WO2013069164A1 - Hho gas generation device - Google Patents

Hho gas generation device Download PDF

Info

Publication number
WO2013069164A1
WO2013069164A1 PCT/JP2011/076121 JP2011076121W WO2013069164A1 WO 2013069164 A1 WO2013069164 A1 WO 2013069164A1 JP 2011076121 W JP2011076121 W JP 2011076121W WO 2013069164 A1 WO2013069164 A1 WO 2013069164A1
Authority
WO
WIPO (PCT)
Prior art keywords
hho gas
gas generator
temperature
electrode
electrolyte
Prior art date
Application number
PCT/JP2011/076121
Other languages
French (fr)
Japanese (ja)
Inventor
寛治 細川
欣四郎 近藤
Original Assignee
Hosokawa Kanji
Kondo Kinshiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Kanji, Kondo Kinshiro filed Critical Hosokawa Kanji
Priority to PCT/JP2011/076121 priority Critical patent/WO2013069164A1/en
Publication of WO2013069164A1 publication Critical patent/WO2013069164A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an HHO gas generation device that generates HHO gas, a fuel supply device for an internal combustion engine, a combustion device, an electrolyte for the HHO gas generation device, and an HHO gas generation method.
  • a mixed gas of hydrogen and oxygen in which hydrogen and oxygen are mixed at a mixing ratio of 2 to 1 is being studied for use in various fields as pollution-free energy. In particular, it has attracted attention as a fuel for internal combustion engines such as automobile engines.
  • a mixed gas of hydrogen and oxygen is also called HHO gas or Brown gas.
  • HHO gas such a mixed gas is referred to as an HHO gas.
  • an HHO gas generator using plasma and an HHO gas generator using electrolysis are known.
  • an HHO gas generator using plasma is large in size and consumed. Since the electric power is extremely large, it is not suitable for use as a fuel generator for an internal combustion engine such as an automobile engine (hereinafter referred to as an automobile fuel generator). For this reason, an HHO gas generator using electrolysis is suitable for use as a fuel generator for automobiles.
  • Various HHO gas generators utilizing electrolysis have been conventionally proposed (for example, see Patent Document 1 and Non-Patent Document 1).
  • Patent Document 1 describes a HHO gas generator using electrolysis.
  • Non-Patent Document 1 describes an example in which an HHO gas generator utilizing electrolysis is incorporated in a vehicle and used as a fuel generator for a vehicle.
  • HHO gas generators utilizing electrolysis have been proposed, and it has been experimentally carried out that the HHO gas generator is mounted on a vehicle as a fuel generator for vehicles. It has not been put into practical use.
  • the reason why the HHO gas generator cannot be put into practical use as a fuel generator for automobiles is that various problems remain in using the HHO gas generator as a fuel generator for automobiles.
  • electrodes (anode plate and cathode plate) immersed in the electrolytic solution in the electrolytic bath are subject to deterioration due to electrolytic corrosion and become unusable in a short period of time, and control of the current flowing in the electrolytic solution is appropriate Therefore, there are many problems that need to be solved, such as the problem that an excessive current flows and the temperature rise of the electrolyte does not stop.
  • the HHO gas generator has not been put into practical use as a fuel generator for automobiles.
  • Such a problem is not a problem that exists only when the HHO gas generator is put into practical use as a fuel generator for automobiles, but the HHO gas generator is used to generate fuel for internal combustion engines such as vehicles other than automobiles and ships.
  • the HHO gas generator is used to generate fuel for internal combustion engines such as vehicles other than automobiles and ships.
  • a fuel generator for a combustion apparatus such as a household or commercial boiler, a thermal power plant, or a refuse incinerator.
  • the present invention has been made to solve the problems of the conventional HHO gas generator described above, and can be put to practical use as a fuel generator, a fuel supply device for an internal combustion engine, and a combustion device. And an HHO gas generating method for generating HHO gas, and an electrolyte for the HHO gas generating device for use in the HHO gas generating device.
  • the HHO gas generator includes an electrolytic cell for storing an electrolytic solution containing water as a main component, a plurality of sets of electrodes each having an electrolytic corrosion resistance and each composed of an anode and a cathode, and the electrolysis A sealing lid that seals the upper end opening of the tank, and the electrolytic solution is electrolyzed by passing an electric current between the anode and the cathode of each of the plurality of sets of electrodes by using a power supply device to generate HHO.
  • An electrolysis apparatus that generates gas and a current control apparatus that controls a current flowing between an anode and a cathode of each electrode to a predetermined current value for each electrode are provided.
  • the electrode has electric corrosion resistance. For this reason, according to the HHO gas generator of the present invention, it is possible to solve the problem of the conventional HHO gas generator, that is, "the problem that deterioration due to electric corrosion is severe and it cannot be used in a short period of time". it can.
  • the HHO gas generator of the present invention since the HHO gas generator of the present invention has a plurality of sets of electrodes, a large amount of HHO gas can be stably generated.
  • the current value of the current flowing through each electrode may be different for each electrode, thereby causing a problem that the temperature of the characteristic electrode rises abnormally.
  • the present invention includes a current control device that controls the current flowing between the anode and the cathode of each electrode to a predetermined current value for each electrode.
  • the current flowing between the anode and cathode in each electrode can be set to a predetermined current value for each case electrode, and the current flows between the anode and cathode in each electrode.
  • the current can be made uniform with an appropriate current value.
  • the HHO gas generator of the present invention will be put to practical use as a fuel generator for combustion engines such as internal combustion engines such as vehicles and ships, as well as household and commercial boilers, thermal power plants, and garbage incinerators. Is possible.
  • the current control device has a plurality of current control units corresponding to the electrodes, and the current control units of the plurality of current control units respectively correspond to the current control units. It is preferable to control the current flowing between the anode and the cathode of the electrode to the predetermined current value.
  • the current flowing between the anode plate and the cathode in each electrode can be set to a predetermined current value for each electrode.
  • the HHO gas generator of the present invention preferably further includes a temperature control device for controlling the temperature of the electrolytic solution so that the temperature of the electrolytic solution does not exceed a preset temperature.
  • thermocontrol device By providing such a temperature control device, it is possible to control the temperature of the electrolytic solution itself in addition to suppressing an abnormal increase in the temperature of the electrolytic solution due to current control. That is, in the HHO gas generator of the present invention, double measures are taken in order to prevent the temperature of the electrolyte from rising abnormally. Thus, according to the HHO gas generator of the present invention, it is possible to reliably prevent the temperature of the electrolyte from rising abnormally.
  • the temperature of the electrolytic solution can be detected by measuring the temperature of the electrolytic cell, “controlling the temperature of the electrolytic solution so that the temperature of the electrolytic solution does not exceed the set temperature” It also includes measuring the temperature of the electrolytic cell and performing temperature control using the measured temperature of the electrolytic cell as the temperature of the electrolytic solution.
  • the temperature control device turns off the energization of the electrodes when the temperature of the electrolytic solution rises to a first set temperature, and turns off the energization and turns off the energization. It is preferable to operate so that energization of each electrode is turned on when the temperature of the electrolytic solution drops to a second set temperature lower than the first set temperature.
  • the first set temperature is in a range of 65 ° C. to 75 ° C. and the second set temperature is in a range of 40 ° C. to 60 ° C.
  • the first set temperature is in the range of 65 ° C. to 75 ° C., it is possible to reliably prevent the temperature of the electrolytic solution from becoming higher than 65 ° C. to 75 ° C.
  • the second set temperature is set to 45 ° C. to 55 ° C., the current supply to each electrode can be restored if the temperature drops slightly after the power supply to each electrode is cut off. It will be possible to resume as soon as possible.
  • a reference temperature is set for the temperature of the electrolytic solution, and an allowable range for the reference temperature is set.
  • the temperature control device is configured such that the temperature of the electrolytic solution is the allowable temperature. It is preferable to operate so as to control the current value so as to be held in a range.
  • the anode has an iridium film formed on a titanium material by a coating method, a plating method or a welding method.
  • an electrode having excellent electric corrosion resistance can be obtained by configuring the anode as described above. Thereby, it can suppress that an anode deteriorates by electric corrosion, and it can be set as the electrode which can endure long-term use. Thereby, the durability of the HHO gas generator of the present invention can be improved. According to the experiments conducted by the inventors of the present invention, good results can be obtained even when the anode is formed by applying a carbon film on a titanium material by a coating method, a plating method or a welding method. It could be confirmed.
  • the cathode has a platinum film formed on a titanium material by a coating method, a plating method or a welding method.
  • the anode and the cathode of each electrode are composed of one anode plate and two cathode plates, and the one anode plate and the two plates
  • the cathode plate is arranged so that the two cathode plates are opposed to the anode plate at a predetermined interval with respect to the one anode plate with the one anode plate as a center. preferable.
  • ⁇ Efficient electrolysis can be achieved with a simple configuration by configuring the anode and cathode of each electrode in this way.
  • the predetermined current value is within a range of 0.007 ampere to 0.06 ampere per 1 cm 2 with respect to the area of the cathode plate facing the anode plate. Preferably there is.
  • the current flowing between the anode plate and the cathode plate in each electrode varies somewhat depending on the material of the electrode, etc., but is 0.007 ampere to 0.005 ampere per cm 2 with respect to the area of the cathode plate facing the anode plate. It is preferable to use 06 amperes.
  • 0.007 ampere to 0.06 ampere per 1 cm 2 means that, for example, each of the anode plate and the cathode plate in each electrode has a size of 12 cm ⁇ 12 cm, and one anode plate is 2
  • the area of the cathode plate facing the anode plate is 288 cm 2, and therefore, between the anode plate and the cathode plate in the electrode. It is preferable to set the current to flow within a range of about 2 amperes to about 18 amperes.
  • the electrolytic cell is provided with a partition plate between two adjacent electrodes of the plurality of sets of electrodes, and the partition plate has a lower end side which is It is preferable to be installed in a state of being in close contact with the bottom surface of the electrolytic cell and having a side edge in close contact with the side surface of the electrolytic cell.
  • each electrode is present in each partition room for each individual electrode. Even when tilted, since a certain amount of electrolyte is held in each partition room, it is possible to prevent a problem that a specific electrode is exposed from the electrolyte.
  • the height of the partition plate is such that the upper end side of the partition plate is higher than the upper end side of the electrode. It is preferable that the upper end side has a notch that allows the electrolyte solution to flow to the adjacent electrode side, and has a height that allows the position to be at or above the appropriate level.
  • the upper end side is formed with a notch that allows the electrolyte solution to flow to the adjacent electrode side, so that the electrolyte solution is injected to an appropriate level of the electrolyte solution storage amount, In the case where the electrolytic cell is horizontal, the level of the electrolytic solution can be adjusted to an appropriate level throughout the electrolytic cell.
  • the HHO gas generator of the present invention preferably further includes an electrolyte replenishment mechanism that can automatically replenish the electrolyte when the electrolyte stored in the electrolytic cell decreases.
  • a fuel supply device for an internal combustion engine of the present invention is a fuel supply device for an internal combustion engine comprising the HHO gas generation device according to any one of [1] to [13], wherein the HHO gas generation device Is used as an auxiliary fuel generating device for the internal combustion engine, and is configured to supply HHO gas generated from the electrolyzer to a fuel intake port of the internal combustion engine.
  • the auxiliary fuel generating device for the internal combustion engine includes the HHO gas generating device according to any one of [1] to [13], the fuel consumption of the internal combustion engine can be improved and harmful. Exhaust gas emissions can be reduced.
  • the HHO gas may be supplied to the fuel intake port of the internal combustion engine so as to be mixed at a ratio of 1/500 to 1 / 50,000 with respect to the air. preferable.
  • the internal combustion engine can be operated with higher combustion efficiency, thereby improving fuel efficiency and reducing harmful exhaust gas emissions.
  • the internal combustion engine is preferably a vehicle engine.
  • the HHO gas generator according to any one of [1] to [13] is used as an auxiliary fuel generator for a vehicle engine
  • the HHO gas generated from the HHO gas generator is supplied to the engine.
  • the fuel intake for example, an intake manifold
  • the HHO gas is combusted with fuel such as atomized gasoline in the engine.
  • the fuel efficiency can be improved and the amount of harmful exhaust gas discharged can be reduced.
  • the power supply device is preferably a storage battery mounted on the vehicle.
  • the storage battery (battery) originally mounted on a vehicle such as an automobile can be used as the power supply device of the HHO gas generation device of the present invention, a power supply device dedicated to the HHO gas generation device becomes unnecessary, and the HHO When the gas generator is mounted on an automobile, it can be mounted at low cost, and the installation space can be kept small.
  • a combustion apparatus of the present invention includes a combustion apparatus main body and the HHO gas generator according to any one of [1] to [13].
  • the combustion apparatus By providing the combustion apparatus with the HHO gas generator according to any one of [1] to [13], fuel can be burned with high combustion efficiency, and harmful substances contained in the exhaust gas can be greatly reduced. In addition, combustion noise can be suppressed.
  • the combustion apparatus includes an internal combustion engine of an automobile, an internal combustion engine of a vehicle other than an automobile, a ship, and the like, and further, a household or commercial boiler, a thermal power plant, a garbage incinerator, and the like.
  • An electrolyte for an HHO gas generator according to the present invention is an electrolyte for an HHO gas generator for use in the HHO gas generator according to any one of [1] to [13],
  • the electrolytic solution is a sodium carbonate aqueous solution in which sodium carbonate is dissolved in water or a sodium hydrogen carbonate aqueous solution in which sodium bicarbonate is dissolved in water, and the sodium carbonate aqueous solution or sodium hydrogen carbonate aqueous solution is sodium carbonate or sodium hydrogen carbonate with respect to water.
  • the weight ratio is in the range of 0.1% to 20%.
  • an electrolytic solution composed of such components as an electrolytic solution in the HHO gas generator of the present invention, electrolysis can be promoted, and HHO gas can be generated efficiently and stably. Can do.
  • electrolysis can be promoted, and HHO gas can be generated efficiently and stably.
  • the electrolytic solution for the HHO gas generator of the present invention it is preferable that the electrolytic solution has the carbonic acid content removed by heating the aqueous sodium carbonate solution or the aqueous sodium hydrogen carbonate solution.
  • carbonic acid may contaminate the electrodes (anode and cathode) and adversely affect the electrodes.
  • the removal of carbonic acid can be realized by heating the electrolytic solution.
  • the HHO gas generation method of the present invention is the HHO gas generation method in the HHO gas generation device according to any one of [1] to [13], wherein the weight ratio of sodium carbonate or sodium hydrogen carbonate to water is A step of injecting an aqueous sodium carbonate solution or an aqueous sodium hydrogen carbonate solution in the range of 0.1% to 20% into the electrolytic cell as the electrolytic solution, and flowing between the anode and the cathode of each electrode by the current control device While controlling the current to a predetermined current value for each electrode, by passing a current having the predetermined current value between the anode and the cathode in each electrode, the electrolyte is electrolyzed to generate HHO gas. And a process.
  • a large amount of HHO gas can be stably generated by carrying out such a process.
  • FIG. 1 It is a figure which shows the structure of the HHO gas generator 10 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the internal structure of the electrolyzer 100 used for the HHO gas generator 10 which concerns on Embodiment 1.
  • FIG. It is a figure which takes out and shows a set of electrodes (anode and cathode). It is shown in order to explain the partition plate 180A. It is a figure shown in order to demonstrate the case where the electrolytic vessel 110 inclines.
  • 3 is a flowchart for explaining the HHO gas generation method according to the first embodiment. It is a figure shown in order to demonstrate the fuel supply apparatus 500 for internal combustion engines provided with the HHO gas generator 10 which concerns on Embodiment 1.
  • FIG. 20 It is a figure for demonstrating the HHO gas generator 20 which concerns on Embodiment 2.
  • FIG. 30 It is a figure for demonstrating the HHO gas generator 30 which concerns on Embodiment 3.
  • FIG. It is a figure shown in order to demonstrate the modification of the notch part formed in a partition plate.
  • FIG. 1 is a diagram illustrating a configuration of an HHO gas generation device 10 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an internal configuration of an electrolysis device 100 used in the HHO gas generation device 10 according to the first embodiment.
  • . 2 is a cross-sectional view taken along line yy in FIG.
  • FIG. 3 is a diagram showing a set of electrodes taken out.
  • FIG. 4 is a view for explaining the partition plate 180A.
  • FIG. 5 is a view for explaining the case where the electrolytic cell 110 is tilted. 2 to 5, the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the HHO gas generator 10 is configured so that the current flowing between the electrolysis device 100 and the anode and the cathode in each electrode of the electrolysis device 100 has a predetermined current value.
  • a current control device 200 that controls the power supply, and a power supply device 300 as a DC power supply.
  • the anode of each electrode is connected to the positive (+) side terminal of the power source (each current control unit 210, 220, 230 in the current control device in the HHO gas generator 10 according to Embodiment 1).
  • the cathode is an electrode connected to the negative ( ⁇ ) terminal of the power source.
  • the electrolysis apparatus 100 has an external configuration of an electrolytic cell 110 that stores an electrolytic solution 101 (see FIG. 2) containing water (pure water) as a main component, and a sealing lid that seals the upper end opening of the electrolytic cell 110. 120 and an anode side electrode terminal 161a for supplying power to each of a plurality of sets (three sets) of electrodes 130, 140, and 150 (see FIG. 2) each of which includes an anode and a cathode.
  • an electrolyte solution supply port 171 when supplying the electrolyte solution 101 into the electrolytic cell 110 a cap 171a for opening and closing the electrolyte solution supply port 171, A pressure adjusting unit 172 that adjusts the pressure in the electrolytic cell 110 in response to a change in atmospheric pressure due to a difference in altitude and the like, and a HHO gas discharge nozzle that discharges HHO gas generated by electrolysis And a 73.
  • the anode side electrode terminals 161a, 162a, 163a, the cathode side electrode terminals 161b, 162b, 163b, the electrolyte solution supply port 171, the pressure adjusting unit 172, and the HHO gas discharge nozzle 173 are provided on the upper surface of the sealing lid 120, respectively. Yes.
  • the electrolytic cell 110 is made of transparent or translucent reinforced synthetic resin.
  • the sealing lid 120 is made of a synthetic resin that is transparent or translucent and lower in strength than the electrolytic cell 110.
  • the reason why the sealing lid 120 is made of a synthetic resin that is lower in strength than the electrolytic cell 110 is that the internal pressure of the electrolytic cell 110 becomes abnormally high for some reason and the electrolytic cell 110 bursts. This is because, when the case is assumed, if only the sealing lid 120 that is lower in strength than the electrolytic cell 110 is destroyed, the loss due to the destruction can be reduced.
  • the entire electrolytic cell 110 including the sealing lid 120 is made of a reinforced synthetic resin, there is a risk that the rupture force will not escape and the destructive force may be increased, but the sealing lid 120 is stronger than the electrolytic cell 110. If the synthetic resin is extremely low, it is only necessary to break the sealing lid 120, and the loss due to breakage can be kept small.
  • the electrolytic cell 110 and the sealing lid 120 are transparent or translucent.
  • the electrolytic cell 110 and the sealing lid 120 may be transparent or translucent so that the storage amount of the electrolytic solution 101 can be easily confirmed from the outside. More preferred.
  • the pressure adjusting unit 172 adjusts the pressure in the electrolytic cell 110 in response to changes in atmospheric pressure, and maintains the pressure in the electrolytic cell 110 at an appropriate pressure. For example, in a place where the altitude is high and the atmospheric pressure is low, it operates so as to release the pressure in the electrolytic cell 110. Further, not only the difference in altitude, but also when the pressure in the electrolytic cell 110 becomes high for some reason, it operates so as to release the pressure in the electrolytic cell 110. Thereby, the pressure in the electrolytic cell 110 can be maintained at an appropriate pressure.
  • the current control device 200 includes three current control units 210, 220, and 230 corresponding to the electrodes 130, 140, and 150, respectively.
  • the positive (+) side terminal of the current control unit 210 is connected to the anode electrode terminal 161 a provided in the electrolysis apparatus 100, and the negative ( ⁇ ) side terminal of the current control unit 210 is provided in the electrolysis apparatus 100. Connected to the negative electrode terminal 161b.
  • the positive (+) side terminal of the current control unit 220 is connected to the anode side electrode terminal 162 a provided in the electrolysis apparatus 100, and the negative ( ⁇ ) side terminal of the current control unit 220 is provided in the electrolysis apparatus 100. Connected to the negative electrode terminal 162b.
  • the positive (+) side terminal of the current control unit 230 is connected to the anode side electrode terminal 163 a provided in the electrolysis apparatus 100, and the negative ( ⁇ ) side terminal of the current control unit 230 is provided in the electrolysis apparatus 100. Connected to the negative electrode terminal 163b.
  • the current control units 210, 220, and 230 are shown as if they were individually provided, but the current control units 210, 220, and 230 are included in one case. It may be incorporated as a circuit configuration. Details of the electrodes 130, 140, 150 and the current control units 210, 220, 230 will be described later.
  • the electrolysis apparatus 100 includes electrodes 130, 140, 150 and partition plates 180 ⁇ / b> A, 180 ⁇ / b> B that partition between two adjacent electrodes among the electrodes 130, 140, 150. ing.
  • the anodes and cathodes in the electrodes 130, 140, and 150 are composed of one anode plate and two cathode plates.
  • One anode plate and two cathode plates are centered on one anode plate.
  • the two cathode plates are arranged so as to face the anode plate at a predetermined interval with respect to the one anode plate.
  • the electrode 130 is composed of one anode plate 131 and two cathode plates 132 disposed so as to sandwich the anode plate 131. 133. Further, as shown in FIG. 2, the lower end side of the anode plate 131 and the lower end side of the cathode plates 132 and 133 are supported in a state in which movement is restricted by an electrode support member 134 made of an insulating member such as a synthetic resin. Has been.
  • the electrode support member 134 has a convex portion 134 a formed on the lower end side thereof, and the movement of the convex portion 134 a is restricted by positioning protrusions 110 a and 110 b provided on the inner bottom surface of the electrolytic cell 110. Due to such a configuration, the anode plate 131 and the cathode plates 132 and 133 are held at appropriate positions in the electrolytic cell 110 while maintaining a proper interval between the electrodes.
  • the electrodes 140 and 150 have the same configuration as the electrode 130. In FIG. 2, the reference numerals of the constituent elements are omitted from the electrodes 140 and 150.
  • the electrodes 130, 140, and 150 will be described in more detail. Since the electrodes 130, 140, and 150 have the same configuration, the electrode 130 will be described in detail here with reference to FIG.
  • the electrode 130 has electric corrosion resistance.
  • the anode plate 131 uses a titanium material as a base material, and an iridium film is formed on the titanium material by a coating method, a plating method, or a welding method.
  • the cathode plates 132 and 133 also use titanium as a base material, and a platinum film is formed on the titanium material by a coating method, a plating method, or a welding method.
  • anode plate 131 and the cathode plates 132 and 133 are configured as described above, an electrode having excellent electric corrosion resistance can be obtained. Thereby, it can suppress that the anode plate 131 and the cathode plates 132 and 133 deteriorate by electric corrosion, and it can be set as the electrode which can endure long-term use.
  • the anode plate 131 and the cathode plates 132 and 133 are arranged such that the two cathode plates 132 and 133 are spaced apart from the anode plate 131 by a certain distance from the anode plate 131. It is arranged to face 131 in parallel.
  • the distance d between the cathode plates 132 and 133 and the anode plate 131 is in the range of 0.2 mm to 15 mm in the embodiment, but is preferably as narrow as possible.
  • the anode plate 131 has an anode plate hanging bracket 135 attached to the upper end thereof, and is electrically connected to the anode side electrode terminal 161a via the anode plate hanging bracket 135. .
  • the two cathode plates 132 and 133 have cathode plate hanging brackets 136 and 137 attached to their upper ends, and the cathode plates are suspended via these cathode plate hanging brackets 136 and 137, respectively.
  • the side electrode terminal 161b is electrically connected.
  • the cathode plate hanging metal fittings 136 and 137 are electrically connected to the cathode side electrode terminal 161b in a state where they are gathered together.
  • the partition plates 180A and 180B are formed of a plate-like member made of synthetic resin or the like, and partition between two adjacent electrodes among the electrodes 130, 140, and 150, as shown in FIG.
  • partition plates 180A and 180B By providing such partition plates 180A and 180B, three partition chambers R1, R2, and R3 are formed inside the electrolytic cell 110 (see FIG. 2), and the electrode 130 exists in the partition chamber R1.
  • the electrode 140 exists in the partition room R2, and the electrode 150 exists in the partition room R3.
  • partition plates 180A and 180B will be described in more detail with reference to FIG. Since the partition plates 180A and 180B have the same configuration, the partition plate 180A will be described as an example here.
  • the partition plate 180 ⁇ / b> A is installed in the electrolytic cell 110 with a lower end side 184 in close contact with the inner bottom surface of the electrolytic cell 110 and side end sides 182 and 183 in close contact with the internal side surface of the electrolytic cell 110. Further, in the partition plate 180A, notches 185 and 186 are formed on the upper end side 181 of the partition plate 180A so that the electrolytes present in the partition rooms R1, R2, and R3 can flow through each other. In the HHO gas generator 10 according to the first embodiment, notches 185 and 186 are formed at two corners formed by the upper end side 181 and the side end sides 182 and 183, respectively.
  • the notches 185 and 186 are formed by cutting the partition plate 180A by a predetermined length in the horizontal direction (direction along the y axis) and the vertical direction (direction along the z axis). Yes, the edges of the notches 185 and 186 after cutting are L-shaped.
  • the dimension from the lower end side 184 to the upper end side 181 of the partition plate 180A (referred to as the height h1 of the partition plate) is such that when the partition plate 180A is installed in the electrolytic cell 110, the upper end side 181 of the partition plate 180A. It is preferable to set the height so as to be at a level that is the same as or slightly higher than the appropriate level L1 (see FIG. 2) of the storage amount of the electrolytic solution 101.
  • the height h2 from the lower end side 184 of the partition plate 180A to the lower end portion P1 of the notches 185 and 186 is such that the lower end portion P1 of the notches 185 and 186 is when the partition plate 180A is installed in the electrolytic cell. It is preferable to set the height so as to be slightly below the appropriate level L1 of the storage amount of the electrolytic solution 101.
  • the cutout portions 185 and 186 are formed in the same manner on the partition plate 180B and the partition plate 180A. If the partition plates 180A and 180B have such cutout portions 185 and 186, the amount of the electrolyte 101 stored in the electrolytic cell 110 is equal to or higher than the lower end portion P1 of the cutout portions 185 and 186, When the electrolytic cell 110 is horizontal, the electrolytic solution 101 in each of the partition rooms R1, R2, and R3 can be all leveled at the same level. Further, even when the electrolytic cell 110 is slightly inclined, the electrolytic solution 101 is leveled for each of the partition rooms R1, R2, and R3, and a problem that a specific electrode is exposed from the liquid surface of the electrolytic solution 101 is prevented. be able to.
  • the electrolytic solution in the partition room R1 flows to the partition rooms R2 and R3, and the electrolytic solution in the partition room R2 is also partitioned.
  • the electrolytic solution 101 in the partition chambers R1, R2, and R3 flows through the partition plates 180A and 180B. Be blocked.
  • the reference numerals of the constituent elements are not shown in some cases.
  • the HHO gas generation device 10 Assuming that the HHO gas generation device 10 according to the first embodiment is mounted on an automobile, the automobile hardly tilts so much in a normal traveling state, and thus such partition plates 180A and 180B are provided. Accordingly, it is possible to prevent a problem that the upper end portion of the specific electrode is exposed from the electrolytic solution 101.
  • the electrolytic cells existing in the partition rooms R1, R2, and R3 in the electrolytic cell 110 are present. Since the liquid 101 circulates between the partition chambers R1, R2, and R3 due to the presence of the cutout portions 215 and 216, it is possible to eliminate the uneven storage amount of the electrolyte solution 101 in each of the partition chambers R1, R2, and R3.
  • partition plates 180A and 180B By providing such partition plates 180A and 180B, even if the electrolytic cell 110 is slightly inclined, the electrolyte solution 101 in the partition chambers R1, R2, and R3 can maintain a certain amount for each partition chamber. It is possible to prevent the upper end portion of the electrode from being exposed from the electrolytic solution 101.
  • the partition plates 180A When the HHO gas generator according to the first embodiment is mounted on an automobile, the automobile is inevitably tilted somewhat during traveling, and therefore the partition plates 180A. It is effective to provide 180B.
  • the electrolytic solution 101 has water (distilled water) as a main component.
  • a sodium carbonate aqueous solution or water in which a predetermined amount of sodium carbonate is dissolved in water (distilled water)) or water ( An aqueous sodium hydrogen carbonate solution in which a predetermined amount of sodium hydrogen carbonate is dissolved in distilled water) is used.
  • the weight ratio of sodium carbonate or sodium bicarbonate to water is preferably set to about 0.1% to 20%, more preferably about 5%.
  • Electrolysis can be accelerated
  • sodium carbonate or sodium bicarbonate is advantageous in that it is inexpensive and highly safe and easily available.
  • the electrolytic solution 101 is stored in the electrolytic cell 110 in a state where the carbonic acid content is removed. This is because if carbonic acid is present, the carbonic acid may contaminate the electrodes 130.140 and 150 and adversely affect the electrodes.
  • the state in which the carbonic acid content is removed can be obtained by heating a sodium carbonate aqueous solution or a sodium hydrogen carbonate aqueous solution, respectively.
  • the HHO gas generator 10 according to Embodiment 1 can be used in a cold region, it is preferable to mix a predetermined amount of, for example, ethylene glycol or the like as an antifreezing agent into the electrolytic solution 101.
  • the amount of the antifreezing agent is appropriately set according to the minimum temperature in each region.
  • the current control units 210, 220, and 230 will be described. As shown in FIG. 1, the current control units 210, 220, and 230 are provided corresponding to the electrodes 130, 140, and 150.
  • the power supply device 300 for example, an automobile storage battery (12 volts or 24 The electric power from each of the electrodes 130, 140, and 150 is controlled so that the current flowing between the anode plate and the cathode plate becomes a predetermined current value for each electrode.
  • the current flowing between the anode plate and the cathode plate in each of the electrodes 130, 140, and 150 is set to an optimal current value as appropriate according to the material and area of the electrode.
  • the electrodes 130, 140, and 150 are used. It is preferable to set within a range of 0.007 ampere to 0.06 ampere per 1 cm 2 with respect to the area of the cathode plate facing the anode plate, and set to about 0.02 ampere to 0.03 ampere per 1 cm 2. Then, a better result is obtained.
  • the current flowing between the anode and the cathode in each electrode 130, 140, 150 is preferably in the range of about 2.0 amperes to about 18 amperes, more preferably about 5 amperes to It is about 9 amps.
  • the electrolysis when the current is less than 2 amperes, the electrolysis is insufficient, and when the current exceeds 18 amperes, the electrolysis becomes excessive and the temperature of the electrolyte solution may become too high. It was confirmed that there was. In addition, if the area of an electrode is enlarged, a bigger electric current can be sent.
  • the above current value is an example, and the optimum value varies somewhat depending on the electrode material, etc., but the current value should generally be set in the above range (about 2 amperes to about 18 amperes). Is preferred.
  • the current control units 210, 220, and 230 perform control such that the current flowing between the anode plate and the cathode plate in the corresponding electrode is set to the above-described current value. Voltage control is also performed on (for example, 12 volts or 24 volts), and in this case, the voltage output from each current control unit 210, 220, 230 is controlled to be 2 to 4 volts.
  • the current control units 210, 220, and 230 can be said to be power sources for each electrode that are provided corresponding to the electrodes 130, 140, and 150. . For this reason, even if the entire power supply device 300 is a storage battery for automobiles (12 volts or 24 volts), for each electrode, a voltage value of about 2 to 4 volts for each electrode is about 6 amps. Current can flow.
  • the HHO gas generator 10 includes such current control units 210, 220, and 230, the current that flows between the anode plate and the cathode plate in each electrode 130, 140, and 150 is made uniform. Can do. Since the current flowing between the anode plate and the cathode plate in each electrode 130, 140, 150 can be made uniform, the heat generated in each electrode 130, 140, 150 can be made uniform, and the heat between the electrodes can be made. Can be reduced.
  • a storage battery of an automobile is a power supply device
  • a plurality of (in this case, three) electrodes 130, 140, 150 are connected in parallel to the power supply device, and three electrodes 130, 140, 150 are connected from the power supply device. If the current is applied to 150, current deviation occurs in the three electrodes, thereby causing a deviation in the magnitude of heat generation in each electrode, resulting in locally high heat. Inconvenience will occur.
  • a predetermined current value for example, 6 amperes
  • a predetermined current value for example, 6 amperes
  • FIG. 6 is a flowchart for explaining the HHO gas generation method according to the first embodiment.
  • FIG. 6 shows a process until HHO gas is generated.
  • each step of the HHO gas generation method according to Embodiment 1 includes a sodium carbonate aqueous solution or hydrogen carbonate in which the weight ratio of sodium carbonate or sodium hydrogen carbonate to water is in the range of 0.1% to 20%.
  • a step S2) of generating an HHO gas by electrolyzing the electrolytic solution 101 by passing an electric current between the anode plate and the cathode plate of the electrodes 130, 140, 150 is performed in this order.
  • FIG. 7 is a view for explaining a fuel supply device 500 for an internal combustion engine including the HHO gas generation device 10 according to the first embodiment. It is assumed that the internal combustion engine is an automobile engine. In FIG. 7, among the components of the HHO gas generator 10, the current control units 210, 220, 230 and the power supply device 300 are not shown, and only the electrolyzer 100 is shown. Further, the electrolysis apparatus 100 shown in FIG. 7 is a view of the electrolysis apparatus 100 in FIG. 1 as viewed in the direction of the arrow a. In FIG. 7, the same components as those in FIG. ing. Further, illustration of electrodes and the like provided in the electrolytic cell 110 is also omitted.
  • the fuel supply device 500 for an internal combustion engine includes an air cleaner 510 originally present in a general automobile, a carburetor or an electronically controlled fuel injection device (herein described as a carburetor 520), and In addition to the intake manifold 530, the HHO gas generator 10 is incorporated.
  • the carburetor 520 atomizes the fuel (referred to as gasoline) and generates fuel (hereinafter referred to as air-mixed atomized gasoline) in which air is mixed with the atomized gasoline at a predetermined mixing ratio.
  • the air-mixed atomized gasoline is supplied to the intake manifold 530.
  • the intake manifold 530 distributes the air-mixed atomized gasoline supplied from the carburetor 520 to each combustion chamber (not shown) of the engine.
  • the HHO gas discharge nozzle 173 provided in the electrolyzer 100 is connected to an intake manifold 530 as a fuel intake port of an engine by an HHO gas supply pipe 540.
  • the generated HHO gas is supplied to the intake manifold 530.
  • the HHO gas is mixed with the air-mixed atomized gasoline supplied from the carburetor 520, and the HHO gas is mixed with the air.
  • Mixed atomized gasoline is distributed to each combustion chamber of the engine by the intake manifold.
  • a switch (not shown) for starting the HHO gas generation device 10 is interlocked with an ignition switch (not shown) of the automobile.
  • the HHO gas generator 10 is also started, and each electrode 130 of the electrolysis apparatus 100 is started from each current control unit 210, 220, 230 (see FIG. 1). , 140, 150 (see FIG. 2), and electrolysis occurs in the electrolysis apparatus 100. That is, while the engine is operating, electrolysis occurs in the electrolyzer 100 to generate HHO gas, and the generated HHO gas is supplied from the HHO gas discharge nozzle 173 to the intake manifold 530. ing.
  • the volume of HHO gas is mixed with respect to the volume of air taken into the carburetor 520 at a ratio of 1/500 to 1 / 50,000.
  • the volume of the HHO gas is mixed at a ratio of 1/20000 to 1/40000 with respect to air.
  • the HHO gas generated by the HHO gas generator 10 is supplied from the HHO gas discharge nozzle 173 to the intake manifold 530 through the HHO gas supply pipe 540.
  • this can be realized by providing an HHO gas supply amount control device such as a supply control valve.
  • the ignition timing of the engine is slightly earlier than usual. This is because if HHO gas with high combustion energy is mixed in atomized gasoline, the engine will operate more efficiently if it is ignited slightly earlier than the normal ignition timing. Because it can be created.
  • the HHO gas generator 10 is installed in the automobile not equipped with the fuel supply device 500 for the internal combustion engine, that is, the fuel supply device for the internal combustion engine. It has been found that there are various advantages compared to a car that does not have one. This will be described below.
  • an automobile with a displacement of 1300 cc (referred to as a first measurement vehicle) and an 1800 cc automobile (referred to as a second measurement vehicle) in a certain automobile manufacturer (referred to as company A) and another automobile manufacturer (referred to as company A).
  • company A an automobile manufacturer
  • company A another automobile manufacturer
  • the three automobiles (first to third measurement vehicles) used in this experiment are automobiles equipped with a gasoline engine (referred to as gasoline cars).
  • gasoline cars an automobile provided with the HHO gas generator 10 in the fuel supply device for the internal combustion engine
  • a vehicle not equipped with the HHO gas generator an automobile provided with the HHO gas generator 10 in the fuel supply device for the internal combustion engine
  • the HHO gas generator 10 will be used as the fuel supply device for the internal combustion engine.
  • An automobile equipped with the “HHO gas generator mounted automobile” will be described. In the case of “a vehicle equipped with a HHO gas generator”, it is natural that the HHO gas is supplied to the engine.
  • the average fuel consumption is “11.1 km per liter of gasoline. "Met.
  • the average fuel consumption when running on urban areas and traveling long distances (cumulative total of 300 km or more) with the “HHO gas generator-equipped vehicle” using the first measurement vehicle is 1 liter of gasoline. It was “18.8 km”.
  • the fuel consumption of the “vehicle equipped with the HHO gas generator” was improved by approximately 69% compared to the case of the “vehicle not equipped with the HHO gas generator”.
  • the average fuel consumption is “11. 7 km ".
  • the average fuel consumption when running in urban areas and traveling long distances (cumulative total of 200 km or more) with a “HHO gas generator-equipped vehicle” using the second vehicle for measurement is 1 liter of gasoline. It was “17.8 km”.
  • the fuel consumption of the “vehicle with the HHO gas generator” improved by approximately 52% compared to the case of the “vehicle with no HHO gas generator”.
  • the third vehicle for measurement is used for “urban vehicle and long-distance driving with a vehicle not equipped with an HHO gas generator” (total of 200 km or more)
  • the average fuel consumption is “12.5 km per liter of gasoline.
  • Metal the average fuel consumption when running on an urban area and traveling long distances (cumulative total of 300 km or more) with a “HHO gas generator-equipped vehicle” using a third measurement vehicle is 1 liter of gasoline. It was “19.3 km”.
  • the fuel consumption of the “vehicle with the HHO gas generator” was improved by about 54% compared to the case of the “vehicle with no HHO gas generator”.
  • the harmful substances contained in the exhaust gas can be greatly reduced by mixing the HHO gas with high combustion performance so that the gasoline is completely combusted. It is thought that it is because it burns in a close state.
  • the electrolytic solution 101 stored in the electrolytic cell 110 gradually decreases, but in the initial state, the amount of the electrolytic solution 101 in the electrolytic cell 110 is satisfied to the appropriate level L1. In this state, it was confirmed by experiments that a typical automobile can travel about 1000 km.
  • the cap 171a of the electrolytic solution supply port 171 may be opened to replenish a predetermined amount from the electrolytic solution supply port 171.
  • FIG. 8 is a diagram for explaining the HHO gas generator 20 according to the second embodiment.
  • FIG. 8 corresponds to FIG. Note that FIG. 8 differs from FIG. 1 only in that it has a temperature control device 600, and the other components are the same as those in FIG. Yes.
  • the temperature control device 600 used in the HHO gas generator 20 according to Embodiment 2 is turned off when the temperature of the electrolytic solution reaches the first set temperature, and then the second temperature of the electrolytic solution is lower than the first set temperature.
  • a temperature detection switch for example, a thermostat
  • the temperature control device 600 is also referred to as a temperature detection switch 600.
  • the temperature detection switch 600 measures the temperature of the electrolytic cell 110 and is turned on / off based on the measured temperature. As described above, in the HHO gas generator 20 according to the second embodiment, the temperature of the electrolytic cell 110 is measured and the on / off operation is performed based on the measured electrolytic cell temperature. Since this depends on the temperature of the electrolytic solution 101, hereinafter, “temperature of the electrolytic cell” is expressed as “temperature of the electrolytic solution”.
  • the temperature detection switch 600 is wired so as to be interposed between the positive ⁇ +> side terminal of the power supply device 300 and the positive (+) side terminal of each current control unit 210, 220, 230. Has been. Since the temperature detection switch 600 is wired in this way, when the temperature of the electrolyte 101 rises to the first set temperature and the temperature detection switch 600 is turned off, the current control units 210, 220, and 230 are energized. After that, when the temperature of the electrolyte 101 falls to a second set temperature lower than the first set temperature and the temperature detection switch 600 is turned on, the power supply to the current control units 210, 220, and 230 is turned on. To do.
  • the first set temperature is preferably in the range of 65 ° C. to 75 ° C., and in the HHO gas generator 20 according to Embodiment 2, the first set temperature is 70 ° C.
  • the second set temperature is preferably in the range of 45 ° C to 60 ° C.
  • the second set temperature is preferably as high as possible in the range of 45 ° C. to 60 ° C. This is because after the temperature of the electrolyte solution 101 becomes the first set temperature and the energization is turned off, the energization is turned back on as soon as possible to restart the electrolysis.
  • the HHO gas generator 20 according to the second embodiment is similar to the HHO gas generator 10 according to the first embodiment, and the anode plate in each electrode 130, 140, 140 is controlled by current control by the current control units 210, 220, 230.
  • the current flowing between the cathode plate can be made uniform and the temperature of the electrolytic solution 101 can be suppressed to an appropriate temperature.
  • the temperature of the electrolytic solution 101 for some reason. Can be reliably prevented from rising abnormally. That is, in the HHO gas generator 20 according to the second embodiment, double measures are taken to prevent the temperature of the electrolyte solution 101 from rising abnormally.
  • the temperature detection switch 600 measures the temperature of the electrolytic bath 110. However, if the temperature of the electrolytic solution 101 can be directly measured, the temperature detection switch 600 is immersed in the electrolytic solution 101 and the temperature of the electrolytic solution 101 is reduced. The temperature may be measured directly.
  • the HHO gas generator 20 according to the second embodiment is similar to the HHO gas generator 10 according to the first embodiment, as shown in FIG. The same effect as that of the HHO gas generator 10 according to 1 is obtained.
  • the HHO gas generator 30 according to the third embodiment is provided with an electrolyte replenishing mechanism 700 that can automatically replenish the electrolyte 101 in order to keep the electrolyte 101 in the electrolytic cell 110 in an appropriate amount. .
  • FIG. 9 is a view for explaining the HHO gas generator 30 according to the third embodiment.
  • the HHO gas generator 30 according to the third embodiment also includes the electrolyzer 100, the current control units 210, 220, and 230, and the power supply device 300, similar to the HHO gas generator 10 according to the first embodiment.
  • the current control units 210, 220, 230 and the power supply device 300 are not shown.
  • the electrolyzer 100 shown in FIG. 9 is a view of the electrolyzer 100 in FIG. 1 as viewed in the direction of the arrow b.
  • the illustration of electrodes provided in the electrolytic cell 110 is also omitted.
  • the electrolyte replenishment mechanism 700 includes an auxiliary tank 710 for storing the electrolyte 101, an electrolyte outlet 720 provided at the lower end of the auxiliary tank 710, and electrolysis on the electrolytic tank 110 side.
  • An electrolytic solution supply pipe 730 that connects the liquid supply port 171 is provided.
  • the electrolyte solution supply pipe 730 is set so that the tip portion 731 is at a position of the electrolyte solution 101 at, for example, an appropriate level L1. Further, a sufficient amount of the electrolyte solution 101 is stored in the auxiliary tank 710.
  • auxiliary tank 710 By providing such an auxiliary tank 710, when the amount of the electrolytic solution 101 in the electrolytic cell 110 decreases below the appropriate level L1, the electrolytic solution naturally drops from the auxiliary tank 710 into the electrolytic cell 110. The electrolyte solution 101 in 110 is replenished. For this reason, the electrolytic solution 101 in the electrolytic cell 110 can always maintain the appropriate level L1. This eliminates the need for the user to worry about the amount of the electrolytic solution 101 in the electrolytic cell 110.
  • the HHO gas generation device 30 according to the third embodiment is different from the HHO gas generation device 10 according to the first embodiment only in that an electrolyte replenishment mechanism 700 is provided, and otherwise, the HHO gas generation device according to the first embodiment is generated. Similar to the apparatus 10, effects such as fuel consumption and reduction of exhaust gas are the same as those of the HHO gas generator 10 according to the first embodiment.
  • the case where the HOO gas generating apparatus 10 according to the first embodiment is provided with the electrolyte replenishing mechanism 700 is illustrated, but the electrolyte replenishing mechanism 700 is added to the HOO gas generating apparatus 20 according to the second embodiment. Of course, it can also be provided.
  • the cutout portions 185 and 186 of the partition plates 180A and 180B described in the above embodiments are shaped so that the cutout edge portions after cutting are L-shaped.
  • the present invention is not limited to this.
  • the shape of the notch is not particularly limited as long as the electrolytes can circulate in the adjacent partition rooms.
  • FIG. 10 is a view for explaining a modification of the notch formed in the partition plates 180A and 180B.
  • FIG. 10A is a diagram showing a first modification
  • FIG. 10B is a diagram showing a second modification.
  • the partition plate 180A will be described as an example.
  • the corner formed by the upper end side 181 and the side end sides 182 and 183 of the partition plate 180A is cut diagonally, and the cut portions 185 and 186 are cut out. It is a thing.
  • a through hole is formed in a corner portion formed by the upper end side 181 and the side end sides 182 and 183 of the partition plate 180A, and the cutout portion 185 is formed. , 186.
  • the partition plate 180A As shown in FIG. 4 can be formed.
  • the shape of the notch can be variously modified besides these.
  • the partition plate 180B can also be set as the same structure.
  • the number of electrodes is three is illustrated, but the number of electrodes is not limited to three, and when the HHO gas generator of the present invention is used in an automobile, exhaust is performed.
  • the number of electrodes can be set as appropriate depending on the size of the amount.
  • anode plate a titanium material in which an iridium film is formed by a coating method, a plating method, or a welding method is used.
  • the carbon film may be formed by a coating method, a plating method or a welding method.
  • the cathode plate a titanium material having a platinum film formed by a coating method, a plating method, or a welding method is used, but the present invention is not limited to this.
  • the gold film may be formed by a coating method, a plating method or a welding method, and the cathode plate may be formed by a stainless steel plate.
  • the HHO gas generator is mounted on a vehicle using gasoline as fuel
  • the HHO gas generator can also be mounted on a vehicle using a diesel engine as fuel (referred to as a diesel vehicle). Comparing both “HHO gas generator-equipped vehicles” and “HHO gas generator-equipped vehicles” in diesel vehicles, “HHO gas generator-equipped vehicles” Compared to the “automobile” case, it was confirmed that fuel efficiency could be improved and black smoke could be reduced.
  • the HHO gas generation device 10 is mounted on a general automobile has been exemplified.
  • the HHO gas generation device 10 according to Embodiment 1 can also be applied to an automobile mounted with a hybrid system. Is.
  • the HHO gas generator of the present invention By applying the HHO gas generator of the present invention to a vehicle equipped with a hybrid system, the fuel efficiency improvement effect of the hybrid system and the fuel efficiency improvement effect of the HHO gas generator of the present invention are added.
  • the HHO gas generation device 10 is not limited to an automobile, but other vehicles using an internal combustion engine (for example, it can be widely applied to transportation equipment such as motorcycles, buses, trucks, diesel trains, etc.) and ships using an internal combustion engine. Moreover, it can be applied to construction equipment such as cranes and excavators. Furthermore, the present invention can be applied to household and commercial boilers, thermal power plants, refuse incinerators, and the like.
  • the temperature control device 600 cuts off the power supply from the power supply device 300 to each of the current control units 210, 220, and 230.
  • a simple on / off operation is performed such that energization from the power supply device 300 to each of the current control units 210, 220, and 230 is restored.
  • the current flowing between the anode plate and the cathode plate in the electrodes 130.140 and 150 may be controlled.
  • the control of the current value in this case is, for example, a control of controlling the current value so that the temperature of the electrolytic solution is maintained within an allowable range with a set reference temperature as a boundary.
  • the current flowing between the anode plate and the cathode plate in each electrode is controlled based on the temperature detected by the temperature sensor.
  • each current control unit 210, 220, 230 has a function of controlling the current value based on temperature information given from the temperature sensor, and the temperature of the electrolyte is set. The current is controlled so as to be maintained within a predetermined allowable range with the reference temperature as a boundary. By performing such control, the electrolytic solution can always be maintained in an appropriate temperature range.
  • the temperature of the electrolytic solution 101 is always 20 ° C. to 40 ° C.
  • the current value is controlled so as to be kept within the range of ° C.
  • the electrolyte solution 101 can always be maintained in an appropriate temperature range.
  • Such control can be realized by using, for example, PID control or digital control corresponding to PID control.

Abstract

[Problem] To provide an HHO gas generation device capable of being put to practical use as a fuel generation device. [Solution] An HHO gas generation device provided with: an electrolysis device (100) which has an electrolyte tank (110) for storing an electrolyte solution having water as the main component, multiple pairs of corrosion-resistant electrodes (130, 140, 150) each having a positive electrode and a negative electrode, and a hermetically-sealing lid (120) for hermetically sealing the opening at the top end of the electrolyte tank (110), and which generates HHO gas by subjecting the electrolyte solution to electrolysis by applying a current between the positive electrodes and the negative electrodes of the multiple pairs of electrodes (130, 140, 150) by using a power source device (300); and a current control device (200) for controlling the current applied between the positive electrodes and negative electrodes of the multiple pairs of electrodes (130, 140, 150) to a predetermined current value for each electrode. According to the present invention, it is possible to put the HHO gas generation device to practical use as a fuel generation device used in vehicles, ships and such.

Description

HHOガス発生装置HHO gas generator
 本発明は、HHOガスを発生させるHHOガス発生装置、内燃機関用の燃料供給装置、、燃焼装置、HHOガス発生装置用の電解液及びHHOガス発生方法に関する。 The present invention relates to an HHO gas generation device that generates HHO gas, a fuel supply device for an internal combustion engine, a combustion device, an electrolyte for the HHO gas generation device, and an HHO gas generation method.
 水素と酸素とが2対1の混合比で混ざり合った状態の水素と酸素との混合ガスは、無公害エネルギーとして様々な分野で使用が検討されている。特に、自動車用のエンジンなどの内燃機関の燃料として注目されている。このような水素と酸素との混合ガスは、HHOガスあるいはブラウンガスとも称されている。以下、本明細書では、このような混合ガスをHHOガスと呼ぶことにする。 A mixed gas of hydrogen and oxygen in which hydrogen and oxygen are mixed at a mixing ratio of 2 to 1 is being studied for use in various fields as pollution-free energy. In particular, it has attracted attention as a fuel for internal combustion engines such as automobile engines. Such a mixed gas of hydrogen and oxygen is also called HHO gas or Brown gas. Hereinafter, in this specification, such a mixed gas is referred to as an HHO gas.
 HHOガスを発生する装置としては、プラズマを利用したHHOガス発生装置及び電気分解を利用したHHOガス発生装置が知られているが、プラズマを利用したHHOガス発生装置は、装置が大掛かりとなり、消費電力もきわめて大きいため、自動車エンジンなどの内燃機関のための燃料発生装置(以下では自動車用の燃料発生装置という。)として用いるには不向きである。このため、自動車用の燃料発生装置として用いるには電気分解を利用したHHOガス発生装置が適している。電気分解を利用したHHOガス発生装置は従来から種々提案されている(例えば、特許文献1及び非特許文献1参照。)。 As an apparatus for generating HHO gas, an HHO gas generator using plasma and an HHO gas generator using electrolysis are known. However, an HHO gas generator using plasma is large in size and consumed. Since the electric power is extremely large, it is not suitable for use as a fuel generator for an internal combustion engine such as an automobile engine (hereinafter referred to as an automobile fuel generator). For this reason, an HHO gas generator using electrolysis is suitable for use as a fuel generator for automobiles. Various HHO gas generators utilizing electrolysis have been conventionally proposed (for example, see Patent Document 1 and Non-Patent Document 1).
 特許文献1には、電気分解を利用したHHOガス発生装置についての記載がなれている。また、非特許文献1には、電気分解を利用したHHOガス発生装置を自動車に組み込んで自動車用の燃料発生装置として使用する例が記載されている。 Patent Document 1 describes a HHO gas generator using electrolysis. Non-Patent Document 1 describes an example in which an HHO gas generator utilizing electrolysis is incorporated in a vehicle and used as a fuel generator for a vehicle.
特開2008-13821号公報JP 2008-13821 A
 上記したように、電気分解を利用したHHOガス発生装置は種々提案され、また、HHOガス発生装置を自動車用の燃料発生装置として自動車に搭載することも実験的には行われているが、未だ実用化には至っていない。 As described above, various HHO gas generators utilizing electrolysis have been proposed, and it has been experimentally carried out that the HHO gas generator is mounted on a vehicle as a fuel generator for vehicles. It has not been put into practical use.
 HHOガス発生装置が自動車用の燃料発生装置としては実用化に至らない理由は、HHOガス発生装置を自動車用の燃料発生装置として用いるには様々な課題が残っているからである。例えば、電解槽内の電解液に浸漬される電極(陽極板及び陰極板)は、電蝕による劣化が激しく短期間で使用不可となってしまうといった課題、電解液中を流れる電流の制御が適切に行われないため、必要以上の電流が流れて、電解液の温度上昇に歯止めが効かない」といった課題など、解決しなければならない課題は数多く存在する。このような理由から、HHOガス発生装置を自動車用の燃料発生装置として実用化することは未だなされていない。 The reason why the HHO gas generator cannot be put into practical use as a fuel generator for automobiles is that various problems remain in using the HHO gas generator as a fuel generator for automobiles. For example, electrodes (anode plate and cathode plate) immersed in the electrolytic solution in the electrolytic bath are subject to deterioration due to electrolytic corrosion and become unusable in a short period of time, and control of the current flowing in the electrolytic solution is appropriate Therefore, there are many problems that need to be solved, such as the problem that an excessive current flows and the temperature rise of the electrolyte does not stop. For these reasons, the HHO gas generator has not been put into practical use as a fuel generator for automobiles.
 なお、このような課題は、HHOガス発生装置を自動車用の燃料発生装置として実用化する場合だけに存在する課題ではなく、HHOガス発生装置を自動車以外の車両、船舶などの内燃機関の燃料発生装置として実用化する場合、さらには、家庭用、業務用のボイラー、火力発電所、ゴミ焼却炉などの燃焼装置の燃料発生装置として実用化する場合にも存在する課題である。 Such a problem is not a problem that exists only when the HHO gas generator is put into practical use as a fuel generator for automobiles, but the HHO gas generator is used to generate fuel for internal combustion engines such as vehicles other than automobiles and ships. When it is put into practical use as an apparatus, it is also a problem that exists when it is put into practical use as a fuel generator for a combustion apparatus such as a household or commercial boiler, a thermal power plant, or a refuse incinerator.
 そこで本発明は、上記した従来のHHOガス発生装置が有する課題を解決するためになされたもので、燃料発生装置として実用化が可能なHHOガス発生装置、内燃機関用の燃料供給装置及び燃焼装置を提供することを目的とするとともに、HHOガス発生装置に用いるためのHHOガス発生装置用の電解液及びHHOガスを発生するためのHHOガス発生方法を提供することを目的とする。 Accordingly, the present invention has been made to solve the problems of the conventional HHO gas generator described above, and can be put to practical use as a fuel generator, a fuel supply device for an internal combustion engine, and a combustion device. And an HHO gas generating method for generating HHO gas, and an electrolyte for the HHO gas generating device for use in the HHO gas generating device.
[1]本発明のHHOガス発生装置は、水を主成分とする電解液を貯留する電解槽と、耐電蝕性を有しそれぞれが陽極及び陰極で構成される複数組の電極と、前記電解槽の上端開口部を密閉する密閉蓋とを有し、電源装置を用いて前記複数組の電極の各電極における陽極と陰極との間に電流を流すことにより前記電解液を電気分解してHHOガスを発生させる電気分解装置と、前記各電極における陽極と陰極との間に流す電流を各電極ごとに所定の電流値に制御する電流制御装置とを備えることを特徴とする。 [1] The HHO gas generator according to the present invention includes an electrolytic cell for storing an electrolytic solution containing water as a main component, a plurality of sets of electrodes each having an electrolytic corrosion resistance and each composed of an anode and a cathode, and the electrolysis A sealing lid that seals the upper end opening of the tank, and the electrolytic solution is electrolyzed by passing an electric current between the anode and the cathode of each of the plurality of sets of electrodes by using a power supply device to generate HHO. An electrolysis apparatus that generates gas and a current control apparatus that controls a current flowing between an anode and a cathode of each electrode to a predetermined current value for each electrode are provided.
 本発明のHHOガス発生装置においては、電極は耐電蝕性を有している。このため、本発明のHHOガス発生装置によれば、従来のHHOガス発生装置が有する課題、すなわち、「電蝕による劣化が激しく短期間で使用不可となってしまうといった課題」を解決することができる。 In the HHO gas generator according to the present invention, the electrode has electric corrosion resistance. For this reason, according to the HHO gas generator of the present invention, it is possible to solve the problem of the conventional HHO gas generator, that is, "the problem that deterioration due to electric corrosion is severe and it cannot be used in a short period of time". it can.
 また、本発明のHHOガス発生装置は、複数組の電極を有しているため、多量のHHOガスを安定的に発生することが可能となる。なお、複数組の電極を有することにより、各電極に流れる電流の電流値が各電極ごとに異なってしまうこともあり、それによって、特性の電極の温度が異常に上昇してしまうといった不具合が生じる場合もある。そこで、本発明においては、各電極における陽極と陰極との間に流す電流を各電極ごとに所定の電流値に制御する電流制御装置を有している。このような電流制御装置を有することにより、各電極における陽極と陰極との間に流す電流を格電極ごとに所定の電流値とすることが可能となり、各電極における陽極と陰極との間に流す電流を適正な電流値で均一化することができる。それによって、従来のHHOガス発生装置の有する他の課題、すなわち、「必要以上の電流が流れてしまい、電解液の温度上昇に歯止めが効かないといった課題」を解決することができる。 In addition, since the HHO gas generator of the present invention has a plurality of sets of electrodes, a large amount of HHO gas can be stably generated. In addition, by having a plurality of sets of electrodes, the current value of the current flowing through each electrode may be different for each electrode, thereby causing a problem that the temperature of the characteristic electrode rises abnormally. In some cases. Therefore, the present invention includes a current control device that controls the current flowing between the anode and the cathode of each electrode to a predetermined current value for each electrode. By having such a current control device, the current flowing between the anode and cathode in each electrode can be set to a predetermined current value for each case electrode, and the current flows between the anode and cathode in each electrode. The current can be made uniform with an appropriate current value. As a result, the other problem of the conventional HHO gas generator, that is, “the problem that current more than necessary flows and the temperature rise of the electrolyte does not stop,” can be solved.
 このように、本発明のHHOガス発生装置によれば、従来のHHOガス発生装置が有する上記2つの課題を解決することができる。このため、本発明のHHOガス発生装置を車両、船舶などの内燃機関、さらには、家庭用、業務用のボイラー、火力発電所、ゴミ焼却炉などの燃焼装置の燃料発生装置として実用化することが可能となる。 Thus, according to the HHO gas generator of the present invention, the above two problems of the conventional HHO gas generator can be solved. For this reason, the HHO gas generator of the present invention will be put to practical use as a fuel generator for combustion engines such as internal combustion engines such as vehicles and ships, as well as household and commercial boilers, thermal power plants, and garbage incinerators. Is possible.
 [2]本発明のHHOガス発生装置においては、前記電流制御装置は、前記各電極に対応した複数の電流制御部を有し、当該複数の電流制御部の各電流制御部は、それぞれ対応する電極における陽極と陰極との間に流す電流を前記所定の電流値に制御することが好ましい。 [2] In the HHO gas generator of the present invention, the current control device has a plurality of current control units corresponding to the electrodes, and the current control units of the plurality of current control units respectively correspond to the current control units. It is preferable to control the current flowing between the anode and the cathode of the electrode to the predetermined current value.
 このように、各電極に対応した複数の電流制御部を有することによって、各電極における陽極板陰極との間に流す電流を各電極ごとに所定の電流値とすることができる。 Thus, by having a plurality of current control units corresponding to each electrode, the current flowing between the anode plate and the cathode in each electrode can be set to a predetermined current value for each electrode.
 [3]本発明のHHOガス発生装置においては、前記電解液の温度が設定温度以上にならないように前記電解液の温度を制御する温度制御装置をさらに備えることが好ましい。 [3] The HHO gas generator of the present invention preferably further includes a temperature control device for controlling the temperature of the electrolytic solution so that the temperature of the electrolytic solution does not exceed a preset temperature.
 このような温度制御装置を備えることにより、電流制御による電解液の温度が異常に上昇することを抑制することに加えて、電解液の温度そのものの制御が可能となる。すなわち、本発明のHHOガス発生装置においては、電解液の温度が異常に上昇することを抑制するために、二重の対策が施されていることとなる。これによって、本発明のHHOガス発生装置によれば、電解液の温度が異常に上昇することを確実に防止することができる。なお、電解液の温度は、電解槽の温度を計測することによって検知することができるため、「電解液の温度が設定温度以上にならないように前記電解液の温度を制御する」というのは、電解槽の温度を計測し、計測した電解槽の温度を電解液の温度として温度制御を行うということをも含むものである。 By providing such a temperature control device, it is possible to control the temperature of the electrolytic solution itself in addition to suppressing an abnormal increase in the temperature of the electrolytic solution due to current control. That is, in the HHO gas generator of the present invention, double measures are taken in order to prevent the temperature of the electrolyte from rising abnormally. Thus, according to the HHO gas generator of the present invention, it is possible to reliably prevent the temperature of the electrolyte from rising abnormally. In addition, since the temperature of the electrolytic solution can be detected by measuring the temperature of the electrolytic cell, “controlling the temperature of the electrolytic solution so that the temperature of the electrolytic solution does not exceed the set temperature” It also includes measuring the temperature of the electrolytic cell and performing temperature control using the measured temperature of the electrolytic cell as the temperature of the electrolytic solution.
 [4]本発明のHHOガス発生装置においては、前記温度制御装置は、前記電解液の温度が第1設定温度にまで上昇すると前記各電極への通電をオフし、前記通電をオフした後に前記電解液の温度が前記第1設定温度よりも低い第2設定温度にまで降下すると前記各電極への通電をオンするように動作することが好ましい。 [4] In the HHO gas generator of the present invention, the temperature control device turns off the energization of the electrodes when the temperature of the electrolytic solution rises to a first set temperature, and turns off the energization and turns off the energization. It is preferable to operate so that energization of each electrode is turned on when the temperature of the electrolytic solution drops to a second set temperature lower than the first set temperature.
 このような構成とすることにより、電解液の温度が第1設定温度より高い温度になるのを確実に防止することが可能となる。これにより、第1設定温度として、電解液の温度が異常に高温とならない上限の温度を設定しておけば、電解液が何らかの原因で異常に高温となることを未然に防止することができる。また、電解液の温度が第1設定温度よりも低い第2設定温度にまで降下すると各電極への通電をオンすることにより、再び、電気分解を開始させることができる。 With such a configuration, it is possible to reliably prevent the temperature of the electrolytic solution from becoming higher than the first set temperature. Thereby, if the upper limit temperature at which the temperature of the electrolytic solution does not become abnormally high is set as the first set temperature, it is possible to prevent the electrolytic solution from becoming abnormally high for some reason. Further, when the temperature of the electrolytic solution drops to a second set temperature lower than the first set temperature, the electrolysis can be started again by turning on the energization of each electrode.
 [5]本発明のHHOガス発生装置においては、前記第1設定温度は65℃~75℃の範囲内にあり、前記第2設定温度は40℃~60℃の範囲内にあることが好ましい。 [5] In the HHO gas generator of the present invention, it is preferable that the first set temperature is in a range of 65 ° C. to 75 ° C. and the second set temperature is in a range of 40 ° C. to 60 ° C.
 このように第1設定温度を65℃~75℃の範囲内としているため、電解液の温度が65度~75度より高い温度になるのを確実に防止することが可能となる。また、第2設定温度を45℃~55℃としているため、各電極への通電を遮断した後、少し温度が下がれば、各電極への通電を復帰させることができ、それによって、電気分解をいち早く再開させることが可能となる。 Thus, since the first set temperature is in the range of 65 ° C. to 75 ° C., it is possible to reliably prevent the temperature of the electrolytic solution from becoming higher than 65 ° C. to 75 ° C. In addition, since the second set temperature is set to 45 ° C. to 55 ° C., the current supply to each electrode can be restored if the temperature drops slightly after the power supply to each electrode is cut off. It will be possible to resume as soon as possible.
 [6]本発明のHHOガス発生装置においては、前記電解液の温度に基準温度を設定するとともに、当該基準温度に対する許容範囲を設定し、前記温度制御装置は、前記電解液の温度が前記許容範囲に保持されるように前記電流値を制御するように動作することが好ましい。 [6] In the HHO gas generator of the present invention, a reference temperature is set for the temperature of the electrolytic solution, and an allowable range for the reference temperature is set. The temperature control device is configured such that the temperature of the electrolytic solution is the allowable temperature. It is preferable to operate so as to control the current value so as to be held in a range.
 これは、電解液の温度が第1設定温度に達すると各電極への通電を遮断し、第2温度に達すると各電極への通電を復帰させるというように、各電極への通電を単にオン/オフ制御するものではなく、温度センサーにより検知した温度に基づいて各電極における陽極板と陰極板との間に流す電流を制御するというものである。具体的には、電解液の温度が、設定されている基準温度を境に所定の許容範囲内で保持されるように電流を制御するものであり、このような制御を行うことにより、電解液を常に適切な温度範囲に保持することができる。このような制御は、例えば、PID制御又はPID制御に相当するデジタル制御を用いるによって実現可能である。 This simply turns on the energization of each electrode so that the energization to each electrode is cut off when the temperature of the electrolyte reaches the first set temperature and the energization to each electrode is restored when the temperature reaches the second temperature. It is not to control off / off, but to control the current flowing between the anode plate and the cathode plate in each electrode based on the temperature detected by the temperature sensor. Specifically, the current is controlled so that the temperature of the electrolytic solution is maintained within a predetermined allowable range with the set reference temperature as a boundary. By performing such control, the electrolytic solution is controlled. Can always be maintained within an appropriate temperature range. Such control can be realized by using, for example, PID control or digital control corresponding to PID control.
 [7]本発明のHHOガス発生装置においては、前記陽極は、チタン材にイリジウム皮膜が塗布法、めっき法又は溶着法によって形成されていることが好ましい。 [7] In the HHO gas generator of the present invention, it is preferable that the anode has an iridium film formed on a titanium material by a coating method, a plating method or a welding method.
 陽極をこのような構成とすることにより、耐電蝕性に優れた電極となることが本発明の発明者が種々の実験を行った結果から確認された。これにより、陽極が電蝕によって劣化することを抑制でき、長期間の使用にも耐え得る電極とすることができる。それによって、本発明のHHOガス発生装置の耐久性を向上させることができる。なお、本発明の発明者が行った実験によれば、陽極としては、チタン材に炭素皮膜が塗布法、めっき法又は溶着法によって形成されているものであっても好結果が得られることが確認できた。 It was confirmed from the results of various experiments conducted by the inventor of the present invention that an electrode having excellent electric corrosion resistance can be obtained by configuring the anode as described above. Thereby, it can suppress that an anode deteriorates by electric corrosion, and it can be set as the electrode which can endure long-term use. Thereby, the durability of the HHO gas generator of the present invention can be improved. According to the experiments conducted by the inventors of the present invention, good results can be obtained even when the anode is formed by applying a carbon film on a titanium material by a coating method, a plating method or a welding method. It could be confirmed.
 [8]本発明のHHOガス発生装置においては、前記陰極は、チタン材にプラチナ皮膜が塗布法、めっき法又は溶着法によって形成されていることが好ましい。 [8] In the HHO gas generator of the present invention, it is preferable that the cathode has a platinum film formed on a titanium material by a coating method, a plating method or a welding method.
 陰極をこのような構成とすることにより、耐電蝕性に優れた電極となることが本発明の発明者が種々の実験を行った結果からわかった。これにより、陰極が電蝕によって劣化することを抑制でき、長期間の使用にも耐え得る電極とすることができる。それによって、本発明のHHOガス発生装置の耐久性を向上させることができる。なお、本発明者の発明者が行った実験によれば、陰極としては、チタン材に金皮膜が塗布法、めっき法又は溶着法によって形成されているものであっても好結果が得られ、また、陰極としてはステンレス材を用いても好結果が得られること確認できた。 It has been found from the results of various experiments conducted by the inventors of the present invention that an electrode having excellent electric corrosion resistance is obtained when the cathode has such a configuration. Thereby, it can suppress that a cathode deteriorates by electric corrosion, and it can be set as the electrode which can endure long-term use. Thereby, the durability of the HHO gas generator of the present invention can be improved. In addition, according to the experiments conducted by the inventors of the present inventor, as the cathode, good results can be obtained even when a gold film is formed on a titanium material by a coating method, a plating method or a welding method, It was also confirmed that good results were obtained even when a stainless material was used as the cathode.
 [9]本発明のHHOガス発生装置においては、前記各電極における陽極及び陰極は、1枚の陽極板と2枚の陰極板とで構成されており、前記1枚の陽極板及び前記2枚の陰極板は、前記1枚の陽極板を中心にして前記2枚の陰極板が前記1枚の陽極板に対して一定間隔を置いて前記陽極板と対向するように配置されていることが好ましい。 [9] In the HHO gas generator of the present invention, the anode and the cathode of each electrode are composed of one anode plate and two cathode plates, and the one anode plate and the two plates The cathode plate is arranged so that the two cathode plates are opposed to the anode plate at a predetermined interval with respect to the one anode plate with the one anode plate as a center. preferable.
 各電極の陽極及び陰極をこのような構成とすることによって、簡単な構成で効率のよい電気分解が可能となる。 ¡Efficient electrolysis can be achieved with a simple configuration by configuring the anode and cathode of each electrode in this way.
 [10]本発明のHHOガス発生装置においては、前記所定の電流値は、前記陽極板に対向する前記陰極板の面積に対して1cm当たり0.007アンペア~0.06アンペアの範囲内にあることが好ましい。 [10] In the HHO gas generator of the present invention, the predetermined current value is within a range of 0.007 ampere to 0.06 ampere per 1 cm 2 with respect to the area of the cathode plate facing the anode plate. Preferably there is.
 各電極における陽極板と陰極板との間に流す電流のこのように設定することにより、電解液の温度が適切に保持された状態で安定した電気分解が可能となる。なお、各電極における陽極板と陰極板との間に流す電流は、電極の材質などによっても多少異なるが、陽極板に対向する陰極板の面積に対して1cm当たり0.007アンペア~0.06アンペアとすることが好ましい。ここで、1cm当たり0.007アンペア~0.06アンペアというのは、例えば、各電極における陽極板及び陰極板がそれぞれ12cm×12cmの大きさを有し、かつ、1枚の陽極板を2枚の陰極板で挟むように対向配置させた構造を有している場合には、陽極板に対向する陰極板の面積は288cmとなるため、当該電極における陽極板と陰極板との間に流す電流を約2アンペア~約18アンペアの範囲内に設定することが好ましいということである。 By setting the current flowing between the anode plate and the cathode plate in each electrode in this way, stable electrolysis can be performed while the temperature of the electrolytic solution is appropriately maintained. The current flowing between the anode plate and the cathode plate in each electrode varies somewhat depending on the material of the electrode, etc., but is 0.007 ampere to 0.005 ampere per cm 2 with respect to the area of the cathode plate facing the anode plate. It is preferable to use 06 amperes. Here, 0.007 ampere to 0.06 ampere per 1 cm 2 means that, for example, each of the anode plate and the cathode plate in each electrode has a size of 12 cm × 12 cm, and one anode plate is 2 In the case of having a structure arranged so as to be sandwiched between two cathode plates, the area of the cathode plate facing the anode plate is 288 cm 2, and therefore, between the anode plate and the cathode plate in the electrode. It is preferable to set the current to flow within a range of about 2 amperes to about 18 amperes.
