巻き取って当該ハリヤード73に水平ピン61bを下向きに引っ張る張力を付与することにより、凹部41b4からの水平ピン61bの脱落を防止できる。
 一方、上支柱40に対しブレード60を吊り降ろすときには、凹部41b4から水平ピン61bを抜脱可能な位置に、プーリ72を移動させ、かつハリヤード73を巻き取ることにより、凹部41b4から水平ピン61bを抜脱でき、ひいては、ブレード60を吊り降ろすことができる。
Further, according to the present embodiment, when the blade 60 is lifted with respect to the upper support column 40, the pulley 72 is moved to a position where the engaged state of the recess 41b4 and the horizontal pin 61b can be maintained, and the halyard 73 is wound up. Thus, by applying tension to the halyard 73 to pull the horizontal pin 61b downward, it is possible to prevent the horizontal pin 61b from falling off the recess 41b4.
On the other hand, when the blade 60 is suspended from the upper support column 40, the pulley 72 is moved to a position where the horizontal pin 61 b can be removed from the recess 41 b 4 and the halyard 73 is wound up, whereby the horizontal pin 61 b is removed from the recess 41 b 4. The blade 60 can be hung down.
 以上、本発明の実施形態について図面を参照して詳細に説明したが、本発明はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although embodiment of this invention was described in detail with reference to drawings, this invention is not limited to this, In the range which does not deviate from the main point of invention, it can change suitably.
 本実施形態では、本発明の流体力利用構造物を洋上用の垂直軸風車に適用した場合について説明したが、本発明はこれに限定されるものではなく、陸上・洋上を問わず、風力発電、風力揚水、水力発電、水力揚水、風力推進船等の垂直軸風車・水車やそれらを利用するすべてのシステムに利用できる。
 この場合、例えば、本発明の流体力利用構造物を水車に適用するときには、第1ヒンジH1によってブレード60の下端部を上下方向に回転可能に支持し、第2ヒンジH2によってブレード60の上端部を上下方向に回転可能に支持する構成とする。つまり、第1ヒンジH1及び第2ヒンジH2の上下位置は、適宜変更してよい。
In this embodiment, the case where the hydrodynamic structure of the present invention is applied to an offshore vertical axis wind turbine has been described. However, the present invention is not limited to this, and wind power generation is possible regardless of whether on land or offshore. It can be used for vertical axis wind turbines and turbines such as wind pumping, hydroelectric power generation, hydropower pumping, and wind propulsion boats, and all systems that use them.
In this case, for example, when the fluid force utilization structure of the present invention is applied to a water turbine, the lower end of the blade 60 is supported by the first hinge H1 so as to be vertically rotatable, and the upper end of the blade 60 is supported by the second hinge H2. Is configured to be rotatably supported in the vertical direction. That is, the vertical positions of the first hinge H1 and the second hinge H2 may be changed as appropriate.
 また、本実施形態では、ブレード60は、中間ヒンジ63を有し、当該中間ヒンジ63を中心軸として屈曲され、その回転半径rを変更可能に構成されたが、中間ヒンジ63を省略し、ブレード60が可撓性を有する構成とし、ブレード60全体が撓むようにして、その回転半径rを変更可能に構成してもよい。 In the present embodiment, the blade 60 has the intermediate hinge 63 and is bent with the intermediate hinge 63 as the central axis so that the rotation radius r can be changed. However, the intermediate hinge 63 is omitted, and the blade 60 may be configured to be flexible, and the entire blade 60 may be bent so that the radius of rotation r can be changed.
 また、上支柱40の適所に、磁石たる永久磁石又は電磁石を設置してもよい。この場合、鋼製の中間ヒンジ63を使用する。このようにすると、ブレード60を折り畳む際に、中間ヒンジ63を介して、ブレード60を吸着固定できるため、ブレード60を安定して固定支持できる。また、ブレード60の振動による破損等を防止することができる。更に、電磁石の場合、ブレード60を再展開する際には遠隔操作によって電磁力を切ることができるため、ブレード60に過大な負担をかけることを回避できる。
 なお、中間ヒンジ63を省略し、ブレード60が可撓性を有する構成とする場合、鋼製のブレード60を使用してブレード60を吸着固定したり、例えばアルミ製や樹脂製のブレード60の表面にスチールプレートを設置(貼着)してブレード60を吸着固定したりしてもよい。
Further, a permanent magnet or an electromagnet as a magnet may be installed at an appropriate position of the upper support column 40. In this case, a steel intermediate hinge 63 is used. In this way, when the blade 60 is folded, the blade 60 can be sucked and fixed via the intermediate hinge 63, so that the blade 60 can be stably fixed and supported. Further, damage due to vibration of the blade 60 can be prevented. Further, in the case of an electromagnet, when the blade 60 is re-deployed, the electromagnetic force can be cut off by remote operation, so that an excessive burden on the blade 60 can be avoided.
When the intermediate hinge 63 is omitted and the blade 60 has a flexible configuration, the blade 60 is sucked and fixed using the steel blade 60, or the surface of the aluminum or resin blade 60 is used, for example. Alternatively, a steel plate may be installed (attached) to the blade 60 to be fixed by suction.
 また、本実施形態では、取付部41bが幅広部41b1を有し、ブレード60の揚げ降ろし時において、水平ピン61bが幅広部41b1を通過する構成としたが、図7(a)に示す状態から保持部材71を更に上側に移動させ、上ブレード61(水平ピン61b)が取付部41bの外側を通過する構成としてもよい。この場合、取付部41bの幅広部41b1を省略してもよい。 Further, in the present embodiment, the mounting portion 41b has the wide portion 41b1, and the horizontal pin 61b passes through the wide portion 41b1 when the blade 60 is lifted and lowered, but from the state shown in FIG. The holding member 71 may be moved further upward so that the upper blade 61 (horizontal pin 61b) passes outside the mounting portion 41b. In this case, the wide portion 41b1 of the attachment portion 41b may be omitted.
 また、本実施形態では、幅狭部41b2側の端部において、取付部41bを構成する一対の板状部分を接続しない構成としたが、幅狭部41b2側の端部において、取付部41bを構成する一対の板状部分を接続する構成としてもよい。これにより、上ブラケット41の撓みによって凹部41b4において幅が広がることを防止できる。 In the present embodiment, the pair of plate-like portions constituting the attachment portion 41b are not connected at the end portion on the narrow portion 41b2 side, but the attachment portion 41b is provided at the end portion on the narrow portion 41b2 side. It is good also as a structure which connects a pair of plate-shaped part to comprise. Thereby, it is possible to prevent the width of the recess 41b4 from expanding due to the bending of the upper bracket 41.
 また、本実施形態では、スプラインナット42の移動に応じて下ブラケット43が移動したが、スプラインナット42の移動に応じて上ブラケット41が移動する構成にしてもよい。 In this embodiment, the lower bracket 43 is moved according to the movement of the spline nut 42. However, the upper bracket 41 may be moved according to the movement of the spline nut 42.
 また、本実施形態では、スプラインナット42は、油圧又は水圧アクチュエータ機構によって上下に移動する構成としたが、ボールねじによって上下に移動する構成としてもよい。 In this embodiment, the spline nut 42 is configured to move up and down by a hydraulic or hydraulic actuator mechanism, but may be configured to move up and down by a ball screw.
 また、本実施形態では、ブレード60に生じた揚力を回転力として上支柱40に伝達するために、上支柱40に対して上下に移動可能だが回転することはできないように保持することが好ましく、スプラインナット42を使用したが、ブレード60に生じた揚力を上支柱40に伝える機能は上ブラケット41のみに担わせることとし、スプラインナット42を使用しなくてもよい。すなわち、上支柱40に対し回転不能に保持するスプライン機構を省略してもよい。 Further, in this embodiment, in order to transmit the lift generated in the blade 60 to the upper support column 40 as a rotational force, it is preferable to hold it so that it can move up and down with respect to the upper support column 40 but cannot rotate. Although the spline nut 42 is used, the function of transmitting the lift generated in the blade 60 to the upper column 40 is assumed to be performed only by the upper bracket 41, and the spline nut 42 may not be used. That is, the spline mechanism that holds the upper support column 40 so as not to rotate may be omitted.
 また、本実施形態では、図8及び図9に示すように、複数のブレード60を同時に吊り降ろしたが、ハリヤード73を1本ずつ操作し、ブレード60を1枚ずつ吊り降ろしてもよい。 In this embodiment, as shown in FIGS. 8 and 9, the plurality of blades 60 are suspended at the same time. However, the halyards 73 may be operated one by one and the blades 60 may be suspended one by one.
 また、本実施形態では、図11及び図12に示すように、浮体20に連結された橋梁構造物Dにブレード60を載置したが、例えば、浮体20に係留された作業船や台船等にブレード60を載置してもよい。 In this embodiment, as shown in FIGS. 11 and 12, the blade 60 is placed on the bridge structure D connected to the floating body 20. For example, a work ship or a trolley moored to the floating body 20 is used. The blade 60 may be placed on the surface.
 また、本実施形態では、図1に示すように、ブレード60を上ブレード61及び下ブレード62に二分割して構成したが、本発明はこれに限定されるものではなく、適宜変更してよい。例えば、下ブレード62の上端を第1ヒンジH1よりも上方に位置させると共に、上ブレード61を省略して下ブレード62を上支柱40に対し支持する(翼型ではない)支持部材を設ける構成としてもよい。この場合、支持部材の一端は、第1ヒンジH1を介して上支柱40に対し上下に回転可能に連結され、他端は、図示しないヒンジを介して下ブレード62に対し上下に回転可能に連結される。また、例えば、上ブレード61をハリヤード等の線状部材に替えてもよい。 Further, in the present embodiment, as shown in FIG. 1, the blade 60 is divided into the upper blade 61 and the lower blade 62, but the present invention is not limited to this and may be changed as appropriate. . For example, the upper end of the lower blade 62 is positioned above the first hinge H1, and the upper blade 61 is omitted, and a support member (not a wing shape) that supports the lower blade 62 with respect to the upper support column 40 is provided. Also good. In this case, one end of the support member is connected to the upper support column 40 via the first hinge H1 so as to be rotatable up and down, and the other end is connected to the lower blade 62 via the hinge (not shown) so as to be rotatable up and down. Is done. Further, for example, the upper blade 61 may be replaced with a linear member such as halyard.
 また、ブレード60の分割枚数及び中間ヒンジ63の数は適宜変更してよい。例えば、図13及び図14に示すように、上支柱40及びブレード60の構造を変更してもよい。
 なお、図13は、変形例に係る垂直軸風車110の展開状態を示す側面図である。図14(a)は、変形例に係る垂直軸風車110の折り畳み状態を示す側面図であり、図14(b)は、変形例に係る垂直軸風車110を図13の状態から更に展開した状態を示す側面図である。
Further, the number of divided blades 60 and the number of intermediate hinges 63 may be changed as appropriate. For example, as shown in FIGS. 13 and 14, the structures of the upper support column 40 and the blade 60 may be changed.
FIG. 13 is a side view showing a developed state of the vertical axis wind turbine 110 according to the modification. FIG. 14A is a side view showing a folded state of the vertical axis windmill 110 according to the modification, and FIG. 14B is a state in which the vertical axis windmill 110 according to the modification is further expanded from the state of FIG. FIG.
 上支柱40は、図13に示すように、上支柱40の一部を利用するシリンダ45と、シリンダ45に対し上下方向に伸縮可能なシリンダロッド46と、を有する。 As shown in FIG. 13, the upper support column 40 includes a cylinder 45 that uses a part of the upper support column 40 and a cylinder rod 46 that can expand and contract in the vertical direction with respect to the cylinder 45.
 シリンダ45の下端側外周には、下ブラケット43が設けられ、上端側外周には、中ブラケット47が設けられる。中ブラケット47は、下ブラケット43と同一形状を呈し、水平方向に貫通する孔部47aを有する。シリンダロッド46の上端側外周には、上ブラケット41が設けられる。上ブラケット41は、シリンダロッド46の上下移動(伸縮)に応じて上下に移動可能に構成される。 A lower bracket 43 is provided on the outer periphery on the lower end side of the cylinder 45, and an intermediate bracket 47 is provided on the outer periphery on the upper end side. The middle bracket 47 has the same shape as the lower bracket 43 and has a hole 47a penetrating in the horizontal direction. An upper bracket 41 is provided on the outer periphery on the upper end side of the cylinder rod 46. The upper bracket 41 is configured to be movable up and down in accordance with the vertical movement (extension / contraction) of the cylinder rod 46.
 ブレード60は、上ブレード61及び下ブレード62の間に、中ブレード64を有する点で前記実施形態と相違する。中ブレード64は、中間ヒンジ63a,63bを介して、上ブレード61及び下ブレード62に夫々連結される。
 この場合、ブレード60は、シリンダロッド46を伸縮させ上ブラケット41を上下に移動させることにより、中間ヒンジ63a,63bを中心軸として上ブレード61及び下ブレード62が屈曲され、その回転半径rを変更可能に構成される。
The blade 60 is different from the above embodiment in that a middle blade 64 is provided between the upper blade 61 and the lower blade 62. The middle blade 64 is connected to the upper blade 61 and the lower blade 62 via intermediate hinges 63a and 63b, respectively.
In this case, in the blade 60, the upper blade 61 and the lower blade 62 are bent with the intermediate hinges 63a and 63b as the center axes by extending and retracting the cylinder rod 46 and moving the upper bracket 41 up and down, and the rotation radius r is changed. Configured to be possible.
 中ブラケット47及び中間ヒンジ63aの間には、ロッド65が設けられる。ロッド65は、上支柱40に対し中間ヒンジ63aを支持し、下ブレード62と平行に設けられる。ロッド65の下端部65aには、中ブラケット47の孔部47aに係合可能な水平ピン65bが他の部位よりも水平方向に延出して設けられる。ロッド65は、水平ピン65bを中心軸として上下方向に回転する。水平ピン65b及び孔部47aが第3ヒンジH3を構成する。上ブレード61、下ブレード62、及びロッド65は、同一の長さに形成される。なお、ロッド65に替えて、例えば、ワイヤ等を使用してもよいし、下ブレード62と同様のブレードを使用してもよい。 A rod 65 is provided between the middle bracket 47 and the intermediate hinge 63a. The rod 65 supports the intermediate hinge 63 a with respect to the upper support column 40 and is provided in parallel with the lower blade 62. A horizontal pin 65 b that can be engaged with the hole 47 a of the middle bracket 47 is provided at the lower end portion 65 a of the rod 65 so as to extend in the horizontal direction from other portions. The rod 65 rotates in the vertical direction with the horizontal pin 65b as the central axis. The horizontal pin 65b and the hole 47a constitute the third hinge H3. The upper blade 61, the lower blade 62, and the rod 65 are formed to have the same length. For example, a wire or the like may be used instead of the rod 65, or a blade similar to the lower blade 62 may be used.
 この場合、図14(a)に示すように、シリンダロッド46が最も伸長している状態では、ブレード60は直線状にかつ上支柱40と略平行に延在する状態になり、折り畳まれることとなる。 In this case, as shown in FIG. 14A, in the state where the cylinder rod 46 is most extended, the blade 60 is in a state of extending linearly and substantially parallel to the upper support column 40 and being folded. Become.
 この状態から、図13及び図14(b)に示すように、シリンダロッド46を収縮させていくと、中ブレード64が上支柱40と平行な状態を保持したまま外側に張り出す。また、下ブレード62及びロッド65も互いに平行な状態を保持したまま下側に回転する。
 つまり、中ブレード64、上支柱40、下ブレード62、及びロッド65が、平行四辺形を保持したまま、ブレード60の形状が変化することとなる。
From this state, as shown in FIGS. 13 and 14B, when the cylinder rod 46 is contracted, the middle blade 64 projects outward while maintaining a state parallel to the upper support column 40. Further, the lower blade 62 and the rod 65 also rotate downward while maintaining a parallel state.
In other words, the shape of the blade 60 changes while the middle blade 64, the upper support column 40, the lower blade 62, and the rod 65 retain the parallelogram.
 そして、図14(b)に示すように、シリンダロッド46が最も収縮した状態では、上ブレード61、下ブレード62、及びロッド65が略水平となる一方、中ブレード64が鉛直となって回転半径rが最大となる。ちなみに、この状態では、風力中心を下げて転倒モーメントを抑えるとともに、ブレード60を風速が低い水面近くまで降ろすことができる。 As shown in FIG. 14B, when the cylinder rod 46 is in the most contracted state, the upper blade 61, the lower blade 62, and the rod 65 are substantially horizontal, while the middle blade 64 is vertical and has a turning radius. r is maximized. Incidentally, in this state, it is possible to lower the center of the wind force to suppress the overturning moment and to lower the blade 60 near the water surface where the wind speed is low.
 ここで、ブレード60を3分割し、上ブレード61及び中ブレード64を中間ヒンジ63aによって連結し、下ブレード62及び中ブレード64を中間ヒンジ63bによって連結する場合には、上ブレード61、下ブレード62、中ブレード64、及び上支柱40の4辺に対し4つのヒンジH1,H2,63a,63bを設けるため、不静定構造になる。 Here, when the blade 60 is divided into three, the upper blade 61 and the middle blade 64 are connected by the intermediate hinge 63a, and the lower blade 62 and the middle blade 64 are connected by the intermediate hinge 63b, the upper blade 61 and the lower blade 62 are connected. Since the four hinges H1, H2, 63a, and 63b are provided on the four sides of the middle blade 64 and the upper support column 40, the static blade structure is obtained.
 つまり、仮に、下ブラケット43(第2ヒンジH2)に対し上ブラケット41(第1ヒンジH1)の位置を変更すると、中間ヒンジ63aは、中間ヒンジ63bよりも外側に位置したり、中間ヒンジ63bよりも内側に位置したりすることになる。 In other words, if the position of the upper bracket 41 (first hinge H1) is changed with respect to the lower bracket 43 (second hinge H2), the intermediate hinge 63a is positioned outside the intermediate hinge 63b, or more than the intermediate hinge 63b. Will also be located inside.
 そこで、本変形例のように上支柱40に対し中間ヒンジ63aを支持し、かつ下ブレード62と平行に設けられるロッド65を備えると共に、上支柱40及び中ブレード64が互いに平行に構成されることにより、中間ヒンジ63aの位置が内外に変動するのを抑制でき、上ブラケット41の位置を変更するだけでブレード60の掃過面積、有効回転半径、上反角、及び下反角等の調節を行うことできる。
 つまり、上ブレード61、下ブレード62、中ブレード64、及び上支柱40の4辺に対し4つのヒンジH1,H2,63a,63bを設けることにより発生する不静定構造を解消できる。
Therefore, as in this modification, the intermediate hinge 63a is supported with respect to the upper column 40, and the rod 65 is provided in parallel with the lower blade 62, and the upper column 40 and the middle blade 64 are configured in parallel to each other. Thus, the position of the intermediate hinge 63a can be prevented from fluctuating in and out, and the adjustment of the sweep area, the effective turning radius, the upper angle, the lower angle, and the like of the blade 60 can be adjusted by simply changing the position of the upper bracket 41. Can be done.
That is, it is possible to eliminate the indefinite structure generated by providing the four hinges H1, H2, 63a, and 63b for the four sides of the upper blade 61, the lower blade 62, the middle blade 64, and the upper support column 40.
 ちなみに、図15(a)-(c)に示すように、上ブレード61及び下ブレード62をリンク機構66で連結し、リンク機構66によって上ブレード61及び下ブレード62が常に略同じ角度で屈曲するように構成してもよい。このようにすると、前記したようにブレード60を複数に分割し、複数の中間ヒンジ63a,63bを設けた場合であっても、不静定構造を解消でき、ひいてはロッド65を省略できる。 Incidentally, as shown in FIGS. 15A to 15C, the upper blade 61 and the lower blade 62 are connected by a link mechanism 66, and the upper blade 61 and the lower blade 62 are always bent at substantially the same angle by the link mechanism 66. You may comprise as follows. In this manner, even when the blade 60 is divided into a plurality of parts and a plurality of intermediate hinges 63a and 63b are provided as described above, the statically indeterminate structure can be eliminated and the rod 65 can be omitted.
 この場合、中ブレード64は、中空形状を呈し、その内部には、リンク機構66が配設される。リンク機構66は、例えば、プッシュプルロッドで構成され、その上下端部は、上ブレード61及び下ブレード62のピボットP1,P2に回転可能に夫々取り付けられる。 In this case, the middle blade 64 has a hollow shape, and a link mechanism 66 is disposed therein. The link mechanism 66 is configured by, for example, a push-pull rod, and upper and lower end portions thereof are rotatably attached to pivots P1 and P2 of the upper blade 61 and the lower blade 62, respectively.
 また、図16(a)-(c)に示すように、所定の屈曲角度を上ブレード61の中立状態(原位置)とし、それ以外の角度に屈曲すると、上ブレード61が中立状態に戻るように構成してもよい。
 なお、図16は、他の変形例に係る垂直軸風車110を示す部分拡大側面図であり、(a)は、垂直軸風車110の中立状態を示す部分拡大側面図であり、(b)は、垂直軸風車110の折り畳み状態を示す部分拡大側面図であり、(c)は、垂直軸風車110を(a)の状態から更に展開した状態を示す部分拡大側面図である。
Further, as shown in FIGS. 16A to 16C, when the predetermined bending angle is set to the neutral state (original position) of the upper blade 61 and bent to other angles, the upper blade 61 returns to the neutral state. You may comprise.
