WO2022085729A1 - Metalized film and film capacitor - Google Patents

Metalized film and film capacitor Download PDF

Info

Publication number
WO2022085729A1
WO2022085729A1 PCT/JP2021/038796 JP2021038796W WO2022085729A1 WO 2022085729 A1 WO2022085729 A1 WO 2022085729A1 JP 2021038796 W JP2021038796 W JP 2021038796W WO 2022085729 A1 WO2022085729 A1 WO 2022085729A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
divided
fuse
film
metallized film
Prior art date
Application number
PCT/JP2021/038796
Other languages
French (fr)
Japanese (ja)
Inventor
和之 日當
義和 藤城
優哉 橋本
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to KR1020237011859A priority Critical patent/KR20230088700A/en
Priority to CN202180072280.5A priority patent/CN116420208A/en
Publication of WO2022085729A1 publication Critical patent/WO2022085729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to a metallized film and a film capacitor.
  • Patent Document 1 discloses a metallized film capacitor.
  • a pattern of a metal vapor deposition film is formed on the dielectric film.
  • a plurality of divided small electrode portions are formed via the divided margin.
  • the two divided small electrode portions adjacent to each other in the width direction of the metal-deposited film are connected by a fuse portion (horizontal fuse) extending in the width direction of the metal-deposited film (see Patent Document 1).
  • the heat generation of the film capacitor can be suppressed by connecting the adjacent divided electrode portions only with a horizontal fuse. However, if the horizontal fuse is blown when the vertical fuse is not provided, the effective electrode area may disappear more than necessary.
  • the present invention has been made to solve such a problem, and an object thereof is to suppress an increase in dielectric loss (tan ⁇ ) and self-heating in the case of using a film capacitor, and to withstand it in a high temperature environment. It is an object of the present invention to provide a metallized film or the like capable of minimizing a decrease in the capacitance of a capacitor by improving the properties and suppressing a situation in which the effective electrode area disappears more than necessary.
  • the metallized film according to a certain aspect of the present invention is a metallized film for a film capacitor.
  • the metallized film comprises a dielectric film.
  • On the dielectric film an electrical introduction portion located at one end of the metallized film in the width direction and connected to the metallikon electrode, and an insulation margin located at the other end of the metallized film in the width direction.
  • An electrode portion located between the electricity introduction portion and the insulation margin is formed.
  • the electrode portion is divided into a large electrode portion, a first divided electrode portion, a second divided electrode portion, and a third divided electrode portion, which are arranged in order from the electricity introduction portion toward the insulation margin via the margin portion.
  • the first, second and third divided electrodes are divided into a plurality of first, second and third divided electrodes in the direction perpendicular to the width direction of the metallized film, respectively, via the margin portion.
  • the number of the second divided electrodes existing at the positions corresponding to one first divided electrode in the direction perpendicular to the width direction of the metallized film is two or more and three or less.
  • the number of the third divided electrodes existing at the positions corresponding to one first divided electrode in the direction perpendicular to the width direction of the metallized film is 3 or more and 6 or less.
  • the large electrode portion is connected to the first split electrode via the first fuse.
  • the first split electrode is connected to the two second split electrodes via one second fuse.
  • the second split electrode is connected to the two third split electrodes via one third fuse.
  • the first split electrode and the two second split electrodes are connected via one second fuse.
  • the first divided electrode and the two second divided electrodes are arranged in the width direction (horizontal direction) of the metallized film.
  • the two second divided electrodes are arranged in a direction (vertical direction) perpendicular to the width direction of the metallized film. Since the second fuse connects the first split electrode and the two second split electrodes, it also serves as a horizontal fuse and a vertical fuse. Therefore, according to this metallized film, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and self-heating can be suppressed when the film capacitor is used. Further, according to this metallized film, since each of the second fuse and the third fuse also functions as a vertical fuse, it is possible to suppress a situation in which the effective electrode area disappears more than necessary.
  • the area of the first divided electrode when the area of the first divided electrode is 1, the area of the second divided electrode is 1/3 or more and 1/2 or less, and the area of the third divided electrode is 1/12 or more. It may be 1/3 or less.
  • the other third divided electrode portion is located at a position facing one of the large electrode portions
  • the other second divided electrode portion is located at a position facing one of the first divided electrode portions.
  • the area of the third divided electrode is smaller than that of each of the first divided electrode and the second divided electrode. Therefore, according to this metallized film, even if dielectric breakdown occurs in a part of the large electrode portion due to the inrush current, the area of the third divided electrode facing the position where the dielectric breakdown has occurred is small. Even if the fuse blows, the effective electrode area that disappears can be reduced.
  • the area of the third divided electrode when the area of the first divided electrode is 1, the area of the third divided electrode may be 1/6 or more and 1/3 or less.
  • the width of the first fuse when the width of the first fuse is 1, the width of the second fuse is 0.6 or more and 0.9 or less, and the width of the third fuse is 0.3 or more and 0.6. It may be as follows.
  • the width of the fuse gradually narrows from the first fuse to the third fuse. Therefore, according to this metallized film, the fuse connecting the divided electrodes having a small area is easier to blow, so that it is possible to suppress the situation where the effective electrode area is lost more than necessary.
  • the second fuse has both two second split electrodes adjacent to each other in the direction perpendicular to the width of the metallised film and two second split electrodes in the width direction of the metallised film. It may be formed at a position adjacent to each of the adjacent first divided electrodes.
  • the second fuse Since the second fuse is adjacent to each of the first split electrode and the two second split electrodes, it also serves as a horizontal fuse and a vertical fuse. Therefore, according to this metallized film, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and the current flow path to the divided electrode is secured when the film capacitor is used. At the same time, since the divided electrode in which dielectric breakdown has occurred can be electrically separated, the time for the short-circuit current to flow can be shortened, and the self-heating of the element can be suppressed.
  • the third fuse has both two third divided electrodes adjacent to each other in the direction perpendicular to the width direction of the metallized film and two third divided electrodes in the width direction of the metallized film. It may be formed at a position adjacent to each of the adjacent second divided electrodes.
  • the third fuse is adjacent to each of the second split electrode and the two third split electrodes, it also serves as a horizontal fuse and a vertical fuse. Therefore, according to this metallized film, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and the current flow path to the divided electrode is secured when the film capacitor is used. At the same time, since the divided electrode in which dielectric breakdown has occurred can be electrically separated, the time for the short-circuit current to flow can be shortened, and the self-heating of the element can be suppressed.
  • the film capacitor according to another aspect of the present invention is composed of the above-mentioned metallized film.
  • the present invention it is possible to minimize the decrease in the capacitance of the capacitor by suppressing the self-heating in the case of using a film capacitor and suppressing the situation where the effective electrode area disappears more than necessary.
  • a metallized film or the like can be provided.
  • FIG. 1 is a diagram schematically showing a part of a flat surface of the metallized film 10 according to the present embodiment. In FIG. 1, only a part of the metallized film 10 in the flow direction is shown.
  • the metallized film 10 is used, for example, in the manufacture of a film capacitor.
  • the width direction of the metallized film 10 is also simply referred to as “width direction”
  • the flow direction of the metallized film 10 is also simply referred to as “flow direction”.
  • the metallized film 10 includes a dielectric film 20.
  • the dielectric film 20 include polypropylene (PP: polypolylone), polyethylene terephthalate (PET: polyphenylene terephthalate), polyphenylene sulfide (PPS: polyphenylene sulfide), polyethylene naphthalate (PEN: polyphenylene fluoride), and polyvinylidene fluoride. : Polyvinylidene fluoride) and other resins having various insulating properties can be used.
  • the thickness of the dielectric film 20 is not particularly limited, but is preferably 0.5 ⁇ m to 25 ⁇ m, and more preferably 1.5 ⁇ m to 10 ⁇ m.
  • an electric introduction portion 30 which is a region where a metal (for example, aluminum or zinc) is vapor-deposited is formed on one end, and a region where no metal is vapor-deposited on the other end.
  • An insulation margin 40 is formed.
  • An electrode portion 50 is formed between the electricity introduction portion 30 and the insulation margin 40.
  • the electrode portion 50 is formed by depositing a metal (for example, aluminum or zinc) on the dielectric film 20.
  • the metal forming the electrode portion 50 and the electric introduction portion 30 is not particularly limited, but for example, a metal material such as aluminum (Al), zinc (Zn), tin (Sn), copper (Cu), or an alloy thereof or the like. Can be used.
  • the thickness of the metal-deposited electrode (electrode portion 50) is not particularly limited, but is preferably 1 nm to 200 nm.
  • the thickness of the metal-deposited film of the electric introduction section 30 is preferably about 2 to 5 times that of the metal-deposited electrode. Further, the thickness of the metal-deposited electrode may be set according to the intrinsic resistance of the metal-deposited electrode material so that desired electrical characteristics can be obtained.
  • the electrode portion 50 is arranged in order from the electric introduction portion 30 toward the insulation margin 40 via the margin portion 60 which is a region where metal is not vapor-deposited, and the large electrode portion 100, the first divided electrode portion 200, and the second divided portion 50 are arranged in order. It is divided into an electrode portion 300 and a third divided electrode portion 400. Each of the large electrode portion 100, the first split electrode portion 200, the second split electrode portion 300, and the third split electrode portion 400 is formed by depositing metal.
  • the first divided electrode portion 200 is divided into a plurality of first divided electrodes 210 in a direction (flow direction) perpendicular to the width direction of the metallized film 10 via a margin portion 60.
  • the length of each first divided electrode 210 in the width direction is, for example, 160% (1.6 times) or more and 180% (1.8 times) or less of the length in the width direction of the large electrode portion 100.
  • the second divided electrode portion 300 is divided into a plurality of second divided electrodes 310 in the flow direction of the metallized film 10 via the margin portion 60.
  • the number of the second divided electrodes 310 existing at the positions corresponding to one first divided electrode 210 is two.
  • the number of the second divided electrodes 310 existing at the positions corresponding to one first divided electrode 210 in the flow direction of the metallized film 10 does not necessarily have to be two, but may be three.
  • the length of each of the second divided electrodes 310 in the width direction is, for example, 80% (0.8 times) or more and 120% (1.2 times) or less of the length of the first divided electrode 210 in the width direction. be.
  • the third divided electrode portion 400 is divided into a plurality of third divided electrodes 410 in the flow direction of the metallized film 10 via the margin portion 60.
  • the number of the third divided electrodes 410 existing at the positions corresponding to one first divided electrode 210 is three.
  • the number of third divided electrodes 410 existing at positions corresponding to one first divided electrode 210 in the flow direction of the metallized film 10 may be four or more and six or less.
  • the length of each third divided electrode 410 in the width direction is, for example, 45% (0.45 times) or more and 55% (0.55 times) or less of the length of each first divided electrode 210 in the width direction. Is.
  • the areas of the first divided electrode 210, the second divided electrode 310, and the third divided electrode 410 are larger in this order.
  • the area of the first divided electrode 210 is 1, the area of the second divided electrode 310 is 1/3 or more and 1/2 or less, and the area of the third divided electrode 410 is 1/12 or more and 1 It is less than / 3rd.
  • the area of the third divided electrode 410 is 1/6 or more and 1/3 or less.
  • FIG. 2 is an enlarged view schematically showing a part of the part P1 of FIG. As shown in FIG. 2, the large electrode portion 100 is electrically connected to the first divided electrode 210 via the first fuse 70. The width of the first fuse 70 is L1.
  • FIG. 3 is an enlarged view schematically showing a part of the part P2 of FIG.
  • the first split electrode 210 is electrically connected to the two second split electrodes 310 via the second fuse 72. That is, the second fuse 72 is located adjacent to each of the two second split electrodes 310 adjacent to each other in the flow direction and the first split electrode 210 adjacent to both of the two second split electrodes 310 in the width direction. Is formed in.
  • the second fuse 72 serves as a horizontal fuse for electrically connecting the first divided electrode 210 and the second divided electrode 310 arranged in the width direction, and electrically connects the two second divided electrodes 310 arranged in the flow direction.
  • the width of the second fuse 72 is L2.
  • FIG. 4 is an enlarged view schematically showing a part of the part P3 of FIG.
  • the second split electrode 310 is electrically connected to the two third split electrodes 410 via the third fuse 74. That is, the third fuse 74 is located adjacent to each of the two third divided electrodes 410 adjacent to each other in the flow direction and the second divided electrodes 310 adjacent to both of the two third divided electrodes 410 in the width direction. Is formed in.
  • the third fuse 74 serves as a horizontal fuse that connects the second divided electrode 310 and the third divided electrode 410 arranged in the width direction to electricity, and electrically connects the two third divided electrodes 410 arranged in the flow direction.
  • the width of the third fuse 74 is L3.
  • the width is wider in the order of the first fuse 70, the second fuse 72, and the third fuse 74.
  • the width L1 of the first fuse 70 is 1, the width L2 of the second fuse 72 is 0.6 or more and 0.9 or less, and the width L3 of the third fuse 74 is 0.3 or more and 0. It is 6.6 or less.
  • the width of the fuse gradually narrows from the first fuse 70 to the third fuse 74. Therefore, according to the metallized film 10, since the fuse connecting the divided electrodes having a small area is easier to blow, it is possible to suppress the situation where the effective electrode area is lost more than necessary.
  • FIG. 5 is an enlarged view schematically showing a part of the metallized film 10.
  • the second fuse 72 is blown in the portion P4.
  • the current flowing from the first dividing electrode 210 is, for example, an arrow in the figure.
  • the current flows into the upper second dividing electrode 310 in the figure via the second divided electrode 310, the third fuse 74, and the third divided electrode 410 in the lower part of the figure.
  • each of the second fuse 72 and the third fuse 74 functions not only as a horizontal fuse but also as a vertical fuse, so that the effective electrode area disappears more than necessary. Can be suppressed.
  • FIG. 6 is a diagram for explaining the orientation of the two metallized films 10 that are overlapped at the time of manufacturing the film capacitor 5.
  • the two metallized films 10 are superposed so that the electric introduction portions 30 are located at the opposite ends. .. That is, the other third divided electrode portion 400 is located at a position facing one of the large electrode portions 100, and the other second divided electrode portion 300 is located at a position facing one of the first divided electrode portions 200. do.
  • the area of the third divided electrode 410 is smaller than that of each of the first divided electrode 210 and the second divided electrode 310.
  • the metallised film 10 even if dielectric breakdown occurs in a part of the large electrode portion 100 due to the inrush current, the area of the third divided electrode portion 400 facing the position where self-healing or the like occurs. Is small, so that the disappearance of the effective electrode area can be suppressed.
  • the first split electrode 210 and the two second split electrodes 310 are connected via one second fuse 72.
  • the first divided electrode 210 and the two second divided electrodes 310 are arranged in the width direction (horizontal direction) of the metallized film 10.
  • the two second divided electrodes 310 are arranged in the flow direction (longitudinal direction) of the metallized film 10. Since the second fuse 72 connects the first split electrode 210 and the two second split electrodes 310, it serves both as a horizontal fuse and as a vertical fuse.
  • each of the second fuse 72 and the third fuse 74 also functions as a vertical fuse, it is possible to suppress a situation in which the effective electrode area disappears more than necessary.
  • FIG. 7 is a diagram schematically showing a part of the plane of the metallized film 10A in the first modification. As shown in FIG. 7, the number of the second divided electrodes 310A existing at the positions corresponding to one first divided electrode 210A in the flow direction of the metallized film 10A may be three.
  • FIG. 8 is a diagram schematically showing a part of the plane of the metallized film 10B in the second modification. As shown in FIG. 8, the relative positions of the third divided electrodes 410B with respect to the first divided electrodes 210B in the flow direction are different from those in the metallized film 10 according to the above embodiment. The position of the third split electrode relative to the first split electrode in the flow direction may be as shown in FIG.
  • FIG. 9 is a diagram schematically showing a part of the plane of the metallised film 10C in the third modification.
  • the lengths of the first divided electrode portion 200C, the second divided electrode portion 300C, and the third divided electrode portion 400C in the width direction may be the same.
  • the length of the large electrode portion 100C in the width direction is preferably 1/5 or more and 1/4 or less of the length in the width direction of the metallized film 10C.
  • the length of the large electrode portion 100C in the width direction is 1/4 or less of the length of the metallized film 10C in the width direction, the disappearance of the effective electrode area due to dielectric breakdown on the electricity introduction side should be reduced.
  • the displacement of the overlapping divided electrodes can be reduced, so that the number of divided electrodes separated due to dielectric breakdown can be reduced, and the effect of suppressing the decrease in capacitance can be improved.
  • the length in the width direction of the large electrode portion 100C is 1/5 or more of the length in the width direction of the metallized film 10C
  • the area of the divided electrode to be set can be suppressed, and the area at the time of dielectric breakdown can be suppressed. It is possible to reduce the disappearance of the effective electrode area and improve the effect of suppressing the decrease in electrostatic capacity.
  • FIG. 10 is a diagram schematically showing a part of the plane of the metallised film 10D in the fourth modification.
  • the number of the second divided electrodes 310D existing at the positions corresponding to one first divided electrode 210D in the flow direction of the metallized film 10A may be three, and further, one.
  • the number of the third divided electrodes 410D existing at the positions corresponding to the first divided electrodes 210D may be six.
  • Example 1-3 In the metallized film 10 in Examples 1-3, the split electrode pattern shown in FIG. 1 was formed. That is, in each of Examples 1-3, the ratio of the lengths of the first divided electrode 210, the second divided electrode 310, and the third divided electrode 410 in the flow direction was 1: 1/2: 1/3. .. The length of the first split electrode 210 in the flow direction was 4.6 mm. Further, the ratio of the lengths of the first divided electrode 210, the second divided electrode 310 and the third divided electrode 410 in the width direction was 1: 1: 1/2. The length of the first split electrode 210 in the width direction was 8.0 mm.
  • Examples 1-3 the relationship between the widths of the fuses was different from each other.
  • the width of the first fuse 70 when the width of the first fuse 70 is 1, the width of the second fuse 72 is 0.7 and the width of the third fuse 74 is 0.5.
  • the width of the first fuse 70 was 0.35 mm.
  • Example 2 when the width of the first fuse 70 was 1, the width of the second fuse 72 was 0.6 and the width of the third fuse 74 was 0.3. The width of the first fuse 70 was 0.35 mm.
  • Example 3 when the width of the first fuse 70 was 1, the width of the second fuse 72 was 0.9 and the width of the third fuse 74 was 0.6. The width of the first fuse 70 was 0.35 mm.
  • Example 4 In the metallized film 10D of Example 4, the split electrode pattern shown in FIG. 10 was formed. That is, in Example 4, the ratio of the lengths of the first divided electrode 210D, the second divided electrode 310D, and the third divided electrode 410D in the flow direction was 1: 1/3: 1/6. The length of the first split electrode 210D in the flow direction was 4.6 mm. Further, the ratio of the lengths of the first divided electrode 210D, the second divided electrode 310D and the third divided electrode 410D in the width direction was 1: 1: 1/2. The length of the first split electrode 210 in the width direction was 8.5 mm.
  • Example 4 when the width of the first fuse 70D was 1, the width of the second fuse 72D was 0.7 and the width of the third fuse 74D was 0.5. The width of the first fuse 70D was 0.35 mm.
  • FIG. 11 is a diagram showing a part of the plane of the metallized film 10E in Comparative Example 1. As shown in FIG. 11, in the metallized film 10E in Comparative Example 1, a so-called fishnet type split electrode pattern was formed by the margin portion 60E. In the metallized film 10E in Comparative Example 1, a plurality of divided electrodes (segments) were formed by the margin portion 60E, and fuses 76E were formed on each of the four sides of each divided electrode.
  • FIG. 12 is a diagram showing a part of the plane of the metallized film 10F in Comparative Example 2.
  • the ratio of the lengths of the first divided electrode 210F, the second divided electrode 310F and the third divided electrode 410F in the flow direction is 1: 1: 1. It was 1/2.
  • the length of the first split electrode 210 in the flow direction was 4.6 mm.
  • the ratio of the lengths of the first divided electrode 210F, the second divided electrode 310F, and the third divided electrode 410F in the width direction was 1: 1: 1/2.
  • the length of the first split electrode 210F in the width direction was 8.5 mm.
  • FIG. 13 is a diagram showing a part of a flat surface of the metallised film 10G in Comparative Example 3.
  • the ratio of the lengths of the first divided electrode 210G, the second divided electrode 310G and the third divided electrode 410G in the flow direction is 1: 1 /. It was 4: 1/8.
  • the length of the first split electrode 210G in the flow direction was 4.6 mm.
  • the ratio of the lengths of the first divided electrode 210G, the second divided electrode 310G and the third divided electrode 410G in the width direction was 1: 1: 1/2.
  • the length of the first split electrode 210G in the width direction was 8.5 mm.
  • FIG. 14 is a diagram showing a part of the plane of the metallised film 10H in Comparative Example 4. As shown in FIG. 14, in the metallized film 10H in Comparative Example 4, the electrode portion 50H is formed by solid vapor deposition of the metal film on the dielectric film, and the divided electrode pattern is not formed. rice field.
  • Example 1-3 and Comparative Example 1-3 were produced by a common method.
  • the shape of the divided electrode pattern formed on the dielectric film was different.
  • the manufacturing method common to Examples 1-3 and Comparative Example 1-3 will be described.
  • An insulation margin and a split electrode pattern were formed on a PP (polypropylene) film roll having a thickness of 2.3 ⁇ m by oil masking using a retractable vacuum vapor deposition apparatus (EWE-060) manufactured by ULVAC.
  • EWE-060 retractable vacuum vapor deposition apparatus
  • Aluminum was vapor-deposited to form electrodes on the film, and zinc was vapor-deposited to form heavy edges (electrical introductions) on the film.
  • a metallized film roll with an electrode pattern having an Al metal film resistance of 20 ⁇ / ⁇ and a Zn metal film resistance of 5 ⁇ / ⁇ was obtained.
  • the produced metallized film roll was cut to an arbitrary width with a slitter to produce a small winding reel of a metallized film for element winding having a film width of 30 mm, an insulation margin width of 2.0 mm, and a heavy edge width of 1.5 mm.
  • a small winding reel manufactured by Minato Seisakusho's metallized film capacitor fully automatic winder (3KAW-N2) element winding was performed so that the capacitance was 50 ⁇ F, and pressing and flattening were performed. ..
  • the flattened device was subjected to metallicon spraying on the end face of the device to form a film electrode extraction portion, and then heat-treated under a high vacuum temperature to cure the device.
  • a lead was attached to the metallikon spraying part, put in a resin case, filled with epoxy resin in the gap, and the resin was cured to obtain a film capacitor element for evaluation.
  • the prepared metallized film roll was wound with a fully automatic winder for metallized film capacitors (3KAW-N2) manufactured by Minato Seisakusho Co., Ltd. so that the capacitance was 50 ⁇ F, and pressed and flattened.
  • the flattened device was subjected to metallicon spraying on the end face of the device to form a film electrode extraction portion, and then heat-treated under a high vacuum temperature to cure the device.
  • a lead was attached to the metallikon spraying part, put in a resin case, filled with epoxy resin in the gap, and the resin was cured to obtain a film capacitor element for evaluation.
  • Test method> An applied voltage boost test, a short-time withstand voltage test, and an accelerated life test were performed.
  • Example 2 As shown in Table 2, the results of the applied voltage boosting test and the accelerated life test were not preferable in Comparative Example 1, and the results of the accelerated life test were not preferable in Comparative Example 2. Further, in Comparative Example 3, the results of the applied voltage boosting test and the accelerated life test were not preferable, and in Comparative Example 4, the results of all the tests were not preferable. Compared with Comparative Example 1-4, each of Examples 1-4 obtained stable and good results in each test. In particular, Example 3 gave the best results in most of the tests (other than the 500 hour accelerated life test).
  • the metallized film of the present invention can be used for various metallized film capacitors.
  • the metallized film capacitor can be used for the following various purposes. That is, (1) mobile terminals (mobile phones, portable music players, smartphones, tablet terminals, wearable devices, etc.), (2) personal computers, (3) digital cameras, (4) home appliances (TVs, DVD recorders, refrigerators, etc.) Washing machines, air conditioners, etc.), (5) Car navigation, (6) Power conditioners for power generation (solar, wind power, etc.), (7) LED lighting, (8) Automobiles (electric vehicles, hybrid vehicles, plug-in hybrid vehicles, etc.) ), (9) Rail vehicles, (10) Construction machinery, (11) Industrial equipment, (12) Other various inverters, and the like. Above all, it can be used for capacitors used in automobiles and electric power applications that require high frequency characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

This metalized film comprises a dielectric film. On the dielectric film, an electricity introducing portion, an insulating margin, and an electrode portion located between the electricity introducing portion and the insulating margin are formed. The electrode portion is divided into a large electrode portion, a first divided electrode portion, a second divided electrode portion, and a third divided electrode portion which are arranged in order with a margin portion therebetween from the electricity introducing portion toward the insulating margin. The large electrode portion is connected to the first divided electrode via a first fuse. The first divided electrode is connected to two second divided electrodes via a single second fuse. The second divided electrodes are connected to two third divided electrodes via a single third fuse.

Description

金属化フィルム及びフィルムコンデンサMetallised film and film capacitors
 本発明は、金属化フィルム及びフィルムコンデンサに関する。 The present invention relates to a metallized film and a film capacitor.
 特開2005-12082号公報(特許文献1)は、金属化フィルムコンデンサを開示する。この金属化フィルムコンデンサにおいては、誘電体フィルム上に金属蒸着膜のパターンが形成されている。このパターンにおいては、分割マージンを介して複数の分割小電極部が形成されている。金属蒸着フィルムの幅方向において隣接する2つの分割小電極部は、金属蒸着フィルムの幅方向に延びるヒューズ部(横ヒューズ)によって接続されている(特許文献1参照)。 Japanese Patent Application Laid-Open No. 2005-12082 (Patent Document 1) discloses a metallized film capacitor. In this metallized film capacitor, a pattern of a metal vapor deposition film is formed on the dielectric film. In this pattern, a plurality of divided small electrode portions are formed via the divided margin. The two divided small electrode portions adjacent to each other in the width direction of the metal-deposited film are connected by a fuse portion (horizontal fuse) extending in the width direction of the metal-deposited film (see Patent Document 1).
特開2005-12082号公報Japanese Unexamined Patent Publication No. 2005-12082
 一般的に、分割電極部同士がヒューズによって接続されているフィルムコンデンサにおいて、一定範囲におけるヒューズの数が多い場合には、電圧印加時におけるコンデンサの誘電損失(tanδ)が大きく、ヒューズでの自己発熱が生じやすい。上記特許文献1に開示されているフィルムコンデンサのように、隣接する分割電極部同士を横ヒューズのみで接続することによって、フィルムコンデンサの発熱を抑制することができる。しかしながら、縦ヒューズが設けられていない場合に、横ヒューズが切れると、有効電極面積が必要以上に消失する場合がある。 Generally, in a film capacitor in which the divided electrode portions are connected to each other by a fuse, when the number of fuses in a certain range is large, the dielectric loss (tan δ) of the capacitor when a voltage is applied is large, and the fuse self-heats. Is likely to occur. Like the film capacitor disclosed in Patent Document 1, the heat generation of the film capacitor can be suppressed by connecting the adjacent divided electrode portions only with a horizontal fuse. However, if the horizontal fuse is blown when the vertical fuse is not provided, the effective electrode area may disappear more than necessary.
 本発明は、このような問題を解決するためになされたものであって、その目的は、フィルムコンデンサにした場合における誘電損失(tanδ)の上昇及び自己発熱を抑制し、高温環境下での耐用性を向上すると共に、有効電極面積が必要以上に消失する事態を抑制することで、コンデンサの静電容量低下を最小限に抑えることが可能な金属化フィルム等を提供することである。 The present invention has been made to solve such a problem, and an object thereof is to suppress an increase in dielectric loss (tan δ) and self-heating in the case of using a film capacitor, and to withstand it in a high temperature environment. It is an object of the present invention to provide a metallized film or the like capable of minimizing a decrease in the capacitance of a capacitor by improving the properties and suppressing a situation in which the effective electrode area disappears more than necessary.
 本発明のある局面に従う金属化フィルムは、フィルムコンデンサ用の金属化フィルムである。金属化フィルムは、誘電体フィルムを備える。誘電体フィルム上には、金属化フィルムの幅方向の一方の端部に位置しメタリコン電極に接続される電気導入部と、金属化フィルムの幅方向の他方の端部に位置する絶縁マージンと、電気導入部と絶縁マージンとの間に位置する電極部とが形成されている。電極部は、マージン部を介して、電気導入部から絶縁マージンに向かって順に並ぶ、大電極部、第1分割電極部、第2分割電極部及び第3分割電極部に分割されている。第1、第2及び第3分割電極部は、マージン部を介して、金属化フィルムの幅方向に垂直な方向においてそれぞれ複数の第1、第2及び第3分割電極に分割されている。金属化フィルムの幅方向に垂直な方向において1つの第1分割電極に対応する位置に存在する第2分割電極の数が2つ以上、3つ以下である。金属化フィルムの幅方向に垂直な方向において1つの第1分割電極に対応する位置に存在する第3分割電極の数が3つ以上、6つ以下である。大電極部は、第1ヒューズを介して第1分割電極に接続されている。第1分割電極は、1つの第2ヒューズを介して2つの第2分割電極に接続されている。第2分割電極は、1つの第3ヒューズを介して2つの第3分割電極に接続されている。 The metallized film according to a certain aspect of the present invention is a metallized film for a film capacitor. The metallized film comprises a dielectric film. On the dielectric film, an electrical introduction portion located at one end of the metallized film in the width direction and connected to the metallikon electrode, and an insulation margin located at the other end of the metallized film in the width direction. An electrode portion located between the electricity introduction portion and the insulation margin is formed. The electrode portion is divided into a large electrode portion, a first divided electrode portion, a second divided electrode portion, and a third divided electrode portion, which are arranged in order from the electricity introduction portion toward the insulation margin via the margin portion. The first, second and third divided electrodes are divided into a plurality of first, second and third divided electrodes in the direction perpendicular to the width direction of the metallized film, respectively, via the margin portion. The number of the second divided electrodes existing at the positions corresponding to one first divided electrode in the direction perpendicular to the width direction of the metallized film is two or more and three or less. The number of the third divided electrodes existing at the positions corresponding to one first divided electrode in the direction perpendicular to the width direction of the metallized film is 3 or more and 6 or less. The large electrode portion is connected to the first split electrode via the first fuse. The first split electrode is connected to the two second split electrodes via one second fuse. The second split electrode is connected to the two third split electrodes via one third fuse.
 この金属化フィルムにおいては、例えば、1つの第2ヒューズを介して第1分割電極と2つの第2分割電極とが接続されている。第1分割電極と2つの第2分割電極とは、金属化フィルムの幅方向(横方向)に並んでいる。2つの第2分割電極は、金属化フィルムの幅方向に垂直な方向(縦方向)に並んでいる。第2ヒューズは、第1分割電極と2つの第2分割電極とを接続するため、横ヒューズの役割と縦ヒューズの役割とを兼ねる。したがって、この金属化フィルムによれば、横ヒューズと縦ヒューズとを独立して設ける必要がないため、ヒューズの数を減らすことができ、フィルムコンデンサにした場合の自己発熱を抑制することができる。また、この金属化フィルムによれば、第2ヒューズ及び第3ヒューズの各々が縦ヒューズとしても機能するため、有効電極面積が必要以上に消失する事態を抑制することができる。 In this metallized film, for example, the first split electrode and the two second split electrodes are connected via one second fuse. The first divided electrode and the two second divided electrodes are arranged in the width direction (horizontal direction) of the metallized film. The two second divided electrodes are arranged in a direction (vertical direction) perpendicular to the width direction of the metallized film. Since the second fuse connects the first split electrode and the two second split electrodes, it also serves as a horizontal fuse and a vertical fuse. Therefore, according to this metallized film, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and self-heating can be suppressed when the film capacitor is used. Further, according to this metallized film, since each of the second fuse and the third fuse also functions as a vertical fuse, it is possible to suppress a situation in which the effective electrode area disappears more than necessary.
 上記金属化フィルムにおいて、第1分割電極の面積を1とした場合に、第2分割電極の面積は1/3以上、1/2以下であり、第3分割電極の面積は1/12以上、1/3以下であってもよい。 In the metallized film, when the area of the first divided electrode is 1, the area of the second divided electrode is 1/3 or more and 1/2 or less, and the area of the third divided electrode is 1/12 or more. It may be 1/3 or less.
 一般的に、金属化フィルムをフィルムコンデンサにする場合には、各電気導入部が反対側の端部に位置するように、2枚の金属化フィルムが重ね合わされる。すなわち、一方の大電極部に対向する位置には他方の第3分割電極部が位置し、一方の第1分割電極部に対向する位置には他方の第2分割電極部が位置する。本発明に従う金属化フィルムにおいては、第3分割電極の面積が第1分割電極及び第2分割電極の各々よりも小さくなっている。したがって、この金属化フィルムによれば、仮に突入電流に起因して大電極部の一部で絶縁破壊が生じても、絶縁破壊が生じた位置に対向する第3分割電極の面積が小さいため、ヒューズが切れた場合でも、消失する有効電極面積を小さくすることができる。 Generally, when a metallized film is used as a film capacitor, two metallized films are superposed so that each electric introduction part is located at the opposite end. That is, the other third divided electrode portion is located at a position facing one of the large electrode portions, and the other second divided electrode portion is located at a position facing one of the first divided electrode portions. In the metallized film according to the present invention, the area of the third divided electrode is smaller than that of each of the first divided electrode and the second divided electrode. Therefore, according to this metallized film, even if dielectric breakdown occurs in a part of the large electrode portion due to the inrush current, the area of the third divided electrode facing the position where the dielectric breakdown has occurred is small. Even if the fuse blows, the effective electrode area that disappears can be reduced.
 上記金属化フィルムにおいて、第1分割電極の面積を1とした場合に、第3分割電極の面積は、1/6以上、1/3以下であってもよい。 In the metallized film, when the area of the first divided electrode is 1, the area of the third divided electrode may be 1/6 or more and 1/3 or less.
 上記金属化フィルムにおいて、第1ヒューズの幅を1とした場合に、第2ヒューズの幅は0.6以上、0.9以下であり、第3ヒューズの幅は0.3以上、0.6以下であってもよい。 In the metallized film, when the width of the first fuse is 1, the width of the second fuse is 0.6 or more and 0.9 or less, and the width of the third fuse is 0.3 or more and 0.6. It may be as follows.
 この金属化フィルムにおいては、第1ヒューズから第3ヒューズに向かって、徐々にヒューズの幅が細くなっている。したがって、この金属化フィルムによれば、面積の小さい分割電極を接続するヒューズの方が切れやすくなっているため、有効電極面積が必要以上に大きく失われる事態を抑制することができる。 In this metallized film, the width of the fuse gradually narrows from the first fuse to the third fuse. Therefore, according to this metallized film, the fuse connecting the divided electrodes having a small area is easier to blow, so that it is possible to suppress the situation where the effective electrode area is lost more than necessary.
 上記金属化フィルムにおいて、第2ヒューズは、金属化フィルムの幅方向に垂直な方向において互いに隣接する2つの第2分割電極、及び、金属化フィルムの幅方向において2つの第2分割電極の両方と隣接する第1分割電極の各々と隣接する位置に形成されていてもよい。 In the metallised film, the second fuse has both two second split electrodes adjacent to each other in the direction perpendicular to the width of the metallised film and two second split electrodes in the width direction of the metallised film. It may be formed at a position adjacent to each of the adjacent first divided electrodes.
 第2ヒューズは、第1分割電極及び2つの第2分割電極の各々と隣接するため、横ヒューズの役割と縦ヒューズの役割とを兼ねる。したがって、この金属化フィルムによれば、横ヒューズと縦ヒューズとを独立して設ける必要がないため、ヒューズの数を減らすことができ、フィルムコンデンサにした場合の分割電極への電流流路を確保しつつ、より効率的に絶縁破壊が生じた分割電極を電気的に切り離すことが可能となるため、短絡電流の流れる時間を短縮でき、素子の自己発熱を抑制することができる。 Since the second fuse is adjacent to each of the first split electrode and the two second split electrodes, it also serves as a horizontal fuse and a vertical fuse. Therefore, according to this metallized film, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and the current flow path to the divided electrode is secured when the film capacitor is used. At the same time, since the divided electrode in which dielectric breakdown has occurred can be electrically separated, the time for the short-circuit current to flow can be shortened, and the self-heating of the element can be suppressed.
 上記金属化フィルムにおいて、第3ヒューズは、金属化フィルムの幅方向に垂直な方向において互いに隣接する2つの第3分割電極、及び、金属化フィルムの幅方向において2つの第3分割電極の両方と隣接する第2分割電極の各々と隣接する位置に形成されていてもよい。 In the metallized film, the third fuse has both two third divided electrodes adjacent to each other in the direction perpendicular to the width direction of the metallized film and two third divided electrodes in the width direction of the metallized film. It may be formed at a position adjacent to each of the adjacent second divided electrodes.
 第3ヒューズは、第2分割電極及び2つの第3分割電極の各々と隣接するため、横ヒューズの役割と縦ヒューズの役割とを兼ねる。したがって、この金属化フィルムによれば、横ヒューズと縦ヒューズとを独立して設ける必要がないため、ヒューズの数を減らすことができ、フィルムコンデンサにした場合の分割電極への電流流路を確保しつつ、より効率的に絶縁破壊が生じた分割電極を電気的に切り離すことが可能となるため、短絡電流の流れる時間を短縮でき、素子の自己発熱を抑制することができる。 Since the third fuse is adjacent to each of the second split electrode and the two third split electrodes, it also serves as a horizontal fuse and a vertical fuse. Therefore, according to this metallized film, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and the current flow path to the divided electrode is secured when the film capacitor is used. At the same time, since the divided electrode in which dielectric breakdown has occurred can be electrically separated, the time for the short-circuit current to flow can be shortened, and the self-heating of the element can be suppressed.
 本発明の他の局面に従うフィルムコンデンサは、上記金属化フィルムによって構成されている。 The film capacitor according to another aspect of the present invention is composed of the above-mentioned metallized film.
 本発明によれば、フィルムコンデンサにした場合における自己発熱を抑制すると共に、有効電極面積が必要以上に消失する事態を抑制することで、コンデンサの静電容量低下を最小限に抑えることが可能な金属化フィルム等を提供することができる。 According to the present invention, it is possible to minimize the decrease in the capacitance of the capacitor by suppressing the self-heating in the case of using a film capacitor and suppressing the situation where the effective electrode area disappears more than necessary. A metallized film or the like can be provided.
金属化フィルムの平面の一部を模式的に示す図である。It is a figure which shows a part of the plane of the metallized film schematically. 図1の部分P1の一部を模式的に示す拡大図である。It is an enlarged view which shows a part of the part P1 of FIG. 1 schematically. 図1の部分P2の一部を模式的に示す拡大図である。It is an enlarged view which shows a part of the part P2 of FIG. 1 schematically. 図1の部分P3の一部を模式的に示す拡大図である。It is an enlarged view which shows a part of the part P3 of FIG. 1 schematically. 金属化フィルムの一部を模式的に示す拡大図である。It is an enlarged view which shows a part of a metallized film schematically. フィルムコンデンサの製造時に重ね合わされる2枚の金属化フィルムの向きを説明するための図である。It is a figure for demonstrating the orientation of two metallized films overlapped at the time of manufacturing a film capacitor. 第1の変形例における、金属化フィルムの平面の一部を模式的に示す図である。It is a figure which shows the part of the plane of the metallized film schematically in the 1st modification. 第2の変形例における、金属化フィルムの平面の一部を模式的に示す図である。It is a figure which shows the part of the plane of the metallized film schematically in the 2nd modification. 第3の変形例における、金属化フィルムの平面の一部を模式的に示す図である。It is a figure which shows the part of the plane of the metallized film schematically in the 3rd modification. 第4の変形例における、金属化フィルムの平面の一部を模式的に示す図である。It is a figure which shows the part of the plane of the metallized film schematically in the 4th modification. 比較例1における、金属化フィルムの平面の一部を示す図である。It is a figure which shows a part of the plane of the metallized film in the comparative example 1. FIG. 比較例2における、金属化フィルムの平面の一部を示す図である。It is a figure which shows a part of the plane of the metallized film in the comparative example 2. FIG. 比較例3における、金属化フィルムの平面の一部を示す図である。It is a figure which shows a part of the plane of the metallized film in the comparative example 3. FIG. 比較例4における、金属化フィルムの平面の一部を示す図である。It is a figure which shows a part of the plane of the metallized film in the comparative example 4.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 [1.金属化フィルムの構成]
 図1は、本実施の形態に従う金属化フィルム10の平面の一部を模式的に示す図である。図1においては、金属化フィルム10の流れ方向の一部分のみが示されている。金属化フィルム10は、例えば、フィルムコンデンサの製造に用いられる。以下では、金属化フィルム10の幅方向を単に「幅方向」とも称し、金属化フィルム10の流れ方向を単に「流れ方向」とも称する。
[1. Composition of metallised film]
FIG. 1 is a diagram schematically showing a part of a flat surface of the metallized film 10 according to the present embodiment. In FIG. 1, only a part of the metallized film 10 in the flow direction is shown. The metallized film 10 is used, for example, in the manufacture of a film capacitor. Hereinafter, the width direction of the metallized film 10 is also simply referred to as “width direction”, and the flow direction of the metallized film 10 is also simply referred to as “flow direction”.
 図1に示されるように、金属化フィルム10は、誘電体フィルム20を含んでいる。誘電体フィルム20としては、例えば、ポリプロピレン(PP:polypropylene)、ポリエチレンテレフタレート(PET:polyethylene terephthalate)、ポリフェニレンスルファイド(PPS:polyphenylene sulfide)、ポリエチレンナフタレート(PEN:polyethylene naphthalate)、ポリフッ化ビニリデン(PVDF:polyvinylidene difluoride)等の各種絶縁性を有する樹脂を用いることができる。 As shown in FIG. 1, the metallized film 10 includes a dielectric film 20. Examples of the dielectric film 20 include polypropylene (PP: polypolylone), polyethylene terephthalate (PET: polyphenylene terephthalate), polyphenylene sulfide (PPS: polyphenylene sulfide), polyethylene naphthalate (PEN: polyphenylene fluoride), and polyvinylidene fluoride. : Polyvinylidene fluoride) and other resins having various insulating properties can be used.
 誘電体フィルム20の厚さは、特に限定されないが、0.5μm~25μmが好ましく、1.5μm~10μmがさらに好ましい。 The thickness of the dielectric film 20 is not particularly limited, but is preferably 0.5 μm to 25 μm, and more preferably 1.5 μm to 10 μm.
 誘電体フィルム20において、一方の端部には金属(例えば、アルミニウム又は亜鉛)が蒸着された領域である電気導入部30が形成され、他方の端部には金属が蒸着されていない領域である絶縁マージン40が形成されている。金属化フィルム10を用いてフィルムコンデンサが製造される場合に、電気導入部30にはメタリコン電極が接続される。 In the dielectric film 20, an electric introduction portion 30 which is a region where a metal (for example, aluminum or zinc) is vapor-deposited is formed on one end, and a region where no metal is vapor-deposited on the other end. An insulation margin 40 is formed. When a film capacitor is manufactured using the metallized film 10, a metallikon electrode is connected to the electric introduction section 30.
 電気導入部30と絶縁マージン40との間には、電極部50が形成されている。電極部50は、誘電体フィルム20に金属(例えば、アルミニウム又は亜鉛)を蒸着させることによって形成されている。 An electrode portion 50 is formed between the electricity introduction portion 30 and the insulation margin 40. The electrode portion 50 is formed by depositing a metal (for example, aluminum or zinc) on the dielectric film 20.
 電極部50及び電気導入部30を形成する金属としては、特に限定されないが、例えば、アルミニウム(Al)、亜鉛(Zn)、錫(Sn)、銅(Cu)等の金属材料又はこれらの合金等を用いることができる。金属蒸着電極(電極部50)の厚さは特に限定されないが、1nm~200nmが好ましい。また電気導入部30の金属蒸着膜の厚さは、金属蒸着電極の2倍~5倍程度が好ましい。また、金属蒸着電極の厚さは、所望の電気特性が得られるように、金属蒸着電極材料の固有抵抗に応じて設定してもよい。 The metal forming the electrode portion 50 and the electric introduction portion 30 is not particularly limited, but for example, a metal material such as aluminum (Al), zinc (Zn), tin (Sn), copper (Cu), or an alloy thereof or the like. Can be used. The thickness of the metal-deposited electrode (electrode portion 50) is not particularly limited, but is preferably 1 nm to 200 nm. The thickness of the metal-deposited film of the electric introduction section 30 is preferably about 2 to 5 times that of the metal-deposited electrode. Further, the thickness of the metal-deposited electrode may be set according to the intrinsic resistance of the metal-deposited electrode material so that desired electrical characteristics can be obtained.
 電極部50は、金属が蒸着されていない領域であるマージン部60を介して、電気導入部30から絶縁マージン40に向かって順に並ぶ、大電極部100、第1分割電極部200、第2分割電極部300及び第3分割電極部400に分割されている。大電極部100、第1分割電極部200、第2分割電極部300及び第3分割電極部400の各々は、金属を蒸着させることによって形成されている。 The electrode portion 50 is arranged in order from the electric introduction portion 30 toward the insulation margin 40 via the margin portion 60 which is a region where metal is not vapor-deposited, and the large electrode portion 100, the first divided electrode portion 200, and the second divided portion 50 are arranged in order. It is divided into an electrode portion 300 and a third divided electrode portion 400. Each of the large electrode portion 100, the first split electrode portion 200, the second split electrode portion 300, and the third split electrode portion 400 is formed by depositing metal.
 第1分割電極部200は、マージン部60を介して、金属化フィルム10の幅方向に垂直な方向(流れ方向)において、複数の第1分割電極210に分割されている。各第1分割電極210の幅方向の長さは、例えば、大電極部100の幅方向の長さの160%(1.6倍)以上、180%(1.8倍)以下である。 The first divided electrode portion 200 is divided into a plurality of first divided electrodes 210 in a direction (flow direction) perpendicular to the width direction of the metallized film 10 via a margin portion 60. The length of each first divided electrode 210 in the width direction is, for example, 160% (1.6 times) or more and 180% (1.8 times) or less of the length in the width direction of the large electrode portion 100.
 第2分割電極部300は、マージン部60を介して、金属化フィルム10の流れ方向において、複数の第2分割電極310に分割されている。例えば、金属化フィルム10の流れ方向において、1つの第1分割電極210に対応する位置に存在する第2分割電極310の数は2つである。なお、金属化フィルム10の流れ方向において、1つの第1分割電極210に対応する位置に存在する第2分割電極310の数は必ずしも2つである必要はなく、3つであってもよい。また、各第2分割電極310の幅方向の長さは、例えば、第1分割電極210の幅方向の長さの80%(0.8倍)以上、120%(1.2倍)以下である。 The second divided electrode portion 300 is divided into a plurality of second divided electrodes 310 in the flow direction of the metallized film 10 via the margin portion 60. For example, in the flow direction of the metallized film 10, the number of the second divided electrodes 310 existing at the positions corresponding to one first divided electrode 210 is two. The number of the second divided electrodes 310 existing at the positions corresponding to one first divided electrode 210 in the flow direction of the metallized film 10 does not necessarily have to be two, but may be three. Further, the length of each of the second divided electrodes 310 in the width direction is, for example, 80% (0.8 times) or more and 120% (1.2 times) or less of the length of the first divided electrode 210 in the width direction. be.
 第3分割電極部400は、マージン部60を介して、金属化フィルム10の流れ方向において、複数の第3分割電極410に分割されている。例えば、金属化フィルム10の流れ方向において、1つの第1分割電極210に対応する位置に存在する第3分割電極410の数は3つである。なお、金属化フィルム10の流れ方向において、1つの第1分割電極210に対応する位置に存在する第3分割電極410の数は、4つ以上、6つ以下であってもよい。また、各第3分割電極410の幅方向の長さは、例えば、各第1分割電極210の幅方向の長さの45%(0.45倍)以上、55%(0.55倍)以下である。 The third divided electrode portion 400 is divided into a plurality of third divided electrodes 410 in the flow direction of the metallized film 10 via the margin portion 60. For example, in the flow direction of the metallized film 10, the number of the third divided electrodes 410 existing at the positions corresponding to one first divided electrode 210 is three. The number of third divided electrodes 410 existing at positions corresponding to one first divided electrode 210 in the flow direction of the metallized film 10 may be four or more and six or less. Further, the length of each third divided electrode 410 in the width direction is, for example, 45% (0.45 times) or more and 55% (0.55 times) or less of the length of each first divided electrode 210 in the width direction. Is.
 このように、金属化フィルム10においては、第1分割電極210、第2分割電極310及び第3分割電極410の順に面積が大きい。例えば、第1分割電極210の面積を1とした場合に、第2分割電極310の面積は1/3以上、1/2以下であり、第3分割電極410の面積は1/12以上、1/3以下である。好ましくは、第3分割電極410の面積は、1/6以上、1/3以下である。 As described above, in the metallized film 10, the areas of the first divided electrode 210, the second divided electrode 310, and the third divided electrode 410 are larger in this order. For example, when the area of the first divided electrode 210 is 1, the area of the second divided electrode 310 is 1/3 or more and 1/2 or less, and the area of the third divided electrode 410 is 1/12 or more and 1 It is less than / 3rd. Preferably, the area of the third divided electrode 410 is 1/6 or more and 1/3 or less.
 図2は、図1の部分P1の一部を模式的に示す拡大図である。図2に示されるように、大電極部100は、第1ヒューズ70を介して、第1分割電極210に電気的に接続されている。なお、第1ヒューズ70の幅はL1である。 FIG. 2 is an enlarged view schematically showing a part of the part P1 of FIG. As shown in FIG. 2, the large electrode portion 100 is electrically connected to the first divided electrode 210 via the first fuse 70. The width of the first fuse 70 is L1.
 図3は、図1の部分P2の一部を模式的に示す拡大図である。図3に示されるように、第1分割電極210は、第2ヒューズ72を介して、2つの第2分割電極310に電気的に接続されている。すなわち、第2ヒューズ72は、流れ方向において互いに隣接する2つの第2分割電極310、及び、幅方向において2つの第2分割電極310の両方と隣接する第1分割電極210の各々と隣接する位置に形成されている。 FIG. 3 is an enlarged view schematically showing a part of the part P2 of FIG. As shown in FIG. 3, the first split electrode 210 is electrically connected to the two second split electrodes 310 via the second fuse 72. That is, the second fuse 72 is located adjacent to each of the two second split electrodes 310 adjacent to each other in the flow direction and the first split electrode 210 adjacent to both of the two second split electrodes 310 in the width direction. Is formed in.
 つまり、第2ヒューズ72は、幅方向に並ぶ第1分割電極210及び第2分割電極310を電気に接続する横ヒューズの役割と、流れ方向に並ぶ2つの第2分割電極310を電気的に接続する縦ヒューズの役割とを果たす。したがって、金属化フィルム10によれば、横ヒューズと縦ヒューズとを独立して設ける必要がないため、ヒューズの数を減らすことができ、フィルムコンデンサにした場合に有効電極面積が必要以上に消失する事態を抑制することで、コンデンサの静電容量低下を最小限に抑えることができる。なお、第2ヒューズ72の幅はL2である。 That is, the second fuse 72 serves as a horizontal fuse for electrically connecting the first divided electrode 210 and the second divided electrode 310 arranged in the width direction, and electrically connects the two second divided electrodes 310 arranged in the flow direction. Serves as a vertical fuse. Therefore, according to the metallised film 10, since it is not necessary to provide the horizontal fuse and the vertical fuse independently, the number of fuses can be reduced, and the effective electrode area disappears more than necessary when the film capacitor is used. By suppressing the situation, it is possible to minimize the decrease in the capacitance of the capacitor. The width of the second fuse 72 is L2.
 図4は、図1の部分P3の一部を模式的に示す拡大図である。図4に示されるように、第2分割電極310は、第3ヒューズ74を介して、2つの第3分割電極410に電気的に接続されている。すなわち、第3ヒューズ74は、流れ方向において互いに隣接する2つの第3分割電極410、及び、幅方向において2つの第3分割電極410の両方と隣接する第2分割電極310の各々と隣接する位置に形成されている。 FIG. 4 is an enlarged view schematically showing a part of the part P3 of FIG. As shown in FIG. 4, the second split electrode 310 is electrically connected to the two third split electrodes 410 via the third fuse 74. That is, the third fuse 74 is located adjacent to each of the two third divided electrodes 410 adjacent to each other in the flow direction and the second divided electrodes 310 adjacent to both of the two third divided electrodes 410 in the width direction. Is formed in.
 つまり、第3ヒューズ74は、幅方向に並ぶ第2分割電極310及び第3分割電極410を電気に接続する横ヒューズの役割と、流れ方向に並ぶ2つの第3分割電極410を電気的に接続する縦ヒューズの役割とを果たす。したがって、金属化フィルム10によれば、横ヒューズと縦ヒューズとを独立して設ける必要がないため、ヒューズの数を減らすことができ、フィルムコンデンサにした場合に有効電極面積が必要以上に消失する事態を抑制することで、コンデンサの静電容量低下を最小限に抑えることができる。なお、第3ヒューズ74の幅はL3である。 That is, the third fuse 74 serves as a horizontal fuse that connects the second divided electrode 310 and the third divided electrode 410 arranged in the width direction to electricity, and electrically connects the two third divided electrodes 410 arranged in the flow direction. Serves as a vertical fuse. Therefore, according to the metallised film 10, since it is not necessary to provide the horizontal fuse and the vertical fuse independently, the number of fuses can be reduced, and the effective electrode area disappears more than necessary when the film capacitor is used. By suppressing the situation, it is possible to minimize the decrease in the capacitance of the capacitor. The width of the third fuse 74 is L3.
 金属化フィルム10においては、第1ヒューズ70、第2ヒューズ72及び第3ヒューズ74の順に幅が広い。例えば、第1ヒューズ70の幅L1を1とした場合に、第2ヒューズ72の幅L2は0.6以上、0.9以下であり、第3ヒューズ74の幅L3は0.3以上、0.6以下である。このように、金属化フィルム10においては、第1ヒューズ70から第3ヒューズ74に向かって、徐々にヒューズの幅が細くなっている。したがって、金属化フィルム10によれば、面積の小さい分割電極を接続するヒューズの方が切れやすくなっているため、有効電極面積が必要以上に大きく失われる事態を抑制することができる。 In the metallized film 10, the width is wider in the order of the first fuse 70, the second fuse 72, and the third fuse 74. For example, when the width L1 of the first fuse 70 is 1, the width L2 of the second fuse 72 is 0.6 or more and 0.9 or less, and the width L3 of the third fuse 74 is 0.3 or more and 0. It is 6.6 or less. As described above, in the metallized film 10, the width of the fuse gradually narrows from the first fuse 70 to the third fuse 74. Therefore, according to the metallized film 10, since the fuse connecting the divided electrodes having a small area is easier to blow, it is possible to suppress the situation where the effective electrode area is lost more than necessary.
 図5は、金属化フィルム10の一部を模式的に示す拡大図である。図5を参照して、例えば、部分P4において第2ヒューズ72が切れたとする。上述のように、第2ヒューズ72及び第3ヒューズ74の各々は、横ヒューズ及び縦ヒューズの両方として機能するため、この場合には、第1分割電極210から流れ込む電流は、例えば図中の矢印に沿って、図中下方の第2分割電極310、第3ヒューズ74及び第3分割電極410を介して、図中上方の第2分割電極310に流れ込む。 FIG. 5 is an enlarged view schematically showing a part of the metallized film 10. With reference to FIG. 5, for example, it is assumed that the second fuse 72 is blown in the portion P4. As described above, since each of the second fuse 72 and the third fuse 74 functions as both a horizontal fuse and a vertical fuse, in this case, the current flowing from the first dividing electrode 210 is, for example, an arrow in the figure. Along the above, the current flows into the upper second dividing electrode 310 in the figure via the second divided electrode 310, the third fuse 74, and the third divided electrode 410 in the lower part of the figure.
 すなわち、金属化フィルム10においては、例えば部分P4において第2ヒューズ72が切れたとしても、図中上方の第2分割電極310の面積が有効電極面積から即失われるわけではない。このように、金属化フィルム10によれば、第2ヒューズ72及び第3ヒューズ74の各々が、横ヒューズとしてだけでなく、縦ヒューズとしても機能するため、有効電極面積が必要以上に消失する事態を抑制することができる。 That is, in the metallized film 10, even if the second fuse 72 is blown in the portion P4, for example, the area of the second split electrode 310 at the upper part in the figure is not immediately lost from the effective electrode area. As described above, according to the metallized film 10, each of the second fuse 72 and the third fuse 74 functions not only as a horizontal fuse but also as a vertical fuse, so that the effective electrode area disappears more than necessary. Can be suppressed.
 図6は、フィルムコンデンサ5の製造時に重ね合わされる2枚の金属化フィルム10の向きを説明するための図である。図6に示されるように、金属化フィルム10をフィルムコンデンサ5にする場合には、各電気導入部30が反対側の端部に位置するように、2枚の金属化フィルム10が重ね合わされる。すなわち、一方の大電極部100に対向する位置には他方の第3分割電極部400が位置し、一方の第1分割電極部200に対向する位置には他方の第2分割電極部300が位置する。金属化フィルム10においては、第3分割電極410の面積が第1分割電極210及び第2分割電極310の各々よりも小さくなっている。したがって、金属化フィルム10によれば、仮に突入電流に起因して大電極部100の一部で絶縁破壊が生じても、セルフヒーリング等が生じた位置に対向する第3分割電極部400の面積が小さいため、有効電極面積の消失を抑制することができる。 FIG. 6 is a diagram for explaining the orientation of the two metallized films 10 that are overlapped at the time of manufacturing the film capacitor 5. As shown in FIG. 6, when the metallized film 10 is used as a film capacitor 5, the two metallized films 10 are superposed so that the electric introduction portions 30 are located at the opposite ends. .. That is, the other third divided electrode portion 400 is located at a position facing one of the large electrode portions 100, and the other second divided electrode portion 300 is located at a position facing one of the first divided electrode portions 200. do. In the metallized film 10, the area of the third divided electrode 410 is smaller than that of each of the first divided electrode 210 and the second divided electrode 310. Therefore, according to the metallised film 10, even if dielectric breakdown occurs in a part of the large electrode portion 100 due to the inrush current, the area of the third divided electrode portion 400 facing the position where self-healing or the like occurs. Is small, so that the disappearance of the effective electrode area can be suppressed.
 [2.特徴]
 以上のように、本実施の形態に従う金属化フィルム10においては、例えば、1つの第2ヒューズ72を介して第1分割電極210と2つの第2分割電極310とが接続されている。第1分割電極210と2つの第2分割電極310とは、金属化フィルム10の幅方向(横方向)に並んでいる。2つの第2分割電極310は、金属化フィルム10の流れ方向(縦方向)に並んでいる。第2ヒューズ72は、第1分割電極210と2つの第2分割電極310とを接続するため、横ヒューズの役割と縦ヒューズの役割とを兼ねる。したがって、金属化フィルム10によれば、横ヒューズと縦ヒューズとを独立して設ける必要がないため、ヒューズの数を減らすことができ、フィルムコンデンサ5にした場合の自己発熱を抑制することができる。また、金属化フィルム10によれば、第2ヒューズ72及び第3ヒューズ74の各々が縦ヒューズとしても機能するため、有効電極面積が必要以上に消失する事態を抑制することができる。
[2. feature]
As described above, in the metallized film 10 according to the present embodiment, for example, the first split electrode 210 and the two second split electrodes 310 are connected via one second fuse 72. The first divided electrode 210 and the two second divided electrodes 310 are arranged in the width direction (horizontal direction) of the metallized film 10. The two second divided electrodes 310 are arranged in the flow direction (longitudinal direction) of the metallized film 10. Since the second fuse 72 connects the first split electrode 210 and the two second split electrodes 310, it serves both as a horizontal fuse and as a vertical fuse. Therefore, according to the metallized film 10, it is not necessary to provide the horizontal fuse and the vertical fuse independently, so that the number of fuses can be reduced and self-heating can be suppressed when the film capacitor 5 is used. .. Further, according to the metallized film 10, since each of the second fuse 72 and the third fuse 74 also functions as a vertical fuse, it is possible to suppress a situation in which the effective electrode area disappears more than necessary.
 [3.変形例]
 以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。以下、変形例について説明する。
[3. Modification example]
Although the embodiments have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. Hereinafter, a modified example will be described.
 <3-1>
 図7は、第1の変形例における、金属化フィルム10Aの平面の一部を模式的に示す図である。図7に示されるように、金属化フィルム10Aの流れ方向において、1つの第1分割電極210Aに対応する位置に存在する第2分割電極310Aの数は3つであってもよい。
<3-1>
FIG. 7 is a diagram schematically showing a part of the plane of the metallized film 10A in the first modification. As shown in FIG. 7, the number of the second divided electrodes 310A existing at the positions corresponding to one first divided electrode 210A in the flow direction of the metallized film 10A may be three.
 <3-2>
 図8は、第2の変形例における、金属化フィルム10Bの平面の一部を模式的に示す図である。図8に示されるように、各第3分割電極410Bの流れ方向における第1分割電極210Bとの相対的な位置は、上記実施の形態に従う金属化フィルム10におけるものと異なる。第3分割電極の流れ方向における第1分割電極との相対的な位置は、図8に示されるようなものであってもよい。
<3-2>
FIG. 8 is a diagram schematically showing a part of the plane of the metallized film 10B in the second modification. As shown in FIG. 8, the relative positions of the third divided electrodes 410B with respect to the first divided electrodes 210B in the flow direction are different from those in the metallized film 10 according to the above embodiment. The position of the third split electrode relative to the first split electrode in the flow direction may be as shown in FIG.
 <3-3>
 図9は、第3の変形例における、金属化フィルム10Cの平面の一部を模式的に示す図である。図9に示されるように、第1分割電極部200C、第2分割電極部300C及び第3分割電極部400Cの各々の幅方向の長さは同一であってもよい。この場合に、大電極部100Cの幅方向の長さは、金属化フィルム10Cの幅方向の長さの1/5以上、1/4以下であることが好ましい。例えば、大電極部100Cの幅方向の長さが金属化フィルム10Cの幅方向の長さの1/4以下である場合には、電気導入側における絶縁破壊による有効電極面積の消失を小さくすることができるとともに、重なり合う分割電極のズレを小さくできるため絶縁破壊により切り離される分割電極を減らすことができ、静電容量減少抑制効果を向上できる。また、大電極部100Cの幅方向の長さが金属化フィルム10Cの幅方向の長さの1/5以上である場合には、設定する分割電極の面積を抑えることができ、絶縁破壊時の有効電極面積の消失を小さくし、静電容量減少抑制効果を向上できる。
<3-3>
FIG. 9 is a diagram schematically showing a part of the plane of the metallised film 10C in the third modification. As shown in FIG. 9, the lengths of the first divided electrode portion 200C, the second divided electrode portion 300C, and the third divided electrode portion 400C in the width direction may be the same. In this case, the length of the large electrode portion 100C in the width direction is preferably 1/5 or more and 1/4 or less of the length in the width direction of the metallized film 10C. For example, when the length of the large electrode portion 100C in the width direction is 1/4 or less of the length of the metallized film 10C in the width direction, the disappearance of the effective electrode area due to dielectric breakdown on the electricity introduction side should be reduced. At the same time, the displacement of the overlapping divided electrodes can be reduced, so that the number of divided electrodes separated due to dielectric breakdown can be reduced, and the effect of suppressing the decrease in capacitance can be improved. Further, when the length in the width direction of the large electrode portion 100C is 1/5 or more of the length in the width direction of the metallized film 10C, the area of the divided electrode to be set can be suppressed, and the area at the time of dielectric breakdown can be suppressed. It is possible to reduce the disappearance of the effective electrode area and improve the effect of suppressing the decrease in electrostatic capacity.
 <3-4>
 図10は、第4の変形例における、金属化フィルム10Dの平面の一部を模式的に示す図である。図10に示されるように、金属化フィルム10Aの流れ方向において、1つの第1分割電極210Dに対応する位置に存在する第2分割電極310Dの数は3つであってもよく、さらに、1つの第1分割電極210Dに対応する位置に存在する第3分割電極410Dの数は6つであってもよい。
<3-4>
FIG. 10 is a diagram schematically showing a part of the plane of the metallised film 10D in the fourth modification. As shown in FIG. 10, the number of the second divided electrodes 310D existing at the positions corresponding to one first divided electrode 210D in the flow direction of the metallized film 10A may be three, and further, one. The number of the third divided electrodes 410D existing at the positions corresponding to the first divided electrodes 210D may be six.
 [4.実施例等]
 <4-1.実施例及び比較例>
 (4-1-1.実施例1-3)
 実施例1-3における金属化フィルム10においては、図1に示される分割電極パターンが形成されていた。すなわち、実施例1-3の各々において、第1分割電極210、第2分割電極310及び第3分割電極410の流れ方向の長さの比は、1:1/2:1/3であった。第1分割電極210の流れ方向の長さは4.6mmであった。また、第1分割電極210、第2分割電極310及び第3分割電極410の幅方向の長さの比は、1:1:1/2であった。第1分割電極210の幅方向の長さは8.0mmであった。
[4. Examples, etc.]
<4-1. Examples and Comparative Examples>
(4-1-1. Example 1-3)
In the metallized film 10 in Examples 1-3, the split electrode pattern shown in FIG. 1 was formed. That is, in each of Examples 1-3, the ratio of the lengths of the first divided electrode 210, the second divided electrode 310, and the third divided electrode 410 in the flow direction was 1: 1/2: 1/3. .. The length of the first split electrode 210 in the flow direction was 4.6 mm. Further, the ratio of the lengths of the first divided electrode 210, the second divided electrode 310 and the third divided electrode 410 in the width direction was 1: 1: 1/2. The length of the first split electrode 210 in the width direction was 8.0 mm.
 実施例1-3においては、各ヒューズの幅の関係が互いに異なっていた。実施例1においては、第1ヒューズ70の幅を1とした場合に、第2ヒューズ72の幅が0.7であり、第3ヒューズ74の幅が0.5であった。第1ヒューズ70の幅は0.35mmであった。 In Examples 1-3, the relationship between the widths of the fuses was different from each other. In the first embodiment, when the width of the first fuse 70 is 1, the width of the second fuse 72 is 0.7 and the width of the third fuse 74 is 0.5. The width of the first fuse 70 was 0.35 mm.
 実施例2においては、第1ヒューズ70の幅を1とした場合に、第2ヒューズ72の幅が0.6であり、第3ヒューズ74の幅が0.3であった。第1ヒューズ70の幅は0.35mmであった。 In Example 2, when the width of the first fuse 70 was 1, the width of the second fuse 72 was 0.6 and the width of the third fuse 74 was 0.3. The width of the first fuse 70 was 0.35 mm.
 実施例3においては、第1ヒューズ70の幅を1とした場合に、第2ヒューズ72の幅が0.9であり、第3ヒューズ74の幅が0.6であった。第1ヒューズ70の幅は0.35mmであった。 In Example 3, when the width of the first fuse 70 was 1, the width of the second fuse 72 was 0.9 and the width of the third fuse 74 was 0.6. The width of the first fuse 70 was 0.35 mm.
 (4-1-2.実施例4)
 実施例4における金属化フィルム10Dにおいては、図10に示される分割電極パターンが形成されていた。すなわち、実施例4において、第1分割電極210D、第2分割電極310D及び第3分割電極410Dの流れ方向の長さの比は、1:1/3:1/6であった。第1分割電極210Dの流れ方向の長さは4.6mmであった。また、第1分割電極210D、第2分割電極310D及び第3分割電極410Dの幅方向の長さの比は、1:1:1/2であった。第1分割電極210の幅方向の長さは8.5mmであった。
(4-1-2. Example 4)
In the metallized film 10D of Example 4, the split electrode pattern shown in FIG. 10 was formed. That is, in Example 4, the ratio of the lengths of the first divided electrode 210D, the second divided electrode 310D, and the third divided electrode 410D in the flow direction was 1: 1/3: 1/6. The length of the first split electrode 210D in the flow direction was 4.6 mm. Further, the ratio of the lengths of the first divided electrode 210D, the second divided electrode 310D and the third divided electrode 410D in the width direction was 1: 1: 1/2. The length of the first split electrode 210 in the width direction was 8.5 mm.
 実施例4においては、第1ヒューズ70Dの幅を1とした場合に、第2ヒューズ72Dの幅が0.7であり、第3ヒューズ74Dの幅が0.5であった。第1ヒューズ70Dの幅は0.35mmであった。 In Example 4, when the width of the first fuse 70D was 1, the width of the second fuse 72D was 0.7 and the width of the third fuse 74D was 0.5. The width of the first fuse 70D was 0.35 mm.
 (4-1-3.比較例1)
 図11は、比較例1における、金属化フィルム10Eの平面の一部を示す図である。図11に示されるように、比較例1における金属化フィルム10Eにおいては、マージン部60Eによって、いわゆるフィッシュネット型の分割電極パターンが形成されていた。比較例1における金属化フィルム10Eにおいては、マージン部60Eによって、複数の分割電極(セグメント)が形成されており、各分割電極の四辺の各々にヒューズ76Eが形成されていた。
(4-1-3. Comparative Example 1)
FIG. 11 is a diagram showing a part of the plane of the metallized film 10E in Comparative Example 1. As shown in FIG. 11, in the metallized film 10E in Comparative Example 1, a so-called fishnet type split electrode pattern was formed by the margin portion 60E. In the metallized film 10E in Comparative Example 1, a plurality of divided electrodes (segments) were formed by the margin portion 60E, and fuses 76E were formed on each of the four sides of each divided electrode.
 (4-1-4.比較例2)
 図12は、比較例2における、金属化フィルム10Fの平面の一部を示す図である。図12に示されるように、比較例2における金属化フィルム10Fにおいては、第1分割電極210F、第2分割電極310F及び第3分割電極410Fの流れ方向の長さの比は、1:1:1/2であった。第1分割電極210の流れ方向の長さは4.6mmであった。また、第1分割電極210F、第2分割電極310F及び第3分割電極410Fの幅方向の長さの比は、1:1:1/2であった。第1分割電極210Fの幅方向の長さは8.5mmであった。
(4-1-4. Comparative Example 2)
FIG. 12 is a diagram showing a part of the plane of the metallized film 10F in Comparative Example 2. As shown in FIG. 12, in the metallized film 10F in Comparative Example 2, the ratio of the lengths of the first divided electrode 210F, the second divided electrode 310F and the third divided electrode 410F in the flow direction is 1: 1: 1. It was 1/2. The length of the first split electrode 210 in the flow direction was 4.6 mm. The ratio of the lengths of the first divided electrode 210F, the second divided electrode 310F, and the third divided electrode 410F in the width direction was 1: 1: 1/2. The length of the first split electrode 210F in the width direction was 8.5 mm.
 比較例2においては、第1ヒューズ70Fの幅を1とした場合に、第2ヒューズ72Fの幅が0.6であり、第3ヒューズ74Fの幅が0.4であった。第1ヒューズ70Fの幅は0.35mmであった。 In Comparative Example 2, when the width of the first fuse 70F was 1, the width of the second fuse 72F was 0.6 and the width of the third fuse 74F was 0.4. The width of the first fuse 70F was 0.35 mm.
 (4-1-5.比較例3)
 図13は、比較例3における、金属化フィルム10Gの平面の一部を示す図である。図13に示されるように、比較例3における金属化フィルム10Gにおいては、第1分割電極210G、第2分割電極310G及び第3分割電極410Gの流れ方向の長さの比は、1:1/4:1/8であった。第1分割電極210Gの流れ方向の長さは4.6mmであった。また、第1分割電極210G、第2分割電極310G及び第3分割電極410Gの幅方向の長さの比は、1:1:1/2であった。第1分割電極210Gの幅方向の長さは8.5mmであった。
(4-1-5. Comparative Example 3)
FIG. 13 is a diagram showing a part of a flat surface of the metallised film 10G in Comparative Example 3. As shown in FIG. 13, in the metallized film 10G in Comparative Example 3, the ratio of the lengths of the first divided electrode 210G, the second divided electrode 310G and the third divided electrode 410G in the flow direction is 1: 1 /. It was 4: 1/8. The length of the first split electrode 210G in the flow direction was 4.6 mm. The ratio of the lengths of the first divided electrode 210G, the second divided electrode 310G and the third divided electrode 410G in the width direction was 1: 1: 1/2. The length of the first split electrode 210G in the width direction was 8.5 mm.
 比較例3においては、第1ヒューズ70Gの幅を1とした場合に、第2ヒューズ72Gの幅が0.5であり、第3ヒューズ74Gの幅が0.3であった。第1ヒューズ70Gの幅は0.35mmであった。 In Comparative Example 3, when the width of the first fuse 70G was 1, the width of the second fuse 72G was 0.5 and the width of the third fuse 74G was 0.3. The width of the first fuse 70G was 0.35 mm.
 (4-1-6.比較例4)
 図14は、比較例4における、金属化フィルム10Hの平面の一部を示す図である。図14に示されるように、比較例4における金属化フィルム10Hにおいては、誘電体フィルム上に金属膜がベタ蒸着されることで電極部50Hが形成されており、分割電極パターンが形成されていなかった。
(4-1-6. Comparative Example 4)
FIG. 14 is a diagram showing a part of the plane of the metallised film 10H in Comparative Example 4. As shown in FIG. 14, in the metallized film 10H in Comparative Example 4, the electrode portion 50H is formed by solid vapor deposition of the metal film on the dielectric film, and the divided electrode pattern is not formed. rice field.
 実施例1-4及び比較例1-4の特性は、以下の表1に示される通りであった。 The characteristics of Examples 1-4 and Comparative Example 1-4 were as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 <4-2.製造方法>
 (4-2-1.実施例1-3及び比較例1-3)
 実施例1-3及び比較例1-3の各々は、共通の方法によって製造された。なお、実施例1-3及び比較例1-3の各々においては、誘電体フィルム上に形成される分割電極パターンの形状が異なっていた。以下、実施例1-3及び比較例1-3に共通する製造方法について説明する。
Figure JPOXMLDOC01-appb-T000001
<4-2. Manufacturing method>
(4-2-1. Example 1-3 and Comparative Example 1-3)
Each of Example 1-3 and Comparative Example 1-3 was produced by a common method. In addition, in each of Example 1-3 and Comparative Example 1-3, the shape of the divided electrode pattern formed on the dielectric film was different. Hereinafter, the manufacturing method common to Examples 1-3 and Comparative Example 1-3 will be described.
 厚み2.3μmのPP(ポリプロピレン)フィルムロールに、アルバック社製巻取式真空蒸着装置(EWE-060)を用いて、オイルマスキングにて絶縁マージン及び分割電極パターンを形成した。アルミニウムを蒸着してフィルム上に電極を形成すると共に、亜鉛を蒸着してフィルム上にヘビーエッジ(電気導入部)を形成した。これにより、Al金属膜抵抗が20Ω/□、Zn金属膜抵抗が5Ω/□の電極パターン付き金属化フィルムロールを得た。作製した金属化フィルムロールを任意の幅にスリッターにて断裁し、フィルム幅30mm、絶縁マージン幅2.0mm、ヘビーエッジ幅1.5mmの素子巻き用の金属化フィルムの小巻リールを作製した。皆藤製作所社メタライズドフィルムコンデンサ全自動巻取機(3KAW-N2)にて、作製した小巻リールを用いて、静電容量が50μFとなるように素子巻きを行ない、プレス、扁平化処理を行なった。扁平化した素子は、素子端面にメタリコン溶射を行ない、フィルム電極取出し部を形成後、真空高温下で熱処理を行い、素子を硬化させた。メタリコン溶射部にリードを取り付け、樹脂ケースに入れて、隙間にエポキシ樹脂を充填し、樹脂を硬化させることで、評価用のフィルムコンデンサ素子を得た。 An insulation margin and a split electrode pattern were formed on a PP (polypropylene) film roll having a thickness of 2.3 μm by oil masking using a retractable vacuum vapor deposition apparatus (EWE-060) manufactured by ULVAC. Aluminum was vapor-deposited to form electrodes on the film, and zinc was vapor-deposited to form heavy edges (electrical introductions) on the film. As a result, a metallized film roll with an electrode pattern having an Al metal film resistance of 20 Ω / □ and a Zn metal film resistance of 5 Ω / □ was obtained. The produced metallized film roll was cut to an arbitrary width with a slitter to produce a small winding reel of a metallized film for element winding having a film width of 30 mm, an insulation margin width of 2.0 mm, and a heavy edge width of 1.5 mm. Using a small winding reel manufactured by Minato Seisakusho's metallized film capacitor fully automatic winder (3KAW-N2), element winding was performed so that the capacitance was 50 μF, and pressing and flattening were performed. .. The flattened device was subjected to metallicon spraying on the end face of the device to form a film electrode extraction portion, and then heat-treated under a high vacuum temperature to cure the device. A lead was attached to the metallikon spraying part, put in a resin case, filled with epoxy resin in the gap, and the resin was cured to obtain a film capacitor element for evaluation.
 (4-2-2.比較例4)
 厚み2.3μmのPP(ポリプロピレン)フィルムロールに、アルバック社製巻取式真空蒸着装置(EWE-060)を用いて、オイルマスキングにて絶縁マージンを形成した。分割電極パターンは形成しなかった。アルミニウムを蒸着してフィルム上に電極を形成すると共に、亜鉛を蒸着してフィルム上にヘビーエッジ(電気導入部)を形成した。これにより、Al金属膜抵抗が20Ω/□、Zn金属膜抵抗が5Ω/□の電極パターン付き金属化フィルムロールを得た。作成した金属化フィルムロールを皆藤製作所社メタライズドフィルムコンデンサ全自動巻取機(3KAW-N2)にて、静電容量が50μFとなるように素子巻きを行ない、プレス、扁平化処理を行なった。扁平化した素子は、素子端面にメタリコン溶射を行ない、フィルム電極取出し部を形成後、真空高温下で熱処理を行い、素子を硬化させた。メタリコン溶射部にリードを取り付け、樹脂ケースに入れて、隙間にエポキシ樹脂を充填し、樹脂を硬化させることで、評価用のフィルムコンデンサ素子を得た。
(4-2-2. Comparative Example 4)
An insulation margin was formed by oil masking on a PP (polypropylene) film roll having a thickness of 2.3 μm using a take-up vacuum vapor deposition apparatus (EWE-060) manufactured by ULVAC. No split electrode pattern was formed. Aluminum was vapor-deposited to form electrodes on the film, and zinc was vapor-deposited to form heavy edges (electrical introductions) on the film. As a result, a metallized film roll with an electrode pattern having an Al metal film resistance of 20 Ω / □ and a Zn metal film resistance of 5 Ω / □ was obtained. The prepared metallized film roll was wound with a fully automatic winder for metallized film capacitors (3KAW-N2) manufactured by Minato Seisakusho Co., Ltd. so that the capacitance was 50 μF, and pressed and flattened. The flattened device was subjected to metallicon spraying on the end face of the device to form a film electrode extraction portion, and then heat-treated under a high vacuum temperature to cure the device. A lead was attached to the metallikon spraying part, put in a resin case, filled with epoxy resin in the gap, and the resin was cured to obtain a film capacitor element for evaluation.
 <4-3.試験方法>
 印加電圧昇圧試験、短時間耐圧試験及び加速寿命試験を行なった。
<4-3. Test method>
An applied voltage boost test, a short-time withstand voltage test, and an accelerated life test were performed.
 (4-3-1.印加電圧昇圧試験)
 恒温槽を用いることによってフィルムコンデンサ素子を115℃に加熱した状態で、フィルムコンデンサ素子に電圧を1時間印加した後に、フィルムコンデンサ素子の静電容量を測定した。この電圧印加試験を、電圧を徐々に上げて実施し、静電容量減少率が10%に達する電圧、及び、静電容量減少率が20%に達する電圧を調べた。
(4-3-1. Applied voltage boost test)
The capacitance of the film capacitor element was measured after applying a voltage to the film capacitor element for 1 hour in a state where the film capacitor element was heated to 115 ° C. by using a constant temperature bath. This voltage application test was carried out by gradually increasing the voltage, and the voltage at which the capacitance reduction rate reached 10% and the voltage at which the capacitance reduction rate reached 20% were examined.
 (4-3-2.短時間耐圧試験)
 フィルムコンデンサ素子に、室温状態で電圧を10秒間印加した後に、フィルムコンデンサ素子の静電容量を測定した。この電圧印加試験を、電圧を徐々に上げて実施し、静電容量減少率が2%に達する電圧、及び、静電容量減少率が5%に達する電圧を調べた。
(4-3-2. Short-time pressure resistance test)
After applying a voltage to the film capacitor element at room temperature for 10 seconds, the capacitance of the film capacitor element was measured. This voltage application test was carried out by gradually increasing the voltage, and the voltage at which the capacitance reduction rate reached 2% and the voltage at which the capacitance reduction rate reached 5% were examined.
 (4-3-3.加速寿命試験)
 恒温槽を用いることによってフィルムコンデンサ素子を115℃に加熱した状態で、フィルムコンデンサ素子に連続的に電圧を印加し、電圧を所定時間印加した後のフィルムコンデンサ素子の静電容量を測定した。電圧印加から200時間経過後の静電容量の減少率、及び、電圧印加から500時間経過後の静電容量の減少率を調べた。
(4-3-3. Accelerated life test)
A voltage was continuously applied to the film capacitor element in a state where the film capacitor element was heated to 115 ° C. by using a constant temperature bath, and the capacitance of the film capacitor element after the voltage was applied for a predetermined time was measured. The rate of decrease in capacitance after 200 hours from the application of voltage and the rate of decrease in capacitance after 500 hours from application of voltage were investigated.
 <4-4.評価結果>
 評価結果は、以下の表2に示される通りであった。
<4-4. Evaluation result>
The evaluation results are as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、比較例1は印加電圧昇圧試験及び加速寿命試験の結果が好ましくなく、比較例2は加速寿命試験の結果が好ましくなかった。また、比較例3は印加電圧昇圧試験及び加速寿命試験の結果が好ましくなく、比較例4は全ての試験の結果が好ましくなかった。比較例1-4と比べて、実施例1-4の各々は、各試験で安定的に良い結果を得た。特に、実施例3は、ほとんどの試験(500時間の加速寿命試験以外)において、最も良い結果を得た。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, the results of the applied voltage boosting test and the accelerated life test were not preferable in Comparative Example 1, and the results of the accelerated life test were not preferable in Comparative Example 2. Further, in Comparative Example 3, the results of the applied voltage boosting test and the accelerated life test were not preferable, and in Comparative Example 4, the results of all the tests were not preferable. Compared with Comparative Example 1-4, each of Examples 1-4 obtained stable and good results in each test. In particular, Example 3 gave the best results in most of the tests (other than the 500 hour accelerated life test).
 本発明の金属化フィルムは、種々の金属化フィルムコンデンサに利用できる。金属化フィルムコンデンサは、以下の各種用途に使用することができる。即ち、(1)携帯端末(携帯電話、携帯音楽プレーヤー、スマートフォン、タブレット型端末、ウエアラブル機器等)、(2)パソコン、(3)デジタルカメラ、(4)家電製品(テレビ、DVDレコーダー、冷蔵庫、洗濯機、エアコン等)、(5)カーナビゲーション、(6)発電用パワーコンディショナー(太陽光、風力等)、(7)LED照明、(8)自動車(電気自動車、ハイブリッド自動車、プラグインハイブリッド車等)、(9)鉄道車両、(10)建機、(11)産業機器、(12)その他各種インバータ、などが挙げられる。中でも、高周波特性が要求される自動車や電力の用途などに用いられるコンデンサに利用できる。 The metallized film of the present invention can be used for various metallized film capacitors. The metallized film capacitor can be used for the following various purposes. That is, (1) mobile terminals (mobile phones, portable music players, smartphones, tablet terminals, wearable devices, etc.), (2) personal computers, (3) digital cameras, (4) home appliances (TVs, DVD recorders, refrigerators, etc.) Washing machines, air conditioners, etc.), (5) Car navigation, (6) Power conditioners for power generation (solar, wind power, etc.), (7) LED lighting, (8) Automobiles (electric vehicles, hybrid vehicles, plug-in hybrid vehicles, etc.) ), (9) Railroad vehicles, (10) Construction machinery, (11) Industrial equipment, (12) Other various inverters, and the like. Above all, it can be used for capacitors used in automobiles and electric power applications that require high frequency characteristics.
 5 フィルムコンデンサ、10 金属化フィルム、20 誘電体フィルム、30 電気導入部、40 絶縁マージン、50 電極部、60 マージン部、70 第1ヒューズ、72 第2ヒューズ、74 第3ヒューズ、76E ヒューズ、100 大電極部、200 第1分割電極部、210 第1分割電極、300 第2分割電極部、310 第2分割電極、400 第3分割電極部、410 第3分割電極、P1,P2,P3,P4 部分。 5 film capacitor, 10 metallized film, 20 dielectric film, 30 electric introduction part, 40 insulation margin, 50 electrode part, 60 margin part, 70 1st fuse, 72 2nd fuse, 74 3rd fuse, 76E fuse, 100 Large electrode part, 200 1st divided electrode part, 210 1st divided electrode, 300 2nd divided electrode part, 310 2nd divided electrode, 400 3rd divided electrode part, 410 3rd divided electrode, P1, P2, P3, P4 part.

Claims (7)

  1.  フィルムコンデンサ用の金属化フィルムであって、
     誘電体フィルムを備え、
     前記誘電体フィルム上には、前記金属化フィルムの幅方向の一方の端部に位置しメタリコン電極に接続される電気導入部と、前記幅方向の他方の端部に位置する絶縁マージンと、前記電気導入部と前記絶縁マージンとの間に位置する電極部とが形成されており、
     前記電極部は、マージン部を介して、前記電気導入部から前記絶縁マージンに向かって順に並ぶ、大電極部、第1分割電極部、第2分割電極部及び第3分割電極部に分割されており、
     前記第1、第2及び第3分割電極部は、前記マージン部を介して、前記幅方向に垂直な方向においてそれぞれ複数の第1、第2及び第3分割電極に分割されており、
     前記幅方向に垂直な方向において1つの前記第1分割電極に対応する位置に存在する前記第2分割電極の数が2つ以上、3つ以下であり、
     前記幅方向に垂直な方向において1つの前記第1分割電極に対応する位置に存在する前記第3分割電極の数が3つ以上、6つ以下であり、
     前記大電極部は、第1ヒューズを介して前記第1分割電極に接続されており、
     前記第1分割電極は、1つの第2ヒューズを介して2つの前記第2分割電極に接続されており、
     前記第2分割電極は、1つの第3ヒューズを介して2つの前記第3分割電極に接続されている、金属化フィルム。
    A metallized film for film capacitors
    Equipped with a dielectric film,
    On the dielectric film, an electric introduction portion located at one end in the width direction of the metallized film and connected to a metallikon electrode, an insulation margin located at the other end in the width direction, and the above. An electrode portion located between the electric introduction portion and the insulation margin is formed.
    The electrode portion is divided into a large electrode portion, a first split electrode portion, a second split electrode portion, and a third split electrode portion, which are arranged in order from the electricity introduction portion toward the insulation margin via a margin portion. Ori,
    The first, second and third divided electrodes are divided into a plurality of first, second and third divided electrodes in a direction perpendicular to the width direction, respectively, via the margin portion.
    The number of the second divided electrodes existing at the positions corresponding to one first divided electrode in the direction perpendicular to the width direction is two or more and three or less.
    The number of the third divided electrodes existing at the positions corresponding to one first divided electrode in the direction perpendicular to the width direction is 3 or more and 6 or less.
    The large electrode portion is connected to the first divided electrode via a first fuse.
    The first split electrode is connected to the two second split electrodes via one second fuse.
    The second split electrode is a metallized film connected to the two third split electrodes via one third fuse.
  2.  前記第1分割電極の面積を1とした場合に、前記第2分割電極の面積は1/3以上、1/2以下であり、前記第3分割電極の面積は1/12以上、1/3以下である、請求項1に記載の金属化フィルム。 When the area of the first divided electrode is 1, the area of the second divided electrode is 1/3 or more and 1/2 or less, and the area of the third divided electrode is 1/12 or more and 1/3. The metallized film according to claim 1, which is as follows.
  3.  前記第1分割電極の面積を1とした場合に、前記第3分割電極の面積は、1/6以上、1/3以下である、請求項2に記載の金属化フィルム。 The metallized film according to claim 2, wherein the area of the third divided electrode is 1/6 or more and 1/3 or less when the area of the first divided electrode is 1.
  4.  前記第1ヒューズの幅を1とした場合に、前記第2ヒューズの幅は0.6以上、0.9以下であり、前記第3ヒューズの幅は0.3以上、0.6以下である、請求項2又は請求項3に記載の金属化フィルム。 When the width of the first fuse is 1, the width of the second fuse is 0.6 or more and 0.9 or less, and the width of the third fuse is 0.3 or more and 0.6 or less. , The metallized film according to claim 2 or 3.
  5.  前記第2ヒューズは、前記幅方向に垂直な方向において互いに隣接する2つの第2分割電極、及び、前記幅方向において前記2つの第2分割電極の両方と隣接する前記第1分割電極の各々と隣接する位置に形成されている、請求項1から請求項4のいずれか1項に記載の金属化フィルム。 The second fuse has two second divided electrodes adjacent to each other in the direction perpendicular to the width direction, and each of the first divided electrodes adjacent to both of the two second divided electrodes in the width direction. The metallized film according to any one of claims 1 to 4, which is formed at adjacent positions.
  6.  前記第3ヒューズは、前記幅方向に垂直な方向において互いに隣接する2つの第3分割電極、及び、前記幅方向において前記2つの第3分割電極の両方と隣接する前記第2分割電極の各々と隣接する位置に形成されている、請求項1から請求項5のいずれか1項に記載の金属化フィルム。 The third fuse has two third divided electrodes adjacent to each other in the direction perpendicular to the width direction, and each of the second divided electrodes adjacent to both of the two third divided electrodes in the width direction. The metallized film according to any one of claims 1 to 5, which is formed at adjacent positions.
  7.  請求項1から請求項6のいずれか1項に記載の金属化フィルムによって構成された、フィルムコンデンサ。 A film capacitor made of the metallized film according to any one of claims 1 to 6.
PCT/JP2021/038796 2020-10-23 2021-10-20 Metalized film and film capacitor WO2022085729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237011859A KR20230088700A (en) 2020-10-23 2021-10-20 Metallized Film and Film Capacitors
CN202180072280.5A CN116420208A (en) 2020-10-23 2021-10-20 Metallized film and film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177719 2020-10-23
JP2020177719A JP2022068902A (en) 2020-10-23 2020-10-23 Metallized film and film capacitor

Publications (1)

Publication Number Publication Date
WO2022085729A1 true WO2022085729A1 (en) 2022-04-28

Family

ID=81289770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038796 WO2022085729A1 (en) 2020-10-23 2021-10-20 Metalized film and film capacitor

Country Status (4)

Country Link
JP (1) JP2022068902A (en)
KR (1) KR20230088700A (en)
CN (1) CN116420208A (en)
WO (1) WO2022085729A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225508A (en) * 1990-04-03 1992-08-14 Steiner Gmbh & Co Kg Vacuum deposited and divided metal coated foil
JPH08250367A (en) * 1995-03-08 1996-09-27 Shizuki Denki Seisakusho:Kk Metallized film capacitor
JP2004087648A (en) * 2002-08-26 2004-03-18 Matsushita Electric Ind Co Ltd Depositing film and film capacitor using same film and inverter device using same capacitor
JP2005012082A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2009259931A (en) * 2008-04-15 2009-11-05 Panasonic Corp Metallized film capacitor
JP2012099747A (en) * 2010-11-05 2012-05-24 Kojima Press Industry Co Ltd Metal deposition film
JP2017143170A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Metalized film and metalized film capacitor using the same
JP2019129272A (en) * 2018-01-26 2019-08-01 株式会社指月電機製作所 Metalized film and metalized film capacitor
CN210349582U (en) * 2019-05-31 2020-04-17 东莞市纬迪实业有限公司 Capacitor with safety film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225508A (en) * 1990-04-03 1992-08-14 Steiner Gmbh & Co Kg Vacuum deposited and divided metal coated foil
JPH08250367A (en) * 1995-03-08 1996-09-27 Shizuki Denki Seisakusho:Kk Metallized film capacitor
JP2004087648A (en) * 2002-08-26 2004-03-18 Matsushita Electric Ind Co Ltd Depositing film and film capacitor using same film and inverter device using same capacitor
JP2005012082A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2009259931A (en) * 2008-04-15 2009-11-05 Panasonic Corp Metallized film capacitor
JP2012099747A (en) * 2010-11-05 2012-05-24 Kojima Press Industry Co Ltd Metal deposition film
JP2017143170A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Metalized film and metalized film capacitor using the same
JP2019129272A (en) * 2018-01-26 2019-08-01 株式会社指月電機製作所 Metalized film and metalized film capacitor
CN210349582U (en) * 2019-05-31 2020-04-17 东莞市纬迪实业有限公司 Capacitor with safety film

Also Published As

Publication number Publication date
KR20230088700A (en) 2023-06-20
JP2022068902A (en) 2022-05-11
CN116420208A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US20060050467A1 (en) Metallized film capacitor
JP4487818B2 (en) Metallized film capacitors
US6757151B2 (en) Capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
JP2013251351A (en) Capacitor
WO2022085729A1 (en) Metalized film and film capacitor
JP2013219094A (en) Metalization film capacitor
CN203456293U (en) Single-surface aluminum-and-zinc metalized film with single reserved edge
CN112670083A (en) Zinc-aluminum thickened metallized polypropylene film
JP4366930B2 (en) Metallized film capacitors
CN112912980B (en) Film capacitor with acrylic dielectric layer coated on inner side
CN112366082A (en) Element for DC support capacitor
JP6434179B1 (en) Metallized film and film capacitor using the same
CN203826222U (en) Sheet type ultra-small high voltage heavy current capacitor
JP4770935B2 (en) Metallized film capacitors
CN213752375U (en) High-voltage thin-film capacitor core and capacitor thereof
CN101728024A (en) Method for manufacturing tinned winding wire
CN104347272A (en) Organic thin-film capacitor
JP2023157801A (en) Metalization film capacitor
WO2022220302A1 (en) Metallized film capacitor
JP5934881B2 (en) Metallized film capacitors
JP5903647B2 (en) Metallized film capacitors
CN212675947U (en) Composite film sintered lead for wind driven generator coil
US20230005665A1 (en) Metalized film and film capacitor including metalized film
CN103426515A (en) Novel tinned insulation winding wire
JP2004200591A (en) Metallized film capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882870

Country of ref document: EP

Kind code of ref document: A1