WO2013069485A1 - Film capacitor, capacitor module, and power converter - Google Patents

Film capacitor, capacitor module, and power converter Download PDF

Info

Publication number
WO2013069485A1
WO2013069485A1 PCT/JP2012/077810 JP2012077810W WO2013069485A1 WO 2013069485 A1 WO2013069485 A1 WO 2013069485A1 JP 2012077810 W JP2012077810 W JP 2012077810W WO 2013069485 A1 WO2013069485 A1 WO 2013069485A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film capacitor
capacitor
dielectric resin
dielectric
Prior art date
Application number
PCT/JP2012/077810
Other languages
French (fr)
Japanese (ja)
Inventor
泰典 日置
洋明 中村
一朗 中祖
智生 稲倉
小林 真一
智道 市川
千一 小笹
菊池 公明
徹 美濃
二紀 宮崎
真一 朴木
拓也 阪本
Original Assignee
株式会社村田製作所
株式会社指月電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 株式会社指月電機製作所 filed Critical 株式会社村田製作所
Publication of WO2013069485A1 publication Critical patent/WO2013069485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Definitions

  • the present invention relates to a film capacitor and a capacitor module and a power conversion device constituted by using the film capacitor, and more particularly to an improvement for improving the heat resistance of the film capacitor.
  • a film capacitor that is of interest to the present invention, there is a film capacitor using a metal-deposited polypropylene film described in, for example, JP-A-7-45466 (Patent Document 1).
  • This film capacitor has a fuse pattern portion obtained by dividing the internal electrode, and by setting the shape of the fuse pattern portion to be appropriate, the fuse functions and sets a current value range leading to disconnection.
  • this film capacitor is said to have both heat resistance and a self-healing function while the maximum allowable temperature is set to 100 ° C. to 150 ° C.
  • the film capacitor has the following problems to be solved.
  • the fuse pattern part is provided, if dielectric breakdown frequently occurs, the decomposition gas of the dielectric resin film generated by the dielectric breakdown may be accumulated inside the film capacitor.
  • the cracked gas When the cracked gas is accumulated in this way, the cracked gas can become a conductive carbide. Since this conductive carbide brings an energized state inside the film capacitor, the insulation is not restored, and as a result, the self-healing function does not work.
  • the maximum allowable temperature is set to 100 ° C to 150 ° C, it is continuous at 100 ° C to 150 ° C as long as it uses a thermoplastic resin such as polypropylene and a relatively low glass transition point. The use is impossible, and it is fully considered that the film is deformed or the electric characteristics are deteriorated.
  • the reliability of film capacitors deteriorates due to moisture absorption.
  • a temperature as high as possible for example, a temperature of 100 ° C. or higher, which is the boiling point of water.
  • the film capacitor described in Patent Document 1 cannot be used continuously at 100 ° C. to 150 ° C. as described above. Therefore, when a system using a film capacitor is constructed, it is necessary to set the ambient temperature of the film capacitor to less than 100 ° C. at the highest. Therefore, in the film capacitor, moisture absorption is promoted, and only a system with low reliability can be realized from the viewpoint of moisture resistance.
  • an object of the present invention is to provide a film capacitor that can solve the above-described problems, that is, has excellent heat resistance.
  • Another object of the present invention is to provide a capacitor module configured using the film capacitor described above.
  • Still another object of the present invention is to provide a power conversion device configured using the film capacitor described above.
  • the present invention relates to a dielectric resin film formed in an overlapping manner, first and second counter electrodes disposed so as to face each other across the dielectric resin film, and first and second counter electrodes.
  • a film capacitor is first directed to the first and second terminal electrodes, each electrically connected.
  • the film capacitor according to the present invention has a surface roughness Ra of at least one main surface as the dielectric resin film of 3 nm or more and 1000 nm or less, and a glass transition as a resin component. It is composed of a thermosetting resin having a point of 130 ° C. or higher, and the thermal decomposition residue weight at 500 ° C. when the thermogravimetric change rate of the resin component is measured in nitrogen at a heating rate of 10 ° C./min is 40% by weight. The following is used.
  • the breakdown portion of the dielectric resin film can be easily gasified during dielectric breakdown.
  • the surface of the dielectric resin film is provided with irregularities that give a predetermined surface roughness Ra, the dielectric resin film may be wound or laminated to overlap each other even between overlapping dielectric resin film portions. Since a slight gap is formed, the decomposition gas is likely to be scattered from the inside of the film capacitor, so that the self-healing function works well.
  • a thermosetting resin having a glass transition point of 130 ° C. or higher is used for the dielectric resin film, it has heat resistance that can withstand continuous use at a high temperature of, for example, 125 ° C. or higher.
  • the present invention is particularly advantageously applied to a wound film capacitor.
  • the dielectric resin film is wound to form a wound body
  • the first and second counter electrodes are disposed inside the wound body
  • the first and second terminal electrodes are It is formed on each end face of the wound body.
  • the dielectric resin film preferably contains a resin component obtained by mixing two or more organic materials and cross-linking them. According to this configuration, since the resin has a three-dimensional network structure, the glass transition point can be set to a high temperature, and the vibration of the molecular chain is suppressed even at a high temperature, so that deterioration of electrical characteristics and physical properties is suppressed. For the same reason, the long-term reliability of the film capacitor at a high temperature can be increased.
  • the convex part which gives the surface roughness of the dielectric resin film is made of the same kind of resin component as the main body part other than the convex part of the dielectric resin film. According to this structure, it can suppress that the dielectric breakdown strength falls for the formation of a convex part.
  • the present invention is also directed to a capacitor module configured using the film capacitor, that is, a capacitor module including a plurality of film capacitors and a terminal conductor connected to the terminal electrode of the film capacitor.
  • the present invention is further directed to a power conversion device that includes the film capacitor and a switching element, and is set so that the maximum temperature reached by the film capacitor during operation can be 100 ° C. or higher.
  • a film capacitor that can be continuously used at a temperature of 125 ° C. or higher and further has a self-healing function.
  • the reliability of film capacitors decreases due to moisture absorption, but by increasing the ambient temperature, the moisture absorbed by the film capacitors can be efficiently discharged, and high reliability can be maintained. Furthermore, by setting the ambient temperature to 100 ° C. or more, which is the boiling point of water, it is possible to more quickly advance the discharge of moisture from the film capacitor. For example, even if water droplets are formed on the surface of the film capacitor due to dew condensation, it can be evaporated in a short time and the moisture inside the film capacitor can be discharged in a short time.
  • the film capacitor according to the present invention is applied to a power conversion device, the heat generated unavoidably in the power change device can contribute to the evaporation of moisture as described above. The fall of property can be prevented.
  • the cooling mechanism required for the power converter can be simplified, and power that operates at high temperature and high frequency, such as SiC and GaN. It can be combined with a switching element composed of a semiconductor without any problem. From these, it is possible to realize a power converter having a small size, low cost, high performance and high reliability.
  • FIG. 1 is a longitudinal sectional view showing a film capacitor 1 according to a first embodiment of the present invention. It is a figure which expand
  • FIG. 5 is a diagram illustrating a film capacitor according to a second embodiment of the present invention, in which first and second dielectric resin films 3 and 4 are developed and shown. It is a perspective view showing one embodiment of a capacitor module constituted using a film capacitor concerning this invention. It is a circuit diagram showing one embodiment of a power converter constituted using a film capacitor concerning this invention.
  • a film capacitor 1 according to a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
  • a film capacitor 1 shown in FIG. 1 is of a winding type, and includes first and second dielectric resin films 3 and 4 wound around a winding shaft 2 and first or second dielectric resin films 3 and 4.
  • First and second counter electrodes 5 and 6 that face each other across the dielectric resin film 3 or 4 and are electrically connected to the first and second counter electrodes 5 and 6 respectively.
  • the first counter electrode 5 is formed on the first dielectric resin film 3, and the second counter electrode 6 is formed on the second dielectric resin film 4. Is formed. At this time, the first counter electrode 5 is formed so as to reach the first side edge of the first dielectric resin film 3 but not to the opposite second side edge.
  • the second counter electrode 6 is formed on the first side edge of the second dielectric resin film 4 on the same side as the first side edge. It is formed so that it does not reach the opposite side edge, but is formed so as to reach the opposite second side edge.
  • the first and second dielectric resin films 3 and 4 are wound around the winding shaft 2 so as to overlap each other. At this time, as can be seen from FIG. 1, the end of the first counter electrode 5 on the side reaching the side edge of the first dielectric resin film 3 and the second dielectric in the second counter electrode 6. The first dielectric resin film 3 and the second dielectric resin film 4 are shifted from each other in the width direction so that both end portions reaching the side edges of the resin film 4 are exposed. Then, the first and second dielectric resin films 3 and 4 are wound around the winding shaft 2 as described above, whereby a substantially cylindrical wound body 9 is obtained.
  • the first and second dielectric resin films 3 and 4 are arranged so that the second dielectric resin film 4 is outside the first dielectric resin film 3.
  • Each of the first and second counter electrodes 5 and 6 is wound so as to face inward, but the arrangement and orientation of the first and second dielectric resin films 3 and 4 are changed. May be.
  • the first and second terminal electrodes 7 and 8 are formed by spraying, for example, zinc on each end face of the substantially cylindrical wound body 9 obtained as described above.
  • the first terminal electrode 7 is in contact with the exposed end portion of the first counter electrode 5, thereby being electrically connected to the first counter electrode 5.
  • the second terminal electrode 8 is in contact with the exposed end of the second counter electrode 6, thereby being electrically connected to the second counter electrode 6.
  • the present invention can be applied not only to the wound film capacitor 1 as shown in FIG. 1, but also to a laminated film capacitor formed by laminating a plurality of planar dielectric resin films.
  • the form in which the dielectric resin films overlap each other is provided by winding the first and second dielectric resin films 3 and 4 in the wound film capacitor 1 shown in FIG.
  • This film capacitor is provided by laminating a plurality of dielectric resin films.
  • the dielectric resin films 3 and 4 provided in the film capacitor 1 are composed of a thermosetting resin having a glass transition point of 130 ° C. or higher as a resin component, and the rate of change in thermogravimetricity of the resin component in nitrogen is 10 ° C.
  • the weight of pyrolysis residue at 500 ° C. when measured at / min is 40% by weight or less, and the surface roughness Ra of at least one main surface of the dielectric resin films 3 and 4 is 3 nm or more and 1000 nm or less. .
  • the dielectric resin films 3 and 4 may contain an insulating inorganic filler in addition to the resin component.
  • the dielectric resin films 3 and 4 have a small amount of thermal decomposition residue at 500 ° C. in a nitrogen atmosphere and good thermal decomposability. Gasification can be facilitated. Moreover, since the unevenness
  • Such resin components of dielectric resin films 3 and 4 were obtained by mixing two or more organic materials and cross-linking each other, for example, by mixing polyvinyl acetoacetal and tolylene diisocyanate. It is preferable that a resin component is included. According to this configuration, since the resin has a three-dimensional network structure, the glass transition point can be set to a high temperature, and the vibration of the molecular chain is suppressed even at a high temperature, so that deterioration of electrical characteristics and physical properties is suppressed. For the same reason, the long-term reliability of the film capacitor 1 at a high temperature can be made high.
  • the thermal decomposition residue weight at 500 ° C. in nitrogen is 40% by weight or less.
  • the resin preferably contains a carbon, oxygen, hydrogen, or nitrogen element in the bridging portion or side chain and is composed of an element that easily becomes a decomposition gas.
  • the convex portions that give the predetermined surface roughness Ra to the dielectric resin films 3 and 4 were formed by blending silica as a filler into the resin.
  • a solid filler made of the same kind of resin as the resin constituting the resin films 3 and 4 is blended, whereby the convex part is made of the same kind of material as the main body part other than the convex parts of the dielectric resin films 3 and 4.
  • the dielectric constant and / or volume resistivity of the filler is made close to the dielectric constant and volume resistivity of the resin constituting the dielectric resin films 3 and 4, it is possible to suppress a decrease in dielectric breakdown strength.
  • dielectric resin films 3 and 4 having a predetermined surface roughness Ra by applying an uncured resin solution to a substrate having irregularities formed on the surface.
  • a carrier film having irregularities formed on the surface, a coating drum having irregularities formed on the surface, or the like can be used as the substrate.
  • FIGS. 3A and 3B are views for explaining a film capacitor according to a second embodiment of the present invention, in which the first and second dielectric resin films 3 and 4 are developed and shown. is there.
  • the first counter electrode 5a includes a main body portion 10 divided into a plurality of portions distributed in the length direction of the first dielectric resin film 3, and a first dielectric material. It has the drawer part 11 extended along the 1st side edge of the resin film 3, and each divided part of the main-body part 10 and the drawer part 11 are connected by the narrow connection part 12.
  • the second counter electrode 6a has a similar pattern, and the main body 13 divided into a plurality of portions and the first side.
  • the second dielectric resin film 4 on the opposite side of the edge has a lead portion 14 extending along the second side edge, and the divided portions of the main body portion 13 and the lead portion 14 are: They are connected by a narrow connecting portion 15.
  • the film capacitor including the counter electrodes 5a and 6a shown in FIG. 3 when the dielectric breakdown occurs between the counter electrodes 5a and 6a and a current exceeding the allowable value flows, the narrow width is generated by the Joule heat generated by the current. Disconnection occurs preferentially in the connecting portion 12 or 15, so that the fuse function can be made to work more reliably. Then, only the main body part 10 or 13 connected to the connection part 12 or 15 in which the disconnection has occurred stops functioning, but the other main body parts 10 and 13 continue to function thereafter.
  • the film capacitor according to the present invention is often put into practical use in the form of a capacitor module 20 as shown in FIG.
  • the capacitor module 20 includes three film capacitors 21, 22, and 23.
  • each of the film capacitors 21 to 23 has an elliptical or oval cross-sectional shape instead of a perfect circle.
  • the three film capacitors 21 to 23 are arranged in parallel to each other and arranged in a row, and first and second terminal electrodes (see FIG. 5) formed on the mutually opposing end surfaces of the film capacitors 21 to 23, respectively. (Not shown) are connected to the first and second terminal conductors 24 and 25, respectively, whereby the three film capacitors 21 to 23 are connected in parallel.
  • the terminal conductors 24 and 25 are obtained by bending a metal plate having a predetermined shape.
  • the first terminal conductor 24 includes a flat plate portion 26 commonly connecting the first terminal electrodes of the film capacitors 21 to 23 and two lead portions 27 drawn from the flat plate portion 26 in two opposite directions. And 28.
  • the second terminal conductor 25 includes a flat plate portion 29 commonly connecting the second terminal electrodes of the film capacitors 21 to 23, and two lead portions 30 drawn from the flat plate portion 29 in two opposite directions. And 31. As can be seen from FIG.
  • the lead portion 27 of the first terminal conductor 24 and the lead portion 30 of the second terminal conductor 25 are located adjacent to each other, and the lead portion 28 of the first terminal conductor 24 and the second portion 28
  • the lead conductor 31 of the terminal conductor 25 is located adjacent to the lead conductor 31.
  • the cooling mechanism can be simplified when incorporated in a power converter such as a DC-DC converter or an inverter.
  • a power converter such as a DC-DC converter or an inverter.
  • the maximum operating temperature generally set for Si power semiconductors.
  • the film capacitor according to the present invention can be used in combination with no problem even for a switching element made of a power semiconductor made of SiC, SiN, GaN or the like.
  • FIG. 5 shows a circuit diagram of a three-phase inverter 41 as an embodiment of a power converter configured using the film capacitor according to the present invention.
  • the three-phase inverter 41 includes a power module 43 including three sets of six switching elements 42.
  • the DC power supply 44 is connected to the smoothing capacitor 45 and the power module 43.
  • Three-phase alternating current is extracted from the power module 43 and output to a load 46 such as a motor.
  • the capacitor module 20 shown in FIG. 4 is advantageously used as the smoothing capacitor 45 described above.
  • the lead portions 28 and 31 of the capacitor module 20 are connected to the DC power supply 44, and the lead portions 27 and 30 are connected to the power module 43.
  • the heat of the power module 43 is mainly transmitted to the film capacitors 21 to 23 through the terminal conductors 24 and 25.
  • the film capacitor 21 is disposed at a position closest to the power module 43. Therefore, the maximum temperature of the film capacitor 21 is, for example, about 120 ° C.
  • the film capacitor 21 can sufficiently withstand the temperature for a long time. Of course, the same applies to the other film capacitors 22 and 23.
  • the capacitor module 20 can be advantageously applied to other power converters configured by combining components including a switching element and a capacitor, such as a two-phase inverter and a DC-DC converter.
  • the film capacitors 21 to 23 reach 100 ° C. or more, but at least one of the film capacitors 21 to 23 may reach 100 ° C. or more.
  • the temperature of 100 ° C. or higher is not limited to being applied during continuous operation, but may be applied only for a limited time such as when the system is started up or when it is shut down.
  • Example 1 At least two kinds of organic materials were mixed so that the composition shown in the column of “Film Composition” in Table 1 was obtained.
  • PVAA polyvinyl acetoacetal
  • TDI indicates tolylene diisocyanate
  • PVP indicates polyvinyl phenol
  • TAC indicates triacetyl cellulose
  • NDI indicates naphthalene diisocyanate.
  • the “TDI prepolymer body” indicates a TMP (trimethylpropanol) adduct type TDI prepolymer body.
  • sample 1 will be described in more detail.
  • the PVAA resin powder was mixed and stirred in a mixed solvent of toluene and methyl ethyl ketone to prepare a solution having a PVAA resin concentration of 7% by weight.
  • This resin solution was passed through a high-pressure disperser and filtered.
  • the above-mentioned PVAA resin solution and a solution in which a TMP adduct type TDI prepolymer body is dissolved in ethyl acetate so as to have a concentration of 75% by weight are combined in a solid compound ratio of PVAA and TDI.
  • the solid content concentration was adjusted and mixed so that the weight ratio of the minute became “4/6”, and the mixed resin solution was stirred so as to be homogeneous.
  • the obtained mixed resin solution was filtered.
  • silica (average particle diameter D50 is about 0.3 ⁇ m) was mixed with a dispersant and a dispersion medium using a ball mill to prepare a silica slurry.
  • silica slurry was blended in the above-mentioned mixed resin solution so as to have the amount shown in “Silica blending amount” in Table 1, and stirred to be homogeneous to obtain a mixed resin solution blended with silica. .
  • the mixed resin solution containing the above silica was coated on a PET (polyethylene terephthalate) substrate using a coater and dried to form a film having a thickness of 4 ⁇ m.
  • the peeled metallized film was cut with a predetermined width and then wound with a winding machine. After the obtained cylindrical wound body was pressed to have an elliptical cross section, a terminal electrode was formed by metal spraying zinc on the end face, and the film was made conductive with the counter electrode to produce a film capacitor.
  • the wound body was resin-sealed to complete a sample for measuring electrical characteristics.
  • the glass transition point of the above-mentioned film after thermosetting measured by DMA (dynamic viscoelasticity measuring apparatus, RSA-III manufactured by TA Instruments) is shown. .
  • the measurement conditions are as follows: the temperature is raised from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min, the measurement frequency is 10 rad / sec, the strain is 0.1%, and the temperature at which the loss tangent (tan ⁇ ) exhibits the maximum peak value is obtained. It was.
  • the amount of thermal decomposition residue indicates that only the resin component in the heat-cured film is heated to 800 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere to cause thermal decomposition,
  • the amount of the residue at the time of 500 ° C. was measured by TG-DTA (differential thermogravimetric simultaneous measurement device).
  • the “thermal decomposition residue amount” exceeded 40% by weight, and therefore the “self-healing function” was “x”.
  • the “surface roughness Ra” was less than 3 nm, and thus the “self-healing function” was “x”.
  • the “surface roughness Ra” exceeded 1000 nm. For this reason, the gap between the films of the wound body became too large, and the capacitance was lowered. In addition, the dielectric loss becomes too large, and the electrical characteristics as a capacitor are deteriorated.
  • Sample 1 having a “thermal decomposition residue amount” of 40% by weight or less, a “surface roughness Ra” of 3 nm or more and 1000 nm or less, and a “glass transition point” of 130 ° C. or more. According to -8 and 11-14, the “self-healing function” was “ ⁇ ”.
  • Example 3 In Experimental Example 3, a capacitor module as shown in FIG. 4 was manufactured using the three film capacitors according to Sample 1 manufactured in Experimental Example 1. Then, using this capacitor module as a smoothing capacitor, a three-phase inverter as shown in FIG. 5 was constructed, and the heat resistance of the film capacitor was evaluated. In the capacitor module, the terminal conductor was made of copper.
  • FIG. 7 shows the impedance (
  • FIG. 8 corresponds to FIG. 4, and the reference numerals shown in FIG. 4 are also displayed in FIG.
  • the lead portions 28 and 31 of the capacitor module 20 are connected to the DC power supply 44, and the lead portions 27 and 30 are connected to the power module 43. Therefore, as shown in FIG. 8, the temperature of the drawer portions 27 and 30 reached 151 ° C., and the film capacitor 21 closest to the power module 43 reached 121 ° C.
  • FIG. 9 shows impedance-frequency characteristics
  • FIG. 10 shows equivalent series resistance-frequency characteristics.
  • FIGS. 9 and 10 not only the switching frequency range of several kHz to several tens of kilohertz used in the power semiconductor module composed of Si, but also power composed of SiC, SiN, etc. It was confirmed that good impedance characteristics and ESR characteristics can be obtained even in the switching frequency range of several tens kHz to several tens kHz used in semiconductor modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Thermal resistance is improved in a film capacitor that is provided with a wound dielectric resin film, first and second counter electrodes mutually opposite and sandwiching the dielectric resin film, and a terminal electrode electrically connected to each of the counter electrodes. Dielectric resin films (3, 4) are constructed from heat-hardened resin with a resin component having a glass transition point of at least 130°C. The substance used has a residue weight from thermal decomposition at 500°C of no more than 40 wt% when the rate of change of the thermogravity of the resin component is measured with a temperature increase rate of 10°C/minute in nitrogen, and has a surface roughness Ra from 3 nm to 1000 nm. Consequently, during dielectric breakdown, the breakdown portion of the dielectric resin film can easily become gas, the decomposition gas readily scatters from inside of the film capacitor, a self-healing function acts, and the film capacitor is able to withstand continuous use above 125°C, for example.

Description

フィルムコンデンサ、コンデンサモジュールおよび電力変換装置Film capacitor, capacitor module, and power converter
 この発明は、フィルムコンデンサ、ならびに、フィルムコンデンサを用いて構成される、コンデンサモジュールおよび電力変換装置に関するもので、特に、フィルムコンデンサの耐熱性を向上させるための改良に関するものである。 The present invention relates to a film capacitor and a capacitor module and a power conversion device constituted by using the film capacitor, and more particularly to an improvement for improving the heat resistance of the film capacitor.
 この発明にとって興味あるフィルムコンデンサとして、たとえば特開平7-45466号公報(特許文献1)に記載されている、金属を蒸着したポリプロピレンフィルムを用いたフィルムコンデンサがある。このフィルムコンデンサは、内部電極を分割したヒューズパターン部を持ち、このヒューズパターン部の形状を適正化することによって、ヒューズが機能し、断路に至る電流値範囲を設定している。その結果、このフィルムコンデンサは、最高許容温度が100℃~150℃に設定されながら、耐熱性とセルフヒーリング機能とを併せ持つとされている。 As a film capacitor that is of interest to the present invention, there is a film capacitor using a metal-deposited polypropylene film described in, for example, JP-A-7-45466 (Patent Document 1). This film capacitor has a fuse pattern portion obtained by dividing the internal electrode, and by setting the shape of the fuse pattern portion to be appropriate, the fuse functions and sets a current value range leading to disconnection. As a result, this film capacitor is said to have both heat resistance and a self-healing function while the maximum allowable temperature is set to 100 ° C. to 150 ° C.
 しかしながら、上記フィルムコンデンサには、以下のような解決されるべき課題がある。 However, the film capacitor has the following problems to be solved.
 ヒューズパターン部を設けているが、絶縁破壊が頻繁に起こった場合、絶縁破壊によって発生した誘電体樹脂フィルムの分解ガスがフィルムコンデンサ内部に蓄積されることがある。このように分解ガスが蓄積されると、分解ガスが導電性の炭化物となり得る。この導電性の炭化物は、フィルムコンデンサの内部において通電状態をもたらすため、絶縁復帰しなくなり、その結果、セルフヒーリング機能が働かなくなる。 Although the fuse pattern part is provided, if dielectric breakdown frequently occurs, the decomposition gas of the dielectric resin film generated by the dielectric breakdown may be accumulated inside the film capacitor. When the cracked gas is accumulated in this way, the cracked gas can become a conductive carbide. Since this conductive carbide brings an energized state inside the film capacitor, the insulation is not restored, and as a result, the self-healing function does not work.
 また、最高許容温度を100℃~150℃に設定しているものの、ポリプロピレンといった、熱可塑性樹脂であるとともにガラス転移点の比較的低い材料を使用している以上、100℃~150℃での連続使用は不可能で、フィルムが変形したり、電気特性が悪化したりすることが十分に考えられる。 Although the maximum allowable temperature is set to 100 ° C to 150 ° C, it is continuous at 100 ° C to 150 ° C as long as it uses a thermoplastic resin such as polypropylene and a relatively low glass transition point. The use is impossible, and it is fully considered that the film is deformed or the electric characteristics are deteriorated.
 ところで、フィルムコンデンサは吸湿により信頼性が劣化する。フィルムコンデンサへの吸湿を抑制するためには、できるだけ高い温度、たとえば水の沸点である100℃以上の温度で使用することが望ましい。しかし、特許文献1に記載のフィルムコンデンサでは、前述したとおり、100℃~150℃での連続使用は不可能である。そこで、フィルムコンデンサを用いるシステムを構築する場合、フィルムコンデンサの周囲温度を高くとも100℃未満に設定する必要がある。そのため、フィルムコンデンサにおいては、吸湿が促進されることになり、耐湿性という観点では、信頼性の低いシステムしか実現することができない。 By the way, the reliability of film capacitors deteriorates due to moisture absorption. In order to suppress moisture absorption into the film capacitor, it is desirable to use at a temperature as high as possible, for example, a temperature of 100 ° C. or higher, which is the boiling point of water. However, the film capacitor described in Patent Document 1 cannot be used continuously at 100 ° C. to 150 ° C. as described above. Therefore, when a system using a film capacitor is constructed, it is necessary to set the ambient temperature of the film capacitor to less than 100 ° C. at the highest. Therefore, in the film capacitor, moisture absorption is promoted, and only a system with low reliability can be realized from the viewpoint of moisture resistance.
特開平7-45466号公報Japanese Patent Laid-Open No. 7-45466
 そこで、この発明の目的は、上述したような問題を解決し得る、すなわち耐熱性に優れたフィルムコンデンサを提供しようとすることである。 Therefore, an object of the present invention is to provide a film capacitor that can solve the above-described problems, that is, has excellent heat resistance.
 この発明の他の目的は、上述したフィルムコンデンサを用いて構成されるコンデンサモジュールを提供しようとすることである。 Another object of the present invention is to provide a capacitor module configured using the film capacitor described above.
 この発明のさらに他の目的は、上述したフィルムコンデンサを用いて構成される電力変換装置を提供しようとすることである。 Still another object of the present invention is to provide a power conversion device configured using the film capacitor described above.
 この発明は、互いに重なる形態とされた誘電体樹脂フィルムと、誘電体樹脂フィルムを挟んで互いに対向するように配置された第1および第2の対向電極と、第1および第2の対向電極にそれぞれ電気的に接続される第1および第2の端子電極とを備える、フィルムコンデンサにまず向けられる。 The present invention relates to a dielectric resin film formed in an overlapping manner, first and second counter electrodes disposed so as to face each other across the dielectric resin film, and first and second counter electrodes. A film capacitor is first directed to the first and second terminal electrodes, each electrically connected.
 この発明に係るフィルムコンデンサは、上述した技術的課題を解決するため、上記誘電体樹脂フィルムとして、その少なくとも一方の主面の表面粗さRaが3nm以上かつ1000nm以下であり、樹脂成分としてガラス転移点が130℃以上の熱硬化性樹脂をもって構成され、樹脂成分の熱重量変化率を窒素中において昇温速度10℃/分で測定したときの500℃での熱分解残留物重量が40重量%以下であるものが用いられることを特徴としている。 In order to solve the technical problems described above, the film capacitor according to the present invention has a surface roughness Ra of at least one main surface as the dielectric resin film of 3 nm or more and 1000 nm or less, and a glass transition as a resin component. It is composed of a thermosetting resin having a point of 130 ° C. or higher, and the thermal decomposition residue weight at 500 ° C. when the thermogravimetric change rate of the resin component is measured in nitrogen at a heating rate of 10 ° C./min is 40% by weight. The following is used.
 上記のように、窒素雰囲気下500℃における熱分解残留物量が少なく、熱分解性が良好なため、絶縁破壊時において、誘電体樹脂フィルムの破壊部をガス化しやすくすることができる。また、誘電体樹脂フィルムの表面に所定の表面粗さRaを与える凹凸が形成されているので、誘電体樹脂フィルムを巻回や積層して互いに重なる形態としても、重なり合う誘電体樹脂フィルム部分間にわずかな隙間ができるため、分解ガスがフィルムコンデンサ内部から飛散しやすく、よって、セルフヒーリング機能が良好に働く。また、誘電体樹脂フィルムには、ガラス転移点が130℃以上である熱硬化性樹脂を用いているので、たとえば125℃以上といった高温での連続使用にも耐えられる耐熱性を持つ。 As described above, since the amount of pyrolysis residue at 500 ° C. in a nitrogen atmosphere is small and the thermal decomposability is good, the breakdown portion of the dielectric resin film can be easily gasified during dielectric breakdown. In addition, since the surface of the dielectric resin film is provided with irregularities that give a predetermined surface roughness Ra, the dielectric resin film may be wound or laminated to overlap each other even between overlapping dielectric resin film portions. Since a slight gap is formed, the decomposition gas is likely to be scattered from the inside of the film capacitor, so that the self-healing function works well. In addition, since a thermosetting resin having a glass transition point of 130 ° C. or higher is used for the dielectric resin film, it has heat resistance that can withstand continuous use at a high temperature of, for example, 125 ° C. or higher.
 この発明は、特に巻回型のフィルムコンデンサに有利に適用される。この場合、誘電体樹脂フィルムは巻回されることによって巻回体を形成し、第1および第2の対向電極は、巻回体の内部に配置され、第1および第2の端子電極は、巻回体の各端面上にそれぞれ形成される。 The present invention is particularly advantageously applied to a wound film capacitor. In this case, the dielectric resin film is wound to form a wound body, the first and second counter electrodes are disposed inside the wound body, and the first and second terminal electrodes are It is formed on each end face of the wound body.
 誘電体樹脂フィルムは、2種以上の有機材料を混ぜ合わせ、互いに架橋させることによって得られた樹脂成分を含むことが好ましい。この構成によれば、樹脂は三次元網目構造となるため、ガラス転移点を高温とすることができ、高温でも分子鎖の振動が抑制されるので、電気特性や物性の劣化が抑制される。また、同じ理由で、フィルムコンデンサの高温での長期信頼性を高いものとすることができる。 The dielectric resin film preferably contains a resin component obtained by mixing two or more organic materials and cross-linking them. According to this configuration, since the resin has a three-dimensional network structure, the glass transition point can be set to a high temperature, and the vibration of the molecular chain is suppressed even at a high temperature, so that deterioration of electrical characteristics and physical properties is suppressed. For the same reason, the long-term reliability of the film capacitor at a high temperature can be increased.
 誘電体樹脂フィルムの表面粗さを与える凸部が、当該誘電体樹脂フィルムの凸部以外の本体部分と同種の樹脂成分からなることが好ましい。この構成によれば、凸部の形成のために絶縁破壊強度が低下することを抑制できる。 It is preferable that the convex part which gives the surface roughness of the dielectric resin film is made of the same kind of resin component as the main body part other than the convex part of the dielectric resin film. According to this structure, it can suppress that the dielectric breakdown strength falls for the formation of a convex part.
 この発明は、また、上記フィルムコンデンサを用いて構成されるコンデンサモジュール、すなわち、複数のフィルムコンデンサと、フィルムコンデンサの端子電極に接続された端子導体とを備える、コンデンサモジュールにも向けられる。 The present invention is also directed to a capacitor module configured using the film capacitor, that is, a capacitor module including a plurality of film capacitors and a terminal conductor connected to the terminal electrode of the film capacitor.
 この発明は、さらに、上記フィルムコンデンサと、スイッチング素子とを備え、運転時のフィルムコンデンサの到達最高温度が100℃以上となり得るように設定された、電力変換装置にも向けられる。 The present invention is further directed to a power conversion device that includes the film capacitor and a switching element, and is set so that the maximum temperature reached by the film capacitor during operation can be 100 ° C. or higher.
 この発明によれば、125℃以上の温度下での連続使用が可能で、さらにセルフヒーリング機能を併せ持つフィルムコンデンサを得ることができる。 According to the present invention, it is possible to obtain a film capacitor that can be continuously used at a temperature of 125 ° C. or higher and further has a self-healing function.
 フィルムコンデンサは吸湿により信頼性が低下するが、周囲温度を高めることでフィルムコンデンサが吸湿した水分を能率的に排出でき、高信頼性を保持できる。さらに周囲温度を水の沸点である100℃以上とすることで、フィルムコンデンサからの水分の排出をより迅速に進行させることができる。たとえば、結露によってフィルムコンデンサ表面に水滴が付いたとしても、これを短時間のうちに蒸発させることができるとともに、フィルムコンデンサの内部の水分をも短時間のうちに排出させることができる。 The reliability of film capacitors decreases due to moisture absorption, but by increasing the ambient temperature, the moisture absorbed by the film capacitors can be efficiently discharged, and high reliability can be maintained. Furthermore, by setting the ambient temperature to 100 ° C. or more, which is the boiling point of water, it is possible to more quickly advance the discharge of moisture from the film capacitor. For example, even if water droplets are formed on the surface of the film capacitor due to dew condensation, it can be evaporated in a short time and the moisture inside the film capacitor can be discharged in a short time.
 以上のことから、この発明に係るフィルムコンデンサを電力変換装置に適用すれば、電力変化装置において不可避的に生じる発熱を上記のような水分の蒸発に寄与させることができ、そのため、フィルムコンデンサの信頼性の低下を防止することができる。また、そればかりでなく、フィルムコンデンサ自体が高い耐熱性を有しているので、電力変換装置において必要な冷却機構を簡略化することができるとともに、SiCやGaN等、高温・高周波で動作するパワー半導体で構成されるスイッチング素子と問題なく組み合わせることができる。これらのことから、小型かつ安価で、高性能かつ高信頼性の電力変換装置を実現することができる。 From the above, if the film capacitor according to the present invention is applied to a power conversion device, the heat generated unavoidably in the power change device can contribute to the evaporation of moisture as described above. The fall of property can be prevented. In addition, since the film capacitor itself has high heat resistance, the cooling mechanism required for the power converter can be simplified, and power that operates at high temperature and high frequency, such as SiC and GaN. It can be combined with a switching element composed of a semiconductor without any problem. From these, it is possible to realize a power converter having a small size, low cost, high performance and high reliability.
この発明の第1の実施形態によるフィルムコンデンサ1を示す縦断面図である。1 is a longitudinal sectional view showing a film capacitor 1 according to a first embodiment of the present invention. 図1に示したフィルムコンデンサ1に備える第1および第2の誘電体樹脂フィルム3および4を展開して示す図である。It is a figure which expand | deploys and shows the 1st and 2nd dielectric resin films 3 and 4 with which the film capacitor | condenser 1 shown in FIG. 1 is equipped. この発明の第2の実施形態によるフィルムコンデンサを説明するためのもので、第1および第2の誘電体樹脂フィルム3および4を展開して示す図である。FIG. 5 is a diagram illustrating a film capacitor according to a second embodiment of the present invention, in which first and second dielectric resin films 3 and 4 are developed and shown. この発明に係るフィルムコンデンサを用いて構成されるコンデンサモジュールの一実施形態を示す斜視図である。It is a perspective view showing one embodiment of a capacitor module constituted using a film capacitor concerning this invention. この発明に係るフィルムコンデンサを用いて構成される電力変換装置の一実施形態を示す回路図である。It is a circuit diagram showing one embodiment of a power converter constituted using a film capacitor concerning this invention. 実験例において作製した試料1に係るフィルムコンデンサの、高温状態における容量の経時変化を示す図である。It is a figure which shows the time-dependent change of the capacity | capacitance in the high temperature state of the film capacitor which concerns on the sample 1 produced in the experiment example. 実験例において作製した試料1に係るフィルムコンデンサのインピーダンス(|Z|)-周波数特性、および等価直列抵抗(ESR)-周波数特性を示す図である。It is a figure which shows the impedance (| Z |) -frequency characteristic and equivalent series resistance (ESR) -frequency characteristic of the film capacitor which concerns on the sample 1 produced in the experiment example. 実験例において作製した電力変換装置に組み込まれたコンデンサモジュールを示す斜視図であって、コンデンサモジュールの各部分について測定した温度を示す。It is a perspective view which shows the capacitor module integrated in the power converter device produced in the experiment example, Comprising: The temperature measured about each part of a capacitor module is shown. 実験例において作製した電力変換装置に組み込まれたコンデンサモジュールのインピーダンス-周波数特性を示す図である。It is a figure which shows the impedance-frequency characteristic of the capacitor | condenser module integrated in the power converter device produced in the experiment example. 実験例において作製した電力変換装置に組み込まれたコンデンサモジュールの等価直列抵抗(ESR)-周波数特性を示す図である。It is a figure which shows the equivalent series resistance (ESR) -frequency characteristic of the capacitor | condenser module incorporated in the power converter device produced in the experiment example.
 図1および図2を参照して、この発明の第1の実施形態によるフィルムコンデンサ1について説明する。 A film capacitor 1 according to a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
 図1に示したフィルムコンデンサ1は、巻回型のものであり、巻回軸2のまわりに巻回される第1および第2の誘電体樹脂フィルム3および4と、第1または第2の誘電体樹脂フィルム3または4を挟んで互いに対向する第1および第2の対向電極5および6とを備えるとともに、第1および第2の対向電極5および6にそれぞれ電気的に接続される第1および第2の端子電極7および8を備えている。 A film capacitor 1 shown in FIG. 1 is of a winding type, and includes first and second dielectric resin films 3 and 4 wound around a winding shaft 2 and first or second dielectric resin films 3 and 4. First and second counter electrodes 5 and 6 that face each other across the dielectric resin film 3 or 4 and are electrically connected to the first and second counter electrodes 5 and 6 respectively. And second terminal electrodes 7 and 8.
 図2(A)によく示されているように、第1の誘電体樹脂フィルム3上に第1の対向電極5が形成され、第2の誘電体樹脂フィルム4上に第2の対向電極6が形成される。このとき、第1の対向電極5は、第1の誘電体樹脂フィルム3の第1の側縁にまで届くが、逆の第2の側縁にまで届かないように形成される。他方、図2(B)によく示されているように、第2の対向電極6は、上記第1の側縁と同じ側にある第2の誘電体樹脂フィルム4の第1の側縁にまで届かないように形成されるが、逆の第2の側縁にまで届くように形成される。 As well shown in FIG. 2A, the first counter electrode 5 is formed on the first dielectric resin film 3, and the second counter electrode 6 is formed on the second dielectric resin film 4. Is formed. At this time, the first counter electrode 5 is formed so as to reach the first side edge of the first dielectric resin film 3 but not to the opposite second side edge. On the other hand, as well shown in FIG. 2B, the second counter electrode 6 is formed on the first side edge of the second dielectric resin film 4 on the same side as the first side edge. It is formed so that it does not reach the opposite side edge, but is formed so as to reach the opposite second side edge.
 第1および第2の誘電体樹脂フィルム3および4は、巻回軸2のまわりで巻回されることによって、互いに重なる形態とされる。このとき、図1からわかるように、第1の対向電極5における第1の誘電体樹脂フィルム3の側縁にまで届いている側の端部および第2の対向電極6における第2の誘電体樹脂フィルム4の側縁にまで届いている側の端部がともに露出するように、第1の誘電体樹脂フィルム3と第2の誘電体樹脂フィルム4とが互いに幅方向にずらされる。そして、上述のようにして、第1および第2の誘電体樹脂フィルム3および4が巻回軸2のまわりに巻回されることによって、実質的に円柱状の巻回体9が得られる。 The first and second dielectric resin films 3 and 4 are wound around the winding shaft 2 so as to overlap each other. At this time, as can be seen from FIG. 1, the end of the first counter electrode 5 on the side reaching the side edge of the first dielectric resin film 3 and the second dielectric in the second counter electrode 6. The first dielectric resin film 3 and the second dielectric resin film 4 are shifted from each other in the width direction so that both end portions reaching the side edges of the resin film 4 are exposed. Then, the first and second dielectric resin films 3 and 4 are wound around the winding shaft 2 as described above, whereby a substantially cylindrical wound body 9 is obtained.
 なお、図1に示したフィルムコンデンサ1では、第2の誘電体樹脂フィルム4が第1の誘電体樹脂フィルム3の外側になるように、かつ第1および第2の誘電体樹脂フィルム3および4の各々について、第1および第2の対向電極5および6の各々が内方に向くように巻回されているが、第1および第2の誘電体樹脂フィルム3および4の配置および向きは変更されてもよい。 In the film capacitor 1 shown in FIG. 1, the first and second dielectric resin films 3 and 4 are arranged so that the second dielectric resin film 4 is outside the first dielectric resin film 3. Each of the first and second counter electrodes 5 and 6 is wound so as to face inward, but the arrangement and orientation of the first and second dielectric resin films 3 and 4 are changed. May be.
 第1および第2の端子電極7および8は、上述のようにして得られた実質的に円柱状の巻回体9の各端面上にたとえば亜鉛を溶射することによって形成される。第1の端子電極7は、第1の対向電極5の露出端部と接触し、それによって第1の対向電極5と電気的に接続される。他方、第2の端子電極8は、第2の対向電極6の露出端部と接触し、それによって第2の対向電極6と電気的に接続される。 The first and second terminal electrodes 7 and 8 are formed by spraying, for example, zinc on each end face of the substantially cylindrical wound body 9 obtained as described above. The first terminal electrode 7 is in contact with the exposed end portion of the first counter electrode 5, thereby being electrically connected to the first counter electrode 5. On the other hand, the second terminal electrode 8 is in contact with the exposed end of the second counter electrode 6, thereby being electrically connected to the second counter electrode 6.
 この発明は、図1に示すような巻回型のフィルムコンデンサ1に限らず、複数の平面状の誘電体樹脂フィルムを積層してなる積層型のフィルムコンデンサにも適用することができる。誘電体樹脂フィルムの互いに重なる形態は、図1に示す巻回型のフィルムコンデンサ1では、第1および第2の誘電体樹脂フィルム3および4を巻回することによって与えられたが、上記積層型のフィルムコンデンサでは、複数の誘電体樹脂フィルムを積層することによって与えられる。 The present invention can be applied not only to the wound film capacitor 1 as shown in FIG. 1, but also to a laminated film capacitor formed by laminating a plurality of planar dielectric resin films. The form in which the dielectric resin films overlap each other is provided by winding the first and second dielectric resin films 3 and 4 in the wound film capacitor 1 shown in FIG. This film capacitor is provided by laminating a plurality of dielectric resin films.
 フィルムコンデンサ1に備える誘電体樹脂フィルム3および4は、樹脂成分として、ガラス転移点が130℃以上の熱硬化性樹脂をもって構成され、樹脂成分の熱重量変化率を窒素中において昇温速度10℃/分で測定したときの500℃での熱分解残留物重量が40重量%以下であり、誘電体樹脂フィルム3および4の少なくとも一方の主面の表面粗さRaが3nm以上かつ1000nm以下である。 The dielectric resin films 3 and 4 provided in the film capacitor 1 are composed of a thermosetting resin having a glass transition point of 130 ° C. or higher as a resin component, and the rate of change in thermogravimetricity of the resin component in nitrogen is 10 ° C. The weight of pyrolysis residue at 500 ° C. when measured at / min is 40% by weight or less, and the surface roughness Ra of at least one main surface of the dielectric resin films 3 and 4 is 3 nm or more and 1000 nm or less. .
 なお、誘電体樹脂フィルム3および4は、上記樹脂成分以外に絶縁無機フィラー等を含んでいてもよい。 The dielectric resin films 3 and 4 may contain an insulating inorganic filler in addition to the resin component.
 このように、誘電体樹脂フィルム3および4は、窒素雰囲気下500℃における熱分解残留物量が少なく、熱分解性が良好なため、絶縁破壊時において、誘電体樹脂フィルム3および4の破壊部をガス化しやすくすることができる。また、誘電体樹脂フィルム3および4の表面に所定の表面粗さRaを与える凹凸が形成されているので、誘電体樹脂フィルム3および4を巻回や積層した場合でも、重なり合う誘電体樹脂フィルム部分間にわずかな隙間ができるため、分解ガスがフィルムコンデンサ1の内部から飛散しやすく、セルフヒーリング機能が良好に働く。また、誘電体樹脂フィルム3および4には、ガラス転移点が130℃以上である熱硬化性樹脂を用いているので、たとえば125℃以上といった高温での連続使用にも耐えられる耐熱性を持つ。 As described above, the dielectric resin films 3 and 4 have a small amount of thermal decomposition residue at 500 ° C. in a nitrogen atmosphere and good thermal decomposability. Gasification can be facilitated. Moreover, since the unevenness | corrugation which gives predetermined surface roughness Ra is formed in the surface of the dielectric resin films 3 and 4, even when the dielectric resin films 3 and 4 are wound or laminated | stacked, the dielectric resin film part which overlaps Since a slight gap is formed between them, the decomposition gas is easily scattered from the inside of the film capacitor 1, and the self-healing function works well. In addition, since the dielectric resin films 3 and 4 are made of a thermosetting resin having a glass transition point of 130 ° C. or higher, the dielectric resin films 3 and 4 have heat resistance that can withstand continuous use at a high temperature of 125 ° C. or higher.
 このような誘電体樹脂フィルム3および4の樹脂成分は、たとえば、ポリビニルアセトアセタールとトリレンジイソシアネートとの混ぜ合わせというように、2種以上の有機材料を混ぜ合わせ、互いに架橋させることによって得られた樹脂成分を含むことが好ましい。この構成によれば、樹脂は三次元網目構造となるため、ガラス転移点を高温とすることができ、高温でも分子鎖の振動が抑制されるので、電気特性や物性の劣化が抑制される。また、同じ理由で、フィルムコンデンサ1の高温での長期信頼性を高いものとすることができる。 Such resin components of dielectric resin films 3 and 4 were obtained by mixing two or more organic materials and cross-linking each other, for example, by mixing polyvinyl acetoacetal and tolylene diisocyanate. It is preferable that a resin component is included. According to this configuration, since the resin has a three-dimensional network structure, the glass transition point can be set to a high temperature, and the vibration of the molecular chain is suppressed even at a high temperature, so that deterioration of electrical characteristics and physical properties is suppressed. For the same reason, the long-term reliability of the film capacitor 1 at a high temperature can be made high.
 樹脂成分としては、上述したポリビニルアセトアセタールとトリレンジイソシアネートとの混ぜ合わせといったウレタン系材料の他、前述した窒素中500℃での熱分解残留物重量が40重量%以下であるという条件を満たす限り、たとえば、ポリビニルアセタール、ポリビニルブチラール、セルロース、アクリル樹脂、エポキシ樹脂などを用いてもよい。特に、樹脂は、架橋部または側鎖に、炭素、酸素、水素または窒素元素を含むとともに、分解ガスになりやすい元素で構成されるものが好ましい。 As a resin component, as long as the above-described urethane-based material such as a mixture of polyvinyl acetoacetal and tolylene diisocyanate is satisfied, the thermal decomposition residue weight at 500 ° C. in nitrogen is 40% by weight or less. For example, polyvinyl acetal, polyvinyl butyral, cellulose, acrylic resin, epoxy resin, or the like may be used. In particular, the resin preferably contains a carbon, oxygen, hydrogen, or nitrogen element in the bridging portion or side chain and is composed of an element that easily becomes a decomposition gas.
 後述する実験例では、誘電体樹脂フィルム3および4に対して所定の表面粗さRaを与える凸部は、フィラーとしてのシリカを樹脂に配合することによって形成されたが、より好ましくは、誘電体樹脂フィルム3および4を構成する樹脂と同種の樹脂からなる固形のフィラーが配合され、それによって、凸部が、誘電体樹脂フィルム3および4の凸部以外の本体部分と同種の材料から構成される。フィラーの誘電率および/または体積抵抗率を、誘電体樹脂フィルム3および4を構成する樹脂の誘電率や体積抵抗率と近いものにすれば、絶縁破壊強度の低下を抑制することができる。 In the experimental examples to be described later, the convex portions that give the predetermined surface roughness Ra to the dielectric resin films 3 and 4 were formed by blending silica as a filler into the resin. A solid filler made of the same kind of resin as the resin constituting the resin films 3 and 4 is blended, whereby the convex part is made of the same kind of material as the main body part other than the convex parts of the dielectric resin films 3 and 4. The If the dielectric constant and / or volume resistivity of the filler is made close to the dielectric constant and volume resistivity of the resin constituting the dielectric resin films 3 and 4, it is possible to suppress a decrease in dielectric breakdown strength.
 誘電体樹脂フィルム3および4に所定の表面粗さRaを付与するための方法として、以下のものもある。 As a method for imparting a predetermined surface roughness Ra to the dielectric resin films 3 and 4, there are the following methods.
 第1に、表面に凹凸が形成された基材を、誘電体樹脂フィルム3および4となるべき樹脂フィルムに押し付けることによって、所定の表面粗さRaを付与する方法がある。 First, there is a method of imparting a predetermined surface roughness Ra by pressing a base material having irregularities on the surface against the resin films to be the dielectric resin films 3 and 4.
 第2に、表面に凹凸が形成された基材に、未硬化状態の樹脂溶液を塗布することによって、所定の表面粗さRaが付与された誘電体樹脂フィルム3および4を得る方法がある。ここで、基材として、たとえば、表面に凹凸が形成されたキャリアフィルムや、表面に凹凸が形成された塗工ドラムなどを用いることができる。 Secondly, there is a method of obtaining dielectric resin films 3 and 4 having a predetermined surface roughness Ra by applying an uncured resin solution to a substrate having irregularities formed on the surface. Here, for example, a carrier film having irregularities formed on the surface, a coating drum having irregularities formed on the surface, or the like can be used as the substrate.
 第3に、平滑な表面を有する誘電体樹脂フィルムを用意するとともに、この誘電体樹脂フィルムを構成する樹脂と同種の樹脂溶液を用意し、誘電体樹脂フィルム上に、樹脂溶液を噴霧することによって、所定の表面粗さRaが付与された誘電体樹脂フィルム3および4を得る方法がある。 Thirdly, by preparing a dielectric resin film having a smooth surface, preparing a resin solution of the same type as the resin constituting the dielectric resin film, and spraying the resin solution on the dielectric resin film There is a method for obtaining dielectric resin films 3 and 4 having a predetermined surface roughness Ra.
 第1および第2の誘電体樹脂フィルム3および4にそれぞれ形成される第1および第2の対向電極5および6は、図3(A)および(B)にそれぞれ示すようなパターンに変更されてもよい。図3(A)および(B)は、この発明の第2の実施形態によるフィルムコンデンサを説明するためのもので、第1および第2の誘電体樹脂フィルム3および4を展開して示す図である。 The first and second counter electrodes 5 and 6 formed on the first and second dielectric resin films 3 and 4, respectively, are changed to patterns as shown in FIGS. 3A and 3B, respectively. Also good. FIGS. 3A and 3B are views for explaining a film capacitor according to a second embodiment of the present invention, in which the first and second dielectric resin films 3 and 4 are developed and shown. is there.
 図3(A)に示すように、第1の対向電極5aは、第1の誘電体樹脂フィルム3の長さ方向に分布する複数の部分に分割された本体部10と、第1の誘電体樹脂フィルム3の第1の側縁に沿って延びる引出し部11とを有し、本体部10の分割された各部分と引出し部11とは、細幅の連結部12によって連結されている。他方、図3(B)によく示されているように、第2の対向電極6aについても同様のパターンを有していて、複数の部分に分割された本体部13と、上記第1の側縁とは逆の側にある第2の誘電体樹脂フィルム4の第2の側縁に沿って延びる引出し部14とを有し、本体部13の分割された各部分と引出し部14とは、細幅の連結部15によって連結されている。 As shown in FIG. 3A, the first counter electrode 5a includes a main body portion 10 divided into a plurality of portions distributed in the length direction of the first dielectric resin film 3, and a first dielectric material. It has the drawer part 11 extended along the 1st side edge of the resin film 3, and each divided part of the main-body part 10 and the drawer part 11 are connected by the narrow connection part 12. FIG. On the other hand, as well shown in FIG. 3B, the second counter electrode 6a has a similar pattern, and the main body 13 divided into a plurality of portions and the first side. The second dielectric resin film 4 on the opposite side of the edge has a lead portion 14 extending along the second side edge, and the divided portions of the main body portion 13 and the lead portion 14 are: They are connected by a narrow connecting portion 15.
 図3に示した対向電極5aおよび6aを備えるフィルムコンデンサによれば、対向電極5aおよび6a間で絶縁破壊が生じ、許容値を超える電流が流れたとき、この電流によって発生したジュール熱によって細幅の連結部12または15において優先的に断線が生じ、ヒューズ機能をより確実に働かせることができる。そして、断線が生じた連結部12または15に連結される本体部10または13のみが機能しなくなるが、他の本体部10および13はその後も機能し続ける。 According to the film capacitor including the counter electrodes 5a and 6a shown in FIG. 3, when the dielectric breakdown occurs between the counter electrodes 5a and 6a and a current exceeding the allowable value flows, the narrow width is generated by the Joule heat generated by the current. Disconnection occurs preferentially in the connecting portion 12 or 15, so that the fuse function can be made to work more reliably. Then, only the main body part 10 or 13 connected to the connection part 12 or 15 in which the disconnection has occurred stops functioning, but the other main body parts 10 and 13 continue to function thereafter.
 この発明に係るフィルムコンデンサは、しばしば、図4に示すようなコンデンサモジュール20の形態とされて実用に供される。 The film capacitor according to the present invention is often put into practical use in the form of a capacitor module 20 as shown in FIG.
 図4において、コンデンサモジュール20には、3個のフィルムコンデンサ21、22および23を備える。フィルムコンデンサ21~23の各々は、この実施形態では、真円形ではなく、楕円形または長円形の断面形状を有している。3個のフィルムコンデンサ21~23は互いに平行にかつ1列に整列するように並べられ、フィルムコンデンサ21~23の各々の互いに対向する端面上に形成された第1および第2の端子電極(図示せず)には、それぞれ、第1および第2の端子導体24および25が接続され、それによって、3個のフィルムコンデンサ21~23は並列接続される。 4, the capacitor module 20 includes three film capacitors 21, 22, and 23. In this embodiment, each of the film capacitors 21 to 23 has an elliptical or oval cross-sectional shape instead of a perfect circle. The three film capacitors 21 to 23 are arranged in parallel to each other and arranged in a row, and first and second terminal electrodes (see FIG. 5) formed on the mutually opposing end surfaces of the film capacitors 21 to 23, respectively. (Not shown) are connected to the first and second terminal conductors 24 and 25, respectively, whereby the three film capacitors 21 to 23 are connected in parallel.
 端子導体24および25は、所定形状の金属板を折り曲げ加工して得られるものである。第1の端子導体24は、フィルムコンデンサ21~23の各々の第1の端子電極を共通に接続する平板部26と、平板部26から互いに逆の2方向に引出される2個の引出し部27および28とを有する。第2の端子導体25は、フィルムコンデンサ21~23の各々の第2の端子電極を共通に接続する平板部29と、平板部29から互いに逆の2方向に引出される2個の引出し部30および31とを有する。図4からわかるように、第1の端子導体24の引出し部27と第2の端子導体25の引出し部30とは隣り合って位置し、第1の端子導体24の引出し部28と第2の端子導体25の引出し部31とは隣り合って位置している。 The terminal conductors 24 and 25 are obtained by bending a metal plate having a predetermined shape. The first terminal conductor 24 includes a flat plate portion 26 commonly connecting the first terminal electrodes of the film capacitors 21 to 23 and two lead portions 27 drawn from the flat plate portion 26 in two opposite directions. And 28. The second terminal conductor 25 includes a flat plate portion 29 commonly connecting the second terminal electrodes of the film capacitors 21 to 23, and two lead portions 30 drawn from the flat plate portion 29 in two opposite directions. And 31. As can be seen from FIG. 4, the lead portion 27 of the first terminal conductor 24 and the lead portion 30 of the second terminal conductor 25 are located adjacent to each other, and the lead portion 28 of the first terminal conductor 24 and the second portion 28 The lead conductor 31 of the terminal conductor 25 is located adjacent to the lead conductor 31.
 この発明に係るフィルムコンデンサは、前述したように、高い耐熱性を有しているため、たとえばDC-DCコンバータやインバータ等の電力変換装置に組み込んだ場合、冷却機構を簡略化することができる。また、現在多用されているSi製のパワー半導体で構成されるスイッチング素子に対してだけでなく、Si製のパワー半導体において一般的に設定されている最高使用温度である150℃を超える温度で動作する、たとえばSiC、SiN、GaN等で構成されるパワー半導体で構成されるスイッチング素子に対しても、この発明に係るフィルムコンデンサは、問題なく組み合わせて用いることができる。 Since the film capacitor according to the present invention has high heat resistance as described above, the cooling mechanism can be simplified when incorporated in a power converter such as a DC-DC converter or an inverter. In addition, not only for switching elements composed of Si power semiconductors that are widely used at present, but also at temperatures exceeding 150 ° C, the maximum operating temperature generally set for Si power semiconductors. For example, the film capacitor according to the present invention can be used in combination with no problem even for a switching element made of a power semiconductor made of SiC, SiN, GaN or the like.
 また、インバータ等の電力変換装置の小型化を実現するためには、インダクタやコンデンサといった受動部品を小型化する必要がある。受動部品の小型化を実現するために、パワー半導体モジュールのスイッチング周波数の高周波化が今後のトレンドになると考えられる。一方で、インバータ等の電力変換装置の小型化はパワー密度の上昇を招き、各部品の動作環境はより高温となる。この発明に係るフィルムコンデンサは、前述したように、高い耐熱性を有しているため、このような電力変換装置の小型化に有利に対応することができる。 In order to achieve miniaturization of power converters such as inverters, it is necessary to miniaturize passive components such as inductors and capacitors. In order to realize miniaturization of passive components, it is considered that the switching frequency of power semiconductor modules will become a future trend. On the other hand, miniaturization of power conversion devices such as inverters causes an increase in power density, and the operating environment of each component becomes higher. Since the film capacitor according to the present invention has high heat resistance as described above, it can advantageously cope with downsizing of such a power converter.
 図5には、この発明に係るフィルムコンデンサを用いて構成される電力変換装置の一実施形態としての3相インバータ41の回路図が示されている。 FIG. 5 shows a circuit diagram of a three-phase inverter 41 as an embodiment of a power converter configured using the film capacitor according to the present invention.
 3相インバータ41は、3組6個のスイッチング素子42で構成されるパワーモジュール43を備える。直流電源44は、平滑用コンデンサ45およびパワーモジュール43と接続される。パワーモジュール43から3相の交流が取り出され、たとえばモータのような負荷46に出力される。 The three-phase inverter 41 includes a power module 43 including three sets of six switching elements 42. The DC power supply 44 is connected to the smoothing capacitor 45 and the power module 43. Three-phase alternating current is extracted from the power module 43 and output to a load 46 such as a motor.
 上述した平滑用コンデンサ45として、たとえば、図4に示したコンデンサモジュール20が有利に用いられる。この場合、コンデンサモジュール20のたとえば引出し部28および31が直流電源44に接続され、引出し部27および30がパワーモジュール43に接続される。 For example, the capacitor module 20 shown in FIG. 4 is advantageously used as the smoothing capacitor 45 described above. In this case, for example, the lead portions 28 and 31 of the capacitor module 20 are connected to the DC power supply 44, and the lead portions 27 and 30 are connected to the power module 43.
 上述したような接続状態となるように、3相インバータ41にコンデンサモジュール20が組み込まれたとき、パワーモジュール43の熱が主として端子導体24および25を通してフィルムコンデンサ21~23に伝達される。このとき、フィルムコンデンサ21~23のうち、フィルムコンデンサ21がパワーモジュール43に最も近い位置に配置されるため、このフィルムコンデンサ21にあっては、たとえば最高温度が120℃前後というように100℃以上の温度に達することがあるが、フィルムコンデンサ21はその温度に長時間にわたって十分に耐えることができる。もちろん、他のフィルムコンデンサ22および23であっても同様である。 When the capacitor module 20 is incorporated in the three-phase inverter 41 so that the connection state as described above is obtained, the heat of the power module 43 is mainly transmitted to the film capacitors 21 to 23 through the terminal conductors 24 and 25. At this time, among the film capacitors 21 to 23, the film capacitor 21 is disposed at a position closest to the power module 43. Therefore, the maximum temperature of the film capacitor 21 is, for example, about 120 ° C. However, the film capacitor 21 can sufficiently withstand the temperature for a long time. Of course, the same applies to the other film capacitors 22 and 23.
 コンデンサモジュール20は、その他、2相のインバータやDC-DCコンバータ等、スイッチング素子とコンデンサとを含む部品を組み合わせて構成される電力変換装置において有利に適用することができる。 The capacitor module 20 can be advantageously applied to other power converters configured by combining components including a switching element and a capacitor, such as a two-phase inverter and a DC-DC converter.
 また、コンデンサモジュール20の用途によっては、フィルムコンデンサ21~23のすべてが100℃以上に達する場合に限らず、フィルムコンデンサ21~23のうちの少なくとも1つが100℃以上に達する場合もあり得る。 Further, depending on the application of the capacitor module 20, not only all of the film capacitors 21 to 23 reach 100 ° C. or more, but at least one of the film capacitors 21 to 23 may reach 100 ° C. or more.
 また、100℃以上の温度は、連続運転時に付与される場合に限らず、たとえばシステム立ち上げ時、または立ち下げ時のような限られた時間だけに付与される場合であってもよい。 Also, the temperature of 100 ° C. or higher is not limited to being applied during continuous operation, but may be applied only for a limited time such as when the system is started up or when it is shut down.
 次に、この発明による効果を確認するために実施した実験例について説明する。 Next, experimental examples carried out to confirm the effects of the present invention will be described.
 [実験例1]
 表1の「フィルム組成」の欄に示す組成となるように、少なくとも2種の有機材料を混ぜ合わせた。「フィルム組成」の欄において、「PVAA」はポリビニルアセトアセタール、「TDI」はトリレンジイソシアネート、「PVP」はポリビニルフェノール、「TAC」はトリアセチルセルロース、「NDI」はナフタレンジイソシアネートをそれぞれ示している。なお、「TDIプレポリマー体」は、TMP(トリメチルプロパノール)アダクトタイプのTDIのプレポリマー体であることを示している。
[Experimental Example 1]
At least two kinds of organic materials were mixed so that the composition shown in the column of “Film Composition” in Table 1 was obtained. In the column of “Film Composition”, “PVAA” indicates polyvinyl acetoacetal, “TDI” indicates tolylene diisocyanate, “PVP” indicates polyvinyl phenol, “TAC” indicates triacetyl cellulose, and “NDI” indicates naphthalene diisocyanate. . The “TDI prepolymer body” indicates a TMP (trimethylpropanol) adduct type TDI prepolymer body.
 たとえば試料1について、より詳細に説明すると、PVAA樹脂粉末を、トルエンとメチルエチルケトンとの混合溶媒中で混合して攪拌し、PVAA樹脂の濃度が7重量%となる溶液を作製した。この樹脂溶液を高圧分散機に通し、ろ過した。 For example, sample 1 will be described in more detail. The PVAA resin powder was mixed and stirred in a mixed solvent of toluene and methyl ethyl ketone to prepare a solution having a PVAA resin concentration of 7% by weight. This resin solution was passed through a high-pressure disperser and filtered.
 次に、上記PVAA樹脂溶液と、TMPアダクトタイプのTDIのプレポリマー体を、濃度が75重量%となるように酢酸エチルに溶解した溶液とを、PVAAとTDIのプレポリマー体の配合比が固形分の重量比で「4/6」になるように固形分濃度を調整して混合し、混合樹脂溶液が均質となるように攪拌した。得られた混合樹脂溶液をろ過した。 Next, the above-mentioned PVAA resin solution and a solution in which a TMP adduct type TDI prepolymer body is dissolved in ethyl acetate so as to have a concentration of 75% by weight are combined in a solid compound ratio of PVAA and TDI. The solid content concentration was adjusted and mixed so that the weight ratio of the minute became “4/6”, and the mixed resin solution was stirred so as to be homogeneous. The obtained mixed resin solution was filtered.
 他の試料についても、同様の操作を経て、混合樹脂溶液を得、得られた混合樹脂溶液をろ過した。 For other samples, the same procedure was followed to obtain a mixed resin solution, and the obtained mixed resin solution was filtered.
 他方、試料13を除く試料1~12、14および15については、シリカ(平均粒径D50が約0.3μm)を、分散剤および分散媒とともにボールミルを用いて混合し、シリカスラリーを調製した。 On the other hand, for samples 1 to 12, 14 and 15 excluding sample 13, silica (average particle diameter D50 is about 0.3 μm) was mixed with a dispersant and a dispersion medium using a ball mill to prepare a silica slurry.
 次に、前述の混合樹脂溶液中に、表1の「シリカ配合量」に示す量となるように、シリカスラリーを配合し、均質となるように攪拌し、シリカ配合の混合樹脂溶液を得た。 Next, the silica slurry was blended in the above-mentioned mixed resin solution so as to have the amount shown in “Silica blending amount” in Table 1, and stirred to be homogeneous to obtain a mixed resin solution blended with silica. .
 次に、上記のシリカ配合の混合樹脂溶液を、コーターを用いて、PET(ポリエチレンテレフタレート)基材上に塗工して乾燥し、厚さ4μmのフィルムを成形した。 Next, the mixed resin solution containing the above silica was coated on a PET (polyethylene terephthalate) substrate using a coater and dried to form a film having a thickness of 4 μm.
 一方、試料13については、表1の「シリカ配合量」が「0」であることからわかるように、シリカを配合しなかった。その代わり、表面粗さRaが100nmの凹凸が付されたPET基材をキャリアフィルムとして用意し、このキャリアフィルム上に、前述した混合樹脂溶液を塗工し、乾燥し、厚さ4μmのフィルムを成形した。 On the other hand, as for Sample 13, no silica was blended, as can be seen from the fact that the “silica blending amount” in Table 1 is “0”. Instead, a PET base material with a surface roughness Ra of 100 nm is prepared as a carrier film, and the above-mentioned mixed resin solution is applied onto the carrier film and dried to form a film having a thickness of 4 μm. Molded.
 次に、フィルムを、180℃の温度下で1時間熱処理して硬化した後、フィルム表面に対向電極となるべきアルミニウムを厚さ20nmとなるように蒸着し、PET基材から剥離することで金属化フィルムを得た。 Next, after the film was cured by heat treatment at a temperature of 180 ° C. for 1 hour, aluminum to be a counter electrode was deposited on the film surface so as to have a thickness of 20 nm, and the film was peeled off from the PET base material. A modified film was obtained.
 表1の「表面粗さRa」の欄には、剥離した金属化フィルムについて、非接触3次元表面形状・粗さ測定機(Zygo社製NewView2000)で測定した表面粗さRaが示されている。なお、試料1~12、14および15については、金属化フィルムの金属化された主面側の表面粗さRaが示され、試料13については、金属化フィルムのPET基材側の表面粗さRaが示されている。 In the column of “Surface roughness Ra” in Table 1, the surface roughness Ra of the peeled metallized film measured by a non-contact three-dimensional surface shape / roughness measuring machine (New View 2000 manufactured by Zygo) is shown. . For samples 1 to 12, 14, and 15, the surface roughness Ra of the metallized main surface side of the metallized film is shown, and for sample 13, the surface roughness of the metallized film on the PET substrate side Ra is shown.
 次に、剥離した金属化フィルムを、所定の幅で切断した後、巻回機にて巻回した。得られた円筒型巻回体をプレスして断面楕円形状にした後、端面に亜鉛を金属溶射して端子電極を形成し、対向電極と導通させて、フィルムコンデンサを作製した。 Next, the peeled metallized film was cut with a predetermined width and then wound with a winding machine. After the obtained cylindrical wound body was pressed to have an elliptical cross section, a terminal electrode was formed by metal spraying zinc on the end face, and the film was made conductive with the counter electrode to produce a film capacitor.
 次に、端子電極に端子導体を付けた後、巻回体を樹脂封止して、電気特性測定用の試料を完成させた。 Next, after attaching a terminal conductor to the terminal electrode, the wound body was resin-sealed to complete a sample for measuring electrical characteristics.
 表1の「ガラス転移点」の欄には、上述の熱硬化後のフィルムについて、DMA(動的粘弾性測定装置、TA Instruments社製RSA-III)により測定したガラス転移点が示されている。測定条件は、昇温速度10℃/分で室温から250℃まで昇温し、測定周波数を10rad/秒、Strainを0.1%とし、損失正接(tanδ)が最大ピーク値を示す温度を求めた。 In the column of “Glass transition point” in Table 1, the glass transition point of the above-mentioned film after thermosetting, measured by DMA (dynamic viscoelasticity measuring apparatus, RSA-III manufactured by TA Instruments) is shown. . The measurement conditions are as follows: the temperature is raised from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min, the measurement frequency is 10 rad / sec, the strain is 0.1%, and the temperature at which the loss tangent (tan δ) exhibits the maximum peak value is obtained. It was.
 また、表1の「熱分解残留物量」は、熱硬化後のフィルムにおける樹脂成分のみについて、窒素雰囲気下、昇温速度10℃/分で800℃まで昇温して、熱分解を生じさせ、その500℃時点における残留物量を、TG-DTA(示差熱熱重量同時測定装置)により測定したものである。 In addition, “the amount of thermal decomposition residue” in Table 1 indicates that only the resin component in the heat-cured film is heated to 800 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere to cause thermal decomposition, The amount of the residue at the time of 500 ° C. was measured by TG-DTA (differential thermogravimetric simultaneous measurement device).
 次に、各試料に、125℃でDC1500Vを印加して電圧波形を取得し、故障状態を調べ、セルフヒーリング機能を持つかどうかを評価した。その結果が、表1の「セルフヒーリング機能」の欄に示されている。ここで、絶縁破壊が発生して印加電圧が瞬間的に低下しても、元の印加電圧に復帰すれば、セルフヒーリング機能を持つと判定し、これを表1では「○」で表示し、一方、通電状態となって電圧が復帰しなければ、セルフヒーリング機能を持たないと判定し、これを表1では「×」で表示した。 Next, DC 1500V was applied to each sample at 125 ° C. to obtain a voltage waveform, the failure state was examined, and whether or not it had a self-healing function was evaluated. The result is shown in the column of “Self healing function” in Table 1. Here, even if the dielectric breakdown occurs and the applied voltage drops instantaneously, if it returns to the original applied voltage, it is determined that it has a self-healing function, and this is indicated by “◯” in Table 1. On the other hand, if the voltage does not recover after entering the energized state, it is determined that the self-healing function is not provided, and this is indicated by “x” in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、この発明の範囲外の比較例となる試料については、試料番号に*を付している。 In Table 1, the sample number is marked with * for a sample that is a comparative example outside the scope of the present invention.
 比較例としての試料9では、「熱分解残留物量」が40重量%を超えたため、「セルフヒーリング機能」が「×」となった。 In the sample 9 as a comparative example, the “thermal decomposition residue amount” exceeded 40% by weight, and therefore the “self-healing function” was “x”.
 また、比較例としての試料10では、「表面粗さRa」が3nmを下回ったため、「セルフヒーリング機能」が「×」となった。 Also, in the sample 10 as a comparative example, the “surface roughness Ra” was less than 3 nm, and thus the “self-healing function” was “x”.
 また、比較例としての試料15では、「表面粗さRa」が1000nmを超えた。そのため、巻回体のフィルム間の隙間が大きくなりすぎ、静電容量が低下した。また、誘電損失が大きくなりすぎてしまい、コンデンサとしての電気特性が低下した。 Further, in the sample 15 as a comparative example, the “surface roughness Ra” exceeded 1000 nm. For this reason, the gap between the films of the wound body became too large, and the capacitance was lowered. In addition, the dielectric loss becomes too large, and the electrical characteristics as a capacitor are deteriorated.
 これらに対して、「熱分解残留物量」が40重量%以下であり、「表面粗さRa」が3nm以上かつ1000nm以下であり、しかも、「ガラス転移点」が130℃以上である、試料1~8および11~14によれば、「セルフヒーリング機能」が「○」となった。 On the other hand, Sample 1 having a “thermal decomposition residue amount” of 40% by weight or less, a “surface roughness Ra” of 3 nm or more and 1000 nm or less, and a “glass transition point” of 130 ° C. or more. According to -8 and 11-14, the “self-healing function” was “◯”.
 [実験例2]
 実験例2では、実験例1において作製した試料のうち、試料1に係るフィルムコンデンサについて、高温状態における信頼性、特に容量の低下の状況を評価した。
[Experiment 2]
In Experimental Example 2, among the samples prepared in Experimental Example 1, the film capacitor according to Sample 1 was evaluated for reliability in a high temperature state, in particular, the state of capacity reduction.
 より詳細には、試料1に係るフィルムコンデンサに対し、大気中、温度125℃の下、760VのDC電圧を印加し、コンデンサ素子の摩耗状況(容量の低下の状況)を評価した。その結果が図6に示されている。 More specifically, a DC voltage of 760 V was applied to the film capacitor according to sample 1 at a temperature of 125 ° C. in the atmosphere, and the wear state of the capacitor element (capacity reduction state) was evaluated. The result is shown in FIG.
 図6からわかるように、試験開始から1500時間経過後であっても、容量減少は、2%程度にとどまった。これは、フィルムコンデンサにおいては許容の範囲内で、故障状態ではないと判定される。 As can be seen from FIG. 6, even after 1500 hours from the start of the test, the capacity decrease was only about 2%. It is determined that this is not a fault condition within an allowable range for the film capacitor.
 一方、PP(ポリプロピレン)を用いたフィルムコンデンサを同様に試験したところ、試験開始直後に破壊が起こり、瞬時に容量が-100%となった。これは、PPフィルムが、材料特性として、125℃の温度に耐えられなかったためであると考えられる。 On the other hand, when a film capacitor using PP (polypropylene) was tested in the same manner, destruction occurred immediately after the start of the test, and the capacity instantaneously became −100%. This is presumably because the PP film could not withstand a temperature of 125 ° C. as a material property.
 [実験例3]
 実験例3では、実験例1において作製した試料1に係る3個のフィルムコンデンサを用いて、図4に示すようなコンデンサモジュールを作製した。そして、このコンデンサモジュールを平滑用コンデンサとして用いて、図5に示すような3相インバータを構成し、フィルムコンデンサの耐熱性を評価した。なお、コンデンサモジュールにおいて、端子導体を銅製とした。
[Experiment 3]
In Experimental Example 3, a capacitor module as shown in FIG. 4 was manufactured using the three film capacitors according to Sample 1 manufactured in Experimental Example 1. Then, using this capacitor module as a smoothing capacitor, a three-phase inverter as shown in FIG. 5 was constructed, and the heat resistance of the film capacitor was evaluated. In the capacitor module, the terminal conductor was made of copper.
 まず、用いたフィルムコンデンサの電気特性は、図7に示すとおりとなった。図7には、フィルムコンデンサのインピーダンス(|Z|)-周波数特性、および等価直列抵抗(ESR)-周波数特性が示されている。 First, the electrical characteristics of the film capacitor used were as shown in FIG. FIG. 7 shows the impedance (| Z |) -frequency characteristic and the equivalent series resistance (ESR) -frequency characteristic of the film capacitor.
 次に、図5に示すような3相インバータを構成し、運転したときの平滑用コンデンサとしてのコンデンサモジュールの各部分の温度を測定した。その結果が図8中に記入されている。図8は図4に対応する図であって、図4に示した参照符号が図8にも表示されている。図8を参照して、コンデンサモジュール20の引出し部28および31を直流電源44に接続し、引出し部27および30をパワーモジュール43に接続した。したがって、図8に示すように、引出し部27および30においては、その温度が151℃に達し、また、パワーモジュール43に最も近いフィルムコンデンサ21にあっては、121℃に達した。 Next, the temperature of each part of the capacitor module as a smoothing capacitor when the three-phase inverter as shown in FIG. 5 was configured and operated was measured. The result is entered in FIG. FIG. 8 corresponds to FIG. 4, and the reference numerals shown in FIG. 4 are also displayed in FIG. Referring to FIG. 8, the lead portions 28 and 31 of the capacitor module 20 are connected to the DC power supply 44, and the lead portions 27 and 30 are connected to the power module 43. Therefore, as shown in FIG. 8, the temperature of the drawer portions 27 and 30 reached 151 ° C., and the film capacitor 21 closest to the power module 43 reached 121 ° C.
 上記のような高温条件下での、コンデンサモジュール20の電気特性を評価するため、125℃に設定した恒温槽中にコンデンサモジュール20を設置し、電気特性を測定した。図9には、インピーダンス-周波数特性が示され、図10には、等価直列抵抗-周波数特性が示されている。図9および図10からわかるように、Siで構成されるパワー半導体モジュールで使用されるスイッチング周波数範囲である数kHz~数十kHだけでなく、これに加え、SiC、SiN等で構成されるパワー半導体モジュールで使用されるスイッチング周波数範囲である数十kHz~百数十kHzにおいても、良好なインピーダンス特性およびESR特性が得られることが確認された。 In order to evaluate the electrical characteristics of the capacitor module 20 under the high temperature conditions as described above, the capacitor module 20 was installed in a thermostat set at 125 ° C., and the electrical characteristics were measured. FIG. 9 shows impedance-frequency characteristics, and FIG. 10 shows equivalent series resistance-frequency characteristics. As can be seen from FIGS. 9 and 10, not only the switching frequency range of several kHz to several tens of kilohertz used in the power semiconductor module composed of Si, but also power composed of SiC, SiN, etc. It was confirmed that good impedance characteristics and ESR characteristics can be obtained even in the switching frequency range of several tens kHz to several tens kHz used in semiconductor modules.
1,21~23 フィルムコンデンサ
3,4 誘電体樹脂フィルム
5,6,5a,6a 対向電極
7,8 端子電極
9 巻回体
20 コンデンサモジュール
24,25 端子導体
41 3相インバータ
42 スイッチング素子
43 パワーモジュール
44 直流電源
45 平滑用コンデンサ
46 負荷
1, 21 to 23 Film capacitor 3, 4 Dielectric resin film 5, 6, 5a, 6a Counter electrode 7, 8 Terminal electrode 9 Winding body 20 Capacitor module 24, 25 Terminal conductor 41 Three-phase inverter 42 Switching element 43 Power module 44 DC power supply 45 Smoothing capacitor 46 Load

Claims (6)

  1.  互いに重なる形態とされた誘電体樹脂フィルムと、
     前記誘電体樹脂フィルムを挟んで互いに対向するように配置された第1および第2の対向電極と、
     前記第1および第2の対向電極にそれぞれ電気的に接続される第1および第2の端子電極と
    を備え、
     前記誘電体樹脂フィルムは、その少なくとも一方の主面の表面粗さRaが3nm以上かつ1000nm以下であり、樹脂成分として、ガラス転移点が130℃以上の熱硬化性樹脂をもって構成され、前記樹脂成分の熱重量変化率を窒素中において昇温速度10℃/分で測定したときの500℃での熱分解残留物重量が40重量%以下である、フィルムコンデンサ。
    Dielectric resin films in a form of overlapping each other;
    First and second opposing electrodes arranged to face each other across the dielectric resin film;
    First and second terminal electrodes electrically connected to the first and second counter electrodes, respectively,
    The dielectric resin film has a surface roughness Ra of at least one main surface of 3 nm or more and 1000 nm or less, and is composed of a thermosetting resin having a glass transition point of 130 ° C. or more as a resin component. A film capacitor having a pyrolysis residue weight of not more than 40% by weight at 500 ° C. when the rate of change in thermogravimetricity is measured in nitrogen at a heating rate of 10 ° C./min.
  2.  前記誘電体樹脂フィルムは巻回されることによって巻回体を形成し、前記第1および第2の対向電極は、前記巻回体の内部に配置され、前記第1および第2の端子電極は、前記巻回体の各端面上にそれぞれ形成される、請求項1に記載のフィルムコンデンサ。 The dielectric resin film is wound to form a wound body, the first and second counter electrodes are disposed inside the wound body, and the first and second terminal electrodes are The film capacitor according to claim 1, wherein the film capacitor is formed on each end face of the wound body.
  3.  前記誘電体樹脂フィルムは、2種以上の有機材料を混ぜ合わせ、互いに架橋させることによって得られた樹脂成分を含む、請求項1または2に記載のフィルムコンデンサ。 The film capacitor according to claim 1 or 2, wherein the dielectric resin film includes a resin component obtained by mixing two or more organic materials and cross-linking them.
  4.  前記誘電体樹脂フィルムの前記表面粗さを与える凸部が、当該誘電体樹脂フィルムの前記凸部以外の本体部分と同種の樹脂成分からなる、請求項1ないし3のいずれかに記載のフィルムコンデンサ。 4. The film capacitor according to claim 1, wherein the convex portion that gives the surface roughness of the dielectric resin film is made of the same resin component as the main body portion other than the convex portion of the dielectric resin film. 5. .
  5.  請求項1ないし4のいずれかに記載の複数のフィルムコンデンサと、前記フィルムコンデンサの前記端子電極に接続された端子導体とを備える、コンデンサモジュール。 A capacitor module comprising a plurality of film capacitors according to any one of claims 1 to 4 and a terminal conductor connected to the terminal electrode of the film capacitor.
  6.  請求項1ないし4のいずれかに記載のフィルムコンデンサと、スイッチング素子とを備え、運転時の前記フィルムコンデンサの到達最高温度が100℃以上となり得るように設定された、電力変換装置。 A power conversion device comprising the film capacitor according to any one of claims 1 to 4 and a switching element, wherein the maximum temperature reached by the film capacitor during operation is set to be 100 ° C or higher.
PCT/JP2012/077810 2011-11-10 2012-10-28 Film capacitor, capacitor module, and power converter WO2013069485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-246012 2011-11-10
JP2011246012 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013069485A1 true WO2013069485A1 (en) 2013-05-16

Family

ID=48289864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077810 WO2013069485A1 (en) 2011-11-10 2012-10-28 Film capacitor, capacitor module, and power converter

Country Status (1)

Country Link
WO (1) WO2013069485A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041126A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor component, capacitor module, power conversion device, and method for manufacturing capacitor component
JPWO2015041127A1 (en) * 2013-09-20 2017-03-02 株式会社村田製作所 Capacitor module and power conversion device
WO2019097753A1 (en) 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor
JPWO2018142922A1 (en) * 2017-02-03 2019-11-07 株式会社村田製作所 Film capacitor, film capacitor manufacturing method, dielectric resin film, and dielectric resin film manufacturing method
WO2020039638A1 (en) 2018-08-20 2020-02-27 株式会社村田製作所 Film capacitor, film for film capacitor, and method for manufacturing film for film capacitor
WO2021005823A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Film capacitor and film for film capacitor
US10943737B2 (en) * 2016-07-29 2021-03-09 Panasonic Intellectual Property Management Co., Ltd. Film capacitor, capacitor unit, and film capacitor production method
EP3654357A4 (en) * 2017-11-15 2021-09-29 Murata Manufacturing Co., Ltd. Film capacitor, and film for film capacitor
US11309116B2 (en) 2017-11-29 2022-04-19 Murata Manufacturing Co., Ltd. Electronic component
US11664161B2 (en) 2018-02-05 2023-05-30 Murata Manufacturing Co., Ltd. Film capacitor
US11710603B2 (en) 2018-02-05 2023-07-25 Murata Manufacturing Co., Ltd. Film capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147329A (en) * 2008-12-19 2010-07-01 Shin Etsu Polymer Co Ltd Method of manufacturing capacitor film and capacitor film
WO2010101170A1 (en) * 2009-03-05 2010-09-10 株式会社村田製作所 Dielectric resin composition for film capacitor, process for producing same, and film capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147329A (en) * 2008-12-19 2010-07-01 Shin Etsu Polymer Co Ltd Method of manufacturing capacitor film and capacitor film
WO2010101170A1 (en) * 2009-03-05 2010-09-10 株式会社村田製作所 Dielectric resin composition for film capacitor, process for producing same, and film capacitor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015041127A1 (en) * 2013-09-20 2017-03-02 株式会社村田製作所 Capacitor module and power conversion device
JPWO2015041126A1 (en) * 2013-09-20 2017-03-02 株式会社村田製作所 CAPACITOR COMPONENT, CAPACITOR MODULE, POWER CONVERTER, AND METHOD FOR MANUFACTURING CAPACITOR COMPONENT
US9679700B2 (en) 2013-09-20 2017-06-13 Murata Manufacturing Co., Ltd. Capacitor module and power conversion device
WO2015041126A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor component, capacitor module, power conversion device, and method for manufacturing capacitor component
US10943737B2 (en) * 2016-07-29 2021-03-09 Panasonic Intellectual Property Management Co., Ltd. Film capacitor, capacitor unit, and film capacitor production method
US11335502B2 (en) 2017-02-03 2022-05-17 Murata Manufacturing Co., Ltd. Film capacitor, method of producing film capacitor, dielectric resin film, and method of producing dielectric resin film
JPWO2018142922A1 (en) * 2017-02-03 2019-11-07 株式会社村田製作所 Film capacitor, film capacitor manufacturing method, dielectric resin film, and dielectric resin film manufacturing method
JP2021180336A (en) * 2017-02-03 2021-11-18 株式会社村田製作所 Film capacitor, film capacitor manufacturing method, dielectric resin film, and dielectric resin film manufacturing method
EP3712914A4 (en) * 2017-11-15 2021-07-28 Murata Manufacturing Co., Ltd. Film capacitor
WO2019097753A1 (en) 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor
US11430610B2 (en) 2017-11-15 2022-08-30 Murata Manufacturing Co., Ltd. Film capacitor
JPWO2019097753A1 (en) * 2017-11-15 2020-10-01 株式会社村田製作所 Film capacitor
CN111344825A (en) * 2017-11-15 2020-06-26 株式会社村田制作所 Thin film capacitor
EP3654357A4 (en) * 2017-11-15 2021-09-29 Murata Manufacturing Co., Ltd. Film capacitor, and film for film capacitor
US11373806B2 (en) 2017-11-15 2022-06-28 Murata Manufacturing Co., Ltd. Film capacitor having a delectric resin with a specific crosslink density and film for film capacitor
CN111344825B (en) * 2017-11-15 2022-01-25 株式会社村田制作所 Thin film capacitor
US11309116B2 (en) 2017-11-29 2022-04-19 Murata Manufacturing Co., Ltd. Electronic component
US11664161B2 (en) 2018-02-05 2023-05-30 Murata Manufacturing Co., Ltd. Film capacitor
US11710603B2 (en) 2018-02-05 2023-07-25 Murata Manufacturing Co., Ltd. Film capacitor
WO2020039638A1 (en) 2018-08-20 2020-02-27 株式会社村田製作所 Film capacitor, film for film capacitor, and method for manufacturing film for film capacitor
US11710602B2 (en) 2018-08-20 2023-07-25 Murata Manufacturing Co., Ltd. Film capacitor, film-capacitor film, and method for manufacturing film-capacitor film
WO2021005823A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Film capacitor and film for film capacitor
CN114040938A (en) * 2019-07-10 2022-02-11 株式会社村田制作所 Film capacitor and film for film capacitor
JPWO2021005823A1 (en) * 2019-07-10 2021-01-14
JP7268734B2 (en) 2019-07-10 2023-05-08 株式会社村田製作所 Film capacitors and films for film capacitors

Similar Documents

Publication Publication Date Title
WO2013069485A1 (en) Film capacitor, capacitor module, and power converter
US9767960B2 (en) Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods
JP4276084B2 (en) Multilayer electronic components
EP2411988B1 (en) Leaded multi-layer ceramic capacitor with low esl and low esr
US7567426B2 (en) Polymer-ceramic dielectric composition, embedded capacitor using the dielectric composition and printed circuit board having the capacitor embedded therein
US20100244585A1 (en) High-temperature capacitors and methods of making the same
EP2596508B1 (en) Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods
CN102341873B (en) Passive electrical devices and methods of fabricating passive electrical devices
JP7108637B2 (en) Multilayer ceramic capacitor structure for high power
EP3014630B1 (en) A material comprising reduced graphene oxide, a device comprising the material and a method of producing the material
JP2015181199A (en) Film capacitor
JP4893396B2 (en) Dielectric film and electronic component using the same
JP5743689B2 (en) Capacitor
CN114555673A (en) Dielectric composition, dielectric film and capacitor
WO2022085729A1 (en) Metalized film and film capacitor
US10395829B2 (en) Dielectric resin composition for film capacitor and film capacitor
US3333169A (en) Electrical capacitor with a linear p-xylylene polymer dielectric
Yializis A disruptive dc-link capacitor technology for use in electric drive inverters
TWI814079B (en) Multilayer ceramic capacitors and electronic device comprising same
WO2021241151A1 (en) Film capacitor and film for film capacitors
JP2004067889A (en) Highly dielectric substance composition
Ghosh Embedded nonlinear passive components on flexible substrates for microelectronics applications
KR102213106B1 (en) Film Capacitor and Manufacturing method thereof
WO2021153339A1 (en) Resin layered product, dielectric layer, metal foil with resin, capacitor element, and printed wiring board with built-in capacitor
Irwin et al. Development of high temperature capacitors for high density, high temperature applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP