WO2013067937A1 - 上行参考信号的发送方法、用户设备和基站 - Google Patents

上行参考信号的发送方法、用户设备和基站 Download PDF

Info

Publication number
WO2013067937A1
WO2013067937A1 PCT/CN2012/084228 CN2012084228W WO2013067937A1 WO 2013067937 A1 WO2013067937 A1 WO 2013067937A1 CN 2012084228 W CN2012084228 W CN 2012084228W WO 2013067937 A1 WO2013067937 A1 WO 2013067937A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user equipment
reference signal
demodulation reference
base station
Prior art date
Application number
PCT/CN2012/084228
Other languages
English (en)
French (fr)
Inventor
周明宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12846971.5A priority Critical patent/EP2775759A4/en
Publication of WO2013067937A1 publication Critical patent/WO2013067937A1/zh
Priority to US14/268,471 priority patent/US20140241284A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • the application is submitted to the Chinese Patent Office on November 7, 2011, and the application number is CN 201110348340.
  • the invention name is "the transmission method of the uplink reference signal, the user equipment and the base station" Priority of the Chinese Patent Application, the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting an uplink reference signal, a user equipment, and a base station.
  • the base station allocates a predetermined number of user equipments (User Equipments; hereinafter referred to as UEs).
  • UEs User Equipments
  • a physical resource block (hereinafter referred to as PRB), the UE transmits a Demodulation Reference Signal (hereinafter referred to as DM RS) and data on these PRBs.
  • the DM RS is used for channel estimation, which facilitates demodulation of data by the base station, and the DM RS transmits on one symbol in the middle of each time slot; for example, one transmission time interval (hereinafter referred to as TTI) is It includes 2 time slots or 14 symbols in time, each time slot includes 7 symbols, the 4th symbol in each time slot is used to transmit DM RS, and other symbols are used to transmit data; the UE sends a TTI data.
  • TTI transmission time interval
  • the symbol is sent to the base station, and after receiving the base station, the uplink channel information is estimated by the DM RS, thereby demodulating the data symbols.
  • one PRB occupies 12 subcarriers in the frequency band, and both data and DM RS are transmitted on all subcarriers of these PRBs that the base station schedules for the UE.
  • the base station sends cyclic shift (Cyclic Shift; hereinafter referred to as CS) and Orthogonal Cover Code (hereinafter referred to as 0CC) information to the UE, and the UE performs the sequence used by the cell according to the received CS information.
  • CS Cyclic Shift
  • 0CC Orthogonal Cover Code
  • Corresponding cyclic shift and then multiply the DM RS in the two slots of the same TTI by a certain 0CC, and then perform inverse discrete Fourier transform (hereinafter referred to as IDFT) to generate the to-be-transmitted DM RS.
  • IDFT inverse discrete Fourier transform
  • UE1 and UE2 use different CS or 0CC to generate DM RS, then UE1
  • the DM RSs sent by the UE2 are orthogonal to each other; the different antenna ports of the UE1 use different CSs or 0CCs to generate the DM RSs, and the DM RSs transmitted by different antenna ports of the UE1 are orthogonal.
  • the base station can allocate different CSs and/or 0CCs to different UEs, so that the DM RSs sent by different UEs can be orthogonal.
  • the base station schedules multiple UEs to transmit simultaneously on overlapping frequency resources, and may also be referred to as base station pairing multiple UEs.
  • Coordinated Multiple Point Transmission/Reception (CEP) technology is introduced, that is, multiple cells can demodulate signals transmitted by the same UE, thereby enhancing uplink performance.
  • the UE1 sends an uplink signal only to the cell 1, where the UE1 sends the DM RS according to the configuration of the cell 1.
  • the UE2 sends only the uplink signal to the cell 2, where the UE2 sends the DM according to the configuration of the cell 2.
  • RS The DM RSs sent by UE1 and UE2 have less interference with each other.
  • both the UE1 and the UE2 send uplink signals to the two cells.
  • the cell 2 is interfered by the signal sent by the UE2, and the cell 1 is receiving the signal sent by the UE2. It will be interfered by the signal sent by UE1, which will reduce the gain brought by CoMP technology.
  • the present invention provides a method for transmitting an uplink reference signal, a user equipment, and a base station, so that the demodulation reference signals transmitted by the user equipments of different cells are orthogonal, and the gain brought by the CoMP technology is ensured.
  • An aspect of the present invention provides a method for transmitting an uplink reference signal, including:
  • the user equipment generates the demodulation reference signal according to the first information and the second information, and maps the demodulation reference signal to a subcarrier indicated by the second information, and sends the demodulation reference signal to the base station.
  • Another aspect of the present invention provides a method for transmitting an uplink reference signal, including:
  • the base station generates the first information, and sends the first information to the user equipment, where the first information is used to indicate that the user equipment sends a solution on a part of subcarriers of the subcarrier allocated by the base station to the user equipment. Adjust the reference signal;
  • the base station generates second information, and sends the second information to the user equipment, where the second information is used to indicate information about a subcarrier used to send the demodulation reference signal, so that the user
  • the device generates the demodulation reference signal according to the first information and the second information, and maps the demodulation reference signal to the second information
  • the indicated subcarriers are sent to the base station.
  • Another aspect of the present invention provides a user equipment, including:
  • a receiver configured to receive first information and second information sent by the base station, where the first information is used to indicate that the user equipment sends a demodulation on a part of subcarriers of the subcarrier allocated by the base station to the user equipment a reference signal, the second information being used to indicate information for transmitting a subcarrier of the demodulation reference signal;
  • a processor configured to generate the demodulation reference signal according to the first information and the second information received by the receiver; and a transmitter, configured to map the demodulation reference signal generated by the processor to the second information
  • the indicated subcarriers are sent to the base station.
  • a base station including:
  • a processor configured to generate first information and second information, where the first information is used to indicate that the user equipment sends a demodulation reference signal on a part of subcarriers of the subcarrier allocated by the base station to the user equipment;
  • the second information is used to indicate information for transmitting the subcarrier of the demodulation reference signal;
  • a transmitter configured to send the first information and the second information generated by the processor to the user equipment, to enable the user equipment to generate the demodulation reference according to the first information and the second information And transmitting, to the base station, the demodulation reference signal to the subcarrier indicated by the second information.
  • the user equipment after receiving the first information and the second information sent by the base station, the user equipment generates a demodulation reference signal according to the first information and the second information, and maps the demodulation reference signal to the subcarrier indicated by the second information. Sended to the base station. Therefore, the demodulation reference signals sent by the user equipments of different cells can be orthogonalized to ensure the gain brought by the CoMP technology.
  • FIG. 1 is a flowchart of an embodiment of a method for transmitting an uplink reference signal according to the present invention
  • FIG. 2 is a schematic diagram of an embodiment of subcarrier allocation according to the present invention.
  • FIG. 3 is a flowchart of another embodiment of a method for transmitting an uplink reference signal according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the method for the uplink reference signal may include:
  • Step 101 The UE receives the first information sent by the base station, where the first information is used to indicate that the UE sends the DM RS on a part of the subcarriers of the subcarrier allocated by the base station to the UE.
  • Step 102 The UE receives second information sent by the base station, where the second information is used to indicate information for transmitting a subcarrier of the DM RS.
  • the information of the subcarrier may be a subcarrier number or comb information.
  • Step 103 The UE generates the DM RS according to the first information and the second information, and maps the DM RS to the subcarrier indicated by the second information, and sends the DM RS to the base station.
  • the first information indicates that the UE sends the DM RS on a part of the subcarriers allocated by the base station to the UE
  • the second information is used to indicate the information about the subcarrier used to send the DM RS
  • the base station may All the subcarriers other than the subcarrier indicated by the second information of the subcarrier allocated by the base station to the UE are allocated to UEs of other cells except the cell where the UE is located, because UEs of different cells use different subcarriers.
  • the DM RSs are transmitted, so that the DM RSs transmitted by the UEs of different cells are orthogonal to each other. As shown in FIG. 2, FIG.
  • FIG. 2 is a schematic diagram of an embodiment of subcarrier allocation according to the present invention. Assume that all frequency resources include 2 combs, one PRB includes 12 subcarriers, and each comb has 6 subcarriers in each PRB; if the second comb of PRB2 ⁇ 3 is assigned to UE1, the first of PRB1 Two combs are allocated to UE2, and the first combs of PRBs 1-3 are allocated to UE3, and the DM RSs transmitted by UE1 to UE3 do not interfere with each other.
  • the whole process may be:
  • the base station sends the first information to the UE1, instructing the UE1 to send the DM RS on a part of the subcarriers of the subcarrier allocated by the base station to the UE1.
  • the base station sends the DM RS to the UE1.
  • Sending second information where the second information is used to indicate information for transmitting a subcarrier of the DM RS.
  • the second information may indicate that the DM RS is sent on the subcarriers with an odd number; the UE1 receives the first information.
  • the UE 1 After the second information, since each PRB includes 12 subcarriers, the UE 1 generates a DM RS of length 12, because the base station allocates the UE.
  • the number of the PRBs is 2 to 3, so UE1 maps the generated DM RSs to subcarriers numbered 25, 27, ..., 47 and transmits them to the base station.
  • the UE may further receive information that is sent by the base station to indicate that the UE sends the DM RS on all subcarriers allocated by the base station to the UE, and the UE may generate a DM RS according to the information, and the The DM RS is mapped to all base stations allocated by the base station for the UE and sent to the base station.
  • the embodiment of the present invention can obtain the benefits of the prior art design by instructing the UE to send the DM RS on all subcarriers allocated by the base station for the UE, which can be compatible with the prior art design.
  • the UE after receiving the first information and the second information sent by the base station, the UE generates a DM RS according to the first information and the second information, and maps the DM RS to the subcarrier indicated by the second information, and sends the DM RS to the base station. . Therefore, the DM RSs sent by the UEs of different cells can be orthogonalized to ensure the gain brought by the CoMP technology.
  • the second information is dynamic information, that is, the base station needs to send the second information to the UE every time the UE is scheduled to perform uplink transmission, that is, the UE receives the base station in each scheduling.
  • the first information is semi-static information. After the first information received by the Nth is valid, before the first information received by the N+1th is valid, the UE receives the first information and the first information according to the Nth time.
  • the second information generates DM RS; wherein, the above N is a non-negative integer.
  • the base station sends the first information to the UE in the nth TTI to indicate that the UE sends the DM RS on the partial subcarrier of the subcarrier allocated by the base station to the UE, and the effective time of the information may be the n+kth TTI.
  • k is an integer greater than or equal to 0, k may be preset at the base station and the UE side.
  • the UE receives the first information after the nth TTI, and assumes that the UE continues to receive the new first information again until the n+Tth, the UE is in the n+k to ⁇ + ⁇
  • the first information received by the nth TTI is used on the +kl TTIs, and the first information received using the n+thth TTIs is started from the n+T+k TTIs.
  • the first information sent by the base station can be valid for a long time, and the first information is sent to the UE every time the uplink transmission of the UE is scheduled, so that the information overhead can be reduced.
  • the base station can schedule the physical downlink control channel for uplink transmission (Physical
  • PDCCH Downlink Control Channel
  • the base station transmits a PDCCH to the UE at the nth TTI, and sends the second information to the UE while scheduling the UE to perform uplink transmission, the second The information is included in the PDCCH.
  • the UE After receiving the PDCCH, the UE sends an uplink signal in the n + 4th TTI, and the DM RS sent by the UE is generated according to the received first information and the second information.
  • the information of the partial subcarrier allocated by the base station to the UE is comb information, in each Among the PRBs, the i-th comb corresponds to subcarriers numbered i, i+Nc, i+2Nc, ..., where Nc represents the number of available combs of the UE.
  • the first comb is the subcarrier with the odd number
  • the second comb is the subcarrier with the even number.
  • the number of combs may be preset or may be notified to the UE by other information via the base station.
  • the foregoing Nc may be equal to the number of available comb teeth of the sounding reference signal (Sounding RS; hereinafter referred to as SRS).
  • Sounding RS Sounding reference signal
  • the uplink RS includes, in addition to the DM RS, an SRS, which is used to detect the condition of the uplink channel, and the UE may send the SRS in a certain frequency band, and the base station may know the frequency band after receiving the SRS.
  • the uplink channel condition can be reasonably scheduled for the uplink transmission of the UE.
  • SRSs sent by different UEs can use different combs to ensure orthogonality with each other, and the number of available combs of the SRS is 2.
  • the design of the SRS can be simply reused, that is, the embodiment of the present invention can simply reuse the SRS generation method to generate the DM RS. Reduced implementation complexity.
  • the above Nc may be equal to three.
  • the cooperative set usually includes three cells, that is, the signal transmitted by a certain UE is received by at most three cells. Therefore, setting the Nc equal to 3 can ensure the DM RS sent by the UEs of the three coordinated cells. Do not interfere with each other.
  • Nc is equal to 2 as an example.
  • Step 103 may be: the UE determines, according to the first information, a partial subcarrier of a subcarrier allocated by the base station to the UE.
  • the DM RS is sent, and a sequence corresponding to the number of subcarriers indicated by the first information is selected as a DM RS in a sequence used by the cell where the UE is located, and then the UE queries the CS information saved by the UE according to the second information.
  • the UE Combining the combo information, obtaining subcarriers and CS information for transmitting the DM RS; finally, the UE cyclically shifts the DM RS according to the CS information, and maps the DM RS after the cyclic shift to the foregoing Transmitted to the base station on the subcarrier that sends the DM RS.
  • the UE cyclically shifts the DM RS sequence according to the formula (1):
  • DM RS indicating that it has not been cyclically shifted, indicating the DM RS after cyclic shift
  • n denotes each element of the sequence of length M
  • denotes the number of subcarriers of the DM RS, that is, the DM RS sequence
  • the UE since the UE transmits the DM RS using only a part of the subcarriers, the length of the DM RS sequence becomes shorter, but the cyclic shift technique can still be applied, so that the cyclic shift can be obtained.
  • the benefits of For example, if the number of combs of the DM RS is 2, the DM RS is only transmitted on 1/2 subcarriers of the PRB allocated by the base station for the UE, and the length of the DM RS sequence is only the DM RS in the LTE-Advanced system. Half the length of the sequence.
  • the DM RS sequence is cyclically shifted, and finally the cyclically shifted DM RS sequence is mapped onto 24 subcarriers.
  • the second information can transmit a configuration combination of eight types of CS information and comb information.
  • Table 1 is that the UE sends uplinks from a single antenna port.
  • the second information sent by the base station to the UE is 001, it indicates that the value of the CS information used by the UE is 6, and the comb is 0 (ie, the UE uses the number).
  • the foregoing second information is further used to indicate cs information and
  • the step 103 may be: the UE determines, according to the first information, that the DM RS is sent on a part of the subcarriers allocated by the base station for the UE, and selects a length and the first information indication in a sequence used by the cell where the UE is located. The sequence corresponding to the number of subcarriers is used as the DM RS. Then, the UE queries the mapping relationship between the CS information, the 0CC information, and the comb information stored by the UE according to the second information, and obtains a subcarrier, CS for transmitting the DM RS. Information and 0CC information; Next, the UE may cyclically shift the DM RS according to the CS information, and forward according to the 0CC information.
  • the DM RS after the row cyclic shift loads the orthogonal mask; finally, the UE maps the DM RS after the orthogonal mask is loaded to the above-mentioned subcarrier for transmitting the DM RS and transmits it to the base station.
  • the 0CC information can provide further orthogonalization in the time domain dimension, and the UE can apply the orthogonal mask to the DM RS sequence after cyclic shift according to equation (2):
  • WH - s + n) w(m a (") ( 2 ) where m is 0 or 1, respectively representing the DM RS symbols in the 1st and 2nd slots in a TTI. w ( m is
  • the CS information, the 0CC information and the comb information are simultaneously incorporated into the design of the DM RS, and the benefits of the three can be obtained.
  • the mapping relationship between the CS information and the comb information is in a nested form, that is, for the same second information, the CS information and the comb information used by the UE to transmit the DM RS through the A antenna ports are A subset of CS information and comb information used by the UE to transmit the DM RS through the A+i antenna ports; where A and i are positive integers.
  • the UE can transmit uplink signals from up to four antenna ports in space.
  • the mapping relationship between CS information and 0CC information can be as shown in Table 2.
  • represents the number of the antenna port, so when the base station sends the configuration information to the UE as 001, if the base station Instructing the UE to send an uplink signal from two antenna ports, the CS information used by the UE on the two antenna ports is 6 and 0, respectively, and the used 0CC information is “ 1 ] and “ 1 ] respectively; and if the base station indicates the UE from 4
  • the antenna ports send uplink signals, and the CS information used by the UE on the four antenna ports is 6, 0, 9 and P 3, respectively.
  • the 0CC information used is [1 - 1] , [1 - 1] , [1 1] and [1 1] . This is a nested form, and the design is relatively simple.
  • the CS information and the comb information are transmitted through the second information, and may also be in the form of a nesting, as shown in Table 3.
  • the second information sent by the base station to the UE is 001
  • the base station instructs the UE to send an uplink signal from the two antenna ports the CS information used by the UE on the two antenna ports is 6 and 0 respectively, and the comb information used is respectively
  • the base station instructs the UE to send uplink signals from the four antenna ports the CS information used by the UE on the four antenna ports is 6, 0, 9, and 3, respectively, and the comb tooth information used is 1, respectively. 1, 0 and 0.
  • CS information, 0CC information, and comb information are transmitted through the second information, as shown in Table 4.
  • mapping of cs information and comb information is considered.
  • the mapping of CS information, OCC information and comb information can simply add OCC information in the middle of the mapping between CS information and comb information, which will not be described below.
  • CS information and comb information there are a total of eight configuration combinations of CS information and comb information in the mapping relationship between CS information and comb information.
  • all antenna ports of the UE transmitting DM RS use the same comb information.
  • the antenna port that the UE sends the DM RS uses different comb information.
  • the base station desires to schedule 2 UE pairings, and each UE performs transmission of 4 antenna ports, in order to ensure that the DM RSs transmitted by the two UEs are orthogonal through different combs, two combs are needed.
  • the teeth are respectively allocated to the above two UEs. Therefore, there is a need for such at least two configuration combinations: 2 of the 4 antenna ports are used for transmission of 0 (1), and the antenna port is used for transmission.
  • the comb is 1 ( 0 ); and in order to increase the flexibility of scheduling, four configuration combinations are designed to support the feature that all four antenna ports in the two configuration combinations use 0 combs and 2 others.
  • the comb teeth used for all 4 antenna port transmissions in the configuration combination are 1.
  • the mapping relationship between the CS information and the comb information is characterized in that the UE transmits the second, third, and fourth antenna ports respectively through the second, third, and fourth antenna ports according to the mapping relationship between the CS information and the comb information.
  • the CS information used for the DM RS corresponding to the antenna port and the CS information used by the UE to transmit the DM RS corresponding to the first antenna port through the first antenna port are 6, 3, and 9, respectively.
  • the comb-tooth information used by the UE to transmit the DM RSs corresponding to the first and second antenna ports respectively through the first and second antenna ports is the same.
  • the comb-tooth information used by the UE to transmit the DM RSs corresponding to the third and fourth antenna ports respectively through the third and fourth antenna ports is the same.
  • the first and second columns of the "comb information" are the same, and the third and fourth columns are also the same, so that the base station can pair the UEs that use two antenna ports for transmission.
  • the base station schedules the UE1 to transmit the uplink signal through the two antenna ports, and the base station schedules the UE2 to transmit the uplink signal through the two antenna ports, and assumes that the second information sent by the base station to the UE1 is 000, and the second information is sent to the UE2.
  • the information is 001.
  • the combs used by UE1 to transmit the uplink DM RS on both antenna ports are 0, and the combs used by UE2 to transmit the uplink DM RS on both antenna ports are 1, so UE1 and UE2
  • the transmitted DM RSs are orthogonal. Otherwise, if the first antenna port and the second antenna port use different comb teeth, since the two antenna ports of the same UE occupy two comb teeth, the base station cannot perform the pair of antenna ports through the two antenna ports.
  • the DM RSs transmitted by the two UEs are orthogonalized by different combs.
  • the use of the same comb teeth on the 3rd and 4th antenna ports allows the distribution of comb teeth to be averaged, and the mutual interference between DM RSs transmitted through different antenna ports can be averaged.
  • the comb information used is the same.
  • the number of the combination of the configuration of the CS information and the comb information is the number of the second information, for example, the first column of Table 3.
  • the configuration information number of the CS/0CC is used to instruct the base station to send a resource of an acknowledgement (Acknowledge; hereinafter): Negative Acknowledge (NAK), and the base station is at the nth.
  • Acknowledge hereinafter: Negative Acknowledge (NAK)
  • NAK Negative Acknowledge
  • the TTI sends a PDCCH to the UE, where the configuration information of the CS/0CC is included, and after the UE receives the information, the DM RS is generated by using the information, and the uplink data and the DM RS are sent to the base station at the n+4 TTIs, after the base station receives the If the data is successfully demodulated, the ACK is fed back at the n+8th TTI, and if it fails, the NAK is fed back at the n+8th TTI.
  • the UE obtains the resource number of the ACK/NAK sent by the base station according to the configuration information of the CS/0CC, and acquires the ACK/NAK fed back by the base station at the n+8th TTI, so as to know whether the base station successfully demodulates the data.
  • the process of obtaining the resource number of the ACK/NAK sent by the base station according to the configuration information of the CS/0CC needs to perform the modulo 4 processing on the number of the configuration information of the CS/0CC. Therefore, the CS with the number difference of 4
  • the configuration of /0CC (the result of modulo 4 is the same) may correspond to the same ACK/NAK resource (for example, number 0) And 4), so different CS/0CC configurations with an interval of 4 are usually designed as a combination of relatively poor orthogonality, so that the interval of the better orthogonal combination is not 4, and the base station is orthogonal.
  • a higher-performance configuration combination schedules multiple UEs, it does not cause ACK/NAK resource collisions, that is, multiple UEs use different ACK/NAK resources.
  • the first antenna port uses the same comb and the orthogonality is poor.
  • the value of the first column of the CS information is the same as the value of the CS information used by the LTE system, or the cyclic shift used by the first antenna port of the LTE-Advanced system.
  • the value of the bit information is the same.
  • the LTE system only supports single antenna port transmission.
  • the mapping table of CS information and second information is shown in the first two columns of Table 1.
  • the LTE-Advanced system is an evolution of the LTE system, considering compatibility, the LTE-Advanced system
  • the value of the CS information used by the first antenna port is the same as the value of the CS information used by the LTE system.
  • mapping relationship between the CS information and the comb information may be as shown in Table 3.
  • the CS information of the LTE-Advanced system In the mapping relationship between the CS information and the comb information, the CS information of the LTE-Advanced system and
  • the value of the 0CC information in the mapping relationship of 0CC information:] is replaced with the value 0 of the comb information, the value t 1 _1 of the 0CC information is replaced with the value 1 of the comb information; or, the CS information of the LTE-Advanced system and
  • the value of the 0CC information in the mapping relationship of the 0CC information:] is replaced with the value 1 of the comb information, and the value of the 0CC information ⁇ _1 ] is replaced with the value 0 of the comb information.
  • the difference between Table 2 and Table 3 is that the 0CC information in Table 2 is replaced with the comb information in Table 3, and the value of the 0CC information in Table 2:] is replaced with Table 3.
  • the value of the middle comb information 0, the value of the 0CC information in Table 2 ⁇ _1 ] is replaced with the value 1 of the comb information in Table 3. Since the use of the 0CC information and the comb information is similar, it is an orthogonalization method based on the CS information. Therefore, if the mapping relationship between the CS information and the 0CC information is simply followed, the LTE-Advanced can be obtained.
  • the benefits of the mapping relationship between CS information and 0CC information in the system are simple to implement.
  • the value set of the CS information may be ⁇ 0, 3, 6, 9 ⁇ .
  • the value of the first column of the CS information is the same as the value of the CS information used by the LTE system, which is relatively simple to implement.
  • the value of the CS information of the LTE system is designed to support the extreme situation, and can support up to 6 UEs.
  • the base station can pair 6 UEs, and configure CS information for the 6 UEs.
  • the values are 0, 2, 4, 6, 8, and 10 to achieve orthogonality between the DM RSs transmitted by each of the 6 UEs.
  • the orthogonality of a certain CS interval is lowered.
  • the first antenna ports of any two of the foregoing configuration combinations respectively correspond to The comb information is different.
  • the combination of the CS information and the comb information of numbers 000 and 011 the first antenna port of the two configuration combinations respectively have the same CS information, but the first of the two configuration combinations
  • the corresponding combo information of the antenna ports is different, which are 0 and 1, respectively, which facilitates the selection of two types of comb information for the configuration combination having the same CS information, thereby improving scheduling flexibility.
  • the set of configuration combinations of the CS and the comb information may be as shown in Table 7.
  • the term "set" in the set of configuration combinations of CS and comb information is to protect all configuration combinations of CS information and comb information in Table 7, and the fixed relationship between the second information and these configuration combinations is not strictly bound. That is to say, the rows and rows in Table 7 can be flexibly exchanged.
  • the method for transmitting an uplink reference signal according to the embodiment of the present invention may be applied to a scenario in which an uplink DM RS is sent, and different combs may be used to keep orthogonal DM RSs transmitted by UEs in different cells orthogonal to ensure CoMP technology band.
  • the gain comes with compatibility, and can be flexibly applied in various scenarios.
  • FIG. 3 is a flowchart of another embodiment of a method for transmitting an uplink reference signal according to the present invention. As shown in FIG. 3, the method for transmitting the uplink reference signal may include:
  • Step 301 The base station generates first information, and sends the first information to the UE, where the first information is used to indicate The UE transmits the DM RS on a part of the subcarriers of the subcarrier allocated by the base station to the UE.
  • Step 302 The base station generates second information, and sends the second information to the UE, where the second information is used to indicate information for transmitting a subcarrier of the DM RS, so that the UE is configured according to the first information and the foregoing
  • the second information generates a DM RS, and the DM RS is mapped to the subcarrier indicated by the second information and sent to the base station.
  • the second information is further used to indicate CS information, and before the second information is sent to the UE, the base station may further use the information about the subcarrier used to send the DM RS. Co-encoded with CS information.
  • the foregoing second information is further used to indicate the CS information and the 0CC information.
  • the base station may further use the foregoing information to indicate that the DM RS is used for sending.
  • Subcarrier information, CS information, and 0CC information are jointly encoded.
  • the foregoing embodiment can implement that the DM RSs sent by the UEs of different cells are orthogonal, and the gain brought by the CoMP technology is guaranteed.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 4 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • the UE in this embodiment may implement the process of the embodiment shown in FIG. 1 of the present invention.
  • the UE may include: a receiver 41, a processor. 42 and transmitter 43.
  • the receiver 41 is configured to receive first information and second information sent by the base station, where the first information is used to indicate
  • the UE sends a DM RS on a part of subcarriers of the subcarrier allocated by the base station to the UE, where the second information is used to indicate information for transmitting the subcarrier of the DM RS;
  • the processor 42 is configured to generate the foregoing DM RS according to the first information and the second information received by the receiver 41;
  • the transmitter 43 is configured to map the DM RS generated by the processor 42 to the subcarrier indicated by the second information and send the DM RS to the base station.
  • the receiver 41 may receive the second information that is sent by the base station each time the UE is scheduled to perform uplink transmission.
  • the processor 42 may receive the first received according to the Nth time after the first information received by the receiver 41 at the Nth time is valid, before the first information received by the receiver 41 at the N+1th time is valid.
  • the information and the second information described above generate the DM RS; wherein the N is a non-negative integer.
  • the processor 42 may determine, according to the first information, that the DM RS is sent on a part of subcarriers of the subcarrier allocated by the base station for the UE, and And selecting, in the sequence used by the cell where the UE is located, a sequence corresponding to the number of the sub-carriers indicated by the first information, as a DM RS, and querying, according to the second information, a mapping relationship between the CS information and the comb-tooth information saved by the UE, Subcarrier and CS information for transmitting the foregoing DM RS; cyclically shifting the DM RS according to the CS information;
  • the transmitter 43 is specifically configured to map the DM RS after cyclic shifting to the foregoing subcarrier for transmitting the DM RS and send the signal to the base station.
  • the processor 42 is specifically configured to: when the second information further includes the CS information and the 0CC information, determine, according to the first information, part of the subcarriers of the subcarrier allocated by the base station to the UE. Sending a DM RS, and selecting, in the sequence used by the cell where the UE is located, a sequence corresponding to the number of subcarriers indicated by the first information, as a DM RS; querying CS information, 0CC information, and comb saved by the UE according to the second information a mapping relationship of the tooth information, obtaining a subcarrier for transmitting the DM RS, CS information, and 0CC information; and cyclically shifting the DM RS according to the CS information, and performing DM after the cyclic shift according to the 0CC information pair
  • the RS is loaded with an orthogonal mask.
  • the transmitter 43 is specifically configured to map the DM RS after the orthogonal mask is loaded to the foregoing subcarrier for transmitting the
  • the processor 42 After the receiver 41 receives the first information and the second information sent by the base station, the processor 42 generates a DM RS according to the first information and the second information, and maps the DM RS to the second information by the transmitter 43.
  • the indicated subcarriers are sent to the base station. Therefore, the DM RSs sent by the UEs of different cells can be orthogonalized to ensure the gain brought by the CoMP technology.
  • FIG. 5 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the base station in this embodiment may implement the present invention.
  • the base station may include: a processor 51 and a transmitter 52;
  • the processor 51 is configured to generate the first information and the second information, where the first information is used to indicate that the UE sends the DM RS on a part of the subcarriers allocated by the base station to the UE, and the second information is used to indicate Information for transmitting subcarriers of the DM RS;
  • the transmitter 52 is configured to send the first information and the second information generated by the processor 51 to the UE, so that the UE generates a DM RS according to the first information and the second information, and maps the DM RS to the second
  • the subcarriers indicated by the information are sent to the above base station.
  • the processor 51 is specifically configured to: when the second information is further used to indicate the CS information, the information and the CS information used to indicate the subcarrier used to send the DM RS. Co-coding.
  • the processor 51 is specifically configured to: when the second information is further used When the CS information and the OCC are indicated, the above-described information for indicating the subcarrier for transmitting the DM RS, the CS information, and the 0CC information are jointly encoded.
  • the foregoing embodiment can implement that the DM RSs sent by the UEs of different cells are orthogonal, and the gain brought by the CoMP technology is guaranteed.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行参考信号的发送方法、用户设备和基站,所述上行参考信号的发送方法包括:用户设备接收基站发送的第一信息,所述第一信息用于指示所述用户设备在所述基站为所述用户设备分配的子载波的部分子载波上发送解调参考信号;所述用户设备接收所述基站发送的第二信息,所述第二信息用于指示用于发送所述解调参考信号的子载波的信息;所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号,并将所述解调参考信号映射到所述第二信息指示的子载波上发送给所述基站。本发明实施例可以实现不同小区的用户设备发送的解调参考信号保持正交,保证 CoMP 技术带来的增益。

Description

上行参考信号的发送方法、 用户设备和基站 本申请要求于 2011年 11月 7日提交中国专利局、 申请号为 CN 201110348340. X、 发明名称为 "上行参考信号的发送方法、 用户设备和基站" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 尤其涉及一种上行参考信号的发送方法、 用户设备和基 站。 背景技术 在长期演进 (Long Term Evolution; 以下简称: LTE) 系统及长期演进的进一步演 进(LTE-Advanced)系统的上行传输中, 基站为用户设备(User Equipment; 以下简称: UE) 分配预定数量的物理资源块 (Physical Resource Block; 以下简称: PRB), UE就 在这些 PRB上发送解调参考信号 (Demodulation Reference Signal ; 以下简称: DM RS) 和数据。 其中 DM RS用于信道估计, 便于基站对数据进行解调, DM RS在每个时隙中间 的一个符号上传输; 举例来说, 1个传输时间间隔 (Transmission Time Interval ; 以 下简称: TTI )在时间上包括 2个时隙或 14个符号, 每个时隙包括 7个符号, 每个时隙 中的第 4个符号用于传输 DM RS, 其它符号用于传输数据; UE发送一个 TTI的数据符号 给基站, 基站收到之后, 通过 DM RS来估计上行信道信息, 从而对数据符号进行解调。 这里, 一个 PRB在频带上占据了 12个子载波, 数据和 DM RS都在基站为 UE调度的这些 PRB的所有子载波上传输。
在 LTE系统及 LTE-Advanced系统中, 同一小区的所有 UE使用同一组序列, 而不同 小区的 UE使用不同组的序列, 由于不同组的序列之间的相关性较低, 这就使不同小区 的 UE所发送的 DM RS之间的干扰较小, 从而有利于信道估计的精度。
此外, 基站向 UE 发送循环移位 (Cyclic Shift ; 以下简称: CS ) 和正交掩码 (Orthogonal Cover Code; 以下简称: 0CC) 信息, UE根据收到的 CS信息对该小区所 使用的序列进行相应的循环移位, 然后再对同一个 TTI的两个时隙中的 DM RS联合乘以 某一 0CC, 再进行离散傅立叶逆变换 ( Inverse Discrete Fourier Transform; 以下简 称: IDFT) 即生成待发送的 DM RS。 CS和 0CC是正交化的方法, 都可以用于区分不同 UE 或同一 UE的不同天线端口,例如 UE1和 UE2使用不同的 CS或 0CC来生成 DM RS,则 UE1 和 UE2发送的 DM RS之间是正交的; UEl的不同天线端口使用不同的 CS或 0CC来生成 DM RS, 则 UEl的不同天线端口发送的 DM RS之间是正交的。 这样, 基站可以为不同 UE 分配不同的 CS和 /或 0CC, 就可以使不同 UE发送的 DM RS之间保持正交。 基站调度多个 UE在重叠的频率资源上同时传输, 也可以称为基站对多个 UE进行配对。
随着技术的进步, 引入了协作多点发送 /接收 (Coordinated Multiple Point transmission/reception; 以下简称: CoMP) 技术, 即多个小区可以对同一 UE发送的 信号进行解调, 从而增强上行性能。举例来说, 假设在不使用 CoMP技术时, UE1仅向小 区 1发送上行信号, 其中 UE1按照小区 1的配置发送 DM RS; UE2仅向小区 2发送上行 信号, 其中 UE2按照小区 2的配置发送 DM RS; UEl与 UE2发送的 DM RS相互之间干扰 较小。 当使用 CoMP技术时, UE1和 UE2都向两个小区发送上行信号, 然而, 小区 2在接 收 UE1发送的信号的时候会受到 UE2所发送的信号的干扰, 同样小区 1在接收 UE2发送 的信号的时候会受到 UE1所发送的信号的干扰, 从而会降低 CoMP技术带来的增益。 发明内容
本发明提供一种上行参考信号的发送方法、 用户设备和基站, 以实现不同小区的用 户设备发送的解调参考信号保持正交, 保证 CoMP技术带来的增益。
本发明一方面提供一种上行参考信号的发送方法, 包括:
用户设备接收基站发送的第一信息,所述第一信息用于指示所述用户设备在所述基 站为所述用户设备分配的子载波的部分子载波上发送解调参考信号;
所述用户设备接收所述基站发送的第二信息,所述第二信息用于指示用于发送所述 解调参考信号的子载波的信息;
所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号, 并将所述 解调参考信号映射到所述第二信息指示的子载波上发送给所述基站。
本发明另一方面还提供一种上行参考信号的发送方法, 包括:
基站生成第一信息, 并将所述第一信息发送给用户设备, 所述第一信息用于指示所 述用户设备在所述基站为所述用户设备分配的子载波的部分子载波上发送解调参考信 号;
所述基站生成第二信息, 并将所述第二信息发送给所述用户设备, 所述第二信息用 于指示用于发送所述解调参考信号的子载波的信息, 以使所述用户设备根据所述第一信 息和所述第二信息生成所述解调参考信号, 并将所述解调参考信号映射到所述第二信息 指示的子载波上发送给所述基站。
本发明另一方面还提供一种用户设备, 包括:
接收器, 用于接收基站发送的第一信息和第二信息, 所述第一信息用于指示所述用 户设备在所述基站为所述用户设备分配的子载波的部分子载波上发送解调参考信号,所 述第二信息用于指示用于发送所述解调参考信号的子载波的信息;
处理器, 用于根据所述接收器接收的第一信息和第二信息生成所述解调参考信号; 发送器,用于将所述处理器生成的解调参考信号映射到所述第二信息指示的子载波 上发送给所述基站。
本发明另一方面还提供一种基站, 包括:
处理器, 用于生成第一信息和第二信息; 所述第一信息用于指示用户设备在所述基 站为所述用户设备分配的子载波的部分子载波上发送解调参考信号; 所述第二信息用于 指示用于发送所述解调参考信号的子载波的信息;
发送器, 用于将所述处理器生成的第一信息和第二信息发送给所述用户设备, 以使 所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号, 并将所述解调 参考信号映射到所述第二信息指示的子载波上发送给所述基站。
通过本发明, 用户设备接收到基站发送的第一信息和第二信息之后, 根据第一信息 和第二信息生成解调参考信号, 并将该解调参考信号映射到第二信息指示的子载波上发 送给基站。从而可以实现不同小区的用户设备发送的解调参考信号保持正交,保证 CoMP 技术带来的增益。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还 可以根据这些附图获得其他的附图。
图 1为本发明上行参考信号的发送方法一个实施例的流程图;
图 2为本发明子载波分配一个实施例的示意图;
图 3为本发明上行参考信号的发送方法另一个实施例的流程图;
图 4为本发明用户设备一个实施例的结构示意图;
图 5为本发明基站一个实施例的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施例中 的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例 是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范 围。
图 1为本发明上行参考信号的发送方法一个实施例的流程图, 如图 1所示, 该上行 参考信号的方法可以包括:
步骤 101, UE接收基站发送的第一信息, 该第一信息用于指示 UE在基站为该 UE分 配的子载波的部分子载波上发送 DM RS。
步骤 102, UE接收基站发送的第二信息, 该第二信息用于指示用于发送 DM RS的子 载波的信息。
本实施例中, 上述子载波的信息可以为子载波的编号或梳齿信息。
步骤 103, UE根据第一信息和第二信息生成上述 DM RS, 并将上述 DM RS映射到上 述第二信息指示的子载波上发送给上述基站。
本实施例中, 由于第一信息指示 UE在基站为该 UE分配的子载波的部分子载波上发 送 DM RS, 并且第二信息用于指示用于发送 DM RS的子载波的信息, 因此基站可以将该 基站为上述 UE分配的子载波中除第二信息指示的子载波之外的其它子载波分配给除上 述 UE所在小区之外的其它小区的 UE, 由于不同小区的 UE使用不同的子载波来发送 DM RS, 这样就能使不同小区的 UE发送的 DM RS之间相互正交, 如图 2所示, 图 2为本发 明子载波分配一个实施例的示意图。假设所有频率资源包括 2个梳齿,一个 PRB包括 12 个子载波, 每个梳齿在每个 PRB中对应 6个子载波; 如果将 PRB2〜3的第 2个梳齿分配 给 UE1,将 PRB1的第 2个梳齿分配给 UE2,将 PRB1〜3的第 1个梳齿分配给 UE3,则 UE1〜UE3 所发送的 DM RS之间相互不会干扰。
对于某个 UE, 例如: UE1来说, 整个过程可以为: 基站向 UE1发送第一信息, 指示 UE1在基站为该 UE1分配的子载波的部分子载波上发送 DM RS; 接下来, 基站向 UE1发 送第二信息, 该第二信息用于指示用于发送 DM RS的子载波的信息, 举例来说, 第二信 息可以指示在编号为奇数的子载波上发送 DM RS; UEl 收到第一信息和第二信息之后, 由于每个 PRB包括 12个子载波, 因此 UE 1生成长度为 12的 DM RS, 由于基站为 UE分配 的 PRB的编号为 2〜3, 因此 UE1将生成的 DM RS映射到编号为 25、 27、 …、 47的子载波 上, 发送给基站。
另外,本实施例中, UE还可以接收基站发送的用于指示 UE在基站为该 UE分配的所 有子载波上发送 DM RS的信息, 这时上述 UE可以根据该信息生成 DM RS, 并将该 DM RS 映射到基站为该 UE分配的所有子载波上发送给基站。本发明实施例通过指示 UE在基站 为该 UE分配的所有子载波上发送 DM RS, 可以兼容现有技术的设计, 获得现有技术的设 计的好处。
上述实施例中, UE接收到基站发送的第一信息和第二信息之后,根据第一信息和第 二信息生成 DM RS, 并将该 DM RS映射到第二信息指示的子载波上发送给基站。 从而可 以实现不同小区的 UE发送的 DM RS保持正交, 保证 CoMP技术带来的增益。
下面对本发明实施例提供的方法进行详细介绍。
本发明图 1所示实施例中, 上述第二信息为动态信息, 即基站在每次调度 UE进行 上行传输时都需要向 UE发送第二信息, 也就是说, UE接收基站在每次调度上述 UE进行 上行传输时发送的第二信息。 上述第一信息为半静态信息, 在第 N次接收到的第一信息 生效之后,在第 N+1次接收到的第一信息生效之前, UE根据第 N次接收到的第一信息和 第二信息生成 DM RS; 其中, 上述 N为非负整数。
举例来说, 基站在第 n个 TTI向 UE发送第一信息指示 UE在基站为该 UE分配的子 载波的部分子载波上发送 DM RS, 则该信息的生效时间可以是第 n+k个 TTI, 其中 k为 大于或等于 0的整数, k可以被预设在基站和 UE侧。 如果 UE在第 n个 TTI收到该第一 信息之后,假设该 UE—直持续到第 n+T个 ΤΤΙ才再次收到新的第一信息,则 UE在第 n+k 到第 η+Τ+k-l个 TTI上都使用第 n个 TTI接收到的第一信息, 而从第 n+T+k个 TTI开始 使用第 n+T个 TTI接收到的第一信息。 通过这样的方式, 基站每次发送的第一信息可以 在长时间生效, 而不需在每次调度 UE的上行传输时都向 UE发送一次第一信息, 从而可 以降低信息开销。
对于第二信息来说, 基站可以通过调度上行传输的物理下行控制信道 (Physical
Downlink Control Channel ; 以下简称: PDCCH) 发送给 UE, 例如在 LTE-Advanced系统 中,基站在第 n个 TTI向 UE发送 PDCCH,在调度 UE进行上行传输的同时向 UE发送第二 信息, 该第二信息包括在 PDCCH中, 则 UE收到 PDCCH之后, 在第 n + 4个 TTI发送上 行信号, 并且该 UE所发送的 DM RS是根据接收到的第一信息和第二信息来生成的。
本发明图 1所示实施例中, 基站为 UE分配的部分子载波的信息为梳齿信息, 在每 个 PRB中, 第 i个梳齿对应编号为 i、 i+Nc、 i+2Nc、 ……的子载波, 其中 Nc表示 UE 的可用梳齿数目。
举例来说, 假设 Nc = 2, 即表示总共只有 2个梳齿, 第 1个梳齿即对应编号为奇数 的子载波, 第 2个梳齿即对应编号为偶数的子载波。 梳齿的数目可以预设置, 也可以由 基站通过其它信息通知给 UE。
其中, 本发明的一种实现方式中, 上述 Nc可以等于探测参考信号 (Sounding RS; 以下简称: SRS ) 的可用梳齿数目。
在 LTE-Advanced系统中, 上行 RS除了 DM RS之外, 还包括 SRS, 其用于探测上行 信道的状况, UE可以在某一频带上发送 SRS, 基站收到 SRS之后即可获知该频带上的上 行信道状况, 从而可为 UE的上行传输进行合理的调度。 在 LTE-Advanced系统中, 不同 UE发送的 SRS可以使用不同的梳齿来保证相互之间的正交, SRS的可用梳齿数目为 2。 如果用于生成 DM RS的可用梳齿数目与用于生成 SRS的可用梳齿数目相同, 则可以简单 地重用 SRS的设计, 即本发明实施例可以简单地重用 SRS的生成方法来生成 DM RS, 降 低了实现复杂度。
本发明的另一种实现方式中, 上述 Nc可以等于 3。
由于在对 CoMP技术的研究中, 协作集合通常包括 3个小区, 即某个 UE发送的信号 最多被 3个小区接收,因此设置 Nc等于 3就可以保证 3个协作小区的 UE所发送的 DM RS 之间不会互相干扰。
本发明以下描述中以 Nc等于 2为例进行说明。
本发明图 1所示实施例的一种实现方式中, 上述第二信息还用于指示 CS信息; 步 骤 103可以为: UE根据第一信息确定在基站为该 UE分配的子载波的部分子载波上发送 DM RS, 并在该 UE所在小区使用的序列中选择长度与第一信息指示的子载波的数量对应 的序列, 作为 DM RS; 然后, UE根据第二信息查询该 UE保存的 CS信息和梳齿信息的映 射关系, 获得用于发送 DM RS的子载波和 CS信息; 最后, UE根据上述 CS信息对上述 DM RS进行循环移位, 并将进行循环移位之后的 DM RS映射到上述用于发送 DM RS的子 载波上发送给基站。
在 LTE-Advanced系统中, 如果不采用本发明实施例提供的方法, UE按照式(1 )对 DM RS序列进行循环移位:
= eianr {n), 0 < « < s ( 1 ) 其中, 表示未经过循环移位的 DM RS, 表示经过循环移位之后的 DM RS, n表示长度为 M 的序列的各个元素, Μ 表示 DM RS的子载波数目、 也即是 DM RS序
RS
列的长度, 例如当分配了 4个 PRB时, M. = 48 = 1兀 nj\2, 其中"。 s即是循环移 位的取值。
当使用了本发明实施例提供的方法之后, 由于 UE仅使用部分子载波来发送 DM RS, 因此 DM RS序列的长度变短, 但是仍然可以应用循环移位技术, 这样能获得循环移位带 来的好处。 例如, 假设 DM RS的梳齿数目为 2, 因此 DM RS仅在基站为 UE分配的 PRB 中的 1/2子载波上被发送, 则 DM RS序列的长度仅为 LTE-Advanced系统中 DM RS的序 列长度的一半。 举例来说, 假设基站为 UE分配了 4个 PRB, 则 DM RS序列的长度为 4 X 12/2=24, 此时只需生成长度为 24的 DM RS序列, 再根据收到的 CS信息对 DM RS序列 进行循环移位, 最终将循环移位后的 DM RS序列映射到 24个子载波上。
本发明实施例中, 如果上述第二信息包括 3个比特, 则第二信息能够传递 8种 CS 信息和梳齿信息的配置组合, 如表 1所示, 表 1为 UE从单个天线端口发送上行信号时 CS信息和梳齿信息的映射表, 表 1中, 当基站向 UE发送的第二信息为 001时, 表示 UE 使用的 CS信息的值为 6, 梳齿为 0 (即该 UE使用编号为偶数的子载波发送 DM RS)。
表 1
Figure imgf000009_0001
本发明图 1所示实施例的另一种实现方式中, 上述第二信息还用于指示 cs信息和
0CC信息; 步骤 103可以为: UE根据第一信息确定在基站为该 UE分配的子载波的部分 子载波上发送 DM RS, 并在该 UE所在小区使用的序列中选择长度与上述第一信息指示的 子载波的数量对应的序列, 作为 DM RS; 然后, 上述 UE根据第二信息查询该 UE保存的 CS信息、 0CC信息和梳齿信息的映射关系, 获得用于发送 DM RS的子载波、 CS信息和 0CC信息; 接下来, UE可以根据 CS信息对 DM RS进行循环移位, 并根据 0CC信息对进 行循环移位之后的 DM RS加载正交掩码; 最后, UE将加载正交掩码之后的 DM RS映射到 上述用于发送 DM RS的子载波上发送给基站。
在 LTE-Advanced系统中, 0CC信息能够在时域维度提供进一步的正交化, UE可以 按照式 (2 ) 对进行循环移位之后的 DM RS序列加载正交掩码:
WH - s + n) = w(m a (") ( 2 ) 其中, m为 0或 1, 分别表示一个 TTI中的第 1、 2个时隙中的 DM RS符号。 w(m
[1 1] -i] 。
本发明实施例同时将 CS信息、 0CC信息和梳齿信息纳入到 DM RS的设计中, 能获得 这三者的好处。
本发明实施例中, CS信息和梳齿信息的映射关系采用嵌套的形式, 即对于相同的第 二信息, UE通过 A个天线端口发送上述 DM RS时所使用的 CS信息和梳齿信息是 UE通过 A+i个天线端口发送上述 DM RS时所使用的 CS信息和梳齿信息的子集; 其中 A和 i为正 整数。
在 LTE-Advanced系统中, UE在空间上最多可以从 4个天线端口发送上行信号, CS 信息和 0CC信息的映射关系可以如表 2所示。
表 2
Figure imgf000010_0001
表 2中 λ表示天线端口的编号, 因此当基站向 UE发送配置信息为 001时, 如果基站 指示 UE从两个天线端口发送上行信号,则 UE在两个天线端口上使用的 CS信息分别为 6 和 0, 使用的 0CC信息分别为 ―1]和 ―1] ; 而如果基站指示 UE从 4个天线端口发送 上行信号, 则 UE在 4个天线端口上使用的 CS信息分别为 6、 0、 9禾 P 3, 使用的 0CC信 息分别为[1 -1][1 -1][1 1][1 1] 。 此即为嵌套的形式, 这样的设计比较简单。
本发明一种实现方式中, 通过第二信息来传递 CS信息和梳齿信息, 也可以采用嵌 套的形式, 如表 3所示。
表 3
Figure imgf000011_0001
当基站向 UE发送的第二信息为 001时, 如果基站指示 UE从 2个天线端口发送上行 信号, 则 UE在 2个天线端口上使用的 CS信息分别为 6和 0, 使用的梳齿信息分别为 1 和 1 ; 而如果基站指示 UE从 4个天线端口发送上行信号, 则 UE在 4个天线端口上使用 的 CS信息分别为 6、 0、 9和 3, 使用的梳齿信息分别为 1、 1、 0和 0。 此即为嵌套的形 式, 这样的设计比较简单。
本发明另一种实现方式中, 通过第二信息传递 CS信息、 0CC信息和梳齿信息, 如表 4所示。
表 4
Figure imgf000011_0002
001 6 0 9 3 [i -i] [i -i] [1 i] [1 i] 1 1 0 0
010 3 9 6 0 [i -i] [i -i] [1 i] [1 i] 1 1 0 0 o n 4 10 7 1 [1 i] [1 i] [1 i] [1 i] 0 0 0 0
100 2 8 5 11 [1 i] [1 i] [1 i] [1 i] 0 0 0 0
101 8 2 11 5 [i -i] [i -i] [i -i] [i -i] 1 1 1 1
110 10 4 1 7 [i -i] [i -i] [i -i] [i -i] 1 1 1 1
111 9 3 0 6 [1 i] [1 i] [i -i] [i -i] 0 0 1 1
下面仅考虑 cs信息和梳齿信息的映射, CS信息、 OCC信息和梳齿信息的映射方式 可以简单地在 CS信息和梳齿信息的映射关系中间增加 OCC信息即可, 下面不再赘述。
本发明实施例中, CS信息和梳齿信息的映射关系中 CS信息和梳齿信息的配置组合 总共有 8种, 其中 4种方案中 UE发送 DM RS的所有天线端口均使用相同的梳齿信息, 另外 4种方案中 UE发送 DM RS的天线端口使用不同的梳齿信息。
当基站期望调度 2个 UE配对、 并且每个 UE都进行 4个天线端口的传输时, 为了能 够通过不同的梳齿来保证这两个 UE所发送的 DM RS正交, 就需要将 2个梳齿分别分配 给上述两个 UE, 因此, 需要有这样的至少 2个配置组合: 所有 4个天线端口中的 2个天 线端口传输所使用的梳齿为 0 ( 1 ), 另外天线端口传输所使用的梳齿为 1 ( 0 ) ; 并且为 了增加调度的灵活性, 设计 4个配置组合支持这样的特性, 即 2个配置组合中所有 4个 天线端口传输所使用的梳齿为 0, 另 2个配置组合中所有 4个天线端口传输所使用的梳 齿为 1。
本发明实施例中, CS信息和梳齿信息的映射关系的特点在于, 根据 CS信息和梳齿 信息的映射关系, UE通过第 2、 3和 4个天线端口发送分别与第 2、 3和 4个天线端口对 应的 DM RS时所使用的 CS信息与该 UE通过第 1个天线端口发送与第 1个天线端口对应 的 DM RS时所使用的 CS信息的间隔分别为 6、 3和 9。
CS信息的间隔越大, 说明不同天线端口之间的正交性越好, 由于" = 2 r^/12, ^ 可以取 (Ti l的整数值, 即 CS的取值只能小于 12, 因此可以根据该原则来优化 CS信息 和梳齿信息的映射关系的设计。 如表 3所示, 对于 2个天线端口的传输来说, 两个天线 端口的 DM RS所使用的 CS信息的间隔为 6 ; 对于 4个天线端口的传输来说, 任意两个天 线端口的 DM RS所使用的 CS信息的最小间隔为 3, 这样能保证最大的正交性。 本发明实施例中, 根据 CS信息和梳齿信息的映射关系, UE通过第 1和 2个天线端 口发送分别与上述第 1和 2个天线端口对应的 DM RS时所使用的梳齿信息相同, 该 UE 通过第 3和 4个天线端口发送分别与上述第 3和 4个天线端口对应的 DM RS时所使用的 梳齿信息相同。
如表 3所示, "梳齿信息" 的第 1、 2列都是相同的, 第 3、 4列也都是相同的, 这 样便于基站对多个使用 2个天线端口传输的 UE进行配对, 举例来说, 基站调度 UE1通 过 2个天线端口进行上行信号的传输,基站调度 UE2通过 2个天线端口进行上行信号的 传输, 假设基站向 UE1发送的第二信息为 000, 向 UE2发送的第二信息为 001, 这样, UE1在两个天线端口上发送上行 DM RS所使用的梳齿都是 0, UE2在两个天线端口上发送 上行 DM RS所使用的梳齿都是 1, 因此 UE1和 UE2发送的 DM RS之间是正交的。 否则, 如果第 1个天线端口和第 2个天线端口使用不同的梳齿, 则会由于同一个 UE的两个天 线端口就占用了 2个梳齿, 则基站无法在对通过 2个天线端口进行传输的两个 UE进行 配对时, 通过不同梳齿对这两个 UE发送的 DM RS进行正交化。 同时, 第 3和 4个天线 端口使用相同的梳齿能够让梳齿的分配平均, 也可以让通过不同天线端口发送的 DM RS 之间的相互干扰平均。
本发明实施例 CS信息和梳齿信息的映射关系中,对于编号相差为 4的 CS信息和梳 齿信息的配置组合, UE通过第 1个天线端口发送与该第 1个端口对应的 DM RS时所使用 的梳齿信息相同。
其中, 上述 CS信息和梳齿信息的配置组合的编号, 即第二信息的编号, 例如: 表 3 的第一列。
在 LTE-Advanced系统中, CS/0CC的配置信息编号同时用于指示基站发送肯定应答 (Acknowledge; 以下简称: ACK) /否定应答(Negative Acknowledge; 以下简称: NAK) 的资源, 基站在第 n个 TTI向 UE发送 PDCCH, 其中包括 CS/0CC的配置信息, UE收到之 后, 使用该信息来生成 DM RS, 并在第 n+4个 TTI将上行数据和 DM RS发送给基站, 基 站收到之后, 如果成功解调数据, 则在第 n+8个 TTI反馈 ACK, 如果失败, 则在第 n+8 个 TTI反馈 NAK。 UE根据 CS/0CC的配置信息来获取基站发送 ACK/NAK的资源编号, 并 在第 n+8个 TTI获取基站反馈的 ACK/NAK, 就能获知基站是否成功解调数据。
在某些系统配置情况下, 根据 CS/0CC的配置信息来获取基站发送 ACK/NAK的资源 编号的过程需要对 CS/0CC 的配置信息的编号进行模 4处理, 因此, 编号差别为 4 的 CS/0CC的配置 (模 4的结果是相同的) 可能对应相同的 ACK/NAK资源 (例如编号为 0 和 4), 所以通常将间隔为 4的不同 CS/0CC配置设计为正交性相对较差的组合, 这样也 就能让正交性较好的组合的间隔不为 4,基站在选用正交性较高的配置组合调度多个 UE 的时候, 就不会造成 ACK/NAK资源碰撞, 即多个 UE使用不同的 ACK/NAK资源。
如表 3所示, 对于编号分别为 000和 100的 CS信息和梳齿信息的配置组合, 第一 个天线端口使用相同的梳齿, 正交性较差。
本发明实施例 CS信息和梳齿信息的映射关系中, CS信息第一列的值与 LTE系统使 用的 CS信息的值相同, 或者与 LTE-Advanced系统的第一个天线端口所使用的循环移位 信息的值相同。
LTE系统只支持单个天线端口传输,其 CS信息与第二信息的映射表如表 1的前两列 所示, LTE-Advanced系统则是 LTE系统的演进, 考虑到了兼容性, LTE-Advanced系统 的第一个天线端口所使用的 CS信息的值与 LTE系统所使用的 CS信息的值相同。
本发明实施例中, CS信息和梳齿信息的映射关系可以如表 3所示。
本发明实施例 CS信息和梳齿信息的映射关系中, LTE-Advanced系统的 CS信息和
0CC 信息的映射关系中 0CC 信息的值 :]被替换为梳齿信息的值 0, 0CC 信息的值 t1 _1] 被替换为梳齿信息的值 1 ; 或者, LTE-Advanced系统的 CS信息和 0CC信息的映 射关系中 0CC信息的值 :]被替换为梳齿信息的值 1, 0CC信息的值 ^ _1] 被替换为 梳齿信息的值 0。
从表 2和表 3可以看出,表 2和表 3的区别在于表 2中的 0CC信息被替换为表 3中 的梳齿信息, 并且表 2中 0CC信息的值 :]被替换为表 3中梳齿信息的值 0, 表 2中 0CC信息的值 ^ _1] 被替换为表 3中梳齿信息的值 1。 由于 0CC信息和梳齿信息的用途 相似, 都是在 CS信息基础之上的一种正交化方式, 因此如果简单地沿用 CS信息和 0CC 信息的映射关系的设计, 就能够同样获取 LTE-Advanced系统中 CS信息和 0CC信息的映 射关系设计的好处, 并且实现简单。 此外, 还可以交换两个梳齿, 即 0CC信息的值 被替换为梳齿信息的值 1, 0CC 信息的值 [1 _1] 被替换为梳齿信息的 0, 如表 5所示。
表 5
cs信息 梳齿信息
第二信息
Λ = 0 Λ = 1 Λ = 2 Λ = 3 Λ = 0 Λ = 1 Λ = 2 Λ = 3 000 0 6 3 9 1 1 0 0
001 6 0 9 3 0 0 1 1
010 3 9 6 0 0 0 1 1 on 4 10 7 1 1 1 1 1
100 2 8 5 11 1 1 1 1
101 8 2 11 5 0 0 0 0
110 10 4 1 7 0 0 0 0
111 9 3 0 6 1 1 0 0 本发明实施例中, CS信息的取值集合可以为 {0, 3, 6, 9}。
本发明以上实施例的描述都是假设 CS信息的第一列的取值与 LTE系统所使用的 CS 信息的值相同, 这样实现比较简单。实际上, LTE系统的 CS信息的取值的设计是考虑到 极端情况, 最多可以支持 6个 UE的配对, 例如表 1中, 基站可以配对 6个 UE, 并为这 6个 UE分别配置 CS信息的值为 0、 2、 4、 6、 8和 10, 以实现这 6个 UE各自发送的 DM RS 之间的正交。 然而, 当 DM RS仅在部分子载波被发送时, 某一 CS间隔的正交性就降低 了。例如,当梳齿总数为 2时, CS间隔为 4的不同 DM RS之间的正交性与 LTE系统中(在 所有子载波上发送 DM RS) CS间隔为 2的不同 DM RS之间的正交性相同。 因此就不需要 6个 UE配对的这种极端设计, 可以设计为表 6所示, 所有 CS信息的取值都是 {0、 3、 6 和 9}中的某个数。
表 6
CS信息 梳齿信息
第二信息
λ = 0 λ = 1 λ = 2 λ = 3 λ = 0 λ = 1 λ = 2 λ = 3
000 0 6 3 9 0 0 0 0
001 6 0 9 3 1 1 1 1
010 3 9 6 0 0 0 0 0
011 0 6 3 9 1 1 0 0
100 9 3 0 6 0 0 1 1
101 3 9 6 0 1 1 0 0
110 6 0 9 3 0 0 1 1
111 9 3 0 6 1 1 1 1 本发明实施例中, 如果 CS信息和梳齿信息的配置组合中任意两种配置组合的第一 个天线端口各自对应的 CS信息相同, 则上述任意两种配置组合的第一个天线端口各自 对应的梳齿信息不同。
如表 6所示, 编号为 000和 011的 CS信息和梳齿信息的配置组合, 这两个配置组 合的第一个天线端口各自对应的 CS信息相同, 然而这两个配置组合的第一个天线端口 各自对应的梳齿信息不同,分别为 0和 1,这便于为具有相同 CS信息的配置组合提供两 种梳齿信息的选择, 提高调度的灵活性。
本发明实施例中, 当 CS信息的取值集合为 {0, 3, 6, 9}时, CS和梳齿信息的配置 组合的集合可以如表 7所示。
表 7
Figure imgf000016_0001
这里 CS和梳齿信息的配置组合的集合中的 "集合"一词是为了保护表 7中 CS信息 与梳齿信息的所有配置组合, 不严格绑定第二信息与这些配置组合的固定关系, 也即是 说, 表 7中的行与行之间可以灵活交换。
本发明实施例提供的上行参考信号的发送方法, 可以应用在发送上行 DM RS的场景 中, 可以利用不同的梳齿使不同小区的 UE发送的上行 DM RS之间保持正交, 保证 CoMP 技术带来的增益, 具有兼容性, 并能灵活地应用在各种场景中。
图 3为本发明上行参考信号的发送方法另一个实施例的流程图, 如图 3所示, 该上 行参考信号的发送方法可以包括:
步骤 301, 基站生成第一信息, 并将该第一信息发送给 UE, 该第一信息用于指示上 述 UE在基站为该 UE分配的子载波的部分子载波上发送 DM RS。
步骤 302, 基站生成第二信息, 并将该第二信息发送给上述 UE, 该第二信息用于指 示用于发送 DM RS的子载波的信息, 以使上述 UE根据上述第一信息和上述第二信息生 成 DM RS, 并将上述 DM RS映射到第二信息指示的子载波上发送给上述基站。
本实施例的一种实现方式中, 上述第二信息还用于指示 CS信息, 将上述第二信息 发送给上述 UE之前, 基站还可以对上述用于指示用于发送 DM RS的子载波的信息与 CS 信息进行联合编码。
本实施例的另一种实现方式中, 上述第二信息还用于指示 CS信息和 0CC信息, 将 上述第二信息发送给上述 UE之前, 基站还可以对上述用于指示用于发送 DM RS的子载 波的信息、 CS信息和 0CC信息进行联合编码。
上述实施例可以实现不同小区的 UE发送的 DM RS保持正交, 保证 CoMP技术带来的 增益。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序 在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM, 磁碟 或者光盘等各种可以存储程序代码的介质。
图 4为本发明用户设备一个实施例的结构示意图, 本实施例中的 UE可以实现本发 明图 1所示实施例的流程, 如图 4所示, 该 UE可以包括: 接收器 41、 处理器 42和发送 器 43。
其中, 接收器 41, 用于接收基站发送的第一信息和第二信息, 该第一信息用于指示
UE在上述基站为 UE分配的子载波的部分子载波上发送 DM RS, 第二信息用于指示用于 发送 DM RS的子载波的信息;
处理器 42, 用于根据接收器 41接收的第一信息和第二信息生成上述 DM RS;
发送器 43, 用于将处理器 42生成的 DM RS映射到第二信息指示的子载波上发送给 基站。
具体地,接收器 41可以接收基站在每次调度上述 UE进行上行传输时发送的第二信 息。
这时,处理器 42可以在接收器 41第 N次接收到的第一信息生效之后,在接收器 41 第 N+1次接收到的第一信息生效之前,根据第 N次接收到的第一信息和上述第二信息生 成上述 DM RS; 其中, 上述 N为非负整数。 本实施例的一种实现方式中,处理器 42可以当上述第二信息还用于指示 CS信息时, 根据第一信息确定在基站为 UE分配的子载波的部分子载波上发送 DM RS, 并在该 UE所 在小区使用的序列中选择长度与上述第一信息指示的子载波的数量对应的序列,作为 DM RS; 根据上述第二信息查询 UE保存的 CS信息和梳齿信息的映射关系, 获得用于发送上 述 DM RS的子载波和 CS信息; 根据该 CS信息对上述 DM RS进行循环移位;
发送器 43, 具体用于将进行循环移位之后的 DM RS映射到上述用于发送 DM RS的子 载波上发送给基站。
本实施例的另一种实现方式中, 处理器 42, 具体用于当第二信息还包括 CS信息和 0CC信息时,根据第一信息确定在基站为该 UE分配的子载波的部分子载波上发送 DM RS, 并在该 UE所在小区使用的序列中选择长度与第一信息指示的子载波的数量对应的序列, 作为 DM RS; 根据第二信息查询该 UE保存的 CS信息、 0CC信息和梳齿信息的映射关系, 获得用于发送上述 DM RS的子载波、 CS信息和 0CC信息; 并根据上述 CS信息对上述 DM RS进行循环移位, 并根据上述 0CC信息对进行循环移位之后的 DM RS加载正交掩码; 发送器 43, 具体用于将加载正交掩码之后的 DM RS映射到上述用于发送 DM RS的子 载波上发送给基站。
上述 UE中, 接收器 41接收到基站发送的第一信息和第二信息之后, 处理器 42根 据第一信息和第二信息生成 DM RS, 并由发送器 43将该 DM RS映射到第二信息指示的子 载波上发送给基站。 从而可以实现不同小区的 UE发送的 DM RS保持正交, 保证 CoMP技 术带来的增益。
图 5为本发明基站一个实施例的结构示意图, 本实施例中的基站可以实现本发明图
3所示实施例的流程。 如图 5所示, 该基站可以包括: 处理器 51和发送器 52 ;
其中, 处理器 51, 用于生成第一信息和第二信息; 该第一信息用于指示 UE在上述 基站为该 UE分配的子载波的部分子载波上发送 DM RS;第二信息用于指示用于发送 DM RS 的子载波的信息;
发送器 52, 用于将处理器 51生成的第一信息和第二信息发送给 UE, 以使上述 UE 根据上述第一信息和上述第二信息生成 DM RS, 并将上述 DM RS映射到第二信息指示的 子载波上发送给上述基站。
进一步地, 本实施例的一种实现方式中, 处理器 51, 具体用于当第二信息还用于指 示 CS信息时,对上述用于指示用于发送 DM RS的子载波的信息与 CS信息进行联合编码。
进一步地, 本实施例的另一种实现方式中, 处理器 51, 具体用于当第二信息还用于 指示 CS信息和 OCC时,对上述用于指示用于发送 DM RS的子载波的信息、 CS信息和 0CC 信息进行联合编码。
上述实施例可以实现不同小区的 UE发送的 DM RS保持正交, 保证 CoMP技术带来的 增益。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中的模块或流程 并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布 于实施例的装置中, 也可以进行相应变化位于不同于本实施例的一个或多个装置中。 上 述实施例的模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管 参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然 可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替 换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的 范围。

Claims

权利要求
1、 一种上行参考信号的发送方法, 其特征在于, 包括:
用户设备接收基站发送的第一信息,所述第一信息用于指示所述用户设备在所述基 站为所述用户设备分配的子载波的部分子载波上发送解调参考信号;
所述用户设备接收所述基站发送的第二信息,所述第二信息用于指示用于发送所述 解调参考信号的子载波的信息;
所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号, 并将所述 解调参考信号映射到所述第二信息指示的子载波上发送给所述基站。
2、 根据权利要求 1所述的方法, 其特征在于, 所述用户设备接收所述基站发送的 第二信息包括:
所述用户设备接收所述基站在每次调度所述用户设备进行上行传输时发送的第二 信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述用户设备根据所述第一信息和 所述第二信息生成所述解调参考信号包括:
所述用户设备在第 N次接收到的第一信息生效之后,在第 N+1次接收到的第一信息 生效之前, 根据第 N次接收到的第一信息和所述第二信息生成所述解调参考信号; 所述 N为非负整数。
4、 根据权利要求 1-3任意一项所述的方法, 其特征在于,
所述子载波的信息为梳齿信息, 在每个物理资源块中, 第 i个梳齿对应编号为 i、 i + Nc、 i + 2Nc、 …的子载波, 其中 Nc表示所述用户设备的可用梳齿数目。
5、 根据权利要求 4所述的方法, 其特征在于, 所述 Nc等于探测参考信号的可用梳 齿数目。
6、 根据权利要求 4所述的方法, 其特征在于, 所述 Nc等于 3。
7、 根据权利要求 4所述的方法, 其特征在于, 所述第二信息还用于指示循环移位 信息;
所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号, 并将所述 解调参考信号映射到所述第二信息指示的子载波上发送给所述基站包括:
所述用户设备根据所述第一信息确定在所述基站为所述用户设备分配的子载波的 部分子载波上发送解调参考信号, 并在所述用户设备所在小区使用的序列中选择长度与 所述第一信息指示的子载波的数量对应的序列, 作为所述解调参考信号; 所述用户设备根据所述第二信息查询所述用户设备保存的循环移位信息和梳齿信 息的映射关系, 获得用于发送所述解调参考信号的子载波和循环移位信息;
所述用户设备根据所述循环移位信息对所述解调参考信号进行循环移位, 并将进行 循环移位之后的解调参考信号映射到所述用于发送所述解调参考信号的子载波上发送 给所述基站。
8、 根据权利要求 4所述的方法, 其特征在于, 所述第二信息还用于指示循环移位 信息和正交掩码信息;
所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号, 并将所述 解调参考信号映射到所述第二信息指示的子载波上发送给所述基站包括:
所述用户设备根据所述第一信息确定在所述基站为所述用户设备分配的子载波的 部分子载波上发送解调参考信号, 并在所述用户设备所在小区使用的序列中选择长度与 所述第一信息指示的子载波的数量对应的序列, 作为所述解调参考信号;
所述用户设备根据所述第二信息查询所述用户设备保存的循环移位信息、正交编码 信息和梳齿信息的映射关系, 获得用于发送所述解调参考信号的子载波、 循环移位信息 和正交编码信息;
所述用户设备根据所述循环移位信息对所述解调参考信号进行循环移位, 并根据所 述正交掩码信息对进行循环移位之后的解调参考信号加载正交掩码;
所述用户设备将加载正交掩码之后的解调参考信号映射到所述用于发送所述解调 参考信号的子载波上发送给所述基站。
9、 根据权利要求 7或 8所述的方法, 其特征在于,
对于相同的第二信息,所述用户设备通过 A个天线端口发送所述解调参考信号时所 使用的循环移位信息和梳齿信息是所述用户设备通过 A+i个天线端口发送所述解调参考 信号时所使用的循环移位信息和梳齿信息的子集; 其中 A和 i为正整数。
10、 根据权利要求 7或 8所述的方法, 其特征在于,
所述循环移位信息和所述梳齿信息的映射关系中所述循环移位信息和所述梳齿信 息的配置组合有 8种,其中 4种方案中所述用户设备发送所述解调参考信号的所有天线 端口均使用相同的梳齿信息, 另外 4种方案中所述用户设备发送所述解调参考信号的天 线端口使用不同的梳齿信息。
11、 根据权利要求 7或 8所述的方法, 其特征在于,
根据所述循环移位信息和所述梳齿信息的映射关系,所述用户设备通过第 2、 3和 4 个天线端口发送分别与所述第 2、 3和 4个天线端口对应的解调参考信号时所使用的循 环移位信息与所述用户设备通过第 1个天线端口发送与所述第 1个天线端口对应的解调 参考信号时所使用的循环移位信息的间隔分别为 6、 3和 9。
12、 根据权利要求 7或 8所述的方法, 其特征在于,
根据所述循环移位信息和所述梳齿信息的映射关系,所述用户设备通过第 1和 2个 天线端口发送分别与所述第 1和 2个天线端口对应的解调参考信号时所使用的梳齿信息 相同,所述用户设备通过第 3和 4个天线端口发送分别与所述第 3和 4个天线端口对应 的解调参考信号时所使用的梳齿信息相同。
13、 根据权利要求 7或 8所述的方法, 其特征在于,
所述循环移位信息和所述梳齿信息的映射关系中,对于编号相差为 4的循环移位信 息和梳齿信息的配置组合,所述用户设备通过第 1个天线端口发送与所述第 1个天线端 口对应的解调参考信号时所使用的梳齿信息相同。
14、 根据权利要求 7或 8所述的方法, 其特征在于, 所述循环移位信息和所述梳齿 信息的映射关系中,所述循环移位信息第一列的值与长期演进系统使用的循环移位信息 的值相同, 或者与长期演进的进一步演进系统的第一个天线端口所使用的循环移位信息 的值相同。
15、 根据权利要求 7或 8所述的方法, 其特征在于, 所述循环移位信息和所述梳齿 信息的映射关系如下表所示:
Figure imgf000022_0001
16、 根据权利要求 7或 8所述的方法, 其特征在于, 所述循环移位信息的取值集合 为 {0, 3, 6, 9}。
17、 根据权利要求 16所述的方法, 其特征在于, 所述循环移位信息和所述梳齿信 息的配置组合如下表所示:
Figure imgf000023_0001
18、 根据权利要求 7或 8所述的方法, 其特征在于, 如果所述循环移位信息和所述 梳齿信息的配置组合中任意两种配置组合的第一个天线端口各自对应的循环移位信息 相同, 则所述任意两种配置组合的第一个天线端口各自对应的梳齿信息不同。
19、 一种上行参考信号的发送方法, 其特征在于, 包括:
基站生成第一信息, 并将所述第一信息发送给用户设备, 所述第一信息用于指示所 述用户设备在所述基站为所述用户设备分配的子载波的部分子载波上发送解调参考信 号;
所述基站生成第二信息, 并将所述第二信息发送给所述用户设备, 所述第二信息用 于指示用于发送所述解调参考信号的子载波的信息, 以使所述用户设备根据所述第一信 息和所述第二信息生成所述解调参考信号, 并将所述解调参考信号映射到所述第二信息 指示的子载波上发送给所述基站。
20、 根据权利要求 19所述的方法, 其特征在于, 所述第二信息还用于指示循环移 位信息;
所述将所述第二信息发送给所述用户设备之前, 还包括:
所述基站对所述用于指示用于发送所述解调参考信号的子载波的信息与所述循环 移位信息进行联合编码。
21、 根据权利要求 19所述的方法, 其特征在于, 所述第二信息还用于指示循环移 位信息和正交掩码信息;
所述将所述第二信息发送给所述用户设备之前, 还包括:
所述基站对所述用于指示用于发送所述解调参考信号的子载波的信息、循环移位信 息和正交掩码信息进行联合编码。
22、 一种用户设备, 其特征在于, 包括:
接收器, 用于接收基站发送的第一信息和第二信息, 所述第一信息用于指示所述用 户设备在所述基站为所述用户设备分配的子载波的部分子载波上发送解调参考信号,所 述第二信息用于指示用于发送所述解调参考信号的子载波的信息;
处理器, 用于根据所述接收器接收的第一信息和第二信息生成所述解调参考信号; 发送器,用于将所述处理器生成的解调参考信号映射到所述第二信息指示的子载波 上发送给所述基站。
23、 根据权利要求 22所述的用户设备, 其特征在于,
所述接收器, 具体用于接收所述基站在每次调度所述用户设备进行上行传输时发送 的第二信息。
24、 根据权利要求 23所述的用户设备, 其特征在于,
所述处理器, 具体用于在所述接收器第 N次接收到的第一信息生效之后, 在所述接 收器第 N+1次接收到的第一信息生效之前,根据第 N次接收到的第一信息和所述第二信 息生成所述解调参考信号; 所述 N为非负整数。
25、 根据权利要求 22-24任意一项所述的用户设备, 其特征在于,
所述处理器, 具体用于当所述第二信息还用于指示循环移位信息时, 根据所述第一 信息确定在所述基站为所述用户设备分配的子载波的部分子载波上发送解调参考信号, 并在所述用户设备所在小区使用的序列中选择长度与所述第一信息指示的子载波的数 量对应的序列, 作为所述解调参考信号; 根据所述第二信息查询所述用户设备保存的循 环移位信息和梳齿信息的映射关系, 获得用于发送所述解调参考信号的子载波和循环移 位信息; 根据所述循环移位信息对所述解调参考信号进行循环移位;
所述发送器, 具体用于将进行循环移位之后的解调参考信号映射到所述用于发送所 述解调参考信号的子载波上发送给所述基站。
26、 根据权利要求 22-24任意一项所述的用户设备, 其特征在于, 所述处理器, 具体用于当所述第二信息还用于指示循环移位信息和正交掩码信息 时,根据所述第一信息确定在所述基站为所述用户设备分配的子载波的部分子载波上发 送解调参考信号, 并在所述用户设备所在小区使用的序列中选择长度与所述第一信息指 示的子载波的数量对应的序列, 作为所述解调参考信号; 根据所述第二信息查询所述用 户设备保存的循环移位信息、 正交编码信息和梳齿信息的映射关系, 获得用于发送所述 解调参考信号的子载波、 循环移位信息和正交编码信息; 并根据所述循环移位信息对所 述解调参考信号进行循环移位, 并根据所述正交掩码信息对进行循环移位之后的解调参 考信号加载正交掩码;
所述发送器, 具体用于将加载正交掩码之后的解调参考信号映射到所述用于发送所 述解调参考信号的子载波上发送给所述基站。
27、 一种基站, 其特征在于, 包括:
处理器, 用于生成第一信息和第二信息; 所述第一信息用于指示用户设备在所述基 站为所述用户设备分配的子载波的部分子载波上发送解调参考信号; 所述第二信息用于 指示用于发送所述解调参考信号的子载波的信息;
发送器, 用于将所述处理器生成的第一信息和第二信息发送给所述用户设备, 以使 所述用户设备根据所述第一信息和所述第二信息生成所述解调参考信号, 并将所述解调 参考信号映射到所述第二信息指示的子载波上发送给所述基站。
28、 根据权利要求 27所述的基站, 其特征在于,
所述处理器, 具体用于当第二信息还用于指示循环移位信息时, 对所述用于指示用 于发送所述解调参考信号的子载波的信息与所述循环移位信息进行联合编码。
29、 根据权利要求 27所述的基站, 其特征在于,
所述处理器, 具体用于当第二信息还用于指示循环移位信息和正交掩码信息时, 对 所述用于指示用于发送所述解调参考信号的子载波的信息、循环移位信息和正交掩码信 息进行联合编码。
PCT/CN2012/084228 2011-11-07 2012-11-07 上行参考信号的发送方法、用户设备和基站 WO2013067937A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12846971.5A EP2775759A4 (en) 2011-11-07 2012-11-07 METHOD FOR TRANSMITTING UPLINK REFERENCE SIGNALS, USER DEVICE AND BASE STATION
US14/268,471 US20140241284A1 (en) 2011-11-07 2014-05-02 Method for sending uplink reference signal, user equipment, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110348340XA CN103096389A (zh) 2011-11-07 2011-11-07 上行参考信号的发送方法、用户设备和基站
CN201110348340.X 2011-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/268,471 Continuation US20140241284A1 (en) 2011-11-07 2014-05-02 Method for sending uplink reference signal, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2013067937A1 true WO2013067937A1 (zh) 2013-05-16

Family

ID=48208382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084228 WO2013067937A1 (zh) 2011-11-07 2012-11-07 上行参考信号的发送方法、用户设备和基站

Country Status (4)

Country Link
US (1) US20140241284A1 (zh)
EP (1) EP2775759A4 (zh)
CN (1) CN103096389A (zh)
WO (1) WO2013067937A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160088594A1 (en) * 2014-09-18 2016-03-24 Gang Xiong Device and method of supporting reduced data transmission bandwidth
CN107615847B (zh) * 2015-06-04 2020-03-10 华为技术有限公司 一种传输信息的方法、装置和系统
CN113411172A (zh) 2015-08-13 2021-09-17 华为技术有限公司 上行参考信号传输方法、用户终端及基站
CN106534001B (zh) 2015-09-10 2019-07-05 上海朗帛通信技术有限公司 一种低延迟的无线通信方法和装置
KR102290256B1 (ko) * 2015-12-21 2021-08-17 삼성전자 주식회사 무선 통신 시스템에서 단말을 스케줄링 하는 방법 및 장치
JP2019033304A (ja) * 2015-12-25 2019-02-28 シャープ株式会社 基地局装置、端末装置および通信方法
CN106936551B (zh) * 2015-12-30 2020-02-21 华为技术有限公司 一种解调参考信号的发送方法和接收方法、终端设备和基站
CN106961408B (zh) * 2016-01-11 2020-04-24 中兴通讯股份有限公司 一种上行信号发送方法和装置
EP3402244B1 (en) * 2016-01-29 2021-03-10 Huawei Technologies Co., Ltd. Transmission method, apparatus and system for reference signal
CN107181580A (zh) * 2016-03-11 2017-09-19 北京信威通信技术股份有限公司 扩展上行dmrs可支持的最大ue端口数量的方法
CN107294691B (zh) * 2016-03-31 2022-06-14 北京三星通信技术研究有限公司 上行的解调参考符号的传输方法和装置
WO2017171452A1 (en) 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink demodulation reference signals
CN109246046B (zh) * 2016-03-31 2020-03-20 华为技术有限公司 信息的传输方法、用户设备和网络设备
US10171216B2 (en) * 2016-04-08 2019-01-01 Qualcomm Incorporated Downlink control for demodulation reference signal transmissions
CN107734672B (zh) * 2016-08-12 2020-02-14 华为技术有限公司 一种通信接入的方法和设备
CN107733613B (zh) * 2016-08-12 2022-06-21 中兴通讯股份有限公司 上行解调参考信号dmrs的发送方法及装置
JP2019208082A (ja) * 2016-09-29 2019-12-05 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
WO2018137222A1 (zh) 2017-01-25 2018-08-02 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
US10498506B2 (en) 2017-01-26 2019-12-03 Qualcomm Incorporated Flexible comb-based reference signals
RU2019125985A (ru) * 2017-02-01 2021-03-02 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
US11239965B2 (en) * 2017-06-15 2022-02-01 Lg Electronics Inc. Method for mapping reference signal to physical resource in wireless communication system and apparatus therefor
EP3665791A4 (en) * 2017-08-11 2021-03-31 Lenovo (Beijing) Limited METHOD AND DEVICE FOR DMRS TRANSMISSION
CN109391446A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种发送信号的方法及设备
CN109474402B (zh) 2017-09-08 2021-02-23 华为技术有限公司 一种发送、接收物理上行控制信道的方法及设备
CN109600207B (zh) * 2017-09-30 2020-10-20 维沃移动通信有限公司 一种上行控制信道配置的传输方法和相关设备
CN110492969B (zh) * 2018-05-11 2022-04-29 中兴通讯股份有限公司 信号发送、接收方法及装置
CN111294306B (zh) * 2018-12-07 2021-08-13 华为技术有限公司 一种参考信号的传输方法及装置
CN114616791B (zh) * 2019-11-11 2024-03-22 高通股份有限公司 用于中断传输的dm-rs捆绑
CN115706629A (zh) * 2021-08-03 2023-02-17 华为技术有限公司 一种通信方法及装置
CN117014119A (zh) * 2022-04-29 2023-11-07 华为技术有限公司 一种信号传输方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433038A (zh) * 2006-05-01 2009-05-13 卢森特技术有限公司 上行链路参考信号的分配
CN101534285A (zh) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 一种参考信号的发送方法
US20100157917A1 (en) * 2008-12-19 2010-06-24 Electronics And Telecommunications Research Institute Resource allocation mapping apparatus and method for transmitting csrs, and csrs transmitting apparatus and method
US20110176634A1 (en) * 2010-01-18 2011-07-21 Pantech Co., Ltd. Method and apparatus for allocating channel state information-reference signal in wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432504B1 (en) * 2007-10-30 2021-06-23 Nokia Technologies Oy Methods, apparatuses, system and related computer program product for resource allocation
CN101695191B (zh) * 2009-09-29 2014-04-09 中兴通讯股份有限公司 一种分配测量参考信号资源的系统及方法
KR101489869B1 (ko) * 2010-01-08 2015-02-05 노키아 솔루션스 앤드 네트웍스 오와이 무선 통신의 복조 기준 신호 멀티플렉싱 이용 방법 및 장치
JP2012222722A (ja) * 2011-04-13 2012-11-12 Sharp Corp 無線通信システム、移動局装置および基地局装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433038A (zh) * 2006-05-01 2009-05-13 卢森特技术有限公司 上行链路参考信号的分配
US20100157917A1 (en) * 2008-12-19 2010-06-24 Electronics And Telecommunications Research Institute Resource allocation mapping apparatus and method for transmitting csrs, and csrs transmitting apparatus and method
CN101534285A (zh) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 一种参考信号的发送方法
US20110176634A1 (en) * 2010-01-18 2011-07-21 Pantech Co., Ltd. Method and apparatus for allocating channel state information-reference signal in wireless communication system

Also Published As

Publication number Publication date
EP2775759A1 (en) 2014-09-10
EP2775759A4 (en) 2014-10-22
US20140241284A1 (en) 2014-08-28
CN103096389A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2013067937A1 (zh) 上行参考信号的发送方法、用户设备和基站
JP6517710B2 (ja) アップリンク基準信号の特徴を向上させるための装置及び方法
JP5856810B2 (ja) 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
CN102106097B (zh) 基于发送上行链路时的多码字在使用单用户mimo的系统中分配phich并生成基准信号的方法
CN103907298B (zh) 信令通知和发送上行链路参考信号的系统和方法
JP5814470B2 (ja) 無線通信ネットワークにおける制御チャネルのための基準信号
JP5793067B2 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
CN106576355B (zh) 上行数据发送装置、接收装置及方法
WO2012141463A2 (ko) 이동통신시스템에서 신호 전송 방법 및 장치
WO2011098037A1 (zh) 一种生成参考信号的方法、基站及终端
WO2014114113A1 (zh) Dmrs处理方法及装置
WO2013085336A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 송수신 방법 및 장치
KR20140124364A (ko) 상향링크 신호 또는 하향링크 신호 송수신 방법 및 이를 위한 장치
WO2014048249A1 (zh) 一种下行控制信息的处理装置及方法
WO2013139246A1 (zh) 一种控制信令的发送、解调方法与系统及终端
JP6028076B2 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP2013021416A (ja) 移動通信システム、基地局装置、移動局装置および通信方法
JP5856191B2 (ja) アップリンク基準信号の特徴を向上させるための装置及び方法
JPWO2008105273A1 (ja) 移動通信システムで使用される基地局及び方法
JP6034946B2 (ja) 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012846971

Country of ref document: EP