FIG. 16 is a partially enlarged side view showing a vertical axis wind turbine 110 according to another modification, (a) is a partially enlarged side view showing a neutral state of the vertical axis wind turbine 110, and (b). FIG. 4 is a partially enlarged side view showing a folded state of the vertical axis wind turbine 110, and FIG. 4C is a partially enlarged side view showing a state in which the vertical axis wind turbine 110 is further expanded from the state of FIG.
 図16(a)に示すように、上ブレード61及び中間ヒンジ63aの間と、中ブレード64及び中間ヒンジ63aの間には、それぞれ弾性ゴム支承67a-67dが設けられる。復帰部材たる弾性ゴム支承67a-67dは、前記した弾性ゴム支承33,34と同様の部材であり、ゴム板と金属板とを中間ヒンジ63aの径方向に積層して構成される。弾性ゴム支承67a-67dは、剪断力に対しては柔軟に変形するが、圧縮に対しては高剛性であるという特性がある。 As shown in FIG. 16A, elastic rubber supports 67a to 67d are provided between the upper blade 61 and the intermediate hinge 63a and between the intermediate blade 64 and the intermediate hinge 63a, respectively. The elastic rubber supports 67a to 67d as return members are the same members as the elastic rubber supports 33 and 34 described above, and are configured by laminating a rubber plate and a metal plate in the radial direction of the intermediate hinge 63a. The elastic rubber bearings 67a to 67d have a characteristic that they are flexibly deformed against a shearing force but are highly rigid against compression.
 上ブレード61は、上下動、左右動等については弾性ゴム支承67a-67dの圧縮特性により強固に拘束されるが、中間ヒンジ63aの中心を回転中心とする回転に関しては弾性ゴム支承67a-67dの剪断変形特性により柔軟に支持される。
 また、上ブレード61は、弾性ゴム支承67a-67dが伸縮していない状態で、図16(a)に示す所定の屈曲角度となるように設定される。
The upper blade 61 is firmly restrained by the compression characteristics of the elastic rubber bearings 67a-67d in terms of vertical movement, left-right movement, etc., but with respect to rotation about the center of the intermediate hinge 63a, the elastic rubber bearings 67a-67d Flexible support by shear deformation characteristics.
Further, the upper blade 61 is set to have a predetermined bending angle shown in FIG. 16A in a state where the elastic rubber supports 67a to 67d are not expanded and contracted.
 この場合、図16(a),(b)に示すように、ブレード60を折り畳んだ状態から展開するときには、弾性ゴム支承67a-67dによって回転半径r(図13参照)が広がる方向に上ブレード61が必ず屈曲することになる。つまり、弾性ゴム支承67a-67dの復帰力(弾性力)によって、回転半径rが広がる方向に屈曲するように上ブレード61がアシストされるため、ブレード60を折り畳み状態から展開状態へ確実に導くことができる。 In this case, as shown in FIGS. 16A and 16B, when the blade 60 is unfolded from the folded state, the upper blade 61 extends in the direction in which the rotation radius r (see FIG. 13) is expanded by the elastic rubber bearings 67a to 67d. Will always bend. That is, since the upper blade 61 is assisted by the restoring force (elastic force) of the elastic rubber bearings 67a to 67d so as to bend in the direction in which the rotation radius r increases, the blade 60 is reliably guided from the folded state to the expanded state. Can do.
 一方、図16(a),(c)に示すように、ブレード60を更に展開した状態から図16(a)に示す状態に戻すときには、弾性ゴム支承67a-67dによって回転半径rが狭まる方向に上ブレード61が屈曲しやすくなる。つまり、弾性ゴム支承67a-67dの復帰力によって、回転半径rが狭まる方向に屈曲するように上ブレード61がアシストされるため、上ブレード61が原位置へスムーズに戻りやすくなる。 On the other hand, as shown in FIGS. 16 (a) and 16 (c), when the blade 60 is further expanded and returned to the state shown in FIG. 16 (a), the radius of rotation r is narrowed by the elastic rubber bearings 67a-67d. The upper blade 61 is easily bent. That is, since the upper blade 61 is assisted by the restoring force of the elastic rubber bearings 67a-67d so as to bend in the direction in which the rotation radius r is narrowed, the upper blade 61 is easily returned to the original position.
 本変形例の構造は、下ブレード62及び中間ヒンジ63bの間と、中ブレード64及び中間ヒンジ63bの間にも適用される(図13参照)。また、図示は省略するが、上ブレード61及び下ブレード62の間に引張力が加わった場合であっても、中間ヒンジ63a,63bがのびないように、上ブレード61及び下ブレード62のヒンジ軸位置は固定される。 The structure of this modification is also applied between the lower blade 62 and the intermediate hinge 63b and between the intermediate blade 64 and the intermediate hinge 63b (see FIG. 13). Although illustration is omitted, even if a tensile force is applied between the upper blade 61 and the lower blade 62, the hinge shafts of the upper blade 61 and the lower blade 62 are prevented so that the intermediate hinges 63a and 63b do not extend. The position is fixed.
 なお、本変形例の構造は、前記した実施形態の上ブレード61及び中間ヒンジ63の間と、下ブレード62及び中間ヒンジ63の間に適用してもよい(図1参照)。また、弾性ゴム支承67a-67dに替えてコイルばね等を使用してもよい。 It should be noted that the structure of this modification may be applied between the upper blade 61 and the intermediate hinge 63 and between the lower blade 62 and the intermediate hinge 63 described above (see FIG. 1). A coil spring or the like may be used instead of the elastic rubber bearings 67a to 67d.
 以上説明した本変形例によれば、ブレード60を折り畳んだ状態から展開するときには、回転半径rが広がる方向に上ブレード61及び下ブレード62が必ず屈曲することができる。
 また、前記したようにブレード60を複数に分割し、複数の中間ヒンジ63a,63bを設ける場合には、不静定構造になるが、本変形例によれば、弾性ゴム支承67a-67dによって、上ブレード61及び下ブレード62を所定の屈曲角度に復帰させる力が発生するため、不静定構造を解消できる。
 特に、弾性ゴム支承67a-67dを使用した場合、ゴムの柔軟性によってブレード60の形が変形する際の振動を減衰させることができる。
According to this modification described above, when the blade 60 is unfolded from the folded state, the upper blade 61 and the lower blade 62 can always bend in the direction in which the rotation radius r increases.
Further, as described above, when the blade 60 is divided into a plurality of parts and a plurality of intermediate hinges 63a and 63b are provided, the structure is indefinite. However, according to this modification, the elastic rubber bearings 67a to 67d Since a force for returning the upper blade 61 and the lower blade 62 to a predetermined bending angle is generated, the statically indefinite structure can be eliminated.
In particular, when the elastic rubber bearings 67a to 67d are used, the vibration when the shape of the blade 60 is deformed can be damped by the flexibility of the rubber.
《第2の実施形態》
 次に、図17乃至図20を参照して、本発明の第2の実施形態に係わる垂直軸風車について説明する。なお、説明においては、第1の実施形態と相違する点について詳しく説明し、第1の実施形態と同一の要素については、第1の実施形態と同一の符号を付し、重複する説明を省略する。
 参照する図面において、図17は、本発明の第2の実施形態に係る垂直軸風車120の展開状態を示す側面図である。図18は、図17に示す垂直軸風車120の上部側の構成を示す部分拡大側面図である。図19(a)は、図17のB-B線断面図であり、(b)は、図17に示す垂直軸風車120の下部側の構成を示す部分拡大断面図である。図20(a)は、第2の実施形態に係る垂直軸風車120の折り畳み状態を示す側面図であり、(b)は、第2の実施形態に係る垂直軸風車120を図18の状態から更に展開した状態を示す側面図である。なお、説明の便宜上、図18及び図20では、4枚のブレード60のうち対向する一対のブレード60のみを図示し、図18乃至図20(b)では、下支柱50等を省略して描いている。
<< Second Embodiment >>
Next, a vertical axis wind turbine according to a second embodiment of the present invention will be described with reference to FIGS. 17 to 20. In the description, points different from the first embodiment will be described in detail, and the same elements as those in the first embodiment will be denoted by the same reference numerals as those in the first embodiment, and redundant description will be omitted. To do.
In the drawings to be referred to, FIG. 17 is a side view showing a developed state of the vertical axis wind turbine 120 according to the second embodiment of the present invention. 18 is a partially enlarged side view showing the configuration of the upper side of the vertical axis wind turbine 120 shown in FIG. 19A is a cross-sectional view taken along the line BB of FIG. 17, and FIG. 19B is a partially enlarged cross-sectional view showing the configuration of the lower side of the vertical axis wind turbine 120 shown in FIG. FIG. 20A is a side view showing the folded state of the vertical axis windmill 120 according to the second embodiment, and FIG. 20B shows the vertical axis windmill 120 according to the second embodiment from the state shown in FIG. It is a side view which shows the state which expand | deployed further. For convenience of explanation, FIGS. 18 and 20 show only a pair of opposed blades 60 among the four blades 60, and in FIGS. 18 to 20B, the lower support 50 is omitted. ing.
 本実施形態は、ブレード60が上支柱40に対し平行な状態で接近及び離間し、ブレード60の回転半径rが調節される点が、前記した第1の実施形態と異なる。 This embodiment is different from the first embodiment described above in that the blade 60 approaches and separates in a state parallel to the upper support column 40 and the rotation radius r of the blade 60 is adjusted.
 回転軸たる上支柱40は、図17及び図18に示すように、浮体20に対し垂直軸周りに回転可能に連結される円筒状の部材である。
 上支柱40には、図18に示すように、上ブラケット48aと、下ブラケット48bと、中ブラケット48cと、が設けられる。
As shown in FIGS. 17 and 18, the upper support column 40 serving as the rotation shaft is a cylindrical member that is coupled to the floating body 20 so as to be rotatable about the vertical axis.
As shown in FIG. 18, the upper support column 40 is provided with an upper bracket 48a, a lower bracket 48b, and an intermediate bracket 48c.
 上ブラケット48aは、上支柱40の上端に設けられ、後記する第1支持部材68aを介してブレード60を上支柱40に連結する部材である。上ブラケット48aは、上支柱40の外周面に取り付けられた円筒状の保持部48a1と、保持部48a1の上端に固定され保持部48a1よりも径方向外側に延出する平面視略四角形状の板状部材から成る支持部48a2と、から構成される。 The upper bracket 48a is a member that is provided at the upper end of the upper support column 40 and connects the blade 60 to the upper support column 40 via a first support member 68a described later. The upper bracket 48a includes a cylindrical holding portion 48a1 attached to the outer peripheral surface of the upper support column 40, and a substantially rectangular plate in plan view that is fixed to the upper end of the holding portion 48a1 and extends radially outward from the holding portion 48a1. And a support portion 48a2 made of a member.
 下ブラケット48bは、上支柱40の下端に設けられ、後記する第2支持部材68bを介してブレード60を上支柱40に連結する部材である。下ブラケット48bは、上支柱40の外周面に取り付けられた円筒状の保持部48b1と、保持部48b1の下端に固定され保持部48b1よりも径方向外側に延出する平面視略四角形状の板状部材から成る支持部48b2と、から構成される。 The lower bracket 48b is a member that is provided at the lower end of the upper support column 40 and connects the blade 60 to the upper support column 40 via a second support member 68b described later. The lower bracket 48b includes a cylindrical holding portion 48b1 attached to the outer peripheral surface of the upper support column 40, and a substantially rectangular plate in plan view that is fixed to the lower end of the holding portion 48b1 and extends radially outward from the holding portion 48b1. And a support portion 48b2 made of a member.
 角度調節手段の一部を構成する中ブラケット(移動部材)48cは、上ブラケット48a及び下ブラケット48bの間に配置される部材であって、上支柱40に沿って上下方向に移動可能に構成された部材である。中ブラケット48cは、上支柱40の外周面に取り付けられた円筒状の保持部48c1と、保持部48c1の下端に固定され保持部48c1よりも径方向外側に延出する平面視略四角形状の板状部材から成る支持部48c2と、から構成される。支持部48c2の中心には、上支柱40が挿通される図示しない孔部が上下に貫通して形成される。 The middle bracket (moving member) 48c constituting a part of the angle adjusting means is a member disposed between the upper bracket 48a and the lower bracket 48b, and is configured to be movable in the vertical direction along the upper support column 40. It is a member. The middle bracket 48c includes a cylindrical holding portion 48c1 attached to the outer peripheral surface of the upper support column 40, and a substantially rectangular plate in plan view that is fixed to the lower end of the holding portion 48c1 and extends radially outward from the holding portion 48c1. And a support portion 48c2 made of a member. A hole (not shown) through which the upper support column 40 is inserted is formed in the center of the support portion 48c2 so as to penetrate vertically.
 ブレード60は、図17及び図19(a)に示すように、空中に配置されて風を受ける断面視で流線形の揚力型ブレードであって、上支柱40の周方向に等角度離間して4枚配設される。各ブレード60は、図18に示すように、第1支持部材68a-第3支持部材68cを介して、上支柱40に対し平行な状態で接近及び離間可能に連結される。なお、ブレード60の数は適宜変更してよい。 As shown in FIGS. 17 and 19A, the blade 60 is a lift type blade that is arranged in the air and receives wind in a cross-sectional view, and is spaced equiangularly in the circumferential direction of the upper support column 40. Four are arranged. As shown in FIG. 18, each blade 60 is connected to the upper support column 40 in a state of being able to approach and separate via a first support member 68a-third support member 68c. The number of blades 60 may be changed as appropriate.
 第1支持部材68aは、上ブラケット48aに対しブレード60を支持する中空円筒状の部材である。第1支持部材68aは、上ブラケット48aの周方向に等角度離間して設けられる。第1支持部材68aの一端部は、第1ヒンジH1’を介して上ブラケット48aに対し上下方向に回転可能に取り付けられ、他端部は、第2ヒンジH2’を介してブレード60に対し上下方向に回転可能に取り付けられる。第1支持部材68aは、水平軸に対し0(ゼロ)度~90度の範囲で回転するように構成されている。 The first support member 68a is a hollow cylindrical member that supports the blade 60 with respect to the upper bracket 48a. The first support members 68a are provided at equal angular intervals in the circumferential direction of the upper bracket 48a. One end of the first support member 68a is attached to the upper bracket 48a via the first hinge H1 ′ so as to be rotatable in the vertical direction, and the other end is vertically moved with respect to the blade 60 via the second hinge H2 ′. It is mounted so as to be rotatable in the direction. The first support member 68a is configured to rotate in the range of 0 (zero) degrees to 90 degrees with respect to the horizontal axis.
 第2支持部材68bは、下ブラケット48bに対しブレード60を支持する部材である。本実施形態の第2支持部材68bは、ブレード60と同様の断面形状及び材質で構成され、風力を受けるブレードとしても機能する。第2支持部材68bは、下ブラケット48bの周方向に等角度離間して設けられる。第2支持部材68bの一端部は、第3ヒンジH3’を介して下ブラケット48bに対し上下方向に回転可能に取り付けられ、他端部は、第4ヒンジH4’を介してブレード60の下端に対し上下方向に回転可能に取り付けられる。第2支持部材68bは、水平軸に対し0(ゼロ)度~90度の範囲で回転するように構成されている。また、第2支持部材68bは、第1支持部材68aと同一の長さに形成される。これにより、上支柱40に対しブレード60を平行な状態で接近及び離間させることができる。 The second support member 68b is a member that supports the blade 60 with respect to the lower bracket 48b. The second support member 68b of the present embodiment is configured with the same cross-sectional shape and material as the blade 60, and also functions as a blade that receives wind power. The second support members 68b are provided at equal angular intervals in the circumferential direction of the lower bracket 48b. One end of the second support member 68b is rotatably attached to the lower bracket 48b via the third hinge H3 ′, and the other end is attached to the lower end of the blade 60 via the fourth hinge H4 ′. On the other hand, it is attached to be rotatable in the vertical direction. The second support member 68b is configured to rotate in the range of 0 (zero) degrees to 90 degrees with respect to the horizontal axis. The second support member 68b is formed to have the same length as the first support member 68a. Thereby, the blade 60 can be moved toward and away from the upper support column 40 in a parallel state.
 角度調節手段の一部を構成する第3支持部材68cは、中ブラケット48cに対しブレード60を支持する中空円筒状の部材である。第3支持部材68cは、中ブラケット48cの周方向に等角度離間して設けられる。第3支持部材68cの一端部は、第5ヒンジH5’を介して中ブラケット48cに対し上下方向に回転可能に取り付けられ、他端部は、第4ヒンジH4’に取り付けられる。なお、第3支持部材68cの他端部は、ブレード60の下端側や第2支持部材68bの他端部側に取り付けられてもよい。 The third support member 68c that constitutes a part of the angle adjusting means is a hollow cylindrical member that supports the blade 60 with respect to the middle bracket 48c. The third support members 68c are provided at equal angular intervals in the circumferential direction of the middle bracket 48c. One end of the third support member 68c is attached to the middle bracket 48c via the fifth hinge H5 'so as to be rotatable in the vertical direction, and the other end is attached to the fourth hinge H4'. The other end portion of the third support member 68c may be attached to the lower end side of the blade 60 or the other end portion side of the second support member 68b.
 本実施形態では、中ブラケット48cを上下に移動させることにより、第1ヒンジH1’及び第3ヒンジH3’を中心軸として第1支持部材68a及び第2支持部材68bが回転し、かかる回転動作に連動してブレード60が上支柱40に対し平行な状態で接近又は離間することによって、ブレード60の回転半径rが変形可能に構成される。 In the present embodiment, by moving the middle bracket 48c up and down, the first support member 68a and the second support member 68b rotate around the first hinge H1 ′ and the third hinge H3 ′ as the central axes, and this rotation operation is performed. When the blade 60 approaches or separates in parallel with the upper support column 40 in conjunction with each other, the rotation radius r of the blade 60 is configured to be deformable.
 図19(b)に示すように、サボニウス型水車80の上部には、径方向内側から外側へ向かうほど上方に位置するように傾斜するテーパ部82が形成される。 As shown in FIG. 19 (b), a tapered portion 82 is formed on the upper part of the Savonius type water turbine 80 so as to be inclined upward as it goes from the radially inner side to the outer side.
 浮体20の開口部20aの下縁部には、径方向内側から外側へ向かうほど上方に位置するように傾斜する流線形状のテーパ部20bが形成される。かかるテーパ部20bは、サボニウス型水車80のテーパ部82に対応する形状に形成される。この場合、アッセンブリ10が浮体20に対し揺動すると、サボニウス型水車80は、テーパ部82が浮体20のテーパ部20bに摺接しながら揺動するので、サボニウス型水車80と浮体20との間に隙間が生じるのを抑制できる。これにより、例えば、ロープ等の漂流物が下支柱50等に絡むのを抑制できる。また、テーパ部20bが流線形状に形成されることによって、サボニウス型水車80内へ海水等の流体をスムーズに流入させることができる。 At the lower edge of the opening 20a of the floating body 20, a streamlined tapered portion 20b is formed that is inclined so as to be positioned upward from the inner side toward the outer side in the radial direction. The tapered portion 20 b is formed in a shape corresponding to the tapered portion 82 of the Savonius type water turbine 80. In this case, when the assembly 10 swings with respect to the floating body 20, the Savonius type turbine 80 swings while the tapered portion 82 slides on the tapered portion 20 b of the floating body 20. It is possible to suppress the generation of a gap. Thereby, for example, it can suppress that drifting objects, such as a rope, get entangled with the lower support | pillar 50 grade | etc.,. Further, by forming the tapered portion 20 b in a streamline shape, fluid such as seawater can be smoothly flowed into the Savonius type water turbine 80.
 本実施形態において、浮体20の上部には、開口部20aの周囲を囲むように円環状の増速部材25が設けられる。増速部材25は、図17に示すように、ブレード60の下方に配置されており、増速部材25の上部は、径方向外側から内側へ向かうほど上方に位置するように傾斜するテーパ状に形成される。これにより、増速部材25を流れる風は上昇しつつ増速されてから第2支持部材68bに当たるので、第2支持部材68bの回転性を向上させることができる。 In the present embodiment, an annular speed increasing member 25 is provided on the top of the floating body 20 so as to surround the periphery of the opening 20a. As shown in FIG. 17, the speed increasing member 25 is disposed below the blade 60, and the upper portion of the speed increasing member 25 has a tapered shape that inclines so as to be positioned upward from the radially outer side toward the inner side. It is formed. As a result, the wind flowing through the speed increasing member 25 is increased while being increased and then hits the second support member 68b, so that the rotation of the second support member 68b can be improved.
 本発明の第2の実施形態に係る垂直軸風車120は、基本的には以上のように構成されるものであり、次に、図18、図20(a),(b)を参照して、垂直軸風車120のブレード60の動作について説明する。 The vertical axis wind turbine 120 according to the second embodiment of the present invention is basically configured as described above. Next, refer to FIGS. 18, 20A, and 20B. The operation of the blade 60 of the vertical axis wind turbine 120 will be described.
 はじめに、図18に示す状態から、中ブラケット48cを上支柱40に沿って上側に移動させると、第3支持部材68cが上側に移動する(図18、図20(a)参照)。 First, when the middle bracket 48c is moved upward along the upper support column 40 from the state shown in FIG. 18, the third support member 68c is moved upward (see FIGS. 18 and 20A).
 このとき、第1支持部材68aは、第1ヒンジH1’を中心軸として上側に回転すると共に、第2支持部材68bは、第3ヒンジH3’を中心軸として上側に回転する。また、かかる第1支持部材68a及び第2支持部材68bの回転に伴って、ブレード60が上支柱40に対し平行な状態で接近し、ブレード60の回転半径rが小さくなる(図18、図20(a)参照)。 At this time, the first support member 68a rotates upward with the first hinge H1 'as the central axis, and the second support member 68b rotates upward with the third hinge H3' as the central axis. Further, as the first support member 68a and the second support member 68b rotate, the blade 60 approaches the upper support column 40 in a parallel state, and the rotation radius r of the blade 60 becomes smaller (FIGS. 18 and 20). (See (a)).
 更に、中ブラケット48cを上ブラケット48a近傍まで移動させると、第1支持部材68a及び第2支持部材68bは直線状にかつ上支柱40と平行に延在する状態になり、ブレード60は折り畳まれることとなる。このとき、ブレード60は第2支持部材68bの上部に載置され、ブレード60と第2支持部材68bとが上下で重なった状態となる。 Further, when the middle bracket 48c is moved to the vicinity of the upper bracket 48a, the first support member 68a and the second support member 68b are linearly extended in parallel with the upper support column 40, and the blade 60 is folded. It becomes. At this time, the blade 60 is placed on the upper part of the second support member 68b, and the blade 60 and the second support member 68b overlap each other in the vertical direction.
 一方、図18に示す状態から、中ブラケット48cを上支柱40に沿って下側に移動させると、第3支持部材68cが下側に移動する(図18、図20(b)参照)。 On the other hand, when the middle bracket 48c is moved downward along the upper support column 40 from the state shown in FIG. 18, the third support member 68c moves downward (see FIGS. 18 and 20B).
 このとき、第1支持部材68aは、第1ヒンジH1’を中心軸として下側に回転すると共に、第2支持部材68bは、第3ヒンジH3’を中心軸として下側に回転する。また、かかる第1支持部材68a及び第2支持部材68bの回転に伴って、ブレード60が上支柱40に対し平行な状態で離間し、ブレード60の回転半径rが大きくなる(図18、図20(a)参照)。 At this time, the first support member 68a rotates downward with the first hinge H1 'as the central axis, and the second support member 68b rotates downward with the third hinge H3' as the central axis. Further, with the rotation of the first support member 68a and the second support member 68b, the blade 60 is separated in a state parallel to the upper support column 40, and the rotation radius r of the blade 60 is increased (FIGS. 18 and 20). (See (a)).
 つまり、上支柱40に対する中ブラケット48cの位置を変化させることにより、ブレード60の回転半径rを自在に変化させることができる。
 なお、ブレード60の回転半径rがどのような風に最適であるかどうかは、発電装置38のトルク特性も関係するため、ブレード60の回転半径rは、発電装置38の仕様と合わせて適宜設定する。
That is, by changing the position of the middle bracket 48c with respect to the upper support column 40, the rotation radius r of the blade 60 can be freely changed.
It should be noted that whether the rotation radius r of the blade 60 is optimum for the wind is also related to the torque characteristics of the power generation device 38, and therefore the rotation radius r of the blade 60 is appropriately set according to the specifications of the power generation device 38. To do.
 以上説明した本実施形態によれば、中ブラケット48cを上下に移動させ、第1支持部材68a及び第2支持部材68bの角度を調節することにより、ブレード60が上支柱40に対し平行な状態で接近又は離間し、ブレード60の回転半径rが調節できるため、ブレード60の掃過面積、有効回転半径等を調節できる。これにより、風向に応じた調整をなんら必要としないままに、簡易な構造で広い設計範囲の風速に対応する揚力型ブレード60を用いた流体力利用構造物を実現できる。
 特に、本実施形態によれば、ブレード60は、上支柱40に対し平行な状態で接近又は離間することにより、ブレード60の全長に亘って同一の回転半径rとなるので、風速・流速に応じて最適な回転力(エネルギー)を得られる位置にブレード60全体を合わせることが可能となり、エネルギーを効率良く回収できる。
 また、ブレード60を、上支柱40の近傍であって上支柱40に対し平行な状態に折り畳むことにより、過大な風速に対し好適に対応することができる。
According to the present embodiment described above, the blade 60 is parallel to the upper support column 40 by moving the middle bracket 48c up and down and adjusting the angles of the first support member 68a and the second support member 68b. Since the rotation radius r of the blade 60 can be adjusted by approaching or separating, the sweep area of the blade 60, the effective rotation radius, and the like can be adjusted. Thereby, it is possible to realize a fluid force utilization structure using a lift-type blade 60 corresponding to wind speeds in a wide design range with a simple structure without requiring any adjustment according to the wind direction.
In particular, according to the present embodiment, the blade 60 approaches or separates in parallel with the upper support column 40, so that the blade 60 has the same turning radius r over the entire length of the blade 60. Thus, the entire blade 60 can be adjusted to a position where an optimum rotational force (energy) can be obtained, and energy can be recovered efficiently.
Further, by folding the blade 60 in the vicinity of the upper support column 40 and parallel to the upper support column 40, it is possible to cope with an excessive wind speed.
 また、本実施形態によれば、中ブラケット48cの移動に応じてブレード60が接近及び離間するため、上支柱40に対するブレード60の接近及び離間を簡易に行うことができる。 Further, according to the present embodiment, since the blade 60 approaches and separates according to the movement of the middle bracket 48c, the blade 60 can be easily approached and separated from the upper support column 40.
 また、本実施形態によれば、中ブラケット48cを上側に移動させることにより、ブレード60と第1支持部材68aと第2支持部材68bとを、上支柱40の近傍であって上支柱40に対し平行な状態に折り畳むことができる。これにより、陸上であらかじめブレード60を組み上げてからの搬入が容易になるため、水上の設置現場への運搬作業、設置作業、撤去作業等において、現地でのクレーン船作業が不要となることから、コストの低減を図りつつ、管理作業が容易になる。 Further, according to the present embodiment, by moving the middle bracket 48c upward, the blade 60, the first support member 68a, and the second support member 68b are located in the vicinity of the upper support column 40 with respect to the upper support column 40. Can be folded in parallel. This makes it easy to carry in after the blade 60 has been assembled beforehand on land, so that on-site crane ship work is not required for transporting work to the installation site, installation work, removal work, etc. Management work is facilitated while reducing costs.
 以上、本発明の実施形態について図面を参照して詳細に説明したが、本発明はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although embodiment of this invention was described in detail with reference to drawings, this invention is not limited to this, In the range which does not deviate from the main point of invention, it can change suitably.
 本実施形態では、中ブラケット48c及び第3支持部材68cにより、第1支持部材68a及び第2支持部材68bの角度を調節し、上支柱40に対しブレード60を接近及び離間させる構成としたが、本発明はこれに限定されるものではない。例えば、ワイヤ等の線状部材と、この線状部材を巻き取り及び巻き出し可能な巻取部材とにより、第1支持部材68a及び第2支持部材68bの角度を調節し、上支柱40に対しブレード60を接近及び離間させる構成としてもよい。この場合、線状部材の一端部は、ブレード60の下端側、第2支持部材68bの他端部側、及び第4ヒンジH4’のいずれかに取り付けられ、他端部は、浮体20のデッキに設置された巻取部材に取り付けられる。また、線状部材は、プーリによって下向きに曲げられ、上支柱40内に挿入される。 In the present embodiment, the angle of the first support member 68a and the second support member 68b is adjusted by the middle bracket 48c and the third support member 68c, and the blade 60 approaches and separates from the upper support column 40. The present invention is not limited to this. For example, the angle of the first support member 68a and the second support member 68b is adjusted by a linear member such as a wire and a winding member that can wind and unwind the linear member, The blade 60 may be configured to approach and separate. In this case, one end of the linear member is attached to any one of the lower end side of the blade 60, the other end side of the second support member 68b, and the fourth hinge H4 ′, and the other end is a deck of the floating body 20 It is attached to the winding member installed in the. The linear member is bent downward by the pulley and inserted into the upper support column 40.
 更に、油圧モータ等の駆動部材により、第1支持部材68a及び第2支持部材68bの角度を調節し、上支柱40に対しブレード60を接近及び離間させる構成としてもよい。この場合、駆動部材の出力軸は、第1ヒンジH1’及び第3ヒンジH3’のいずれか一方又は両方に取り付けられ、回転力を付与する。なお、ギアを介在させて駆動部材の回転力を第1ヒンジH1’等に付与してもよい。 Furthermore, the angle of the first support member 68a and the second support member 68b may be adjusted by a drive member such as a hydraulic motor so that the blade 60 approaches and separates from the upper support column 40. In this case, the output shaft of the drive member is attached to one or both of the first hinge H1 'and the third hinge H3' and applies a rotational force. Note that the rotational force of the drive member may be applied to the first hinge H1 'or the like via a gear.
 また、本実施形態では、上支柱40とブレード60とが完全に平行である状態で上支柱40に対しブレード60を接近及び離間させる構成としたが、本発明は、不可避的な製造誤差等に起因して上支柱40とブレード60とが厳密には平行でなく僅かに傾斜した状態で上支柱40に対しブレード60を接近及び離間させる構成も含む。 In the present embodiment, the blade 60 is brought close to and away from the upper support column 40 in a state where the upper support column 40 and the blade 60 are completely parallel. For this reason, a configuration is also included in which the blade 60 approaches and separates from the upper column 40 in a state where the upper column 40 and the blade 60 are not strictly parallel but are slightly inclined.
 また、本実施形態の第2支持部材68bは、ブレード60と同様の断面形状及び材質で構成され、風力を受けるブレードとしても機能しているが、本発明はこれに限定されるものではなく、ブレード60と異なる断面形状及び材質で構成され、ブレードとして機能しなくてもよい。例えば、第2支持部材68bは、第1支持部材68aと同様の形状及び材質で構成されてもよい。 In addition, the second support member 68b of the present embodiment is configured with the same cross-sectional shape and material as the blade 60 and functions as a blade that receives wind force, but the present invention is not limited to this, The blade 60 is configured with a different cross-sectional shape and material, and may not function as a blade. For example, the second support member 68b may be configured with the same shape and material as the first support member 68a.
 また、上支柱40の適所に、磁石たる永久磁石又は電磁石を設置してもよい。この場合、鋼製のブレード60を使用してブレード60を吸着固定したり、例えばアルミ製や樹脂製のブレード60の表面にスチールプレートを設置(貼着)してブレード60を吸着固定したりしてもよい。 Further, a permanent magnet or an electromagnet as a magnet may be installed at a proper position of the upper support column 40. In this case, the blade 60 is sucked and fixed using the steel blade 60, or the blade 60 is sucked and fixed by placing (sticking) a steel plate on the surface of the aluminum or resin blade 60, for example. May be.
 また、図21及び図22に示すように、第1の実施形態のような揚降手段70を用いて、上支柱40に対し第1支持部材68aを揚げ降ろす構成としてもよい。
 なお、図21は、第2の実施形態の変形例に係る上支柱40に対する第1支持部材68aの係合状態を示す側面図である。図22は、上支柱40から第1支持部材68aを抜脱する際の手順を示す側面図である。
Further, as shown in FIGS. 21 and 22, the first support member 68a may be lifted and lowered with respect to the upper support column 40 using the lifting / lowering means 70 as in the first embodiment.
FIG. 21 is a side view showing an engagement state of the first support member 68a with the upper support column 40 according to a modification of the second embodiment. FIG. 22 is a side view showing a procedure for removing the first support member 68a from the upper support column 40. FIG.
 上ブラケット48aは、第1の実施形態の上ブラケット41と略同様の形状に形成され、略U字状の一対の凹部48a3,48a3が形成される。凹部48a3は、上側に開口し、下側から上側に向かうにつれて上支柱40(回転中心軸)側に傾斜する形状を呈する。第1支持部材68aの一端には、上ブラケット48aの凹部48a3に係合可能な水平ピン68a1が他の部位よりも水平方向に延出して設けられる。水平ピン68a1及び凹部48a3が第1ヒンジH1’を構成する。なお、凹部48a3は、下側に開口してもよい。 The upper bracket 48a is formed in a shape substantially similar to that of the upper bracket 41 of the first embodiment, and a pair of substantially U-shaped concave portions 48a3 and 48a3 are formed. The recess 48a3 opens upward, and has a shape that inclines toward the upper support column 40 (rotation center axis) from the lower side toward the upper side. At one end of the first support member 68a, a horizontal pin 68a1 that can be engaged with the recess 48a3 of the upper bracket 48a is provided so as to extend in the horizontal direction from other portions. The horizontal pin 68a1 and the recess 48a3 constitute a first hinge H1 '. In addition, you may open the recessed part 48a3 below.
 ハリヤード73は、図22に示すように、一端が第1支持部材68aの水平ピン68a1に取り付けられ、他端が浮体20のデッキに設置された図示しない巻取装置に巻き取り及び巻き出し可能に取り付けられる。図21に示すように、上支柱40に対し第1支持部材68aを吊り上げた状態において、ハリヤード73には、水平ピン68a1を下向きに(凹部48a3の内面に接触する側に)引っ張る張力が付与される。これにより、凹部48a3からの水平ピン68a1の脱落を防止できる。 As shown in FIG. 22, the halyard 73 has one end attached to the horizontal pin 68a1 of the first support member 68a and the other end capable of winding and unwinding to a winding device (not shown) installed on the deck of the floating body 20. It is attached. As shown in FIG. 21, in the state where the first support member 68a is lifted from the upper support column 40, tension is applied to the halyard 73 to pull the horizontal pin 68a1 downward (to the side in contact with the inner surface of the recess 48a3). The Thereby, it is possible to prevent the horizontal pin 68a1 from falling off from the recess 48a3.
 この場合、第1支持部材68aを降ろす際には、図22に示すように、油圧アクチュエータ機構によって保持部材71を上側へ移動させ、上支柱40の上端部から外部へ露出させる。
 このとき、プーリ72、凹部48a3の開口面、及び水平ピン68a1が直線上になる位置まで保持部材71を移動させる。
In this case, when lowering the first support member 68a, as shown in FIG. 22, the holding member 71 is moved upward by the hydraulic actuator mechanism and exposed from the upper end of the upper support column 40 to the outside.
At this time, the holding member 71 is moved to a position where the pulley 72, the opening surface of the recess 48a3, and the horizontal pin 68a1 are on a straight line.
 続いて、ハリヤード73を巻き取ると、第1支持部材68aが保持部材71側に引き寄せられ、凹部48a3から水平ピン68a1が抜脱する。 Subsequently, when the halyard 73 is wound up, the first support member 68a is drawn toward the holding member 71, and the horizontal pin 68a1 is pulled out from the recess 48a3.
 そして、ハリヤード73を繰り出すと、第1支持部材68aが上支柱40に対し吊り降ろされることとなる。 Then, when the halyard 73 is fed out, the first support member 68a is suspended from the upper support column 40.
 なお、第1支持部材68aを吊り降ろした後、中ブラケット48cを下側に移動させると(図18,図20(b)参照)、第2支持部材68bは、第3ヒンジH3’を中心軸として下側に回転すると共に、ブレード60は、第4ヒンジH4’を中心軸として下側に回転する。その結果、第2支持部材68b及びブレード60は、水平方向で重なった状態となり、ブレード60が上支柱40に対し吊り降ろされることとなる。 When the middle bracket 48c is moved downward after the first support member 68a is suspended (see FIGS. 18 and 20B), the second support member 68b is centered on the third hinge H3 ′. And the blade 60 rotates downward about the fourth hinge H4 ′ as a central axis. As a result, the second support member 68b and the blade 60 are overlapped in the horizontal direction, and the blade 60 is suspended from the upper support column 40.
 100,110,120 垂直軸風車(流体力利用構造物)
 10  アッセンブリ
 30  支柱
 40  上支柱(回転軸)
 41  上ブラケット
 41a 連結部
 41b 取付部
 41b4 凹部
 42  スプラインナット(移動部材)
 43  下ブラケット
 43a 孔部
 44  空隙
 45  シリンダ
 46  シリンダロッド
 47  中ブラケット
 47a 孔部
 48a 上ブラケット
 48b 下ブラケット
 48c 中ブラケット(角度調節手段,移動部材)
 68a 第1支持部材
 68b 第2支持部材
 68c 第3支持部材(角度調節手段)
 60  ブレード
 61  上ブレード(第1分割ブレード)
 61a 上端部
 61b 水平ピン(突部)
 62  下ブレード(第2分割ブレード)
 62a 下端部
 62b 水平ピン
 63  中間ヒンジ
 63a 中間ヒンジ
 63b 中間ヒンジ
 64  中ブレード(第3分割ブレード)
 65  ロッド(支持部材)
 65a 下端部
 65b 水平ピン
 67a-67d 弾性ゴム支承(復帰部材)
 70  揚降手段
 71  保持部材(移動手段)
 72  プーリ(案内部材)
 73  ハリヤード(吊り部材)
 H1  第1ヒンジ
 H2  第2ヒンジ
 H3  第3ヒンジ
 H1’ 第1ヒンジ
 H2’ 第2ヒンジ
 H3’ 第3ヒンジ
 H4’ 第4ヒンジ
 H5’ 第5ヒンジ
 r   回転半径
100, 110, 120 Vertical axis wind turbine (structure using fluid force)
10 assembly 30 support 40 upper support (rotary shaft)
41 Upper bracket 41a Connecting portion 41b Mounting portion 41b4 Recess 42 Spline nut (moving member)
43 Lower bracket 43a Hole 44 Cavity 45 Cylinder 46 Cylinder rod 47 Middle bracket 47a Hole 48a Upper bracket 48b Lower bracket 48c Middle bracket (angle adjusting means, moving member)
68a First support member 68b Second support member 68c Third support member (angle adjusting means)
60 blade 61 upper blade (first divided blade)
61a Upper end 61b Horizontal pin (projection)
62 Lower blade (second divided blade)
62a Lower end 62b Horizontal pin 63 Intermediate hinge 63a Intermediate hinge 63b Intermediate hinge 64 Middle blade (third divided blade)
65 Rod (support member)
65a Lower end 65b Horizontal pin 67a-67d Elastic rubber bearing (return member)
70 Lifting / lowering means 71 Holding member (moving means)
72 Pulley (guide member)
73 halyard
H1 1st hinge H2 2nd hinge H3 3rd hinge H1 ′ 1st hinge H2 ′ 2nd hinge H3 ′ 3rd hinge H4 ′ 4th hinge H5 ′ 5th hinge r turning radius

Claims (24)

  1.  垂直方向に沿って延在し、垂直軸周りに回転可能な回転軸と、
     流体力を受けるブレードと、
     を備える流体力利用構造物であって、
     前記ブレードが前記回転軸に対し接近又は離間し、前記ブレードの回転半径が調節されることを特徴とする流体力利用構造物。
    A rotation axis extending along the vertical direction and rotatable about the vertical axis;
    A blade that receives fluid force;
    A fluid force utilization structure comprising:
    The fluid force utilization structure, wherein the blade approaches or separates from the rotation shaft, and the rotation radius of the blade is adjusted.
  2.  前記ブレードは、前記回転軸に対し実質的に平行な状態で接近又は離間することを特徴とする請求の範囲第1項に記載の流体力利用構造物。 The fluid force utilization structure according to claim 1, wherein the blade approaches or separates in a state substantially parallel to the rotation axis.
  3.  一端が第1ヒンジを介して前記回転軸の一端側に対し上下に回転可能に連結されると共に、他端が第2ヒンジを介して前記ブレードの一端側に連結される第1支持部材と、
     一端が第3ヒンジを介して前記回転軸の他端側に対し上下に回転可能に連結されると共に、他端が第4ヒンジを介して前記ブレードの他端側に連結される第2支持部材と、
     前記回転軸に対する前記第1支持部材及び前記第2支持部材の角度を調整する角度調整手段と、
     を更に備えたことを特徴とする請求の範囲第2項に記載の流体力利用構造物。
    A first support member having one end connected to one end side of the rotary shaft via a first hinge so as to be vertically rotatable, and the other end connected to one end side of the blade via a second hinge;
    A second support member having one end connected to the other end side of the rotary shaft via a third hinge so as to be rotatable up and down, and the other end connected to the other end side of the blade via a fourth hinge When,
    Angle adjusting means for adjusting the angles of the first support member and the second support member with respect to the rotation shaft;
    The fluid force utilization structure according to claim 2, further comprising:
  4.  前記角度調節手段は、
     前記回転軸に設けられ、前記回転軸に沿って上下に移動する移動部材と、
     一端が第5ヒンジを介して前記移動部材に対し上下に回転可能に連結されると共に、他端が前記ブレードの他端側、前記第2支持部材の他端側、及び前記第4ヒンジのいずれかに連結される第3支持部材と、
     から構成されることを特徴とする請求の範囲第3項に記載の流体力利用構造物。
    The angle adjusting means includes
    A moving member provided on the rotating shaft and moving up and down along the rotating shaft;
    One end is connected to the moving member via a fifth hinge so as to be rotatable up and down, and the other end is any of the other end side of the blade, the other end side of the second support member, and the fourth hinge. A third support member coupled to the crab,
    The fluid force utilization structure according to claim 3, wherein the structure is made up of
  5.  前記角度調節手段は、
     一端が前記ブレードの他端側、前記第2支持部材の他端側、及び前記第4ヒンジのいずれかに取り付けられ、前記回転軸に対し前記ブレード、前記第2支持部材、及び前記第4ヒンジを保持する線状部材と、
     前記線状部材の他端が取り付けられ、前記線状部材を巻き取り及び巻き出し可能な巻取部材と、
     から構成されることを特徴とする請求の範囲第3項に記載の流体力利用構造物。
    The angle adjusting means includes
    One end is attached to one of the other end side of the blade, the other end side of the second support member, and the fourth hinge, and the blade, the second support member, and the fourth hinge with respect to the rotating shaft. A linear member that holds
    The other end of the linear member is attached, and a winding member capable of winding and unwinding the linear member;
    The fluid force utilization structure according to claim 3, wherein the structure is made up of
  6.  前記角度調節手段は、
     前記第1ヒンジ及び前記第3ヒンジのいずれか一方に回転力を付与する駆動部材から構成されることを特徴とする請求の範囲第3項に記載の流体力利用構造物。
    The angle adjusting means includes
    The fluid force utilization structure according to claim 3, wherein the fluid force utilization structure is configured by a drive member that applies a rotational force to one of the first hinge and the third hinge.
  7.  前記回転軸に対し前記第1支持部材を吊り上げ及び吊り降ろし可能な吊り部材と、
     前記回転軸に取り付けられ、前記吊り部材を案内する案内部材と、を更に備えたことを特徴とする請求の範囲第3項乃至請求の範囲第6項のいずれか一項に記載の流体力利用構造物。
    A suspension member capable of lifting and lowering the first support member with respect to the rotating shaft;
    The fluid force utilization according to any one of claims 3 to 6, further comprising a guide member attached to the rotating shaft and guiding the suspension member. Structure.
  8.  前記第1ヒンジは、前記回転軸の一端側又は他端側に開口する凹部と、前記第1支持部材に設けられ、前記凹部に係合可能な突部と、を有することを特徴とする請求の範囲第7項に記載の流体力利用構造物。 The first hinge includes a recess opening on one end side or the other end side of the rotating shaft, and a protrusion provided on the first support member and engageable with the recess. The fluid force utilization structure according to claim 7 in the range.
  9.  前記凹部から前記突部を抜脱可能な位置と、前記凹部及び前記突部の係合状態を保持可能な位置と、に前記案内部材を移動する移動手段を更に備えたことを特徴とする請求の範囲第8項に記載の流体力利用構造物。 A moving means for moving the guide member to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained is further provided. The fluid force utilization structure according to claim 8,
  10.  前記ブレードと前記第1支持部材と前記第2支持部材とは、前記回転軸の近傍であって、前記回転軸に対し実質的に平行な状態に折り畳み可能に構成されることを特徴とする請求の範囲第9項に記載の流体力利用構造物。 The blade, the first support member, and the second support member are configured to be foldable in a vicinity of the rotation shaft and substantially parallel to the rotation shaft. The fluid force utilization structure according to claim 9 in the range.
  11.  前記回転軸に設けられ、前記ブレードが折り畳まれる際に前記ブレードを吸着固定する磁石を更に備えたことを特徴とする請求の範囲第10項に記載の流体力利用構造物。 The fluid force utilization structure according to claim 10, further comprising a magnet provided on the rotating shaft and configured to attract and fix the blade when the blade is folded.
  12.  垂直方向に沿って延在し、垂直軸周りに回転可能な回転軸と、
     流体力を受けるブレードと、
     を備える流体力利用構造物であって、
     前記ブレードの一端は、第1ヒンジを介して、前記回転軸に対し上下に回転可能に支持され、
     前記ブレードの他端は、第2ヒンジを介して、前記回転軸に対し上下に回転可能に支持され、
     前記第1ヒンジと前記第2ヒンジとの相対的な位置を変更することにより、前記ブレードの両端の途中が前記回転軸に対し接近又は離間し、前記ブレードの形が変形して、前記ブレードの回転半径が調節されることを特徴とする流体力利用構造物。
    A rotation axis extending along the vertical direction and rotatable about the vertical axis;
    A blade that receives fluid force;
    A fluid force utilization structure comprising:
    One end of the blade is supported via the first hinge so as to be rotatable up and down with respect to the rotation shaft,
    The other end of the blade is supported so as to be rotatable up and down with respect to the rotation shaft via a second hinge,
    By changing the relative positions of the first hinge and the second hinge, the middle of the both ends of the blade approaches or separates from the rotation shaft, and the shape of the blade is deformed. A structure using fluid force, wherein a turning radius is adjusted.
  13.  前記回転軸に対し前記ブレードを吊り上げ及び吊り降ろし可能な吊り部材と、
     前記回転軸に取り付けられ、前記吊り部材を案内する案内部材と、を更に備えたことを特徴とする請求の範囲第12項に記載の流体力利用構造物。
    A suspension member capable of lifting and lowering the blade with respect to the rotating shaft;
    The fluid force utilization structure according to claim 12, further comprising a guide member attached to the rotating shaft and guiding the suspension member.
  14.  前記第1ヒンジは、前記回転軸の一端側に開口する凹部と、前記ブレードに設けられ、前記凹部に係合可能な突部と、を有することを特徴とする請求の範囲第13項に記載の流体力利用構造物。 The said 1st hinge has the recessed part opened to the one end side of the said rotating shaft, and the protrusion provided in the said blade and engageable with the said recessed part, The Claim 13 characterized by the above-mentioned. Fluid power utilization structure.
  15.  前記凹部から前記突部を抜脱可能な位置と、前記凹部及び前記突部の係合状態を保持可能な位置と、に前記案内部材を移動する移動手段を更に備えたことを特徴とする請求の範囲第14項に記載の流体力利用構造物。 A moving means for moving the guide member to a position where the protrusion can be removed from the recess and a position where the engagement state of the recess and the protrusion can be maintained is further provided. The fluid force utilization structure according to claim 14.
  16.  前記回転軸は、上下に伸縮可能に構成され、
     前記第1ヒンジ及び前記第2ヒンジのいずれか一方は、前記回転軸の伸縮に応じて上下に移動することを特徴とする請求の範囲第12項乃至請求の範囲第15項のいずれか一項に記載の流体力利用構造物。
    The rotating shaft is configured to be vertically expandable and contractible,
    Either one of the first hinge and the second hinge moves up and down in accordance with the expansion and contraction of the rotating shaft. The structure using fluid force described in 1.
  17.  前記回転軸に設けられ、前記回転軸に沿って上下に移動する移動部材を更に備え、
     前記第1ヒンジ及び前記第2ヒンジのいずれか一方は、前記移動部材に取り付けられ、前記移動部材の移動に応じて上下に移動することを特徴とする請求の範囲第12項乃至請求の範囲第15項のいずれか一項に記載の流体力利用構造物。
    A moving member provided on the rotating shaft and moving up and down along the rotating shaft;
    Either one of the first hinge and the second hinge is attached to the moving member, and moves up and down in accordance with the movement of the moving member. 16. The fluid force utilization structure according to any one of items 15.
  18.  前記回転軸の伸縮は、前記回転軸がシリンダ若しくはシリンダロッドとなる油圧若しくは水圧アクチュエータ機構、又はボールねじによってなされることを特徴とする請求の範囲第16項に記載の流体力利用構造物。 The fluid force utilization structure according to claim 16, wherein the expansion and contraction of the rotation shaft is performed by a hydraulic or hydraulic actuator mechanism in which the rotation shaft becomes a cylinder or a cylinder rod, or a ball screw.
  19.  前記移動部材の移動は、前記回転軸がシリンダ若しくはシリンダロッドとなる油圧若しくは水圧アクチュエータ機構、又はボールねじによってなされることを特徴とする請求の範囲第17項に記載の流体力利用構造物。 The fluid force utilization structure according to claim 17, wherein the movement of the moving member is performed by a hydraulic or hydraulic actuator mechanism in which the rotation shaft is a cylinder or a cylinder rod, or a ball screw.
  20.  前記ブレードは、垂直方向に分割された複数の分割ブレードを有し、
     前記分割ブレード同士は、中間ヒンジを介して互いに連結されると共に、前記中間ヒンジを基点として上下に屈曲可能に構成されていることを特徴とする請求の範囲第12項に記載の流体力利用構造物。
    The blade has a plurality of divided blades divided in the vertical direction;
    13. The fluid force utilization structure according to claim 12, wherein the divided blades are connected to each other via an intermediate hinge and bendable up and down with the intermediate hinge as a base point. object.
  21.  前記分割ブレードと前記中間ヒンジとの間に設けられ、前記分割ブレードを所定の屈曲角度に復帰させる復帰部材を更に備えたことを特徴とする請求の範囲第20項に記載の流体力利用構造物。 21. The hydrodynamic structure according to claim 20, further comprising a return member provided between the split blade and the intermediate hinge and returning the split blade to a predetermined bending angle. .
  22.  前記分割ブレードは、
     一端が、前記第1ヒンジを介して、前記回転軸に対し上下に回転可能に支持される第1分割ブレードと、
     一端が、前記第2ヒンジを介して、前記回転軸に対し上下に回転可能に支持される第2分割ブレードと、
     前記第1分割ブレード及び前記第2分割ブレードの間に設けられ、前記第1分割ブレードの他端に前記第1中間ヒンジを介して連結され、前記第2分割ブレードの他端に前記第2中間ヒンジを介して連結される第3分割ブレードと、を有し、
     前記第2ヒンジに対し前記第1ヒンジの位置を変更するときには、前記回転軸に対し第1中間ヒンジを支持し、かつ前記第2分割ブレードと平行に設けられる支持部材を備えると共に、前記回転軸及び前記第3分割ブレードは、互いに平行に構成される一方、
     前記第1ヒンジに対し前記第2ヒンジの位置を変更するときには、前記回転軸に対し第2中間ヒンジを支持し、かつ前記第1分割ブレードと平行に設けられる支持部材を備えると共に、前記回転軸及び前記第3分割ブレードは、互いに平行に構成されることを特徴とする請求の範囲第20項又は請求の範囲第21項に記載の流体力利用構造物。
    The split blade is
    A first divided blade supported at one end by the first hinge so as to be vertically rotatable with respect to the rotation shaft;
    A second divided blade supported at one end by the second hinge so as to be vertically rotatable with respect to the rotation shaft;
    Provided between the first divided blade and the second divided blade, connected to the other end of the first divided blade via the first intermediate hinge, and connected to the other end of the second divided blade at the second intermediate A third divided blade connected via a hinge,
    When changing the position of the first hinge with respect to the second hinge, the rotary shaft includes a support member that supports the first intermediate hinge with respect to the rotary shaft and is provided in parallel with the second split blade, and the rotary shaft And the third divided blade is configured in parallel with each other,
    When changing the position of the second hinge with respect to the first hinge, the rotary shaft includes a support member that supports the second intermediate hinge with respect to the rotary shaft and is provided in parallel with the first split blade, and the rotary shaft The fluid force utilization structure according to claim 20 or claim 21, wherein the third divided blade is configured in parallel with each other.
  23.  前記第1ヒンジ及び前記第2ヒンジが互いに離間するにつれて、前記ブレードが前記回転軸に接近し、
     前記ブレードは、前記回転軸の近傍であって、前記回転軸に対し略平行な状態に折り畳み可能に構成されることを特徴とする請求の範囲第22項に記載の流体力利用構造物。
    As the first hinge and the second hinge move away from each other, the blade approaches the rotating shaft,
    23. The fluid force utilization structure according to claim 22, wherein the blade is configured to be foldable in a vicinity of the rotation shaft and substantially parallel to the rotation shaft.
  24.  前記回転軸に設けられ、前記ブレードが折り畳まれる際に前記ブレードを吸着固定する磁石を更に備えたことを特徴とする請求の範囲第23項に記載の流体力利用構造物。 24. The hydrodynamic structure according to claim 23, further comprising a magnet provided on the rotating shaft and configured to attract and fix the blade when the blade is folded.
PCT/JP2012/079083 2011-11-11 2012-11-09 Structure that utilizes hydrodynamic forces WO2013069757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247105 2011-11-11
JP2011247105A JP2015028298A (en) 2011-11-11 2011-11-11 Fluid power utilization structure

Publications (1)

Publication Number Publication Date
WO2013069757A1 true WO2013069757A1 (en) 2013-05-16

Family

ID=48290125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079083 WO2013069757A1 (en) 2011-11-11 2012-11-09 Structure that utilizes hydrodynamic forces

Country Status (2)

Country Link
JP (1) JP2015028298A (en)
WO (1) WO2013069757A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351796A (en) * 2016-10-09 2017-01-25 天津大学 Ocean wind energy and tidal current energy united power supply floating lighting device
CN107061174A (en) * 2017-06-23 2017-08-18 深圳市奈士迪技术研发有限公司 A kind of offshore wind generating with separation function
CN107829880A (en) * 2017-10-31 2018-03-23 浙江海洋大学 A kind of wind energy, tidal current energy generating equipment
CN108105034A (en) * 2017-12-19 2018-06-01 南通大学 Suitable for the vertical axis windmill of typhoon
CN109026550A (en) * 2018-08-23 2018-12-18 陈辉 Open side type foundation structure of offshore wind
CN109162864A (en) * 2018-08-31 2019-01-08 烟台南山学院 A kind of fan blade type variable wind power generating set with vertical shaft
CN109630350A (en) * 2018-12-29 2019-04-16 上海海事大学 A kind of folding φ shape vertical axis windmill
CN110725777A (en) * 2018-01-16 2020-01-24 李敏 Wind power generation device
CN111577536A (en) * 2020-05-12 2020-08-25 北京动力京工科技有限公司 Inner-pushing type vertical axis wind driven generator with adjustable radius and control method
WO2020230685A1 (en) * 2019-05-10 2020-11-19 国立大学法人大阪大学 Floating offshore wind turbine and installation method for floating offshore wind turbine
CN113266528A (en) * 2021-06-19 2021-08-17 崔鹰飞 Small portable wind power generation windmill structure method
IT202000031985A1 (en) * 2020-12-22 2022-06-22 Imperatore Gerardo WIND TURBINE FOR ELECTRICITY, WITH VERTICAL AXIS, DOUBLE TYPE, WITH INTEGRATED LID STRUCTURE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989872B (en) * 2019-04-26 2020-12-08 浙江海洋大学 Ocean current energy power generation device with automatic adjusting function
KR102629448B1 (en) * 2019-09-11 2024-01-24 삼성중공업 주식회사 Apparatus for propulsion
KR102596173B1 (en) * 2019-09-19 2023-10-30 삼성중공업 주식회사 Apparatus for propulsion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732076A (en) * 1980-08-04 1982-02-20 Agency Of Ind Science & Technol Wind mill equipped with blades of variable positioning
JPS61197769A (en) * 1985-02-27 1986-09-02 Mitsui Eng & Shipbuild Co Ltd Output control device for wind power generator
JPS61207882A (en) * 1985-03-12 1986-09-16 Kohei Uchida Vertical shaft type wind mill having connected blades
JPS61215464A (en) * 1985-03-19 1986-09-25 廉 洛麟 Shape changeable vertical shaft wind wheel
JPH07108999A (en) * 1993-10-13 1995-04-25 Mitsubishi Heavy Ind Ltd Transmitting method from space flying body to earth station, and device therefor
JP2001107837A (en) * 1999-10-13 2001-04-17 Akimori Taniguchi Vertical shaft type windmill opened and closed at wind pressure
JP2006037753A (en) * 2004-07-22 2006-02-09 Igari:Kk Windmill for wind power generation
JP2008501896A (en) * 2004-06-05 2008-01-24 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Control method for automated manual transmission

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732076A (en) * 1980-08-04 1982-02-20 Agency Of Ind Science & Technol Wind mill equipped with blades of variable positioning
JPS61197769A (en) * 1985-02-27 1986-09-02 Mitsui Eng & Shipbuild Co Ltd Output control device for wind power generator
JPS61207882A (en) * 1985-03-12 1986-09-16 Kohei Uchida Vertical shaft type wind mill having connected blades
JPS61215464A (en) * 1985-03-19 1986-09-25 廉 洛麟 Shape changeable vertical shaft wind wheel
JPH07108999A (en) * 1993-10-13 1995-04-25 Mitsubishi Heavy Ind Ltd Transmitting method from space flying body to earth station, and device therefor
JP2001107837A (en) * 1999-10-13 2001-04-17 Akimori Taniguchi Vertical shaft type windmill opened and closed at wind pressure
JP2008501896A (en) * 2004-06-05 2008-01-24 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Control method for automated manual transmission
JP2006037753A (en) * 2004-07-22 2006-02-09 Igari:Kk Windmill for wind power generation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351796A (en) * 2016-10-09 2017-01-25 天津大学 Ocean wind energy and tidal current energy united power supply floating lighting device
CN107061174A (en) * 2017-06-23 2017-08-18 深圳市奈士迪技术研发有限公司 A kind of offshore wind generating with separation function
CN107829880A (en) * 2017-10-31 2018-03-23 浙江海洋大学 A kind of wind energy, tidal current energy generating equipment
CN108105034A (en) * 2017-12-19 2018-06-01 南通大学 Suitable for the vertical axis windmill of typhoon
CN108105034B (en) * 2017-12-19 2019-05-31 南通大学 Vertical axis windmill suitable for typhoon
CN110725777A (en) * 2018-01-16 2020-01-24 李敏 Wind power generation device
CN109026550A (en) * 2018-08-23 2018-12-18 陈辉 Open side type foundation structure of offshore wind
CN109162864A (en) * 2018-08-31 2019-01-08 烟台南山学院 A kind of fan blade type variable wind power generating set with vertical shaft
CN109630350A (en) * 2018-12-29 2019-04-16 上海海事大学 A kind of folding φ shape vertical axis windmill
WO2020230685A1 (en) * 2019-05-10 2020-11-19 国立大学法人大阪大学 Floating offshore wind turbine and installation method for floating offshore wind turbine
JPWO2020230685A1 (en) * 2019-05-10 2020-11-19
CN111577536A (en) * 2020-05-12 2020-08-25 北京动力京工科技有限公司 Inner-pushing type vertical axis wind driven generator with adjustable radius and control method
IT202000031985A1 (en) * 2020-12-22 2022-06-22 Imperatore Gerardo WIND TURBINE FOR ELECTRICITY, WITH VERTICAL AXIS, DOUBLE TYPE, WITH INTEGRATED LID STRUCTURE
CN113266528A (en) * 2021-06-19 2021-08-17 崔鹰飞 Small portable wind power generation windmill structure method
CN113266528B (en) * 2021-06-19 2023-02-17 崔鹰飞 Small-sized portable wind power generation windmill structure

Also Published As

Publication number Publication date
JP2015028298A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2013069757A1 (en) Structure that utilizes hydrodynamic forces
JP5918503B2 (en) Floating fluid power utilization system and wind power propulsion ship using the same
CA2743656C (en) Tower segments and method for off-shore wind turbines
EP2422085B1 (en) Floating wind turbine with turbine anchor
JP5818743B2 (en) Natural energy extractor
US10982654B1 (en) Yawing buoy mast for floating offshore wind turbines
US20120045345A1 (en) Offshore wind turbine and methods of installing same
GB2450624A (en) A support frame for water turbines adapted for movement with respect to an underwater mounting
US8439641B2 (en) Flow driven engine
CN113646527A (en) Shallow draft wide-base floating wind turbine without nacelle
JP6266685B2 (en) Floating fluid power utilization system and wind power propulsion ship using the same
JP5185295B2 (en) Wind power plant and operation method thereof
EP2487364A2 (en) Vessel and method for mounting an offshore wind turbine
US20140322012A1 (en) Flow Driven Engine
SE542891C2 (en) A floating vertical axis wind turbine with peripheral water turbine assemblies
WO2014097429A1 (en) Windmill and method for operating same
KR20210110176A (en) transition wind turbine
US11885297B2 (en) Transitioning wind turbine
CN118202145A (en) Renewable energy system installation equipment and buoyancy platform
NO347215B1 (en) Floating foundation for wind turbine generators and a method for instalment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURUANT TO RULE 112(1) EPC, FORM 1205A DATED 08-09-2014

122 Ep: pct application non-entry in european phase

Ref document number: 12847567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP