WO2013069432A1 - Organic light emitting element, method for manufacturing same, and use of same - Google Patents

Organic light emitting element, method for manufacturing same, and use of same Download PDF

Info

Publication number
WO2013069432A1
WO2013069432A1 PCT/JP2012/077044 JP2012077044W WO2013069432A1 WO 2013069432 A1 WO2013069432 A1 WO 2013069432A1 JP 2012077044 W JP2012077044 W JP 2012077044W WO 2013069432 A1 WO2013069432 A1 WO 2013069432A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinked polymer
group
organic light
organic
emitting device
Prior art date
Application number
PCT/JP2012/077044
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 鳥羽
崇 寺島
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2013513469A priority Critical patent/JP5307954B1/en
Publication of WO2013069432A1 publication Critical patent/WO2013069432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1458Monomers containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/603Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing oxygen in addition to the carbonamido oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • C08F228/04Thioethers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/50Oxidation-reduction potentials, e.g. excited state redox potentials

Definitions

  • the present invention relates to an organic light-emitting device, a method for producing the same, and an application thereof, and more particularly to an organic light-emitting device having an organic compound layer containing a non-crosslinked polymer and a crosslinked polymer having charge transport properties, a method for producing the organic light-emitting device.
  • organic light-emitting elements (hereinafter also referred to as “organic EL elements”) has been actively conducted.
  • An organic EL element is composed of a pair of electrodes composed of an anode and a cathode and one or a plurality of organic compound layers formed between the electrodes.
  • By applying a voltage between the anode and the cathode holes are respectively formed from the anode and the cathode.
  • electrons are injected, and light is emitted using energy generated by recombination of the injected electrons and holes in the organic compound layer. That is, the organic EL element utilizes a phenomenon in which light is generated when the light emitting material of the organic compound layer is excited by the energy due to this charge recombination and returns from the excited state to the ground state again.
  • a plurality of methods such as a vapor deposition method and a coating method are known as a method for producing an organic compound layer, and a method using a coating method has been actively studied because of the simplicity of the process.
  • a coating film is formed by coating a coating solution in which an organic material is dissolved, and this film is dried to form an organic compound layer.
  • an insolubilized film is formed by coating a coating solution containing a carrier transporting or light-emitting polymer and a low molecular crosslinking agent and then crosslinking the low molecular crosslinking agent in the organic compound layer. is doing.
  • these cross-linking agents are poor in charge transport properties, the charge transport properties of the organic compound layer are lowered by addition, and the cross-linking agents themselves sometimes function as carrier traps. For this reason, there is a problem in that the performance of the organic light emitting device is lowered when the additive is increased in order to improve curability.
  • the amount added is reduced in order to suppress the adverse effects due to the addition of the cross-linking agent, insolubilization of the organic compound layer becomes insufficient, which makes it difficult to produce the intended organic light-emitting device.
  • Patent Document 2 by using a cross-linking agent exhibiting charge transportability as a cross-linking agent added to the organic material forming the organic compound layer, it is possible to suppress deterioration in characteristics of the organic compound layer and It is disclosed that dissolution resistance can also be imparted, and as a crosslinking agent exhibiting charge transportability, a compound exhibiting a high charge mobility of 10 ⁇ 9 cm 2 / V ⁇ s or more in a thin film composed only of this crosslinking agent is described. Has been.
  • the charge mobility of the organic compound layer obtained by mixing such a charge transporting organic material with a crosslinking agent exhibiting such charge transporting property and crosslinking the crosslinking agent after coating film formation depends on the combination of the compounds.
  • the charge mobility of the organic compound layer consisting only of the organic material or the cross-linking agent may be lower than that of the organic compound layer. There is a problem that cannot be sufficiently insolubilized.
  • the present invention has been made in view of the above-described problems of the prior art, and in an organic light emitting device having a plurality of adjacent organic compound layers, the underlayer has a solvent resistance and charge compared to the conventional organic light emitting device.
  • An object of the present invention is to provide an organic light-emitting device that is excellent in transportability and exhibits good light-emitting properties.
  • the present inventors have found that when the organic compound layer containing a non-crosslinked polymer having a charge transport property and a crosslinked polymer is formed on the electrode, the non-crosslinked By setting the absolute value of the difference between the ionization potential of the polymer and the ionization potential of the crosslinked polymer to 0.2 eV or less, the organic compound layer has excellent charge transport properties, and the organic compound layer has a large amount of crosslinked polymer.
  • Organic light-emitting device that can be contained, can improve solvent resistance (herein, solvent resistance means poor solubility in organic solvents), and has an organic compound layer Was found to exhibit good luminescent properties, and the present invention was completed.
  • the present invention relates to the following (1) to (16), for example.
  • the first organic compound layer contains a non-crosslinked polymer and a crosslinked polymer;
  • the non-crosslinked polymer and the crosslinked polymer each include a repeating unit including a structure having charge transportability,
  • An organic light emitting device in which an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of the crosslinked polymer is 0 to 0.2 eV.
  • the crosslinked polymer is a polymer formed by polymerizing at least a first polymerizable compound;
  • the non-crosslinked polymer is a polymer comprising at least one repeating unit selected from the following general formula (1) and the following general formula (2):
  • each A independently represents a structure having a charge transport
  • X 1 and X 5 are independently, -O -, - S-, or a substituent
  • An alkylene group having 1 to 20 carbon atoms that may have (provided that one or two or more non-adjacent methylene groups in the alkylene group may be substituted with —O— or —S— and bonded to A;
  • One non-adjacent or two or more non-adjacent methylene groups are —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group Which may be substituted with X 2 to X 4 are each independently a single bond, —O—, —S—, or an optionally substituted alkylene group having 1 to 20 carbon atoms (provided that one or not in the alkylene group is not adjacent)
  • R Y represents a hydrogen atom, an alkyl having 1 to 4 carbon atoms.
  • a in the general formula (3) is 0;
  • the first polymerizable compound and the second polymerizable compound in a range in which the crosslinked polymer is 10 to 100% by mass of the second polymerizable compound with respect to 100% by mass of the first polymerizable compound.
  • the organic light-emitting device according to (6) which is obtained by copolymerization of
  • R 2 and R 3 is a group represented by the following General Formula (5)
  • Any two of R 1 to R 15 in the general formula (4) and R 16 to R 29 in the following general formula (5) are X 1 to X 5 or hydrogen in the general formulas (1) to (3).
  • a bond to an atom The group represented by the general formula (5) and R 1 to R 15 that are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or carbon.
  • R 16 to R 29 which are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • the linked aromatic rings R may be bonded to each other to form a condensed ring.
  • X 3 and X 4 in the general formula (3) may have a substituent having 10 or more atoms constituting the shortest chain connecting A and the vinyl group in the general formula (3)
  • a group (provided that one or two or more methylene groups in the alkylene group may be substituted with —O— or —S—, and one or two or more methylene groups not bonded to A) May be substituted with —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group, and R Y is (A hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.)
  • the organic light-emitting device according to any one of (6) to (8) and (10).
  • the first organic compound layer includes an electron acceptor in an amount of 0.1 to 10% by mass with respect to a total of 100% by mass of the non-crosslinked polymer and the crosslinked polymer (1) to (11). Organic light emitting device.
  • a coating solution used for manufacturing an organic light emitting device A non-crosslinked polymer, a first polymerizable compound capable of forming a crosslinked polymer, and a solvent,
  • the non-crosslinked polymer includes a repeating unit including a structure having a charge transporting property, and the first polymerizable compound is a compound including a structure having a charge transporting property;
  • the first polymerizable compound is a compound including a structure having charge transporting properties
  • the non-crosslinked polymer and the crosslinked polymer each include a repeating unit including a structure having charge transporting properties
  • a method for manufacturing an organic light emitting device wherein an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of the crosslinked polymer is 0.2 eV or less.
  • a display device comprising the organic light-emitting device according to any one of (12).
  • the organic light-emitting device of the present invention contains a non-crosslinked polymer and a crosslinked polymer, and has a first organic compound layer having a small absolute value of the difference in ionization potential between the two.
  • the layer is suppressed in dissolution even when a coating solution is applied, and the first organic compound layer is excellent in charge transporting property.
  • This organic light emitting device exhibits good light emitting characteristics.
  • FIG. 1 is a cross-sectional view illustrating an example of the structure of the organic light emitting device of the present invention.
  • FIG. 2 is a conceptual diagram showing a course of a probe (probe) when measuring the thickness of an organic compound layer using a stylus type surface shape measuring apparatus.
  • the organic light emitting device of the present invention includes a first electrode, a first organic compound layer formed on the first electrode, and a second organic layer formed adjacent to the first organic compound layer.
  • the first organic compound layer includes a non-crosslinked polymer and a crosslinked polymer, and the non-crosslinked polymer and the crosslinked polymer both have a structure having a charge transporting property. Including a repeating unit, the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer is 0 to 0.2 eV.
  • the organic light emitting device of the present invention includes at least one light emitting layer.
  • the second organic compound layer may be a light emitting layer, or a light emitting layer may be formed between the second organic compound layer and the second electrode.
  • the organic light emitting device may include a plurality of light emitting layers, and may further include an organic compound layer different from the light emitting layer. For example, an electron injection layer, an electron transport layer, a hole blocking layer, or the like may be provided between the second organic compound layer and the cathode (second electrode).
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the organic light emitting device 10 of the present invention.
  • the first organic compound layer 13 and the first organic compound layer 13 provided on the substrate 11.
  • a second organic compound layer 14 and a cathode 15 which are laminated adjacently are provided in this order.
  • the anode 12 and the cathode 15 in FIG. 1 correspond to the first electrode and the second electrode in the present invention, respectively.
  • the organic light emitting device shown in FIG. 1 by applying a voltage between the anode 12 and the cathode 15, holes are injected from the anode 12 and electrons are injected from the cathode 15, so that the second organic compound layer (light emitting layer) ) To recombine and emit light.
  • the wavelength of the emitted light is And transparent.
  • glass such as soda glass and non-alkali glass
  • transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin
  • the material of the substrate 11 is not limited to a transparent material, and an opaque material can be used.
  • copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) ), Alloys thereof, or materials made of stainless steel can also be used.
  • the thickness of the substrate 11 is preferably 0.1 to 10 mm, more preferably 0.25 to 2 mm, although it depends on the required mechanical strength.
  • anode When a voltage is applied between the anode 12 and the cathode 15, holes are injected into the first organic compound layer 13.
  • the material used for the anode 12 is not particularly limited as long as it has electrical conductivity, but preferably has a sheet resistance of 1000 ⁇ / ⁇ or less in a temperature range of ⁇ 5 to 80 ° C. More preferably, it is 100 ⁇ / ⁇ or less.
  • ⁇ Conductive metal oxides, metals, and alloys can be used as materials that satisfy these conditions.
  • the conductive metal oxide include ITO (indium tin oxide) and IZO (indium zinc oxide).
  • the metal include copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like.
  • An alloy containing these metals and stainless steel can also be used.
  • the transparent material used for forming the transparent anode include conductive glass made of indium oxide, zinc oxide, tin oxide, ITO (indium tin oxide) which is a composite thereof, IZO (indium zinc oxide), or the like.
  • ITO indium tin oxide
  • IZO indium tin oxide
  • tin oxide a transparent conductive film made of an organic material such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the thickness of the anode 12 is preferably 2 nm to 1 ⁇ m, and more preferably 20 to 500 nm in order to obtain high light transmittance when light is to be extracted from the substrate 11 side of the organic light emitting device 10. Further, when it is not necessary to extract light from the substrate 11 side of the organic light emitting element 10, the thickness is, for example, 2 nm to 2 mm.
  • the material of the substrate 11 may be the same material as the anode 12. In this case, the substrate 11 may also serve as the anode 12.
  • the first organic compound layer 13 in the organic light emitting device of the present invention contains a non-crosslinked polymer and a crosslinked polymer.
  • the first organic compound layer 13 is usually formed by applying a solution containing the non-crosslinked polymer and the first polymerizable compound capable of forming the crosslinked polymer on the first electrode, and then It is formed by polymerizing a polymerizable compound.
  • Both the non-crosslinked polymer and the crosslinked polymer according to the present invention include a repeating unit including a structure having a charge transporting property.
  • the absolute value of the ionization potential difference between the non-crosslinked polymer and the crosslinked polymer is 0 to 0.2 eV, more preferably 0 to 0.1 eV, and still more preferably 0.01 to 0.05 eV, It is possible to prevent a decrease in performance.
  • the absolute value of the difference in ionization potential is obtained from the ionization potential measured as follows. A first polymerizable compound described later and a second polymerizable compound described later if necessary are dissolved in a solvent, and a coating solution of 1 to 3% by mass is prepared in total of both polymerizable compounds. Using this coating solution, a film is formed on a transparent support substrate by spin coating (1000 to 5000 rpm). The coating film is dried to polymerize the polymerizable compound. The value obtained by measuring the ionization potential of the obtained film by atmospheric photoelectron spectroscopy is defined as the ionization potential of the crosslinked polymer.
  • a coating solution in which the non-crosslinked polymer is dissolved is used and the ionization potential of the obtained film is set as the ionization potential of the non-crosslinked polymer.
  • the absolute value of the difference between the ionization potentials can be calculated from the ionization potential of the crosslinked polymer and the ionization potential of the non-crosslinked polymer.
  • the solvent the same solvents that can be used for forming the first organic compound layer described later can be used, and the same solvents are used for the measurement of the non-crosslinked polymer and the measurement of the crosslinked polymer.
  • the method and conditions of drying and polymerization can employ
  • polymerizing is originally unnecessary for preparation of the film
  • the non-crosslinked polymer is not particularly limited, but it is preferable to use a polymer composed of at least one repeating unit selected from the following general formula (1) and general formula (2).
  • the crosslinked polymer is usually a polymer obtained by polymerizing the first polymerizable compound. Even if the crosslinked polymer is a polymer obtained only from the first polymerizable compound as a monomer, The copolymer obtained by superposing
  • the first polymerizable compound is not particularly limited, but a compound containing a structure having a charge transporting property is usually used, and a compound represented by the general formula (3) described later is preferably used.
  • the second polymerizable compound for example, a polymerizable compound having only one vinyl group in the molecule is used, and a compound having no charge transporting property or a compound having charge transporting property may be used. Good.
  • a vinyl compound having no charge transporting property is used.
  • the number of carbons contained in these compounds is preferably in the range of 4 to 20, more specifically 1-octene, 4-phenyl-1-butene, styrene, ⁇ -methylstyrene, ethyl methacrylate, etc.
  • a compound can be illustrated.
  • Each of the non-crosslinked polymer and the crosslinked polymer contained in the first organic compound layer has a repeating unit including a structure having a charge transporting property.
  • a known material can be used for the structure having a charge transporting property, and examples thereof include compounds described in Chemical Reviews, Vol. 107, pp. 953-1010, 2007.
  • the absolute value of the difference between the ionization potential of the crosslinked polymer and the ionization potential of the non-crosslinked polymer is 0 to 0.2 eV, preferably 0 to 0.1 eV, Preferably, a voltage of 0.01 to 0.05 eV is used.
  • a triphenylamine derivative is preferable in that an organic light-emitting device having excellent hole injection ability and hole transport ability and high luminous efficiency can be obtained, and is represented by the following general formula (4).
  • the structure is more preferred. That is, it is more preferable that A in the general formulas (1) to (3) described later is represented by the following general formula (4).
  • the structure having charge transportability contained in the non-crosslinked polymer and the structure having charge transportability contained in the polymerizable compound are the same, the absolute value of the difference in ionization potential is reduced and the charge transportability is lowered. This is preferable because the first organic compound layer can be obtained as a solvent-resistant film without the above.
  • the structure having a charge transporting property represented by A is preferably 240 to 1000, more preferably 400 to 1000. preferable. Within this range, the first organic compound layer is preferred because it is excellent in solvent resistance and heat resistance.
  • R 2 and R 3 are a group represented by the following General Formula (5), and preferably R 3 is a group represented by the following General Formula (5).
  • R 1 to R 15 in the general formula (4) and R 16 to R 29 in the following general formula (5) are X 1 to X 5 or hydrogen in the general formulas (1) to (3).
  • the group represented by the general formula (5) and R 1 to R 15 which are bonds to the atom and are not bonds are independently a hydrogen atom, a halogen atom, a cyano group, an amino group, or a carbon number of 1
  • R 16 to R 29 which are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • a ring may be formed.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, tert-butyl group, 1-pentyl group and 2-pentyl group.
  • alkoxy group having 1 to 10 carbon atoms examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tertiary butoxy group, pentyloxy group, hexyloxy group, 2 -An ethylhexyloxy group, an octyloxy group, etc. are mentioned, Preferably they are a methoxy group or an ethoxy group.
  • the group forming the condensed ring is usually an alkylene group having 1 to 10 carbon atoms or an alkenylene group having 2 to 10 carbon atoms.
  • the non-crosslinked polymer contained in the first organic compound layer of the organic light-emitting device of the present invention includes a repeating unit having charge transporting properties.
  • the non-crosslinked polymer is not particularly limited, but it is preferable that the two structures having charge transporting properties included in adjacent repeating units are linked by a linking group containing a nonconjugated structure. In other words, the non-crosslinked polymer is preferably linked without conjugating two structures having charge transporting properties contained in adjacent repeating units via a linking group.
  • the non-crosslinked polymer when the non-crosslinked polymer is a polymer containing the charge transporting structure in the main chain, the non-crosslinked polymer has a non-crosslinked portion between two adjacent structures having the charge transporting property in the main chain. It preferably contains a conjugated structure.
  • the main chain of the non-crosslinked polymer is a non-conjugated structure, or the structure having the charge transporting property and the main chain are It is preferable that they are connected via a non-conjugated structure.
  • the linking group containing a non-conjugated structure include a C 1-20 alkylene group and a group containing an aliphatic ether bond.
  • the non-crosslinked polymer is preferably a polymer composed of at least one repeating unit selected from the following general formula (1) and the following general formula (2), and the repeating unit represented by the following general formula (2) More preferably, the polymer consists of
  • each A independently represents a structure having a charge transporting property
  • X 1 represents —O—, —S—, or a carbon which may have a substituent.
  • An alkylene group of 1 to 20 (provided that one or two or more methylene groups not adjacent to each other in the alkylene group may be substituted with —O— or —S—, and one or adjacent not bonded to A) Two or more methylene groups are not substituted with —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, or an arylene group.
  • X 2 represents a single bond, —O—, —S—, or an alkylene group having 1 to 20 carbon atoms which may have a substituent (provided that one or not in the alkylene group) Two or more methylene groups may be substituted with —O— or —S—, and are not bonded to A.
  • One or two or more methylene groups not adjacent to each other are replaced by —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group
  • R Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.
  • alkylene group having 1 to 20 carbon atoms which may have a substituent, when there is no substituent, that is, as the alkylene group having 1 to 20 carbon atoms, for example, ethylene group, propylene group, butylene group, pentamethylene Group, hexamethylene group, heptamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tetradecamethylene group and the like.
  • alkylene group having 1 to 20 carbon atoms which may have a substituent when it has a substituent, that is, as the alkylene group having 1 to 20 carbon atoms having a substituent, for example, 1-ethoxy-2,
  • substituents for example, 1-ethoxy-2
  • Examples include 5-hexylene group, 1,5-dimethoxy-2,3-pentylene group, 1-ethoxy-2- (2-ethoxyethoxy) ethylene group, 1-butylsulfonyl-1,4-butylene group.
  • an arylene group having 6 to 21 carbon atoms is preferable.
  • the arylene group include a phenylene group, a tolylene group, a xylylene group, a biphenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group.
  • R Y is an alkyl group having 1 to 4 carbon atoms
  • examples of the alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, tert group -A butyl group is mentioned.
  • R Y is an aryl group, it is preferably an aryl group having 6 to 21 carbon atoms.
  • the aryl group include phenyl group, tolyl group, xylyl group, biphenyl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group and the like.
  • R Y is an aralkyl group, it is preferably an aralkyl group having 7 to 21 carbon atoms.
  • examples of the aralkyl group include benzyl group, phenethyl group, naphthylmethyl group, naphthylethyl group and the like.
  • repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) are shown below.
  • the crosslinked polymer contained in the first organic compound layer of the organic light-emitting device of the present invention includes a repeating unit including a structure having a charge transporting property.
  • the crosslinked polymer is usually a polymer formed by polymerizing at least a first polymerizable compound, and the first polymerizable compound is usually a compound having a structure having a charge transporting property.
  • the first polymerizable compound is a compound including a structure having a charge transporting property and is a polymerizable compound capable of forming a crosslinked polymer.
  • a compound containing a polymerizable group and a structure having charge transportability is used as the first polymerizable compound.
  • the first polymerizable compound usually contains two or more polymerizable groups in the compound.
  • Examples of the polymerizable group of the first polymerizable compound include a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloylamino group, a methacryloyl group, a methacryloylamino group, a vinyloxy group, a vinylamino group, a silanol group, and a cyclopropyl group.
  • a methacryloyl group is preferred, and a vinyl group is most preferred.
  • the cross-linked polymer it is preferable that two structures having charge transporting properties contained in adjacent repeating units are connected by a linking group containing a non-conjugated structure, More preferably, the structure having a charge transporting property is linked to the linking main chain by a linking group containing a non-conjugated structure.
  • the crosslinked polymer is connected without conjugating two structures having charge transporting properties contained in adjacent repeating units via a linking group.
  • a linking group For example, when the polymerizable group is a vinyl group, it is preferable because the linking group has a methylene group having a non-conjugated structure.
  • the first polymerizable compound is preferably a compound represented by the following general formula (3).
  • A represents a structure having a charge transporting property
  • X 5 represents —O—, —S—, or an alkylene group having 1 to 20 carbon atoms which may have a substituent
  • X 3 , X 4 is independently a single bond, -O -, - S-, or an optionally substituted alkylene group having 1 to 20 carbon atoms (provided that one of the alkylene group or not adjacent two or more The methylene group may be substituted by -O-, -S-, or an alkylene group having 1 to 20 carbon atoms which may have a substituent
  • X 3 , X 4 is independently a single bond, -O -, - S-, or an optionally substituted alkylene group having 1 to 20 carbon atoms (provided that one of the alkylene group or not adjacent two or more The methylene group may be substituted by -O-, -S-
  • X 5 is preferably an alkylene group having 1 to 20 carbon atoms which may have a substituent (provided that one or two or more methylene groups not adjacent to the alkylene group are substituted with —O— or —S—). And one or more methylene groups not bonded to A may be —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—. N (R Y ) —, which may be substituted with an arylene group).
  • the alkylene group having 1 to 20 carbon atoms which may have a substituent in X 5 is preferably an alkylene group having 6 to 14 carbon atoms which may have a substituent.
  • the substituent in the general formula (1) and the general formula (2) may be used.
  • examples thereof may include an alkylene group having 1 to 20 carbon atoms and the same examples and preferred embodiments of R Y.
  • the first polymerizable compound preferably has a structure having a long chain length as a spacer between a structure having charge transporting properties and a polymerizable group such as a vinyl group.
  • a long chain length is preferable because crosslinking is easily developed and the solvent resistance of the first organic compound layer is increased.
  • X 3 and X 4 are each an alkylene group (provided that the atom constituting the shortest chain connecting A and the vinyl group in Formula (3) is 10 or more, which may have a substituent (provided that In the alkylene group, one or two or more methylene groups that are not adjacent to each other may be substituted with —O— or —S—, and one or two or more methylene groups that are not bonded to A are — SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group may be substituted, and R Y represents a hydrogen atom Represents an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group thereof.)
  • the alkylene group preferably has 10 to 14 atoms constituting the shortest chain, The number of atoms constituting the chain is 12-14 Preferred in La.
  • the structure of the first polymerizable compound having a charge transporting property is high and the molecular weight of the first polymerizable compound is small, phase separation is likely to occur in the coating film forming stage, and the resistance of the non-crosslinked polymer portion after the crosslinking is increased. Solvent property may be lowered. Therefore, it is preferable that a is 1 in the first polymerizable compound represented by the general formula (3).
  • the ratio of the polymerizable compound to the non-crosslinked polymer used when forming the organic compound layer is too high, the effect of adding the polymerizable compound becomes apparent in the characteristics of the organic compound layer, and the non-crosslinked polymer It has been preferred not to add too much polymerizable compound since the inherent properties will be reduced.
  • the amount of the first polymerizable compound used when forming the first organic compound layer is increased, that is, when the proportion of the crosslinked polymer existing in the first organic compound layer is increased. Even so, it is preferable to use the first organic compound layer in order to improve the solvent resistance without deteriorating the characteristics of the first organic compound layer.
  • the mass ratio of the crosslinked polymer and the non-crosslinked polymer (crosslinked polymer: non-crosslinked polymer) contained in the first organic compound layer is preferably 50:50 to 95: 5 .
  • the amount of the crosslinked polymer in the mass ratio is calculated from the amount of the polymerizable compound used when forming the first organic compound layer, and the amount of the non-crosslinked polymer forms the first organic compound layer. This is the amount of non-crosslinked polymer used in the process. If the ratio of the non-crosslinked polymer exceeds the above range, crystallization of the polymerizable compound tends to occur when the first organic compound layer is formed, and smooth film formation may be difficult.
  • the mass ratio of the crosslinked polymer to the non-crosslinked polymer is more preferably 50:50 to 75:25, and further preferably 60:40 to 75:25. preferable.
  • the mass ratio of the crosslinked polymer to the non-crosslinked polymer is more preferably 80:20 to 95: 5, and further preferably 90:10 to 95: 5. preferable.
  • the molecular weight of the first polymerizable compound is preferably 300 to 2000, and more preferably 500 to 1800.
  • the crosslinked polymer included in the first organic compound layer may be a polymer formed only from the first polymerizable compound or a polymer formed from the first polymerizable compound and the second polymerizable compound. There may be.
  • the second polymerizable compound may be a compound having no charge transporting property or a compound having charge transporting property. Further, the second polymerizable compound usually contains one polymerizable group in the compound. As the second polymerizable compound, usually a vinyl compound having no charge transporting property is used. For example, a substituted or unsubstituted linear terminal alkene, a substituted or unsubstituted styrene, an acrylate ester, a methacrylate ester. And vinyl acetate.
  • the crosslinked polymer according to the present invention may be a polymer formed only from the first polymerizable compound, but the first polymerizable compound is a compound represented by the general formula (3), and the general formula (3 When a in 0) is 0, the crosslinked polymer is preferably a polymer formed from the first polymerizable compound and the second polymerizable compound.
  • the cross-linked polymer is in a range where the second polymerizable compound is 10 to 100% by mass with respect to 100% by mass of the first polymerizable compound. It is preferable to be obtained by copolymerizing the first polymerizable compound and the second polymerizable compound.
  • the non-crosslinked polymer is incorporated in the crosslinked polymer.
  • the non-crosslinked polymer has sufficient cavities. This is because it is preferable.
  • the general formula (3) when a is 1, a crosslinked polymer having sufficient cavities can be obtained even without the second polymerizable compound, but when a is 0, the first ratio is as described above. This is because, in the crosslinked polymer obtained by copolymerizing the polymerizable compound and the second polymerizable compound, sufficient cavities are easily formed.
  • the organic light emitting device of the present invention includes the first organic light emitting element.
  • the compound layer preferably contains an electron acceptor.
  • the electron acceptor is preferably contained in an amount of 0.1 to 10% by mass with respect to 100% by mass in total of the non-crosslinked polymer and the crosslinked polymer.
  • the electron acceptor is not particularly limited, and a known compound can be used.
  • the electron acceptor include N, N′-dicyano-2,3,5,6-tetrafluoro-1,4-quinonediimine (F4DCNQI), 7,7,8,8-tetracyanoquinodimethane (TCNQ). 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ), 11,11,12,12-tetracyanonaphth-2,6-quinodimethane, and the like.
  • the electron affinity of the electron acceptor and the non-crosslinked polymer When the material is selected without controlling the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer to 0.2 eV or less as in the prior art, the electron affinity of the electron acceptor and the non-crosslinked polymer The electron acceptor forms a charge transfer complex with one of the cross-linked polymer and the non-cross-linked polymer because there is a difference between the gap between the ionization potential of the polymer and the gap between the electron affinity of the electron acceptor and the ionization potential of the cross-linked polymer. Although easy, it was difficult to form a charge transfer complex with the other. As a result, the charge mobility was not improved so much.
  • the electron acceptor can be a non-crosslinked polymer, a cross-linked polymer, or a charge transfer complex. Therefore, the first organic compound layer exhibits good charge transfer characteristics.
  • the ionization potential of the electron acceptor is larger than the ionization potential of the non-crosslinked polymer and the crosslinked polymer, even if the electron acceptor is contained in the first organic compound layer, the charge transfer property is hardly affected.
  • the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the cross-linked polymer is obtained by the methods described in the examples, respectively.
  • the absolute value of the difference can be calculated.
  • the first organic compound layer is usually formed by coating, and a solution containing the first polymerizable compound capable of forming the non-crosslinked polymer and the crosslinked polymer is used for the coating.
  • a solvent capable of dissolving the non-crosslinked polymer and the first polymerizable compound, the second polymerizable compound which may be contained, an electron acceptor, and the like is desired.
  • the solvent include aromatic solvents such as toluene, xylene, and anisole, alkyl halide solvents such as chloroform and dichloroethane, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, dimethoxy
  • aromatic solvents such as toluene, xylene, and anisole
  • alkyl halide solvents such as chloroform and dichloroethane
  • alcohol solvents such as methanol and ethanol
  • ketone solvents such as acetone and methyl ethyl ketone
  • dimethoxy dimethoxy
  • ether solvents such as ethane and THF
  • the above solution preferably contains a total of 0.1 to 5% by mass of solutes such as the non-crosslinked polymer and the first polymerizable compound, the second polymerizable compound, and the electron acceptor in these solvents. More preferably, it is contained in an amount of 1 to 3% by mass.
  • the coating solution may contain a polymerization initiator.
  • the polymerization initiator can be properly used for thermal polymerization and photopolymerization.
  • the above-mentioned polymerizable compound has a polymerizable double bond such as vinyl group, butenyl group, acryloyl group, acryloylamino group, methacryloyl group, methacryloylamino group, vinyloxy group, vinylamino group as a polymerizable group
  • radical polymerization starts.
  • An agent can be used.
  • a cationic polymerization initiator and an anionic polymerization initiator can be used.
  • it has a group that undergoes cationic polymerization such as an oxetanyl group
  • a cationic polymerization initiator can be used.
  • Thermal radical polymerization initiators include azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) and 2,2′-azobisisovaleronitrile, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone Ketone peroxides such as peroxides, diacyl peroxides such as benzoyl peroxide, decanoyl peroxide, lauroyl peroxide, dialkyls such as dicumyl peroxide, t-butylcumyl peroxide, di-t-butyl peroxide Peroxides, 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di (t-butylperoxy) Peroxyketals such as butane, t-butyl pero Cipivalate, t-
  • photo radical polymerization initiator examples include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl].
  • thermal cationic polymerization initiator examples include cationic or protonic acid catalysts such as triflic acid salts, boron trifluoride ether complex compounds, boron trifluoride, ammonium salts, phosphonium salts, sulfonium salts, and the like. Onium salts can be used.
  • the cation moiety is sulfonium, iodonium, diazonium, ammonium, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe cation, and the anion moiety is Onium salts composed of BF4-, PF6-, SbF6-, [BX4]-(wherein X is a phenyl group substituted with at least two fluorine or trifluoromethyl groups).
  • Anionic polymerization initiator melamine, imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptacilimidazole, 2-ethyl-4-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1 -Benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [ '-Methylimi
  • Polymerization initiator may or may not be used.
  • the amount used is not particularly limited, but is usually 0 mass with respect to a total of 100 parts by mass of the first polymerizable compound and the second polymerizable compound. More than 10 parts by mass, preferably 1 to 10 parts by mass.
  • the second organic compound layer is formed adjacent to the first organic compound layer.
  • the second organic compound layer is usually formed by coating on the first organic compound layer.
  • the first organic compound layer is excellent in solvent resistance because it contains a crosslinked polymer.
  • the second organic compound layer is formed by coating, for example, when the second organic compound layer is formed by coating using a solution containing a solvent capable of dissolving the non-crosslinked polymer and the first polymerizable compound. Even if it exists, a 1st organic compound layer does not melt
  • any solvent that dissolves the material of the second organic compound layer well and has excellent coating properties without considering the dissolution of the first organic compound layer is arbitrary. You can choose to use. Specific examples of the solvent include those exemplified as those used for forming the first organic compound layer.
  • the second organic compound layer varies depending on the structure of the organic light emitting device of the present invention, and examples thereof include a hole transport layer and a light emitting layer.
  • the organic light emitting element of this invention has a light emitting layer as another layer.
  • hole transport layer When the second organic compound layer is used as the hole transport layer, a known material can be used as the hole transport material.
  • TPD N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′diamine
  • ⁇ -NPD 4,4′-bis [N Low molecular triphenylamine derivatives such as-(1-naphthyl) -N-phenylamino] biphenyl
  • m-MTDATA (4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino) triphenylamine
  • Polyvinyl carbazole polymer compounds obtained by polymerizing a triphenylamine derivative by introducing a polymerizable substituent, and the like.
  • an organic compound layer is formed by coating film formation, it is desirable to include a polymer compound.
  • the hole transport material may be used alone or in combination of two or more. Moreover, you may laminate
  • the thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 ⁇ m, more preferably 5 nm to 1 ⁇ m, and particularly preferably 10 nm to 500 nm.
  • Light emitting layer When the second organic compound layer is used as the light emitting layer, a known material can be used as a material for forming the light emitting layer.
  • the organic compound for forming the light emitting layer of the organic light emitting device of the present invention the light emitting small molecule described in Hiroshi Omori: Applied Physics, Vol. 70, No. 12, pp. 1419-1425 (2001) Examples thereof include compounds and luminescent polymer compounds.
  • the phosphorescent compound is preferably a phosphorescent compound.
  • the phosphorescent compound include known transition metal complexes including ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, and gold. Among these, iridium complexes and platinum complexes are preferable.
  • the phosphorescent compound is preferably a metal complex represented by the following general formula (11).
  • M represents iridium or platinum
  • the ring represented by A represents a nitrogen-containing heteroaromatic ring containing a nitrogen atom bonded to M
  • the ring represented by B bonded to M.
  • L represents a bidentate ligand
  • s represents an integer of 1 to 3
  • t represents 0 to 2
  • s + t is 2 or 3.
  • the light emitting layer in the organic EL device produced by the method of the present invention is preferably a layer containing the phosphorescent compound.
  • a hole transporting compound, an electron transporting compound, or a polymer compound obtained by polymerizing these may be contained.
  • the hole transporting compound used for these purposes include TPD (N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′diamine.
  • Triphenylamine derivatives such as triphenylamine), polyvinyl carbazole, and polymers obtained by introducing a polymerizable functional group into the triphenylamine derivative, such as disclosed in JP-A-8-157575.
  • triphenylamine skeleton polymer compounds examples include: Low molecular weight materials such as quinolinol derivative metal complexes such as Alq3 (tris (8-hydroxyquinolinate) aluminum (III)), oxadiazole derivatives, triazole derivatives, imidazole derivatives, triazine derivatives, triarylborane derivatives, Known electron transporting compounds such as those obtained by introducing a polymerizable functional group into a low molecular electron transporting compound to form a polymer, for example, poly PBD disclosed in JP-A-10-1665 can be used.
  • quinolinol derivative metal complexes such as Alq3 (tris (8-hydroxyquinolinate) aluminum (III)
  • oxadiazole derivatives triazole derivatives
  • imidazole derivatives imidazole derivatives
  • triazine derivatives triarylborane derivatives
  • Known electron transporting compounds such as those obtained by introducing a polymerizable functional group into a low molecular
  • the material used for the cathode 15 is not particularly limited as long as it has electrical conductivity like the anode 12. However, a material having a low work function and being chemically stable is preferable. Specific examples include materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi, and Al and alkaline earth metal alloys such as AlCa.
  • the material of the cathode 15 is, for example, the anode 12 when it is desired to extract light from the cathode 15 side of the organic light emitting element 10 (when the surface on the cathode 15 side is a surface from which light is extracted, that is, a light emitting surface). In addition, it is preferable to use a material that is transparent to the emitted light.
  • the thickness of the cathode 15 is preferably 0.01 ⁇ m to 1 ⁇ m, more preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • the organic light emitting device of the present invention may have, for example, an electron transport layer, a hole blocking layer, an electron injection layer, etc. as other layers.
  • the organic light emitting device of the present invention may have a protective cover or the like as another member.
  • An electron transport layer may be provided between the second organic compound layer 14 and the cathode 15.
  • Examples of materials that can be used for the electron transport layer include quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like.
  • tris (8-quinolinolato) aluminum abbreviation: Alq
  • bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum bis [2- (2-hydroxyphenyl) benzothiazolate]
  • Examples thereof include zinc and 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole.
  • a block layer may be provided.
  • a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative is used.
  • An electron injection layer may be provided adjacent to the cathode 15 for the purpose of increasing the efficiency of electron injection from the cathode 15.
  • a metal material having a work function lower than that of the cathode 15 is preferably used.
  • alkali metals Na, K, Rb, Cs
  • alkaline earth metals Sr, Ba, Ca, Mg
  • rare earths Metals Pr, Sm, Eu, Yb
  • the thickness of the electron injection layer is preferably 0.05 to 50 nm, more preferably 0.1 to 20 nm, and still more preferably 0.5 to 10 nm.
  • the organic light emitting element 10 for the organic light emitting element 10 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic light emitting element 10 from the outside.
  • a protective layer a high molecular compound, a metal oxide, a metal fluoride, a metal boride, a silicon compound such as silicon nitride, silicon oxide, or the like can be used.
  • these laminated bodies can also be used.
  • the protective cover a glass plate, a plastic plate with a surface subjected to low water permeability treatment, a metal, or the like can be used. It is preferable that the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate. In this case, it is preferable to use a spacer because a predetermined space can be maintained and the organic light emitting element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon, or helium is sealed in this space, it becomes easy to prevent the upper cathode 16 from being oxidized.
  • an inert gas such as nitrogen, argon, or helium
  • helium because heat conductivity is high, and thus heat generated from the organic light emitting device 10 can be effectively transmitted to the protective cover when a voltage is applied. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the manufacturing process of the organic light emitting element from damaging the organic light emitting element 10.
  • the organic light emitting device is usually produced using the coating solution of the present invention.
  • the coating solution of the present invention is a coating solution used for manufacturing an organic light emitting device, and includes the non-crosslinked polymer, the first polymerizable compound capable of forming a crosslinked polymer, and the solvent.
  • a coating film is formed by applying a solution containing the first polymerizable compound capable of forming the non-crosslinked polymer and the crosslinked polymer and a solvent on the first electrode. Adjoining the first organic compound layer, a step of polymerizing the first polymerizable compound in the coating film to form a first organic compound layer containing a non-crosslinked polymer and a crosslinked polymer; A step of forming a second organic compound layer by coating, and a step of forming a second electrode on the second organic compound layer.
  • the non-crosslinked polymer As the non-crosslinked polymer, the first polymerizable compound, the solvent and the like used in the method for producing an organic light emitting device of the present invention, those described above can be used. That is, the first polymerizable compound is a compound including a structure having a charge transporting property, and the non-crosslinked polymer and the crosslinked polymer both include a repeating unit including a structure having a charge transporting property.
  • the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer is 0.2 eV or less.
  • at least one of the first organic compound layer and the second organic compound layer may be formed by a method other than coating.
  • a first non-crosslinked polymer composed of a repeating unit including a charge transporting structure and a crosslinked polymer including a charge transporting structure can be formed on the first electrode.
  • a solution containing the polymerizable compound is applied to form a coating film, and the type and amount of each component contained in the solution are as described above.
  • the method for applying the solution on the first electrode is not particularly limited, but usually a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar.
  • Film formation can be performed using a coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, or the like.
  • the first organic compound layer When the first organic compound layer is formed by coating, it usually includes a step of drying the coating film after coating the solution and before polymerizing the polymerizable compound.
  • the temperature at which the coating film is dried can be appropriately determined within a range in which the components in the coating film are not easily deteriorated by heat, depending on the type of solvent used in the solution, and is usually 50 to 300 ° C.
  • the method for polymerizing the first polymerizable compound in the coating film is not particularly limited, and examples thereof include an ultraviolet irradiation method and a heating method.
  • the conditions for the polymerization can be appropriately determined within a range in which the components in the coating film hardly deteriorate depending on the type of the polymerizable group of the first polymerizable compound.
  • a radically polymerizable group such as a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloylamino group, a methacryloyl group, a methacryloylamino group, a vinyloxy group, or a vinylamino group
  • a nitrogen or the like is usually used. 5 minutes to 5 hours at 80 to 300 ° C. in an active atmosphere.
  • the polymerization of the first polymerizable compound is performed by heating, it can be performed simultaneously with the drying step.
  • a coating method when forming the second organic compound layer on the first organic compound layer there is no particular limitation on a coating method when forming the second organic compound layer on the first organic compound layer, and the film is formed by using the same method as that for forming the first organic compound layer. It can be performed.
  • the organic light emitting device of the present invention has other layers, members, etc., they can be laminated and arranged by a known method.
  • the organic light-emitting device of the present invention is suitably used in an image display device as a matrix-type or segment-type pixel.
  • the organic light emitting element is also suitably used as an illumination device such as a surface light source without forming pixels.
  • the organic light-emitting device of the present invention includes a display device in a computer, a television, a mobile terminal, a mobile phone, a car navigation system, a sign, a signboard, a video camera viewfinder, a backlight, an electrophotography, illumination, and resist exposure. It is preferably used for a light irradiation device in a reading device, interior lighting, an optical communication system or the like.
  • a part of the organic compound layer of the laminate A is cut with a needle to expose the substrate (hereinafter, the exposed substrate surface is also referred to as “substrate exposed portion”), and a stylus type surface shape measuring device (ULVAC Dektak) is used. 6) is used to observe the surface of the laminate A on the organic compound layer side so as to cross the exposed portion of the substrate as shown in FIG. ”)) Was measured.
  • substrate exposed portion the exposed substrate exposed portion
  • UVAC Dektak stylus type surface shape measuring device
  • the thickness of the organic compound layer of the laminate B (hereinafter also referred to as “organic compound layer after the dissolution test treatment”) is measured by the same method as that of the laminate A, and is defined by the following formula: The “retention rate (%)” of the thickness of the organic compound layer was calculated.
  • the luminous efficiency ratio of the number of photons to the amount of current (number of electrons) at the time of lighting of 100 cd / m 2
  • power efficiency ratio of luminous flux to input power
  • reaction solution was put into a 500 ml beaker containing sodium hydrogen carbonate (20 g) and water (200 ml), and extracted with ethyl acetate.
  • methyltriphenylphosphonium bromide 5.0 g, 14 mmol
  • dehydrated tetrahydrofuran 100 ml
  • potassium tert-butoxide 1 0.7 g, 15 mmol
  • a solution of compound (b) 6.5 g, 12 mmol
  • THF tetrahydrofuran
  • the identification data of compound (c) is as follows.
  • the reaction solution was dropped into 500 mL of acetone to obtain a precipitate. Further, reprecipitation purification with toluene-acetone was repeated twice, and then the precipitate was vacuum dried at 50 ° C. overnight to obtain a non-crosslinked polymer (A).
  • the obtained non-crosslinked polymer (A) had a weight average molecular weight of 34,000 and a molecular weight distribution index (Mw / Mn) of 2.31.
  • reaction mixture was cooled to room temperature, water (100 ml) was added, and then the organic layer was extracted with ethyl acetate.
  • the extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (d) (9.5 g, 30 mmol). .
  • the identification data of the polymerizable compound B is as follows.
  • a mixture of the non-crosslinked polymer A obtained in Synthesis Example 1 and the polymerizable compound B obtained in Synthesis Example 2 in a mass ratio of 50:50 was dissolved in toluene to prepare a 2.0 mass% coating solution. .
  • a film was formed on the surface of the transparent support substrate on which ITO was formed by spin coating (2000 rpm, 30 seconds), and heat-treated at 140 ° C. for 2 hours in a nitrogen atmosphere to give a film thickness of 50 nm.
  • a cured film was prepared, and a hole injection layer (first organic compound layer) was formed.
  • a metal layer film having a thickness of 150 nm is formed on the organic compound layer by a vacuum vapor deposition method, and the structure shown in FIG. An element was produced.
  • the degree of vacuum during vapor deposition was 1.0 ⁇ 10 ⁇ 4 Pa and the film formation rate was 1.0 to 1.2 nm / sec.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • the identification data of the polymerizable compound C is as follows.
  • Example 2 A device of Example 2 was produced in the same manner as the device of Example 1 except that the polymerizable compound B of Example 1 was changed to the polymerizable compound C synthesized in Synthesis Example 3.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • the identification data of the polymerizable compound D is as follows.
  • Compound (g) was synthesized by the following method.
  • 1,4-phenylenediamine (4.0 g, 37 mmol), 3-iodotoluene (17.0 g, 78 mmol) and dehydrated xylene (200 ml) were placed in a 500 ml three-necked flask and stirred at 50 ° C. did.
  • potassium tert-butoxide (8.7 g, 78 mmol)
  • palladium acetate (0.30 g, 1.3 mmol
  • tri-tert-butylphosphine (1.0 g, 4.9 mmol) were added in this order, and the mixture was heated at 120 ° C. Stir for 4 hours.
  • reaction mixture was cooled to room temperature, water (100 ml) was added, and then the organic layer was extracted with ethyl acetate.
  • the extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (f) (8.7 g, 30 mmol). .
  • Example 3 A device of Example 3 was fabricated in exactly the same manner as the device of Example 1, except that the first polymerizable compound B of Example 1 was changed to the polymerizable compound D synthesized in Synthesis Example 4.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • reaction mixture was cooled to room temperature, water (50 ml) was added, and then the organic layer was extracted with ethyl acetate.
  • the extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (k) (2.0 g, 3. 1 mmol).
  • reaction mixture was cooled to room temperature, water (50 ml) was added, and then the organic layer was extracted with ethyl acetate.
  • the extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain polymerizable compound F (2.2 g, 1. 3 mmol).
  • the identification data of the polymerizable compound F is as follows.
  • Example 4 The non-crosslinked polymer A of Example 1 was changed to the non-crosslinked polymer E synthesized in Synthesis Example 5, and the first polymerizable compound B was changed to the polymerizable compound F synthesized in Synthetic Example 6 to obtain the device of Example 1.
  • the device of Example 4 was fabricated in exactly the same manner. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • Example 5 A device of Example 5 was produced in the same manner as the device of Example 4 except that the first polymerizable compound F of Example 4 was changed to the polymerizable compound D.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • Example 6 A device of Example 6 was produced in the same manner as the device of Example 1 except that the ratio of the non-crosslinked polymer A and the polymerizable compound B of Example 1 was changed to 5:95.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • Example 7 A device of Example 7 was produced in the same manner as the device of Example 1, except that F4TCNQ was added so that non-crosslinked polymer A, polymerizable compound B, and F4TCNQ were 50: 50: 1.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • a compound (e) (5.0 g, 9.5 mmol), potassium tert-butoxide (2.2 g, 20 mmol), and dehydrated DMF (50 ml) were placed in a 200 ml three-necked flask at room temperature. Stir for hours. To the resulting reaction mixture, a solution of 11-bromo-1-undecene (4.7 g, 20 mmol) in DMF (15 ml) was added dropwise and stirred at room temperature for 5 hours.
  • the identification data of the polymerizable compound I are as follows.
  • Example 8 The coating liquid for forming the hole injection layer used in Example 1 was prepared by adding 50 parts of the non-crosslinked polymer A synthesized in Synthesis Example 1, the polymerizable compound I synthesized in Synthesis Example 7, and styrene as the second polymerizable compound.
  • a device of Example 8 was produced in the same manner as the device of Example 1 except that the toluene solution was contained in a mass ratio of 50:20 and containing 2.0% by mass of solid.
  • Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
  • a compound (m) (1.3 g, 1.4 mmol), potassium tert-butoxide (0.20 g, 1.8 mmol) and dehydrated DMF (10 ml) were placed in a 200 ml three-necked flask. And stirred at room temperature for 1 hour. A solution of 1,8-dibromooctane (0.19 g, 0.70 mmol) in DMF (5 ml) was added dropwise to the resulting reaction mixture, and the mixture was stirred at room temperature for 5 hours.
  • the identification data of the polymerizable compound J is as follows.
  • the identification data of the polymerizable compound K is as follows.

Abstract

The purpose of the present invention is to provide an organic light emitting element which has a plurality of adjacent organic compound layers and which exhibits excellent insolubilization properties and charge transport properties of the base layer and good emission characteristics in comparison to conventional organic light emitting elements. An organic light emitting element of the present invention comprises: a first electrode; a first organic compound layer that is formed on the first electrode; a second organic compound layer that is formed adjacent to the first organic compound layer; and a second electrode that is formed on the second organic compound layer. The first organic compound layer contains a non-crosslinked polymer and a crosslinked polymer, and both of the non-crosslinked polymer and the crosslinked polymer have a repeating unit that contains a charge-transporting structure. The absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer is 0-0.2 eV.

Description

有機発光素子、その製造方法およびその用途ORGANIC LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND ITS APPLICATION
 本発明は有機発光素子、その製造方法およびその用途に関し、詳しくは電荷輸送性を有する非架橋ポリマーおよび架橋ポリマーを含有する有機化合物層を有する有機発光素子、その製造方法およびその用途に関する。 The present invention relates to an organic light-emitting device, a method for producing the same, and an application thereof, and more particularly to an organic light-emitting device having an organic compound layer containing a non-crosslinked polymer and a crosslinked polymer having charge transport properties, a method for producing the organic light-emitting device.
 近年、有機発光素子(以下、「有機EL素子」とも記す。)の応用研究が盛んに行われている。有機EL素子は、陽極と陰極とからなる一対の電極とその間に形成された一または複数の有機化合物層からなり、陽極と陰極の間に電圧を印加することで、陽極と陰極からそれぞれ正孔と電子を注入し、注入された電子と正孔とが、有機化合物層で再結合することにより生じるエネルギーを利用して発光を行う。即ち、有機EL素子は、この電荷再結合によるエネルギーで有機化合物層の発光材料が励起され、励起状態から再び基底状態に戻る際に光を発生する現象を利用している。 In recent years, application research on organic light-emitting elements (hereinafter also referred to as “organic EL elements”) has been actively conducted. An organic EL element is composed of a pair of electrodes composed of an anode and a cathode and one or a plurality of organic compound layers formed between the electrodes. By applying a voltage between the anode and the cathode, holes are respectively formed from the anode and the cathode. And electrons are injected, and light is emitted using energy generated by recombination of the injected electrons and holes in the organic compound layer. That is, the organic EL element utilizes a phenomenon in which light is generated when the light emitting material of the organic compound layer is excited by the energy due to this charge recombination and returns from the excited state to the ground state again.
 有機化合物層の製造方法としては蒸着法および塗布法など複数の方法が知られているが、その工程の簡易さから塗布法を用いた方法が盛んに検討されている。塗布法を用いて有機化合物層を形成する場合は、有機材料を溶解させた塗布液を塗布することで塗布膜を形成し、更にこの膜を乾燥させることで有機化合物層を形成している。 A plurality of methods such as a vapor deposition method and a coating method are known as a method for producing an organic compound layer, and a method using a coating method has been actively studied because of the simplicity of the process. When an organic compound layer is formed using a coating method, a coating film is formed by coating a coating solution in which an organic material is dissolved, and this film is dried to form an organic compound layer.
 しかしながら、塗布法で有機化合物層の積層構造を形成する場合、特に既に形成された有機化合物層を下地層として、更に別の有機化合物層の形成を目的として塗布液を塗布した場合には、該塗布液中の溶媒によって下地層が溶解することがあった。下地層が溶解した場合には、該下地層の膜厚が変化する場合や、下地層を構成する材料が、新たに形成される有機化合物層に混入する場合があり、意図した有機発光素子が得られない場合があった。 However, when a laminated structure of an organic compound layer is formed by a coating method, particularly when an already formed organic compound layer is used as a base layer and a coating solution is applied for the purpose of forming another organic compound layer, The underlayer was sometimes dissolved by the solvent in the coating solution. When the underlying layer is dissolved, the thickness of the underlying layer may change, or the material constituting the underlying layer may be mixed into the newly formed organic compound layer. In some cases, it could not be obtained.
 以上の問題を解決するために、下地層を形成する材料としてエポキシ基などの架橋基を有する化合物を用い、この化合物を塗布成膜後に外部エネルギーを与えることで架橋させ不溶化する方法が既に検討されている。 In order to solve the above problems, a method of using a compound having a crosslinking group such as an epoxy group as a material for forming an underlayer and crosslinking and insolubilizing this compound by applying external energy after coating film formation has already been studied. ing.
 特許文献1ではキャリア輸送性または発光性を有するポリマーと低分子架橋剤を含有した塗布液を塗布して成膜したのち、低分子架橋剤を有機化合物層内で架橋させることで不溶化膜を形成している。しかし、これらの架橋剤は電荷輸送性に乏しいことから添加によって有機化合物層の電荷輸送性が低下し、また架橋剤自身がキャリアトラップとして働くこともあった。このため、硬化性を高めるために添加剤を増やすと有機発光素子の性能が低下するという問題があった。また、架橋剤添加による悪影響を抑制するために添加量を少なくすると、有機化合物層の不溶化が不充分になり、意図した有機発光素子を作製することが困難になるという問題もあった。 In Patent Document 1, an insolubilized film is formed by coating a coating solution containing a carrier transporting or light-emitting polymer and a low molecular crosslinking agent and then crosslinking the low molecular crosslinking agent in the organic compound layer. is doing. However, since these cross-linking agents are poor in charge transport properties, the charge transport properties of the organic compound layer are lowered by addition, and the cross-linking agents themselves sometimes function as carrier traps. For this reason, there is a problem in that the performance of the organic light emitting device is lowered when the additive is increased in order to improve curability. In addition, if the amount added is reduced in order to suppress the adverse effects due to the addition of the cross-linking agent, insolubilization of the organic compound layer becomes insufficient, which makes it difficult to produce the intended organic light-emitting device.
 特許文献2には、有機化合物層を形成する有機材料に添加する架橋剤として電荷輸送性を示す架橋剤を用いることにより、有機化合物層の特性低下を抑制すると同時に、当該有機化合物層の溶剤に対する耐溶解性も付与できることが開示されており、電荷輸送性を示す架橋剤としては、この架橋剤のみからなる薄膜において10-9cm2/V・s以上の高い電荷移動度を示す化合物が記載されている。 In Patent Document 2, by using a cross-linking agent exhibiting charge transportability as a cross-linking agent added to the organic material forming the organic compound layer, it is possible to suppress deterioration in characteristics of the organic compound layer and It is disclosed that dissolution resistance can also be imparted, and as a crosslinking agent exhibiting charge transportability, a compound exhibiting a high charge mobility of 10 −9 cm 2 / V · s or more in a thin film composed only of this crosslinking agent is described. Has been.
 しかしながら電荷輸送性の有機材料にこのような電荷輸送性を示す架橋剤を混合し、塗布成膜後に架橋剤を架橋して得られる有機化合物層の電荷移動度が、化合物の組み合わせによっては、上記有機材料や架橋剤のみからなる有機化合物層のいずれの電荷移動度よりも低下してしまう場合があり、またこのような特性低下は架橋剤の混合比を高めると顕著であるため、有機化合物層を充分に不溶化できない問題があった。 However, the charge mobility of the organic compound layer obtained by mixing such a charge transporting organic material with a crosslinking agent exhibiting such charge transporting property and crosslinking the crosslinking agent after coating film formation depends on the combination of the compounds. In some cases, the charge mobility of the organic compound layer consisting only of the organic material or the cross-linking agent may be lower than that of the organic compound layer. There is a problem that cannot be sufficiently insolubilized.
特開2005-243300号公報JP-A-2005-243300 特開2010-129825号公報JP 2010-129825 A
 本発明は、上記従来技術の有する課題を鑑みてされたものであり、隣接する複数の有機化合物層を有する有機発光素子において、従来の有機発光素子と比べて、下地層が耐溶剤性と電荷輸送性に優れ、良好な発光特性を示す有機発光素子を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and in an organic light emitting device having a plurality of adjacent organic compound layers, the underlayer has a solvent resistance and charge compared to the conventional organic light emitting device. An object of the present invention is to provide an organic light-emitting device that is excellent in transportability and exhibits good light-emitting properties.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、電極上に、電荷輸送性を有する非架橋ポリマーおよび架橋ポリマーを含有する有機化合物層を形成する際に、前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値を0.2eV以下とすることにより、該有機化合物層は電荷輸送性に優れること、該有機化合物層は、架橋ポリマーを多く含有されることが可能であり、耐溶剤性(ここで耐溶剤性とは有機溶剤に対する難溶性を意味する。)を向上させることが可能であること、および該有機化合物層を有する有機発光素子は良好な発光特性を示すことを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that when the organic compound layer containing a non-crosslinked polymer having a charge transport property and a crosslinked polymer is formed on the electrode, the non-crosslinked By setting the absolute value of the difference between the ionization potential of the polymer and the ionization potential of the crosslinked polymer to 0.2 eV or less, the organic compound layer has excellent charge transport properties, and the organic compound layer has a large amount of crosslinked polymer. Organic light-emitting device that can be contained, can improve solvent resistance (herein, solvent resistance means poor solubility in organic solvents), and has an organic compound layer Was found to exhibit good luminescent properties, and the present invention was completed.
 すなわち、本発明は、たとえば以下の(1)~(16)に関する。 That is, the present invention relates to the following (1) to (16), for example.
 (1)
 第1の電極と、
 前記第1の電極上に形成された第1の有機化合物層と、
 前記第1の有機化合物層に隣接して形成された第2の有機化合物層と、
 前記第2の有機化合物層上に形成された第2の電極とを有する有機発光素子であり、
 前記第1の有機化合物層が、非架橋ポリマーと、架橋ポリマーとを含有し、
 前記非架橋ポリマーと、前記架橋ポリマーとが、共に電荷輸送性を有する構造を含む繰り返し単位を含み、
 前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0~0.2eVである有機発光素子。
(1)
A first electrode;
A first organic compound layer formed on the first electrode;
A second organic compound layer formed adjacent to the first organic compound layer;
An organic light emitting device having a second electrode formed on the second organic compound layer,
The first organic compound layer contains a non-crosslinked polymer and a crosslinked polymer;
The non-crosslinked polymer and the crosslinked polymer each include a repeating unit including a structure having charge transportability,
An organic light emitting device in which an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of the crosslinked polymer is 0 to 0.2 eV.
 (2)
 前記架橋ポリマーが、少なくとも第1の重合性化合物を重合することにより形成されるポリマーであり、
 前記第1の重合性化合物が、電荷輸送性を有する構造を含む化合物である、(1)に記載の有機発光素子。
(2)
The crosslinked polymer is a polymer formed by polymerizing at least a first polymerizable compound;
The organic light-emitting device according to (1), wherein the first polymerizable compound is a compound including a structure having a charge transporting property.
 (3)
 前記非架橋ポリマーおよび前記架橋ポリマーにおいて、隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、非共役構造を含む連結基によって連結されている、(1)または(2)に記載の有機発光素子。
(3)
In the non-crosslinked polymer and the crosslinked polymer, the two structures having charge transporting properties included in adjacent repeating units are linked by a linking group containing a nonconjugated structure. Organic light emitting device.
 (4)
 前記非架橋ポリマーの繰り返し単位が有する電荷輸送性を有する構造と、前記架橋ポリマーの繰り返し単位が有する電荷輸送性を有する構造とが同一の構造である(1)~(3)のいずれか一項に記載の有機発光素子。
(4)
(1) to (3) any one of (1) to (3), wherein the structure having the charge transport property of the repeating unit of the non-crosslinked polymer and the structure having the charge transporting property of the repeating unit of the crosslinked polymer are the same structure. The organic light-emitting device described in 1.
 (5)
 前記電荷輸送性を有する構造がトリフェニルアミン誘導体である、(1)~(4)のいずれか一項に記載の有機発光素子。
(5)
The organic light-emitting device according to any one of (1) to (4), wherein the structure having a charge transporting property is a triphenylamine derivative.
 (6)
 前記非架橋ポリマーが、下記一般式(1)および下記一般式(2)から選択される少なくとも1種の繰り返し単位からなるポリマーであり、
 前記第1の重合性化合物が、下記一般式(3)で表わされる化合物である(2)~(5)のいずれか一項に記載の有機発光素子。
(6)
The non-crosslinked polymer is a polymer comprising at least one repeating unit selected from the following general formula (1) and the following general formula (2):
The organic light-emitting device according to any one of (2) to (5), wherein the first polymerizable compound is a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000004
(一般式(1)~(3)において、各Aはそれぞれ独立に、電荷輸送性を有する構造を表し、X1およびX5はそれぞれ独立に、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、
 X2~X4はそれぞれ独立に、単結合、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはアラルキル基を表わし、aは0または1である。)
 (7)
 前記一般式(3)におけるaが0であり、
 前記架橋ポリマーが、前記第1の重合性化合物100質量%に対して、第2の重合性化合物が10~100質量%となる範囲で前記第1の重合性化合物と、第2の重合性化合物とを共重合して得られたものである(6)に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000004
In (formula (1) to (3), respectively each A independently represents a structure having a charge transport, respectively X 1 and X 5 are independently, -O -, - S-, or a substituent An alkylene group having 1 to 20 carbon atoms that may have (provided that one or two or more non-adjacent methylene groups in the alkylene group may be substituted with —O— or —S— and bonded to A; One non-adjacent or two or more non-adjacent methylene groups are —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group Which may be substituted with
X 2 to X 4 are each independently a single bond, —O—, —S—, or an optionally substituted alkylene group having 1 to 20 carbon atoms (provided that one or not in the alkylene group is not adjacent) Two or more methylene groups may be substituted with —O— or —S—, and one or more methylene groups not bonded to A may be —SO—, —SO 2 —, —CO—. , —COO—, —N (R Y ) —, —CO—N (R Y ) —, which may be substituted with an arylene group), and R Y represents a hydrogen atom, an alkyl having 1 to 4 carbon atoms. Represents a group, an aryl group, or an aralkyl group, and a is 0 or 1; )
(7)
A in the general formula (3) is 0;
The first polymerizable compound and the second polymerizable compound in a range in which the crosslinked polymer is 10 to 100% by mass of the second polymerizable compound with respect to 100% by mass of the first polymerizable compound. The organic light-emitting device according to (6), which is obtained by copolymerization of
 (8)
 前記一般式(1)~(3)におけるAが、下記一般式(4)で表される、(6)に記載の有機発光素子。
(8)
The organic light-emitting device according to (6), wherein A in the general formulas (1) to (3) is represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000005
(一般式(4)において、R2およびR3のいずれか一方は下記一般式(5)で表される基であり、
 前記一般式(4)におけるR1~R15および下記一般式(5)におけるR16~R29のいずれか二つは、前記一般式(1)~(3)におけるX1~X5または水素原子への結合手であり、
 前記一般式(5)で表される基および前記結合手ではないR1~R15は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基である。)
Figure JPOXMLDOC01-appb-C000005
(In General Formula (4), one of R 2 and R 3 is a group represented by the following General Formula (5),
Any two of R 1 to R 15 in the general formula (4) and R 16 to R 29 in the following general formula (5) are X 1 to X 5 or hydrogen in the general formulas (1) to (3). A bond to an atom,
The group represented by the general formula (5) and R 1 to R 15 that are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or carbon. An alkoxy group of 1 to 10; )
Figure JPOXMLDOC01-appb-C000006
(一般式(5)において、前記結合手ではないR16~R29は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基であり、bは0または1であり、bが1の場合において、連結した芳香環のR同士が互いに結合して縮合環を形成してもよい。)
 (9)
 前記第1の有機化合物層に含まれる前記架橋ポリマーと前記非架橋ポリマーとの質量比が50:50~95:5である(1)~(8)のいずれか一項に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000006
(In the general formula (5), R 16 to R 29 which are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. In the case where b is 0 or 1 and b is 1, the linked aromatic rings R may be bonded to each other to form a condensed ring.
(9)
The organic light-emitting device according to any one of (1) to (8), wherein a mass ratio of the crosslinked polymer and the non-crosslinked polymer contained in the first organic compound layer is 50:50 to 95: 5. .
 (10)
 前記Aで表される電荷輸送性を有する構造の式量が240~1000である(6)~(8)のいずれか一項に記載の有機発光素子。
(10)
The organic light-emitting device according to any one of (6) to (8), wherein the formula weight of the structure having a charge transport property represented by A is 240 to 1000.
 (11)
 前記一般式(3)中のX3およびX4が、一般式(3)におけるAとビニル基とを連結する最短鎖を構成する原子が10以上である置換基を有していてもよいアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよく、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはアラルキル基を表わす。)である(6)~(8)、(10)のいずれか一項に記載の有機発光素子。
(11)
X 3 and X 4 in the general formula (3) may have a substituent having 10 or more atoms constituting the shortest chain connecting A and the vinyl group in the general formula (3) A group (provided that one or two or more methylene groups in the alkylene group may be substituted with —O— or —S—, and one or two or more methylene groups not bonded to A) May be substituted with —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group, and R Y is (A hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.) The organic light-emitting device according to any one of (6) to (8) and (10).
 (12)
 前記第1の有機化合物層が電子受容体を、前記非架橋ポリマーおよび架橋ポリマーの合計100質量%に対して0.1~10質量%含む(1)~(11)のいずれか一項に記載の有機発光素子。
(12)
The first organic compound layer includes an electron acceptor in an amount of 0.1 to 10% by mass with respect to a total of 100% by mass of the non-crosslinked polymer and the crosslinked polymer (1) to (11). Organic light emitting device.
 (13)
 有機発光素子の製造に用いられる塗布溶液であって、
 非架橋ポリマーと、架橋ポリマーを形成し得る第1の重合性化合物と、溶媒とを含み、
 前記非架橋ポリマーが、電荷輸送性を有する構造を含む繰り返し単位を含み、前記第1の重合性化合物が、電荷輸送性を有する構造を含む化合物であり、
 前記非架橋ポリマーのイオン化ポテンシャルと、前記第1の重合性化合物を重合することにより形成される架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0.2eV以下である塗布溶液。
(13)
A coating solution used for manufacturing an organic light emitting device,
A non-crosslinked polymer, a first polymerizable compound capable of forming a crosslinked polymer, and a solvent,
The non-crosslinked polymer includes a repeating unit including a structure having a charge transporting property, and the first polymerizable compound is a compound including a structure having a charge transporting property;
A coating solution in which an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of a crosslinked polymer formed by polymerizing the first polymerizable compound is 0.2 eV or less.
 (14)
 第1の電極上に、非架橋ポリマーと、架橋ポリマーを形成し得る第1の重合性化合物と、溶媒とを含む溶液を塗布して塗膜を形成する工程と、
 前記塗膜内の前記第1の重合性化合物を重合させて、非架橋ポリマーおよび架橋ポリマーを含有する第1の有機化合物層を形成する工程と、前記第1の有機化合物層に隣接する第2の有機化合物層を塗布により形成する工程と、前記第2の有機化合物層上に第2の電極を形成する工程を有し、
 前記第1の重合性化合物が、電荷輸送性を有する構造を含む化合物であり、前記非架橋ポリマーと、前記架橋ポリマーとが、共に電荷輸送性を有する構造を含む繰り返し単位を含み、
 前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0.2eV以下である有機発光素子の製造方法。
(14)
On the first electrode, a step of applying a solution containing a non-crosslinked polymer, a first polymerizable compound capable of forming a crosslinked polymer, and a solvent to form a coating film;
Polymerizing the first polymerizable compound in the coating film to form a first organic compound layer containing a non-crosslinked polymer and a crosslinked polymer; and a second adjacent to the first organic compound layer. A step of forming the organic compound layer by coating, and a step of forming a second electrode on the second organic compound layer,
The first polymerizable compound is a compound including a structure having charge transporting properties, and the non-crosslinked polymer and the crosslinked polymer each include a repeating unit including a structure having charge transporting properties;
A method for manufacturing an organic light emitting device, wherein an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of the crosslinked polymer is 0.2 eV or less.
 (15)
 (1)~(12)のいずれか一項に記載の有機発光素子を備えた照明装置。
(15)
(1) An illuminating device comprising the organic light-emitting element according to any one of (12).
 (16)
 (1)~(12)のいずれか一項に記載の有機発光素子を備えた表示装置。
(16)
(1) A display device comprising the organic light-emitting device according to any one of (12).
 本発明の有機発光素子は、非架橋ポリマーおよび架橋ポリマーを含有し、両者のイオン化ポテンシャルの差の絶対値が小さい第1の有機化合物層を有する。該層は第2の有機化合物層の形成を目的として、塗布液が塗布された場合であっても溶解が抑制されており、かつ第1の有機化合物層が電荷輸送性に優れるため、本発明の有機発光素子は良好な発光特性を示す。 The organic light-emitting device of the present invention contains a non-crosslinked polymer and a crosslinked polymer, and has a first organic compound layer having a small absolute value of the difference in ionization potential between the two. For the purpose of forming the second organic compound layer, the layer is suppressed in dissolution even when a coating solution is applied, and the first organic compound layer is excellent in charge transporting property. This organic light emitting device exhibits good light emitting characteristics.
図1は、本発明の有機発光素子の構造の一例を説明した断面図である。FIG. 1 is a cross-sectional view illustrating an example of the structure of the organic light emitting device of the present invention. 図2は、触針式表面形状測定装置を用いて、有機化合物層の厚さを測定する際のプローブ(探針)の進路を示す概念図である。FIG. 2 is a conceptual diagram showing a course of a probe (probe) when measuring the thickness of an organic compound layer using a stylus type surface shape measuring apparatus.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明の有機発光素子は、第1の電極と、前記第1の電極上に形成された第1の有機化合物層と、前記第1の有機化合物層に隣接して形成された第2の有機化合物層と、前記第2の有機化合物層上に形成された第2の電極とを有する有機発光素子である。本発明の有機発光素子は、前記第1の有機化合物層が、非架橋ポリマーと、架橋ポリマーとを含有し、前記非架橋ポリマーと、前記架橋ポリマーとが、共に電荷輸送性を有する構造を含む繰り返し単位を含み、前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0~0.2eVである。 The organic light emitting device of the present invention includes a first electrode, a first organic compound layer formed on the first electrode, and a second organic layer formed adjacent to the first organic compound layer. An organic light-emitting device having a compound layer and a second electrode formed on the second organic compound layer. In the organic light-emitting device of the present invention, the first organic compound layer includes a non-crosslinked polymer and a crosslinked polymer, and the non-crosslinked polymer and the crosslinked polymer both have a structure having a charge transporting property. Including a repeating unit, the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer is 0 to 0.2 eV.
 本発明の有機発光素子は発光層を少なくとも1層備える。第2の有機化合物層が発光層であってもよいし、第2の有機化合物層と第2の電極との間に発光層が形成されていてもよい。有機発光素子は、複数の発光層を含んでいてもよく、また発光層とは異なる有機化合物層をさらに含んでいてもよい。例えば第2の有機化合物層と陰極(第2の電極)との間には、電子注入層、電子輸送層、正孔ブロック層などが設けられてもよい。 The organic light emitting device of the present invention includes at least one light emitting layer. The second organic compound layer may be a light emitting layer, or a light emitting layer may be formed between the second organic compound layer and the second electrode. The organic light emitting device may include a plurality of light emitting layers, and may further include an organic compound layer different from the light emitting layer. For example, an electron injection layer, an electron transport layer, a hole blocking layer, or the like may be provided between the second organic compound layer and the cathode (second electrode).
 本発明を実施するための形態について図面と共に説明する。 DETAILED DESCRIPTION Embodiments for implementing the present invention will be described with reference to the drawings.
 図1は、本発明の有機発光素子10の構成の一例を示した断面図であり、基板11上に設けた陽極12、第1の有機化合物層13、第1の有機化合物層13の上に隣接して積層形成された第2の有機化合物層14、陰極15を順に設けたものである。 FIG. 1 is a cross-sectional view showing an example of the configuration of the organic light emitting device 10 of the present invention. On the anode 12, the first organic compound layer 13, and the first organic compound layer 13 provided on the substrate 11. A second organic compound layer 14 and a cathode 15 which are laminated adjacently are provided in this order.
 図1における陽極12および陰極15はそれぞれ、本発明における第1の電極および第2の電極に相当する。図1に記載の有機発光素子においては、陽極12と陰極15との間に電圧を印加することによって、陽極12から正孔、陰極15から電子が注入され、第2の有機化合物層(発光層)中で再結合し発光する。 The anode 12 and the cathode 15 in FIG. 1 correspond to the first electrode and the second electrode in the present invention, respectively. In the organic light emitting device shown in FIG. 1, by applying a voltage between the anode 12 and the cathode 15, holes are injected from the anode 12 and electrons are injected from the cathode 15, so that the second organic compound layer (light emitting layer) ) To recombine and emit light.
 [基板]
 基板11の材料としては、有機発光素子10の基板11側から光を取り出したい場合(基板11側の面が光を取出す面、すなわち、発光面となる場合)は、発光する光の波長に対して透明であることが好ましい。具体的には、発光する光が可視光の場合、ソーダガラス、無アルカリガラスなどのガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂などの透明プラスチック;シリコンなどが挙げられる。
[substrate]
As a material of the substrate 11, when light is to be extracted from the substrate 11 side of the organic light emitting element 10 (when the surface on the substrate 11 side is a surface from which light is extracted, that is, a light emitting surface), the wavelength of the emitted light is And transparent. Specifically, when the emitted light is visible light, glass such as soda glass and non-alkali glass; transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin;
 有機発光素子10の基板11側の面から光を取り出す必要がない場合は、基板11の材料としては、透明であるものに限られず、不透明なものも使用できる。具体的には、上記材料に加えて、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)の単体、またはこれらの合金、あるいはステンレスなどからなる材料も使用することができる。 When it is not necessary to extract light from the surface of the organic light emitting element 10 on the substrate 11 side, the material of the substrate 11 is not limited to a transparent material, and an opaque material can be used. Specifically, in addition to the above materials, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) ), Alloys thereof, or materials made of stainless steel can also be used.
 基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1~10mm、より好ましくは0.25~2mmである。 The thickness of the substrate 11 is preferably 0.1 to 10 mm, more preferably 0.25 to 2 mm, although it depends on the required mechanical strength.
 [陽極]
 陽極12は、陰極15との間に電圧が印加されることにより、第1の有機化合物層13に正孔を注入する。陽極12に使用される材料としては、電気伝導性を有するものであれば、特に限定されるものではないが、-5~80℃の温度範囲で面抵抗が1000Ω/□以下であることが好ましく、100Ω/□以下であることが更に好ましい。
[anode]
When a voltage is applied between the anode 12 and the cathode 15, holes are injected into the first organic compound layer 13. The material used for the anode 12 is not particularly limited as long as it has electrical conductivity, but preferably has a sheet resistance of 1000Ω / □ or less in a temperature range of −5 to 80 ° C. More preferably, it is 100Ω / □ or less.
 このような条件を満たす材料として、導電性金属酸化物、金属、合金が使用できる。ここで、導電性金属酸化物としては、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)が挙げられる。また金属としては、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)等が挙げられる。そしてこれらの金属を含む合金やステンレスも使用できる。透明陽極を形成するのに用いられる透明材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、それらの複合体であるITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)等からなる導電性ガラス、金、白金、銀、銅が挙げられる。これらの中でも、ITO、IZO、酸化スズが好ましい。また、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体等の有機物からなる透明導電膜を用いてもよい。 ¡Conductive metal oxides, metals, and alloys can be used as materials that satisfy these conditions. Here, examples of the conductive metal oxide include ITO (indium tin oxide) and IZO (indium zinc oxide). Examples of the metal include copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like. An alloy containing these metals and stainless steel can also be used. Examples of the transparent material used for forming the transparent anode include conductive glass made of indium oxide, zinc oxide, tin oxide, ITO (indium tin oxide) which is a composite thereof, IZO (indium zinc oxide), or the like. , Gold, platinum, silver and copper. Among these, ITO, IZO, and tin oxide are preferable. Further, a transparent conductive film made of an organic material such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
 陽極12の厚さは、有機発光素子10の基板11側から光を取り出したい場合は、高い光透過率を得るため、2nm~1μmであることが好ましく、20~500nmがさらに好ましい。また有機発光素子10の基板11側から光を取り出す必要がない場合は、例えば、2nm~2mmである。 The thickness of the anode 12 is preferably 2 nm to 1 μm, and more preferably 20 to 500 nm in order to obtain high light transmittance when light is to be extracted from the substrate 11 side of the organic light emitting device 10. Further, when it is not necessary to extract light from the substrate 11 side of the organic light emitting element 10, the thickness is, for example, 2 nm to 2 mm.
 なお、基板11の材質は、陽極12と同一の材質であってもよい。この場合、基板11は陽極12を兼ねてもよい。 The material of the substrate 11 may be the same material as the anode 12. In this case, the substrate 11 may also serve as the anode 12.
 [第1の有機化合物層]
 本発明の有機発光素子における第1の有機化合物層13は、非架橋ポリマーおよび架橋ポリマーを含有する。また、前記第1の有機化合物層13は通常、前記非架橋ポリマーおよび、前記架橋ポリマーを形成し得る第1の重合性化合物を含む溶液を第1の電極上に塗布した後に、前記第1の重合性化合物を重合することにより形成される。
[First organic compound layer]
The first organic compound layer 13 in the organic light emitting device of the present invention contains a non-crosslinked polymer and a crosslinked polymer. In addition, the first organic compound layer 13 is usually formed by applying a solution containing the non-crosslinked polymer and the first polymerizable compound capable of forming the crosslinked polymer on the first electrode, and then It is formed by polymerizing a polymerizable compound.
 本発明に係る前記非架橋ポリマーと、前記架橋ポリマーとは、共に電荷輸送性を有する構造を含む繰り返し単位を含んでいる。 Both the non-crosslinked polymer and the crosslinked polymer according to the present invention include a repeating unit including a structure having a charge transporting property.
 また、前記非架橋ポリマーと前記架橋ポリマーのイオン化ポテンシャルの差の絶対値が0~0.2eV、より好ましくは0~0.1eV、さらに好ましくは0.01~0.05eVであるため、電荷輸送能の低下を防ぐことができる。 In addition, since the absolute value of the ionization potential difference between the non-crosslinked polymer and the crosslinked polymer is 0 to 0.2 eV, more preferably 0 to 0.1 eV, and still more preferably 0.01 to 0.05 eV, It is possible to prevent a decrease in performance.
 前記イオン化ポテンシャルの差の絶対値は、以下のようにして測定されたイオン化ポテンシャルから求める。後述する第1の重合性化合物および、必要に応じて後述する第2の重合性化合物を溶媒に溶解させ、両重合性化合物の合計で、1~3質量%の塗布液を調整する。この塗布液を用いて、透明支持基板上にスピンコート法(1000~5000rpm)により成膜する。塗膜を乾燥させ、重合性化合物を重合させる。得られた膜のイオン化ポテンシャルを、大気中光電子分光法により測定して得られた値を架橋ポリマーのイオン化ポテンシャルとする。同様に、第1の重合性化合物および第2の重合性化合物の代わりに、非架橋ポリマーを溶解させた塗布液を用いて、得られた膜のイオン化ポテンシャルを非架橋ポリマーのイオン化ポテンシャルとする。前記架橋ポリマーのイオン化ポテンシャルと、非架橋ポリマーのイオン化ポテンシャルとから、前記イオン化ポテンシャルの差の絶対値を算出することができる。ここで溶媒としては後述の第1の有機化合物層の形成に用いることができるものと同様のものを用いることができ、非架橋ポリマーの測定と、架橋ポリマーの測定とで同じものを用いる。また乾燥および重合の方法や条件は、後述の有機発光素子の製造に用いることのできる方法を採用することができ、非架橋ポリマーの測定と、架橋ポリマーの測定とを同じ条件で行う。なお、非架橋ポリマーからなる膜の作製には、本来、重合させる工程は不要であるが、架橋ポリマーからなる膜のイオン化ポテンシャルと測定条件をそろえるために同様の条件で熱処理を行う。 The absolute value of the difference in ionization potential is obtained from the ionization potential measured as follows. A first polymerizable compound described later and a second polymerizable compound described later if necessary are dissolved in a solvent, and a coating solution of 1 to 3% by mass is prepared in total of both polymerizable compounds. Using this coating solution, a film is formed on a transparent support substrate by spin coating (1000 to 5000 rpm). The coating film is dried to polymerize the polymerizable compound. The value obtained by measuring the ionization potential of the obtained film by atmospheric photoelectron spectroscopy is defined as the ionization potential of the crosslinked polymer. Similarly, instead of the first polymerizable compound and the second polymerizable compound, a coating solution in which the non-crosslinked polymer is dissolved is used and the ionization potential of the obtained film is set as the ionization potential of the non-crosslinked polymer. The absolute value of the difference between the ionization potentials can be calculated from the ionization potential of the crosslinked polymer and the ionization potential of the non-crosslinked polymer. Here, as the solvent, the same solvents that can be used for forming the first organic compound layer described later can be used, and the same solvents are used for the measurement of the non-crosslinked polymer and the measurement of the crosslinked polymer. Moreover, the method and conditions of drying and polymerization can employ | adopt the method which can be used for manufacture of the below-mentioned organic light emitting element, and the measurement of a non-crosslinked polymer and the measurement of a crosslinked polymer are performed on the same conditions. In addition, although the process of superposing | polymerizing is originally unnecessary for preparation of the film | membrane which consists of a non-crosslinked polymer, in order to align the ionization potential and measurement conditions of the film | membrane which consists of a crosslinked polymer, it heat-processes on the same conditions.
 前記非架橋ポリマーとしては特に限定はないが、後述の一般式(1)および一般式(2)から選択される少なくとも1種の繰り返し単位からなるポリマーを用いることが好ましい。 The non-crosslinked polymer is not particularly limited, but it is preferable to use a polymer composed of at least one repeating unit selected from the following general formula (1) and general formula (2).
 また、前記架橋ポリマーは、通常第1の重合性化合物を重合することにより得られるポリマーであるが、該架橋ポリマーはモノマーとして、第1の重合性化合物のみから得られるポリマーであっても、第1の重合性化合物と、第2の重合性化合物とを重合することにより得られる共重合体であってもよい。 The crosslinked polymer is usually a polymer obtained by polymerizing the first polymerizable compound. Even if the crosslinked polymer is a polymer obtained only from the first polymerizable compound as a monomer, The copolymer obtained by superposing | polymerizing 1 polymeric compound and 2nd polymeric compound may be sufficient.
 前記第1の重合性化合物としては特に限定はないが、通常は電荷輸送性を有する構造を含む化合物が用いられ、後述の一般式(3)で表わされる化合物を用いることが好ましい。 The first polymerizable compound is not particularly limited, but a compound containing a structure having a charge transporting property is usually used, and a compound represented by the general formula (3) described later is preferably used.
 第2の重合性化合物としては、例えば分子内にビニル基を1つだけ有する重合性化合物が用いられ、電荷輸送性を有さない化合物であっても、電荷輸送性を有する化合物であってもよい。第2の重合性化合物としては、通常は電荷輸送性を有さないビニル化合物が用いられ、例えば、置換もしくは無置換の直鎖末端アルケン、置換もしくは無置換のスチレン、アクリル酸エステル、メタクリル酸エステル、酢酸ビニルなどが挙げられる。これらの化合物に含まれる炭素の数は4~20の範囲であることが好ましく、より具体的には1-オクテン、4-フェニル-1-ブテン、スチレン、α-メチルスチレン、メタクリル酸エチルなどの化合物を例示することができる。 As the second polymerizable compound, for example, a polymerizable compound having only one vinyl group in the molecule is used, and a compound having no charge transporting property or a compound having charge transporting property may be used. Good. As the second polymerizable compound, usually a vinyl compound having no charge transporting property is used. For example, a substituted or unsubstituted linear terminal alkene, a substituted or unsubstituted styrene, an acrylate ester, a methacrylate ester. And vinyl acetate. The number of carbons contained in these compounds is preferably in the range of 4 to 20, more specifically 1-octene, 4-phenyl-1-butene, styrene, α-methylstyrene, ethyl methacrylate, etc. A compound can be illustrated.
 (電荷輸送性を有する構造)
 第1の有機化合物層に含まれる非架橋ポリマーおよび架橋ポリマーはそれぞれ、電荷輸送性を有する構造を含む繰り返し単位を有する。
(Structure with charge transport properties)
Each of the non-crosslinked polymer and the crosslinked polymer contained in the first organic compound layer has a repeating unit including a structure having a charge transporting property.
 電荷輸送性を有する構造は公知の材料を用いることができ、例えばChemical Reviews、第107巻、953-1010頁、2007年に記載された化合物などが挙げられるが、本発明の有機発光素子では、第1の有機化合物層の電荷輸送性を低下させないために、架橋ポリマーのイオン化ポテンシャルと、非架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0~0.2eV、好ましく0~0.1eV、さらに好ましくは0.01~0.05eVとなるものを用いる。このような条件を満たすことにより、第1の有機化合物層の電荷移動度の低下を抑え、本発明の有機発光素子の発光効率の低下が抑えられる。また、このような架橋ポリマーは第1の有機化合物層の電荷移動度に悪影響を及ぼすことがないため従来と比べて高い割合で存在させることができ、耐溶剤性も向上する。 A known material can be used for the structure having a charge transporting property, and examples thereof include compounds described in Chemical Reviews, Vol. 107, pp. 953-1010, 2007. In the organic light-emitting device of the present invention, In order not to reduce the charge transport property of the first organic compound layer, the absolute value of the difference between the ionization potential of the crosslinked polymer and the ionization potential of the non-crosslinked polymer is 0 to 0.2 eV, preferably 0 to 0.1 eV, Preferably, a voltage of 0.01 to 0.05 eV is used. By satisfying such a condition, a decrease in charge mobility of the first organic compound layer is suppressed, and a decrease in light emission efficiency of the organic light emitting device of the present invention is suppressed. In addition, since such a crosslinked polymer does not adversely affect the charge mobility of the first organic compound layer, it can be present at a higher ratio than conventional and the solvent resistance is also improved.
 また、電荷輸送性を有する構造としては、正孔注入能力、正孔輸送能力に優れ、高発光効率の有機発光素子が得られる点でトリフェニルアミン誘導体が好ましく、下記一般式(4)で表される構造がより好ましい。すなわち、後述する一般式(1)~(3)におけるAが、下記一般式(4)で表わされることがより好ましい。 Moreover, as a structure having charge transportability, a triphenylamine derivative is preferable in that an organic light-emitting device having excellent hole injection ability and hole transport ability and high luminous efficiency can be obtained, and is represented by the following general formula (4). The structure is more preferred. That is, it is more preferable that A in the general formulas (1) to (3) described later is represented by the following general formula (4).
 また、非架橋ポリマーに含まれる電荷輸送性を有する構造と重合性化合物に含まれる電荷輸送性を有する構造が同一であると、前記イオン化ポテンシャルの差の絶対値が小さくなり、電荷輸送性を低下させることなく、第1の有機化合物層を耐溶剤性の膜として得ることができるため好ましい。 In addition, if the structure having charge transportability contained in the non-crosslinked polymer and the structure having charge transportability contained in the polymerizable compound are the same, the absolute value of the difference in ionization potential is reduced and the charge transportability is lowered. This is preferable because the first organic compound layer can be obtained as a solvent-resistant film without the above.
 また、後述の一般式(1)~(3)におけるAで表わされる電荷輸送性を有する構造としては、該構造の式量が240~1000であることが好ましく、400~1000であることがより好ましい。該範囲では、第1の有機化合物層の耐溶剤性に優れ、また耐熱性にも優れるため好ましい。 In the general formulas (1) to (3) to be described later, the structure having a charge transporting property represented by A is preferably 240 to 1000, more preferably 400 to 1000. preferable. Within this range, the first organic compound layer is preferred because it is excellent in solvent resistance and heat resistance.
Figure JPOXMLDOC01-appb-C000007
(一般式(4)において、R2およびR3のいずれか一方は下記一般式(5)で表される基であり、好ましくはR3が下記一般式(5)で表される基である。前記一般式(4)におけるR1~R15および下記一般式(5)におけるR16~R29のいずれか二つは、一般式(1)~(3)におけるX1~X5または水素原子への結合手であり、前記一般式(5)で表される基および前記結合手ではないR1~R15は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基であり、好ましくは水素原子、炭素数1~10のアルキル基である。)
Figure JPOXMLDOC01-appb-C000007
(In General Formula (4), one of R 2 and R 3 is a group represented by the following General Formula (5), and preferably R 3 is a group represented by the following General Formula (5). Any two of R 1 to R 15 in the general formula (4) and R 16 to R 29 in the following general formula (5) are X 1 to X 5 or hydrogen in the general formulas (1) to (3). The group represented by the general formula (5) and R 1 to R 15 which are bonds to the atom and are not bonds are independently a hydrogen atom, a halogen atom, a cyano group, an amino group, or a carbon number of 1 An alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000008
(一般式(5)において、前記結合手ではないR16~R29は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基であり、好ましくは水素原子、炭素数1~10のアルキル基であり、bは0または1であり、bが1の場合において、連結した芳香環のR同士が互いに結合して縮合環を形成してもよい。)
 前記炭素数1~10のアルキル基としては例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、tert-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、3-メチルブチル基、1,1-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、4-メチルペンチル基、2-エチルブチル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、n-オクチル基、2-オクチル基、3-オクチル基、4-オクチル基、n-エチルヘキシル基、n-ノニル基、2-ノニル基、3-ノニル基、4-ノニル基、5-ノニル基またはn-デシル基等が挙げられ、好ましくはメチル基またはエチル基である。
Figure JPOXMLDOC01-appb-C000008
(In the general formula (5), R 16 to R 29 which are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. An alkoxy group, preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, b is 0 or 1, and when b is 1, Rs of the linked aromatic rings are bonded to each other to be condensed. A ring may be formed.)
Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, tert-butyl group, 1-pentyl group and 2-pentyl group. Group, 3-pentyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 4-methylpentyl group, 2-ethylbutyl group, n-heptyl group 2-heptyl group, 3-heptyl group, 4-heptyl group, n-octyl group, 2-octyl group, 3-octyl group, 4-octyl group, n-ethylhexyl group, n-nonyl group, 2-nonyl group , 3-nonyl group, 4-nonyl group, 5-nonyl group, n-decyl group and the like, preferably methyl group or ethyl group.
 前記炭素数1~10のアルコキシ基としては例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、ターシャリーブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基等が挙げられ、好ましくはメトキシ基またはエトキシ基である。 Examples of the alkoxy group having 1 to 10 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tertiary butoxy group, pentyloxy group, hexyloxy group, 2 -An ethylhexyloxy group, an octyloxy group, etc. are mentioned, Preferably they are a methoxy group or an ethoxy group.
 また、前記bが1の場合において、連結した芳香環のR同士が互いに結合して縮合環を形成する場合には、前記R1~R5の少なくとも一つのRと、前記R26~R29の少なくとも一つのRとが結合して、縮合環を形成する。この場合において、縮合環を形成する基は、通常、炭素数1~10のアルキレン基、炭素数2~10のアルケニレン基である。 In the case where b is 1, in the case where Rs of linked aromatic rings are bonded to each other to form a condensed ring, at least one R of R 1 to R 5 and R 26 to R 29 are combined. And at least one R in combination forms a condensed ring. In this case, the group forming the condensed ring is usually an alkylene group having 1 to 10 carbon atoms or an alkenylene group having 2 to 10 carbon atoms.
 一般式(4)で表わされる構造の具体例を以下に示す。なお、以下の具体例においては、後述の一般式(1)~(3)におけるX1~X5または水素原子への結合手については記載を省略している。 Specific examples of the structure represented by the general formula (4) are shown below. In the following specific examples, the description of the bond to X 1 to X 5 or a hydrogen atom in the general formulas (1) to (3) described later is omitted.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 (非架橋ポリマー)
 本発明の有機発光素子の第1の有機化合物層に含有される、非架橋ポリマーは電荷輸送性を有する繰り返し単位を含む。前記非架橋ポリマーとしては、特に限定はないが、隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、非共役構造を含む連結基によって、連結されていることが好ましい。すなわち、非架橋ポリマーは隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、連結基を介して共役することなく連結することが好ましい。つまり、非架橋ポリマーが、前記電荷輸送性を有する構造を主鎖に含むポリマーである場合、非架橋ポリマーの主鎖のうち、隣り合う2つの電荷輸送性を有する構造の間の部分に、非共役構造を含むことが好ましい。また非架橋ポリマーが、前記電荷輸送性を有する構造を側鎖に含むポリマーである場合、非架橋ポリマーの主鎖が非共役構造であるか、前記電荷輸送性を有する構造と、主鎖とが非共役構造を介して連結されていることが好ましい。非共役構造を含む連結基の例としては、炭素数1~20のアルキレン基、脂肪族エーテル結合を含む基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(Non-crosslinked polymer)
The non-crosslinked polymer contained in the first organic compound layer of the organic light-emitting device of the present invention includes a repeating unit having charge transporting properties. The non-crosslinked polymer is not particularly limited, but it is preferable that the two structures having charge transporting properties included in adjacent repeating units are linked by a linking group containing a nonconjugated structure. In other words, the non-crosslinked polymer is preferably linked without conjugating two structures having charge transporting properties contained in adjacent repeating units via a linking group. That is, when the non-crosslinked polymer is a polymer containing the charge transporting structure in the main chain, the non-crosslinked polymer has a non-crosslinked portion between two adjacent structures having the charge transporting property in the main chain. It preferably contains a conjugated structure. In the case where the non-crosslinked polymer is a polymer containing the charge transporting structure in the side chain, the main chain of the non-crosslinked polymer is a non-conjugated structure, or the structure having the charge transporting property and the main chain are It is preferable that they are connected via a non-conjugated structure. Examples of the linking group containing a non-conjugated structure include a C 1-20 alkylene group and a group containing an aliphatic ether bond.
 前記非架橋ポリマーとしては、下記一般式(1)および下記一般式(2)から選択される少なくとも1種の繰り返し単位からなるポリマーであることが好ましく、下記一般式(2)で表わされる繰り返し単位からなるポリマーであることがより好ましい。 The non-crosslinked polymer is preferably a polymer composed of at least one repeating unit selected from the following general formula (1) and the following general formula (2), and the repeating unit represented by the following general formula (2) More preferably, the polymer consists of
Figure JPOXMLDOC01-appb-C000011
(一般式(1)、(2)において、各Aはそれぞれ独立に、電荷輸送性を有する構造を表し、X1は、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは互いに隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、X2は、単結合、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)、好ましくは単結合を表し、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはアラルキル基を表す。)
 なお、前記Aで表わされる電荷輸送性を有する構造の好ましい態様としては、前記(電荷輸送性を有する構造)の項で説明したとおりである。
Figure JPOXMLDOC01-appb-C000011
(In the general formulas (1) and (2), each A independently represents a structure having a charge transporting property, and X 1 represents —O—, —S—, or a carbon which may have a substituent. An alkylene group of 1 to 20 (provided that one or two or more methylene groups not adjacent to each other in the alkylene group may be substituted with —O— or —S—, and one or adjacent not bonded to A) Two or more methylene groups are not substituted with —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, or an arylene group. X 2 represents a single bond, —O—, —S—, or an alkylene group having 1 to 20 carbon atoms which may have a substituent (provided that one or not in the alkylene group) Two or more methylene groups may be substituted with —O— or —S—, and are not bonded to A. One or two or more methylene groups not adjacent to each other are replaced by —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group Preferably represents a single bond, and R Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.)
In addition, as a preferable aspect of the structure which has the charge transport property represented by said A, it is as having demonstrated in the above-mentioned (structure which has charge transport property).
 前記置換基を有してもよい炭素数1~20のアルキレン基において、置換基を有しない場合、すなわち炭素数1~20のアルキレン基としては例えば、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、テトラデカメチレン基等が挙げられる。 In the alkylene group having 1 to 20 carbon atoms which may have a substituent, when there is no substituent, that is, as the alkylene group having 1 to 20 carbon atoms, for example, ethylene group, propylene group, butylene group, pentamethylene Group, hexamethylene group, heptamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tetradecamethylene group and the like.
 また、前記置換基を有してもよい炭素数1~20のアルキレン基において、置換基を有する場合、すなわち置換基を有する炭素数1~20のアルキレン基としては例えば、1-エトキシ-2,5-ヘキシレン基、1,5-ジメトキシ-2,3-ペンチレン基、1-エトキシ-2-(2-エトキシエトキシ)エチレン基、1-ブチルスルホニル-1,4-ブチレン基等が挙げられる。 Further, in the alkylene group having 1 to 20 carbon atoms which may have a substituent, when it has a substituent, that is, as the alkylene group having 1 to 20 carbon atoms having a substituent, for example, 1-ethoxy-2, Examples include 5-hexylene group, 1,5-dimethoxy-2,3-pentylene group, 1-ethoxy-2- (2-ethoxyethoxy) ethylene group, 1-butylsulfonyl-1,4-butylene group.
 また、前記置換基を有してもよい炭素数1~20のアルキレン基において、メチレン基がアリーレン基に置換されている場合には、炭素数6~21のアリーレン基が好ましい。該アリーレン基としては、例えばフェニレン基、トリレン基、キシリレン基、ビフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基等が挙げられる。 In the alkylene group having 1 to 20 carbon atoms which may have a substituent, when an methylene group is substituted with an arylene group, an arylene group having 6 to 21 carbon atoms is preferable. Examples of the arylene group include a phenylene group, a tolylene group, a xylylene group, a biphenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group.
 前記RYが炭素数1~4のアルキル基である場合には、該アルキル基としては例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、tert-ブチル基が挙げられる。 When R Y is an alkyl group having 1 to 4 carbon atoms, examples of the alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, tert group -A butyl group is mentioned.
 前記RYがアリール基である場合には、炭素数6~21のアリール基であることが好ましい。該アリール基としては例えば、フェニル基、トリル基、キシリル基、ビフェニル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基等が挙げられる。 When R Y is an aryl group, it is preferably an aryl group having 6 to 21 carbon atoms. Examples of the aryl group include phenyl group, tolyl group, xylyl group, biphenyl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group and the like.
 前記RYがアラルキル基である場合には、炭素数7~21のアラルキル基であることが好ましい。該アラルキル基としては例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。 When R Y is an aralkyl group, it is preferably an aralkyl group having 7 to 21 carbon atoms. Examples of the aralkyl group include benzyl group, phenethyl group, naphthylmethyl group, naphthylethyl group and the like.
 前記一般式(1)で表わされる繰り返し単位、および前記一般式(2)で表わされる繰り返し単位の具体例を以下に示す。 Specific examples of the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 (第1の重合性化合物)
 本発明の有機発光素子の第1の有機化合物層に含有される、架橋ポリマーとしては、電荷輸送性を有する構造を含む繰り返し単位を含んでいる。前記架橋ポリマーは通常は、少なくとも第1の重合性化合物を重合することにより形成されるポリマーであり、該第1の重合性化合物は通常、電荷輸送性を有する構造を含む化合物である。
Figure JPOXMLDOC01-appb-C000016
(First polymerizable compound)
The crosslinked polymer contained in the first organic compound layer of the organic light-emitting device of the present invention includes a repeating unit including a structure having a charge transporting property. The crosslinked polymer is usually a polymer formed by polymerizing at least a first polymerizable compound, and the first polymerizable compound is usually a compound having a structure having a charge transporting property.
 第1の重合性化合物は、電荷輸送性を有する構造を含む化合物であり、架橋ポリマーを形成し得る重合性化合物である。第1の重合性化合物としては、重合性基と電荷輸送性を有する構造とを含む化合物を用いる。なお、第1の重合性化合物は、重合性基を通常化合物中に2つ以上含んでいる。 The first polymerizable compound is a compound including a structure having a charge transporting property and is a polymerizable compound capable of forming a crosslinked polymer. As the first polymerizable compound, a compound containing a polymerizable group and a structure having charge transportability is used. The first polymerizable compound usually contains two or more polymerizable groups in the compound.
 第1の重合性化合物が有する重合性基としては、ビニル基、エチニル基、ブテニル基、アクリロイル基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基、シラノール基、シクロプロピル基、シクロブチル基、エポキシ基、オキセタニル基、ジケテニル基、エピチオ基、ラクトン基、およびラクタム基からなる群から選ばれる少なくとも1種を有することが好ましく、これらの重合性基の中でビニル基、アクリロイル基、メタクリロイル基が好ましく、さらにはビニル基が最も好ましい。前記架橋ポリマーとしては、隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、非共役構造を含む連結基によって連結されていることが好ましく、隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、連結主鎖に非共役構造を含む連結基によって連結されていることがより好ましい。すなわち、架橋ポリマーは隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、連結基を介して共役することなく連結することが好ましい。例えば前記重合性基がビニル基の場合には、連結基が非共役構造であるメチレン基を有するため好ましい。 Examples of the polymerizable group of the first polymerizable compound include a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloylamino group, a methacryloyl group, a methacryloylamino group, a vinyloxy group, a vinylamino group, a silanol group, and a cyclopropyl group. , A cyclobutyl group, an epoxy group, an oxetanyl group, a diketenyl group, an epithio group, a lactone group, and a lactam group, preferably a vinyl group or an acryloyl group among these polymerizable groups A methacryloyl group is preferred, and a vinyl group is most preferred. As the cross-linked polymer, it is preferable that two structures having charge transporting properties contained in adjacent repeating units are connected by a linking group containing a non-conjugated structure, More preferably, the structure having a charge transporting property is linked to the linking main chain by a linking group containing a non-conjugated structure. That is, it is preferable that the crosslinked polymer is connected without conjugating two structures having charge transporting properties contained in adjacent repeating units via a linking group. For example, when the polymerizable group is a vinyl group, it is preferable because the linking group has a methylene group having a non-conjugated structure.
 前記第1の重合性化合物としては、下記一般式(3)で表わされる化合物であることが好ましい。 The first polymerizable compound is preferably a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000017
(一般式(3)において、Aは電荷輸送性を有する構造を表し、X5は、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、X3、X4はそれぞれ独立に、単結合、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはアラルキル基を表わし、aは0または1である)。
Figure JPOXMLDOC01-appb-C000017
(In General Formula (3), A represents a structure having a charge transporting property, and X 5 represents —O—, —S—, or an alkylene group having 1 to 20 carbon atoms which may have a substituent (provided that In the alkylene group, one or two or more methylene groups that are not adjacent to each other may be substituted with —O— or —S—, and one or two or more methylene groups that are not bonded to A are —SO 2 -, -SO 2- , -CO-, -COO-, -N (R Y )-, -CO-N (R Y )-, which may be substituted with an arylene group), X 3 , X 4 is independently a single bond, -O -, - S-, or an optionally substituted alkylene group having 1 to 20 carbon atoms (provided that one of the alkylene group or not adjacent two or more The methylene group may be substituted by -O-, -S-, one or adjacent not bound to A Two or more methylene groups are not substituted with —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, or an arylene group. R Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and a is 0 or 1.
 なお、前記Aで表わされる電荷輸送性を有する構造の好ましい態様としては、前記(電荷輸送性を有する構造)の項で説明したとおりである。 In addition, as a preferable aspect of the structure having the charge transporting property represented by A, it is as described in the above section (Structure having charge transporting property).
 X5は、好ましくは置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)である。また、X5における、置換基を有してもよい炭素数1~20のアルキレン基は、置換基を有してもよい炭素数6~14のアルキレン基であることが好ましい。 X 5 is preferably an alkylene group having 1 to 20 carbon atoms which may have a substituent (provided that one or two or more methylene groups not adjacent to the alkylene group are substituted with —O— or —S—). And one or more methylene groups not bonded to A may be —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—. N (R Y ) —, which may be substituted with an arylene group). The alkylene group having 1 to 20 carbon atoms which may have a substituent in X 5 is preferably an alkylene group having 6 to 14 carbon atoms which may have a substituent.
 ここで用いる置換基を有してもよい炭素数1~20のアルキレン基、前記RYの例示および好適態様としては、前記一般式(1)および前記一般式(2)における前記置換基を有してもよい炭素数1~20のアルキレン基、前記RYの例示および好適態様と同様のものが挙げられる。 As examples and preferred embodiments of the alkylene group having 1 to 20 carbon atoms which may have a substituent used herein and R Y , the substituent in the general formula (1) and the general formula (2) may be used. Examples thereof may include an alkylene group having 1 to 20 carbon atoms and the same examples and preferred embodiments of R Y.
 第1の重合性化合物は、電荷輸送性を有する構造と、ビニル基等の重合性基との間のスペーサーとして、鎖長の長い構造を有することが好ましい。鎖長が長いと、架橋が発達しやすく、第1の有機化合物層の耐溶剤性が高くなるため好ましい。 The first polymerizable compound preferably has a structure having a long chain length as a spacer between a structure having charge transporting properties and a polymerizable group such as a vinyl group. A long chain length is preferable because crosslinking is easily developed and the solvent resistance of the first organic compound layer is increased.
 この観点から、X3およびX4は、一般式(3)におけるAとビニル基とを連結する最短鎖を構成する原子が10以上である、置換基を有していてもよいアルキレン基(但し、該アルキレン基における1つまたは互いに隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよく、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはのアラルキル基を表わす。)であることが好ましく、該アルキレン基は、最短鎖を構成する原子が10~14であることがより好ましく、最短鎖を構成する原子が12~14であることがさらに好ましい。 From this viewpoint, X 3 and X 4 are each an alkylene group (provided that the atom constituting the shortest chain connecting A and the vinyl group in Formula (3) is 10 or more, which may have a substituent (provided that In the alkylene group, one or two or more methylene groups that are not adjacent to each other may be substituted with —O— or —S—, and one or two or more methylene groups that are not bonded to A are — SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group may be substituted, and R Y represents a hydrogen atom Represents an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group thereof.) The alkylene group preferably has 10 to 14 atoms constituting the shortest chain, The number of atoms constituting the chain is 12-14 Preferred in La.
 前記一般式(3)で表わされる化合物の具体例を以下に示す。 Specific examples of the compound represented by the general formula (3) are shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 第1の重合性化合物における電荷輸送性を有する構造の結晶性が高く第1の重合性化合物の分子量が小さいと、塗布成膜段階で相分離が起こりやすく、架橋後も非架橋ポリマー部分の耐溶剤性が低くなる場合がある。そのため、前記一般式(3)で表される第1の重合性化合物においてaが1であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
If the structure of the first polymerizable compound having a charge transporting property is high and the molecular weight of the first polymerizable compound is small, phase separation is likely to occur in the coating film forming stage, and the resistance of the non-crosslinked polymer portion after the crosslinking is increased. Solvent property may be lowered. Therefore, it is preferable that a is 1 in the first polymerizable compound represented by the general formula (3).
 従来技術では、有機化合物層を形成する際に用いる非架橋ポリマーに対する重合性化合物の割合が高すぎると、重合性化合物を添加することによる影響が有機化合物層の特性に顕在化し、非架橋ポリマーに固有の特性が低下することになるため、重合性化合物はあまり多く加えないことが好まれてきた。一方、本発明においては、第1の有機化合物層を形成する際に用いる前記第1の重合性化合物の量を多くする、すなわち第1の有機化合物層に存在する架橋ポリマーの割合を多くした場合であっても、第1の有機化合物層の特性を低下させることはなく、むしろ耐溶剤性を向上させるために多く用いることが好ましい。 In the prior art, if the ratio of the polymerizable compound to the non-crosslinked polymer used when forming the organic compound layer is too high, the effect of adding the polymerizable compound becomes apparent in the characteristics of the organic compound layer, and the non-crosslinked polymer It has been preferred not to add too much polymerizable compound since the inherent properties will be reduced. On the other hand, in the present invention, when the amount of the first polymerizable compound used when forming the first organic compound layer is increased, that is, when the proportion of the crosslinked polymer existing in the first organic compound layer is increased. Even so, it is preferable to use the first organic compound layer in order to improve the solvent resistance without deteriorating the characteristics of the first organic compound layer.
 本発明の有機発光素子は、第1の有機化合物層に含まれる前記架橋ポリマーと前記非架橋ポリマーとの質量比(架橋ポリマー:非架橋ポリマー)が50:50~95:5であることが好ましい。なお、本発明において前記質量比における架橋ポリマーの量は、第1の有機化合物層を形成する際に用いる重合性化合物の量から算出され、非架橋ポリマーの量は第1の有機化合物層を形成する際に用いる非架橋ポリマーの量である。非架橋ポリマーの比が上記の範囲を超えると、第1の有機化合物層を形成する際に重合性化合物の結晶化が起こりやすくなり、平滑な成膜が困難になる場合がある。 In the organic light-emitting device of the present invention, the mass ratio of the crosslinked polymer and the non-crosslinked polymer (crosslinked polymer: non-crosslinked polymer) contained in the first organic compound layer is preferably 50:50 to 95: 5 . In the present invention, the amount of the crosslinked polymer in the mass ratio is calculated from the amount of the polymerizable compound used when forming the first organic compound layer, and the amount of the non-crosslinked polymer forms the first organic compound layer. This is the amount of non-crosslinked polymer used in the process. If the ratio of the non-crosslinked polymer exceeds the above range, crystallization of the polymerizable compound tends to occur when the first organic compound layer is formed, and smooth film formation may be difficult.
 有機発光素子の電力効率の観点からは、前記架橋ポリマーと前記非架橋ポリマーとの質量比は50:50~75:25であることがより好ましく、60:40~75:25であることがさらに好ましい。 From the viewpoint of power efficiency of the organic light emitting device, the mass ratio of the crosslinked polymer to the non-crosslinked polymer is more preferably 50:50 to 75:25, and further preferably 60:40 to 75:25. preferable.
 有機発光素子の発光効率の観点からは、前記架橋ポリマーと前記非架橋ポリマーとの質量比は80:20~95:5であることがより好ましく、90:10~95:5であることがさらに好ましい。 From the viewpoint of the luminous efficiency of the organic light emitting device, the mass ratio of the crosslinked polymer to the non-crosslinked polymer is more preferably 80:20 to 95: 5, and further preferably 90:10 to 95: 5. preferable.
 前記第1の重合性化合物の分子量が小さすぎると、前記非架橋ポリマーおよび第1の重合性化合物を含む溶液を塗布した際に、平坦で均一な膜を形成することが困難になる傾向があり、分子量が大きすぎると第1の重合性化合物を占める架橋基の割合が相対的に下がり、第1の重合性化合物から架橋ポリマーを得る際の反応性が低下し、第1の有機化合物層の不溶化が困難になる場合や耐熱性が低下する場合があるため、第1の重合性化合物の分子量としては、300~2000であることが好ましく、500~1800であることがより好ましい。 If the molecular weight of the first polymerizable compound is too small, it tends to be difficult to form a flat and uniform film when a solution containing the non-crosslinked polymer and the first polymerizable compound is applied. If the molecular weight is too large, the ratio of the cross-linking group occupying the first polymerizable compound is relatively lowered, the reactivity when obtaining the cross-linked polymer from the first polymerizable compound is lowered, and the first organic compound layer Since insolubilization may be difficult and heat resistance may be lowered, the molecular weight of the first polymerizable compound is preferably 300 to 2000, and more preferably 500 to 1800.
 (第2の重合性化合物)
 前述したように前記第1の有機化合物層が有する架橋ポリマーは、第1の重合性化合物のみから形成されるポリマーでも、第1の重合性化合物および第2の重合性化合物から形成されるポリマーであってもよい。
(Second polymerizable compound)
As described above, the crosslinked polymer included in the first organic compound layer may be a polymer formed only from the first polymerizable compound or a polymer formed from the first polymerizable compound and the second polymerizable compound. There may be.
 第2の重合性化合物としては、電荷輸送性を有さない化合物であっても、電荷輸送性を有する化合物であってもよい。また、第2の重合性化合物は、重合性基を通常化合物中に1つ含んでいる。第2の重合性化合物としては、通常は電荷輸送性を有さないビニル化合物が用いられ、例えば、置換もしくは無置換の直鎖末端アルケン、置換もしくは無置換のスチレン、アクリル酸エステル、メタクリル酸エステル、酢酸ビニルなどが挙げられる。 The second polymerizable compound may be a compound having no charge transporting property or a compound having charge transporting property. Further, the second polymerizable compound usually contains one polymerizable group in the compound. As the second polymerizable compound, usually a vinyl compound having no charge transporting property is used. For example, a substituted or unsubstituted linear terminal alkene, a substituted or unsubstituted styrene, an acrylate ester, a methacrylate ester. And vinyl acetate.
 本発明に係る架橋ポリマーは、第1の重合性化合物のみから形成されるポリマーでもよいが、第1の重合性化合物が、前記一般式(3)で表わされる化合物であり、前記一般式(3)におけるaが0である場合には、架橋ポリマーは、第1の重合性化合物および第2の重合性化合物から形成されるポリマーであることが好ましい。 The crosslinked polymer according to the present invention may be a polymer formed only from the first polymerizable compound, but the first polymerizable compound is a compound represented by the general formula (3), and the general formula (3 When a in 0) is 0, the crosslinked polymer is preferably a polymer formed from the first polymerizable compound and the second polymerizable compound.
 前記一般式(3)におけるaが0である場合、前記架橋ポリマーが、前記第1の重合性化合物100質量%に対して、第2の重合性化合物が10~100質量%となる範囲で前記第1の重合性化合物と、第2の重合性化合物とを共重合して得られたものであることが好ましい。 When a in the general formula (3) is 0, the cross-linked polymer is in a range where the second polymerizable compound is 10 to 100% by mass with respect to 100% by mass of the first polymerizable compound. It is preferable to be obtained by copolymerizing the first polymerizable compound and the second polymerizable compound.
 なぜならば、第1の有機化合物層が耐溶剤性に優れるためには、前記非架橋ポリマーが架橋ポリマー中に取り込まれていることが望まれ、そのためには、非架橋ポリマーが十分な空洞を有していることが好ましいためである。前記一般式(3)において、aが1である場合、第2の重合性化合物がなくても十分な空洞を有する架橋ポリマーが得られるが、aが0である場合、上記の割合で第1の重合性化合物と、第2の重合性化合物とを共重合して得られた架橋ポリマーは、充分な空洞が形成されやすいからである。 This is because in order for the first organic compound layer to be excellent in solvent resistance, it is desired that the non-crosslinked polymer is incorporated in the crosslinked polymer. For this purpose, the non-crosslinked polymer has sufficient cavities. This is because it is preferable. In the general formula (3), when a is 1, a crosslinked polymer having sufficient cavities can be obtained even without the second polymerizable compound, but when a is 0, the first ratio is as described above. This is because, in the crosslinked polymer obtained by copolymerizing the polymerizable compound and the second polymerizable compound, sufficient cavities are easily formed.
 (電子受容体)
 前記非架橋ポリマーおよび架橋ポリマーが有する電荷輸送性を有する構造は、電子受容体と電荷移動錯体を形成することで、電荷移動度が向上するため、本発明の有機発光素子は、第1の有機化物層に電子受容体を含むことが好ましい。
(Electron acceptor)
The structure having the charge transport property of the non-crosslinked polymer and the crosslinked polymer improves the charge mobility by forming a charge transfer complex with the electron acceptor. Therefore, the organic light emitting device of the present invention includes the first organic light emitting element. The compound layer preferably contains an electron acceptor.
 第1の有機化合物層が電子受容体を含む場合には、前記非架橋ポリマーおよび架橋ポリマーの合計100質量%に対して、電子受容体を0.1~10質量%含むことが好ましい。 When the first organic compound layer contains an electron acceptor, the electron acceptor is preferably contained in an amount of 0.1 to 10% by mass with respect to 100% by mass in total of the non-crosslinked polymer and the crosslinked polymer.
 前記電子受容体としては、特に限定は無く、公知の化合物を用いることができる。電子受容体としては例えば、N,N'-ジシアノ-2,3,5,6-テトラフルオロ-1,4-キノンジイミン(F4DCNQI)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)、11,11,12,12-テトラシアノナフト-2,6-キノジメタンなどが挙げられる。 The electron acceptor is not particularly limited, and a known compound can be used. Examples of the electron acceptor include N, N′-dicyano-2,3,5,6-tetrafluoro-1,4-quinonediimine (F4DCNQI), 7,7,8,8-tetracyanoquinodimethane (TCNQ). 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ), 11,11,12,12-tetracyanonaphth-2,6-quinodimethane, and the like.
 従来技術のように非架橋ポリマーのイオン化ポテンシャルと、架橋ポリマーのイオン化ポテンシャルとの差の絶対値を0.2eV以下に制御せずに材料を選択した場合、電子受容体の電子親和力と非架橋ポリマーのイオン化ポテンシャルとのギャップと、電子受容体の電子親和力と架橋ポリマーのイオン化ポテンシャルとのギャップとに差が生じるため、電子受容体は架橋ポリマーおよび非架橋ポリマーの一方とは電荷移動錯体を形成しやすくとも、他方とは電荷移動錯体を形成しづらかった。結果として、電荷移動度があまり向上しなかった。本発明では、非架橋ポリマーのイオン化ポテンシャルと、架橋ポリマーのイオン化ポテンシャルとの差の絶対値を0.2eV以下に制御しているため、電子受容体が非架橋ポリマーとも、架橋ポリマーとも電荷移動錯体を形成することが可能であるため、第1の有機化合物層が良好な電荷移動特性を示す。なお、一般に電子受容体のイオン化ポテンシャルは非架橋ポリマーおよび架橋ポリマーのイオン化ポテンシャルよりも大きいため、電子受容体が第1の有機化合物層に含まれていても電荷移動特性にはほとんど影響しない。 When the material is selected without controlling the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer to 0.2 eV or less as in the prior art, the electron affinity of the electron acceptor and the non-crosslinked polymer The electron acceptor forms a charge transfer complex with one of the cross-linked polymer and the non-cross-linked polymer because there is a difference between the gap between the ionization potential of the polymer and the gap between the electron affinity of the electron acceptor and the ionization potential of the cross-linked polymer. Although easy, it was difficult to form a charge transfer complex with the other. As a result, the charge mobility was not improved so much. In the present invention, since the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the cross-linked polymer is controlled to 0.2 eV or less, the electron acceptor can be a non-crosslinked polymer, a cross-linked polymer, or a charge transfer complex. Therefore, the first organic compound layer exhibits good charge transfer characteristics. In general, since the ionization potential of the electron acceptor is larger than the ionization potential of the non-crosslinked polymer and the crosslinked polymer, even if the electron acceptor is contained in the first organic compound layer, the charge transfer property is hardly affected.
 なお、本発明において、非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値は、非架橋ポリマーのイオン化ポテンシャルおよび架橋ポリマーのイオン化ポテンシャルをそれぞれ実施例に記載の方法で求め、その差の絶対値を計算することにより求めることができる。 In the present invention, the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the cross-linked polymer is obtained by the methods described in the examples, respectively. The absolute value of the difference can be calculated.
 (溶媒)
 第1の有機化合物層は、通常塗布により形成され、前記塗布には、前記非架橋ポリマーおよび架橋ポリマーを形成し得る前記第1の重合性化合物を含む溶液を用いる。該溶液の溶媒としては、前記非架橋ポリマーおよび第1の重合性化合物、並びに含まれていてもよい第2の重合性化合物、電子受容体等を溶解可能な溶媒が望まれる。溶媒の具体例としては、トルエン、キシレン、アニソール等の芳香族系溶媒や、クロロホルム、ジクロロエタン等のハロゲン化アルキル溶媒、メタノール、エタノールのようなアルコール系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、ジメトキシエタン、THFなどのエーテル系溶媒等が挙げられ、これらの溶媒は混合して用いることもできる。この中でトルエン、キシレン、アニソール並びにこれらの混合溶媒が好ましい。上記の溶液は、これらの溶媒中に前記非架橋ポリマーおよび前記第1の重合性化合物、第2の重合性化合物、電子受容体等の溶質を合計で0.1~5質量%含むことが好ましく、1~3質量%含むことがより好ましい。
(solvent)
The first organic compound layer is usually formed by coating, and a solution containing the first polymerizable compound capable of forming the non-crosslinked polymer and the crosslinked polymer is used for the coating. As the solvent of the solution, a solvent capable of dissolving the non-crosslinked polymer and the first polymerizable compound, the second polymerizable compound which may be contained, an electron acceptor, and the like is desired. Specific examples of the solvent include aromatic solvents such as toluene, xylene, and anisole, alkyl halide solvents such as chloroform and dichloroethane, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, dimethoxy Examples thereof include ether solvents such as ethane and THF, and these solvents can be used in combination. Of these, toluene, xylene, anisole and mixed solvents thereof are preferred. The above solution preferably contains a total of 0.1 to 5% by mass of solutes such as the non-crosslinked polymer and the first polymerizable compound, the second polymerizable compound, and the electron acceptor in these solvents. More preferably, it is contained in an amount of 1 to 3% by mass.
 (重合開始剤)
 第1の有機化合物層を形成する際には、塗布溶液に重合開始剤を含有させてもよい。重合開始剤は、熱重合用と光重合用で使い分けることができる。上述の重合性化合物が重合性基としてビニル基、ブテニル基、アクリロイル基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基などの重合性二重結合を有する場合、ラジカル重合開始剤を用いることができる。またエポキシ基を有する場合、カチオン重合開始剤やアニオン重合開始剤を用いることができる。オキセタニル基など、カチオン重合する基を有する場合、カチオン重合開始剤を用いることができる。
(Polymerization initiator)
When forming the first organic compound layer, the coating solution may contain a polymerization initiator. The polymerization initiator can be properly used for thermal polymerization and photopolymerization. When the above-mentioned polymerizable compound has a polymerizable double bond such as vinyl group, butenyl group, acryloyl group, acryloylamino group, methacryloyl group, methacryloylamino group, vinyloxy group, vinylamino group as a polymerizable group, radical polymerization starts. An agent can be used. Moreover, when it has an epoxy group, a cationic polymerization initiator and an anionic polymerization initiator can be used. When it has a group that undergoes cationic polymerization such as an oxetanyl group, a cationic polymerization initiator can be used.
 熱ラジカル重合開始剤としては、2,2'-アゾビスイソブチロニトリル(AIBN)、2,2'-アゾビスイソバレロニトリル等のアゾ系化合物、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、シクロヘキサノンパーオキシド等のケトンパーオキシド類、ベンゾイルパーオキシド、デカノイルパーオキシド、ラウロイルパーオキシド等のジアシルパーオキシド類、ジクミルパーオキシド、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド等のジアルキルパーオキシド類、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ジ-t-ブチルパーオキシシクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン等のパーオキシケタール類、t-ブチルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、ジ-t-ブチルパーオキシアゼレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシトリメチルアジペート、t-ブチルパーオキシ 2-エチルヘキサノエート、t-ヘキシルパーオキシ 2-エチルヘキサノエート等のアルキルパーオキシエステル類、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート等のパーカーボネート類等が挙げられる。 Thermal radical polymerization initiators include azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) and 2,2′-azobisisovaleronitrile, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone Ketone peroxides such as peroxides, diacyl peroxides such as benzoyl peroxide, decanoyl peroxide, lauroyl peroxide, dialkyls such as dicumyl peroxide, t-butylcumyl peroxide, di-t-butyl peroxide Peroxides, 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di (t-butylperoxy) Peroxyketals such as butane, t-butyl pero Cipivalate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, di-t-butylperoxyhexahydroterephthalate, di-t-butylperoxyazelate, t-butylperoxy -3,5,5-trimethylhexanoate, t-butylperoxyacetate, t-butylperoxybenzoate, di-t-butylperoxytrimethyladipate, t-butylperoxy 2-ethylhexanoate, t- Examples thereof include alkyl peroxy esters such as hexyl peroxy 2-ethylhexanoate, and percarbonates such as diisopropyl peroxy dicarbonate, di-sec-butyl peroxy dicarbonate, and t-butyl peroxy isopropyl carbonate.
 光ラジカル重合開始剤としては、例えば、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モンフォリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のアセトフェノン誘導体、ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4-トリメチルシリルベンゾフェノン、4-ベンゾイル-4'-メチル-ジフェニルスルフィド等のベンゾフェノン誘導体、ベンゾイン、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン誘導体、メチルフェニルグリオキシレート、ベンゾインジメチルケタール、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドなどが挙げられる。 Examples of the photo radical polymerization initiator include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]. -2-Monfolinopropanone-1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-hydroxy-2-methyl-1-phenyl-propane-1- Acetophenone derivatives such as ON, benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4-trimethylsilylbenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide and other benzophenone derivatives, benzoin, benzoin ethyl ether, benzoin propyl ether , Be Zone in isobutyl ether, benzoin derivatives such as benzoin isopropyl ether, methylphenyl glyoxylate, benzoin dimethyl ketal, etc. 2,4,6-trimethylbenzoyl diphenylphosphine oxide.
 熱カチオン重合開始剤としては、トリフル酸(Triflic acid)塩、三弗化硼素エーテル錯化合物、三弗化硼素等のようなカチオン系又はプロトン酸触媒、アンモニウム塩、ホスホニウム塩およびスルホニウム塩等の各種オニウム塩を用いることができる。 Examples of the thermal cationic polymerization initiator include cationic or protonic acid catalysts such as triflic acid salts, boron trifluoride ether complex compounds, boron trifluoride, ammonium salts, phosphonium salts, sulfonium salts, and the like. Onium salts can be used.
 光カチオン重合開始剤としては、カチオン部分が、スルホニウム、ヨードニウム、ジアゾニウム、アンモニウム、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Feカチオンであり、アニオン部分が、BF4-、PF6-、SbF6-、[BX4]-(ただし、Xは少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基)で構成されるオニウム塩が挙げられる。 As the photocationic polymerization initiator, the cation moiety is sulfonium, iodonium, diazonium, ammonium, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe cation, and the anion moiety is Onium salts composed of BF4-, PF6-, SbF6-, [BX4]-(wherein X is a phenyl group substituted with at least two fluorine or trifluoromethyl groups).
 アニオン重合開始剤やメラミン、イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタシルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-〔2'-メチルイミダゾリル-(1')〕-エチル-S-トリアジン、2,4-ジアミノー6-〔2'-ウンデシルイミダゾリル-(1')〕-エチル-S-トリアジン、2,4-ジアミノ-6-〔2'-エチル-4'-イミダゾリル-(1')〕-エチル-S-トリアジン、2,4-ジアミノ-6-〔2'-メチルイミダゾリル-(1')〕-エチル-S-トリアジン イソシアヌル酸付加物、2-フェニルイミダゾール イソシアヌル酸付加物、2-メチルイミダゾール イソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ〔1,2-a〕ベンズイミダゾール、4,4'-メチレンビス(2-エチル-5-メチルイミダゾール)、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライドなどの、イミダゾール類が挙げられる。 Anionic polymerization initiator, melamine, imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptacilimidazole, 2-ethyl-4-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1 -Benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [ '-Methylimidazolyl- (1')]-ethyl-S-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1 ')]-ethyl-S-triazine, 2,4-diamino- 6- [2′-Ethyl-4′-imidazolyl- (1 ′)]-ethyl-S-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-S— Triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 4,4′-methylenebis (2-ethyl-5-methylimidazole) ), Such as 1-dodecyl-2-methyl-3-benzyl-imidazolium chloride, imidazoles and the like.
 重合開始剤は使用しても、使用しなくてもよい。重合開始剤を用いる場合には、その使用量には特に制限はないが、前記第1の重合性化合物と、前記第2の重合性化合物との合計100質量部に対して、通常は0質量部を超えて、10質量部以下であり、好ましくは1~10質量部である。 Polymerization initiator may or may not be used. When a polymerization initiator is used, the amount used is not particularly limited, but is usually 0 mass with respect to a total of 100 parts by mass of the first polymerizable compound and the second polymerizable compound. More than 10 parts by mass, preferably 1 to 10 parts by mass.
 [第2の有機化合物層]
 第2の有機化合物層は第1の有機化合物層上に隣接して形成される。なお、第2の有機化合物層は通常第1の有機化合物層上に塗布により形成される。
[Second organic compound layer]
The second organic compound layer is formed adjacent to the first organic compound layer. The second organic compound layer is usually formed by coating on the first organic compound layer.
 前記第1の有機化合物層は、架橋ポリマーを含むため耐溶剤性に優れている。このため、第2の有機化合物層を塗布により形成、例えば前記非架橋ポリマーおよび前記第1の重合性化合物を溶解できる溶媒を含む溶液を用いて第2の有機化合物層を塗布により形成した場合であっても、第1の有機化合物層が溶解しない。このため、第2の有機化合物層を塗布により形成した場合であっても、第1の有機化合物層の膜厚が変化したり、第1の有機化合物層を構成する材料が、第2の有機化合物層に混入したりすることによる有機発光素子の性能低下が起きない。従って、第2の有機化合物層の形成に用いる溶媒としては、第1の有機化合物層の溶解は考慮することなく、第2の有機化合物層の材料をよく溶解し、塗布性に優れるものを任意に選んで用いることができる。具体的な溶媒の例としては、第1の有機化合物層の形成に用いるものとして例示したものが挙げられる。 The first organic compound layer is excellent in solvent resistance because it contains a crosslinked polymer. For this reason, the second organic compound layer is formed by coating, for example, when the second organic compound layer is formed by coating using a solution containing a solvent capable of dissolving the non-crosslinked polymer and the first polymerizable compound. Even if it exists, a 1st organic compound layer does not melt | dissolve. For this reason, even when the second organic compound layer is formed by coating, the film thickness of the first organic compound layer is changed, or the material constituting the first organic compound layer is the second organic compound layer. The performance of the organic light emitting device is not deteriorated due to mixing in the compound layer. Therefore, as a solvent used for forming the second organic compound layer, any solvent that dissolves the material of the second organic compound layer well and has excellent coating properties without considering the dissolution of the first organic compound layer is arbitrary. You can choose to use. Specific examples of the solvent include those exemplified as those used for forming the first organic compound layer.
 第2の有機化合物層としては、本発明の有機発光素子の構造によっても異なるが、例えば正孔輸送層や発光層が挙げられる。なお、第2の有機化合物層が発光層でない場合には、本発明の有機発光素子はその他の層として発光層を有する。 The second organic compound layer varies depending on the structure of the organic light emitting device of the present invention, and examples thereof include a hole transport layer and a light emitting layer. In addition, when the 2nd organic compound layer is not a light emitting layer, the organic light emitting element of this invention has a light emitting layer as another layer.
 [正孔輸送層]
 第2の有機化合物層を正孔輸送層として用いる場合、正孔輸送材料として公知の材料を使用することができる。例えば、TPD(N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-1,1'-ビフェニル-4,4'ジアミン)、α-NPD(4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)、m-MTDATA(4、4',4''-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;前記トリフェニルアミン誘導体に重合性置換基を導入して重合した高分子化合物などが挙げられる。特に、塗布成膜により有機化合物層を形成することから高分子化合物を含むことが望ましい。前記正孔輸送材料は、1種単独でも、2種以上を混合して用いてもよい。また、異なる正孔輸送材料から形成された正孔輸送層同士を積層してもよい。正孔輸送層の厚さは、正孔輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm~5μm、より好ましくは5nm~1μm、特に好ましくは10nm~500nmである。
[Hole transport layer]
When the second organic compound layer is used as the hole transport layer, a known material can be used as the hole transport material. For example, TPD (N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′diamine), α-NPD (4,4′-bis [N Low molecular triphenylamine derivatives such as-(1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine); Polyvinyl carbazole; polymer compounds obtained by polymerizing a triphenylamine derivative by introducing a polymerizable substituent, and the like. In particular, since an organic compound layer is formed by coating film formation, it is desirable to include a polymer compound. The hole transport material may be used alone or in combination of two or more. Moreover, you may laminate | stack the positive hole transport layers formed from different hole transport materials. The thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm.
 [発光層]
 第2の有機化合物層を発光層として用いる場合、発光層を形成するための材料として公知の材料を使用することができる。
[Light emitting layer]
When the second organic compound layer is used as the light emitting layer, a known material can be used as a material for forming the light emitting layer.
 本発明の有機発光素子の発光層を形成するための有機化合物としては、大森裕:応用物理、第70巻、第12号、1419-1425頁(2001年)に記載されている発光性低分子化合物および発光性高分子化合物などを例示することができる。また発光効率が高い点で発光性化合物は燐光発光性化合物が好ましい。燐光発光性化合物としてはルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、白金、金を含む公知の遷移金属錯体を例示することができるが、中でもイリジウム錯体および白金錯体が好ましい。 As the organic compound for forming the light emitting layer of the organic light emitting device of the present invention, the light emitting small molecule described in Hiroshi Omori: Applied Physics, Vol. 70, No. 12, pp. 1419-1425 (2001) Examples thereof include compounds and luminescent polymer compounds. In terms of high luminous efficiency, the phosphorescent compound is preferably a phosphorescent compound. Examples of the phosphorescent compound include known transition metal complexes including ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, and gold. Among these, iridium complexes and platinum complexes are preferable.
 前記燐光発光性化合物は下記一般式(11)で表される金属錯体が好ましい。 The phosphorescent compound is preferably a metal complex represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000021
(一般式(11)中、Mはイリジウムまたは白金を表し、Aで表される環はMに結合した窒素原子を含む含窒素ヘテロ芳香環を表し、Bで表される環はMに結合した炭素原子を含む芳香環またはヘテロ芳香環を表し、環Aと環Bは互いに結合しており、Lは二座配位子を表し、sは1~3の整数を表し、tは0~2の整数を表し、s+tは2または3である。)
 本発明の方法により製造される有機EL素子における発光層は、好ましくは前記燐光発光性化合物を含む層であるが、発光層の塗布成膜時に発光性化合物の結晶化を抑制したり発光層の電荷輸送性を補う目的で正孔輸送性化合物や電子輸送性化合物、またはこれらを重合させた高分子化合物が含まれていてもよい。これらの目的で用いられる正孔輸送性化合物としては、例えば、TPD(N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-1,1'-ビフェニル-4,4'ジアミン)、α-NPD(4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)、m-MTDATA(4、4',4''-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)などの低分子トリフェニルアミン誘導体や、ポリビニルカルバゾール、前記トリフェニルアミン誘導体に重合性官能基を導入して高分子化したもの、例えば特開平8-157575号公報に開示されているトリフェニルアミン骨格の高分子化合物、ポリパラフェニレンビニレン、ポリジアルキルフルオレンなどが挙げられ、また、電子輸送性化合物としては、例えば、Alq3(トリス(8-ヒドロキシキノリナート)アルミニウム(III))などのキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体、トリアリールボラン誘導体などの低分子材料や、上記の低分子電子輸送性化合物に重合性官能基を導入して高分子化したもの、例えば特開平10-1665号公報に開示されているポリPBDなどの既知の電子輸送性化合物が使用できる。
Figure JPOXMLDOC01-appb-C000021
(In the general formula (11), M represents iridium or platinum, the ring represented by A represents a nitrogen-containing heteroaromatic ring containing a nitrogen atom bonded to M, and the ring represented by B bonded to M. Represents an aromatic ring or a heteroaromatic ring containing a carbon atom, wherein ring A and ring B are bonded to each other, L represents a bidentate ligand, s represents an integer of 1 to 3, and t represents 0 to 2 And s + t is 2 or 3.)
The light emitting layer in the organic EL device produced by the method of the present invention is preferably a layer containing the phosphorescent compound. However, it is possible to suppress crystallization of the light emitting compound at the time of coating and forming the light emitting layer. For the purpose of supplementing the charge transporting property, a hole transporting compound, an electron transporting compound, or a polymer compound obtained by polymerizing these may be contained. Examples of the hole transporting compound used for these purposes include TPD (N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′diamine. ), Α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) ) Triphenylamine derivatives such as triphenylamine), polyvinyl carbazole, and polymers obtained by introducing a polymerizable functional group into the triphenylamine derivative, such as disclosed in JP-A-8-157575. And triphenylamine skeleton polymer compounds, polyparaphenylene vinylene, polydialkylfluorene, etc., and examples of the electron transporting compound include: Low molecular weight materials such as quinolinol derivative metal complexes such as Alq3 (tris (8-hydroxyquinolinate) aluminum (III)), oxadiazole derivatives, triazole derivatives, imidazole derivatives, triazine derivatives, triarylborane derivatives, Known electron transporting compounds such as those obtained by introducing a polymerizable functional group into a low molecular electron transporting compound to form a polymer, for example, poly PBD disclosed in JP-A-10-1665 can be used.
 [陰極]
 前記陰極15に使用される材料としては、陽極12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。具体的には、Al、MgAg合金、AlLiなどのAlとアルカリ金属の合金やAlCaなどのAlとアルカリ土類金属の合金等の材料を例示することができる。ただし、陰極15の材料は、有機発光素子10の陰極15側から光を取り出したい場合(陰極15側の面が光を取出す面、すなわち、発光面となる場合)は、例えば、陽極12で述べた、発光する光に対して透明な材料を用いることが好ましい。
[cathode]
The material used for the cathode 15 is not particularly limited as long as it has electrical conductivity like the anode 12. However, a material having a low work function and being chemically stable is preferable. Specific examples include materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi, and Al and alkaline earth metal alloys such as AlCa. However, the material of the cathode 15 is, for example, the anode 12 when it is desired to extract light from the cathode 15 side of the organic light emitting element 10 (when the surface on the cathode 15 side is a surface from which light is extracted, that is, a light emitting surface). In addition, it is preferable to use a material that is transparent to the emitted light.
 陰極15の厚さは、好ましくは0.01μm~1μm、より好ましくは0.05μm~0.5μmである。 The thickness of the cathode 15 is preferably 0.01 μm to 1 μm, more preferably 0.05 μm to 0.5 μm.
 [その他の層、部材]
 本発明の有機発光素子は、その他の層として、例えば電子輸送層、正孔ブロック層、電子注入層等を有していてもよい。また、本発明の有機発光素子はその他の部材として保護カバー等を有していてもよい。
[Other layers and members]
The organic light emitting device of the present invention may have, for example, an electron transport layer, a hole blocking layer, an electron injection layer, etc. as other layers. The organic light emitting device of the present invention may have a protective cover or the like as another member.
 (電子輸送層)
 第2の有機化合物層14と陰極15との間には、電子輸送層が設けられていてもよい。電子輸送層に用いることができる材料としては、キノリン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体などが挙げられる。更に具体的には、トリス(8-キノリノラト)アルミニウム(略称:Alq)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール等が挙げられる。
(Electron transport layer)
An electron transport layer may be provided between the second organic compound layer 14 and the cathode 15. Examples of materials that can be used for the electron transport layer include quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like. More specifically, tris (8-quinolinolato) aluminum (abbreviation: Alq), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum, bis [2- (2-hydroxyphenyl) benzothiazolate] Examples thereof include zinc and 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole.
 (正孔ブロック層)
 また、第2の有機化合物層14と電子輸送層との間に、正孔が発光層を通過することを抑え、発光層内で正孔と電子とを効率よく再結合させる目的で、正孔ブロック層が設けられていてもよい。上記正孔ブロック層を形成するために、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体などの公知の材料が用いられる。
(Hole blocking layer)
In addition, in order to prevent holes from passing through the light emitting layer between the second organic compound layer 14 and the electron transport layer and to efficiently recombine holes and electrons in the light emitting layer, A block layer may be provided. In order to form the hole blocking layer, a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative is used.
 (電子注入層)
 また、陰極15からの電子の注入効率を上げる目的で、電子注入層を陰極15に隣接して設けてもよい。電子注入層には、陰極15より仕事関数の低い金属材料が好適に用いられ、例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)を使用することができるが、これら金属のフッ化物、塩化物、酸化物も好適に用いられる。電子注入層の厚さは、好ましくは0.05~50nm、より好ましくは0.1~20nm、さらに好ましくは0.5~10nmである。
(Electron injection layer)
An electron injection layer may be provided adjacent to the cathode 15 for the purpose of increasing the efficiency of electron injection from the cathode 15. For the electron injection layer, a metal material having a work function lower than that of the cathode 15 is preferably used. For example, alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), rare earths Metals (Pr, Sm, Eu, Yb) can be used, but fluorides, chlorides and oxides of these metals are also preferably used. The thickness of the electron injection layer is preferably 0.05 to 50 nm, more preferably 0.1 to 20 nm, and still more preferably 0.5 to 10 nm.
 (保護カバー)
 有機発光素子10には、有機発光素子10を長期安定的に用い、有機発光素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層の材料としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。また、これらの積層体も用いることができる。
(Protective cover)
It is preferable to use the organic light emitting element 10 for the organic light emitting element 10 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic light emitting element 10 from the outside. As a material for the protective layer, a high molecular compound, a metal oxide, a metal fluoride, a metal boride, a silicon compound such as silicon nitride, silicon oxide, or the like can be used. Moreover, these laminated bodies can also be used.
 保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法を採ることが好ましい。またこの際に、スペーサーを用いることが、所定の空間を維持することができ、有機発光素子10が傷つくのを防止できるため好ましい。そして、この空間に窒素、アルゴン、ヘリウムのような不活性なガスを封入すれば、上側の陰極16の酸化を防止しやすくなる。 As the protective cover, a glass plate, a plastic plate with a surface subjected to low water permeability treatment, a metal, or the like can be used. It is preferable that the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate. In this case, it is preferable to use a spacer because a predetermined space can be maintained and the organic light emitting element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon, or helium is sealed in this space, it becomes easy to prevent the upper cathode 16 from being oxidized.
 特にヘリウムを用いることが、熱伝導性が高いため、電圧印加時に有機発光素子10より発生する熱を効果的に保護カバーに伝えることができるため好ましい。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより、有機発光素子の製造工程で吸着した水分が有機発光素子10にダメージを与えるのを抑制しやすくなる。 Particularly, it is preferable to use helium because heat conductivity is high, and thus heat generated from the organic light emitting device 10 can be effectively transmitted to the protective cover when a voltage is applied. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the manufacturing process of the organic light emitting element from damaging the organic light emitting element 10.
 [有機発光素子の製造方法]
 本発明の有機発光素子の製造方法では、通常本発明の塗布溶液を用いて、有機発光素子を製造する。
[Method for Manufacturing Organic Light-Emitting Element]
In the method for producing an organic light emitting device of the present invention, the organic light emitting device is usually produced using the coating solution of the present invention.
 本発明の塗布溶液は、有機発光素子の製造に用いられる塗布溶液であって、前記非架橋ポリマーと、架橋ポリマーを形成し得る前記第1の重合性化合物と、前記溶媒とを含む。 The coating solution of the present invention is a coating solution used for manufacturing an organic light emitting device, and includes the non-crosslinked polymer, the first polymerizable compound capable of forming a crosslinked polymer, and the solvent.
 本発明の有機発光素子の製造方法は、第1の電極上に、前記非架橋ポリマーおよび架橋ポリマーを形成し得る第1の重合性化合物と溶媒とを含む溶液を塗布して塗膜を形成する工程と、前記塗膜内の前記第1の重合性化合物を重合させて、非架橋ポリマーおよび架橋ポリマーを含有する第1の有機化合物層を形成する工程と、前記第1の有機化合物層に隣接する第2の有機化合物層を塗布により形成する工程と、前記第2の有機化合物層上に第2の電極を形成する工程を有することを特徴とする。本発明の有機発光素子の製造方法に用いられる、非架橋ポリマー、第1の重合性化合物、溶媒等としては、前述のものを用いることができる。すなわち、前記第1の重合性化合物は、電荷輸送性を有する構造を含む化合物であり、前記非架橋ポリマーと、架橋ポリマーとは、共に電荷輸送性を有する構造を含む繰り返し単位を含む。なお本発明の有機発光素子の製造方法では、前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0.2eV以下である。また、有機発光素子の別の製造方法では、前記第1の有機化合物層、第2の有機化合物層の少なくとも一層を塗布以外の方法で形成してもよい。 In the method for producing an organic light-emitting device of the present invention, a coating film is formed by applying a solution containing the first polymerizable compound capable of forming the non-crosslinked polymer and the crosslinked polymer and a solvent on the first electrode. Adjoining the first organic compound layer, a step of polymerizing the first polymerizable compound in the coating film to form a first organic compound layer containing a non-crosslinked polymer and a crosslinked polymer; A step of forming a second organic compound layer by coating, and a step of forming a second electrode on the second organic compound layer. As the non-crosslinked polymer, the first polymerizable compound, the solvent and the like used in the method for producing an organic light emitting device of the present invention, those described above can be used. That is, the first polymerizable compound is a compound including a structure having a charge transporting property, and the non-crosslinked polymer and the crosslinked polymer both include a repeating unit including a structure having a charge transporting property. In the method for producing an organic light emitting device of the present invention, the absolute value of the difference between the ionization potential of the non-crosslinked polymer and the ionization potential of the crosslinked polymer is 0.2 eV or less. In another method for manufacturing an organic light emitting device, at least one of the first organic compound layer and the second organic compound layer may be formed by a method other than coating.
 本発明の有機発光素子の製造方法では、第1の電極上に、電荷輸送性を有する構造を含む繰り返し単位からなる非架橋ポリマーおよび電荷輸送性を有する構造を含む架橋ポリマーを形成し得る第1の重合性化合物を含む溶液を塗布して塗膜を形成するが、該溶液中に含まれる各成分の種類や量は、前述の通りである。また、該溶液を第1の電極上に塗布する方法としては特に限定は無いが、通常はスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法などを用いて成膜を行うことができる。 In the method for producing an organic light-emitting device of the present invention, a first non-crosslinked polymer composed of a repeating unit including a charge transporting structure and a crosslinked polymer including a charge transporting structure can be formed on the first electrode. A solution containing the polymerizable compound is applied to form a coating film, and the type and amount of each component contained in the solution are as described above. The method for applying the solution on the first electrode is not particularly limited, but usually a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar. Film formation can be performed using a coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, or the like.
 第1の有機化合物層を塗布により形成する際には、溶液を塗布した後、重合性化合物を重合させる前に、塗膜を乾燥させる工程を、通常含む。塗膜を乾燥させる温度は、溶液に用いる溶媒の種類に応じて、塗膜中の成分が熱で劣化しにくい範囲で適宜決定することができ、通常は、50~300℃である。 When the first organic compound layer is formed by coating, it usually includes a step of drying the coating film after coating the solution and before polymerizing the polymerizable compound. The temperature at which the coating film is dried can be appropriately determined within a range in which the components in the coating film are not easily deteriorated by heat, depending on the type of solvent used in the solution, and is usually 50 to 300 ° C.
 また、塗膜内の第1の重合性化合物を重合する方法としては、特に限定は無いが、紫外線照射法、加熱法等が挙げられる。重合する条件は、第1の重合性化合物の重合性基の種類によって、塗膜中の成分が劣化しにくい範囲で適宜決定することができる。例えば、ビニル基、エチニル基、ブテニル基、アクリロイル基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基などのラジカル重合性基を加熱により重合する場合、通常、窒素などの不活性雰囲気下、80~300℃で5分~5時間である。第1の重合性化合物の重合を加熱により行う場合、上記乾燥させる工程と同時に行うことができる。 Further, the method for polymerizing the first polymerizable compound in the coating film is not particularly limited, and examples thereof include an ultraviolet irradiation method and a heating method. The conditions for the polymerization can be appropriately determined within a range in which the components in the coating film hardly deteriorate depending on the type of the polymerizable group of the first polymerizable compound. For example, when a radically polymerizable group such as a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloylamino group, a methacryloyl group, a methacryloylamino group, a vinyloxy group, or a vinylamino group is polymerized by heating, a nitrogen or the like is usually used. 5 minutes to 5 hours at 80 to 300 ° C. in an active atmosphere. When the polymerization of the first polymerizable compound is performed by heating, it can be performed simultaneously with the drying step.
 また、前記第1の有化合物層に、第2の有機化合物層を形成する際の塗布する方法としては特に限定は無く、第1の有機化合物層の成膜と同様な方法を用いて成膜を行うことができる。 In addition, there is no particular limitation on a coating method when forming the second organic compound layer on the first organic compound layer, and the film is formed by using the same method as that for forming the first organic compound layer. It can be performed.
 また、本発明の有機発光素子がその他の層、部材等を有する場合には、公知の方法で積層、配置することができる。 Further, when the organic light emitting device of the present invention has other layers, members, etc., they can be laminated and arranged by a known method.
 [用途]
 本発明の有機発光素子は、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機発光素子は、画素を形成せずに、面発光光源等の照明装置としても好適に用いられる。
[Usage]
The organic light-emitting device of the present invention is suitably used in an image display device as a matrix-type or segment-type pixel. In addition, the organic light emitting element is also suitably used as an illumination device such as a surface light source without forming pixels.
 本発明の有機発光素子は、具体的には、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、標識、看板、ビデオカメラのビューファインダー等における表示装置、バックライト、電子写真、照明、レジスト露光、読み取り装置、インテリア照明、光通信システム等における光照射装置に好適に用いられる。 Specifically, the organic light-emitting device of the present invention includes a display device in a computer, a television, a mobile terminal, a mobile phone, a car navigation system, a sign, a signboard, a video camera viewfinder, a backlight, an electrophotography, illumination, and resist exposure. It is preferably used for a light irradiation device in a reading device, interior lighting, an optical communication system or the like.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 [評価方法]
 (1) <イオン化ポテンシャル>
 非架橋ポリマーまたは重合性化合物をトルエンに溶解させ、2.0質量%の塗布液を調整した。この塗布液を用いて、透明支持基板上にスピンコート法(2000rpm、30秒)により成膜し、窒素雰囲気下140℃にて2時間熱処理を行い50nmの膜厚の膜を作製した。理研計器社製 AC-2を用いて、大気中光電子分光法によりイオン化ポテンシャルを測定した。
[Evaluation methods]
(1) <Ionization potential>
A non-crosslinked polymer or a polymerizable compound was dissolved in toluene to prepare a 2.0 mass% coating solution. Using this coating solution, a film was formed on a transparent support substrate by a spin coating method (2000 rpm, 30 seconds), and heat-treated at 140 ° C. for 2 hours in a nitrogen atmosphere to produce a film having a thickness of 50 nm. The ionization potential was measured by atmospheric photoelectron spectroscopy using AC-2 manufactured by Riken Keiki Co., Ltd.
 (2) <膜厚維持率>
 (積層体A、Bの作製)
 下記実施例、比較例で製造した有機EL素子とは別に、耐溶剤性の評価(維持率の算出)のために、青板ガラス(25mm角、板厚1.1mm)上に、後述する実施例、比較例に記載する手順によって、架橋ポリマーと非架橋ポリマーを含有した第1の有機化合物層(厚さ50nm)のみを設けた積層体を2枚作成し、積層体A、積層体Bとした。
(2) <Film thickness maintenance ratio>
(Preparation of laminates A and B)
In addition to the organic EL elements produced in the following examples and comparative examples, for the purpose of solvent resistance evaluation (calculation of maintenance rate), examples described later on blue glass (25 mm square, plate thickness 1.1 mm) Two laminates having only the first organic compound layer (thickness 50 nm) containing the crosslinked polymer and the non-crosslinked polymer were prepared by the procedure described in the comparative example, and the laminate A and the laminate B were obtained. .
 (有機化合物層の厚さ)
 積層体Aの有機化合物層の一部を針で切削して基板を露出させ(以下、こうして露出された基板表面を「基板露出部」ともいう。)、触針式表面形状測定装置(ULVAC Dektak 6)を用いて、積層体Aの有機化合物層側表面を、図2に示すように基板露出部を横断するように観測することにより、有機化合物層(以下「溶解試験処理前の有機化合物層」ともいう。)の厚さを測定した。
(Thickness of organic compound layer)
A part of the organic compound layer of the laminate A is cut with a needle to expose the substrate (hereinafter, the exposed substrate surface is also referred to as “substrate exposed portion”), and a stylus type surface shape measuring device (ULVAC Dektak) is used. 6) is used to observe the surface of the laminate A on the organic compound layer side so as to cross the exposed portion of the substrate as shown in FIG. ")") Was measured.
 (耐溶剤性)
 積層体Bの有機化合物層に下記の溶解試験処理を施した。
(Solvent resistance)
The organic compound layer of the laminate B was subjected to the following dissolution test treatment.
 積層体Bの有機化合物層上に0.10mlのトルエンを滴下した後、3000rpmで30秒の条件で回転させた。この回転はトルエンの滴下後5秒以内に開始した。次いで、試料を窒素雰囲気下に140℃で1時間放置した。 After 0.10 ml of toluene was dropped on the organic compound layer of the laminate B, it was rotated at 3000 rpm for 30 seconds. This rotation started within 5 seconds after the dropwise addition of toluene. The sample was then left for 1 hour at 140 ° C. under a nitrogen atmosphere.
 その後、積層体Bの有機化合物層(以下「溶解試験処理後の有機化合物層」ともいう。)の厚さを、積層体Aの場合と同様の方法で測定し、下式で定義される、有機化合物層の厚さの「維持率(%)」を算出した。 Thereafter, the thickness of the organic compound layer of the laminate B (hereinafter also referred to as “organic compound layer after the dissolution test treatment”) is measured by the same method as that of the laminate A, and is defined by the following formula: The “retention rate (%)” of the thickness of the organic compound layer was calculated.
 維持率=溶解試験処理後の有機化合物層の厚さ/溶解試験処理前の有機化合物層の厚さ×100
 (3) <駆動電圧、発光効率、電力効率の測定方法>
 有機発光素子に定電圧電源(Keithley製、SM2400)を用いて段階的に電圧を印加し、発光開始電圧と有機発光素子の輝度を輝度計(トプコン製、BM-9)で定量した。その結果得られた、電流密度および駆動電圧に対する輝度の比から発光効率(100cd/m2点灯時の電流量(電子数)に対する光子数の比)、電力効率(投入電力に対する光束の比)を決定した。
Maintenance rate = Thickness of organic compound layer after dissolution test treatment / Thickness of organic compound layer before dissolution test treatment × 100
(3) <Measurement method of driving voltage, luminous efficiency, and power efficiency>
A voltage was applied stepwise to the organic light emitting device using a constant voltage power source (Keithley, SM2400), and the light emission starting voltage and the luminance of the organic light emitting device were quantified with a luminance meter (Topcon, BM-9). As a result, the luminous efficiency (ratio of the number of photons to the amount of current (number of electrons) at the time of lighting of 100 cd / m 2 ) and power efficiency (ratio of luminous flux to input power) are calculated from the ratio of luminance to current density and driving voltage. Were determined.
 [合成例1] [Synthesis Example 1]
Figure JPOXMLDOC01-appb-C000022
 窒素雰囲気下において、500mlの3つ口フラスコに2,5-ジメチル-1,4-フェニレンジアミン(5.0g、37mmol)、3-ヨードトルエン(33.0g、150mmol)および脱水キシレン(200ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(17g、150mmol)、酢酸パラジウム(0.50g、2.2mmol)、トリ-tert-ブチルホスフィン(1.4g、6.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、水(100ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製した。得られた粗生成物をメタノールを用いて再結晶して化合物(a)を得た(12.2g、25mmol)。
Figure JPOXMLDOC01-appb-C000022
Under a nitrogen atmosphere, 2,5-dimethyl-1,4-phenylenediamine (5.0 g, 37 mmol), 3-iodotoluene (33.0 g, 150 mmol) and dehydrated xylene (200 ml) were added to a 500 ml three-necked flask. And stirred at 50 ° C. To this, potassium tert-butoxide (17 g, 150 mmol), palladium acetate (0.50 g, 2.2 mmol) and tri-tert-butylphosphine (1.4 g, 6.9 mmol) were added in this order, and the mixture was stirred at 120 ° C. for 4 hours. Stir. The obtained reaction mixture was cooled to room temperature, water (100 ml) was added, and then the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane). The obtained crude product was recrystallized from methanol to obtain compound (a) (12.2 g, 25 mmol).
 次に窒素雰囲気下において、300mlの3つ口フラスコに化合物(a)(12.2g、25mmol)と脱水N,N-ジメチルホルムアミド(DMF)(100ml)を入れ、80℃で撹拌した。この溶液にオキシ塩化リン(4.0g、26mmol)とDMF(20ml)の混合溶液を滴下し、さらに80℃で1時間撹拌した。得られた反応溶液を炭酸水素ナトリウム(20g)と水(200ml)が入った500mlのビーカーに投入し、酢酸エチルで抽出した。抽出液を水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムを加えて乾燥した。固体をろ別した後、溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、化合物(b)を得た(6.5g、12mmol)。 Next, in a nitrogen atmosphere, compound (a) (12.2 g, 25 mmol) and dehydrated N, N-dimethylformamide (DMF) (100 ml) were placed in a 300 ml three-necked flask and stirred at 80 ° C. A mixed solution of phosphorus oxychloride (4.0 g, 26 mmol) and DMF (20 ml) was added dropwise to this solution, and the mixture was further stirred at 80 ° C. for 1 hour. The obtained reaction solution was put into a 500 ml beaker containing sodium hydrogen carbonate (20 g) and water (200 ml), and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, dried over anhydrous sodium sulfate. After the solid was filtered off, the solvent was distilled off and the resulting residue was purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (b) (6.5 g, 12 mmol).
 次に窒素雰囲気下、200mlの3つ口フラスコにメチルトリフェニルホスホニウムブロミド(5.0g、14mmol)と脱水テトラヒドロフラン(THF)(100ml)を入れ、これに氷冷しながらカリウム-tert-ブトキシド(1.7g、15mmol)を徐々に加えた。氷冷下で30分間撹拌した後、化合物(b)(6.5g、12mmol)のTHF(30ml)溶液を滴下し、室温で3時間撹拌した。得られた反応混合物に水(200ml)を加え、酢酸エチルで抽出した。抽出液を水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムを加えて乾燥した。固体をろ別した後、溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、化合物(c)を得た(5.1g、9.8mmol)。 Next, in a nitrogen atmosphere, methyltriphenylphosphonium bromide (5.0 g, 14 mmol) and dehydrated tetrahydrofuran (THF) (100 ml) were placed in a 200 ml three-necked flask, and potassium tert-butoxide (1 0.7 g, 15 mmol) was added slowly. After stirring for 30 minutes under ice-cooling, a solution of compound (b) (6.5 g, 12 mmol) in THF (30 ml) was added dropwise and stirred at room temperature for 3 hours. Water (200 ml) was added to the obtained reaction mixture, and the mixture was extracted with ethyl acetate. The extract was washed successively with water and saturated brine, dried over anhydrous sodium sulfate. After filtering off the solid, the residue obtained by distilling off the solvent was purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (c) (5.1 g, 9.8 mmol).
 化合物(c)の同定データは以下の通りである。 The identification data of compound (c) is as follows.
  元素分析:計算値(C38382)C,87.31;H,7.33;N,5.36.:測定値 C,87.59;H,7.24;N,5.19.
  質量分析(FAB+): 522 (M+).
 次に密閉容器に、化合物(c)(500mg)を入れ、脱水トルエン(9.9mL)を加えた後、アゾビスイソブチロニトリル(AIBN)の脱水トルエン溶液(0.1M、198μL)を加えた。この溶液を、凍結脱気操作を5回繰り返した後に真空のまま密閉し、60℃で60時間攪拌し反応させた。反応液をアセトン500mL中に滴下し、沈殿物を得た。さらにトルエン-アセトンでの再沈殿精製を2回繰り返した後、沈殿物を50℃で一晩真空乾燥して、非架橋ポリマー(A)を得た。得られた非架橋ポリマー(A)の重量平均分子量は34000、分子量分布指数(Mw/Mn)は2.31であった。
Calcd (C 38 H 38 N 2) C, 87.31; H, 7.33; N, 5.36. : Measured value C, 87.59; H, 7.24; N, 5.19.
Mass spectrum (FAB +): 522 (M +).
Next, the compound (c) (500 mg) was put into a sealed container, dehydrated toluene (9.9 mL) was added, and then a dehydrated toluene solution of azobisisobutyronitrile (AIBN) (0.1 M, 198 μL) was added. It was. This solution was subjected to freeze degassing operation 5 times, then sealed in a vacuum, and stirred at 60 ° C. for 60 hours to be reacted. The reaction solution was dropped into 500 mL of acetone to obtain a precipitate. Further, reprecipitation purification with toluene-acetone was repeated twice, and then the precipitate was vacuum dried at 50 ° C. overnight to obtain a non-crosslinked polymer (A). The obtained non-crosslinked polymer (A) had a weight average molecular weight of 34,000 and a molecular weight distribution index (Mw / Mn) of 2.31.
 [合成例2] [Synthesis Example 2]
Figure JPOXMLDOC01-appb-C000023
 窒素雰囲気下において、500mlの3つ口フラスコに2,5-ジメチル-1,4-フェニレンジアミン(5.0g、37mmol)、3-ヨードトルエン(17.0g、78mmol)および脱水キシレン(200ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(8.7g、78mmol)、酢酸パラジウム(0.30g、1.3mmol)、トリ-tert-ブチルホスフィン(1.0g、4.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、水(100ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製して化合物(d)を得た(9.5g、30mmol)。
Figure JPOXMLDOC01-appb-C000023
Under a nitrogen atmosphere, 2,5-dimethyl-1,4-phenylenediamine (5.0 g, 37 mmol), 3-iodotoluene (17.0 g, 78 mmol) and dehydrated xylene (200 ml) were added to a 500 ml three-necked flask. And stirred at 50 ° C. To this, potassium tert-butoxide (8.7 g, 78 mmol), palladium acetate (0.30 g, 1.3 mmol), tri-tert-butylphosphine (1.0 g, 4.9 mmol) were added in this order, and the mixture was heated at 120 ° C. Stir for 4 hours. The obtained reaction mixture was cooled to room temperature, water (100 ml) was added, and then the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (d) (9.5 g, 30 mmol). .
 次に窒素雰囲気下において、500mlの3つ口フラスコに化合物(d)(9.5g、30mmol)、4-ブロモ-2-メチルフェノール(12.0g、64mmol)および脱水キシレン(200ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(16g、140mmol)、酢酸パラジウム(0.50g、2.2mmol)、トリ-tert-ブチルホスフィン(1.4g、6.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、1M塩酸水溶液(200ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル)で精製して化合物(e)を得た(10g、19mmol)。 Next, under a nitrogen atmosphere, compound (d) (9.5 g, 30 mmol), 4-bromo-2-methylphenol (12.0 g, 64 mmol) and dehydrated xylene (200 ml) were placed in a 500 ml three-necked flask. Stir at 50 ° C. To this, potassium tert-butoxide (16 g, 140 mmol), palladium acetate (0.50 g, 2.2 mmol) and tri-tert-butylphosphine (1.4 g, 6.9 mmol) were added in this order, and the mixture was stirred at 120 ° C. for 4 hours. Stir. The resulting reaction mixture was cooled to room temperature, 1M aqueous hydrochloric acid (200 ml) was added, and the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate) to obtain compound (e) (10 g, 19 mmol).
 次に窒素雰囲気下において、300mlの3つ口フラスコに化合物(e)(10g、19mmol)、カリウム-tert-ブトキシド(4.7g、42mmol)および脱水DMF(100ml)を入れ、室温で1時間撹拌した。得られた反応混合物に11-ブロモ-1-ウンデセン(4.4g、19mmol)および1,8-ジブロモオクタン(2.6g、9.5mmol)のDMF(20ml)溶液を滴下し、室温で5時間攪拌した。次に反応液に500mlの水を加え、酢酸エチルで抽出した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、重合性化合物Bを得た(1.5g、1.0mmol)。 Next, under a nitrogen atmosphere, compound (e) (10 g, 19 mmol), potassium tert-butoxide (4.7 g, 42 mmol) and dehydrated DMF (100 ml) were placed in a 300 ml three-necked flask and stirred at room temperature for 1 hour. did. To the resulting reaction mixture was added dropwise a solution of 11-bromo-1-undecene (4.4 g, 19 mmol) and 1,8-dibromooctane (2.6 g, 9.5 mmol) in DMF (20 ml) at room temperature for 5 hours. Stir. Next, 500 ml of water was added to the reaction solution, followed by extraction with ethyl acetate, followed by purification by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain polymerizable compound B (1.5 g). 1.0 mmol).
 重合性化合物Bの同定データは以下の通りである。 The identification data of the polymerizable compound B is as follows.
  元素分析:計算値(C10212644) C,83.22;H,8.63;N,3.81.:測定値 C,82.96;H,8.77;N,4.04.
  質量分析(FAB+): 1472 (M+).
 [実施例1]
 ガラス基板上に酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜したものを透明導電性支持基板として用いた。これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後、乾燥をした。さらに、UV/オゾン洗浄したものを透明導電性支持基板として使用した。
Calcd (C 102 H 126 N 4 O 4) C, 83.22; H, 8.63; N, 3.81. : Measured value C, 82.96; H, 8.77; N, 4.04.
Mass spectrum (FAB +): 1472 (M +).
[Example 1]
What formed indium tin oxide (ITO) into a film thickness of 120 nm on the glass substrate by the sputtering method was used as a transparent conductive support substrate. This was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), then boiled and washed with IPA, and then dried. Furthermore, what was UV / ozone cleaned was used as a transparent conductive support substrate.
 合成例1で得られた非架橋ポリマーAと、合成例2で得られた重合性化合物Bを質量比50:50とした混合物をトルエンに溶解させ、2.0質量%の塗布液を調整した。この塗布液を用いて、透明支持基板のITOが製膜された面上にスピンコート法(2000rpm、30秒)により成膜し、窒素雰囲気下140℃にて2時間熱処理を行い50nmの膜厚の硬化膜を作製し、正孔注入層(第1の有機化合物層)を形成した。 A mixture of the non-crosslinked polymer A obtained in Synthesis Example 1 and the polymerizable compound B obtained in Synthesis Example 2 in a mass ratio of 50:50 was dissolved in toluene to prepare a 2.0 mass% coating solution. . Using this coating solution, a film was formed on the surface of the transparent support substrate on which ITO was formed by spin coating (2000 rpm, 30 seconds), and heat-treated at 140 ° C. for 2 hours in a nitrogen atmosphere to give a film thickness of 50 nm. A cured film was prepared, and a hole injection layer (first organic compound layer) was formed.
 次に下式で表わされる化合物Xと、下式で表わされる化合物Pとを、質量比10:90とした混合物をトルエンに溶解させ、化合物Xと化合物Pとの合計で2.0質量%の塗布液を調整した。なお、化合物Xは特開2005-200638に記載の方法で合成し、化合物Pは特開2007-081392に記載の方法で合成した。この塗布液を用いて、先に作製した膜上にスピンコート法(2000rpm、30秒)により成膜し、窒素雰囲気下、140℃にて1時間熱処理を行い50nmの膜を作製し、発光層(第2の有機化合物層)を形成した。 Next, a mixture of the compound X represented by the following formula and the compound P represented by the following formula in a mass ratio of 10:90 was dissolved in toluene, and the total amount of the compound X and the compound P was 2.0% by mass. The coating solution was adjusted. Compound X was synthesized by the method described in JP-A-2005-200368, and compound P was synthesized by the method described in JP-A-2007-081392. Using this coating solution, a film was formed on the previously prepared film by spin coating (2000 rpm, 30 seconds), and heat-treated at 140 ° C. for 1 hour in a nitrogen atmosphere to form a 50 nm film, and the light emitting layer (Second organic compound layer) was formed.
 さらに、アルミニウムとリチウム(リチウム濃度1原子%)からなる蒸着材料を用いて、先ほどの有機化合物層の上に、真空蒸着法により厚さ150nmの金属層膜を形成し、図1に示す構造の素子を作製した。蒸着時の真空度は1.0×10-4Pa、成膜速度は1.0~1.2nm/secの条件で成膜した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。 Further, using a vapor deposition material composed of aluminum and lithium (lithium concentration 1 atom%), a metal layer film having a thickness of 150 nm is formed on the organic compound layer by a vacuum vapor deposition method, and the structure shown in FIG. An element was produced. The degree of vacuum during vapor deposition was 1.0 × 10 −4 Pa and the film formation rate was 1.0 to 1.2 nm / sec. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
Figure JPOXMLDOC01-appb-C000024
 [合成例3]
 11-ブロモ-1-ウンデセンの代わりに5-ブロモ-1-ペンテンを用いた以外は、合成例2と同様の方法で行い、下式で表わされる重合性化合物Cを合成した。
Figure JPOXMLDOC01-appb-C000024
[Synthesis Example 3]
A polymerizable compound C represented by the following formula was synthesized in the same manner as in Synthesis Example 2 except that 5-bromo-1-pentene was used instead of 11-bromo-1-undecene.
 重合性化合物Cの同定データは以下の通りである。 The identification data of the polymerizable compound C is as follows.
  元素分析:計算値(C9010244) C,82.91;H,7.89;N,4.30.:測定値 C,82.60;H,7.98;N,4.51.
  質量分析(FAB+): 1303 (M+).
Calcd (C 90 H 102 N 4 O 4) C, 82.91; H, 7.89; N, 4.30. : Measured value C, 82.60; H, 7.98; N, 4.51.
Mass spectrometry (FAB +): 1303 (M +).
Figure JPOXMLDOC01-appb-C000025
 [実施例2]
 実施例1の重合性化合物Bを合成例3で合成した重合性化合物Cに変えた他は実施例1の素子と全く同様にして実施例2の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
Figure JPOXMLDOC01-appb-C000025
[Example 2]
A device of Example 2 was produced in the same manner as the device of Example 1 except that the polymerizable compound B of Example 1 was changed to the polymerizable compound C synthesized in Synthesis Example 3. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [合成例4]
 化合物(e)の代わりに化合物(g)を用い、11-ブロモ-1-ウンデセンの代わりに15-ブロモ-1-ペンタデセンを用いた以外は、合成例2と同様の方法で行い、下式で表わされる重合性化合物Dを合成した。
[Synthesis Example 4]
The same procedure as in Synthesis Example 2 was performed, except that compound (g) was used instead of compound (e) and 15-bromo-1-pentadecene was used instead of 11-bromo-1-undecene. The represented polymerizable compound D was synthesized.
 重合性化合物Dの同定データは以下の通りである。 The identification data of the polymerizable compound D is as follows.
  元素分析:計算値(C10613444) C,83.31;H,8.84;N,3.67.:測定値 C,82.97;H,9.19;N,3.66.
  質量分析(FAB+): 1528 (M+).
Calcd (C 106 H 134 N 4 O 4) C, 83.31; H, 8.84; N, 3.67. : Measured value C, 82.97; H, 9.19; N, 3.66.
Mass spectrum (FAB +): 1528 (M +).
Figure JPOXMLDOC01-appb-C000026
 なお、化合物(g)は以下の方法で合成した。
Figure JPOXMLDOC01-appb-C000026
Compound (g) was synthesized by the following method.
 窒素雰囲気下において、500mlの3つ口フラスコに1,4-フェニレンジアミン(4.0g、37mmol)、3-ヨードトルエン(17.0g、78mmol)および脱水キシレン(200ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(8.7g、78mmol)、酢酸パラジウム(0.30g、1.3mmol)、トリ-tert-ブチルホスフィン(1.0g、4.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、水(100ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製して化合物(f)を得た(8.7g、30mmol)。 Under a nitrogen atmosphere, 1,4-phenylenediamine (4.0 g, 37 mmol), 3-iodotoluene (17.0 g, 78 mmol) and dehydrated xylene (200 ml) were placed in a 500 ml three-necked flask and stirred at 50 ° C. did. To this, potassium tert-butoxide (8.7 g, 78 mmol), palladium acetate (0.30 g, 1.3 mmol), tri-tert-butylphosphine (1.0 g, 4.9 mmol) were added in this order, and the mixture was heated at 120 ° C. Stir for 4 hours. The obtained reaction mixture was cooled to room temperature, water (100 ml) was added, and then the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (f) (8.7 g, 30 mmol). .
 次に窒素雰囲気下において、500mlの3つ口フラスコに化合物(f)(8.7g、30mmol)、4-ブロモ-2-メチルフェノール(12.0g、64mmol)および脱水キシレン(200ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(16g、140mmol)、酢酸パラジウム(0.50g、2.2mmol)、トリ-tert-ブチルホスフィン(1.4g、6.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、1M塩酸水溶液(200ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル)で精製して化合物(g)を得た(9.5g、19mmol)。 Next, under a nitrogen atmosphere, a compound (f) (8.7 g, 30 mmol), 4-bromo-2-methylphenol (12.0 g, 64 mmol) and dehydrated xylene (200 ml) were placed in a 500 ml three-necked flask. Stir at 50 ° C. To this, potassium tert-butoxide (16 g, 140 mmol), palladium acetate (0.50 g, 2.2 mmol) and tri-tert-butylphosphine (1.4 g, 6.9 mmol) were added in this order, and the mixture was stirred at 120 ° C. for 4 hours. Stir. The resulting reaction mixture was cooled to room temperature, 1M aqueous hydrochloric acid (200 ml) was added, and the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate) to obtain compound (g) (9.5 g, 19 mmol).
Figure JPOXMLDOC01-appb-C000027
 [実施例3]
 実施例1の第1の重合性化合物Bを、合成例4で合成した重合性化合物Dに変えた他は実施例1の素子と全く同様にして実施例3の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
Figure JPOXMLDOC01-appb-C000027
[Example 3]
A device of Example 3 was fabricated in exactly the same manner as the device of Example 1, except that the first polymerizable compound B of Example 1 was changed to the polymerizable compound D synthesized in Synthesis Example 4. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [合成例5]
 合成例1において、化合物(c)に変えて下式で表わされる化合物(h)25mmolを用いた他は同様にして下式で表わされる非架橋ポリマーEを合成した。得られた非架橋ポリマーは、重量平均分子量24800、分子量分布指数(Mw/Mn)は2.13であった。なお、化合物(h)は特開2005-200638に記載の方法で合成した。
[Synthesis Example 5]
A non-crosslinked polymer E represented by the following formula was synthesized in the same manner as in Synthesis Example 1 except that 25 mmol of the compound (h) represented by the following formula was used instead of the compound (c). The obtained non-crosslinked polymer had a weight average molecular weight of 24,800 and a molecular weight distribution index (Mw / Mn) of 2.13. Compound (h) was synthesized by the method described in Japanese Patent Application Laid-Open No. 2005-200638.
Figure JPOXMLDOC01-appb-C000028
 [合成例6]
Figure JPOXMLDOC01-appb-C000028
[Synthesis Example 6]
Figure JPOXMLDOC01-appb-C000029
 窒素雰囲気下において、200mlの3つ口フラスコに化合物(i)(特開2005-97589に記載された方法に従って合成した)(1.5g、3.8mmol)、化合物(j)(1.3g、3.9mmol)および脱水キシレン(50ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(0.45g、4.0mmol)、酢酸パラジウム(0.10g、0.45mmol)、トリ-tert-ブチルホスフィン(0.25g、1.2mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、水(50ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製して化合物(k)を得た(2.0g、3.1mmol)。
Figure JPOXMLDOC01-appb-C000029
Under a nitrogen atmosphere, compound (i) (synthesized according to the method described in JP-A-2005-97589) (1.5 g, 3.8 mmol), compound (j) (1.3 g, 3.9 mmol) and dehydrated xylene (50 ml) were added and stirred at 50 ° C. To this, potassium tert-butoxide (0.45 g, 4.0 mmol), palladium acetate (0.10 g, 0.45 mmol), tri-tert-butylphosphine (0.25 g, 1.2 mmol) were added in order. Stir at 4 ° C. for 4 hours. The obtained reaction mixture was cooled to room temperature, water (50 ml) was added, and then the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (k) (2.0 g, 3. 1 mmol).
 次に窒素雰囲気下において、200mlの3つ口フラスコに化合物(k)(2.0g、3.1mmol)、化合物(l)(0.87g、1.5mmol)および脱水キシレン(50ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(0.45g、4.0mmol)、酢酸パラジウム(0.10g、0.45mmol)、トリ-tert-ブチルホスフィン(0.25g、1.2mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、水(50ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製して重合性化合物Fを得た(2.2g、1.3mmol)。 Next, under a nitrogen atmosphere, compound (k) (2.0 g, 3.1 mmol), compound (l) (0.87 g, 1.5 mmol) and dehydrated xylene (50 ml) were placed in a 200 ml three-necked flask. Stir at 50 ° C. To this, potassium tert-butoxide (0.45 g, 4.0 mmol), palladium acetate (0.10 g, 0.45 mmol), tri-tert-butylphosphine (0.25 g, 1.2 mmol) were added in order. Stir at 4 ° C. for 4 hours. The obtained reaction mixture was cooled to room temperature, water (50 ml) was added, and then the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain polymerizable compound F (2.2 g, 1. 3 mmol).
 重合性化合物Fの同定データは以下の通りである。 The identification data of the polymerizable compound F is as follows.
  元素分析:計算値(C1251404) C,88.39;H,8.31;N,3.30.:測定値 C,88.65;H,8.22;N,3.04.
  質量分析(FAB+): 1698 (M+).
 [実施例4]
 実施例1の非架橋ポリマーAを合成例5で合成した非架橋ポリマーEに、第1の重合性化合物Bを合成例6で合成した重合性化合物Fに変えた他は実施例1の素子と全く同様にして実施例4の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
Calcd (C 125 H 140 N 4) C, 88.39; H, 8.31; N, 3.30. : Measured value C, 88.65; H, 8.22; N, 3.04.
Mass spectrum (FAB +): 1698 (M +).
[Example 4]
The non-crosslinked polymer A of Example 1 was changed to the non-crosslinked polymer E synthesized in Synthesis Example 5, and the first polymerizable compound B was changed to the polymerizable compound F synthesized in Synthetic Example 6 to obtain the device of Example 1. The device of Example 4 was fabricated in exactly the same manner. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [実施例5]
 実施例4の第1の重合性化合物Fを上記重合性化合物Dに変えた他は実施例4の素子と同様にして実施例5の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
[Example 5]
A device of Example 5 was produced in the same manner as the device of Example 4 except that the first polymerizable compound F of Example 4 was changed to the polymerizable compound D. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [実施例6]
 実施例1の非架橋ポリマーAと重合性化合物Bの割合を5:95に変えた他は実施例1の素子と全く同様にして実施例6の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
[Example 6]
A device of Example 6 was produced in the same manner as the device of Example 1 except that the ratio of the non-crosslinked polymer A and the polymerizable compound B of Example 1 was changed to 5:95. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [実施例7]
 非架橋ポリマーA、重合性化合物B、F4TCNQを50:50:1になるようにF4TCNQを加えた他は、実施例1の素子と全く同様にして実施例7の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
[Example 7]
A device of Example 7 was produced in the same manner as the device of Example 1, except that F4TCNQ was added so that non-crosslinked polymer A, polymerizable compound B, and F4TCNQ were 50: 50: 1. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [合成例7] [Synthesis Example 7]
Figure JPOXMLDOC01-appb-C000030
 窒素雰囲気下において、200mlの3つ口フラスコに化合物(e)(5.0g、9.5mmol)、カリウム-tert-ブトキシド(2.2g、20mmol)および脱水DMF(50ml)を入れ、室温で1時間撹拌した。得られた反応混合物に11-ブロモ-1-ウンデセン(4.7g、20mmol)のDMF(15ml)溶液を滴下し、室温で5時間攪拌した。次に反応液に200mlの水を加え、酢酸エチルで抽出した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、重合性化合物Iを得た(6.6g、7.9mmol)。
Figure JPOXMLDOC01-appb-C000030
Under a nitrogen atmosphere, a compound (e) (5.0 g, 9.5 mmol), potassium tert-butoxide (2.2 g, 20 mmol), and dehydrated DMF (50 ml) were placed in a 200 ml three-necked flask at room temperature. Stir for hours. To the resulting reaction mixture, a solution of 11-bromo-1-undecene (4.7 g, 20 mmol) in DMF (15 ml) was added dropwise and stirred at room temperature for 5 hours. Next, 200 ml of water was added to the reaction solution, followed by extraction with ethyl acetate, followed by purification by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain polymerizable compound I (6.6 g). 7.9 mmol).
 重合性化合物Iの同定データは以下の通りである。 The identification data of the polymerizable compound I are as follows.
  元素分析:計算値(C587622) C,83.60;H,9.19;N,3.36.:測定値 C,83.23;H,9.30;N,3.55.
  質量分析(FAB+): 833 (M+).
 [実施例8]
 実施例1で用いた正孔注入層を形成する塗布液を、合成例1で合成した非架橋ポリマーA、合成例7で合成した重合性化合物I、第2の重合性化合物であるスチレンを50:50:20の質量比で含む、固形分2.0質量%のトルエン溶液に代えた以外は、実施例1の素子と同様にして実施例8の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
Calcd (C 58 H 76 N 2 O 2) C, 83.60; H, 9.19; N, 3.36. : Measured value C, 83.23; H, 9.30; N, 3.55.
Mass spectrum (FAB +): 833 (M +).
[Example 8]
The coating liquid for forming the hole injection layer used in Example 1 was prepared by adding 50 parts of the non-crosslinked polymer A synthesized in Synthesis Example 1, the polymerizable compound I synthesized in Synthesis Example 7, and styrene as the second polymerizable compound. A device of Example 8 was produced in the same manner as the device of Example 1 except that the toluene solution was contained in a mass ratio of 50:20 and containing 2.0% by mass of solid. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [合成例8] [Synthesis Example 8]
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 窒素雰囲気下において、500mlの3つ口フラスコにトリ(4-ブロモフェニル)アミン(6.0g、12mmol)、N-(3-メチルフェニル)アニリン(2.2g、12mmol)、N-(3-ヒドロキシフェニル)-m-トルイジン(2.4g、12mmol)、N-(4-ベンジルオキシフェニル)-m-トルイジン(3.5g、12mmol)および脱水キシレン(200ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(5.6g、50mmol)、酢酸パラジウム(0.50g、2.2mmol)、トリ-tert-ブチルホスフィン(1.4g、6.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物を室温にまで冷却し、水(200ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製して化合物(m)を得た(1.3g、1.4mmol)。
Figure JPOXMLDOC01-appb-C000033
Under a nitrogen atmosphere, a 500 ml three-necked flask was charged with tri (4-bromophenyl) amine (6.0 g, 12 mmol), N- (3-methylphenyl) aniline (2.2 g, 12 mmol), N- (3- Hydroxyphenyl) -m-toluidine (2.4 g, 12 mmol), N- (4-benzyloxyphenyl) -m-toluidine (3.5 g, 12 mmol) and dehydrated xylene (200 ml) were added and stirred at 50 ° C. To this, potassium tert-butoxide (5.6 g, 50 mmol), palladium acetate (0.50 g, 2.2 mmol), tri-tert-butylphosphine (1.4 g, 6.9 mmol) were added in order, and the mixture was heated at 120 ° C. Stir for 4 hours. The obtained reaction mixture was cooled to room temperature, water (200 ml) was added, and then the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (m) (1.3 g, 1. 4 mmol).
 次に窒素雰囲気下において、200mlの3つ口フラスコに化合物(m)(1.3g、1.4mmol)、カリウム-tert-ブトキシド(0.20g、1.8mmol)および脱水DMF(10ml)を入れ、室温で1時間撹拌した。得られた反応混合物に1,8-ジブロモオクタン(0.19g、0.70mmol)のDMF(5ml)溶液を滴下し、室温で5時間攪拌した。次に反応液に100mlの水を加え、酢酸エチルで抽出した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、化合物(n)を得た(1.4g、0.72mmol)。 Next, under a nitrogen atmosphere, a compound (m) (1.3 g, 1.4 mmol), potassium tert-butoxide (0.20 g, 1.8 mmol) and dehydrated DMF (10 ml) were placed in a 200 ml three-necked flask. And stirred at room temperature for 1 hour. A solution of 1,8-dibromooctane (0.19 g, 0.70 mmol) in DMF (5 ml) was added dropwise to the resulting reaction mixture, and the mixture was stirred at room temperature for 5 hours. Next, 100 ml of water was added to the reaction mixture, and the mixture was extracted with ethyl acetate, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (n) (1.4 g). 0.72 mmol).
 次に窒素雰囲気下において、100mlの3つ口フラスコに化合物(n)(1.4g、0.72mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0.050g、0.043mmol)を入れ、THF50mlを加えて溶解した。これにヒドラジン一水和物(3.0g、54mmol)を加えて12時間加熱還流した。得られた反応混合物を200mlの水中に入れ、酢酸エチルで抽出した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、化合物(o)を得た(1.2g、0.68mmol)。 Next, under a nitrogen atmosphere, compound (n) (1.4 g, 0.72 mmol) and tetrakis (triphenylphosphine) palladium (0.050 g, 0.043 mmol) were placed in a 100 ml three-necked flask, and 50 ml of THF was added. And dissolved. To this was added hydrazine monohydrate (3.0 g, 54 mmol) and heated to reflux for 12 hours. The obtained reaction mixture was put into 200 ml of water, extracted with ethyl acetate, and then purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (o) (1. 2 g, 0.68 mmol).
 次に窒素雰囲気下において、100mlの3つ口フラスコに化合物(o)(1.2g、0.68mmol)、カリウム-tert-ブトキシド(0.21g、1.9mmol)および脱水DMF(25ml)を入れ、室温で1時間撹拌した。得られた反応混合物に11-ブロモ-1-ウンデセン(0.51g、2.2mmol)のDMF(5ml)溶液を滴下し、室温で5時間攪拌した。次に反応液に200mlの水を加え、酢酸エチルで抽出した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、重合性化合物Jを得た(1.3g、0.63mmol)。 Next, under a nitrogen atmosphere, a compound (o) (1.2 g, 0.68 mmol), potassium tert-butoxide (0.21 g, 1.9 mmol) and dehydrated DMF (25 ml) were placed in a 100 ml three-necked flask. And stirred at room temperature for 1 hour. A solution of 11-bromo-1-undecene (0.51 g, 2.2 mmol) in DMF (5 ml) was added dropwise to the resulting reaction mixture, and the mixture was stirred at room temperature for 5 hours. Next, 200 ml of water was added to the reaction solution, followed by extraction with ethyl acetate, followed by purification by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain polymerizable compound J (1.3 g). 0.63 mmol).
 重合性化合物Jの同定データは以下の通りである。 The identification data of the polymerizable compound J is as follows.
  元素分析:計算値(C14415084) C,84.09;H,7.35;N,5.45.:測定値 C,83.77;H,7.58;N,5.61.
  質量分析(FAB+): 2056 (M+).
 [比較例1]
 実施例1の第1の重合性化合物Bを合成例7で合成した重合性化合物Jに変えた他は実施例1の素子と全く同様にして比較例1の素子を作製した。この様にして得られた素子において、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
Elemental analysis: calculated value (C 144 H 150 N 8 O 4 ) C, 84.09; H, 7.35; N, 5.45. : Measured value C, 83.77; H, 7.58; N, 5.61.
Mass spectrum (FAB +): 2056 (M +).
[Comparative Example 1]
A device of Comparative Example 1 was produced in the same manner as the device of Example 1, except that the first polymerizable compound B of Example 1 was changed to the polymerizable compound J synthesized in Synthesis Example 7. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode in the device thus obtained.
 [合成例8] [Synthesis Example 8]
Figure JPOXMLDOC01-appb-C000034
 窒素雰囲気下において、300mlの3つ口フラスコに2,4-ジアミノメシチレン(3.0g、20mmol)、3-ヨードトルエン(8.7g、40mmol)および脱水キシレン(150ml)を入れ、50℃で撹拌した。これに、カリウム-tert-ブトキシド(4.5g、40mmol)、酢酸パラジウム(0.30g、1.3mmol)、トリ-tert-ブチルホスフィン(1.0g、4.9mmol)を順に加え、120℃で4時間撹拌した。得られた反応混合物(p)に4-ブロモ-2-メチルフェノール(7.5g、40mmol)およびカリウム-tert-ブトキシド(9.0g、80mmol)を加え、さらに120℃で4時間撹拌した。反応液を室温にまで冷却し、水(150ml)を加えた後、酢酸エチルで有機層を抽出した。抽出液を硫酸マグネシウムで乾燥し、減圧下で濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)で精製して化合物(q)を得た(3.9g、7.2mmol)。
Figure JPOXMLDOC01-appb-C000034
In a nitrogen atmosphere, 2,4-diaminomesitylene (3.0 g, 20 mmol), 3-iodotoluene (8.7 g, 40 mmol) and dehydrated xylene (150 ml) were placed in a 300 ml three-necked flask and stirred at 50 ° C. did. To this, potassium-tert-butoxide (4.5 g, 40 mmol), palladium acetate (0.30 g, 1.3 mmol) and tri-tert-butylphosphine (1.0 g, 4.9 mmol) were added in this order, and the mixture was heated at 120 ° C. Stir for 4 hours. 4-Bromo-2-methylphenol (7.5 g, 40 mmol) and potassium-tert-butoxide (9.0 g, 80 mmol) were added to the obtained reaction mixture (p), and the mixture was further stirred at 120 ° C. for 4 hours. The reaction mixture was cooled to room temperature, water (150 ml) was added, and the organic layer was extracted with ethyl acetate. The extract was dried over magnesium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain compound (q) (3.9 g, 7. 2 mmol).
 次に窒素雰囲気下において、200mlの3つ口フラスコに化合物(q)(3.9g、7.2mmol)、カリウム-tert-ブトキシド(1.7g、15mmol)および脱水DMF(30ml)を入れ、室温で1時間撹拌した。得られた反応混合物に11-ブロモ-1-ウンデセン(1.7g、7.3mmol)および1,8-ジブロモオクタン(1.0g、3.7mmol)のDMF(10ml)溶液を滴下し、室温で5時間攪拌した。次に反応液に200mlの水を加え、酢酸エチルで抽出した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル-ヘキサンの混合溶媒)にて精製し、重合性化合物Kを得た(0.50g、0.33mmol)。 Next, under a nitrogen atmosphere, compound (q) (3.9 g, 7.2 mmol), potassium tert-butoxide (1.7 g, 15 mmol) and dehydrated DMF (30 ml) were placed in a 200 ml three-necked flask at room temperature. For 1 hour. To the resulting reaction mixture was added dropwise a solution of 11-bromo-1-undecene (1.7 g, 7.3 mmol) and 1,8-dibromooctane (1.0 g, 3.7 mmol) in DMF (10 ml) at room temperature. Stir for 5 hours. Next, 200 ml of water was added to the reaction solution, followed by extraction with ethyl acetate, followed by purification by silica gel column chromatography (eluent: mixed solvent of ethyl acetate-hexane) to obtain polymerizable compound K (0.50 g). 0.33 mmol).
 重合性化合物Kの同定データは以下の通りである。 The identification data of the polymerizable compound K is as follows.
  元素分析:計算値(C10413044) C,83.26;H,8.73;N,3.73.:測定値 C,83.60;H,8.68;N,3.65.
  質量分析(FAB+): 1500 (M+).
 [比較例2]
 実施例1の重合性化合物Bを合成例8で合成した重合性化合物Kに変えた他は実施例1の素子と全く同様にして比較例2の素子を作製した。この様にして得られた素子に、ITO電極を正極、アルミニウム-リチウム電極を負極にして、真空中で直流電圧を印加して発光させた結果を表2に示す。
Calcd (C 104 H 130 N 4 O 4) C, 83.26; H, 8.73; N, 3.73. : Measured value C, 83.60; H, 8.68; N, 3.65.
Mass spectrometry (FAB +): 1500 (M +).
[Comparative Example 2]
A device of Comparative Example 2 was produced in the same manner as the device of Example 1 except that the polymerizable compound B of Example 1 was changed to the polymerizable compound K synthesized in Synthesis Example 8. Table 2 shows the results obtained by emitting light by applying a DC voltage in vacuum with the ITO electrode as the positive electrode and the aluminum-lithium electrode as the negative electrode.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036

Claims (16)

  1.  第1の電極と、
     前記第1の電極上に形成された第1の有機化合物層と、
     前記第1の有機化合物層に隣接して形成された第2の有機化合物層と、
     前記第2の有機化合物層上に形成された第2の電極とを有する有機発光素子であり、
     前記第1の有機化合物層が、非架橋ポリマーと、架橋ポリマーとを含有し、
     前記非架橋ポリマーと、前記架橋ポリマーとが、共に電荷輸送性を有する構造を含む繰り返し単位を含み、
     前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0~0.2eVである有機発光素子。
    A first electrode;
    A first organic compound layer formed on the first electrode;
    A second organic compound layer formed adjacent to the first organic compound layer;
    An organic light emitting device having a second electrode formed on the second organic compound layer,
    The first organic compound layer contains a non-crosslinked polymer and a crosslinked polymer;
    The non-crosslinked polymer and the crosslinked polymer each include a repeating unit including a structure having charge transportability,
    An organic light emitting device in which an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of the crosslinked polymer is 0 to 0.2 eV.
  2.  前記架橋ポリマーが、少なくとも第1の重合性化合物を重合することにより形成されるポリマーであり、
     前記第1の重合性化合物が、電荷輸送性を有する構造を含む化合物である、請求項1に記載の有機発光素子。
    The crosslinked polymer is a polymer formed by polymerizing at least a first polymerizable compound;
    The organic light-emitting device according to claim 1, wherein the first polymerizable compound is a compound including a structure having a charge transporting property.
  3.  前記非架橋ポリマーおよび前記架橋ポリマーにおいて、隣接する繰り返し単位に含まれる2つの前記電荷輸送性を有する構造が、非共役構造を含む連結基によって連結されている、請求項1または2に記載の有機発光素子。 3. The organic according to claim 1, wherein in the non-crosslinked polymer and the crosslinked polymer, the two structures having charge transporting properties contained in adjacent repeating units are linked by a linking group containing a nonconjugated structure. Light emitting element.
  4.  前記非架橋ポリマーの繰り返し単位が有する電荷輸送性を有する構造と、前記架橋ポリマーの繰り返し単位が有する電荷輸送性を有する構造とが同一の構造である請求項1~3のいずれか一項に記載の有機発光素子。 The structure having the charge transport property possessed by the repeating unit of the non-crosslinked polymer and the structure having the charge transport property possessed by the repeating unit of the crosslinked polymer are the same structure. Organic light emitting device.
  5.  前記電荷輸送性を有する構造がトリフェニルアミン誘導体である、請求項1~4のいずれか一項に記載の有機発光素子。 The organic light-emitting device according to any one of claims 1 to 4, wherein the structure having a charge transporting property is a triphenylamine derivative.
  6.  前記非架橋ポリマーが、下記一般式(1)および下記一般式(2)から選択される少なくとも1種の繰り返し単位からなるポリマーであり、
     前記第1の重合性化合物が、下記一般式(3)で表わされる化合物である請求項2~5のいずれか一項に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)~(3)において、各Aはそれぞれ独立に、電荷輸送性を有する構造を表し、X1およびX5はそれぞれ独立に、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、
     X2~X4はそれぞれ独立に、単結合、-O-、-S-、または置換基を有してもよい炭素数1~20のアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよい)を表し、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはアラルキル基を表わし、aは0または1である。)
    The non-crosslinked polymer is a polymer comprising at least one repeating unit selected from the following general formula (1) and the following general formula (2):
    The organic light-emitting device according to any one of claims 2 to 5, wherein the first polymerizable compound is a compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formulas (1) to (3), each A independently represents a structure having charge transporting properties, and X 1 and X 5 each independently represents —O—, —S—, or a substituent. An alkylene group having 1 to 20 carbon atoms that may have (provided that one or two or more non-adjacent methylene groups in the alkylene group may be substituted with —O— or —S— and bonded to A; One non-adjacent or two or more non-adjacent methylene groups are —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group Which may be substituted with
    X 2 to X 4 are each independently a single bond, —O—, —S—, or an optionally substituted alkylene group having 1 to 20 carbon atoms (provided that one or not in the alkylene group is not adjacent) Two or more methylene groups may be substituted with —O— or —S—, and one or more methylene groups not bonded to A may be —SO—, —SO 2 —, —CO—. , —COO—, —N (R Y ) —, —CO—N (R Y ) —, which may be substituted with an arylene group), and R Y represents a hydrogen atom, an alkyl having 1 to 4 carbon atoms. Represents a group, an aryl group, or an aralkyl group, and a is 0 or 1; )
  7.  前記一般式(3)におけるaが0であり、
     前記架橋ポリマーが、前記第1の重合性化合物100質量%に対して、第2の重合性化合物が10~100質量%となる範囲で前記第1の重合性化合物と、第2の重合性化合物とを共重合して得られたものである請求項6に記載の有機発光素子。
    A in the general formula (3) is 0;
    The first polymerizable compound and the second polymerizable compound in a range in which the crosslinked polymer is 10 to 100% by mass of the second polymerizable compound with respect to 100% by mass of the first polymerizable compound. The organic light-emitting device according to claim 6, which is obtained by copolymerization of
  8.  前記一般式(1)~(3)におけるAが、下記一般式(4)で表される、請求項6に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(4)において、R2およびR3のいずれか一方は下記一般式(5)で表される基であり、
     前記一般式(4)におけるR1~R15および下記一般式(5)におけるR16~R29のいずれか二つは、前記一般式(1)~(3)におけるX1~X5または水素原子への結合手であり、
     前記一般式(5)で表される基および前記結合手ではないR1~R15は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基である。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(5)において、前記結合手ではないR16~R29は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基であり、bは0または1であり、bが1の場合において、連結した芳香環のR同士が互いに結合して縮合環を形成してもよい。)
    The organic light-emitting device according to claim 6, wherein A in the general formulas (1) to (3) is represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000002
    (In General Formula (4), one of R 2 and R 3 is a group represented by the following General Formula (5),
    Any two of R 1 to R 15 in the general formula (4) and R 16 to R 29 in the following general formula (5) are X 1 to X 5 or hydrogen in the general formulas (1) to (3). A bond to an atom,
    The group represented by the general formula (5) and R 1 to R 15 that are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or carbon. An alkoxy group of 1 to 10; )
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (5), R 16 to R 29 which are not a bond are each independently a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. In the case where b is 0 or 1 and b is 1, the linked aromatic rings R may be bonded to each other to form a condensed ring.
  9.  前記第1の有機化合物層に含まれる前記架橋ポリマーと前記非架橋ポリマーとの質量比が50:50~95:5である請求項1~8のいずれか一項に記載の有機発光素子。 The organic light emitting device according to any one of claims 1 to 8, wherein a mass ratio of the crosslinked polymer to the non-crosslinked polymer contained in the first organic compound layer is 50:50 to 95: 5.
  10.  前記Aで表される電荷輸送性を有する構造の式量が240~1000である請求項6~8のいずれか一項に記載の有機発光素子。 The organic light emitting device according to any one of claims 6 to 8, wherein the formula weight of the structure having a charge transporting property represented by A is 240 to 1000.
  11.  前記一般式(3)中のX3およびX4が、一般式(3)におけるAとビニル基とを連結する最短鎖を構成する原子が10以上である置換基を有していてもよいアルキレン基(但し、該アルキレン基における1つまたは隣接しない2つ以上のメチレン基は-O-、-S-に置換されてよく、Aに結合していない1つまたは隣接しない2つ以上のメチレン基は-SO-、-SO2-、-CO-、-COO-、-N(RY)-、-CO-N(RY)-、アリーレン基に置換されていてもよく、RYは、水素原子、炭素数1~4のアルキル基、アリール基、またはアラルキル基を表わす。)である請求項6~8、10のいずれか一項に記載の有機発光素子。 X 3 and X 4 in the general formula (3) may have a substituent having 10 or more atoms constituting the shortest chain connecting A and the vinyl group in the general formula (3) A group (provided that one or two or more methylene groups in the alkylene group may be substituted with —O— or —S—, and one or two or more methylene groups not bonded to A) May be substituted with —SO—, —SO 2 —, —CO—, —COO—, —N (R Y ) —, —CO—N (R Y ) —, an arylene group, and R Y is The organic light-emitting device according to any one of claims 6 to 8, wherein the organic light-emitting device is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group.
  12.  前記第1の有機化合物層が電子受容体を、前記非架橋ポリマーおよび架橋ポリマーの合計100質量%に対して0.1~10質量%含む請求項1~11のいずれか一項に記載の有機発光素子。 The organic material according to any one of claims 1 to 11, wherein the first organic compound layer contains an electron acceptor in an amount of 0.1 to 10% by mass with respect to a total of 100% by mass of the non-crosslinked polymer and the crosslinked polymer. Light emitting element.
  13.  有機発光素子の製造に用いられる塗布溶液であって、
     非架橋ポリマーと、架橋ポリマーを形成し得る第1の重合性化合物と、溶媒とを含み、
     前記非架橋ポリマーが、電荷輸送性を有する構造を含む繰り返し単位を含み、前記第1の重合性化合物が、電荷輸送性を有する構造を含む化合物であり、
     前記非架橋ポリマーのイオン化ポテンシャルと、前記第1の重合性化合物を重合することにより形成される架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0.2eV以下である塗布溶液。
    A coating solution used for manufacturing an organic light emitting device,
    A non-crosslinked polymer, a first polymerizable compound capable of forming a crosslinked polymer, and a solvent,
    The non-crosslinked polymer includes a repeating unit including a structure having a charge transporting property, and the first polymerizable compound is a compound including a structure having a charge transporting property;
    A coating solution in which an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of a crosslinked polymer formed by polymerizing the first polymerizable compound is 0.2 eV or less.
  14.  第1の電極上に、非架橋ポリマーと、架橋ポリマーを形成し得る第1の重合性化合物と、溶媒とを含む溶液を塗布して塗膜を形成する工程と、
     前記塗膜内の前記第1の重合性化合物を重合させて、非架橋ポリマーおよび架橋ポリマーを含有する第1の有機化合物層を形成する工程と、前記第1の有機化合物層に隣接する第2の有機化合物層を塗布により形成する工程と、前記第2の有機化合物層上に第2の電極を形成する工程を有し、
     前記第1の重合性化合物が、電荷輸送性を有する構造を含む化合物であり、前記非架橋ポリマーと、前記架橋ポリマーとが、共に電荷輸送性を有する構造を含む繰り返し単位を含み、
     前記非架橋ポリマーのイオン化ポテンシャルと、前記架橋ポリマーのイオン化ポテンシャルとの差の絶対値が0.2eV以下である有機発光素子の製造方法。
    Applying a solution containing a non-crosslinked polymer, a first polymerizable compound capable of forming a crosslinked polymer, and a solvent on the first electrode to form a coating;
    Polymerizing the first polymerizable compound in the coating film to form a first organic compound layer containing a non-crosslinked polymer and a crosslinked polymer; and a second adjacent to the first organic compound layer. A step of forming the organic compound layer by coating, and a step of forming a second electrode on the second organic compound layer,
    The first polymerizable compound is a compound including a structure having charge transporting properties, and the non-crosslinked polymer and the crosslinked polymer each include a repeating unit including a structure having charge transporting properties;
    A method for manufacturing an organic light emitting device, wherein an absolute value of a difference between an ionization potential of the non-crosslinked polymer and an ionization potential of the crosslinked polymer is 0.2 eV or less.
  15.  請求項1~12のいずれか一項に記載の有機発光素子を備えた照明装置。 An illumination device comprising the organic light-emitting element according to any one of claims 1 to 12.
  16.  請求項1~12のいずれか一項に記載の有機発光素子を備えた表示装置。 A display device comprising the organic light-emitting device according to any one of claims 1 to 12.
PCT/JP2012/077044 2011-11-07 2012-10-19 Organic light emitting element, method for manufacturing same, and use of same WO2013069432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513469A JP5307954B1 (en) 2011-11-07 2012-10-19 Organic light emitting device, method for producing the same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011243714 2011-11-07
JP2011-243714 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013069432A1 true WO2013069432A1 (en) 2013-05-16

Family

ID=48289815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077044 WO2013069432A1 (en) 2011-11-07 2012-10-19 Organic light emitting element, method for manufacturing same, and use of same

Country Status (2)

Country Link
JP (2) JP5307954B1 (en)
WO (1) WO2013069432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069324A (en) * 2015-09-29 2017-04-06 日立化成株式会社 Organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, luminaire, and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179790A (en) * 2006-12-27 2008-08-07 Mitsubishi Chemicals Corp Organic compound having crosslinking group, material for organic electroluminescence element, composition for organic electroluminescence element and organic electroluminescence element
JP2008248241A (en) * 2007-03-07 2008-10-16 Mitsubishi Chemicals Corp Composition for organic device, polymer membrane and organic electroluminescent element
JP2010056547A (en) * 2008-07-31 2010-03-11 Mitsubishi Chemicals Corp Composition for organic electric-field light-emitting element, organic thin film, the organic electric-field light emitting-element, organic el display, and organic el illumination
JP2012015338A (en) * 2010-06-30 2012-01-19 Fujifilm Corp Material for organic electric field light emitting element, organic electric field light emitting element and method of manufacturing organic electric field light emitting element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033193A2 (en) * 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
JP2005093135A (en) * 2003-09-12 2005-04-07 Tdk Corp Organic el element and organic el display
JP4466290B2 (en) * 2004-09-02 2010-05-26 セイコーエプソン株式会社 Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP2006237442A (en) * 2005-02-28 2006-09-07 Seiko Epson Corp Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP2006245178A (en) * 2005-03-02 2006-09-14 Seiko Epson Corp Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP5546088B2 (en) * 2005-08-01 2014-07-09 コニカミノルタ株式会社 Organic electroluminescence device
KR20080074518A (en) * 2007-02-09 2008-08-13 엘지디스플레이 주식회사 Organic light emitting diode device and method of manufacturing the same
JP2010092940A (en) * 2008-10-03 2010-04-22 Idemitsu Kosan Co Ltd Organic electroluminescent element
DE102008054435A1 (en) * 2008-12-09 2010-06-10 Universität Zu Köln Organic light emitting diode with optical resonator and manufacturing method
IN2012DN03022A (en) * 2009-10-01 2015-07-31 Hitachi Chemical Co Ltd
EP2588526A2 (en) * 2010-07-02 2013-05-08 Plextronics, Inc. Hole transport compositions and related devices and methods (ii)
US20120049168A1 (en) * 2010-08-31 2012-03-01 Universal Display Corporation Cross-Linked Charge Transport Layer Containing an Additive Compound
JP2012111719A (en) * 2010-11-25 2012-06-14 Idemitsu Kosan Co Ltd Polymerizable monomer, material for organic device containing polymer thereof, hole injection and transporting material, material for organic electroluminescent element, and organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179790A (en) * 2006-12-27 2008-08-07 Mitsubishi Chemicals Corp Organic compound having crosslinking group, material for organic electroluminescence element, composition for organic electroluminescence element and organic electroluminescence element
JP2008248241A (en) * 2007-03-07 2008-10-16 Mitsubishi Chemicals Corp Composition for organic device, polymer membrane and organic electroluminescent element
JP2010056547A (en) * 2008-07-31 2010-03-11 Mitsubishi Chemicals Corp Composition for organic electric-field light-emitting element, organic thin film, the organic electric-field light emitting-element, organic el display, and organic el illumination
JP2012015338A (en) * 2010-06-30 2012-01-19 Fujifilm Corp Material for organic electric field light emitting element, organic electric field light emitting element and method of manufacturing organic electric field light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069324A (en) * 2015-09-29 2017-04-06 日立化成株式会社 Organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, luminaire, and display device

Also Published As

Publication number Publication date
JP2013229627A (en) 2013-11-07
JP5307954B1 (en) 2013-10-02
JPWO2013069432A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5293120B2 (en) Organic electroluminescence device and method for producing the same
JP3969152B2 (en) Organic light emitting device and light emitting material
JP5156019B2 (en) Organic light emitting device using triazine ring-containing polymer
JP5496084B2 (en) Charge transporting polymer compound and organic electroluminescence device using the same
JP2008525578A (en) Hole transport layer for organic electroluminescent devices
JP2005521783A (en) Hole transport polymer and devices made using such polymer
JP4883032B2 (en) Organic electroluminescent device and display medium
JP5856483B2 (en) Composition for anode buffer layer, polymer compound for anode buffer layer, organic electroluminescence device, method for producing the same, and use thereof
EP2059543B1 (en) Organic electroluminescence element and use thereof
JP2010062442A (en) Organic light emitting element
JP5342103B2 (en) Organic light emitting device
JP5247024B2 (en) Organic light emitting device
JP2012146811A (en) Organic electroluminescent element
JP5307954B1 (en) Organic light emitting device, method for producing the same and use thereof
JP2008066380A (en) Organic electroluminescence element and application of the same
JP5132227B2 (en) Organic electroluminescence device and use thereof
JP4518167B2 (en) Organic electroluminescent device and display medium
JP4916792B2 (en) Organic electroluminescence element and display device
JP2003313240A (en) Vinyl polymer and organic electroluminescent element made by using the same
JP2008028119A (en) Organic electroluminescence element, and application thereof
JP5466747B2 (en) High molecular compound
KR20120076863A (en) Polymer and organic electroluminescence display device using the same
JP2007131813A (en) Polymeric luminescent material, organic electroluminescent element, and display device
JP5342420B2 (en) Organic light emitting device and light emitting material
JP4611335B2 (en) Organic light emitting device and light emitting material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848602

Country of ref document: EP

Kind code of ref document: A1