 [11]本発明のHHOガス発生装置においては、前記電解槽には、前記複数組の電極のうちの隣接する2つの電極の間に仕切り板が設けられ、前記仕切り板は、下端辺が前記電解槽の底面に密接し、側端辺が前記電解槽の側面に密接した状態で設置されていることが好ましい。 [11] In the HHO gas generator of the present invention, the electrolytic cell is provided with a partition plate between two adjacent electrodes of the plurality of sets of electrodes, and the partition plate has a lower end side which is It is preferable to be installed in a state of being in close contact with the bottom surface of the electrolytic cell and having a side edge in close contact with the side surface of the electrolytic cell.
 このような仕切り板を設けることにより、電気分解装置の電解槽内に複数の仕切り部屋が形成され、各電極は個々の電極ごとに各仕切り部屋に存在するようになるため、電気分解装置が多少傾いた場合でも、仕切り部屋ごとに一定量の電解液が保持されるため、特定の電極が電解液から露出してしまうといった不具合を防止することができる。 By providing such a partition plate, a plurality of partition rooms are formed in the electrolytic cell of the electrolysis apparatus, and each electrode is present in each partition room for each individual electrode. Even when tilted, since a certain amount of electrolyte is held in each partition room, it is possible to prevent a problem that a specific electrode is exposed from the electrolyte.
 [12]本発明のHHOガス発生装置においては、前記仕切り板の高さは、当該仕切り板の上端辺が上記電極の上端辺よりも高い位置で、当該電解槽内における電解液の貯留量の適正レベル以上の位置となるような高さを有し、かつ、前記上端辺には、前記電解液が隣接する電極側に流通可能となるような切り欠き部が形成されていることが好ましい。 [12] In the HHO gas generator of the present invention, the height of the partition plate is such that the upper end side of the partition plate is higher than the upper end side of the electrode. It is preferable that the upper end side has a notch that allows the electrolyte solution to flow to the adjacent electrode side, and has a height that allows the position to be at or above the appropriate level.
 仕切り板の高さを電解液の貯留量の適正レベル以上とすることにより、電気分解装置が多少傾いた場合でも、仕切り部屋ごとに一定量の電解液が保持されるという効果をより高めることができる。また、上端辺には、前記電解液が隣接する電極側に流通可能となるような切り欠き部が形成されていることにより、当該電解液を電解液の貯留量の適正レベルまで注入すれば、電解槽が水平となっている場合においては、電解液の液面を電解槽内全体で適正レベルとすることができる。 By setting the height of the partition plate to be equal to or higher than the appropriate level of the electrolytic solution storage amount, even when the electrolyzer is slightly inclined, the effect that a certain amount of electrolytic solution is retained in each partition room can be further enhanced. it can. In addition, the upper end side is formed with a notch that allows the electrolyte solution to flow to the adjacent electrode side, so that the electrolyte solution is injected to an appropriate level of the electrolyte solution storage amount, In the case where the electrolytic cell is horizontal, the level of the electrolytic solution can be adjusted to an appropriate level throughout the electrolytic cell.
 [13]本発明のHHOガス発生装置においては、前記電解槽に貯留されている電解液が減少したときに前記電解液を自動的に補充可能な電解液補充機構をさらに備えることが好ましい。 [13] The HHO gas generator of the present invention preferably further includes an electrolyte replenishment mechanism that can automatically replenish the electrolyte when the electrolyte stored in the electrolytic cell decreases.
 このような電解液補充機構を設けることにより、電解槽の電解液が減少すると自動的に電解液が滴下して補充されるので、電解槽内の電解液を常時、適正レベルに保持することができる。これにより、本発明のHHOガス発生装置の使用者は、電解槽内の電解液の量を殆ど気にする必要がなくなる。 By providing such an electrolytic solution replenishment mechanism, when the electrolytic solution in the electrolytic cell is reduced, the electrolytic solution is automatically dropped and replenished, so that the electrolytic solution in the electrolytic cell can always be maintained at an appropriate level. it can. This eliminates the need for the user of the HHO gas generator of the present invention to worry about the amount of electrolyte in the electrolytic cell.
 [14]本発明の内燃機関用の燃料供給装置は、[1]~[13]のいずれかに記載のHHOガス発生装置を備える内燃機関用の燃料供給装置であって、前記HHOガス発生装置は、前記内燃機関の補助燃料発生装置として用いられるものであり、前記電気分解装置から発生したHHOガスを、前記内燃機関の燃料取り入れ口に供給するように構成されていることを特徴とする。 [14] A fuel supply device for an internal combustion engine of the present invention is a fuel supply device for an internal combustion engine comprising the HHO gas generation device according to any one of [1] to [13], wherein the HHO gas generation device Is used as an auxiliary fuel generating device for the internal combustion engine, and is configured to supply HHO gas generated from the electrolyzer to a fuel intake port of the internal combustion engine.
 このように、内燃機関の補助燃料発生装置が[1]~[13]のいずれかに記載のHHOガス発生装置を備えていることにより、内燃機関の燃費を向上させることができるとともに、有害な排気ガスの排出量を削減することができる。 As described above, since the auxiliary fuel generating device for the internal combustion engine includes the HHO gas generating device according to any one of [1] to [13], the fuel consumption of the internal combustion engine can be improved and harmful. Exhaust gas emissions can be reduced.
 [15]本発明の内燃機関用の燃料供給装置においては、前記HHOガスを空気に対して1/500~1/50000の割合で混合させるように前記内燃機関の燃料取り入れ口に供給することが好ましい。 [15] In the fuel supply device for an internal combustion engine of the present invention, the HHO gas may be supplied to the fuel intake port of the internal combustion engine so as to be mixed at a ratio of 1/500 to 1 / 50,000 with respect to the air. preferable.
 HHOガスをこのような割合で空気と混合させることにより、内燃機関をより高い燃焼効率で動作させることができ、それによって、燃費の向上と有害な排気ガスの排出量の削減が可能となる。 By mixing the HHO gas with air at such a ratio, the internal combustion engine can be operated with higher combustion efficiency, thereby improving fuel efficiency and reducing harmful exhaust gas emissions.
 [16]本発明の内燃機関用の燃料供給装置においては、前記内燃機関は、車両用のエンジンであることが好ましい。 [16] In the fuel supply device for an internal combustion engine of the present invention, the internal combustion engine is preferably a vehicle engine.
 このように、[1]~[13]のいずれかに記載のHHOガス発生装置を車両用のエンジンの補助燃料発生装置として用いる場合には、当該HHOガス発生装置から発生するHHOガスをエンジンの燃料取り入れ口(例えば、吸気マニホールド)に供給することにより、HHOガスは、エンジン内において、霧化されたガソリンなどの燃料とともに燃焼する。このように、霧化されたガソリンなどの燃料とともにHHOガスを燃焼させることによって、燃費の向上が可能となるとともに、有害な排気ガスの排出量を削減することができる。 As described above, when the HHO gas generator according to any one of [1] to [13] is used as an auxiliary fuel generator for a vehicle engine, the HHO gas generated from the HHO gas generator is supplied to the engine. By supplying the fuel intake (for example, an intake manifold), the HHO gas is combusted with fuel such as atomized gasoline in the engine. Thus, by burning the HHO gas together with the atomized fuel such as gasoline, the fuel efficiency can be improved and the amount of harmful exhaust gas discharged can be reduced.
 [17]本発明の内燃機関用の燃料供給装置においては、前記電源装置は、前記車両に搭載されている蓄電池であることが好ましい。 [17] In the fuel supply device for an internal combustion engine of the present invention, the power supply device is preferably a storage battery mounted on the vehicle.
 このように、自動車などの車両にもともと搭載されている蓄電池(バッテリー)を本発明のHHOガス発生装置の電源装置として使用することができるため、HHOガス発生装置専用の電源装置が不要となり、HHOガス発生装置を自動車に搭載する際に安価に搭載することができ、また、設置スペースも小さく抑えることができる。 Thus, since the storage battery (battery) originally mounted on a vehicle such as an automobile can be used as the power supply device of the HHO gas generation device of the present invention, a power supply device dedicated to the HHO gas generation device becomes unnecessary, and the HHO When the gas generator is mounted on an automobile, it can be mounted at low cost, and the installation space can be kept small.
 [18]本発明の燃焼装置は、燃焼装置本体と、[1]~[13]のいずれかに記載のHHOガス発生装置とを備えることを特徴とする。 [18] A combustion apparatus of the present invention includes a combustion apparatus main body and the HHO gas generator according to any one of [1] to [13].
 燃焼装置に[1]~[13]いずれかに記載のHHOガス発生装置を備えることにより高い燃焼効率で燃料を燃焼させることができ、排気ガスに含まれる有害物質を大幅に少なくすることができるとともに燃焼音も抑制することができる。なお、燃焼装置には、自動車の内燃機関及び自動車以外の車両、船舶などの内燃機関、さらには、家庭用、業務用のボイラー、火力発電所、ゴミ焼却炉などを含むものである。 By providing the combustion apparatus with the HHO gas generator according to any one of [1] to [13], fuel can be burned with high combustion efficiency, and harmful substances contained in the exhaust gas can be greatly reduced. In addition, combustion noise can be suppressed. The combustion apparatus includes an internal combustion engine of an automobile, an internal combustion engine of a vehicle other than an automobile, a ship, and the like, and further, a household or commercial boiler, a thermal power plant, a garbage incinerator, and the like.
 [19]本発明のHHOガス発生装置用の電解液は、[1]~[13]のいずれかに記載のHHOガス発生装置に用いるためのHHOガス発生装置用の電解液であって、前記電解液は、炭酸ナトリウムを水に溶解した炭酸ナトリウム水溶液又は炭酸水素ナトリウムを水に溶解した炭酸水素ナトリウム水溶液であって、当該炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液は、水に対する炭酸ナトリウム又は炭酸水素ナトリウムの重量比が0.1%~20%の範囲内にあることを特徴とする。 [19] An electrolyte for an HHO gas generator according to the present invention is an electrolyte for an HHO gas generator for use in the HHO gas generator according to any one of [1] to [13], The electrolytic solution is a sodium carbonate aqueous solution in which sodium carbonate is dissolved in water or a sodium hydrogen carbonate aqueous solution in which sodium bicarbonate is dissolved in water, and the sodium carbonate aqueous solution or sodium hydrogen carbonate aqueous solution is sodium carbonate or sodium hydrogen carbonate with respect to water. The weight ratio is in the range of 0.1% to 20%.
 このような成分で構成されている電解液を本発明のHHOガス発生装置における電解液として用いることによって、電気分解を促進することができ、効率よく、かつ、安定的にHHOガスを発生させることができる。なお、電気分解を促進させる物質は他にも存在するが、炭酸ナトリウム又は炭酸水素ナトリウムは安価であるとともに安全性も高く容易に入手できるといった利点がある。 By using an electrolytic solution composed of such components as an electrolytic solution in the HHO gas generator of the present invention, electrolysis can be promoted, and HHO gas can be generated efficiently and stably. Can do. There are other substances that promote electrolysis, but sodium carbonate or sodium hydrogen carbonate is advantageous in that it is inexpensive and easily available with high safety.
 [20]本発明のHHOガス発生装置用の電解液においては、前記電解液は、前記炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を加熱することにより、炭酸分が除去されていることが好ましい。 [20] In the electrolytic solution for the HHO gas generator of the present invention, it is preferable that the electrolytic solution has the carbonic acid content removed by heating the aqueous sodium carbonate solution or the aqueous sodium hydrogen carbonate solution.
 これは、炭酸分が存在していると、当該炭酸分が電極(陽極及び陰極)を汚損して電極に対して悪影響を与える場合があるからである。炭酸分の除去は、電解液を加熱することによって実現できる。 This is because if carbonic acid is present, the carbonic acid may contaminate the electrodes (anode and cathode) and adversely affect the electrodes. The removal of carbonic acid can be realized by heating the electrolytic solution.
 [21]本発明のHHOガス発生方法は、[1]~[13]のいずれかに記載のHHOガス発生装置におけるHHOガス発生方法であって、水に対する炭酸ナトリウム又は炭酸水素ナトリウムの重量比が0.1%~20%の範囲内の炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を前記電解液として前記電解槽に注入する工程と、前記電流制御装置により前記各電極における陽極と陰極との間に流す電流を各電極ごとに所定の電流値に制御しながら、各電極における陽極と陰極との間に前記所定の電流値を有する電流を流すことにより前記電解液を電気分解してHHOガスを発生させる工程とを有することを特徴とする。 [21] The HHO gas generation method of the present invention is the HHO gas generation method in the HHO gas generation device according to any one of [1] to [13], wherein the weight ratio of sodium carbonate or sodium hydrogen carbonate to water is A step of injecting an aqueous sodium carbonate solution or an aqueous sodium hydrogen carbonate solution in the range of 0.1% to 20% into the electrolytic cell as the electrolytic solution, and flowing between the anode and the cathode of each electrode by the current control device While controlling the current to a predetermined current value for each electrode, by passing a current having the predetermined current value between the anode and the cathode in each electrode, the electrolyte is electrolyzed to generate HHO gas. And a process.
 このような工程を実施することによって、多量のHHOガスを安定的に発生させることができる。 A large amount of HHO gas can be stably generated by carrying out such a process.
実施形態1に係るHHOガス発生装置10の構成を示す図である。It is a figure which shows the structure of the HHO gas generator 10 which concerns on Embodiment 1. FIG. 実施形態1に係るHHOガス発生装置10に用いられる電気分解装置100の内部構成を示す図である。It is a figure which shows the internal structure of the electrolyzer 100 used for the HHO gas generator 10 which concerns on Embodiment 1. FIG. 一組の電極(陽極及び陰極)を取り出して示す図である。It is a figure which takes out and shows a set of electrodes (anode and cathode). 仕切り板180Aについて説明するために示すである。It is shown in order to explain the partition plate 180A. 電解槽110が傾いた場合を説明するために示す図である。It is a figure shown in order to demonstrate the case where the electrolytic vessel 110 inclines. 実施形態1に係るHHOガス発生方法を説明するために示すフローチャートである。3 is a flowchart for explaining the HHO gas generation method according to the first embodiment. 実施形態1に係るHHOガス発生装置10を備えた内燃機関用の燃料供給装置500を説明するために示す図である。It is a figure shown in order to demonstrate the fuel supply apparatus 500 for internal combustion engines provided with the HHO gas generator 10 which concerns on Embodiment 1. FIG. 実施形態2に係るHHOガス発生装置20を説明するために図である。It is a figure for demonstrating the HHO gas generator 20 which concerns on Embodiment 2. FIG. 実施形態3に係るHHOガス発生装置30を説明するために図である。It is a figure for demonstrating the HHO gas generator 30 which concerns on Embodiment 3. FIG. 仕切り板に形成される切り欠き部の変形例を説明するために示す図である。It is a figure shown in order to demonstrate the modification of the notch part formed in a partition plate.
 以下、本発明の実施形態について説明する。なお、以下に示す実施形態においては、本発明のHOOガス発生装置を自動車用の内燃機関(エンジンともいう。)における補助燃料発生装置として使用する場合を例にとって説明する。 Hereinafter, embodiments of the present invention will be described. In the following embodiment, a case where the HOO gas generation device of the present invention is used as an auxiliary fuel generation device in an internal combustion engine (also referred to as an engine) for automobiles will be described as an example.
 [実施形態1]
 図1は、実施形態1に係るHHOガス発生装置10の構成を示す図である
 図2は、実施形態1に係るHHOガス発生装置10に用いられる電気分解装置100の内部構成を示す図である。なお、図2は図1におけるy-y線矢視断面図である。
 図3は、一組の電極を取り出して示す図である。
 図4は、仕切り板180Aについて説明するために示すである。
 図5は、電解槽110が傾いた場合を説明するために示す図である。なお、図2~図5において、図1と同一構成要素には同一符号が付されている。
[Embodiment 1]
FIG. 1 is a diagram illustrating a configuration of an HHO gas generation device 10 according to the first embodiment. FIG. 2 is a diagram illustrating an internal configuration of an electrolysis device 100 used in the HHO gas generation device 10 according to the first embodiment. . 2 is a cross-sectional view taken along line yy in FIG.
FIG. 3 is a diagram showing a set of electrodes taken out.
FIG. 4 is a view for explaining the partition plate 180A.
FIG. 5 is a view for explaining the case where the electrolytic cell 110 is tilted. 2 to 5, the same components as those in FIG. 1 are denoted by the same reference numerals.
 実施形態1に係るHHOガス発生装置10は、図1に示すように、電気分解装置100と、電気分解装置100の各電極における陽極と陰極との間に流す電流が所定の電流値となるように制御を行う電流制御装置200と、直流電源としての電源装置300とを有している。なお、各電極の陽極は、電源(実施形態1に係るHHOガス発生装置10においては電流制御装置における各電流制御部210,220,230)の正(+)側端子に接続され、各電極の陰極は、電源の負(-)側端子に接続される電極である。 As shown in FIG. 1, the HHO gas generator 10 according to the first embodiment is configured so that the current flowing between the electrolysis device 100 and the anode and the cathode in each electrode of the electrolysis device 100 has a predetermined current value. A current control device 200 that controls the power supply, and a power supply device 300 as a DC power supply. The anode of each electrode is connected to the positive (+) side terminal of the power source (each current control unit 210, 220, 230 in the current control device in the HHO gas generator 10 according to Embodiment 1). The cathode is an electrode connected to the negative (−) terminal of the power source.
 電気分解装置100は、外観構成としては、水(純水)を主成分とする電解液101(図2参照。)を貯留する電解槽110と、電解槽110の上端開口部を密閉する密閉蓋120と、それぞれの組が陽極及び陰極で構成される複数組(3組とする。)の電極130,140,150(図2参照。)のそれぞれに電力を供給するための陽極側電極端子161a,162a,163a及び陰極側電極端子161b,162b,163bと、電解液101を電解槽110内に供給する際の電解液供給口171と、電解液供給口171を開閉するためのキャップ171aと、標高の違いなどによる気圧変化に対応して電解槽110内の圧力を調整する圧力調整部172と、電気分解によって生成されたHHOガスを排出するHHOガス排出ノズル173とを備えている。 The electrolysis apparatus 100 has an external configuration of an electrolytic cell 110 that stores an electrolytic solution 101 (see FIG. 2) containing water (pure water) as a main component, and a sealing lid that seals the upper end opening of the electrolytic cell 110. 120 and an anode side electrode terminal 161a for supplying power to each of a plurality of sets (three sets) of electrodes 130, 140, and 150 (see FIG. 2) each of which includes an anode and a cathode. 162a, 163a and cathode side electrode terminals 161b, 162b, 163b, an electrolyte solution supply port 171 when supplying the electrolyte solution 101 into the electrolytic cell 110, a cap 171a for opening and closing the electrolyte solution supply port 171, A pressure adjusting unit 172 that adjusts the pressure in the electrolytic cell 110 in response to a change in atmospheric pressure due to a difference in altitude and the like, and a HHO gas discharge nozzle that discharges HHO gas generated by electrolysis And a 73.
 なお、陽極側電極端子161a,162a,163a、陰極側電極端子161b,162b,163b、電解液供給口171、圧力調整部172及びHHOガス排出ノズル173は、それぞれ密閉蓋120の上面に設けられている。 The anode side electrode terminals 161a, 162a, 163a, the cathode side electrode terminals 161b, 162b, 163b, the electrolyte solution supply port 171, the pressure adjusting unit 172, and the HHO gas discharge nozzle 173 are provided on the upper surface of the sealing lid 120, respectively. Yes.
 電解槽110は、透明又は半透明の強化合成樹脂からなる。また、密閉蓋120は、透明又は半透明でかつ電解槽110よりも強度的に低い合成樹脂からなる。このように、密閉蓋120を電解槽110よりも強度的に低い合成樹脂としたのは、仮に、電解槽110の内部の圧力が何らかの原因で異常に高くなって電解槽110が破裂するような場合を想定したときに、電解槽110よりも強度的に低い密閉蓋120のみが破壊されれば、破壊による損失を小さく抑えることができるからである。すなわち、密閉蓋120を含む電解槽110全体が強化合成樹脂で構成されていると、破裂力の逃げ場がなくなり、破壊力がより大きくなるおそれがあるが、密閉蓋120を電解槽110よりも強度的に低い合成樹脂とすれば、密閉蓋120の破損だけで済み、破壊による損失を小さく抑えることができる。 The electrolytic cell 110 is made of transparent or translucent reinforced synthetic resin. The sealing lid 120 is made of a synthetic resin that is transparent or translucent and lower in strength than the electrolytic cell 110. Thus, the reason why the sealing lid 120 is made of a synthetic resin that is lower in strength than the electrolytic cell 110 is that the internal pressure of the electrolytic cell 110 becomes abnormally high for some reason and the electrolytic cell 110 bursts. This is because, when the case is assumed, if only the sealing lid 120 that is lower in strength than the electrolytic cell 110 is destroyed, the loss due to the destruction can be reduced. That is, if the entire electrolytic cell 110 including the sealing lid 120 is made of a reinforced synthetic resin, there is a risk that the rupture force will not escape and the destructive force may be increased, but the sealing lid 120 is stronger than the electrolytic cell 110. If the synthetic resin is extremely low, it is only necessary to break the sealing lid 120, and the loss due to breakage can be kept small.
 また、電解槽110及び密閉蓋120が透明又は半透明であることは必須ではないが、電解液101の貯留量などを外から容易に確認できるようにするために透明又は半透明であることがより好ましい。 Moreover, it is not essential that the electrolytic cell 110 and the sealing lid 120 are transparent or translucent. However, the electrolytic cell 110 and the sealing lid 120 may be transparent or translucent so that the storage amount of the electrolytic solution 101 can be easily confirmed from the outside. More preferred.
 圧力調整部172は、大気圧の変化に対応して電解槽110内の圧力を調整して、電解槽110内の圧力を適正な圧力に保持するものである。例えば、標高が高く大気圧が低い場所では電解槽110内の圧力を逃がすように作動する。また、標高の違いだけではなく、電解槽110内の圧力が何らかの原因で高くなった場合にも、電解槽110内の圧力を逃がすように作動する。これにより、電解槽110内の圧力を適正な圧力に保持することができる。 The pressure adjusting unit 172 adjusts the pressure in the electrolytic cell 110 in response to changes in atmospheric pressure, and maintains the pressure in the electrolytic cell 110 at an appropriate pressure. For example, in a place where the altitude is high and the atmospheric pressure is low, it operates so as to release the pressure in the electrolytic cell 110. Further, not only the difference in altitude, but also when the pressure in the electrolytic cell 110 becomes high for some reason, it operates so as to release the pressure in the electrolytic cell 110. Thereby, the pressure in the electrolytic cell 110 can be maintained at an appropriate pressure.
 電流制御装置200は、電極130,140,150のそれぞれに対応した3個の電流制御部210,220,230を有している。
 電流制御部210の正(+)側端子は電気分解装置100に設けられている陽極側電極端子161aに接続され、電流制御部210の負(-)側端子は電気分解装置100に設けられている負極側電極端子161bに接続されている。また、電流制御部220の正(+)側端子は電気分解装置100に設けられている陽極側電極端子162aに接続され、電流制御部220の負(-)側端子は電気分解装置100に設けられている負極側電極端子162bに接続されている。また、電流制御部230の正(+)側端子は電気分解装置100に設けられている陽極側電極端子163aに接続され、電流制御部230の負(-)側端子は電気分解装置100に設けられている負極側電極端子163bに接続されている。
The current control device 200 includes three current control units 210, 220, and 230 corresponding to the electrodes 130, 140, and 150, respectively.
The positive (+) side terminal of the current control unit 210 is connected to the anode electrode terminal 161 a provided in the electrolysis apparatus 100, and the negative (−) side terminal of the current control unit 210 is provided in the electrolysis apparatus 100. Connected to the negative electrode terminal 161b. Further, the positive (+) side terminal of the current control unit 220 is connected to the anode side electrode terminal 162 a provided in the electrolysis apparatus 100, and the negative (−) side terminal of the current control unit 220 is provided in the electrolysis apparatus 100. Connected to the negative electrode terminal 162b. Further, the positive (+) side terminal of the current control unit 230 is connected to the anode side electrode terminal 163 a provided in the electrolysis apparatus 100, and the negative (−) side terminal of the current control unit 230 is provided in the electrolysis apparatus 100. Connected to the negative electrode terminal 163b.
 なお、図1においては、電流制御部210,220,230は、それぞれが個別の設けられているかのように示されているが、1つのケース内に電流制御部210,220,230がそれぞれの回路構成として組み込まれているものであってもよい。これら電極130,140,150及び電流制御部210,220,230の詳細については後述する。 In FIG. 1, the current control units 210, 220, and 230 are shown as if they were individually provided, but the current control units 210, 220, and 230 are included in one case. It may be incorporated as a circuit configuration. Details of the electrodes 130, 140, 150 and the current control units 210, 220, 230 will be described later.
 次に、電気分解装置100の内部構成について説明する。電気分解装置100は、図2に示すように、電極130,140,150と、これら各電極130,140,150のうちの隣接す2つの電極との間を仕切る仕切り板180A,180Bとを備えている。 Next, the internal configuration of the electrolyzer 100 will be described. As shown in FIG. 2, the electrolysis apparatus 100 includes electrodes 130, 140, 150 and partition plates 180 </ b> A, 180 </ b> B that partition between two adjacent electrodes among the electrodes 130, 140, 150. ing.
 電極130,140,150における陽極及び陰極は、1枚の陽極板と2枚の陰極板とで構成されており、1枚の陽極板及び2枚の陰極板は、1枚の陽極板を中心にして2枚の陰極板が1枚の陽極板に対して一定間隔を置いて陽極板と対向するように配置されている。 The anodes and cathodes in the electrodes 130, 140, and 150 are composed of one anode plate and two cathode plates. One anode plate and two cathode plates are centered on one anode plate. Thus, the two cathode plates are arranged so as to face the anode plate at a predetermined interval with respect to the one anode plate.
 例えば、電極130を例にとって説明すると、当該電極130は、図2に示すように、1枚の陽極板131と、当該陽極板131を挟むように対向配置されている2枚の陰極板132,133とによって構成されている。また、陽極板131の下端側及び陰極板132,133の下端側は、図2に示すように、それぞれが合成樹脂などの絶縁性部材でなる電極支持部材134で動きが規制された状態で支持されている。 For example, taking the electrode 130 as an example, as shown in FIG. 2, the electrode 130 is composed of one anode plate 131 and two cathode plates 132 disposed so as to sandwich the anode plate 131. 133. Further, as shown in FIG. 2, the lower end side of the anode plate 131 and the lower end side of the cathode plates 132 and 133 are supported in a state in which movement is restricted by an electrode support member 134 made of an insulating member such as a synthetic resin. Has been.
 電極支持部材134はその下端側に凸部134aが形成され、この凸部134aは、電解槽110の内部底面に設けられた位置決め用の突起110a、110bによって動きが規制されている。このような構成であるため、陽極板131及び陰極板132,133は、それぞれの電極間の間隔が適正に保持され、かつ、電解槽110内において適正な位置に保持される。 The electrode support member 134 has a convex portion 134 a formed on the lower end side thereof, and the movement of the convex portion 134 a is restricted by positioning protrusions 110 a and 110 b provided on the inner bottom surface of the electrolytic cell 110. Due to such a configuration, the anode plate 131 and the cathode plates 132 and 133 are held at appropriate positions in the electrolytic cell 110 while maintaining a proper interval between the electrodes.
 電極140,150も電極130と同様の構成となっている。なお、図2においては、電極140、150においては、各構成要素の符号は省略されている。 The electrodes 140 and 150 have the same configuration as the electrode 130. In FIG. 2, the reference numerals of the constituent elements are omitted from the electrodes 140 and 150.
 電極130,140,150についてさらに詳細に説明する。電極130,140,150は同じ構成であるので、ここでは、電極130について図3により詳細に説明する。電極130は耐電蝕性を有している。耐電蝕性を有するようにするために、陽極板131は、基材としてチタン材が用いられ、チタン材にイリジウム皮膜が塗布法、めっき法又は溶着法によって形成されている。一方、陰極板132,133も基材としてはチタンが用いられ、チタン材にプラチナ皮膜が塗布法、めっき法又は溶着法によって形成されている。 The electrodes 130, 140, and 150 will be described in more detail. Since the electrodes 130, 140, and 150 have the same configuration, the electrode 130 will be described in detail here with reference to FIG. The electrode 130 has electric corrosion resistance. In order to have electric corrosion resistance, the anode plate 131 uses a titanium material as a base material, and an iridium film is formed on the titanium material by a coating method, a plating method, or a welding method. On the other hand, the cathode plates 132 and 133 also use titanium as a base material, and a platinum film is formed on the titanium material by a coating method, a plating method, or a welding method.
 陽極板131及び陰極板132,133をこのような構成とすることにより、耐電蝕性に優れた電極とすることができる。これにより、陽極板131及び陰極板132,133が電蝕によって劣化することを抑制でき、長期間の使用にも耐え得る電極とすることができる。 When the anode plate 131 and the cathode plates 132 and 133 are configured as described above, an electrode having excellent electric corrosion resistance can be obtained. Thereby, it can suppress that the anode plate 131 and the cathode plates 132 and 133 deteriorate by electric corrosion, and it can be set as the electrode which can endure long-term use.
 また、陽極板131及び陰極板132,133は、図3に示すように、陽極板131を中心として、2枚の陰極板132,133を陽極板131に対してそれぞれ一定間隔を置いて陽極板131と平行に対向配置する。陽極板131及び陰極板132,133をこのような配置とすることにより、簡単な構成で効率のよい電気分解が可能となる。なお、各陰極板132,133と陽極板131との間隔dは、実施形態においては、0.2mm~15mmの範囲としているが、可能な限り狭い方が好ましい。 Further, as shown in FIG. 3, the anode plate 131 and the cathode plates 132 and 133 are arranged such that the two cathode plates 132 and 133 are spaced apart from the anode plate 131 by a certain distance from the anode plate 131. It is arranged to face 131 in parallel. By arranging the anode plate 131 and the cathode plates 132 and 133 in this manner, efficient electrolysis can be achieved with a simple configuration. The distance d between the cathode plates 132 and 133 and the anode plate 131 is in the range of 0.2 mm to 15 mm in the embodiment, but is preferably as narrow as possible.
 また、陽極板131は、図3に示すように、上端部に陽極板吊り下げ金具135が取り付けられており、当該陽極板吊り下げ金具135を介して陽極側電極端子161aに電気接続されている。一方、2つの陰極板132,133は、図3に示すように、それぞれの上端部に陰極板吊り下げ金具136,137が取り付けられており、これら陰極板吊り下げ金具136,137を介して陰極側電極端子161bに電気接続されている。なお、陰極板吊り下げ金具136,137は、一本にまとめられた状態で陰極側電極端子161bに電気接続されている。
 ここでは、電極130について説明したが、電極140及び電極150も電極130と同様の材質が用いられてり、また、電極130と同様の構成となっている。
Further, as shown in FIG. 3, the anode plate 131 has an anode plate hanging bracket 135 attached to the upper end thereof, and is electrically connected to the anode side electrode terminal 161a via the anode plate hanging bracket 135. . On the other hand, as shown in FIG. 3, the two cathode plates 132 and 133 have cathode plate hanging brackets 136 and 137 attached to their upper ends, and the cathode plates are suspended via these cathode plate hanging brackets 136 and 137, respectively. The side electrode terminal 161b is electrically connected. In addition, the cathode plate hanging metal fittings 136 and 137 are electrically connected to the cathode side electrode terminal 161b in a state where they are gathered together.
Although the electrode 130 has been described here, the electrode 140 and the electrode 150 are also made of the same material as the electrode 130 and have the same configuration as the electrode 130.
 次に、仕切り板180A,180Bについて図2及び図4により説明する。仕切り板180A,180Bは、合成樹脂などによる板状部材によって形成されており、図2に示すように、電極130,140,150のうちの隣接する2つの電極の間を仕切るものである。 Next, the partition plates 180A and 180B will be described with reference to FIGS. The partition plates 180A and 180B are formed of a plate-like member made of synthetic resin or the like, and partition between two adjacent electrodes among the electrodes 130, 140, and 150, as shown in FIG.
 このような仕切り板180A,180Bを設けることにより、電解槽110の内部は、3つの仕切り部屋R1,R2,R3が形成され(図2参照。)、仕切り部屋R1には、電極130が存在し、仕切り部屋R2には、電極140が存在し、仕切り部屋R3には、電極150が存在する。 By providing such partition plates 180A and 180B, three partition chambers R1, R2, and R3 are formed inside the electrolytic cell 110 (see FIG. 2), and the electrode 130 exists in the partition chamber R1. The electrode 140 exists in the partition room R2, and the electrode 150 exists in the partition room R3.
 このような仕切り板180A,180Bについて図4によりさらに詳細に説明する。なお、仕切り板180A,180Bは同一構成となっているため、ここでは、仕切り板180Aを例にとって説明する。 Such partition plates 180A and 180B will be described in more detail with reference to FIG. Since the partition plates 180A and 180B have the same configuration, the partition plate 180A will be described as an example here.
 仕切り板180Aは、その下端辺184が電解槽110の内部底面に密接し、かつ、側端辺182,183が電解槽110の内部側面に密接した状態で電解槽110内に設置される。また、仕切り板180Aは、仕切り板180Aの上端辺181には各仕切り部屋R1,R2,R3に存在する電解液を互いに流通可能とする切り欠き部185,186が形成されている。実施形態1に係るHHOガス発生装置10においては、上端辺181と側端辺182,183とにより形成される2つの角部にそれぞれ切り欠き部185,186が形成されている。 The partition plate 180 </ b> A is installed in the electrolytic cell 110 with a lower end side 184 in close contact with the inner bottom surface of the electrolytic cell 110 and side end sides 182 and 183 in close contact with the internal side surface of the electrolytic cell 110. Further, in the partition plate 180A, notches 185 and 186 are formed on the upper end side 181 of the partition plate 180A so that the electrolytes present in the partition rooms R1, R2, and R3 can flow through each other. In the HHO gas generator 10 according to the first embodiment, notches 185 and 186 are formed at two corners formed by the upper end side 181 and the side end sides 182 and 183, respectively.
 切り欠き部185,186は、仕切り板180Aを横方向(y軸に沿った方向)及び縦方向(z軸に沿った方向)にそれぞれ所定の長さだけ切断することによって形成されているものであり、切断後における切り欠き部185,186の縁部はL字型をなす。 The notches 185 and 186 are formed by cutting the partition plate 180A by a predetermined length in the horizontal direction (direction along the y axis) and the vertical direction (direction along the z axis). Yes, the edges of the notches 185 and 186 after cutting are L-shaped.
 ところで、仕切り板180Aの下端辺184から上端辺181までの寸法(仕切り板の高さh1という。)は、仕切り板180Aを電解槽110内に設置したときに、仕切り板180Aの上端辺181が電解液101の貯留量の適正レベルL1(図2参照。)と同程度か少し高い位置となるような高さとすることが好ましい。また、仕切り板180Aの下端辺184から切り欠き部185,186の下端部P1までの高さh2は、仕切り板180Aを電解槽に設置したときに、切り欠き部185,186の下端部P1が、電解液101の貯留量の適正レベルL1よりも少し下方に位置するような高さとすることが好ましい。 By the way, the dimension from the lower end side 184 to the upper end side 181 of the partition plate 180A (referred to as the height h1 of the partition plate) is such that when the partition plate 180A is installed in the electrolytic cell 110, the upper end side 181 of the partition plate 180A. It is preferable to set the height so as to be at a level that is the same as or slightly higher than the appropriate level L1 (see FIG. 2) of the storage amount of the electrolytic solution 101. The height h2 from the lower end side 184 of the partition plate 180A to the lower end portion P1 of the notches 185 and 186 is such that the lower end portion P1 of the notches 185 and 186 is when the partition plate 180A is installed in the electrolytic cell. It is preferable to set the height so as to be slightly below the appropriate level L1 of the storage amount of the electrolytic solution 101.
 このような切り欠き部185,186は、仕切り板180Bも仕切り板180Aも同様に形成されている。仕切り板180A,180Bがこのような切り欠き部185,186を有することにより、電解槽110内の電解液101の貯留量が、切り欠き部185,186の下端部P1以上となっていれば、電解槽110を水平とした場合においては、各仕切り部屋R1,R2,R3内の電解液101をすべて同一レベルでの水平面とすることができる。また、電解槽110が多少傾いた場合においても、電解液101は各仕切り部屋R1,R2,R3ごとに水平となり、特定の電極が電解液101の液面から露出してしまうといった不具合を防止することができる。 The cutout portions 185 and 186 are formed in the same manner on the partition plate 180B and the partition plate 180A. If the partition plates 180A and 180B have such cutout portions 185 and 186, the amount of the electrolyte 101 stored in the electrolytic cell 110 is equal to or higher than the lower end portion P1 of the cutout portions 185 and 186, When the electrolytic cell 110 is horizontal, the electrolytic solution 101 in each of the partition rooms R1, R2, and R3 can be all leveled at the same level. Further, even when the electrolytic cell 110 is slightly inclined, the electrolytic solution 101 is leveled for each of the partition rooms R1, R2, and R3, and a problem that a specific electrode is exposed from the liquid surface of the electrolytic solution 101 is prevented. be able to.
 例えば、電解槽110が、図5に示すように、y軸を回転軸としてz軸に対して時計方向に所定角度θだけ傾いた場合、各仕切り部屋R1,R2,R3内の電解液101は、各仕切り部屋R1,R2,R3においてそれぞれ水平となる。このため、仕切り部屋R1,R2,R3内の電解液101はそれぞれにおいて一定量が保持され、各電極130,140,150の上端部が電解液101から露出してしまうといったことを防ぐことができる。なお、図5に示すように、電解液101の量が十分に貯留されている場合には、仕切り部屋R1の電解液は、仕切り部屋R2,R3へと流れ、仕切り部屋R2の電解液も仕切り部屋R3へと流れて行き、図5に示すようになるが、電解液の量が少ない場合には、仕切り部屋R1,R2,R3内の電解液101はそれぞれの仕切り板180A,180Bによって流れが阻止される。なお、図5においては、各構成要素の符号は図示が省略されているものもある。 For example, as shown in FIG. 5, when the electrolytic cell 110 is tilted by a predetermined angle θ clockwise with respect to the z axis with the y axis as the rotation axis, the electrolytic solution 101 in each of the partition rooms R1, R2, R3 is In each of the partition rooms R1, R2, R3, it becomes horizontal. For this reason, the electrolyte solution 101 in the partition rooms R1, R2, and R3 is maintained at a constant amount, and the upper end portions of the electrodes 130, 140, and 150 can be prevented from being exposed from the electrolyte solution 101. . As shown in FIG. 5, when the amount of the electrolytic solution 101 is sufficiently stored, the electrolytic solution in the partition room R1 flows to the partition rooms R2 and R3, and the electrolytic solution in the partition room R2 is also partitioned. As shown in FIG. 5, when the amount of the electrolytic solution is small, the electrolytic solution 101 in the partition chambers R1, R2, and R3 flows through the partition plates 180A and 180B. Be blocked. In FIG. 5, the reference numerals of the constituent elements are not shown in some cases.
 実施形態1に係るHHOガス発生装置10を自動車に搭載する場合を想定すると、自動車は、通常の走行状態においては、それほど大きく傾くことは殆どないため、このような仕切り板180A,180Bを設けることにより、特定の電極の上端部が電解液101から露出してしまうといった不具合を防止することができる。 Assuming that the HHO gas generation device 10 according to the first embodiment is mounted on an automobile, the automobile hardly tilts so much in a normal traveling state, and thus such partition plates 180A and 180B are provided. Accordingly, it is possible to prevent a problem that the upper end portion of the specific electrode is exposed from the electrolytic solution 101.
 また、電解槽110がx軸を回転軸としてz軸に対して時計方向又は反時計方向に所定角度だけ傾いた場合においても、電解槽110内の各仕切り部屋R1,R2,R3に存在する電解液101は、切り欠き部215,216の存在によって、仕切り部屋R1,R2,R3間を流通するため、各仕切り部屋R1,R2,R3において電解液101の貯留量の偏りをなくすことができる。 In addition, even when the electrolytic cell 110 is tilted by a predetermined angle clockwise or counterclockwise with respect to the z axis with the x axis as a rotation axis, the electrolytic cells existing in the partition rooms R1, R2, and R3 in the electrolytic cell 110 are present. Since the liquid 101 circulates between the partition chambers R1, R2, and R3 due to the presence of the cutout portions 215 and 216, it is possible to eliminate the uneven storage amount of the electrolyte solution 101 in each of the partition chambers R1, R2, and R3.
 このような仕切り板180A,180Bを設けることにより、電解槽110が多少傾いても、仕切り部屋R1,R2,R3内の電解液101は各仕切り部屋ごとに一定量を保持することができるため、電極の上端部が電解液101から露出してしまうといったことを防ぐことができる。特に、実施形態1に係るHHOガス発生装置を、自動車に搭載した場合には、自動車は、走行中などにおいて多少の傾斜は避けられないため、仕切り板180A.180Bを設けることは有効である。 By providing such partition plates 180A and 180B, even if the electrolytic cell 110 is slightly inclined, the electrolyte solution 101 in the partition chambers R1, R2, and R3 can maintain a certain amount for each partition chamber. It is possible to prevent the upper end portion of the electrode from being exposed from the electrolytic solution 101. In particular, when the HHO gas generator according to the first embodiment is mounted on an automobile, the automobile is inevitably tilted somewhat during traveling, and therefore the partition plates 180A. It is effective to provide 180B.
 次に電解液101について説明する。電解液101は、水(蒸留水)を主成分とするが、実施形態1に係るHHOガス発生装置10においては、水(蒸留水)に所定量の炭酸ナトリウムを溶解した炭酸ナトリウム水溶液又は水(蒸留水)に所定量の炭酸水素ナトリウムを溶解した炭酸水素ナトリウム水溶液を用いる。なお、水に対する炭酸ナトリウム又は炭酸水素ナトリウムの重量比は、0.1%~20%程度に設定されていることが好ましく、より好ましくは5%程度である。 Next, the electrolytic solution 101 will be described. The electrolytic solution 101 has water (distilled water) as a main component. However, in the HHO gas generator 10 according to Embodiment 1, a sodium carbonate aqueous solution or water (in which a predetermined amount of sodium carbonate is dissolved in water (distilled water)) or water ( An aqueous sodium hydrogen carbonate solution in which a predetermined amount of sodium hydrogen carbonate is dissolved in distilled water) is used. The weight ratio of sodium carbonate or sodium bicarbonate to water is preferably set to about 0.1% to 20%, more preferably about 5%.
 電解液101がこのような成分で構成されていることによって、電気分解を促進することができる。電気分解を促進させる物質は他にも存在するが、炭酸ナトリウム又は炭酸水素ナトリウムは安価であるとともに安全性も高く容易に入手できるといった利点がある。 Electrolysis can be accelerated | stimulated because the electrolyte solution 101 is comprised with such a component. There are other substances that promote electrolysis, but sodium carbonate or sodium bicarbonate is advantageous in that it is inexpensive and highly safe and easily available.
 また、電解液101は、炭酸分が除去された状態で電解槽110に貯留されていることが好ましい。これは、炭酸分が存在していると、当該炭酸分が電極130.140,150を汚損して電極に対して悪影響を与える場合があるからである。炭酸分が除去された状態は、炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液をそれぞれ加熱することにより得ることができる。 Moreover, it is preferable that the electrolytic solution 101 is stored in the electrolytic cell 110 in a state where the carbonic acid content is removed. This is because if carbonic acid is present, the carbonic acid may contaminate the electrodes 130.140 and 150 and adversely affect the electrodes. The state in which the carbonic acid content is removed can be obtained by heating a sodium carbonate aqueous solution or a sodium hydrogen carbonate aqueous solution, respectively.
 また、実施形態1に係るHHOガス発生装置10を寒冷地で使用可能とする場合には、凍結防止剤として例えばエチレングリコールなどを所定量だけ電解液101に混入することが好ましい。なお、凍結防止剤の量は、個々の地域における最低気温に応じて適切に設定する。 In addition, when the HHO gas generator 10 according to Embodiment 1 can be used in a cold region, it is preferable to mix a predetermined amount of, for example, ethylene glycol or the like as an antifreezing agent into the electrolytic solution 101. The amount of the antifreezing agent is appropriately set according to the minimum temperature in each region.
 次に、電流制御部210,220,230について説明する。電流制御部210,220,230は、図1に示すように、電極130,140,150に対応して設けられているものであり、電源装置300として、例えば、自動車の蓄電池(12ボルト又は24ボルト))からの電力をそれぞれ入力して、それぞれ対応する電極130,140,150における陽極板と陰極板との間に流す電流が各電極ごとに所定の電流値となるように制御する。 Next, the current control units 210, 220, and 230 will be described. As shown in FIG. 1, the current control units 210, 220, and 230 are provided corresponding to the electrodes 130, 140, and 150. As the power supply device 300, for example, an automobile storage battery (12 volts or 24 The electric power from each of the electrodes 130, 140, and 150 is controlled so that the current flowing between the anode plate and the cathode plate becomes a predetermined current value for each electrode.
 このとき、各々の電極130,140,150における陽極板と陰極板との間に流す電流は、電極の材質及び面積などに応じて適宜、最適な電流値を設定する。実験によれば、陽極板としてチタンにイリジウム皮膜が形成されているものを使用し、陰極板としてチタンにプラチナ皮膜が形成されているものを使用した場合においては、各電極130,140,150において、陽極板に対向する陰極板の面積に対して1cm当たり0.007アンペア~0.06アンペアの範囲内に設定することが好ましく、1cm当たり0.02アンペア~0.03アンペア程度に設定すると、より好結果が得られる。 At this time, the current flowing between the anode plate and the cathode plate in each of the electrodes 130, 140, and 150 is set to an optimal current value as appropriate according to the material and area of the electrode. According to experiments, when an anode plate having an iridium film formed on titanium and a cathode plate having a platinum film formed on titanium are used, the electrodes 130, 140, and 150 are used. It is preferable to set within a range of 0.007 ampere to 0.06 ampere per 1 cm 2 with respect to the area of the cathode plate facing the anode plate, and set to about 0.02 ampere to 0.03 ampere per 1 cm 2. Then, a better result is obtained.
 例えば、図2及び図3に示すように、1枚の陽極板を2枚の陰極板で挟むような構造とした場合においては、陽極板は1枚でも両面の使用となるため、陽極板及び陰極板の縦及び横の長さがそれぞれ12cmであるとすると、陽極板に対向する陰極板の面積は、この場合、12cm×12cm×2=288cmとなる。このため、1cm当たり0.007アンペアは288cmにおいては、0.007×288≒2.0アンペアとなり、1cm当たり0.06アンペアは288cmにおいては、0.06×288≒17.3アンペアとなる。このため、この場合、各電極130,140,150における陽極と陰極との間に流す電流は、約2.0アンペア~約18アンペアの範囲内することが好ましく、より好ましくは、約5アンペア~約9アンペア程度である。 For example, as shown in FIGS. 2 and 3, when a single anode plate is sandwiched between two cathode plates, even one anode plate can be used on both sides. If the vertical and horizontal lengths of the cathode plate are 12 cm, the area of the cathode plate facing the anode plate is 12 cm × 12 cm × 2 = 288 cm 2 in this case. Therefore, in the 1 cm 2 per 0.007 amperes is 288Cm 2, becomes 0.007 × 288 ≒ 2.0 amperes in 1 cm 2 per 0.06 amps is 288cm 2, 0.06 × 288 ≒ 17.3 Become an ampere. Therefore, in this case, the current flowing between the anode and the cathode in each electrode 130, 140, 150 is preferably in the range of about 2.0 amperes to about 18 amperes, more preferably about 5 amperes to It is about 9 amps.
 なお、実験によれば、電流を2アンペア未満とすると、電気分解が不十分となり、また、電流が18アンペアを超えると、電気分解が過剰となって、電解液の温度が高くなり過ぎる場合があることが確認された。なお、電極の面積を大きくすれば、より大きな電流を流すことができる。また、上記した電流値は一例であって、電極の材質などによって最適な値は多少異なってくるが、概ね、電流値は上記した範囲(約2アンペア~約18アンペアの範囲)で設定することが好ましい。 According to the experiment, when the current is less than 2 amperes, the electrolysis is insufficient, and when the current exceeds 18 amperes, the electrolysis becomes excessive and the temperature of the electrolyte solution may become too high. It was confirmed that there was. In addition, if the area of an electrode is enlarged, a bigger electric current can be sent. In addition, the above current value is an example, and the optimum value varies somewhat depending on the electrode material, etc., but the current value should generally be set in the above range (about 2 amperes to about 18 amperes). Is preferred.
 ところで、電流制御部210,220,230は、対応する電極における陽極板と陰極板との間に流す電流を上記した電流値とするような制御を行うものであるが、電源装置300からの電圧(例えば、12ボルト又は24ボルト)に対しても電圧制御を行い、この場合、各電流制御部210,220,230から出力される電圧は2ボルト~4ボルトとなるように制御する。 By the way, the current control units 210, 220, and 230 perform control such that the current flowing between the anode plate and the cathode plate in the corresponding electrode is set to the above-described current value. Voltage control is also performed on (for example, 12 volts or 24 volts), and in this case, the voltage output from each current control unit 210, 220, 230 is controlled to be 2 to 4 volts.
 このように、実施形態に係るHHOガス発生装置10においては、電流制御部210,220,230は、各電極130,140,150に対応して設けられている電極ごとの電源装置であるともいえる。このため、全体の電源装置300が仮に自動車用の蓄電池(12ボルト又は24ボルト)であっても、各電極に対しては、各電極ごとに2~4ボルト程度の電圧値で6アンペア程度の電流を流すことができる。 As described above, in the HHO gas generation device 10 according to the embodiment, the current control units 210, 220, and 230 can be said to be power sources for each electrode that are provided corresponding to the electrodes 130, 140, and 150. . For this reason, even if the entire power supply device 300 is a storage battery for automobiles (12 volts or 24 volts), for each electrode, a voltage value of about 2 to 4 volts for each electrode is about 6 amps. Current can flow.
 実施形態に係るHHOガス発生装置10がこのような電流制御部210,220,230を有することにより、各電極130,140,150における陽極板と陰極板との間に流す電流を均一化することができる。各電極130,140,150における陽極板と陰極板との間に流す電流を均一化することができることにより、各電極130,140,150において発生する熱の均一化が図れ、電極間での熱の偏りを減らすことができる。 Since the HHO gas generator 10 according to the embodiment includes such current control units 210, 220, and 230, the current that flows between the anode plate and the cathode plate in each electrode 130, 140, and 150 is made uniform. Can do. Since the current flowing between the anode plate and the cathode plate in each electrode 130, 140, 150 can be made uniform, the heat generated in each electrode 130, 140, 150 can be made uniform, and the heat between the electrodes can be made. Can be reduced.
 ここで、仮に、自動車の蓄電池を電源装置として、当該電源装置に複数(この場合、3個)の電極130,140,150を並列接続して、当該電源装置から3個の電極130,140,150に電流を流す構成であると、3個の電極において電流の偏りが生じてしまい、それによって、各電極における発熱の大きさにも偏りが生じて、局所的に高熱となってしまう箇所が生じてしまうといった不具合が生じることとなる。 Here, assuming that a storage battery of an automobile is a power supply device, a plurality of (in this case, three) electrodes 130, 140, 150 are connected in parallel to the power supply device, and three electrodes 130, 140, 150 are connected from the power supply device. If the current is applied to 150, current deviation occurs in the three electrodes, thereby causing a deviation in the magnitude of heat generation in each electrode, resulting in locally high heat. Inconvenience will occur.
 これに対して、実施形態1に係るHHOガス発生装置10のように、各電極130,140,150に対し、それぞれ対応する電流制御部210,220,230から所定の電流値(例えば6アンペア)の電流を流すような構成とすることにより、これらの不具合を解消することができる。それによって、HHOガスの発生を安定化させることができ、HHOガスを効率よく発生させることができる。なお、実施形態1に係るHHOガス発生装置10においては、各電極130,140,150における温度は、室温程度に抑えることができることが実験により確認できた。 On the other hand, like the HHO gas generation device 10 according to the first embodiment, a predetermined current value (for example, 6 amperes) is supplied from the corresponding current control units 210, 220, and 230 to the electrodes 130, 140, and 150, respectively. These problems can be eliminated by adopting a configuration that allows the current to flow. Accordingly, the generation of HHO gas can be stabilized, and the HHO gas can be generated efficiently. In addition, in the HHO gas generator 10 which concerns on Embodiment 1, it has confirmed by experiment that the temperature in each electrode 130,140,150 can be suppressed to about room temperature.
 図6は、実施形態1に係るHHOガス発生方法を説明するために示すフローチャートである。なお、図6はHHOガスを発生させるまでの工程を示すものである。 FIG. 6 is a flowchart for explaining the HHO gas generation method according to the first embodiment. FIG. 6 shows a process until HHO gas is generated.
 実施形態1に係るHHOガス発生方法の各工程は、図6に示すように、水に対する炭酸ナトリウム又は炭酸水素ナトリウムの重量比が0.1%~20%の範囲内の炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を電解液101として電解槽110に注入する工程(ステップS1)と、電流制御装置200により各電極130,140,150における陽極板と陰極板との間に流す電流を制御しながら、各電極130,140,150における陽極板と陰極板との間に電流を流すことにより電解液101を電気分解してHHOガスを発生させる工程(ステップS2)とをこの順序で実施する。 As shown in FIG. 6, each step of the HHO gas generation method according to Embodiment 1 includes a sodium carbonate aqueous solution or hydrogen carbonate in which the weight ratio of sodium carbonate or sodium hydrogen carbonate to water is in the range of 0.1% to 20%. A step of injecting an aqueous sodium solution into the electrolytic cell 110 as the electrolytic solution 101 (step S1), and a current control device 200 controlling the current flowing between the anode plate and the cathode plate in each electrode 130, 140, 150, A step (step S2) of generating an HHO gas by electrolyzing the electrolytic solution 101 by passing an electric current between the anode plate and the cathode plate of the electrodes 130, 140, 150 is performed in this order.
 図7は、実施形態1に係るHHOガス発生装置10を備えた内燃機関用の燃料供給装置500を説明するために示す図である。なお、内燃機関は自動車用のエンジンであるとする。図7においては、HHOガス発生装置10の構成要素のうち電流制御部210,220,230及び電源装置300は図示を省略し、電気分解装置100のみを示している。また、図7に示されている電気分解装置100は、図1における電気分解装置100を矢印a方向に見た図であり、図7において、図1と同一構成要素には同一符号を付している。また、電解槽110内に設けられている電極なども図示を省略している。 FIG. 7 is a view for explaining a fuel supply device 500 for an internal combustion engine including the HHO gas generation device 10 according to the first embodiment. It is assumed that the internal combustion engine is an automobile engine. In FIG. 7, among the components of the HHO gas generator 10, the current control units 210, 220, 230 and the power supply device 300 are not shown, and only the electrolyzer 100 is shown. Further, the electrolysis apparatus 100 shown in FIG. 7 is a view of the electrolysis apparatus 100 in FIG. 1 as viewed in the direction of the arrow a. In FIG. 7, the same components as those in FIG. ing. Further, illustration of electrodes and the like provided in the electrolytic cell 110 is also omitted.
 内燃機関用の燃料供給装置500は、図7に示すように、一般的な自動車において元々存在するエアクリーナー510と、キャブレター又は電子制御式燃料噴射装置(ここではキャブレター520として説明する。)と、吸気マニホールド530とに加えて、HHOガス発生装置10を組み込んだ構成となっている。 As shown in FIG. 7, the fuel supply device 500 for an internal combustion engine includes an air cleaner 510 originally present in a general automobile, a carburetor or an electronically controlled fuel injection device (herein described as a carburetor 520), and In addition to the intake manifold 530, the HHO gas generator 10 is incorporated.
 キャブレター520は、燃料(ガソリンとする。)を霧化し、霧化したガソリンに空気を所定の混合比で混合させた燃料(空気混合霧化ガソリンと呼ぶことにする。)」を生成して、当該空気混合霧化ガソリンを吸気マニホールド530に供給するものである。また、吸気マニホールド530は、キャブレター520から供給された空気混合霧化ガソリンをエンジンの各燃焼室(図示せず。)に分配するものである。一方、HHOガス発生装置10は、電気分解装置100に設けられているHHOガス排出ノズル173がHHOガス供給用パイプ540によってエンジンの燃料取り入れ口としての吸気マニホールド530に接続されており、電気分解によって発生したHHOガスを吸気マニホールド530に供給する。 The carburetor 520 atomizes the fuel (referred to as gasoline) and generates fuel (hereinafter referred to as air-mixed atomized gasoline) in which air is mixed with the atomized gasoline at a predetermined mixing ratio. The air-mixed atomized gasoline is supplied to the intake manifold 530. The intake manifold 530 distributes the air-mixed atomized gasoline supplied from the carburetor 520 to each combustion chamber (not shown) of the engine. On the other hand, in the HHO gas generator 10, the HHO gas discharge nozzle 173 provided in the electrolyzer 100 is connected to an intake manifold 530 as a fuel intake port of an engine by an HHO gas supply pipe 540. The generated HHO gas is supplied to the intake manifold 530.
 内燃機関用の燃料供給装置500がこのような構成となっていることにより、吸気マニホールド530において、キャブレター520から供給される空気混合霧化ガソリンにHHOガスが混合され、HHOガスが混合された空気混合霧化ガソリンが当該吸気マニホールドによってエンジンの各燃焼室に分配される。 Since the fuel supply device 500 for the internal combustion engine has such a configuration, in the intake manifold 530, the HHO gas is mixed with the air-mixed atomized gasoline supplied from the carburetor 520, and the HHO gas is mixed with the air. Mixed atomized gasoline is distributed to each combustion chamber of the engine by the intake manifold.
 このような内燃機関用の燃料供給装置500において、HHOガス発生装置10を始動するためのスイッチ(図示せず。)は、自動車のイグニションスイッチ(図示せず。)と連動するようにしておく。これにより、自動車のイグニションスイッチがオンとなってエンジンが始動すると、HHOガス発生装置10も始動し、各電流制御部210,220,230(図1参照。)から電気分解装置100の各電極130,140,150(図2参照。)に電流が与えられて、電気分解装置100において電気分解が起こる。すなわち、エンジンが動作している間は、電気分解装置100においては電気分解が起こってHHOガスが発生し、発生したHHOガスは、HHOガス排出ノズル173から吸気マニホールド530に供給されるようになっている。 In such a fuel supply device 500 for an internal combustion engine, a switch (not shown) for starting the HHO gas generation device 10 is interlocked with an ignition switch (not shown) of the automobile. Thus, when the ignition switch of the automobile is turned on and the engine is started, the HHO gas generator 10 is also started, and each electrode 130 of the electrolysis apparatus 100 is started from each current control unit 210, 220, 230 (see FIG. 1). , 140, 150 (see FIG. 2), and electrolysis occurs in the electrolysis apparatus 100. That is, while the engine is operating, electrolysis occurs in the electrolyzer 100 to generate HHO gas, and the generated HHO gas is supplied from the HHO gas discharge nozzle 173 to the intake manifold 530. ing.
 なお、内燃機関用の燃料供給装置500においては、キャブレター520内に取り入れた空気の容量に対するHHOガスの容量を、空気に対して1/500~1/50000の割合で混合させることが好ましく、より好ましくは、HHOガスの容量を空気に対して1/20000~1/40000の割合で混合させることである。HHOガスをこのような割合で空気に混合させることにより、エンジンをより高い燃焼効率で動作させることができ、それによって、燃費の向上と有害な排気ガスの排出量の削減が可能となることが確かめられた。なお、実験においては、HHOガスの容量を空気に対して1/30000の割合で混合させた場合に、より好結果が得られた。 In the fuel supply device 500 for an internal combustion engine, it is preferable to mix the volume of HHO gas with respect to the volume of air taken into the carburetor 520 at a ratio of 1/500 to 1 / 50,000. Preferably, the volume of the HHO gas is mixed at a ratio of 1/20000 to 1/40000 with respect to air. By mixing HHO gas with air at such a ratio, the engine can be operated with higher combustion efficiency, which can improve fuel efficiency and reduce harmful exhaust emissions. It was confirmed. In the experiment, better results were obtained when the volume of the HHO gas was mixed at a rate of 1/30000 with respect to the air.
 HHOガスをこのような割合で空気に混合させるには、図7において、HHOガス発生装置10で発生したHHOガスをHHOガス排出ノズル173からHHOガス供給用パイプ540を通って、吸気マニホールド530に供給する経路において、図示は省略するが供給制御バルブなどのHHOガス供給量制御装置を設けることによって実現可能である。 In order to mix the HHO gas with the air at such a ratio, in FIG. 7, the HHO gas generated by the HHO gas generator 10 is supplied from the HHO gas discharge nozzle 173 to the intake manifold 530 through the HHO gas supply pipe 540. Although not shown in the supply path, this can be realized by providing an HHO gas supply amount control device such as a supply control valve.
 また、このような内燃機関用の燃料供給装置500を自動車に搭載した場合においては、エンジンンの点火タイミングを通常よりも少し早めとなるように設定することが好ましい。これは、燃焼エネルギーの大きなHHOガスが、霧化されたガソリンに混入された場合、通常の点火タイミングよりも少し早めに点火した方が、より効率的にエンジンが動作して、より大きなパワーを生み出すことができるからである。 Also, when such a fuel supply device 500 for an internal combustion engine is mounted on an automobile, it is preferable to set the ignition timing of the engine to be slightly earlier than usual. This is because if HHO gas with high combustion energy is mixed in atomized gasoline, the engine will operate more efficiently if it is ignited slightly earlier than the normal ignition timing. Because it can be created.
 このような内燃機関用の燃料供給装置500を搭載した自動車の場合、当該内燃機関用の燃料供給装置500を搭載していない自動車、すなわち、内燃機関用の燃料供給装置にHHOガス発生装置10を備えていない自動車に比べて様々な利点が得られることがわかった。これについて以下に説明する。 In the case of an automobile equipped with such a fuel supply device 500 for an internal combustion engine, the HHO gas generator 10 is installed in the automobile not equipped with the fuel supply device 500 for the internal combustion engine, that is, the fuel supply device for the internal combustion engine. It has been found that there are various advantages compared to a car that does not have one. This will be described below.
 ここでは、ある自動車メーカー(A社とする)における排気量が1300ccの自動車(第1の測定用車両という。)及び1800ccの自動車(第2の測定用車両という。)と、他の自動車メーカー(B社とする。)の排気量が1000ccの自動車(第3の測定用車両という。)とを用いて、HHOガス発生装置10を備えていない場合と、HHOガス発生装置10を備えている場合の両方について、燃費及び排気ガスの測定結果について説明する。 Here, an automobile with a displacement of 1300 cc (referred to as a first measurement vehicle) and an 1800 cc automobile (referred to as a second measurement vehicle) in a certain automobile manufacturer (referred to as company A) and another automobile manufacturer (referred to as company A). The case where the HHO gas generator 10 is not used, and the case where the HHO gas generator 10 is provided using an automobile (referred to as a third measurement vehicle) having a displacement of 1000 cc. For both, the measurement results of fuel consumption and exhaust gas will be described.
 なお、この実験に用いた3つの自動車(第1~第3の測定用車両)は、ともにガソリンエンジンを搭載した自動車(ガソリン車という。)である。また、以下では、内燃機関用の燃料供給装置にHHOガス発生装置10が備えている自動車を「HHOガス発生装置非搭載自動車」と表記し、内燃機関用の燃料供給装置にHHOガス発生装置10を備えている自動車を「HHOガス発生装置搭載自動車」と表記することとする。なお、「HHOガス発生装置搭載自動車」の場合は、当然のことながら、HHOガスをエンジンに供給している状態であるとする。 Note that the three automobiles (first to third measurement vehicles) used in this experiment are automobiles equipped with a gasoline engine (referred to as gasoline cars). In the following, an automobile provided with the HHO gas generator 10 in the fuel supply device for the internal combustion engine will be referred to as “a vehicle not equipped with the HHO gas generator”, and the HHO gas generator 10 will be used as the fuel supply device for the internal combustion engine. An automobile equipped with the “HHO gas generator mounted automobile” will be described. In the case of “a vehicle equipped with a HHO gas generator”, it is natural that the HHO gas is supplied to the engine.
 まず、第1の測定用車両を用いて「HHOガス発生装置非搭載自動車」で、市街地走行及び長距離走行を行った場合(累計200km以上)の平均燃費は、ガソリン1リットルにつき「11.1km」であった。これに対に対して、第1の測定用車両を用いて「HHOガス発生装置搭載自動車」で、市街地走行及び長距離走行(累計300km以上)を行った場合の平均燃費は、ガソリン1リットルにつき「18.8km」であった。このように、第1の測定用車両においては、「HHOガス発生装置搭載自動車」の場合は「HHOガス発生装置非搭載自動車」の場合に比べて、燃費がほぼ69%向上した。 First, when using the first vehicle for measurement and running on an urban area and traveling long distances (cumulative total of 200 km or more) with an “HHO gas generator non-equipped vehicle”, the average fuel consumption is “11.1 km per liter of gasoline. "Met. On the other hand, the average fuel consumption when running on urban areas and traveling long distances (cumulative total of 300 km or more) with the “HHO gas generator-equipped vehicle” using the first measurement vehicle is 1 liter of gasoline. It was “18.8 km”. As described above, in the first measurement vehicle, the fuel consumption of the “vehicle equipped with the HHO gas generator” was improved by approximately 69% compared to the case of the “vehicle not equipped with the HHO gas generator”.
 また、第1の測定用車両を用いて「HHOガス発生装置非搭載自動車」で、一酸化炭素(CO)及び炭化水素(HC)の大気中への排出濃度を測定した結果、COは「0.35vol%」、HCは「289ppm」であった。これに対して、第1の測定用車両を用いて「HHOガス発生装置搭載自動車」で、一酸化炭素(CO)及び炭化水素(HC)の大気中への排出濃度を測定した結果、COは「0.04vol%」、HCは「8ppm」であった。このように、第1の測定用車両においては、COはほぼ88%も削減され、HCは97%も削減された。 In addition, as a result of measuring the emission concentration of carbon monoxide (CO) and hydrocarbon (HC) into the atmosphere with the “vehicle not equipped with the HHO gas generator” using the first measurement vehicle, CO is “0 .35 vol% "and HC was" 289 ppm ". On the other hand, as a result of measuring the emission concentration of carbon monoxide (CO) and hydrocarbons (HC) into the atmosphere with the “vehicle with HHO gas generator” using the first measurement vehicle, CO is “0.04 vol%”, HC was “8 ppm”. Thus, in the first measurement vehicle, CO was reduced by almost 88% and HC was reduced by 97%.
 次に、第2の測定用車両を用いて「HHOガス発生装置非搭載自動車」で、市街地走行及び長距離走行を行った場合(累計200km以上)の平均燃費は、ガソリン1リットルにつき「11.7km」であった。これに対に対して、第2の測定用車両を用いて「HHOガス発生装置搭載自動車」で、市街地走行及び長距離走行(累計200km以上)を行った場合の平均燃費は、ガソリン1リットルにつき「17.8km」であった。このように、第2の測定用車両においては、「HHOガス発生装置搭載自動車」の場合は「HHOガス発生装置非搭載自動車」の場合に比べて、燃費がほぼ52%向上した。 Next, when using the second vehicle for measurement and driving in an urban area and traveling long distances (total of 200 km or more) with an “HHO gas generator non-equipped vehicle”, the average fuel consumption is “11. 7 km ". On the other hand, the average fuel consumption when running in urban areas and traveling long distances (cumulative total of 200 km or more) with a “HHO gas generator-equipped vehicle” using the second vehicle for measurement is 1 liter of gasoline. It was “17.8 km”. Thus, in the second vehicle for measurement, the fuel consumption of the “vehicle with the HHO gas generator” improved by approximately 52% compared to the case of the “vehicle with no HHO gas generator”.
 また、第2の測定用車両を用いて「HHOガス発生装置非搭載自動車」で、一酸化炭素(CO)及び炭化水素(HC)の大気中への排出濃度を測定した結果、COは「0.32vol%」、HCは「186ppm」であった。これに対して、第2の測定用車両を用いて「HHOガス発生装置搭載自動車」で、一酸化炭素(CO)及び炭化水素(HC)の大気中への排出濃度を測定した結果、COは「0.05vol%」、HCは「45ppm」であった。このように、第2の測定用車両においては、COはほぼ84%も削減され、HCは76%も削減された。 Moreover, as a result of measuring the emission concentration of carbon monoxide (CO) and hydrocarbons (HC) into the atmosphere with a “vehicle not equipped with a HHO gas generator” using the second measurement vehicle, CO was “0 .32 vol% "and HC was" 186 ppm ". On the other hand, as a result of measuring the emission concentration of carbon monoxide (CO) and hydrocarbons (HC) into the atmosphere with the “vehicle with HHO gas generator” using the second measurement vehicle, CO is “0.05 vol%”, HC was “45 ppm”. Thus, in the second measurement vehicle, CO was reduced by almost 84% and HC was reduced by 76%.
 また、第3の測定用車両を用いて「HHOガス発生装置非搭載自動車」で、市街地走行及び長距離走行を行った場合(累計200km以上)の平均燃費は、ガソリン1リットルにつき「12.5km」であった。これに対に対して、第3の測定用車両を用いて「HHOガス発生装置搭載自動車」で、市街地走行及び長距離走行(累計300km以上)を行った場合の平均燃費は、ガソリン1リットルにつき「19.3km」であった。このように、第3の測定用車両においては、「HHOガス発生装置搭載自動車」の場合は「HHOガス発生装置非搭載自動車」の場合に比べて、燃費がほぼ54%向上した。 In addition, when the third vehicle for measurement is used for “urban vehicle and long-distance driving with a vehicle not equipped with an HHO gas generator” (total of 200 km or more), the average fuel consumption is “12.5 km per liter of gasoline. "Met. On the other hand, the average fuel consumption when running on an urban area and traveling long distances (cumulative total of 300 km or more) with a “HHO gas generator-equipped vehicle” using a third measurement vehicle is 1 liter of gasoline. It was “19.3 km”. Thus, in the third measurement vehicle, the fuel consumption of the “vehicle with the HHO gas generator” was improved by about 54% compared to the case of the “vehicle with no HHO gas generator”.
 また、第3の測定用車両を用いて「HHOガス発生装置非搭載自動車」で、一酸化炭素(CO)及び炭化水素(HC)の大気中への排出濃度を測定した結果、COは「0.85vol%」、HCは「200ppm」であった。これに対して、第3の測定用車両を用いて「HHOガス発生装置搭載自動車」で、一酸化炭素(CO)及び炭化水素(HC)の大気中への排出濃度を測定した結果、COは「0.07vol%」、HCは「70ppm」であった。このように、第3の測定用車両においては、COはほぼ91%も削減され、HCは65%も削減された。 In addition, as a result of measuring the emission concentration of carbon monoxide (CO) and hydrocarbon (HC) into the atmosphere with a “vehicle not equipped with an HHO gas generator” using a third measurement vehicle, CO is “0 .85 vol% "and HC was" 200 ppm ". On the other hand, as a result of measuring the emission concentration of carbon monoxide (CO) and hydrocarbons (HC) into the atmosphere with the “vehicle with HHO gas generator” using the third measurement vehicle, CO is “0.07 vol%”, HC was “70 ppm”. Thus, in the third measurement vehicle, CO was reduced by almost 91% and HC was reduced by 65%.
 以上の例では、排気ガスに含まれる有害物質としては、一酸化炭素(CO)と炭化水素(HC)の測定結果について示したが、排気ガスに含まれるCO及びHC以外の有害物質として、例えば、硫黄酸化物(SOx)及び窒素酸化物(NOx)についても測定したところ、その測定データはここでは示さないが、第1~第3の測定車両のいずれにおいても、「HHOガス発生装置搭載自動車」の場合は、大幅に削減することができることが確かめられた。 In the above example, the measurement results of carbon monoxide (CO) and hydrocarbon (HC) are shown as harmful substances contained in the exhaust gas. However, as harmful substances other than CO and HC contained in the exhaust gas, for example, , Sulfur oxide (SOx) and nitrogen oxide (NOx) were also measured, and the measurement data are not shown here. However, in any of the first to third measurement vehicles, “HHO gas generator-equipped vehicle” ", It was confirmed that it could be significantly reduced.
 このように、HHOガス発生装置10を搭載することにより、排気ガスに含まれる有害物質を大幅に少なくすることができるのは、燃焼性能の高いHHOガスを混入させることによって、ガソリンが完全燃焼に近い状態で燃焼するからであると考えられる。 In this way, by installing the HHO gas generator 10, the harmful substances contained in the exhaust gas can be greatly reduced by mixing the HHO gas with high combustion performance so that the gasoline is completely combusted. It is thought that it is because it burns in a close state.
 また、「HHOガス発生装置搭載の場合」は、エンジン音も静かになることも確かめられた。これも、燃焼性能の高いHHOガスを混入させることによって、ガソリンが完全燃焼に近い状態で燃焼するからであると考えられる。 Also, it was confirmed that the engine sound was quieter when "HHO gas generator was installed". This is also considered to be because gasoline is burned in a state close to complete combustion by mixing HHO gas having high combustion performance.
 ところで、HHOガス発生装置10において、電解槽110に貯留されている電解液101は徐々に減少して行くこととなるが、初期状態において電解槽110の電解液101の量を適正レベルL1まで満たした状態にしておけば、一般的な自動車においては、1000km程度の走行が可能であことが実験により確認された。なお、電解液101を補充する際は、電解液供給口171のキャップ171aを開いて電解液供給口171から所定量を補充すればよい。 By the way, in the HHO gas generator 10, the electrolytic solution 101 stored in the electrolytic cell 110 gradually decreases, but in the initial state, the amount of the electrolytic solution 101 in the electrolytic cell 110 is satisfied to the appropriate level L1. In this state, it was confirmed by experiments that a typical automobile can travel about 1000 km. In addition, when replenishing the electrolytic solution 101, the cap 171a of the electrolytic solution supply port 171 may be opened to replenish a predetermined amount from the electrolytic solution supply port 171.
 [実施形態2]
 図8は、実施形態2に係るHHOガス発生装置20を説明するために図である。図8は図1に対応する図である。なお、図8が図1と異なるのは、温度制御装置600を有している点のみであり、その他の構成は、図1と同様であるので、同一構成要素には同一符号を付している。
[Embodiment 2]
FIG. 8 is a diagram for explaining the HHO gas generator 20 according to the second embodiment. FIG. 8 corresponds to FIG. Note that FIG. 8 differs from FIG. 1 only in that it has a temperature control device 600, and the other components are the same as those in FIG. Yes.
 実施形態2に係るHHOガス発生装置20において用いる温度制御装置600としては、電解液の温度が第1設定温度に達するとオフし、その後、電解液の温度が第1設定温度よりも低い第2設定温度にまで降下するとオンする温度検知スイッチ(例えばサーモスタット)が用いられている。なお、実施形態2に係るHHOガス発生装置20においては、温度制御装置600を温度検知スイッチ600ともいう。 The temperature control device 600 used in the HHO gas generator 20 according to Embodiment 2 is turned off when the temperature of the electrolytic solution reaches the first set temperature, and then the second temperature of the electrolytic solution is lower than the first set temperature. A temperature detection switch (for example, a thermostat) that turns on when the temperature falls to a set temperature is used. In the HHO gas generation device 20 according to the second embodiment, the temperature control device 600 is also referred to as a temperature detection switch 600.
 また、温度検知スイッチ600は、実施形態2に係るHHOガス発生装置20においては、電解槽110の温度を計測して、計測した温度に基づいてオン/オフ動作するものであるとする。このように、実施形態2に係るHHOガス発生装置20においては、電解槽110の温度を計測して、計測した電解槽温度に基づいてオン/オフ動作するものであるが、電解槽110の温度は電解液101の温度に依存するものであるため、以下、「電解槽の温度」を「電解液の温度」と表記する。 In the HHO gas generator 20 according to the second embodiment, the temperature detection switch 600 measures the temperature of the electrolytic cell 110 and is turned on / off based on the measured temperature. As described above, in the HHO gas generator 20 according to the second embodiment, the temperature of the electrolytic cell 110 is measured and the on / off operation is performed based on the measured electrolytic cell temperature. Since this depends on the temperature of the electrolytic solution 101, hereinafter, “temperature of the electrolytic cell” is expressed as “temperature of the electrolytic solution”.
 温度検知スイッチ600は、図8に示すように、電源装置300の正〈+〉側端子と各電流制御部210,220,230の正(+)側端子との間に介在されるように配線されている。温度検知スイッチ600がこのように配線されているため、電解液101の温度が第1設定温度にまで上昇して温度検知スイッチ600がオフすると、各電流制御部210,220,230への通電がオフし、その後、電解液101の温度が第1設定温度よりも低い第2設定温度にまで降下して温度検知スイッチ600がオンすると、電流制御部210,220,230への通電がオンに復帰する。 As shown in FIG. 8, the temperature detection switch 600 is wired so as to be interposed between the positive <+> side terminal of the power supply device 300 and the positive (+) side terminal of each current control unit 210, 220, 230. Has been. Since the temperature detection switch 600 is wired in this way, when the temperature of the electrolyte 101 rises to the first set temperature and the temperature detection switch 600 is turned off, the current control units 210, 220, and 230 are energized. After that, when the temperature of the electrolyte 101 falls to a second set temperature lower than the first set temperature and the temperature detection switch 600 is turned on, the power supply to the current control units 210, 220, and 230 is turned on. To do.
 なお、第1設定温度は65℃~75℃の範囲が好ましく、実施形態2に係るHHOガス発生装置20においては、第1設定温度を70℃としている。また、第2設定温度は45℃~60℃の範囲が好ましい。なお、第2設定温度は45℃~60℃の範囲において可能な限り高い温度が好ましい。これは、電解液101の温度が第1設定温度となって通電がオフした後、できるだけ早く通電をオンに復帰させて電気分解を再開させるようにするためである。 The first set temperature is preferably in the range of 65 ° C. to 75 ° C., and in the HHO gas generator 20 according to Embodiment 2, the first set temperature is 70 ° C. The second set temperature is preferably in the range of 45 ° C to 60 ° C. The second set temperature is preferably as high as possible in the range of 45 ° C. to 60 ° C. This is because after the temperature of the electrolyte solution 101 becomes the first set temperature and the energization is turned off, the energization is turned back on as soon as possible to restart the electrolysis.
 このような温度検知スイッチ600を有することにより、電解液101の温度が70℃より高い温度になるのを確実に防止することが可能となる。 By having such a temperature detection switch 600, it is possible to reliably prevent the temperature of the electrolytic solution 101 from becoming higher than 70 ° C.
 なお、実施形態2に係るHHOガス発生装置20も実施形態1に係るHHOガス発生装置10と同様、電流制御部210,220,230による電流制御によって、各電極130,140,140における陽極板と陰極板との間に流す電流の均一化が図れ、電解液101の温度も適正な温度に抑制できるが、電解液101の温度そのものの制御をも行うことにより、何らかの原因で電解液101の温度が異常に上昇することを確実に防止することができる。すなわち、実施形態2に係るHHOガス発生装置20においては、電解液101の温度が異常に上昇することを防止するために、二重の対策が施されていることとなる。 In addition, the HHO gas generator 20 according to the second embodiment is similar to the HHO gas generator 10 according to the first embodiment, and the anode plate in each electrode 130, 140, 140 is controlled by current control by the current control units 210, 220, 230. The current flowing between the cathode plate can be made uniform and the temperature of the electrolytic solution 101 can be suppressed to an appropriate temperature. However, by controlling the temperature of the electrolytic solution 101 itself, the temperature of the electrolytic solution 101 for some reason. Can be reliably prevented from rising abnormally. That is, in the HHO gas generator 20 according to the second embodiment, double measures are taken to prevent the temperature of the electrolyte solution 101 from rising abnormally.
 なお、温度検知スイッチ600は、電解槽110の温度を計測するようにしたが、電解液101の温度を直接計測することができれば、温度検知スイッチ600を電解液101に浸漬して電解液101の温度を直接計測するようにしてもよい。 The temperature detection switch 600 measures the temperature of the electrolytic bath 110. However, if the temperature of the electrolytic solution 101 can be directly measured, the temperature detection switch 600 is immersed in the electrolytic solution 101 and the temperature of the electrolytic solution 101 is reduced. The temperature may be measured directly.
 また、実施形態2に係るHHOガス発生装置20も実施形態1に係るHHOガス発生装置10と同様、図7に示すように、自動車に搭載することによって、燃費及び排気ガスの減少など、実施形態1に係るHHOガス発生装置10と同様の効果が得られる。 In addition, the HHO gas generator 20 according to the second embodiment is similar to the HHO gas generator 10 according to the first embodiment, as shown in FIG. The same effect as that of the HHO gas generator 10 according to 1 is obtained.
 [実施形態3]
 実施形態3に係るHHOガス発生装置30は、電解槽110内の電解液101を適正な量に保持するために、電解液101の補充を自動的に行うことができる電解液補充機構700を設ける。
[Embodiment 3]
The HHO gas generator 30 according to the third embodiment is provided with an electrolyte replenishing mechanism 700 that can automatically replenish the electrolyte 101 in order to keep the electrolyte 101 in the electrolytic cell 110 in an appropriate amount. .
 図9は、実施形態3に係るHHOガス発生装置30を説明するために示す図である。なお、実施形態3に係るHHOガス発生装置30においても、実施形態1に係るHHOガス発生装置10と同様に、電気分解装置100、電流制御部210,220,230及び電源装置300を有しているが、図9においては、電流制御部210,220,230及び電源装置300は図示を省略している。また、図9に示されている電気分解装置100は図1における電気分解装置100を矢印b方向に見た図であり、図9において、図1と同一構成要素には同一符号を付している。また、電解槽110内に設けられている電極なども図示を省略している FIG. 9 is a view for explaining the HHO gas generator 30 according to the third embodiment. Note that the HHO gas generator 30 according to the third embodiment also includes the electrolyzer 100, the current control units 210, 220, and 230, and the power supply device 300, similar to the HHO gas generator 10 according to the first embodiment. However, in FIG. 9, the current control units 210, 220, 230 and the power supply device 300 are not shown. Further, the electrolyzer 100 shown in FIG. 9 is a view of the electrolyzer 100 in FIG. 1 as viewed in the direction of the arrow b. In FIG. 9, the same components as those in FIG. Yes. Further, the illustration of electrodes provided in the electrolytic cell 110 is also omitted.
 電解液補充機構700は、図9に示すように、電解液101を蓄えておくための補助タンク710と、補助タンク710の下端部に設けられた電解液排出口720と電解槽110側の電解液供給口171とを接続する電解液供給パイプ730とを有している。電解液供給パイプ730は、その先端部731が電解液101の例えば適正レベルL1の位置となるように設定しておく。また、補助タンク710には、十分な量の電解液101を貯留した状態としておく。 As shown in FIG. 9, the electrolyte replenishment mechanism 700 includes an auxiliary tank 710 for storing the electrolyte 101, an electrolyte outlet 720 provided at the lower end of the auxiliary tank 710, and electrolysis on the electrolytic tank 110 side. An electrolytic solution supply pipe 730 that connects the liquid supply port 171 is provided. The electrolyte solution supply pipe 730 is set so that the tip portion 731 is at a position of the electrolyte solution 101 at, for example, an appropriate level L1. Further, a sufficient amount of the electrolyte solution 101 is stored in the auxiliary tank 710.
 このような補助タンク710を設けることにより、電解槽110内の電解液101の量が適正レベルL1よりも減少すると、補助タンク710から電解液が電解槽110内に自然に滴下するので、電解槽110内の電解液101が補充される。このため、電解槽110内の電解液101は、常時、適正レベルL1を保持することができる。これにより、ユーザーは電解槽110内の電解液101量を殆ど気にする必要がなくなる。 By providing such an auxiliary tank 710, when the amount of the electrolytic solution 101 in the electrolytic cell 110 decreases below the appropriate level L1, the electrolytic solution naturally drops from the auxiliary tank 710 into the electrolytic cell 110. The electrolyte solution 101 in 110 is replenished. For this reason, the electrolytic solution 101 in the electrolytic cell 110 can always maintain the appropriate level L1. This eliminates the need for the user to worry about the amount of the electrolytic solution 101 in the electrolytic cell 110.
 実施形態3に係るHHOガス発生装置30が実施形態1に係るHHOガス発生装置10と異なるのは、電解液補充機構700を設けた点だけであり、その他は、実施形態1に係るHHOガス発生装置10と同様であり、燃費及び排気ガスの減少などの効果は実施形態1に係るHHOガス発生装置10と同様の効果が得られる。なお、実施形態3においては、実施形態1に係るHOOガス発生装置10に電解液補充機構700を設けた場合を例示したが、実施形態2に係るHOOガス発生装置20に電解液補充機構700を設けることもできることは勿論である。 The HHO gas generation device 30 according to the third embodiment is different from the HHO gas generation device 10 according to the first embodiment only in that an electrolyte replenishment mechanism 700 is provided, and otherwise, the HHO gas generation device according to the first embodiment is generated. Similar to the apparatus 10, effects such as fuel consumption and reduction of exhaust gas are the same as those of the HHO gas generator 10 according to the first embodiment. In the third embodiment, the case where the HOO gas generating apparatus 10 according to the first embodiment is provided with the electrolyte replenishing mechanism 700 is illustrated, but the electrolyte replenishing mechanism 700 is added to the HOO gas generating apparatus 20 according to the second embodiment. Of course, it can also be provided.
 以上、本発明を上記各実施形態に基づいて説明したが、本発明は上記各実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の変形実施が可能であり、例えば、次のような変形実施も可能である。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit thereof. It is also possible to carry out such modifications.
 (1)上記各実施形態において説明した仕切り板180A,180Bの切り欠き部185,186は、切断後の切り欠き縁部がL字型をなすような形状としたが、これに限られるものではなく、電解液が隣接する仕切り部屋に互いに流通可能であれば、切り欠き部の形状は特に限定されるものではない。 (1) The cutout portions 185 and 186 of the partition plates 180A and 180B described in the above embodiments are shaped so that the cutout edge portions after cutting are L-shaped. However, the present invention is not limited to this. However, the shape of the notch is not particularly limited as long as the electrolytes can circulate in the adjacent partition rooms.
 図10は、仕切り板180A,180Bに形成される切り欠き部の変形例を説明するために示す図である。図10(a)は第1変形例を示す図であり、図10(b)は第2変形例を示す図である。この場合も仕切り板180Aを例にとって説明する。図10(a)に示す第1変形例は、仕切り板180Aの上端辺181と側端辺182,183とによって形成される角部を斜めに切り欠いて、それを切り欠き部185,186としたものである。また、図10(b)に示す第2変形例は、仕切り板180Aの上端辺181と側端辺182,183とによって形成される角部に貫通孔を形成して、それを切り欠き部185,186としたものである。 FIG. 10 is a view for explaining a modification of the notch formed in the partition plates 180A and 180B. FIG. 10A is a diagram showing a first modification, and FIG. 10B is a diagram showing a second modification. In this case, the partition plate 180A will be described as an example. In the first modification shown in FIG. 10A, the corner formed by the upper end side 181 and the side end sides 182 and 183 of the partition plate 180A is cut diagonally, and the cut portions 185 and 186 are cut out. It is a thing. Further, in the second modified example shown in FIG. 10B, a through hole is formed in a corner portion formed by the upper end side 181 and the side end sides 182 and 183 of the partition plate 180A, and the cutout portion 185 is formed. , 186.
 図10(a),(b)に示すような切り欠き部185,186を形成することによっても、図4に示すような仕切り板180Aと同様の効果を得ることができる。なお、切り欠き部の形状はこれら以外にも種々変形可能である。なお、図10においては、仕切り板180Aについて説明したが、仕切り板180Bも同様の構成とすることができる。 Also by forming the notches 185 and 186 as shown in FIGS. 10A and 10B, the same effect as the partition plate 180A as shown in FIG. 4 can be obtained. The shape of the notch can be variously modified besides these. In addition, in FIG. 10, although the partition plate 180A was demonstrated, the partition plate 180B can also be set as the same structure.
 (2)上記各実施形態においては、電極の数は3組とした場合を例示したが、3組に限られるものではなく、本発明のHHOガス発生装置を自動車に使用する場合には、排気量の大きさなどにより、電極の数は適宜設定可能である。 (2) In each of the above embodiments, the case where the number of electrodes is three is illustrated, but the number of electrodes is not limited to three, and when the HHO gas generator of the present invention is used in an automobile, exhaust is performed. The number of electrodes can be set as appropriate depending on the size of the amount.
 (3)上記各実施形態においては、陽極板としては、チタン材にイリジウム皮膜が塗布法、めっき法又は溶着法によって形成されているものを使用したが、これに限られるものではなく、チタン材に炭素皮膜が塗布法、めっき法又は溶着法によって形成されているものであってもよい。また、上記各実施形態においては、陰極板としては、チタン材にプラチナ皮膜が塗布法、めっき法又は溶着法によって形成されているものを使用したが、これに限られるものではなく、チタン材に金皮膜が塗布法、めっき法又は溶着法によって形成されているものであってもよく、また、陰極板はステンレス板によって形成されていてもよい。 (3) In each of the above embodiments, as the anode plate, a titanium material in which an iridium film is formed by a coating method, a plating method, or a welding method is used. The carbon film may be formed by a coating method, a plating method or a welding method. In each of the above embodiments, as the cathode plate, a titanium material having a platinum film formed by a coating method, a plating method, or a welding method is used, but the present invention is not limited to this. The gold film may be formed by a coating method, a plating method or a welding method, and the cathode plate may be formed by a stainless steel plate.
 (4)上記各実施形態では、HHOガス発生装置をガソリンを燃料とする自動車に装着した場合を例示したが、ディーゼルエンジンを燃料とする自動車(ディーゼル車という。)にも装着可能である。ディーゼル車において「HHOガス発生装置搭載自動車」の場合と「HHOガス発生装置非搭載自動車」の場合の両方を比較すると、「HHOガス発生装置搭載自動車」の場合は、「HHOガス発生装置非搭載自動車」の場合に比べて、燃費の向上が図れるとともに黒煙の削減も図れることが確かめられた。 (4) In each of the above embodiments, the case where the HHO gas generator is mounted on a vehicle using gasoline as fuel is exemplified, but the HHO gas generator can also be mounted on a vehicle using a diesel engine as fuel (referred to as a diesel vehicle). Comparing both “HHO gas generator-equipped vehicles” and “HHO gas generator-equipped vehicles” in diesel vehicles, “HHO gas generator-equipped vehicles” Compared to the “automobile” case, it was confirmed that fuel efficiency could be improved and black smoke could be reduced.
 (5)上記各実施形態では、HHOガス発生装置10を一般の自動車に搭載した場合を例示したが、実施形態1に係るHHOガス発生装置10はハイブリッドシステムを搭載した自動車にも適用可能となるものである。本発明のHHOガス発生装置をハイブリッドシステムを搭載した自動車に適用することにより、ハイブリッドシステムにおける燃費向上効果と、本発明のHHOガス発生装置における燃費向上効果とが相加されることになる。 (5) In each of the above embodiments, the case where the HHO gas generation device 10 is mounted on a general automobile has been exemplified. However, the HHO gas generation device 10 according to Embodiment 1 can also be applied to an automobile mounted with a hybrid system. Is. By applying the HHO gas generator of the present invention to a vehicle equipped with a hybrid system, the fuel efficiency improvement effect of the hybrid system and the fuel efficiency improvement effect of the HHO gas generator of the present invention are added.
 (6)上記各実施形態では、HHOガス発生装置10を自動車に搭載した場合を例示したが、実施形態1にHHOガス発生装置10は、自動車だけでなく、内燃機関を利用した他の車両(例えば、自動二輪車、バス、トラック、ディーゼル列車など)、内燃機関を利用した船舶などの輸送機器に広く適用可能となるものである。また、クレーン、ショベルカーなどの建設機器にも適用可能となるものである。さらにまた、家庭用、業務用のボイラー、火力発電所、ゴミ焼却炉などにも適用可能となるものである。 (6) In each of the above embodiments, the case where the HHO gas generation device 10 is mounted on an automobile is illustrated. However, in the first embodiment, the HHO gas generation device 10 is not limited to an automobile, but other vehicles using an internal combustion engine ( For example, it can be widely applied to transportation equipment such as motorcycles, buses, trucks, diesel trains, etc.) and ships using an internal combustion engine. Moreover, it can be applied to construction equipment such as cranes and excavators. Furthermore, the present invention can be applied to household and commercial boilers, thermal power plants, refuse incinerators, and the like.
 (7)上記実施形態2においては、温度制御装置600は、電解液の温度が、第1設定温度にまで上昇すると電源装置300から各電流制御部210,220,230への通電を遮断させ、電解液の温度が第1設定温度よりも低い第2設定温度にまで下降すると電源装置300から各電流制御部210,220,230への通電を復帰させるというように、単純なオン/オフ動作を行う温度検知スイッチを用いた場合を例示したが、このような温度検知スイッではなく、温度センサーを用いて、温度センサーにより検知した温度に基づいて、各電流制御部210,220,230がそれぞれ対応する電極130.140,150における陽極板と陰極板との間に流す電流を制御するようなものであってもよい。 (7) In the second embodiment, when the temperature of the electrolytic solution rises to the first set temperature, the temperature control device 600 cuts off the power supply from the power supply device 300 to each of the current control units 210, 220, and 230. When the temperature of the electrolytic solution falls to a second set temperature lower than the first set temperature, a simple on / off operation is performed such that energization from the power supply device 300 to each of the current control units 210, 220, and 230 is restored. Although the case where the temperature detection switch to perform was illustrated was illustrated, each current control part 210,220,230 respond | corresponds based on the temperature detected by the temperature sensor instead of such a temperature detection switch, respectively. The current flowing between the anode plate and the cathode plate in the electrodes 130.140 and 150 may be controlled.
 この場合の電流値の制御は、例えば、電解液の温度が、設定された基準温度を境に、許容範囲内に保持されるように電流値を制御するといった制御である。例えば、温度センサーにより検知した温度に基づいて各電極における陽極板と陰極板との間に流す電流を制御するというものである。具体的には、温度センサーから与えられた温度情報に基づいて、電流値を制御するというような機能を各電流制御部210,220,230に持たせ、電解液の温度が、設定されている基準温度を境に所定の許容範囲内で保持されるように電流を制御する。このような制御を行うことにより、電解液を常に適切な温度範囲に保持することができる。 The control of the current value in this case is, for example, a control of controlling the current value so that the temperature of the electrolytic solution is maintained within an allowable range with a set reference temperature as a boundary. For example, the current flowing between the anode plate and the cathode plate in each electrode is controlled based on the temperature detected by the temperature sensor. Specifically, each current control unit 210, 220, 230 has a function of controlling the current value based on temperature information given from the temperature sensor, and the temperature of the electrolyte is set. The current is controlled so as to be maintained within a predetermined allowable range with the reference temperature as a boundary. By performing such control, the electrolytic solution can always be maintained in an appropriate temperature range.
 この場合、温度制御の具体例としては、例えば、基準温度を30℃に設定するとともに許容範囲を基準温度に対して±10℃に設定したとすると、電解液101の温度が常に20℃~40℃の範囲内に保持されるように電流値を制御する。このような制御を行うことにより、電解液101を常に適切な温度範囲に保持することができる。このような制御は、例えば、PID制御又はPID制御に相当するデジタル制御を用いるによって実現可能である。 In this case, as a specific example of temperature control, for example, if the reference temperature is set to 30 ° C. and the allowable range is set to ± 10 ° C. with respect to the reference temperature, the temperature of the electrolytic solution 101 is always 20 ° C. to 40 ° C. The current value is controlled so as to be kept within the range of ° C. By performing such control, the electrolyte solution 101 can always be maintained in an appropriate temperature range. Such control can be realized by using, for example, PID control or digital control corresponding to PID control.
 10,20,30・・・HHOガス発生装置、100・・・電気分解装置、110・・・電解槽、101・・・電解液、120・・・密閉蓋、130,140,150・・・電極、131,141,151・・・陽極板、132,133,142,143,152,153・・・陰極板、171・・・電解液供給口、172・・・圧力調整部、173・・・HHOガス排出ノズル、180A,180B・・・仕切り板、181・・・上端辺、182,183・・・側端辺、184・・・下端辺、185,186・・・切り欠き部、200・・・電流制御装置、210,220,230・・・電流制御部、300・・・電源装置、500・・・内燃機関用の燃料供給装置、530・・・吸気マニホールド、540・・・HHOガス供給用パイプ、600・・・温度制御部、700・・・電解液補充機構、710・・・補助タンク、730・・・電解液供給パイプ DESCRIPTION OF SYMBOLS 10,20,30 ... HHO gas generator, 100 ... Electrolyzer, 110 ... Electrolyzer, 101 ... Electrolyte, 120 ... Sealing lid, 130, 140, 150 ... Electrodes 131, 141, 151 ... Anode plate, 132, 133, 142, 143, 152, 153 ... Cathode plate, 171 ... Electrolyte supply port, 172 ... Pressure adjustment part, 173 ... HHO gas discharge nozzle, 180A, 180B ... partition plate, 181 ... upper end side, 182, 183 ... side end side, 184 ... lower end side, 185, 186 ... notch, 200 ... Current controller, 210, 220, 230 ... Current controller, 300 ... Power supply, 500 ... Fuel supply device for internal combustion engine, 530 ... Intake manifold, 540 ... HHO Gas supply pie , 600 ... temperature control unit, 700 ... electrolyte replenishing mechanism, 710 ... auxiliary tank, 730 ... electrolyte supply pipe

Claims (21)

  1.  水を主成分とする電解液を貯留する電解槽と、耐電蝕性を有しそれぞれが陽極及び陰極で構成される複数組の電極と、前記電解槽の上端開口部を密閉する密閉蓋とを有し、電源装置を用いて前記複数組の電極の各電極における陽極と陰極との間に電流を流すことにより前記電解液を電気分解してHHOガスを発生させる電気分解装置と、
     前記各電極における陽極と陰極との間に流す電流を各電極ごとに所定の電流値に制御する電流制御装置と、
     を備えることを特徴とするHHOガス発生装置。
    An electrolytic cell for storing an electrolytic solution containing water as a main component, a plurality of sets of electrodes each having an anti-corrosion property, each composed of an anode and a cathode, and a sealing lid for sealing the upper end opening of the electrolytic cell. An electrolyzer that generates HHO gas by electrolyzing the electrolyte by flowing a current between an anode and a cathode in each electrode of the plurality of sets of electrodes using a power supply device;
    A current control device for controlling a current flowing between the anode and the cathode in each electrode to a predetermined current value for each electrode;
    An HHO gas generator characterized by comprising:
  2.  請求項1に記載のHHOガス発生装置において、
     前記電流制御装置は、前記各電極に対応した複数の電流制御部を有し、当該複数の電流制御部の各電流制御部は、それぞれ対応する電極における陽極と陰極との間に流す電流を前記所定の電流値に制御することを特徴とするHHOガス発生装置。
    The HHO gas generator according to claim 1,
    The current control device includes a plurality of current control units corresponding to the electrodes, and each current control unit of the plurality of current control units supplies a current flowing between an anode and a cathode of the corresponding electrode, respectively. The HHO gas generator characterized by controlling to a predetermined electric current value.
  3.  請求項1又は2に記載のHHOガス発生装置において、
     前記電解液の温度が設定温度以上にならないように前記電解液の温度を制御する温度制御装置をさらに備えることを特徴とするHHOガス発生装置。
    The HHO gas generator according to claim 1 or 2,
    A HHO gas generator, further comprising a temperature control device that controls the temperature of the electrolytic solution so that the temperature of the electrolytic solution does not exceed a preset temperature.
  4.  請求項3に記載のHHOガス発生装置において、
     前記温度制御装置は、前記電解液の温度が第1設定温度にまで上昇すると前記各電極への通電をオフし、前記通電をオフした後に前記電解液の温度が前記第1設定温度よりも低い第2設定温度にまで降下すると前記各電極への通電をオンするように動作することを特徴とするHHOガス発生装置
    The HHO gas generator according to claim 3,
    When the temperature of the electrolyte rises to a first set temperature, the temperature control device turns off the energization of the electrodes, and after turning off the energization, the temperature of the electrolyte is lower than the first set temperature. An HHO gas generator that operates so as to turn on energization of each electrode when the temperature falls to a second set temperature.
  5.  請求項4に記載のHHOガス発生装置において、
     前記第1設定温度は65℃~75℃の範囲内にあり、前記第2設定温度は40℃~60℃の範囲内にあることを特徴とするHHOガス発生装置。
    The HHO gas generator according to claim 4,
    The HHO gas generator according to claim 1, wherein the first set temperature is in a range of 65 ° C to 75 ° C, and the second set temperature is in a range of 40 ° C to 60 ° C.
  6.  請求項3に記載のHHOガス発生装置において、
     前記電解液の温度に基準温度を設定するとともに、当該基準温度に対する許容範囲を設定し、前記温度制御装置は、前記電解液の温度が前記許容範囲に保持されるように前記電流値を制御するように動作することを特徴とするHHOガス発生装置
    The HHO gas generator according to claim 3,
    A reference temperature is set for the temperature of the electrolytic solution, and an allowable range for the reference temperature is set, and the temperature control device controls the current value so that the temperature of the electrolytic solution is maintained within the allowable range. HHO gas generator characterized by operating as described above
  7.  請求項1~6のいずれかに記載のHHOガス発生装置において、
     前記陽極は、チタン材にイリジウム皮膜が塗布法、めっき法又は溶着法によって形成されたものであることを特徴とするHHOガス発生装置。
    The HHO gas generator according to any one of claims 1 to 6,
    The anode is an HHO gas generator, wherein an iridium film is formed on a titanium material by a coating method, a plating method or a welding method.
  8.  請求項1~7のいずれかに記載のHHOガス発生装置において、
     前記陰極は、チタン材にプラチナ皮膜が塗布法、めっき法又は溶着法によって形成されたものであることを特徴とするHHOガス発生装置。
    The HHO gas generator according to any one of claims 1 to 7,
    The cathode is formed of a platinum film formed on a titanium material by a coating method, a plating method, or a welding method.
  9.  請求項1~8のいずれかに記載のHHOガス発生装置において、
     前記各電極における陽極及び陰極は、1枚の陽極板と2枚の陰極板とで構成されており、
     前記1枚の陽極板及び前記2枚の陰極板は、前記1枚の陽極板を中心にして前記2枚の陰極板が前記1枚の陽極板に対して一定間隔を置いて前記陽極板と対向するように配置されていることを特徴とするHHOガス発生装置。
    The HHO gas generator according to any one of claims 1 to 8,
    The anode and cathode in each of the electrodes are composed of one anode plate and two cathode plates,
    The one anode plate and the two cathode plates are separated from the anode plate with the two cathode plates being spaced apart from the one anode plate with the one anode plate as a center. An HHO gas generator characterized by being arranged to face each other.
  10.  請求項9に記載のHHOガス発生装置において、
     前記所定の電流値は、前記陽極板に対向する前記陰極板の面積に対して1cm当たり0.007アンペア~0.06アンペアの範囲内にあることを特徴とするHHOガス発生装置。
    The HHO gas generator according to claim 9,
    The HHO gas generator according to claim 1, wherein the predetermined current value is in a range of 0.007 ampere to 0.06 ampere per 1 cm 2 with respect to an area of the cathode plate facing the anode plate.
  11.  請求項1~10のいずれかに記載のHHOガス発生装置において、
     前記電解槽には、前記複数組の電極のうちの隣接する2つの電極の間に仕切り板が設けられ、前記仕切り板は、下端辺が前記電解槽の底面に密接し、側端辺が前記電解槽の側面に密接した状態で設置されていることを特徴とするHHOガス発生装置。
    The HHO gas generator according to any one of claims 1 to 10,
    In the electrolytic cell, a partition plate is provided between two adjacent electrodes of the plurality of sets of electrodes, and the partition plate has a lower end side in close contact with a bottom surface of the electrolytic cell and a side end side of the partition plate. An HHO gas generator characterized by being installed in close contact with a side surface of an electrolytic cell.
  12.  請求項11に記載のHHOガス発生装置において、
     前記仕切り板の高さは、当該仕切り板の上端辺が上記電極の上端辺よりも高い位置で、当該電解槽内における電解液の貯留量の適正レベル以上の位置となるような高さを有し、かつ、前記上端辺には、前記電解液が隣接する電極側に流通可能となるような切り欠き部が形成されていることを特徴とするHHOガス発生装置。
    The HHO gas generator according to claim 11,
    The height of the partition plate is such that the upper end side of the partition plate is higher than the upper end side of the electrode, and the height is equal to or higher than the appropriate level of the amount of electrolyte stored in the electrolytic cell. And the HHO gas generator characterized by the notch part which the said electrolyte solution can distribute | circulate to the electrode side which adjoins is formed in the said upper end side.
  13.  請求項1~12のいずれかに記載のHHOガス発生装置において、
     前記電解槽に貯留されている電解液が減少したときに前記電解液を自動的に補充可能な電解液補充機構をさらに備えることを特徴とするHHOガス発生装置。
    The HHO gas generator according to any one of claims 1 to 12,
    An HHO gas generator, further comprising an electrolyte replenishment mechanism capable of automatically replenishing the electrolyte when the electrolyte stored in the electrolytic bath decreases.
  14.  請求項1~13のいずれかに記載のHHOガス発生装置を備える内燃機関用の燃料供給装置であって、
     前記HHOガス発生装置は、前記内燃機関の補助燃料発生装置として用いられるものであり、前記電気分解装置から発生したHHOガスを、前記内燃機関の燃料取り入れ口に供給するように構成されていることを特徴とする内燃機関用の燃料供給装置。
    A fuel supply device for an internal combustion engine comprising the HHO gas generation device according to any one of claims 1 to 13,
    The HHO gas generator is used as an auxiliary fuel generator for the internal combustion engine, and is configured to supply the HHO gas generated from the electrolyzer to the fuel intake port of the internal combustion engine. A fuel supply device for an internal combustion engine.
  15.  請求項14に記載の内燃機関用の燃料供給装置において、
     前記HHOガスを空気に対して1/500~1/50000の割合で混合させるように前記内燃機関の燃料取り入れ口に供給することを特徴とする内燃機関用の燃料供給装置。
    The fuel supply device for an internal combustion engine according to claim 14,
    A fuel supply device for an internal combustion engine, wherein the HHO gas is supplied to a fuel intake port of the internal combustion engine so as to be mixed at a ratio of 1/500 to 1 / 50,000 with respect to air.
  16.  請求項14又は15に記載の内燃機関用の燃料供給装置において、
     前記内燃機関は、車両用のエンジンであることを特徴とする内燃機関用の燃料供給装置。
    The fuel supply device for an internal combustion engine according to claim 14 or 15,
    The fuel supply device for an internal combustion engine, wherein the internal combustion engine is a vehicle engine.
  17.  請求項16に記載の内燃機関用の燃料供給装置において、
     前記電源装置は、前記車両に搭載されている蓄電池であることを特徴とする内燃機関用の燃料供給装置。
    The fuel supply device for an internal combustion engine according to claim 16,
    The fuel supply device for an internal combustion engine, wherein the power supply device is a storage battery mounted on the vehicle.
  18.  燃焼装置本体と、請求項1~13のいずれかに記載のHHOガス発生装置とを備えることを特徴とする燃焼装置。 A combustion apparatus comprising: a combustion apparatus main body; and the HHO gas generator according to any one of claims 1 to 13.
  19.  請求項1~13のいずれかに記載のHHOガス発生装置に用いるためのHHOガス発生装置用の電解液であって、
     前記電解液は、炭酸ナトリウムを水に溶解した炭酸ナトリウム水溶液又は炭酸水素ナトリウムを水に溶解した炭酸水素ナトリウム水溶液であって、当該炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液は、水に対する炭酸ナトリウム又は炭酸水素ナトリウムの重量比が0.1%~20%の範囲内にあることを特徴とするHHOガス発生装置用の電解液。
    An electrolyte for an HHO gas generator for use in the HHO gas generator according to any one of claims 1 to 13,
    The electrolytic solution is a sodium carbonate aqueous solution in which sodium carbonate is dissolved in water or a sodium hydrogen carbonate aqueous solution in which sodium bicarbonate is dissolved in water, and the sodium carbonate aqueous solution or sodium bicarbonate aqueous solution is sodium carbonate or hydrogen carbonate with respect to water. An electrolyte for an HHO gas generator, wherein the weight ratio of sodium is in the range of 0.1% to 20%.
  20.  請求項19に記載のHHOガス発生装置用の電解液において、
     前記電解液は、前記炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を加熱することにより、炭酸分が除去されていることを特徴とするHHOガス発生装置用の電解液。
    In the electrolyte solution for HHO gas generators of Claim 19,
    The electrolyte solution for an HHO gas generator, wherein the carbonate solution is removed by heating the sodium carbonate aqueous solution or the sodium hydrogen carbonate aqueous solution.
  21.  請求項1~13のいずれかに記載のHHOガス発生装置におけるHHOガス発生方法であって、
     水に対する炭酸ナトリウム又は炭酸水素ナトリウムの重量比が0.1%~20%の範囲内の炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を前記電解液として前記電解槽に注入する工程と、
     前記電流制御装置により前記各電極における陽極と陰極との間に流す電流を各電極ごとに所定の電流値に制御しながら、各電極における陽極と陰極との間に前記所定の電流値を有する電流を流すことにより前記電解液を電気分解してHHOガスを発生させる工程と、
     を有することを特徴とするHHOガス発生方法。
    A method for generating HHO gas in the HHO gas generator according to any one of claims 1 to 13,
    Pouring a sodium carbonate aqueous solution or a sodium hydrogen carbonate aqueous solution in a weight ratio of sodium carbonate or sodium hydrogen carbonate to water in the range of 0.1% to 20% as the electrolytic solution into the electrolytic cell;
    A current having the predetermined current value between the anode and the cathode in each electrode while controlling the current flowing between the anode and the cathode in each electrode to a predetermined current value for each electrode by the current control device. The step of electrolyzing the electrolyte by flowing HHO to generate HHO gas;
    A HHO gas generation method characterized by comprising:
PCT/JP2011/076121 2011-11-11 2011-11-11 Hho gas generation device WO2013069164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076121 WO2013069164A1 (en) 2011-11-11 2011-11-11 Hho gas generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076121 WO2013069164A1 (en) 2011-11-11 2011-11-11 Hho gas generation device

Publications (1)

Publication Number Publication Date
WO2013069164A1 true WO2013069164A1 (en) 2013-05-16

Family

ID=48288903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076121 WO2013069164A1 (en) 2011-11-11 2011-11-11 Hho gas generation device

Country Status (1)

Country Link
WO (1) WO2013069164A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195267U (en) * 2014-06-30 2015-01-15 T・D・S株式会社 Simultaneous improvement device of fuel consumption and exhaust gas of internal combustion engine
GB2518132A (en) * 2013-06-29 2015-03-18 Brian Sheard Improvements in or relating to hydrogen fuel generators
WO2015115881A1 (en) * 2014-01-31 2015-08-06 Delgado Rodriguez Luis Alfonso Electrochemical reactor for producing oxyhydrogen gas
CN105463496A (en) * 2015-03-19 2016-04-06 李文秀 Micromolecular hydrogen and oxygen mixed gas generation device
JP2017002346A (en) * 2015-06-08 2017-01-05 欣四郎 近藤 Mixed fuel production apparatus
JP2017106122A (en) * 2017-01-27 2017-06-15 欣四郎 近藤 Fuel production apparatus
CN107074592A (en) * 2014-11-11 2017-08-18 森永乳业株式会社 The control method of assembling device and assembling device
WO2018173116A1 (en) * 2017-03-21 2018-09-27 欣四郎 近藤 Power generation device and power generation method therefor
CN109267085A (en) * 2018-09-25 2019-01-25 河南天源净光科技研发有限公司 A kind of apparatus for electrolyzing and carbon combustion-supporting system is removed equipped with the device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100998A (en) * 1977-02-17 1978-09-02 Kurorin Engineers Kk Method of making alkali metal hypochlorite and electrolytic bath therefor
JP2002348694A (en) * 2001-05-23 2002-12-04 Yukio Wakahata Energy supply system
JP2003073877A (en) * 2001-09-04 2003-03-12 Shihlin Electric & Engineering Corp Safety control system, and apparatus for generating gaseous hydrogen and oxygen
JP2004353019A (en) * 2003-05-28 2004-12-16 Toyo Tanso Kk Method and device for controlling electric current of gas generation apparatus
JP2005171383A (en) * 2003-11-19 2005-06-30 Mitsuo Kimura Hydrogen-oxygen gas generating electrode, and electrolytic cell structure
JP2006167683A (en) * 2004-12-20 2006-06-29 Noritz Corp Apparatus for producing hydrogen water
JP2009035804A (en) * 2007-08-03 2009-02-19 Tsunoda Yutaka Large amount brown's gas generation apparatus and electrolytic cell therefor
JP2010285679A (en) * 2009-06-15 2010-12-24 Eiji Kino Brown's gas generator
WO2011030556A1 (en) * 2009-09-10 2011-03-17 株式会社レガルシィ Apparatus for generating mixed gas of hydrogen and oxygen, and internal combustion engine using the same
JP2011522123A (en) * 2008-05-28 2011-07-28 ミオックス コーポレーション Electrolytic cell cleaning method including electrode and electrolytic product generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100998A (en) * 1977-02-17 1978-09-02 Kurorin Engineers Kk Method of making alkali metal hypochlorite and electrolytic bath therefor
JP2002348694A (en) * 2001-05-23 2002-12-04 Yukio Wakahata Energy supply system
JP2003073877A (en) * 2001-09-04 2003-03-12 Shihlin Electric & Engineering Corp Safety control system, and apparatus for generating gaseous hydrogen and oxygen
JP2004353019A (en) * 2003-05-28 2004-12-16 Toyo Tanso Kk Method and device for controlling electric current of gas generation apparatus
JP2005171383A (en) * 2003-11-19 2005-06-30 Mitsuo Kimura Hydrogen-oxygen gas generating electrode, and electrolytic cell structure
JP2006167683A (en) * 2004-12-20 2006-06-29 Noritz Corp Apparatus for producing hydrogen water
JP2009035804A (en) * 2007-08-03 2009-02-19 Tsunoda Yutaka Large amount brown's gas generation apparatus and electrolytic cell therefor
JP2011522123A (en) * 2008-05-28 2011-07-28 ミオックス コーポレーション Electrolytic cell cleaning method including electrode and electrolytic product generator
JP2010285679A (en) * 2009-06-15 2010-12-24 Eiji Kino Brown's gas generator
WO2011030556A1 (en) * 2009-09-10 2011-03-17 株式会社レガルシィ Apparatus for generating mixed gas of hydrogen and oxygen, and internal combustion engine using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2518132A (en) * 2013-06-29 2015-03-18 Brian Sheard Improvements in or relating to hydrogen fuel generators
WO2015115881A1 (en) * 2014-01-31 2015-08-06 Delgado Rodriguez Luis Alfonso Electrochemical reactor for producing oxyhydrogen gas
US10329675B2 (en) 2014-01-31 2019-06-25 Luis Alfonso Delgado Rodriguez Electrochemical reactor for producing oxyhydrogen gas
JP3195267U (en) * 2014-06-30 2015-01-15 T・D・S株式会社 Simultaneous improvement device of fuel consumption and exhaust gas of internal combustion engine
CN107074592A (en) * 2014-11-11 2017-08-18 森永乳业株式会社 The control method of assembling device and assembling device
EP3219679A4 (en) * 2014-11-11 2018-05-30 Morinaga Milk Industry Co., Ltd. Incorporated device and method for controlling incorporated device
CN105463496A (en) * 2015-03-19 2016-04-06 李文秀 Micromolecular hydrogen and oxygen mixed gas generation device
JP2017002346A (en) * 2015-06-08 2017-01-05 欣四郎 近藤 Mixed fuel production apparatus
JP2017106122A (en) * 2017-01-27 2017-06-15 欣四郎 近藤 Fuel production apparatus
WO2018173116A1 (en) * 2017-03-21 2018-09-27 欣四郎 近藤 Power generation device and power generation method therefor
JPWO2018173116A1 (en) * 2017-03-21 2020-01-23 欣四郎 近藤 Power generation device and power generation method thereof
CN109267085A (en) * 2018-09-25 2019-01-25 河南天源净光科技研发有限公司 A kind of apparatus for electrolyzing and carbon combustion-supporting system is removed equipped with the device

Similar Documents

Publication Publication Date Title
WO2013069164A1 (en) Hho gas generation device
WO2012017729A1 (en) Brown&#39;s gas generation system
JP5775456B2 (en) Hydrogen and oxygen mixed gas generator and internal combustion engine using the same
US6866756B2 (en) Hydrogen generator for uses in a vehicle fuel system
JP6423010B2 (en) Oxyhydrogen generator and oxyhydrogen gas production method
KR102053637B1 (en) Exhaust gases and fuel reduction device for an internal combustion engine
JP3228812U (en) A system for generating hydrogen gas and supplying it to an internal combustion engine
WO2010069275A1 (en) Energy saving apparatus for producing oxyhydrogen combustion supporting gas and method using the same
US20070080071A1 (en) Internal combustion apparatus and method utilizing electrolysis cell
JP2013142154A (en) Apparatus for producing fuel mixed with microbubble of hho gas
US20030205482A1 (en) Method and apparatus for generating hydrogen and oxygen
US9005412B2 (en) Electrolyzer
US20110048961A1 (en) System and Method for Refilling an Electrolyzer Tank from a Water Reservoir
CN107099812B (en) Water electrolysis device and carbon removal combustion-supporting system with same
PT107973B (en) METHOD FOR INCREASING THE EFFICIENCY OF COMBUSTION ENGINES
EP2602358A1 (en) An electrolysis cell
US9932891B2 (en) Engine system
WO2011136291A1 (en) Engine system with electrolysis tank
JP2012180571A (en) On-vehicle hydrogen addition system
KR20180124557A (en) Engine fuel economy enhancement device with brown gas generator
JP2006194230A (en) Internal combustion engine and engine body using energy by electrolysis of water
KR102117233B1 (en) Brown Gas Supply System For Reducing Smoke In Vehicle
JP2009275282A (en) Electrolysis apparatus, electrolytic solution therefor, and combustion promoting system for internal combustion engine utilizing electrolysis apparatus
JPWO2018173116A1 (en) Power generation device and power generation method thereof
JP3158070U (en) Hydrogen gas generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP