WO2013069488A1 - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
WO2013069488A1
WO2013069488A1 PCT/JP2012/077827 JP2012077827W WO2013069488A1 WO 2013069488 A1 WO2013069488 A1 WO 2013069488A1 JP 2012077827 W JP2012077827 W JP 2012077827W WO 2013069488 A1 WO2013069488 A1 WO 2013069488A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
soot
fuel injection
value
predetermined value
Prior art date
Application number
PCT/JP2012/077827
Other languages
French (fr)
Japanese (ja)
Inventor
中川 慎二
沼田 明人
福地 栄作
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013069488A1 publication Critical patent/WO2013069488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped

Definitions

  • the present invention relates to a control device for an engine, and more particularly to a control device for an engine capable of reducing the amount of soot discharged from the engine, and more particularly, improving the emission performance (emission characteristics).
  • Patent Document 1 describes a method of estimating the amount of soot generation and correcting the fuel injection pressure based on the estimated amount of generation.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to surely reduce the amount of soot in the exhaust and accurately decrease (increase) the amount of soot in the exhaust. It is providing the control device of the engine which can be detected and notified.
  • means for directly detecting the amount of soot in exhaust gas, and a direct detection value of the amount of soot in the exhaust gas is higher than a predetermined value.
  • Means for changing a control parameter of the engine so that the detected value of the amount of soot in the exhaust gas becomes smaller than the predetermined value when it becomes larger see FIG. 26).
  • the amount of soot in the exhaust is detected in real time accurately using a means for directly detecting the amount of soot in the exhaust.
  • the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal, the amount of soot in the exhaust gas becomes worse (increases), the direct detection value of the amount of soot in the exhaust gas Means for changing the control parameters of the engine such that is smaller than a predetermined value.
  • a fuel injection pressure which is one of the control parameters of the engine is selected. It is characterized in that means for raising is provided (see FIG. 27).
  • the amount of soot in the exhaust gas is accurately detected in real time using a means for directly detecting the amount of soot in the exhaust gas, and the direct detection value of the amount of soot in the exhaust gas is
  • the control parameter of the engine is set so that the direct detection value of the amount of soot in the exhaust gas becomes smaller than a predetermined value.
  • a means for increasing the fuel injection pressure is provided.
  • a third aspect of the engine control system according to the present invention is a more specific version of the second aspect, and the means for increasing the fuel injection pressure is fuel pressure feedback control based on a fuel pressure sensor detection value performed in a fuel supply system.
  • the fuel injection pressure is raised by resetting the target fuel pressure set in accordance with the engine operating state to a high value (see FIG. 28).
  • the pressure of the fuel supplied to the fuel injection valve in the fuel supply system provided with a fuel pump and a fuel pressure sensor is Since fuel pressure feedback control based on the fuel pressure sensor detection value is performed in order to converge and match the target fuel pressure set according to the operating condition, the means for increasing the fuel injection pressure utilizes this to determine the amount of soot
  • the target fuel pressure is made to be high so that the direct detection value of is smaller than a predetermined value.
  • a fourth aspect of the engine control device is characterized by comprising means for accelerating the fuel injection timing when the direct detection value of the amount of soot in the exhaust gas exceeds the predetermined value. It is characterized (see FIG. 29).
  • the direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal.
  • a means for accelerating the fuel injection timing which is one of the control parameters of the engine, is provided so as to be smaller than the above.
  • a fifth aspect of the engine control device is characterized by comprising means for increasing the number of times of fuel injection when the direct detection value of the amount of soot in the exhaust gas becomes larger than the predetermined value. (See FIG. 30).
  • the direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal.
  • a means for increasing the number of fuel injections, which is one of the control parameters of the engine, is provided so as to be smaller than the above.
  • a sixth aspect of the engine control device is characterized by comprising means for reducing the EGR amount when the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value. (See Figure 31).
  • the direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal.
  • an EGR valve is interposed in an EGR passage for external EGR connecting the exhaust passage and the intake passage, and the amount of EGR (exhaust (exhaust) is controlled by controlling the opening degree of the EGR valve. This is realized by controlling the internal EGR amount by increasing or decreasing the reflux amount) or operating, for example, the intake variable valve and / or the exhaust variable valve.
  • the filling efficiency of the in-cylinder air amount is smaller than the predetermined value.
  • the fuel injection pressure changing means is provided to lower the fuel injection pressure when the fuel injection pressure is increased and the filling efficiency of the in-cylinder air amount is larger than a predetermined value (see FIG. 32).
  • the direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal.
  • the fuel injection pressure is changed to be smaller than that.
  • the amount of soot tends to decrease as the fuel injection pressure is increased, but the required fuel injection amount also increases as the air filling efficiency in the cylinder increases, so increasing the fuel injection pressure results in fuel penetration
  • the fuel injection amount is likely to hit the piston crown surface and the piston inner wall, which may increase the amount of generated soot. Therefore, when the filling efficiency of the in-cylinder air amount is smaller than a predetermined value, the fuel injection pressure is increased, and when the filling efficiency of the in-cylinder air amount is larger than the predetermined value, the fuel injection pressure is decreased. It is intended to suppress the deterioration of the amount of soot.
  • An eighth aspect of the engine control device is dependent on the first aspect, and after changing the control parameter by the means for changing the control parameter of the engine, even if a predetermined time has elapsed, If the direct detection value of the amount of soot in the exhaust gas does not become smaller than the predetermined value, the apparatus is characterized in that it comprises means for notifying that effect (see FIG. 33).
  • the direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal. Change the control parameters of the engine to be smaller. However, in the case where a serious abnormality occurs in the engine such as deterioration with time, the direct detection value of the amount of soot in the exhaust gas may not be smaller than a predetermined value even if the control parameter of the engine is changed.
  • a means for notifying that the abnormality is generated such that the deterioration of the amount of soot in the exhaust can not be suppressed can comprise, for example by the warning lamp provided in the instrument panel of a driver's seat, an indicator, etc., and the control part which makes it light-display.
  • the ninth to thirteenth aspects are the same as the eighth aspect, and even if one of the control parameters of the engine is changed, the direct detection value of the amount of soot in the exhaust gas is greater than the predetermined value. Also, when it does not become smaller, means for notifying that is provided.
  • a ninth aspect of the engine control device is dependent on the second aspect, and a predetermined time is set after the fuel injection pressure is increased by the means for increasing the fuel injection pressure. If the directly detected value of the amount of soot in the exhaust gas does not become smaller than the predetermined value even after lapse of time, it is characterized in that it comprises means for notifying of that (see FIG. 34).
  • a tenth aspect of the engine control system according to the present invention is dependent on the fourth aspect, and the means for accelerating the fuel injection timing accelerates the fuel injection timing, and then the predetermined time has elapsed.
  • the direct detection value of the amount of soot in the exhaust gas does not become smaller than the predetermined value, it is characterized in that it comprises means for notifying that effect (see FIG. 35).
  • An eleventh aspect of the engine control device is dependent on the fifth aspect, and the means for increasing the number of fuel injections increases the number of fuel injections, and then the predetermined time has elapsed.
  • the direct detection value of the amount of soot in the exhaust gas does not become smaller than the predetermined value, it is characterized in that it comprises means for notifying that effect (see FIG. 36).
  • a twelfth aspect of the engine control device is dependent on the sixth aspect, and after reducing the EGR amount by the means for reducing the EGR amount, during the exhaust gas, even if a predetermined time has elapsed,
  • the direct detection value of the amount of soot does not become smaller than the predetermined value, it is characterized in that it comprises means for notifying that effect (see FIG. 37).
  • a thirteenth aspect of the engine control device is dependent on the seventh aspect, and after the fuel injection pressure is changed by the fuel pressure changing means, even if a predetermined time has elapsed, the exhaust pressure is changed. If the direct detection value of the amount of soot does not become smaller than the predetermined value, it is characterized in that it is provided with means for notifying that effect (see FIG. 38).
  • a fourteenth aspect of the engine control system according to the present invention is dependent on the first aspect, and when the direct detection value of soot in the exhaust gas exceeds the predetermined value, soot in the exhaust gas is generated.
  • the fuel injection pressure is increased so that the direct detection value of the amount of fuel is smaller than the predetermined value, and the amount of EGR is reduced if the amount of soot is still smaller than the predetermined value. If the amount of soot does not become smaller than the predetermined value, the fuel injection timing is advanced, and if the amount of soot still does not become smaller than the predetermined value, the number of fuel injections is increased. It is characterized (see FIG. 39).
  • the control parameters are changed in the order (fuel pressure, EGR amount, fuel injection timing, number of fuel injections) in which the adverse effect on the engine is considered to be small. Since the correction is performed, the amount of soot in the exhaust can be more reliably reduced.
  • a fifteenth aspect of the engine control device is dependent on the first aspect, and the means for directly detecting the amount of soot in the exhaust detects the mass of soot or the number of soot as the amount of soot. (See FIG. 40). Here, it is specified that the amount of soot is the mass of soot or the number of soot.
  • the amount of soot in exhaust gas is accurately detected in real time using means for directly detecting the amount of soot in exhaust gas, and the amount of soot in exhaust gas becomes worse (increased)
  • one (at least one) of the engine control parameters is changed to suppress it, so that it is possible to suppress the deterioration of the amount of soot in the exhaust gas timely and appropriately.
  • the driver or the like takes some measures by notifying that the amount of soot in the exhaust has deteriorated. It is more likely to be taken, and as a result, the amount of soot released to the atmosphere can be further reduced.
  • FIG. 7 is an internal configuration diagram of a control unit in the first to seventh embodiments.
  • FIG. 2 is a control system diagram of the first embodiment.
  • FIG. 2 is a block diagram showing an example of fuel pressure control means in the first embodiment.
  • FIG. 7 is a control system diagram of a second embodiment.
  • FIG. 7 is a block diagram showing an example of fuel injection timing calculation means in Embodiment 2.
  • FIG. 10 is a control system diagram of a third embodiment.
  • the block diagram which shows an example of the basic fuel injection quantity calculating means in Example 3 and Example 6.
  • FIG. 14 is a block diagram showing an example of fuel injection number calculation means in the third embodiment.
  • FIG. FIG. 14 is a block diagram showing an example of fuel injection timing calculation means in Embodiment 3.
  • FIG. 14 is a control system diagram of a fourth embodiment.
  • FIG. 14 is a block diagram showing an example of an EGR amount control means in a fourth embodiment.
  • FIG. 16 is a control system diagram of a fifth embodiment.
  • FIG. 16 is a block diagram showing an example of an in-cylinder air amount charging efficiency computing means in a fifth embodiment.
  • FIG. 16 is a block diagram showing an example of fuel pressure control means in a fifth embodiment.
  • FIG. 16 is a control system diagram of a sixth embodiment.
  • FIG. 16 is a block diagram showing an example of control method selection flag calculation means in the sixth embodiment.
  • FIG. 16 is a block diagram showing an example of fuel pressure control means in a sixth embodiment.
  • FIG. 16 is a block diagram showing an example of an EGR amount control means in a sixth embodiment.
  • FIG. 16 is a block diagram showing an example of fuel injection timing calculation means in a sixth embodiment.
  • FIG. 16 is a block diagram showing an example of fuel injection number calculation means in a sixth embodiment.
  • FIG. 16 is a control system diagram of a seventh embodiment.
  • FIG. 18 is a block diagram showing an example of fuel pressure control means in a seventh embodiment.
  • FIG. 18 is a block diagram showing an example of abnormality determination means in Embodiment 7.
  • FIG. 1 is a schematic configuration view showing an embodiment (common to Examples 1 to 7) of a control device of an engine according to the present invention, together with an example of a vehicle-mounted engine to which it is applied.
  • air from the outside passes through the air cleaner 1 and passes through the intake passage 4, collector 5, intake manifold (manifold) 4 a and intake valve 41. It is drawn into a cylinder (a combustion chamber 43 defined above the piston 44).
  • the amount of intake air is adjusted by the electronically controlled throttle 3.
  • the air flow sensor 2 detects the amount of intake air.
  • the intake air temperature sensor 29 detects the intake air temperature.
  • the crank angle sensor 15 attached to the crank shaft 45 outputs a signal for each rotation angle 10 ° of the crank shaft and a signal for each combustion cycle.
  • the water temperature sensor 14 detects the temperature of the engine coolant.
  • the accelerator opening sensor 13 detects the amount of depression of the accelerator 6, and thereby detects the driver's request torque.
  • the target air amount calculated in the control unit 100 is converted into a target throttle opening degree ⁇ electric throttle control signal and sent to the electric throttle 3.
  • the fuel injection amount is converted into a valve opening pulse signal, and is sent to a fuel injection valve (injector) 7 in the form of in-cylinder injection. Further, a drive signal is sent to the spark plug 8 so as to be ignited at the ignition timing calculated by the control unit 100.
  • the injected fuel is mixed with the air from the intake manifold to form an air-fuel mixture in the cylinder (combustion chamber 43).
  • the air-fuel mixture is ignited by a spark generated from the spark plug 8 at a predetermined ignition timing to detonate and burn, and the combustion pressure depresses the piston 44 to become a rotational driving force of the engine.
  • Exhaust gas after explosion is sent to the three-way catalyst 11 through the exhaust passage 10 such as the exhaust valve 42 and the exhaust manifold. Part of the exhaust gas is recirculated to the intake side through an EGR (exhaust gas recirculation) passage 18. The amount of reflux is controlled by the EGR valve 19.
  • a catalyst upstream air-fuel ratio sensor 12 and a soot sensor 20 for detecting the amount of soot in the exhaust are provided. Detection signals obtained from the catalyst upstream air-fuel ratio sensor 12 and the soot sensor 20 are sent to the control unit 100.
  • a fuel supply system for supplying fuel to the fuel injection valve 7 is constituted by a fuel pump 32, a fuel pipe and the like, and a fuel pressure sensor 31 is disposed in the fuel pipe.
  • the output of the fuel pressure sensor 31 is also sent to the control unit 100, and based on the detection value of the fuel pressure sensor 31, the control unit 100 sets the fuel pressure (detected pressure) to an appropriate pressure (according to the operating condition of the engine)
  • the discharge pressure (discharge amount) of the fuel pump 32 is feedback-controlled so as to obtain the target fuel pressure.
  • FIG. 2 shows the internal configuration of the control unit 100.
  • the control unit 100 includes an air flow sensor 2, an upstream air-fuel ratio sensor 12, an accelerator opening sensor 13, a water temperature sensor 14, a crank angle sensor 15, a throttle valve opening sensor 17, a soot sensor 20, an intake temperature sensor 29, fuel pressure.
  • Signals obtained from the respective sensors of the sensor 31 are input, and after being subjected to signal processing such as noise removal in the input circuit 24, the signals are sent to the input / output port 25.
  • the value of the input / output port 25 is stored in the RAM 23 and is arithmetically processed in the CPU 21.
  • a control program describing the contents of the arithmetic processing is written in advance in the ROM 22.
  • a value representing each actuator operation amount calculated according to the control program is stored in the RAM 23 and then sent to the input / output port 25.
  • the operation signal of the spark plug is ON when the primary coil in the ignition output circuit is in conduction, and the ON / OFF signal is OFF when it is in the non-conduction state.
  • the ignition timing is when it turns off from on.
  • the signal for the spark plug set at the output port is amplified by the ignition signal output circuit 26 to sufficient energy necessary for combustion and supplied to the spark plug 8.
  • the drive signal of the fuel injection valve is set to ON / OFF signal which is ON when opening the valve and OFF when closing the valve, and amplified by the fuel injection valve drive circuit 27 to energy sufficient for opening the fuel injection valve.
  • Sent to A drive signal for realizing the target opening degree of the electronically controlled throttle 3 is sent to the electronically controlled throttle 3 via the electronically controlled throttle drive circuit 28.
  • the duty signal for controlling the fuel pressure is sent to the fuel pump 32 through the fuel pump control circuit 30.
  • FIG. 3 is a control system diagram of the first embodiment.
  • the fuel injection pressure which is one of the control parameters of the engine is increased.
  • the fuel injection pressure is increased by setting the target fuel pressure set again according to the engine operating condition to a high value. Ru.
  • the fuel injection pressure is increased by the fuel pressure control means 110 described below.
  • ⁇ Fuel pressure control means 110 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG. ⁇ When Pm (soot amount) is Pm K K1_Pm, TgPf_hos (target fuel pressure correction value) is Let d1_Pf be added to the previous value of TgPf_hos. However, the upper limit value is L_Pf_hos. When Pm ⁇ K1_Pm, TgPf_hos is 0.
  • the TgPf0 target fuel pressure basic value is a value obtained by referring to the map M_TgPf0 from the engine operating state parameters Ne (rotational speed) and Tp (in-cylinder air amount equivalent value).
  • TgPf target fuel pressure
  • RdPf fuel pump control duty ratio
  • the amount of soot in exhaust gas is detected directly and accurately in real time by the soot sensor 20, and when the amount of soot in exhaust gas becomes worse (increased), one of the engine control parameters Since the fuel injection pressure is increased, it is possible to suppress the deterioration of the amount of soot in the exhaust gas timely and appropriately.
  • Example 2 when the amount of soot in the exhaust gas exceeds a predetermined value, the fuel injection timing, which is one of the control parameters of the engine, is advanced.
  • the fuel injection timing computing means 120 computes TITMG (fuel injection timing). Specifically, it is shown in FIG. When Pm (soot amount) is Pm ⁇ K2_Pm, TITMG_hos (fuel injection timing correction value) is a value obtained by adding d2_TITMG to the previous value of TITMG_hos. However, the upper limit value is L_TITMG_hos. When Pm ⁇ K2_Pm, TITMG_hos is set to 0.
  • -TITMG0 fuel injection timing basic value
  • M_TITMG0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
  • a value obtained by subtracting TITMG_hos from TITMG0 is taken as TITMG (fuel injection timing).
  • the set values of K2_Pm, d2_TITMG, L_TITMG_hos, and M_TITMG0 are preferably determined from actual device tests and the like.
  • the fuel injection timing which is one of the engine control parameters, is made earlier, so the soot in the exhaust gas is reduced. It becomes possible to control the deterioration of quantity in a timely and appropriate manner.
  • the basic fuel injection amount calculation means calculates the basic fuel injection amount (Tp0).
  • the fuel injection number calculating means calculates the fuel injection number (N_T1) based on the amount of soot (Pm).
  • the fuel injection amount calculation means calculates the fuel injection amount (TI_k) based on Tp0 and N_T1.
  • the fuel injection timing calculation means calculates the fuel injection timing (TITMG_k) based on N_T1. Details will be described below.
  • the calculation means 130 calculates Tp0 (basic fuel injection amount). Specifically, calculation is performed using the equation shown in FIG. Here, Cyl represents the number of cylinders. K0 is determined based on the specification of the injector (the relationship between the fuel injection pulse width and the fuel injection amount).
  • ⁇ Fuel injection number calculation means 140 (FIG. 9)> The computing means 140 computes N_TI (the number of times of fuel injection). Specifically, it is shown in FIG. When Pm (soot amount) satisfies PmmK3_Pm, N_TI (the number of times of fuel injection) is N_TI_hos. When Pm ⁇ K3_Pm, N_TI is 1. The set value of N_TI_hos should be determined from the actual machine test or the like.
  • TITMG_k (kth fuel injection timing) is computed. Specifically, it is shown in FIG. Determine TITMG_k (kth fuel injection timing) from N_TI with reference to the table T_TITMG_k. The set value of T_TITMG_k should be determined from the actual machine test or the like.
  • the number of fuel injections which is one of the engine control parameters, is increased, so that the amount of soot in the exhaust gas is increased. It becomes possible to control deterioration appropriately and appropriately.
  • the EGR amount control means 210 calculates TITMG (fuel injection timing). Specifically, it is shown in FIG. When Pm (amount of soot) satisfies Pm ⁇ K4_Pm, TgEGR_hos (target EGR rate correction value) is a value obtained by adding d4_TgEGR to the previous value of TgEGR_hos. However, the upper limit value is L_TgEGR_hos. When Pm ⁇ K4_Pm, TgEGR_hos is set to 0.
  • -TgEGR0 target EGR rate basic value
  • Ne rotational speed
  • Tp value corresponding to the amount of air in the cylinder. Since the calculation method of Tp is a well-known and general technique, it is omitted here.
  • -A value obtained by subtracting TgEGR_hos from TgEGR0 is set as TgEGR0 (target EGR rate).
  • a value obtained by referring to the map M_RdEGR from TgEGR and Tp is taken as RdEGR (EGR valve control duty ratio).
  • Each set value of K4_Pm, d4_TgEGR, L_TgEGR_hos, M_TgEGR0, and M_RdEGR may be determined from an actual machine test or the like.
  • the amount of soot in the exhaust gas is deteriorated (increased)
  • the amount of EGR which is one of the engine control parameters, is reduced, so the amount of soot in the exhaust gas is deteriorated. Timely and appropriately.
  • the fuel injection pressure is increased if the filling efficiency of the cylinder air quantity is smaller than a predetermined value, and the fuel injection pressure is reduced if the filling efficiency of the cylinder air quantity is larger than the predetermined value.
  • the in-cylinder air amount charging efficiency computing means 220 and the fuel pressure control means 230 are provided.
  • the present computing means 220 computes Ita_cyl (in-cylinder air amount charging efficiency computing means). Specifically, the calculation is performed using the equation shown in FIG. Here, Cyl represents the number of cylinders. Max_Air is a value corresponding to 100% filling of air in the cylinder.
  • ⁇ Fuel pressure control means 230 (FIG. 16)>
  • the control means 230 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG. -When Pm (soot amount) is Pm K K5_Pm, TgPf_hos (target fuel pressure correction value) is ⁇ When Ita_cylKK5_Ita_cyl The value obtained by subtracting d5a_Pf from the previous value of TgPf_hos. However, the lower limit value is La_Pf_hos. ⁇ When Ita_cyl ⁇ K5_Ita_cyl The value is obtained by adding d5b_Pf to the previous value of TgPf_hos.
  • the upper limit value is Lb_Pf_hos.
  • TgPf_hos is set to 0.
  • TgPf0 target fuel pressure basic value
  • M_TgPf0 is a value obtained by referring to the map M_TgPf0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
  • a value obtained by adding TgPf_hos to TgPf0 is defined as TgPf (target fuel pressure). From the difference between Pf (fuel pressure) and TgPf, PI control is performed to determine RdPf (fuel pump control duty ratio).
  • the set values of K5_Pm, d5_Pfa, d5_Pfb, La_Pf_hos, Lb_Pf_hos, and M_TgPf0 are preferably determined from actual device tests and the like.
  • the fuel injection pressure is increased if the filling efficiency of the air amount in the cylinder is smaller than a predetermined value, and the air amount in the cylinder is increased. In the case where the charging efficiency is higher than the predetermined value, the fuel injection pressure is lowered, so that the deterioration of the amount of soot in the exhaust can be suppressed in a timely and appropriate manner.
  • Control method selection flag calculation means 310 (FIG. 18) Fuel pressure control means 320 (FIG. 19) ⁇ EGR amount control means 330 (FIG. 20) ⁇ Fuel injection timing calculation means 340 (FIG. 21) ⁇ Fuel injection number calculation means 350 (FIG. 22) ⁇ Fuel injection amount calculation means 150 (FIG. 10) ⁇ Basic fuel injection amount computing means 130 (FIG. 8)
  • control method selection flag calculation means 320 In the control method selection flag calculation means 320 (FIG. 18), calculation is performed in f_mode (control method selection flag). Based on the value of f_mode, fuel pressure control means 320 (FIG. 19), EGR amount control means 330 (FIG. 20), fuel injection timing calculation means 340 (FIG. 21), and fuel injection number calculation means 350 (FIG. 22) respectively. , RdPf (fuel pump control duty ratio), RdEGR (EGR valve control duty ratio), TITMG (fuel injection timing), TI_k (kth fuel injection amount) are calculated. Details will be described below.
  • ⁇ Control method selection flag calculation means 310 (FIG. 18)>
  • the operation means 310 calculates f_mode (control method selection flag). Specifically, it is shown in FIG.
  • the initial value of f_mode is 0.
  • f_mode_z 0 and Pm ⁇ K1_Pm
  • f_mode 2.
  • f_mode 3.
  • f_mode 4.
  • Each set value of K1_Pm, K2_Pm, and K3_Pm may be determined as an optimum value from an actual machine test or the like.
  • ⁇ Fuel pressure control means 320 (FIG. 19)>
  • the control means 320 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG.
  • Pm fuel pump control duty ratio
  • TgPf_hos target fuel pressure correction value
  • the upper limit value is L_Pf_hos.
  • TgPf0 target fuel pressure basic value
  • Ne rotational speed
  • Tp equivalent amount of air in cylinder
  • Each set value of K1_Pm, d1_Pf, L_Pf_hos, and M_TgPf0 may be determined as an optimum value from a test on a real machine or the like.
  • -TgEGR0 target EGR rate basic value
  • Ne rotational speed
  • Tp value corresponding to the amount of air in the cylinder. Since the calculation method of Tp is a well-known and general technique, it is omitted here.
  • -A value obtained by subtracting TgEGR_hos from TgEGR0 is set as TgEGR0 (target EGR rate).
  • RdEGR EGR valve control duty ratio
  • Each set value of K4_Pm, d4_TgEGR, L_TgEGR_hos, M_TgEGR0, and M_RdEGR may be determined from an actual machine test or the like.
  • TgEGR_hos becomes 0, but it is also preferable to use a specification that maintains the previous value.
  • TITMG_hos fuel injection timing correction value
  • -TITMG0 fuel injection timing basic value
  • M_TITMG0 from Ne (rotational speed)
  • Tp equivalent amount of air in cylinder
  • ⁇ Fuel injection amount calculation means 150 (FIG. 10)> The computing means 150 computes TI_k (kth fuel injection amount). Specifically, although it is shown in FIG. 10, since it is the same as the third embodiment, the description is omitted.
  • the calculation means 130 calculates Tp0 (basic fuel injection amount). Specifically, although it is shown in FIG. 8, since it is the same as the third embodiment, the description is omitted.
  • the order of the control parameters that are considered to have little adverse effect on the engine fuel pressure, EGR amount, fuel injection timing, number of fuel injections
  • the change correction is made in the order of (1), it is possible to more reliably reduce the amount of soot in the exhaust.
  • each engine control parameter is changed in order to suppress the deterioration of the amount of soot in the exhaust when the amount of soot in the exhaust exceeds a predetermined value.
  • the fuel pressure control unit 410 and the abnormality determination unit 420 are provided. Details will be described below.
  • ⁇ Fuel pressure control means 410 (FIG. 24)>
  • the control unit 410 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG. When Pm (amount of soot) satisfies Pm ⁇ K1_Pm, f_seigyo (soot suppression control flag) is set to 1.
  • TgPf_hos target fuel pressure correction value
  • f_seigyo 1, d1_Pf is added to the previous value of TgPf_hos.
  • the upper limit value is L_Pf_hos.
  • TgPf_hos is 0 when Pm ⁇ K1_Pm.
  • TgPf0 target fuel pressure basic value
  • Ne rotational speed
  • Tp equivalent amount of air in cylinder
  • TgPf target fuel pressure
  • PI control is performed to determine RdPf (fuel pump control duty ratio).
  • K1_Pm, d1_Pf, L_Pf_hos, and M_TgPf0 may be determined as an optimum value from a test on a real machine or the like.
  • ⁇ Abnormality judging means 420 (FIG. 25)>
  • the main judging means 420 calculates f_MIL (error occurrence flag). Specifically, it is shown in FIG.
  • the set value of L_Pf_hos should be determined from the actual machine test and the like.
  • the fuel pressure is controlled and abnormality determination is performed.
  • the abnormality determination is performed when the amount of soot does not decrease. Of course it may be good.

Abstract

An engine control device that is able to reliably reduce the amount of soot in exhaust, and is capable of accurately detecting and reporting the fact that the amount of soot in exhaust has deteriorated (increased), is provided. By using a means for directly detecting the amount of soot in exhaust, the amount of soot in exhaust is accurately detected in real time, and when the amount of soot in exhaust deteriorates, engine control parameters (for example, fuel injection pressure) are altered (increased) so as to minimize the amount of soot in exhaust. Furthermore, if the discharge of soot cannot be suppressed even after performing such a processing operation, that fact is reported.

Description

エンジンの制御装置Engine control device
 本発明は、エンジンの制御装置に係り、特に、排気性能(エミッション特性)の向上、より詳細には、エンジンから排出されるすすの量を低減し得るようにされたエンジンの制御装置に関する。 The present invention relates to a control device for an engine, and more particularly to a control device for an engine capable of reducing the amount of soot discharged from the engine, and more particularly, improving the emission performance (emission characteristics).
 地球環境問題を背景に、自動車に対して、低排気化が要求されている。特に近年、エンジンから排出されるすすの量(排気中のすすの量)の低減要求が強まっている。排気中のすすの量の低減化対策として、下記特許文献1には、すすの発生量を推定し、推定された発生量に基づいて、燃料噴射圧力を補正する方策が記載されている。 With the background of global environmental issues, low emissions are required for automobiles. In particular, in recent years, there has been an increasing demand to reduce the amount of soot discharged from the engine (the amount of soot in the exhaust). As a measure for reducing the amount of soot in exhaust gas, Patent Document 1 below describes a method of estimating the amount of soot generation and correcting the fuel injection pressure based on the estimated amount of generation.
特開2009-138688号公報JP, 2009-138688, A
 排気中のすすの量の低減要求は、次第に強くなりつつある。すすの発生プロセスは非常に複雑であり、従来におけるエンジンに付設されたセンサ類の情報に基づくすす発生量推定方式では、精度が十分ではなく、すす量低減要求を満足させることは難しい。さらに、予期せぬ排気中のすす量の悪化(増加)をオンボードで検出して報知する機能の装備要求も、次第に強くなってきており、同じく、従来センサを用いる推定方式では、これを満足させることは難しい。 The demand for reducing the amount of soot in the exhaust is becoming increasingly strong. The process of soot generation is very complicated, and the method of estimating the amount of soot generation based on the information of the sensors attached to the conventional engine does not have sufficient accuracy, and it is difficult to satisfy the requirement to reduce the amount of soot. Furthermore, equipment requirements for functions to detect and report on-board deterioration (increase) in the amount of soot in the exhaust unexpectedly become increasingly strong, and in the same way, estimation methods using conventional sensors are satisfactory. It is difficult to
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、排気中のすすの量を確実に低減し得るとともに、排気中のすすの量が悪化(増加)したことを正確に検出して報知できるエンジンの制御装置を提供することにある。 The present invention has been made in view of the above circumstances, and the object of the present invention is to surely reduce the amount of soot in the exhaust and accurately decrease (increase) the amount of soot in the exhaust. It is providing the control device of the engine which can be detected and notified.
 上記目的を達成すべく、本発明に係るエンジンの制御装置の第1態様は、排気中のすすの量を直接検出する手段と、前記排気中のすすの量の直接検出値が所定値よりも大きくなったとき、前記排気中のすすの量の直接検出値が前記所定値よりも小さくなるように、エンジンの制御パラメータを変更する手段と、を備えていることを特徴としている(図26参照)。 In order to achieve the above object, according to a first aspect of the engine control device of the present invention, means for directly detecting the amount of soot in exhaust gas, and a direct detection value of the amount of soot in the exhaust gas is higher than a predetermined value. Means for changing a control parameter of the engine so that the detected value of the amount of soot in the exhaust gas becomes smaller than the predetermined value when it becomes larger (see FIG. 26). ).
 この第1態様では、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出する。前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化(増加)したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、エンジンの制御パラメータを変更する手段とを備えるものである。 In this first embodiment, the amount of soot in the exhaust is detected in real time accurately using a means for directly detecting the amount of soot in the exhaust. When the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal, the amount of soot in the exhaust gas becomes worse (increases), the direct detection value of the amount of soot in the exhaust gas Means for changing the control parameters of the engine such that is smaller than a predetermined value.
 本発明に係るエンジンの制御装置の第2態様は、前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、前記エンジンの制御パラメータの一つである燃料噴射圧力を高くする手段を備えていることを特徴としている(図27参照)。 In a second aspect of the engine control system according to the present invention, when the direct detection value of the amount of soot in the exhaust gas exceeds the predetermined value, a fuel injection pressure which is one of the control parameters of the engine is selected. It is characterized in that means for raising is provided (see FIG. 27).
 すなわち、この第3態様では、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出し、前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、前記エンジンの制御パラメータの一つである燃料噴射圧力を高くする手段を備えるものである。 That is, in this third aspect, the amount of soot in the exhaust gas is accurately detected in real time using a means for directly detecting the amount of soot in the exhaust gas, and the direct detection value of the amount of soot in the exhaust gas is When the amount of soot in the exhaust gas is deteriorated when the value becomes larger than the value determined to be normal, the control parameter of the engine is set so that the direct detection value of the amount of soot in the exhaust gas becomes smaller than a predetermined value. A means for increasing the fuel injection pressure is provided.
 本発明に係るエンジンの制御装置の第3態様は、第2態様をより具体化したもので、前記燃料噴射圧力を高くする手段は、燃料供給系で行われる燃圧センサ検出値に基づく燃圧フィードバック制御においてエンジン運転状態に応じて設定される目標燃料圧力を高く設定し直すことにより、燃料噴射圧力を高くすることを特徴としている(図28参照)。 A third aspect of the engine control system according to the present invention is a more specific version of the second aspect, and the means for increasing the fuel injection pressure is fuel pressure feedback control based on a fuel pressure sensor detection value performed in a fuel supply system. The fuel injection pressure is raised by resetting the target fuel pressure set in accordance with the engine operating state to a high value (see FIG. 28).
 ここで、通常、燃料噴射式(ボート噴射式、筒内噴射式のいずれも)エンジンでは、燃料ポンプや燃圧センサを備えた燃料供給系において、燃料噴射弁に供給される燃料の圧力を、エンジン運転状態に応じて設定される目標燃料圧力に収束一致させるべく、燃圧センサ検出値に基づく燃圧フィードバック制御が行われるので、前記燃料噴射圧力を高くする手段は、これを利用して、すすの量の直接検出値が所定値よりも小さくなるように、前記目標燃料圧力を高くするようにされる。 Here, in a fuel injection type (both a boat injection type and a cylinder injection type) engine, the pressure of the fuel supplied to the fuel injection valve in the fuel supply system provided with a fuel pump and a fuel pressure sensor is Since fuel pressure feedback control based on the fuel pressure sensor detection value is performed in order to converge and match the target fuel pressure set according to the operating condition, the means for increasing the fuel injection pressure utilizes this to determine the amount of soot The target fuel pressure is made to be high so that the direct detection value of is smaller than a predetermined value.
 本発明に係るエンジンの制御装置の第4態様は、前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、燃料噴射時期を早期化する手段を備えていることを特徴としている(図29参照)。  A fourth aspect of the engine control device according to the present invention is characterized by comprising means for accelerating the fuel injection timing when the direct detection value of the amount of soot in the exhaust gas exceeds the predetermined value. It is characterized (see FIG. 29).
 すなわち、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出する。前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、前記エンジンの制御パラメータの一つである燃料噴射時期を早期化する手段を備えるものである。 That is, by means of direct detection of the amount of soot in the exhaust, the amount of soot in the exhaust is accurately detected in real time. The direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal. A means for accelerating the fuel injection timing, which is one of the control parameters of the engine, is provided so as to be smaller than the above.
 本発明に係るエンジンの制御装置の第5態様は、前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、燃料噴射回数を多くする手段を備えていることを特徴としている(図30参照)。 A fifth aspect of the engine control device according to the present invention is characterized by comprising means for increasing the number of times of fuel injection when the direct detection value of the amount of soot in the exhaust gas becomes larger than the predetermined value. (See FIG. 30).
 すなわち、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出する。前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、前記エンジンの制御パラメータの一つである燃料噴射回数を多くする手段を備えるものである。 That is, by means of direct detection of the amount of soot in the exhaust, the amount of soot in the exhaust is accurately detected in real time. The direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal. A means for increasing the number of fuel injections, which is one of the control parameters of the engine, is provided so as to be smaller than the above.
 本発明に係るエンジンの制御装置の第6態様は、前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、EGR量を少なくする手段を備えていることを特徴としている(図31参照)。 A sixth aspect of the engine control device according to the present invention is characterized by comprising means for reducing the EGR amount when the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value. (See Figure 31).
 すなわち、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出する。前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、EGR量を少なくする手段とを備えるものである。ここに、EGR量を少なくするには、例えば、排気通路と吸気通路とを結ぶ外部EGR用のEGR通路にEGRバルブを介装し、該EGRバルブの開度を制御することによりEGR量(排気還流量)を増減する、あるいは、例えば、吸気可変動弁及び/又は排気可変動弁を操作することにより、内部EGR量を制御する、ことで実現する。 That is, by means of direct detection of the amount of soot in the exhaust, the amount of soot in the exhaust is accurately detected in real time. The direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal. And means for reducing the amount of EGR so as to be smaller than the above. Here, in order to reduce the amount of EGR, for example, an EGR valve is interposed in an EGR passage for external EGR connecting the exhaust passage and the intake passage, and the amount of EGR (exhaust (exhaust) is controlled by controlling the opening degree of the EGR valve. This is realized by controlling the internal EGR amount by increasing or decreasing the reflux amount) or operating, for example, the intake variable valve and / or the exhaust variable valve.
 本発明に係るエンジンの制御装置の第7態様は、前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、シリンダ内空気量の充填効率が所定値より小さい場合は、燃料噴射圧力を高くし、シリンダ内空気量の充填効率が所定値より大きい場合は、燃料噴射圧力を低くする燃料噴射圧力変更手段を備えていることを特徴としている(図32参照)。 In a seventh aspect of the engine control device according to the present invention, when the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value, the filling efficiency of the in-cylinder air amount is smaller than the predetermined value. The fuel injection pressure changing means is provided to lower the fuel injection pressure when the fuel injection pressure is increased and the filling efficiency of the in-cylinder air amount is larger than a predetermined value (see FIG. 32).
 すなわち、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出する。前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、燃料噴射圧力を変更するものである。 That is, by means of direct detection of the amount of soot in the exhaust, the amount of soot in the exhaust is accurately detected in real time. The direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal. The fuel injection pressure is changed to be smaller than that.
 一般に、燃料噴射圧力を上げると、すすの量は減る傾向にあるが、シリンダ内空気量の充填効率が高くなると、必要燃料噴射量も多くなるため、燃料噴射圧力を上げると、燃料貫通力が高まり、燃料噴射量がピストン冠面、ピストン内壁に当たりやすくなり、これがすすの発生量を増加させることがある。したがって、シリンダ内空気量の充填効率が所定値より小さいときは、燃料噴射圧力を高くし、シリンダ内空気量の充填効率が所定値より大きいときは、燃料噴射圧力を低くすることで、排気中のすすの量の悪化の抑制を図るものである。 Generally, the amount of soot tends to decrease as the fuel injection pressure is increased, but the required fuel injection amount also increases as the air filling efficiency in the cylinder increases, so increasing the fuel injection pressure results in fuel penetration The fuel injection amount is likely to hit the piston crown surface and the piston inner wall, which may increase the amount of generated soot. Therefore, when the filling efficiency of the in-cylinder air amount is smaller than a predetermined value, the fuel injection pressure is increased, and when the filling efficiency of the in-cylinder air amount is larger than the predetermined value, the fuel injection pressure is decreased. It is intended to suppress the deterioration of the amount of soot.
 本発明に係るエンジンの制御装置の第8態様は、第1態様に従属するもので、前記エンジンの制御パラメータを変更する手段により、前記制御パラメータを変更した後、所定時間が経過しても、前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、その旨を報知する手段を備えていることを特徴としている(図33参照)。 An eighth aspect of the engine control device according to the present invention is dependent on the first aspect, and after changing the control parameter by the means for changing the control parameter of the engine, even if a predetermined time has elapsed, If the direct detection value of the amount of soot in the exhaust gas does not become smaller than the predetermined value, the apparatus is characterized in that it comprises means for notifying that effect (see FIG. 33).
 すなわち、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出する。前記排気中のすすの量の直接検出値が、正常と判断する値よりも大きくなったとき、排気中のすすの量が悪化したとして、前記排気中のすすの量の直接検出値が所定値よりも小さくなるように、エンジンの制御パラメータを変更する。しかし、経時劣化など、エンジンに重大な異常が生じている場合は、エンジンの制御パラメータを変更しても、前記排気中のすすの量の直接検出値が所定値よりも小さくならないことがある。このときは、排気中のすすの量の悪化を抑制できないほどの異常が発生したとして、その旨を報知する手段を備えるものである。報知する手段としては、例えば、運転席のインパネに設けられた警告ランプ、表示器等とそれを点灯・表示させる制御部とで構成することができる。 That is, by means of direct detection of the amount of soot in the exhaust, the amount of soot in the exhaust is accurately detected in real time. The direct detection value of the amount of soot in the exhaust gas is determined to be a predetermined value, assuming that the amount of soot in the exhaust gas is deteriorated when the direct detection value of the amount of soot in the exhaust gas becomes larger than the value determined to be normal. Change the control parameters of the engine to be smaller. However, in the case where a serious abnormality occurs in the engine such as deterioration with time, the direct detection value of the amount of soot in the exhaust gas may not be smaller than a predetermined value even if the control parameter of the engine is changed. At this time, it is provided with a means for notifying that the abnormality is generated such that the deterioration of the amount of soot in the exhaust can not be suppressed. As a means to alert | report, it can comprise, for example by the warning lamp provided in the instrument panel of a driver's seat, an indicator, etc., and the control part which makes it light-display.
 以下、第9態様から第13態様までは、第8態様と同趣旨のもので、エンジンの制御パラメータの一つを変更しても、前記排気中のすすの量の直接検出値が所定値よりも小さくならないときは、その旨を報知する手段を備えるものである。 The ninth to thirteenth aspects are the same as the eighth aspect, and even if one of the control parameters of the engine is changed, the direct detection value of the amount of soot in the exhaust gas is greater than the predetermined value. Also, when it does not become smaller, means for notifying that is provided.
 具体的には、本発明に係るエンジンの制御装置の第9態様は、第2態様に従属するもので、前記燃料噴射圧力を高くする手段により、燃料料噴射圧力を高くした後、所定時間が経過しても、前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、その旨を報知する手段を備えていることを特徴としている(図34参照)。 Specifically, a ninth aspect of the engine control device according to the present invention is dependent on the second aspect, and a predetermined time is set after the fuel injection pressure is increased by the means for increasing the fuel injection pressure. If the directly detected value of the amount of soot in the exhaust gas does not become smaller than the predetermined value even after lapse of time, it is characterized in that it comprises means for notifying of that (see FIG. 34).
 本発明に係るエンジンの制御装置の第10態様は、第4態様に従属するもので、前記燃料噴射時期を早期化する手段により、燃料噴射時期を早期化した後、所定時間が経過しても、前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、その旨を報知する手段を備えていることを特徴としている(図35参照)。 A tenth aspect of the engine control system according to the present invention is dependent on the fourth aspect, and the means for accelerating the fuel injection timing accelerates the fuel injection timing, and then the predetermined time has elapsed. When the direct detection value of the amount of soot in the exhaust gas does not become smaller than the predetermined value, it is characterized in that it comprises means for notifying that effect (see FIG. 35).
 本発明に係るエンジンの制御装置の第11態様は、第5態様に従属するもので、前記燃料噴射回数を多くする手段により、燃料噴射回数を多くした後、所定時間が経過しても、前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、その旨を報知する手段を備えていることを特徴としている(図36参照)。 An eleventh aspect of the engine control device according to the present invention is dependent on the fifth aspect, and the means for increasing the number of fuel injections increases the number of fuel injections, and then the predetermined time has elapsed. When the direct detection value of the amount of soot in the exhaust gas does not become smaller than the predetermined value, it is characterized in that it comprises means for notifying that effect (see FIG. 36).
 本発明に係るエンジンの制御装置の第12態様は、第6態様に従属するもので、前記EGR量を少なくする手段により、EGR量を少なくした後、所定時間が経過しても、前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、その旨を報知する手段を備えていることを特徴としている(図37参照)。 A twelfth aspect of the engine control device according to the present invention is dependent on the sixth aspect, and after reducing the EGR amount by the means for reducing the EGR amount, during the exhaust gas, even if a predetermined time has elapsed, When the direct detection value of the amount of soot does not become smaller than the predetermined value, it is characterized in that it comprises means for notifying that effect (see FIG. 37).
 本発明に係るエンジンの制御装置の第13態様は、第7態様に従属するもので、前記燃料圧力変更手段により、燃料噴射圧力を変更した後、所定時間が経過しても、前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、その旨を報知する手段を備えていることを特徴としている(図38参照)。 A thirteenth aspect of the engine control device according to the present invention is dependent on the seventh aspect, and after the fuel injection pressure is changed by the fuel pressure changing means, even if a predetermined time has elapsed, the exhaust pressure is changed. If the direct detection value of the amount of soot does not become smaller than the predetermined value, it is characterized in that it is provided with means for notifying that effect (see FIG. 38).
 一方、本発明に係るエンジンの制御装置の第14態様は、第1態様に従属するもので、前記排気中のすすの直接検出値が前記所定値よりも多くなったとき、前記排気中のすすの量の直接検出値が前記所定値よりも小さくなるように、まず、燃料噴射圧力を高くし、それでも、すすの量が前記所定値よりも小さくならないときは、EGR量を少なくし、それでも、すすの量が前記所定値よりも小さくならないときは、燃料噴射時期を早期化し、それでも、すすの量が前記所定値よりも小さくならないときは、燃料噴射回数を多くするようにされていることを特徴としている(図39参照)。 On the other hand, a fourteenth aspect of the engine control system according to the present invention is dependent on the first aspect, and when the direct detection value of soot in the exhaust gas exceeds the predetermined value, soot in the exhaust gas is generated. First, the fuel injection pressure is increased so that the direct detection value of the amount of fuel is smaller than the predetermined value, and the amount of EGR is reduced if the amount of soot is still smaller than the predetermined value. If the amount of soot does not become smaller than the predetermined value, the fuel injection timing is advanced, and if the amount of soot still does not become smaller than the predetermined value, the number of fuel injections is increased. It is characterized (see FIG. 39).
 このように、排気中のすすの量が所定値を越えたとき、エンジンへの悪影響が少ないと思われる制御パラメータの順(燃料圧力、EGR量、燃料噴射時期、燃料噴射回数の順)に変更補正を行うようにされるので、排気中のすすの量を一層確実に低減することが可能となる。 Thus, when the amount of soot in the exhaust gas exceeds the predetermined value, the control parameters are changed in the order (fuel pressure, EGR amount, fuel injection timing, number of fuel injections) in which the adverse effect on the engine is considered to be small. Since the correction is performed, the amount of soot in the exhaust can be more reliably reduced.
 本発明に係るエンジンの制御装置の第15態様は、第1態様に従属するもので、排気中のすすの量を直接検出する手段は、すすの量として、すすの質量もしくはすすの個数を検出することを特徴としている(図40参照)。
 ここで、すすの量とは、すすの質量もしくはすすの個数であることを明記するものである。
A fifteenth aspect of the engine control device according to the present invention is dependent on the first aspect, and the means for directly detecting the amount of soot in the exhaust detects the mass of soot or the number of soot as the amount of soot. (See FIG. 40).
Here, it is specified that the amount of soot is the mass of soot or the number of soot.
 本発明に係るエンジンの制御装置では、排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出し、排気中のすすの量が悪化(増加)したときは、それを抑制するようにエンジン制御パラメータのいずれか(少なくとも一つ)を変更するので、排気中のすすの量の悪化を適時かつ適切に抑制することが可能となる。 In the engine control device according to the present invention, the amount of soot in exhaust gas is accurately detected in real time using means for directly detecting the amount of soot in exhaust gas, and the amount of soot in exhaust gas becomes worse (increased) When this happens, one (at least one) of the engine control parameters is changed to suppress it, so that it is possible to suppress the deterioration of the amount of soot in the exhaust gas timely and appropriately.
 また、かかる処理操作を行っても、排気中のすすの量の悪化が抑制できない場合は、排気中のすすの量が悪化したことを報知するようになすことにより、運転者等により何らかの対策が採られる可能性が高くなり、結果として、すすが大気に放出される量をさらに抑えることができる。 Also, even if the processing operation is performed, if the deterioration of the amount of soot in the exhaust can not be suppressed, the driver or the like takes some measures by notifying that the amount of soot in the exhaust has deteriorated. It is more likely to be taken, and as a result, the amount of soot released to the atmosphere can be further reduced.
本発明に係る制御装置の一実施形態(実施例1~7)を、それが適用されたエンジンと共に示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows one Embodiment (Examples 1-7) of the control apparatus based on this invention with the engine to which it was applied. 実施例1~7におけるコントロールユニットの内部構成図。FIG. 7 is an internal configuration diagram of a control unit in the first to seventh embodiments. 実施例1の制御システム図。FIG. 2 is a control system diagram of the first embodiment. 実施例1における燃料圧力制御手段の一例を示すブロック図。FIG. 2 is a block diagram showing an example of fuel pressure control means in the first embodiment. 実施例2の制御システム図。FIG. 7 is a control system diagram of a second embodiment. 実施例2における燃料噴射時期演算手段の一例を示すブロック図。FIG. 7 is a block diagram showing an example of fuel injection timing calculation means in Embodiment 2. 実施例3の制御システム図。FIG. 10 is a control system diagram of a third embodiment. 実施例3及び実施例6における基本燃料噴射量演算手段の一例を示すブロック図。The block diagram which shows an example of the basic fuel injection quantity calculating means in Example 3 and Example 6. FIG. 実施例3における燃料噴射回数演算手段の一例を示すブロック図。FIG. 14 is a block diagram showing an example of fuel injection number calculation means in the third embodiment. 実施例3及び実施例6における燃料噴射量演算手段の一例を示すブロック図。The block diagram which shows an example of the fuel injection amount calculating means in Example 3 and Example 6. FIG. 実施例3における燃料噴射時期演算手段の一例を示すブロック図。FIG. 14 is a block diagram showing an example of fuel injection timing calculation means in Embodiment 3. 実施例4の制御システム図。FIG. 14 is a control system diagram of a fourth embodiment. 実施例4におけるEGR量制御手段の一例を示すブロック図。FIG. 14 is a block diagram showing an example of an EGR amount control means in a fourth embodiment. 実施例5の制御システム図。FIG. 16 is a control system diagram of a fifth embodiment. 実施例5におけるシリンダ内空気量充填効率演算手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of an in-cylinder air amount charging efficiency computing means in a fifth embodiment. 実施例5における燃料圧力制御手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of fuel pressure control means in a fifth embodiment. 実施例6の制御システム図。FIG. 16 is a control system diagram of a sixth embodiment. 実施例6における制御方式選択フラグ演算手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of control method selection flag calculation means in the sixth embodiment. 実施例6における燃料圧力制御手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of fuel pressure control means in a sixth embodiment. 実施例6におけるEGR量制御手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of an EGR amount control means in a sixth embodiment. 実施例6における燃料噴射時期演算手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of fuel injection timing calculation means in a sixth embodiment. 実施例6における燃料噴射回数演算手段の一例を示すブロック図。FIG. 16 is a block diagram showing an example of fuel injection number calculation means in a sixth embodiment. 実施例7の制御システム図。FIG. 16 is a control system diagram of a seventh embodiment. 実施例7における燃料圧力制御手段の一例を示すブロック図。FIG. 18 is a block diagram showing an example of fuel pressure control means in a seventh embodiment. 実施例7における異常判定手段の一例を示すブロック図。FIG. 18 is a block diagram showing an example of abnormality determination means in Embodiment 7. 本発明に係る制御装置の第1態様の説明に供される図。The figure which is provided to description of the 1st aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第2態様の説明に供される図。The figure which is provided to description of the 2nd aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第3態様の説明に供される図。The figure which is provided to description of the 3rd aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第4態様の説明に供される図。The figure which is provided to description of the 4th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第5態様の説明に供される図。The figure which is provided to description of the 5th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第6態様の説明に供される図。The figure which is provided to description of the 6th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第7態様の説明に供される図。The figure which is provided to description of the 7th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第8態様の説明に供される図。The figure which is provided to description of the 8th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第9態様の説明に供される図。The figure which is provided to description of the 9th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第10態様の説明に供される図。The figure which is provided to description of the 10th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第11態様の説明に供される図。The figure which is provided to description of the 11th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第12態様の説明に供される図。The figure which is provided to description of the 12th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第13態様の説明に供される図。The figure which is provided to description of the 13th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第14態様の説明に供される図。The figure which is provided to description of the 14th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第15態様の説明に供される図。The figure which is provided to description of the 15th aspect of the control apparatus which concerns on this invention.
 以下、本発明のエンジンの制御装置の実施の形態を図面を参照しながら説明する。 
 図1は、本発明に係るエンジンの制御装置の実施形態(実施例1~7で共通)を、それが適用された車載用エンジンの一例と共に示す概略構成図である。
Hereinafter, an embodiment of a control device of an engine of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration view showing an embodiment (common to Examples 1 to 7) of a control device of an engine according to the present invention, together with an example of a vehicle-mounted engine to which it is applied.
 図において、多気筒(ここでは4気筒)で構成されるエンジン9において、外部からの空気はエアクリーナ1を通過し、吸気通路4、コレクタ5、吸気マニホールド(多岐管)4a、吸気弁41を経てシリンダ(ピストン44上方に画成される燃焼室43)内に吸入される。吸入空気量は電制スロットル3により調節される。エアフローセンサ2では吸入空気量が検出される。また、吸気温センサ29で、吸気温が検出される。クランク軸45に添設されたクランク角センサ15では、クランク軸の回転角10゜毎の信号と燃焼周期毎の信号が出力される。水温センサ14はエンジンの冷却水温度を検出する。またアクセル開度センサ13は、アクセル6の踏み込み量を検出し、それによって運転者の要求トルクを検出する。 In the figure, in an engine 9 composed of multiple cylinders (here four cylinders), air from the outside passes through the air cleaner 1 and passes through the intake passage 4, collector 5, intake manifold (manifold) 4 a and intake valve 41. It is drawn into a cylinder (a combustion chamber 43 defined above the piston 44). The amount of intake air is adjusted by the electronically controlled throttle 3. The air flow sensor 2 detects the amount of intake air. Further, the intake air temperature sensor 29 detects the intake air temperature. The crank angle sensor 15 attached to the crank shaft 45 outputs a signal for each rotation angle 10 ° of the crank shaft and a signal for each combustion cycle. The water temperature sensor 14 detects the temperature of the engine coolant. Further, the accelerator opening sensor 13 detects the amount of depression of the accelerator 6, and thereby detects the driver's request torque.
 アクセル開度センサ13、エアフローセンサ2、吸気温センサ29、電制スロットル3に取り付けられたスロットル弁開度センサ17、クランク角センサ15、水温センサ14のそれぞれの信号は、後述のコントロールユニット(ECU)100に送られ、これらセンサ出力からエンジンの運転状態を得て、吸入空気量、燃料噴射量、点火時期のエンジンの主要な操作量が最適に演算される。 Signals from the accelerator opening sensor 13, the air flow sensor 2, the intake air temperature sensor 29, the throttle valve opening sensor 17 attached to the electronically controlled throttle 3, the crank angle sensor 15, and the water temperature sensor 14 are The engine operation state is obtained from these sensor outputs, and the intake air amount, the fuel injection amount, and the main operation amount of the engine at the ignition timing are optimally calculated.
 コントロールユニット100内で演算された目標空気量は、目標スロットル開度→電制スロットル駆動信号に変換され、電制スロットル3に送られる。燃料噴射量は開弁パルス信号に変換され、筒内噴射式の形態をとる燃料噴射弁(インジェクタ)7に送られる。またコントロールユニット100で演算された点火時期で点火されるよう駆動信号が点火プラグ8に送られる。 The target air amount calculated in the control unit 100 is converted into a target throttle opening degree → electric throttle control signal and sent to the electric throttle 3. The fuel injection amount is converted into a valve opening pulse signal, and is sent to a fuel injection valve (injector) 7 in the form of in-cylinder injection. Further, a drive signal is sent to the spark plug 8 so as to be ignited at the ignition timing calculated by the control unit 100.
 噴射された燃料は吸気マニホールドからの空気と混合されてシリンダ(燃焼室43)内で混合気を形成する。混合気は所定の点火時期で点火プラグ8から発生される火花により点火されて爆発燃焼し、その燃焼圧によりピストン44を押し下げてエンジンの回転駆動力となる。爆発後の排気は、排気弁42、排気マニホールド等の排気通路10を経て三元触媒11に送り込まれる。EGR(排気還流)通路18を通って排気の一部は吸気側に還流される。還流量はEGRバルブ19によって制御される。 The injected fuel is mixed with the air from the intake manifold to form an air-fuel mixture in the cylinder (combustion chamber 43). The air-fuel mixture is ignited by a spark generated from the spark plug 8 at a predetermined ignition timing to detonate and burn, and the combustion pressure depresses the piston 44 to become a rotational driving force of the engine. Exhaust gas after explosion is sent to the three-way catalyst 11 through the exhaust passage 10 such as the exhaust valve 42 and the exhaust manifold. Part of the exhaust gas is recirculated to the intake side through an EGR (exhaust gas recirculation) passage 18. The amount of reflux is controlled by the EGR valve 19.
 排気弁42と三元触媒11と間には、触媒上流空燃比センサ12及び排気中のすすの量を検出するすすセンサ20とが配備されている。触媒上流空燃比センサ12及びすすセンサ20から得られる検出信号は、コントロールユニット100に送られる。また、燃料噴射弁7に燃料を供給するための燃料供給系は、燃料ポンプ32や燃料配管等で構成され、燃料配管には燃料圧力センサ31が配在されている。燃料圧力センサ31の出力も、コントロールユニット100に送られ、コントロールユニット100は、燃料圧力センサ31の検出値に基づいて、燃料圧力(検出圧力)が適切な圧力(エンジンの運転状態に応じて設定される目標燃料圧力)となるように燃料ポンプ32の吐出圧(吐出量)をフィードバック制御する。 Between the exhaust valve 42 and the three-way catalyst 11, a catalyst upstream air-fuel ratio sensor 12 and a soot sensor 20 for detecting the amount of soot in the exhaust are provided. Detection signals obtained from the catalyst upstream air-fuel ratio sensor 12 and the soot sensor 20 are sent to the control unit 100. Further, a fuel supply system for supplying fuel to the fuel injection valve 7 is constituted by a fuel pump 32, a fuel pipe and the like, and a fuel pressure sensor 31 is disposed in the fuel pipe. The output of the fuel pressure sensor 31 is also sent to the control unit 100, and based on the detection value of the fuel pressure sensor 31, the control unit 100 sets the fuel pressure (detected pressure) to an appropriate pressure (according to the operating condition of the engine) The discharge pressure (discharge amount) of the fuel pump 32 is feedback-controlled so as to obtain the target fuel pressure.
 図2は、コントロールユニット100の内部構成を示したものである。コントロールユニット100には、エアフローセンサ2、触媒上流空燃比センサ12、アクセル開度センサ13、水温センサ14、クランク角センサ15、スロットル弁開度センサ17、すすセンサ20、吸気温センサ29、燃料圧力センサ31の各センサから得られる信号が入力され、入力回路24にてノイズ除去等の信号処理を行った後、入出力ポート25に送られる。入出力ポート25の値はRAM23に保管され、CPU21内で演算処理される。演算処理の内容を記述した制御プログラムはROM22に予め書き込まれている。 FIG. 2 shows the internal configuration of the control unit 100. As shown in FIG. The control unit 100 includes an air flow sensor 2, an upstream air-fuel ratio sensor 12, an accelerator opening sensor 13, a water temperature sensor 14, a crank angle sensor 15, a throttle valve opening sensor 17, a soot sensor 20, an intake temperature sensor 29, fuel pressure. Signals obtained from the respective sensors of the sensor 31 are input, and after being subjected to signal processing such as noise removal in the input circuit 24, the signals are sent to the input / output port 25. The value of the input / output port 25 is stored in the RAM 23 and is arithmetically processed in the CPU 21. A control program describing the contents of the arithmetic processing is written in advance in the ROM 22.
 制御プログラムに従って演算された各アクチュエータ操作量を表す値はRAM23に保管された後、入出力ポート25に送られる。点火プラグの作動信号は点火出力回路内の一次側コイルの通流時はONとなり、非通流時はOFFとなるON・OFF信号がセットされる。点火時期はONからOFFになる時である。出力ポートにセットされた点火プラグ用の信号は点火信号出力回路26で燃焼に必要な十分なエネルギーに増幅され点火プラグ8に供給される。また燃料噴射弁の駆動信号は開弁時ON、閉弁時OFFとなるON・OFF信号がセットされ、燃料噴射弁駆動回路27で燃料噴射弁を開くに十分なエネルギーに増幅され燃料噴射弁7に送られる。電制スロットル3の目標開度を実現する駆動信号は、電制スロットル駆動回路28を経て、電制スロットル3に送られる。燃料圧力を制御するためのデューティ信号は、燃料ポンプ制御回路30を経て、燃料ポンプ32に送られる。
 次に、コントロールユニット100が実行する処理内容を実施例毎に具体的に説明する。
A value representing each actuator operation amount calculated according to the control program is stored in the RAM 23 and then sent to the input / output port 25. The operation signal of the spark plug is ON when the primary coil in the ignition output circuit is in conduction, and the ON / OFF signal is OFF when it is in the non-conduction state. The ignition timing is when it turns off from on. The signal for the spark plug set at the output port is amplified by the ignition signal output circuit 26 to sufficient energy necessary for combustion and supplied to the spark plug 8. Further, the drive signal of the fuel injection valve is set to ON / OFF signal which is ON when opening the valve and OFF when closing the valve, and amplified by the fuel injection valve drive circuit 27 to energy sufficient for opening the fuel injection valve. Sent to A drive signal for realizing the target opening degree of the electronically controlled throttle 3 is sent to the electronically controlled throttle 3 via the electronically controlled throttle drive circuit 28. The duty signal for controlling the fuel pressure is sent to the fuel pump 32 through the fuel pump control circuit 30.
Next, the processing contents executed by the control unit 100 will be specifically described for each embodiment.
 [実施例1:図3]
 図3は、実施例1の制御システム図である。
 本実施例1では、すすセンサ20により検出される排気中のすすの量の直接検出値が所定値よりも多くなったとき、前記エンジンの制御パラメータの一つである燃料噴射圧力を高くするようにされる。より詳細には、燃料供給系で行われる燃圧センサ検出値に基づく燃圧フィードバック制御においてエンジン運転状態に応じて設定される目標燃料圧力を高く設定し直すことにより、燃料噴射圧力を高くするようにされる。具体的には、下記燃料圧力制御手段110により燃料噴射圧力を高くするようにされる。
[Example 1: Figure 3]
FIG. 3 is a control system diagram of the first embodiment.
In the first embodiment, when the direct detection value of the amount of soot in exhaust gas detected by the soot sensor 20 becomes larger than a predetermined value, the fuel injection pressure which is one of the control parameters of the engine is increased. To be More specifically, in the fuel pressure feedback control based on the fuel pressure sensor detection value performed in the fuel supply system, the fuel injection pressure is increased by setting the target fuel pressure set again according to the engine operating condition to a high value. Ru. Specifically, the fuel injection pressure is increased by the fuel pressure control means 110 described below.
<燃料圧力制御手段110(図4)>
 燃料圧力制御手段110では、RdPf(燃料ポンプ制御デューティ比)を演算する。具体的には、図4に示される。
・Pm(すす量)が、Pm≧K1_Pmのとき、TgPf_hos(目標燃料圧力補正値)は、
TgPf_hosの前回値にd1_Pfを加えた値とする。ただし、上限値は、L_Pf_hosとする。
 Pm<K1_Pmのとき、TgPf_hosは0とする。
・TgPf0(目標燃料圧力基本値)は、エンジン運転状態パラメータであるNe(回転速度)とTp(シリンダ内空気量相当値)からマップM_TgPf0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・TgPf0にTgPf_hosを加えた値をTgPf(目標燃料圧力)とする。
・Pf(燃料圧力)とTgPfの差から、PI制御により、RdPf(燃料ポンプ制御デューティ比)を求める。
 K1_Pm、d1_Pf 、L_Pf_hos、M_TgPf0の各設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel pressure control means 110 (FIG. 4)>
The fuel pressure control unit 110 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG.
· When Pm (soot amount) is Pm K K1_Pm, TgPf_hos (target fuel pressure correction value) is
Let d1_Pf be added to the previous value of TgPf_hos. However, the upper limit value is L_Pf_hos.
When Pm <K1_Pm, TgPf_hos is 0.
The TgPf0 (target fuel pressure basic value) is a value obtained by referring to the map M_TgPf0 from the engine operating state parameters Ne (rotational speed) and Tp (in-cylinder air amount equivalent value). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
A value obtained by adding TgPf_hos to TgPf0 is defined as TgPf (target fuel pressure).
From the difference between Pf (fuel pressure) and TgPf, PI control is performed to determine RdPf (fuel pump control duty ratio).
Each set value of K1_Pm, d1_Pf, L_Pf_hos, and M_TgPf0 may be determined as an optimum value from a test on a real machine or the like.
 このように、本実施例では、すすセンサ20により排気中のすすの量を直接、正確かつリアルタイムで検出し、排気中のすすの量が悪化(増加)したときは、エンジン制御パラメータの一つである燃料噴射圧力を高くするようにされるので、排気中のすすの量の悪化を適時かつ適切に抑制することが可能となる。 As described above, in the present embodiment, the amount of soot in exhaust gas is detected directly and accurately in real time by the soot sensor 20, and when the amount of soot in exhaust gas becomes worse (increased), one of the engine control parameters Since the fuel injection pressure is increased, it is possible to suppress the deterioration of the amount of soot in the exhaust gas timely and appropriately.
 [実施例2:図5]
 実施例2では、排気中のすすの量が所定値を越えたとき、エンジンの制御パラメータの一つである燃料噴射時期を早期化するようにされる。
[Example 2: FIG. 5]
In the second embodiment, when the amount of soot in the exhaust gas exceeds a predetermined value, the fuel injection timing, which is one of the control parameters of the engine, is advanced.
 具体的には、下記燃料噴射時期演算手段120を備える。
<燃料噴射時期演算手段120(図6)>
 本燃料噴射時期演算手段120では、TITMG(燃料噴射時期)を演算する。具体的には、図6に示される。
・Pm(すす量)が、Pm≧K2_Pmのとき、TITMG_hos(燃料噴射時期補正値)は、TITMG_hosの前回値にd2_TITMGを加えた値とする。ただし、上限値は、L_TITMG_hosとする。
 Pm<K2_Pmのとき、TITMG_hosは0とする。
・TITMG0(燃料噴射時期基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TITMG0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・TITMG0からTITMG_hosを引いた値をTITMG(燃料噴射時期)とする。
 K2_Pm、d2_TITMG 、L_TITMG_hos、M_TITMG0の各設定値は、実機試験等から最適な値を決めるのが良い。
Specifically, the following fuel injection timing calculation means 120 is provided.
<Fuel injection timing calculation means 120 (FIG. 6)>
The fuel injection timing computing means 120 computes TITMG (fuel injection timing). Specifically, it is shown in FIG.
When Pm (soot amount) is Pm ≧ K2_Pm, TITMG_hos (fuel injection timing correction value) is a value obtained by adding d2_TITMG to the previous value of TITMG_hos. However, the upper limit value is L_TITMG_hos.
When Pm <K2_Pm, TITMG_hos is set to 0.
-TITMG0 (fuel injection timing basic value) is a value obtained by referring to the map M_TITMG0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
A value obtained by subtracting TITMG_hos from TITMG0 is taken as TITMG (fuel injection timing).
The set values of K2_Pm, d2_TITMG, L_TITMG_hos, and M_TITMG0 are preferably determined from actual device tests and the like.
 このように、本実施例では、排気中のすすの量が悪化(増加)したときは、エンジン制御パラメータの一つである燃料噴射時期を早期化するようにされるので、排気中のすすの量の悪化を適時かつ適切に抑制することが可能となる。 As described above, in the present embodiment, when the amount of soot in the exhaust gas is deteriorated (increased), the fuel injection timing, which is one of the engine control parameters, is made earlier, so the soot in the exhaust gas is reduced. It becomes possible to control the deterioration of quantity in a timely and appropriate manner.
 [実施例3:図7]
 実施例3では、排気中のすすの量が所定値を越えたとき、燃料噴射回数を増やすようにされる。
 具体的には、下記の各手段を備える。
・ 基本燃料噴射量演算手段130(図8)
・燃料噴射回数演算手段140(図9)
・燃料噴射量演算手段150(図10)
・燃料噴射時期演算手段160(図11)
で構成される。
[Third Embodiment: FIG. 7]
In the third embodiment, when the amount of soot in the exhaust gas exceeds a predetermined value, the number of fuel injections is increased.
Specifically, the following means are provided.
-Basic fuel injection amount computing means 130 (FIG. 8)
· Fuel injection number calculation means 140 (FIG. 9)
· Fuel injection amount calculation means 150 (FIG. 10)
· Fuel injection timing calculation means 160 (FIG. 11)
It consists of
 ここでは、基本燃料噴射量演算手段で、基本燃料噴射量(Tp0)を演算する。燃料噴射回数演算手段では、すすの量(Pm)に基づいて、燃料噴射回数(N_T1)を演算する。燃料噴射量演算手段で、Tp0とN_T1に基づいて、燃料噴射量(TI_k)を演算する。燃料噴射時期演算手段では、N_T1に基づいて、燃料噴射時期(TITMG_k)を演算する。以下、詳細を述べる。 Here, the basic fuel injection amount calculation means calculates the basic fuel injection amount (Tp0). The fuel injection number calculating means calculates the fuel injection number (N_T1) based on the amount of soot (Pm). The fuel injection amount calculation means calculates the fuel injection amount (TI_k) based on Tp0 and N_T1. The fuel injection timing calculation means calculates the fuel injection timing (TITMG_k) based on N_T1. Details will be described below.
<基本燃料噴射量演算手段130(図8)>
 本演算手段130では、Tp0(基本燃料噴射量)を演算する。具体的には、図8に示される式で演算する。ここに、Cylは気筒数を表す。K0は、インジェクタの仕様(燃料噴射パルス幅と燃料噴射量の関係)に基づき決める。
<Basic fuel injection amount calculation means 130 (FIG. 8)>
The calculation means 130 calculates Tp0 (basic fuel injection amount). Specifically, calculation is performed using the equation shown in FIG. Here, Cyl represents the number of cylinders. K0 is determined based on the specification of the injector (the relationship between the fuel injection pulse width and the fuel injection amount).
<燃料噴射回数演算手段140(図9)>
 本演算手段140では、N_TI(燃料噴射回数)を演算する。具体的には、図9に示される。
・Pm(すす量)が、Pm≧K3_Pmのとき、N_TI(燃料噴射回数)は、N_TI_hosとする。
 Pm<K3_Pmのとき、N_TIは1とする。
 N_TI_hosの設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel injection number calculation means 140 (FIG. 9)>
The computing means 140 computes N_TI (the number of times of fuel injection). Specifically, it is shown in FIG.
When Pm (soot amount) satisfies PmmK3_Pm, N_TI (the number of times of fuel injection) is N_TI_hos.
When Pm <K3_Pm, N_TI is 1.
The set value of N_TI_hos should be determined from the actual machine test or the like.
<燃料噴射量演算手段150(図10)>
 本演算手段では、TI_k(k回目の燃料噴射量)を演算する。具体的には、図10に示される。
・ N_TI からテーブルT_r_kを参照して、r_k(k回目の燃料噴射量重み係数)を求める。
 Tp0にr_kを乗じて、TI_k(k回目の燃料噴射量)を求める。
 T_r_kの設定値は、実機試験等から最適な値を決めるのが良い。なお、N_TI=1のときは、r_kは、1となる。
<Fuel injection amount calculation means 150 (FIG. 10)>
In this computing means, TI_k (kth fuel injection amount) is computed. Specifically, it is shown in FIG.
Based on N_TI, the table T_r_k is referred to, and r_k (kth fuel injection amount weighting coefficient) is determined.
Tp0 is multiplied by r_k to obtain TI_k (kth fuel injection amount).
The set value of T_r_k should be determined from the actual machine test or the like. When N_TI = 1, r_k is 1.
<燃料噴射時期制御手段160(図11)>
 本演算手段では、TITMG_k(k回目の燃料噴射時期)を演算する。具体的には、図11に示される。
・N_TI からテーブルT_TITMG_kを参照して、TITMG_k(k回目の燃料噴射時期)を求める。
 T_TITMG_kの設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel injection timing control means 160 (FIG. 11)>
In this computing means, TITMG_k (kth fuel injection timing) is computed. Specifically, it is shown in FIG.
Determine TITMG_k (kth fuel injection timing) from N_TI with reference to the table T_TITMG_k.
The set value of T_TITMG_k should be determined from the actual machine test or the like.
 このように、本実施例では、排気中のすすの量が悪化(増加)したときは、エンジン制御パラメータの一つである燃料噴射回数を増やすようにされるので、排気中のすすの量の悪化を適時かつ適切に抑制することが可能となる。 As described above, in the present embodiment, when the amount of soot in the exhaust gas is deteriorated (increased), the number of fuel injections, which is one of the engine control parameters, is increased, so that the amount of soot in the exhaust gas is increased. It becomes possible to control deterioration appropriately and appropriately.
 [実施例4:図12]
 実施例3では、排気中のすすの量が所定値を越えたとき、EGRバルブ19が介装されたEGR通路18を介して排気側から吸気側へ還流するEGR量を減らすようにされる。
[Example 4: Fig. 12]
In the third embodiment, when the amount of soot in the exhaust gas exceeds a predetermined value, the amount of EGR recirculated from the exhaust side to the intake side is reduced via the EGR passage 18 in which the EGR valve 19 is interposed.
 具体的には、下記EGR量制御手段210を備える。
<EGR量制御手段210(図13)>
 本EGR量制御手段210では、TITMG(燃料噴射時期)を演算する。具体的には、図13に示される。
・Pm(すす量)が、Pm≧K4_Pmのとき、TgEGR_hos(目標EGR率補正値)は、TgEGR_hosの前回値にd4_TgEGRを加えた値とする。ただし、上限値は、L_TgEGR_hosとする。
 Pm<K4_Pmのとき、TgEGR_hosは0とする。
・TgEGR0(目標EGR率基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TgEGR0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・ TgEGR0からTgEGR_hosを引いた値をTgEGR0(目標EGR率)とする。
・ TgEGRとTpからマップM_RdEGRを参照した値をRdEGR(EGRバルブ制御デューティ比)とする。
 K4_Pm、d4_TgEGR 、L_TgEGR_hos、M_TgEGR0、M_RdEGRの各設定値は、実機試験等から最適な値を決めるのが良い。
Specifically, an EGR amount control unit 210 described below is provided.
<EGR Amount Control Means 210 (FIG. 13)>
The EGR amount control means 210 calculates TITMG (fuel injection timing). Specifically, it is shown in FIG.
When Pm (amount of soot) satisfies Pm ≧ K4_Pm, TgEGR_hos (target EGR rate correction value) is a value obtained by adding d4_TgEGR to the previous value of TgEGR_hos. However, the upper limit value is L_TgEGR_hos.
When Pm <K4_Pm, TgEGR_hos is set to 0.
-TgEGR0 (target EGR rate basic value) is a value obtained by referring to the map M_TgEGR0 from Ne (rotational speed) and Tp (value corresponding to the amount of air in the cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
-A value obtained by subtracting TgEGR_hos from TgEGR0 is set as TgEGR0 (target EGR rate).
A value obtained by referring to the map M_RdEGR from TgEGR and Tp is taken as RdEGR (EGR valve control duty ratio).
Each set value of K4_Pm, d4_TgEGR, L_TgEGR_hos, M_TgEGR0, and M_RdEGR may be determined from an actual machine test or the like.
 このように、本実施例では、排気中のすすの量が悪化(増加)したときは、エンジン制御パラメータの一つであるEGR量を減らすようにされるので、排気中のすすの量の悪化を適時かつ適切に抑制することが可能となる。 Thus, in the present embodiment, when the amount of soot in the exhaust gas is deteriorated (increased), the amount of EGR, which is one of the engine control parameters, is reduced, so the amount of soot in the exhaust gas is deteriorated. Timely and appropriately.
 [実施例5:図14]
 前述した実施例1では、すすセンサ20により検出される排気中のすすの量の直接検出値が所定値よりも多くなったとき、前記エンジンの制御パラメータの一つである燃料噴射圧力を高くするようにされているが、本実施例5では、排気中のすすの量の直接検出値が所定値よりも多くなったとき、シリンダ内空気量充填効率に基づいて、燃料圧力を上げるかもしくは下げるようにする。
[Fifth embodiment: FIG. 14]
In the first embodiment described above, when the direct detection value of the amount of soot in exhaust gas detected by the soot sensor 20 becomes larger than a predetermined value, the fuel injection pressure which is one of the control parameters of the engine is increased. However, in the fifth embodiment, when the direct detection value of the amount of soot in the exhaust gas exceeds the predetermined value, the fuel pressure is increased or decreased based on the in-cylinder air amount charging efficiency. Let's do it.
 具体的には、シリンダ内空気量の充填効率が所定値より小さい場合は、燃料噴射圧力を高くし、シリンダ内空気量の充填効率が所定値より大きい場合は、燃料噴射圧力を低くすべく、下記シリンダ内空気量充填効率演算手段220及び燃料圧力制御手段230を備える。 Specifically, the fuel injection pressure is increased if the filling efficiency of the cylinder air quantity is smaller than a predetermined value, and the fuel injection pressure is reduced if the filling efficiency of the cylinder air quantity is larger than the predetermined value. The in-cylinder air amount charging efficiency computing means 220 and the fuel pressure control means 230 are provided.
<シリンダ内空気量充填効率演算手段220(図15)>
 本演算手段220では、Ita_cyl(シリンダ内空気量充填効率演算手段)を演算する。具体的には、図15に示される式で演算する。ここに、Cylは気筒数を表す。Max_Airは、シリンダ内空気量100%充填相当値である。
<In-cylinder air amount filling efficiency computing means 220 (FIG. 15)>
The present computing means 220 computes Ita_cyl (in-cylinder air amount charging efficiency computing means). Specifically, the calculation is performed using the equation shown in FIG. Here, Cyl represents the number of cylinders. Max_Air is a value corresponding to 100% filling of air in the cylinder.
<燃料圧力制御手段230(図16)>
 本制御手段230では、RdPf(燃料ポンプ制御デューティ比)を演算する。具体的には、図16に示される。
・ Pm(すす量)が、Pm≧K5_Pmのとき、TgPf_hos(目標燃料圧力補正値)は、
・Ita_cyl≧K5_Ita_cylのとき、
TgPf_hosの前回値からd5a_Pfを引いた値とする。ただし、下限値は、La_Pf_hosとする。
・Ita_cyl<K5_Ita_cylのとき、
TgPf_hosの前回値にd5b_Pfを加えた値とする。ただし、上限値は、Lb_Pf_hosとする。
・Pm(すす量)が、Pm<K5_Pmのとき、TgPf_hosは0とする。
・TgPf0(目標燃料圧力基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TgPf0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・TgPf0にTgPf_hosを加えた値をTgPf(目標燃料圧力)とする。
・Pf(燃料圧力)とTgPfの差から、PI制御により、RdPf(燃料ポンプ制御デューティ比)を求める。
 K5_Pm、d5_Pfa、d5_Pfb 、La_Pf_hos 、Lb_Pf_hos、M_TgPf0の各設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel pressure control means 230 (FIG. 16)>
The control means 230 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG.
-When Pm (soot amount) is Pm K K5_Pm, TgPf_hos (target fuel pressure correction value) is
・ When Ita_cylKK5_Ita_cyl
The value obtained by subtracting d5a_Pf from the previous value of TgPf_hos. However, the lower limit value is La_Pf_hos.
・ When Ita_cyl <K5_Ita_cyl
The value is obtained by adding d5b_Pf to the previous value of TgPf_hos. However, the upper limit value is Lb_Pf_hos.
-When Pm (amount of soot) is Pm <K5_Pm, TgPf_hos is set to 0.
-TgPf0 (target fuel pressure basic value) is a value obtained by referring to the map M_TgPf0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
A value obtained by adding TgPf_hos to TgPf0 is defined as TgPf (target fuel pressure).
From the difference between Pf (fuel pressure) and TgPf, PI control is performed to determine RdPf (fuel pump control duty ratio).
The set values of K5_Pm, d5_Pfa, d5_Pfb, La_Pf_hos, Lb_Pf_hos, and M_TgPf0 are preferably determined from actual device tests and the like.
 このように、本実施例では、排気中のすすの量が悪化(増加)したときは、シリンダ内空気量の充填効率が所定値より小さい場合は、燃料噴射圧力を高くし、シリンダ内空気量の充填効率が所定値より大きい場合は、燃料噴射圧力を低くするようにされるので、排気中のすすの量の悪化を適時かつ適切に抑制することが可能となる。 As described above, in the present embodiment, when the amount of soot in exhaust gas decreases (increases), the fuel injection pressure is increased if the filling efficiency of the air amount in the cylinder is smaller than a predetermined value, and the air amount in the cylinder is increased. In the case where the charging efficiency is higher than the predetermined value, the fuel injection pressure is lowered, so that the deterioration of the amount of soot in the exhaust can be suppressed in a timely and appropriate manner.
 [実施例6:図17]
 実施例1~5では、排気中のすすの量が所定値を越えたとき、燃料圧力、燃料噴射時期、燃料噴射回数、EGR量のみをそれぞれ変更した。実施例6では、排気中のすすの量が所定値を越えたとき、エンジンの制御パラメータを、エンジンへの悪影響が少ない順、すなわち、燃料圧力、EGR量、燃料噴射時期、燃料噴射回数、の順番で変更する(まず、燃料噴射圧力を高くし、それでも、すすの量が所定値よりも小さくならないときは、EGR量を少なくし、それでも、すすの量が所定値よりも小さくならないときは、燃料噴射時期を早期化し、それでも、すすの量が所定値よりも小さくならないときは、燃料噴射回数を多くする)。
[Example 6: Figure 17]
In the first to fifth embodiments, only the fuel pressure, the fuel injection timing, the number of fuel injections, and the EGR amount are changed when the amount of soot in the exhaust gas exceeds a predetermined value. In the sixth embodiment, when the amount of soot in the exhaust gas exceeds a predetermined value, the control parameters of the engine are ordered in the order of less adverse effect on the engine, that is, fuel pressure, EGR amount, fuel injection timing, fuel injection number. Change in order (First, increase the fuel injection pressure, and if the amount of soot does not become smaller than the predetermined value, reduce the amount of EGR, and still, if the amount of soot does not become smaller than the predetermined value, Advance the fuel injection timing, and if the amount of soot does not become smaller than the predetermined value, increase the number of fuel injections).
 具体的には、下記の各手段を備える。
・制御方式選択フラグ演算手段310(図18)
・燃料圧力制御手段320(図19)
・EGR量制御手段330(図20)
・燃料噴射時期演算手段340(図21)
・燃料噴射回数演算手段350(図22)
・燃料噴射量演算手段150(図10)
・基本燃料噴射量演算手段130(図8)
Specifically, the following means are provided.
· Control method selection flag calculation means 310 (FIG. 18)
Fuel pressure control means 320 (FIG. 19)
· EGR amount control means 330 (FIG. 20)
· Fuel injection timing calculation means 340 (FIG. 21)
· Fuel injection number calculation means 350 (FIG. 22)
· Fuel injection amount calculation means 150 (FIG. 10)
· Basic fuel injection amount computing means 130 (FIG. 8)
 制御方式選択フラグ演算手段320(図18)でf_mode(制御方式選択フラグ)で演算する。f_modeの値に基づいて、燃料圧力制御手段320(図19)、EGR量制御手段330(図20)、燃料噴射時期演算手段340(図21)、燃料噴射回数演算手段350(図22)でそれぞれ、RdPf(燃料ポンプ制御デューティ比)、RdEGR(EGRバルブ制御デューティ比)、TITMG(燃料噴射時期)、TI_k(k回目の燃料噴射量)を演算する。以下、詳細を述べる。 In the control method selection flag calculation means 320 (FIG. 18), calculation is performed in f_mode (control method selection flag). Based on the value of f_mode, fuel pressure control means 320 (FIG. 19), EGR amount control means 330 (FIG. 20), fuel injection timing calculation means 340 (FIG. 21), and fuel injection number calculation means 350 (FIG. 22) respectively. , RdPf (fuel pump control duty ratio), RdEGR (EGR valve control duty ratio), TITMG (fuel injection timing), TI_k (kth fuel injection amount) are calculated. Details will be described below.
 <制御方式選択フラグ演算手段310(図18)>
 本演算手段310では、f_mode(制御方式選択フラグ)を演算する。具体的には、図18に示される。
・f_modeの初期値は0とする。
・f_mode_z=0かつPm≧K1_Pmのとき、f_mode=1とする。
・f_mode_z=1かつPm≧K1_Pmの状態がK1_P回継続したとき、f_mode=2とする。
・f_mode_z=2かつPm≧K2_Pmの状態がK2_P回継続したとき、f_mode=3とする。
・f_mode_z=3かつPm≧K3_Pmの状態がK3_P回継続したとき、f_mode=4とする。
 K1_Pm、K2_Pm、K3_Pmの各設定値は、実機試験等から最適な値を決めるのが良い。
<Control method selection flag calculation means 310 (FIG. 18)>
The operation means 310 calculates f_mode (control method selection flag). Specifically, it is shown in FIG.
The initial value of f_mode is 0.
When f_mode_z = 0 and Pm ≧ K1_Pm, f_mode = 1 is set.
When the state of f_mode_z = 1 and Pm ≧ K1_Pm continues K1_P times, f_mode = 2.
When the state of f_mode_z = 2 and Pm ≧ K2_Pm continues K2_P times, f_mode = 3.
When the state of f_mode_z = 3 and Pm ≧ K3_Pm continues K3_P times, f_mode = 4.
Each set value of K1_Pm, K2_Pm, and K3_Pm may be determined as an optimum value from an actual machine test or the like.
<燃料圧力制御手段320(図19)>
 本制御手段320では、RdPf(燃料ポンプ制御デューティ比)を演算する。具体的には、図19に示される。
・Pm(すす量)がPm≧K1_Pmかつf_mode=1のとき、TgPf_hos(目標燃料圧力補正値)は、TgPf_hosの前回値にd1_Pfを加えた値とする。ただし、上限値は、L_Pf_hosとする。
 Pm<K1_Pmのとき、TgPf_hosは0とする。
・TgPf0(目標燃料圧力基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TgPf0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・TgPf0にTgPf_hosを加えた値をTgPf(目標燃料圧力)とする。
・Pf(燃料圧力)とTgPfの差から、PI制御により、RdPf(燃料ポンプ制御デューティ比)を求める。
 K1_Pm、d1_Pf 、L_Pf_hos、M_TgPf0の各設定値は、実機試験等から最適な値を決めるのが良い。なお、f_mode=1からf_mode=2に変わると、TgPf_hosは0となるが、前回値を維持する仕様とするのも良い。
<Fuel pressure control means 320 (FIG. 19)>
The control means 320 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG.
When Pm (soot amount) is Pm ≧ K1_Pm and f_mode = 1, TgPf_hos (target fuel pressure correction value) is a value obtained by adding d1_Pf to the previous value of TgPf_hos. However, the upper limit value is L_Pf_hos.
When Pm <K1_Pm, TgPf_hos is 0.
-TgPf0 (target fuel pressure basic value) is a value obtained by referring to the map M_TgPf0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
A value obtained by adding TgPf_hos to TgPf0 is defined as TgPf (target fuel pressure).
From the difference between Pf (fuel pressure) and TgPf, PI control is performed to determine RdPf (fuel pump control duty ratio).
Each set value of K1_Pm, d1_Pf, L_Pf_hos, and M_TgPf0 may be determined as an optimum value from a test on a real machine or the like. In addition, although TgPf_hos becomes 0 when f_mode = 1 is changed to f_mode = 2, it is good also as a specification which maintains the last time value.
<EGR量制御手段330(図20)>
 本制御手段330では、RdEGR(EGRバルブ制御デューティ比)を演算する。具体的には、図20に示される。
・Pm(すす量)がPm≧K4_Pmかつf_mode=2のとき、TgEGR_hos(目標EGR率補正値)は、TgEGR_hosの前回値にd4_TgEGRを加えた値とする。ただし、上限値は、L_TgEGR_hosとする。
 Pm<K4_Pmのとき、TgEGR_hosは0とする。
・TgEGR0(目標EGR率基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TgEGR0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・ TgEGR0からTgEGR_hosを引いた値をTgEGR0(目標EGR率)とする。
・ TgEGRとTpからマップM_RdEGRを参照した値をRdEGR(EGRバルブ制御デューティ比)とする。
 K4_Pm、d4_TgEGR 、L_TgEGR_hos、M_TgEGR0、M_RdEGRの各設定値は、実機試験等から最適な値を決めるのが良い。なお、f_mode=2からf_mode=3に変わると、TgEGR_hosは0となるが、前回値を維持する仕様とするのも良い。
<EGR Amount Control Means 330 (FIG. 20)>
The control means 330 calculates RdEGR (EGR valve control duty ratio). Specifically, it is shown in FIG.
-When Pm (soot amount) is PmKK4_Pm and f_mode = 2, TgEGR_hos (target EGR rate correction value) is a value obtained by adding d4_TgEGR to the previous value of TgEGR_hos. However, the upper limit value is L_TgEGR_hos.
When Pm <K4_Pm, TgEGR_hos is set to 0.
-TgEGR0 (target EGR rate basic value) is a value obtained by referring to the map M_TgEGR0 from Ne (rotational speed) and Tp (value corresponding to the amount of air in the cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
-A value obtained by subtracting TgEGR_hos from TgEGR0 is set as TgEGR0 (target EGR rate).
A value obtained by referring to the map M_RdEGR from TgEGR and Tp is taken as RdEGR (EGR valve control duty ratio).
Each set value of K4_Pm, d4_TgEGR, L_TgEGR_hos, M_TgEGR0, and M_RdEGR may be determined from an actual machine test or the like. When f_mode = 2 is changed to f_mode = 3, TgEGR_hos becomes 0, but it is also preferable to use a specification that maintains the previous value.
<燃料噴射時期制御手段340(図21)>
 本制御手段340では、TITMG(燃料噴射時期)を演算する。具体的には、図21に示される。
・Pm(すす量)がPm≧K2_Pmかつf_mode=3のとき、TITMG_hos(燃料噴射時期補正値)は、TITMG_hosの前回値にd2_TITMGを加えた値とする。ただし、上限値は、L_TITMG_hosとする。
 Pm<K2_Pmのとき、TITMG_hosは0とする。
・TITMG0(燃料噴射時期基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TITMG0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・Pm(すす量)がPm<K3_Pmもしくはf_mode≠4のとき、
TITMG0からTITMG_hosを引いた値をTITMG(燃料噴射時期)とする。
・Pm(すす量)がPm≧K3_Pmかつf_mode=4のとき、
N_TI からテーブルT_TITMG_kを参照して、TITMG_k(k回目の燃料噴射時期)を求める。
 K2_Pm、d2_TITMG 、L_TITMG_hos、M_TITMG0、T_TITMG_kの各設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel injection timing control means 340 (FIG. 21)>
The control means 340 calculates TITMG (fuel injection timing). Specifically, it is shown in FIG.
-When Pm (soot amount) is Pm ≧ K2_Pm and f_mode = 3, TITMG_hos (fuel injection timing correction value) is a value obtained by adding d2_TITMG to the previous value of TITMG_hos. However, the upper limit value is L_TITMG_hos.
When Pm <K2_Pm, TITMG_hos is set to 0.
-TITMG0 (fuel injection timing basic value) is a value obtained by referring to the map M_TITMG0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
・ When Pm (amount of soot) is Pm <K3_Pm or f_mode ≠ 4,
A value obtained by subtracting TITMG_hos from TITMG0 is taken as TITMG (fuel injection timing).
· When Pm (amount of soot) is Pm K K3_Pm and f_mode = 4,
Referring to the table T_TITMG_k from N_TI, determine TITMG_k (kth fuel injection timing).
Each set value of K2_Pm, d2_TITMG, L_TITMG_hos, M_TITMG0, and T_TITMG_k may be determined as an optimum value based on a test on a real machine or the like.
<燃料噴射回数演算手段350(図22)>
 本演算手段350では、N_TI(燃料噴射回数)を演算する。具体的には、図22に示される。
・Pm(すす量)がPm≧K3_Pmかつf_mode=4のとき、N_TI(燃料噴射回数)は、N_TI_hosとする。それ以外のとき、N_TIは1とする。
 N_TI_hosの設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel injection number calculation means 350 (FIG. 22)>
The calculation means 350 calculates N_TI (the number of times of fuel injection). Specifically, it is shown in FIG.
When Pm (soot amount) is Pm ≧ K3_Pm and f_mode = 4, N_TI (the number of times of fuel injection) is N_TI_hos. N_TI is 1 otherwise.
The set value of N_TI_hos should be determined from the actual machine test or the like.
<燃料噴射量演算手段150(図10)>
 本演算手段150では、TI_k(k回目の燃料噴射量)を演算する。具体的には、図10に示されるが、実施例3と同じなので説明は省略する。
<Fuel injection amount calculation means 150 (FIG. 10)>
The computing means 150 computes TI_k (kth fuel injection amount). Specifically, although it is shown in FIG. 10, since it is the same as the third embodiment, the description is omitted.
<基本燃料噴射量演算手段130(図8)>
 本演算手段130では、Tp0(基本燃料噴射量)を演算する。具体的には、図8に示されるが、実施例3と同じなので説明は省略する。
<Basic fuel injection amount calculation means 130 (FIG. 8)>
The calculation means 130 calculates Tp0 (basic fuel injection amount). Specifically, although it is shown in FIG. 8, since it is the same as the third embodiment, the description is omitted.
 このように、本実施例では、排気中のすすの量が所定値を越えたとき、エンジンへの悪影響が少ないと思われる制御パラメータの順(燃料圧力、EGR量、燃料噴射時期、燃料噴射回数の順)に変更補正を行うようにされるので、排気中のすすの量を一層確実に低減することが可能となる。 As described above, in this embodiment, when the amount of soot in the exhaust gas exceeds the predetermined value, the order of the control parameters that are considered to have little adverse effect on the engine (fuel pressure, EGR amount, fuel injection timing, number of fuel injections) As the change correction is made in the order of (1), it is possible to more reliably reduce the amount of soot in the exhaust.
 [実施例7:図23]
 実施例1~6では、排気中のすすの量が所定値を越えたとき、排気中のすすの量の悪化を抑制すべく、各エンジン制御パラメータを変更した。実施例7では、各エンジン制御パラメータを変更しても、排気中のすすの量の悪化が抑制できないとき、その旨を報知するようにした。
 具体的には、燃料圧力制御手段410及び異常判定手段420を備える。
 以下、詳細を述べる。
[Example 7: Figure 23]
In the first to sixth embodiments, each engine control parameter is changed in order to suppress the deterioration of the amount of soot in the exhaust when the amount of soot in the exhaust exceeds a predetermined value. In the seventh embodiment, even when each engine control parameter is changed, when the deterioration of the amount of soot in the exhaust can not be suppressed, that is notified.
Specifically, the fuel pressure control unit 410 and the abnormality determination unit 420 are provided.
Details will be described below.
<燃料圧力制御手段410(図24)>
 本制御手段410では、RdPf(燃料ポンプ制御デューティ比)を演算する。具体的には、図24に示される。
・ Pm(すす量)が、Pm≧K1_Pmのとき、f_seigyo(すす抑制制御フラグ)を1とする。
 TgPf_hos(目標燃料圧力補正値)は、
 f_seigyo=1のとき、TgPf_hosの前回値にd1_Pfを加えた値とする。ただし、上限値は、L_Pf_hosとする。
 f_seigyo=0のとき、Pm<K1_Pmのとき、TgPf_hosは0とする。
・TgPf0(目標燃料圧力基本値)は、Ne(回転速度)とTp(シリンダ内空気量相当値)からマップM_TgPf0を参照した値とする。Tpの演算方法は、公知で一般的技術なので、ここでは省略する。
・TgPf0にTgPf_hosを加えた値をTgPf(目標燃料圧力)とする。
・Pf(燃料圧力)とTgPfの差から、PI制御により、RdPf(燃料ポンプ制御デューティ比)を求める。
 K1_Pm、d1_Pf 、L_Pf_hos、M_TgPf0の各設定値は、実機試験等から最適な値を決めるのが良い。
<Fuel pressure control means 410 (FIG. 24)>
The control unit 410 calculates RdPf (fuel pump control duty ratio). Specifically, it is shown in FIG.
When Pm (amount of soot) satisfies Pm ≧ K1_Pm, f_seigyo (soot suppression control flag) is set to 1.
TgPf_hos (target fuel pressure correction value) is
When f_seigyo = 1, d1_Pf is added to the previous value of TgPf_hos. However, the upper limit value is L_Pf_hos.
When f_seigyo = 0, TgPf_hos is 0 when Pm <K1_Pm.
-TgPf0 (target fuel pressure basic value) is a value obtained by referring to the map M_TgPf0 from Ne (rotational speed) and Tp (equivalent amount of air in cylinder). Since the calculation method of Tp is a well-known and general technique, it is omitted here.
A value obtained by adding TgPf_hos to TgPf0 is defined as TgPf (target fuel pressure).
From the difference between Pf (fuel pressure) and TgPf, PI control is performed to determine RdPf (fuel pump control duty ratio).
Each set value of K1_Pm, d1_Pf, L_Pf_hos, and M_TgPf0 may be determined as an optimum value from a test on a real machine or the like.
<異常判定手段420(図25)>
 本判定手段420では、f_MIL(異常発生フラグ)を演算する。具体的には、図25に示される。
・f_MILの初期値は0とする。
・ f_seigyo=1かつTgPf_hos=≧L_Pf_hosの状態がK1_P回継続したとき、f_MIL=1とする。
 L_Pf_hosの設定値は、実機試験等から最適な値を決めるのが良い。
<Abnormality judging means 420 (FIG. 25)>
The main judging means 420 calculates f_MIL (error occurrence flag). Specifically, it is shown in FIG.
The initial value of f_MIL is 0.
-When the state of f_seigyo = 1 and TgPf_hos = LL_Pf_hos continues K1_P times, f_MIL = 1.
The set value of L_Pf_hos should be determined from the actual machine test and the like.
 なお、本実施例では、燃料圧力を制御対象として、異常判定する方式としたが、燃料噴射時期、燃料噴射回数、EGR量を制御対象として、すす量が下がらないとき、異常判定を行うようにしてもよいことは勿論である。 In the present embodiment, the fuel pressure is controlled and abnormality determination is performed. However, when the fuel injection timing, the number of fuel injections, and the EGR amount are controlled, the abnormality determination is performed when the amount of soot does not decrease. Of course it may be good.
 本実施例では、エンジン制御パラメータ(例えば燃料圧力)を変更しても、排気中のすすの量の悪化が抑制できないとき、その旨を報知することにより、運転者等により何らかの対策が採られる可能性が高いので、結果として、すすが大気に放出される量をさらに抑えることができる。 In this embodiment, even if the engine control parameter (for example, the fuel pressure) is changed, when the deterioration of the amount of soot in the exhaust can not be suppressed, some measures can be taken by the driver etc. by notifying that. As a result, the amount of soot released to the atmosphere can be further reduced.
1 エアクリーナ
2 エアフローセンサ
3 電制スロットル
4 吸気通路  
5 コレクタ
6 アクセル
7 燃料噴射弁
8 点火プラグ
9 エンジン
10 排気通路
11 三元触媒
12 触媒上流空燃比センサ
13 アクセル開度センサ
14 水温センサ 
15 クランク角センサ
17 スロットル弁開度センサ
18 EGR通路
19 EGRバルブ
20 すすセンサ
29 吸気温センサ
31 燃料圧力センサ
32 燃料ポンプ
100 コントロールユニット
1 Air cleaner 2 Air flow sensor 3 Electric throttle 4 Intake passage
Reference Signs List 5 collector 6 accelerator 7 fuel injection valve 8 ignition plug 9 engine 10 exhaust passage 11 three-way catalyst 12 catalyst upstream air-fuel ratio sensor 13 accelerator opening sensor 14 water temperature sensor
Reference Signs List 15 crank angle sensor 17 throttle valve opening sensor 18 EGR passage 19 EGR valve 20 soot sensor 29 intake air temperature sensor 31 fuel pressure sensor 32 fuel pump 100 control unit

Claims (15)

  1.  排気中のすすの量を直接検出する手段と、
     前記排気中のすすの量の直接検出値が所定値よりも大きくなったとき、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくなるように、
     エンジンの制御パラメータを変更する手段と、
    を備えていることを特徴とするエンジンの制御装置。
    Means for directly detecting the amount of soot in the exhaust;
    When the direct detection value of the amount of soot in the exhaust gas becomes larger than a predetermined value,
    The direct detection value of the amount of soot in the exhaust is smaller than the predetermined value,
    Means for changing the control parameters of the engine;
    An engine control device comprising:
  2.  前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、
     燃料噴射圧力を高くする手段を備えていることを特徴とする請求項1に記載のエンジンの制御装置。
    When the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value,
    The engine control device according to claim 1, further comprising means for increasing the fuel injection pressure.
  3.  前記燃料噴射圧力を高くする手段は、燃料供給系で行われる燃圧センサ検出値に基づく燃圧フィードバック制御においてエンジン運転状態に応じて設定される目標燃料圧力を高く設定し直すことにより、燃料噴射圧力を高くすることを特徴とする請求項2に記載のエンジンの制御装置。 The means for increasing the fuel injection pressure is to reset the fuel injection pressure by resetting the target fuel pressure set according to the engine operating condition to be high in fuel pressure feedback control based on the fuel pressure sensor detection value performed in the fuel supply system. The engine control device according to claim 2, characterized in that the height is increased.
  4.  前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、
     燃料噴射時期を早期化する手段を備えていることを特徴とする請求項1に記載のエンジンの制御装置。
    When the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value,
    The engine control device according to claim 1, further comprising means for advancing fuel injection timing.
  5.  前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、
     燃料噴射回数を多くする手段を備えていることを特徴とする請求項1に記載のエンジンの制御装置。
    When the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value,
    The engine control device according to claim 1, further comprising means for increasing the number of fuel injections.
  6.  前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、
     EGR量を少なくする手段を備えていることを特徴とする請求項1に記載のエンジンの制御装置。
    When the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value,
    The engine control device according to claim 1, further comprising means for reducing the amount of EGR.
  7.  前記排気中のすすの量の直接検出値が前記所定値よりも多くなったとき、
     シリンダ内空気量の充填効率が所定値より小さい場合は、燃料噴射圧力を高くし、
     シリンダ内空気量の充填効率が所定値より大きい場合は、燃料噴射圧力を低くする燃料噴射圧力変更手段を備えていることを特徴とする請求項1に記載のエンジンの制御装置。
    When the direct detection value of the amount of soot in the exhaust gas is larger than the predetermined value,
    If the filling efficiency of the amount of air in the cylinder is smaller than the predetermined value, increase the fuel injection pressure,
    The engine control device according to claim 1, further comprising fuel injection pressure changing means for lowering the fuel injection pressure when the filling efficiency of the in-cylinder air amount is larger than a predetermined value.
  8.  前記エンジンの制御パラメータを変更する手段により、
     前記制御パラメータを変更した後、所定時間が経過しても、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、
     その旨を報知する手段を備えていることを特徴とする請求項1に記載のエンジンの制御装置。
    By means of changing the control parameters of said engine,
    After changing the control parameter, even if a predetermined time has elapsed,
    When the direct detection value of the amount of soot in the exhaust does not become smaller than the predetermined value,
    The engine control device according to claim 1, further comprising means for notifying that effect.
  9.  前記燃料噴射圧力を高くする手段により、
     燃料料噴射圧力を高くした後、所定時間が経過しても、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、
     その旨を報知する手段を備えていることを特徴とする請求項2に記載のエンジンの制御装置。
    By means of increasing the fuel injection pressure,
    After the fuel injection pressure has been increased, even if a predetermined time has elapsed,
    When the direct detection value of the amount of soot in the exhaust does not become smaller than the predetermined value,
    The engine control device according to claim 2, further comprising means for notifying that effect.
  10.  前記燃料噴射時期を早期化する手段により、
     燃料噴射時期を早期化した後、所定時間が経過しても、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、
     その旨を報知する手段を備えていることを特徴とする請求項4に記載のエンジンの制御装置。
    By means of accelerating the fuel injection timing,
    Even after the fuel injection timing has been advanced, even if a predetermined time has elapsed,
    When the direct detection value of the amount of soot in the exhaust does not become smaller than the predetermined value,
    5. The engine control device according to claim 4, further comprising means for notifying that effect.
  11.  前記燃料噴射回数を多くする手段により、
     燃料噴射回数を多くした後、所定時間が経過しても、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、
     その旨を報知する手段を備えていることを特徴とする請求項5に記載のエンジンの制御装置。
    By means of increasing the number of fuel injections,
    Even if the predetermined time has elapsed after increasing the number of fuel injections,
    When the direct detection value of the amount of soot in the exhaust does not become smaller than the predetermined value,
    The engine control device according to claim 5, further comprising means for notifying that effect.
  12.  前記EGR量を少なくする手段により、
     EGR量を少なくした後、所定時間が経過しても、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、
     その旨を報知する手段を備えていることを特徴とする請求項6に記載のエンジンの制御装置。
    By means of reducing the amount of EGR,
    Even after a predetermined time has elapsed after reducing the EGR amount,
    When the direct detection value of the amount of soot in the exhaust does not become smaller than the predetermined value,
    The engine control device according to claim 6, further comprising means for notifying that effect.
  13.  前記燃料圧力変更手段により、
     燃料噴射圧力を変更した後、所定時間が経過しても、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくならない場合は、
     その旨を報知する手段を備えていることを特徴とする請求項7に記載のエンジンの制御装置。
    By the fuel pressure changing means,
    After changing the fuel injection pressure, even if a predetermined time has elapsed,
    When the direct detection value of the amount of soot in the exhaust does not become smaller than the predetermined value,
    The engine control device according to claim 7, further comprising means for notifying that effect.
  14.  前記排気中のすすの直接検出値が前記所定値よりも多くなったとき、
     前記排気中のすすの量の直接検出値が前記所定値よりも小さくなるように、
     まず、燃料噴射圧力を高くし、それでも、すすの量が前記所定値よりも小さくならないときは、EGR量を少なくし、それでも、すすの量が前記所定値よりも小さくならないときは、燃料噴射時期を早期化し、それでも、すすの量が前記所定値よりも小さくならないときは、燃料噴射回数を多くするようにされていることを特徴とする請求項1に記載のエンジンの制御装置。
    When the direct detection value of soot in the exhaust gas exceeds the predetermined value,
    The direct detection value of the amount of soot in the exhaust is smaller than the predetermined value,
    First, the fuel injection pressure is increased, and if the amount of soot does not become smaller than the predetermined value, the amount of EGR is reduced. If the amount of soot still does not become smaller than the predetermined value, the fuel injection timing is The engine control device according to claim 1, wherein the fuel injection number is increased if the amount of soot does not become smaller than the predetermined value.
  15.  排気中のすすの量を直接検出する手段は、すすの量として、すすの質量もしくはすすの個数を検出することを特徴とする請求項1に記載のエンジンの制御装置。 The engine control device according to claim 1, wherein the means for directly detecting the amount of soot in the exhaust detects the mass of soot or the number of soot as the amount of soot.
PCT/JP2012/077827 2011-11-10 2012-10-29 Engine control device WO2013069488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-246925 2011-11-10
JP2011246925A JP2013104317A (en) 2011-11-10 2011-11-10 Engine control device

Publications (1)

Publication Number Publication Date
WO2013069488A1 true WO2013069488A1 (en) 2013-05-16

Family

ID=48289866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077827 WO2013069488A1 (en) 2011-11-10 2012-10-29 Engine control device

Country Status (2)

Country Link
JP (1) JP2013104317A (en)
WO (1) WO2013069488A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193948A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control method and device for engine, and method and device for detecting the number of discharge particles in engine
CN112412643A (en) * 2020-11-03 2021-02-26 同济大学 Diesel engine tail gas purification control method based on target detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285822A (en) * 2001-03-26 2002-10-03 Isuzu Motors Ltd Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
JP2006266961A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Soot sensor
JP2007162611A (en) * 2005-12-15 2007-06-28 Toyota Industries Corp Injector malfunction detection device and injection malfunction removing device having it
JP2010059879A (en) * 2008-09-04 2010-03-18 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765792B2 (en) * 2005-10-21 2010-08-03 Honeywell International Inc. System for particulate matter sensor signal processing
JP4635974B2 (en) * 2006-07-12 2011-02-23 トヨタ自動車株式会社 Diesel engine control device
JP2009156154A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Control device for internal combustion engine
WO2009088506A1 (en) * 2008-01-08 2009-07-16 Mack Trucks, Inc. Method for reducing diesel engine emissions, and diesel engine
US8631643B2 (en) * 2009-12-22 2014-01-21 Perkins Engines Company Limited Regeneration assist delay period
JP2011220169A (en) * 2010-04-07 2011-11-04 Toyota Motor Corp Emission control device for gasoline engine
JP2011226859A (en) * 2010-04-16 2011-11-10 Ngk Insulators Ltd Particulate material detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285822A (en) * 2001-03-26 2002-10-03 Isuzu Motors Ltd Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
JP2006266961A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Soot sensor
JP2007162611A (en) * 2005-12-15 2007-06-28 Toyota Industries Corp Injector malfunction detection device and injection malfunction removing device having it
JP2010059879A (en) * 2008-09-04 2010-03-18 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193948A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control method and device for engine, and method and device for detecting the number of discharge particles in engine
CN112412643A (en) * 2020-11-03 2021-02-26 同济大学 Diesel engine tail gas purification control method based on target detection
CN112412643B (en) * 2020-11-03 2021-09-03 同济大学 Diesel engine tail gas purification control method based on target detection

Also Published As

Publication number Publication date
JP2013104317A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP4450083B2 (en) Cetane number estimation method
JP5234225B2 (en) Control device for internal combustion engine
US8463531B2 (en) System and method for controlling exhaust gas recirculation systems
JP4861915B2 (en) Control device for internal combustion engine
JP5331753B2 (en) Engine control device
WO2010114127A1 (en) Control system for internal combustion engine
CN102374090A (en) System and method for detecting fuel injector malfunction based on engine vibration
US10393054B2 (en) Engine controller for detecting failure of fuel injector
JP2007278223A (en) Control device for cylinder-injection spark-ignition internal combustion engine
JPWO2002081888A1 (en) Control device for internal combustion engine
JP6860313B2 (en) Engine control method and engine
JP5949675B2 (en) Heat generation rate waveform creation device and combustion state diagnostic device for internal combustion engine
WO2013069488A1 (en) Engine control device
JP2011085081A (en) Method for determining engine misfire
JP6036562B2 (en) Heat generation rate waveform creation device and combustion state diagnostic device for internal combustion engine
JP5962585B2 (en) Heat generation rate waveform creation device and combustion state diagnostic device for internal combustion engine
JP5720479B2 (en) Control device for internal combustion engine
JP5427715B2 (en) Engine control device
US20180171892A1 (en) Engine Control Device
JP5171740B2 (en) Control device for internal combustion engine
JP2007309309A (en) Control device for internal combustion engine
JP2017020417A (en) Control device of internal combustion engine
JP5640970B2 (en) Control device for internal combustion engine
JP5983559B2 (en) Heat generation rate waveform creation device and combustion state diagnostic device for internal combustion engine
JP2009167871A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847952

Country of ref document: EP

Kind code of ref document: A1