WO2013065987A2 - 공중 풍력 발전 시스템 - Google Patents

공중 풍력 발전 시스템 Download PDF

Info

Publication number
WO2013065987A2
WO2013065987A2 PCT/KR2012/008709 KR2012008709W WO2013065987A2 WO 2013065987 A2 WO2013065987 A2 WO 2013065987A2 KR 2012008709 W KR2012008709 W KR 2012008709W WO 2013065987 A2 WO2013065987 A2 WO 2013065987A2
Authority
WO
WIPO (PCT)
Prior art keywords
airship
altitude
support body
wire
wire means
Prior art date
Application number
PCT/KR2012/008709
Other languages
English (en)
French (fr)
Other versions
WO2013065987A3 (ko
Inventor
김진호
Original Assignee
(주)씨엠아이태가코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨엠아이태가코리아 filed Critical (주)씨엠아이태가코리아
Publication of WO2013065987A2 publication Critical patent/WO2013065987A2/ko
Publication of WO2013065987A3 publication Critical patent/WO2013065987A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/922Mounting on supporting structures or systems on an airbourne structure kept aloft due to buoyancy effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Definitions

  • the present invention relates to an aerial wind power generation system, and more particularly, to an aerial wind power generation system capable of continuously generating power by interlocking an upward movement and a downward movement using a plurality of flotation bodies.
  • Such renewable energy generation methods include solar power generation using solar energy, tidal power generation using ocean wave energy, and wind power generation using wind.
  • Photovoltaic and tidal power costs a lot of facility investment, and has a problem that the power generation efficiency is not high yet, a relatively large number of wind power generators have been developed.
  • a wind turbine is composed of a windmill having a plurality of blades for generating a rotational force by receiving the wind, a generator for producing electricity by the rotational force of the windmill, and a support device for supporting the windmill and the generator.
  • wind turbines In order to maintain stable power generation conditions, wind turbines should be installed in a place where the wind volume is constant and a certain strong wind speed is maintained. Therefore, the wind turbine should be located at a high altitude where the wind flow is close to the normal flow. Therefore, the support device of the windmill is excessively high, there is a disadvantage that a lot of installation costs are followed.
  • Korean Laid-Open Patent Publication No. 10-2011-0108633 discloses a support body injected with a support gas so as to escape from a limited space on the ground and increase power generation efficiency through strong wind at high altitude.
  • An aerial wind power generator is provided, which is equipped with a wind turbine generating means for rotating a turbine blade, which is connected to a float by a fixed wire connected to a wire winding means, and floats and floats in the air (see FIG. 14).
  • Korean Laid-Open Patent Publication No. 10-2010-0112323 connects two air tubes, each of which is filled with gas lighter than air and floats into the air, to two wires of different lengths.
  • a pneumatic wind power generator is disclosed that connects them to two rotary shafts to rotate the rotary shaft while the wire is released from the rotary shaft when the air tube receives a lot of wind resistance, thereby driving the generator by the rotational force. (See Figure 15).
  • aerial wind turbines have different lengths of wires respectively connected to the two air tubes and connect the wires to the center and eccentric positions of the air tubes. It is a way to adjust the state of standing, when controlling the attitude of the air tube by the wind in this way, there is a problem that it is difficult to achieve a stable power generation is difficult to precise control.
  • the present invention in consideration of the above-described problems, according to the present invention, in the aerial wind power generation system consisting of a pair of support bodies, when the first support body is an upward movement, the second support body is a downward movement, the first support When the sieve moves downward, the second support body is controlled to perform the upward movement, so that the wire winding means is always rotated by the first wire means of the first support body and the second wire means of the second support body so that continuous development can be achieved.
  • the present invention aims to provide a public wind power generation system.
  • the air is lighter than the air is filled in the air is possible to float in the air
  • the main wing, horizontal tail wings and vertical tail wings are provided with a first support body
  • a second support body filled with a gas lighter than air and floating in the air, and having a main wing, a horizontal tail wing, and a vertical tail wing
  • a first controlling the lift and drag of the main blade by adjusting the pitch angle of the main blade of the first support body so that the first support body can make an upward or downward motion between the first altitude and the second altitude Pitch angle adjusting means
  • a second controlling the lift and drag of the main blade by adjusting the pitch angle of the main blade of the second support body so that the second support body can make an ascending or descending motion between the third altitude and the fourth altitude.
  • Pitch angle adjusting means Wire winding means coupled to the generator for producing electricity by the rotational force; A first wire means having one end connected to the first support body and the other end wound around the wire winding means in a first direction; A second wire means having one end connected to the second support body and the other end wound around the wire winding means in a second direction opposite to a first direction; And the first pitch angle adjusting means and the first support body such that the second support body moves downward when the first support body moves up, and the second support body moves up when the first support body moves down. And a control unit for controlling the pitch angle adjusting means.
  • the second support body descends, and when the first support body moves down, the second support body is controlled to perform the up movement.
  • Continuous development can be achieved by always rotating the wire winding means by the first wire means of the sieve and the second wire means of the second support body;
  • the other float moves up the wire winding means while moving up, and the wire means is wound around the wire winding means by the rotation of the wire winding means. This can prevent loosening.
  • the height difference ⁇ h1 between the first altitude and the second altitude of the first support body is equal to the third altitude and the fourth altitude of the second support body. Is equal to the height difference ⁇ h2, and the second altitude, which is the highest altitude of the first support, is set lower than the third altitude, which is the lowest altitude of the second support.
  • the height difference ⁇ h1 between the first altitude and the second altitude of the first support body is equal to the height difference ⁇ h2 between the third altitude and the fourth altitude of the second support body.
  • the rising or falling movement of the first support body can be accurately linked with the falling or raising movement of the second support body.
  • the second altitude, which is the highest altitude of the first support body to be lower than the third altitude, which is the lowest altitude of the second support body
  • the first and second support bodies reciprocate in regions of different heights. The two floats do not overlap with each other so that no collision occurs.
  • each of the first and second support bodies may be composed of a pair of fuselage.
  • Each body of the first support body may be fixedly connected by a first connecting member, and each body of the second support body may be fixedly connected by a third connecting member.
  • each fuselage is fixedly connected to the first support body by a second connecting member, and a through hole penetrating up and down is formed at the center of the second connecting member.
  • the second wire means of the second airship may pass through the through hole.
  • each fuselage is fixedly connected to the first support body by a second connection member, and a cylindrical member penetrating up and down in the center of the second connection member.
  • the cylindrical member may be coupled to the second connecting member by a front-rear rotation shaft and a left-right rotation shaft at an intermediate portion thereof, and the second wire means of the second support body may penetrate the cylindrical member. .
  • the supporters are different from each other, Try to move in the direction.
  • the first wire means and the second wire means need to be kept away from each other. Therefore, when the second wire means of the second support body penetrates into the inner cylinder provided in the body of the first support body, the first wire means and the second wire means can always maintain a constant distance.
  • the cylindrical member may be coupled to the first support body by a rotation axis in the front-rear direction and a rotation axis in the left-right direction at its intermediate portion.
  • the upper and lower ends of the cylindrical member can be moved forward, backward, left and right, and thus, the first support body and the first support body
  • the two floaters try to move in different directions, it is possible to reduce the phenomenon that the second wire means interfere with the upper end or the lower end of the cylindrical member.
  • the first wire means is the first support body by a first rotary plate joint including two disks up and down to allow relative rotation with a through hole formed at the center thereof.
  • the second wire means is connected to the second support by means of a second rotating plate joint comprising two disks up and down capable of relative rotation.
  • the second wire means may pass through the cylindrical member of the first support body and the through hole of the first rotating plate joint.
  • the first rotating plate joint and the second rotating plate joint may include an upper disk and a lower disk, respectively, and the upper disk and the lower disk may be coupled by a coupling member and a fastening member, and the upper disk and the lower disk may be connected to each other.
  • a plurality of first balls may be disposed on the engaging surface, and a plurality of second balls may be disposed on the engaging surface of the upper disk and the coupling member. That is, the first rotating plate joint and the second rotating plate joint according to the present invention may be formed in a bearing structure in which two disks of the upper and lower sides can perform relative rotational movements with each other.
  • the upper disk of the first rotating plate joint is connected to the first support body and is tensioned, and the lower disk is connected and tensioned by the first wire means.
  • the upper disk of the second rotating plate joint is connected to the second support body and is tensioned
  • the lower disk is connected to the tension by the second wire means
  • the second wire means is a cylinder of the first support body It penetrates the through-hole of the center of a member and a 1st rotating plate joint.
  • the wire winding means may be made of a winch.
  • the first wire means of the first support body is wound in the first direction on the first winch
  • the second wire means of the second support body is the second winch Can be wound in a second direction opposite to the first direction;
  • the first winch and the second winch may be coupled to each other while the first support body is set to the first altitude and the second support body is set to the fourth altitude.
  • the first winch and the second winch in the state in which the first support body is set to the first altitude and is positioned at the start point of the ascending movement, and the second support body is set to the fourth altitude and is positioned at the start point of the descending movement. Is coupled to each other so that the upward or downward motion of the first support body can be linked to the downward or upward motion of the second support body. That is, even when the first winch and the second winch rotate in the same direction, the first support body and the second support body may move up or down in different directions.
  • the first winch and the second winch is rotatably installed in the tension direction (direction in which the support pulls the wire means) of the first wire means and the second wire means. Can be.
  • the first wire means and the second wire means are each an electrically conductive material layer, a carbon fiber layer surrounding the electrically conductive material layer, and a coating layer formed on the outside of the carbon fiber layer. It may include.
  • each of the main wing of the first support and the main wing of the second support when the first support and the second support, respectively, ascending movement The control unit controls the first pitch angle adjusting means and the second pitch angle adjusting means so as to have an angle of attack in which the lifting force and the drag force can be optimized.
  • the first support body may be two, and the second support body may be two.
  • an aerial wind power generation system consisting of a pair of support bodies, when the first support body moves up, the second support body descends, and when the first support body moves down, the second support body moves up. It is controlled so that the wire winding means is always rotated by the first wire means of the first support and the second wire means of the second support so that continuous power generation can be achieved.
  • FIG. 1 is a view showing the lifting motion of the floating body of the aerial wind power generation system according to an embodiment of the present invention.
  • FIG. 2 is a view showing the falling motion of the floating body of the aerial wind power generation system according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the basic principle of the aerial wind power generation system according to an embodiment of the present invention.
  • FIG. 4 is a view showing an aerial wind power generation system according to another embodiment of the present invention.
  • FIG. 5 is an enlarged view of a second connection member of a first support body of an aerial wind power generation system according to another embodiment of the present invention, illustrating a coupling state of a cylindrical member of a second connection member and a second wire means; FIG. to be.
  • FIG. 6 is a view showing an aerial wind power generation system according to another embodiment of the present invention.
  • FIG. 7 is a view showing an aerial wind power generation system according to another embodiment of the present invention.
  • FIG. 8 is a view showing the movement of the rotor plate joint of the aerial wind power generation system of FIG.
  • FIG. 9 is a cross-sectional view showing an internal configuration of a rotor plate joint used in an aerial wind power generation system.
  • FIG. 10 is a view showing the winch structure of the aerial wind power generation system according to another embodiment of the present invention.
  • FIG. 11 is a view showing the structure of the wire means of the aerial wind power generation system according to an embodiment of the present invention.
  • FIG. 12 is a view showing an aerial wind power generation system according to another embodiment of the present invention.
  • FIG. 13 is a view showing an aerial wind power generation system according to another embodiment of the present invention.
  • FIG. 14 is a view showing a conventional wind power generator.
  • 15 is a view showing another aerial wind power generator of the prior art.
  • Embodiments according to the concept of the present invention can be variously modified and have a variety of forms specific embodiments will be illustrated in the drawings and described in detail in the specification of the present application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a specific disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
  • first and / or second may be used to describe various components, but the components are not limited to the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the inventive concept, the first component may be called a second component, and For example, the second component may also be referred to as a first component.
  • the aerial wind power generation system the gas lighter than air is filled in the air can be floated in the air
  • the main wing 120, the horizontal tail wing 130 and the first support body 100 is provided with a vertical tail wing 140
  • a second support body 200 which is filled with a gas lighter than air and may be floated into the air, and includes a main wing 220, a horizontal tail wing 230, and a vertical tail wing 240; Pitch of the main wing 120 of the first support body 100 so that the first support body 100 can perform an upward movement or a downward movement between the first altitude h1 and the second altitude h2.
  • First pitch angle adjusting means for controlling lift and drag of the main blade 120 by adjusting an angle; Pitch of the main wing 220 of the second support body 200 to allow the second support body 200 to move up or down between the third altitude h3 and the fourth altitude h4.
  • Second pitch angle adjusting means for controlling the lift and drag of the main wing 220 by adjusting the angle;
  • Wire winding means coupled to the generator for producing electricity by the rotational force;
  • a first wire means 150 having one end connected to the first support body 100 and the other end wound around the wire winding means in a first direction;
  • a second wire means 250 having one end connected to the second support body 200 and the other end wound around the wire winding means in a second direction opposite to a first direction; And when the first support body 100 moves up, the second support body 200 moves downward, and when the first support body 100 moves down, the second support body 200 moves downward.
  • a control unit for controlling the first pitch angle adjusting means and the second pitch angle adjusting means so as to perform the upward movement.
  • the fourth altitude h4 are preferably set to an altitude in which the wind is less affected by friction with the ground surface.
  • the first altitude h1, the second altitude h2, the third altitude h3, and the fourth altitude h4 may be set within an altitude of about 600 m to 1200 m from the ground surface.
  • it may be set to an altitude lower than the altitude range.
  • the lifting and lowering movement distance of the first support body 100 and the second support body 200 that is, the height of the first altitude h1 and the second altitude h2 of the first support body 100.
  • the height difference ⁇ h2 between the difference ⁇ h1 and the third and fourth elevations of the second support body may be set, for example, in a range of about 30 m to 100 m.
  • the first support body 100 and the second support body 200 are each plural or when each fuselage of the first support body 100 and the second support body 200 is formed in a pair
  • the height differences DELTA h1 and DELTA h2 may be set to a range different from the above.
  • each of the first support body 100 and the second support body 200 may be formed of one fuselage, but may also be formed of a pair of fuselage. As described above, since the first and second supporting bodies 100 and 200 each have two bodies, the lifting force of the supporting body can be increased to increase the power generation capability.
  • the first support body 100 and the second support body 200 each consist of a pair of bodies, the respective bodies of the first support body 100 are fixed by the first connection member 190.
  • the bodies of the second support body 200 may be fixedly connected by the third connection member 290.
  • the inside of the support body (100, 200) used in the aerial wind power generation system according to the present invention is filled with gas lighter than air, and the support body (100, 200) can be supported in the air.
  • gas filled in the buoyant body helium, hydrogen, or the like can be used.
  • the support body (100, 200) is provided with at least one pair of main wings (120, 220), a pair of horizontal tail wings (130, 230) and vertical tail wings (140, 240).
  • each of the flotation bodies 100 and 200 may have a main wing attached to the outer surface of the center of the fuselage, but is shown in FIG. 7. As the main wings may be attached to the main wing 320 on the inner surface of the center of each fuselage.
  • Pitch angle adjusting means are respectively provided on the main wings 120 and 220 of the support bodies 100 and 200, and the pitch angles of the main wings 120 and 220 of the support bodies 100 and 200 are adjusted. By controlling the lift and drag acting on the main wings (120, 220).
  • the support bodies 100 and 200 used in the present invention may be made of a support body such as an airship.
  • One end of the wire means (150, 250) is connected to the support body (100, 200), the other end of the wire means (150, 250) is wound around the wire winding means disposed on the ground.
  • the flotation bodies 100 and 200 are connected to the wire winding means by the wire means 150 and 250, the flotation bodies 100 and 200 are applied to the lift force acting on the main wings 120 and 220.
  • tension is applied to the wire means 150 and 250 so that the wire winding means rotates while the wire means is released from the wire winding means.
  • a generator is attached to the wire winding means.
  • the generator rotates together by the rotational movement of the wire winding means to generate electricity. Will develop. It is preferable that the said wire winding means consists of a winch.
  • the wire means 150 and 250 connecting the support bodies 100 and 200 to the wire winding means rotate the wire winding means by the lifting force of the support bodies 100 and 200. It should be manufactured to strength enough to withstand tension.
  • a lightning rod of a known technique may be installed at a predetermined position of the buoys 100 and 200, and as shown in FIG. 10, the first wire means.
  • Each of the 150 layers may be formed of an electrically conductive material layer 151 to enable energization, and the outer layer may be configured of a carbon fiber layer 152.
  • the inner electrically conductive material layer of the wire means is connected at one end to the installation tube lightning rod on the support body, and the other end is grounded underground.
  • the carbon fiber layer 152 may include a coating layer 153 on the outside. As such, by forming the coating layer 153 on the outside of the wire means 150, durability of the wire means from exposure to ultraviolet rays and friction with other members can be improved.
  • the coating layer 153 may be made of, for example, a polyurethane material.
  • the second wire means 250 is also composed of an electrically conductive material layer, a carbon fiber layer and a coating layer in the same manner as the first wire means 150.
  • the aerial wind power generation system for example, when the direction of the wind blowing toward the second buoyant 200 located above and the first buoyant 100 located below are different from each other, The floats 100 and 200 try to move in different directions. In this case, since the winding or unwinding operation of the wire winding means of the first wire means 150 and the second wire means 250 may not be smooth, the first wire means and the second wire means are not separated from each other. Needs to be.
  • each fuselage is fixedly connected to the first support body 100 by the second connection member 191, the second connection member 191 ), A through hole 180 penetrating up and down is installed, and the second wire means 250 of the second support body 200 may penetrate the through hole 180.
  • the first wire means 150 and the second wire means 250 can always maintain a constant distance.
  • the bodies are fixedly connected to the first support body 100 by the second connection member 191, and vertically up and down at the center of the second connection member 191.
  • the cylindrical member 181 penetrates and the cylindrical member 181 is coupled to the second connecting member 191 by a rotation axis in the front-rear direction and a rotation axis in the left-right direction at the middle portion thereof, and the second support body.
  • the second wire means 250 of 200 may pass through the cylindrical member 181.
  • the first support body 100 and the second support body 200 move in different directions. In this case, it is possible to reduce the phenomenon that the second wire means 250 interferes at the upper end or the lower end of the cylindrical member 181.
  • the first wire means 150 is the first support by the first rotary plate joint 160 consisting of two disks (160a, 160b) that can be rotated relative to the through hole 160c in the center It may be connected to the sieve 100.
  • the upper disk 160a of the first rotating plate joint 160 may be connected to the first support body 100 at at least two points.
  • the second wire means 250 may be connected to the second support body 200 by a second rotating plate joint 260 consisting of two disks, which may rotate relative to each other.
  • the upper disk of the second rotating plate joint 260 may be connected to the second support body 200 at at least two points.
  • the second wire means 250 passes through the cylindrical member 181 of the first support body 100 and the through hole 160c of the first rotating plate joint 160.
  • the first rotating plate joint 160 and the second rotating plate joint 260 preferably each have a bearing structure in which two disks can be rotated relative to each other.
  • the upper disk 160d and the lower disk 160e are provided, and the upper disk 160d and the lower disk 160e are coupled to each other.
  • a plurality of first balls (160g) is disposed on the engaging surface of the upper disk (160d) and the lower disk (160e), and the upper disk (160d)
  • the engagement surface of the coupling member 160f may have a configuration in which a plurality of second balls 160h are disposed.
  • the second rotating plate joint 260 may also be configured in the same manner as the first rotating plate joint 160 except that the through hole is not formed at the center thereof.
  • the upper disk of the first rotating plate joint 160 is connected to the first support body 100 and is tensioned, and the lower disk is connected and tensioned by the first wire means 150.
  • the upper disk of the second rotating plate joint 260 is connected to the second support body 200 is tensioned, the lower disk is connected by the second wire means 250 is tensioned, the second wire
  • the means 250 passes through the cylindrical member 181 of the first support body 100 and the through hole 160c at the center of the first rotating plate joint 160.
  • the wire winding means may be made of a winch.
  • the wire winding means is a first winch 170 for winding the first wire means 150 of the first support body 100 and a second for winding the second wire means 250 of the second support body 200.
  • Winch 270 may be configured independently.
  • the first support body 100 is set to the first altitude h1
  • the second support body 200 is set to the fourth altitude h4.
  • the first winch 170 and the second winch 270 are coupled to each other in the state set at), it is possible to easily set the operating position of the first and second support bodies 100 and 200.
  • the first support body 100 is set to the first altitude h1 and is positioned at the start point of the ascending movement
  • the second support body 200 is set to the fourth altitude h4 to lower the movement.
  • the direction in which the wire means 150 and 250 are wound around each winch 170 and 270 is opposite to each other, and the first winch 170 and the second winch 270 are coupled to each other in two directions.
  • the wire winding means or the first winch 170 and the second winch 270 is the tension of the first wire means 150 and the second wire means 250 It can be installed so as to be rotatable in the direction (the direction in which the support (100, 200) pulls the wire means 150, 250).
  • the winch 170, 270 and the generator 300 are installed on a rotating plate that can be installed on the ground to support the rotary support 400 and rotate freely on the rotary support 400.
  • the wire winding means or the first winch 170 and the second winch 270 is always the first wire means, even if the first support body 100 and the second support body 200 move in the wind direction. Since it is oriented toward the tension direction of the 150 and the second wire means 250, the winding and unwinding operation of the wire means by the winch can be smooth.
  • the main wing of the first support body 100 120 and the first pitch angle adjusting means (not shown) so that the lifting angle and drag force of each of the main wing 220 of the second support body 200 can be optimal.
  • H the first pitch angle adjusting means
  • the second pitch angle adjusting means (not shown).
  • a small blade-type wind generator or a solar power generation plate installed on the first support body 100 and the second support body 200 is generated.
  • the control unit, the first pitch angle adjusting means and the second pitch angle adjusting means may be driven by a power source.
  • a GPS device and a three-dimensional gyroscope sensor are installed on the first support body 100 and the second support body 200, and the first support body 100 is installed. And information about the attitude and altitude of the second support body 200 to the control unit, wherein the control unit based on the information transmitted from the GPS device and the three-dimensional gyroscope sensor. It is possible to control the lifting or lowering movement of the support.
  • the first support bodies 100 and 100 ' are two, and the second support bodies 200 and 200' are It can consist of two. In this way, by configuring the first support body 100 and 100 'and the second support body 200 and 200' in two, the lifting force of the support body can be increased to increase the power generation capability.
  • the first buoy 100 is raised to a first altitude h1, which is a base altitude, by the buoyancy force of the gas filled in the first buoy 100 for aerial wind power generation.
  • first altitude h1 which is a base altitude
  • first wire means 150 since the first support body 100 is connected to the wire winding means by the first wire means 150, the whole support system of the first support body 100 at the first altitude h1.
  • the weight of the whole support system of the first support body 100 when the first support body 100 rises to the second altitude h2, which is the excitation altitude is the weight of the first support body 100 (M1).
  • the weight m2 of the first wire means 150 from the wire winding means to the second altitude h2 are added together.
  • the amount V1 of gas filled in the first support body 100 may generate a flotation force LVF1 in which the first support body 100 may be maintained at a position of the first altitude h1.
  • Lifting force is generated on the main wing 120 by adjusting the pitch angle of the main wing 120 of the first support body 100 so that the first support body 100 is moved from the first altitude h1 to the second altitude h2.
  • the lifting force 1 generated when raising to) is shown in Equation (1) below.
  • LF is the lift force acting on the main wing
  • DF is the drag force acting on the main wing
  • TDF is the drag force acting on the wire means.
  • the pitch angle of the main wing 120 is increased by the pitch adjusting means 1 ("LF") + DF + TDF ") is electronically controlled to continuously change at the maximum angle.
  • the lifting force 1 is a force for lifting the weight (m2-m1) of the first wire means 150 by the difference between the second altitude h2 and the first altitude h1 and the first wire means 150 for power generation. It is used as a force to pull and rotate the wire winding means.
  • Equation (2) By adjusting the pitch angle of the main wing 120 of the first support body 100 to generate a downforce on the main wing 120, the first support body 100 from the second altitude h2 to the first altitude ( The lowering force 1 generated when lowering to h1) is as shown in Equation (2) below.
  • DWF (-LF) is the downforce acting on the main wing
  • DF is the drag acting on the main wing
  • TDF is the drag force acting on the wire means
  • (m2-m1) is the second altitude at the first altitude h1.
  • the weight of the first wire means up to (h2).
  • the second buoy 200 is raised to the fourth altitude h4, which is the excitation altitude by the buoyancy force of the gas filled in the second buoy 200 for the aerial wind power generation.
  • the whole support system of the second support body 200 at the fourth altitude h4.
  • the weight of the whole support system of the second support body 200 when the second support body 200 is lowered to the third altitude h3, which is the base altitude is the weight of the second support body 200 (M2).
  • the amount of gas V2 filled in the second support body 200 may generate a flotation force LVF2 in which the second support body 200 may be maintained at a fourth altitude h4.
  • the second support body 200 is changed from the fourth altitude h4 to the third altitude (The lowering force 2 generated when lowering to h3) is as shown in Equation (3) below.
  • the lift angle is generated on the main wing 220 by adjusting the pitch angle of the main wing 220 of the second support body 200 to move the second support body 200 from the third altitude h3 to the fourth altitude h4.
  • the lifting force 2 generated when raising to) is shown in the following equation (4).
  • LF is the lift force acting on the main wing
  • DF is the drag force acting on the main wing
  • TDF is the drag force acting on the wire means.
  • the lifting force 2 is a force for lifting the weight (m4-m3) of the second wire means 250 by the difference between the fourth altitude h4 and the third altitude h3 and the second wire means 250 for power generation. It is used as a force to pull and rotate the wire winding means.
  • one first support body 100 and one second support body 200 may include the first wire means 150, the second wire means 250, and the like. It is connected by a wire winding means, when the first support body 100 is in the ascending movement, when the second support body 200 is in the downward movement, when the first support body 100 is in the down movement
  • the second support body 200 is controlled by a controller (not shown) to perform an upward movement. As shown in FIG. 3, while one of the first and second support bodies 100 and 200 rises, the other one descends, and in the next cycle, the wire winding means on the ground moves in the opposite cycle. Rotate the generator coupled to.
  • the winding direction (first direction) of the first wire means 150 in the wire winding means and The winding direction (second direction) of the second wire means 250 becomes opposite to each other. Therefore, as shown in FIG. 3, when the first support body 100 moves up from the first altitude h1, which is the base altitude, to the second altitude h2, which is the excitation altitude, the second support body 200 is used.
  • each of the first support body 100 and the second support body 200 may be composed of a pair of fuselage, the rise of the first support body 100 Alternatively, in response to the downward movement or the upward movement of the second support body 200, the two supporters 100 and 200 perform the opposite movement with each other to reciprocally rotate the wire winding means.
  • the floats are identical to the system of one fuselage each.
  • first support bodies 100 and 100 'and two second support bodies 200 and 200' may be provided.
  • the first support body 100 and 100 ′ moves up or down below the boundary altitude
  • the second support body moves up or down above the boundary altitude.
  • the lifting or lowering motion of the first supporting body 100 and 100 corresponds to the lowering or lifting movement of the second supporting body 200 and 200, so that both the supporting bodies 100 and 100 'are 200 and 200.
  • the motion of reciprocating rotation of the wire winding means by the opposite movement of ') is the same as the system in which the first support body and the second support body are each composed of one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)

Abstract

공중 풍력발전 시스템은, 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개(120), 수평 꼬리날개(130) 및 수직 꼬리날개(140)가 구비된 제1 부양체(100); 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개(220), 수평 꼬리날개(230) 및 수직 꼬리날개(240)가 구비된 제2 부양체(200); 상기 제1 부양체(100)가 제1 고도(h1)와 제2 고도(h2) 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제1 부양체(100)의 주날개(120)의 피치각을 조절하여 상기 주날개(120)의 양력 및 항력을 제어하는 제1 피치각 조절수단; 상기 제2 부양체(200)가 제3 고도(h3)와 제4 고도(h4) 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제2 부양체(200)의 주날개(220)의 피치각을 조절하여 상기 주날개(220)의 양력 및 항력을 제어하는 제2 피치각 조절수단; 회전력에 의해 전기를 생산하는 발전기(300)가 결합되는 와이어 권취수단; 상기 제1 부양체(100)에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향으로 감겨지는 제1 와이어 수단(150); 상기 제2 부양체(200)에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향과 반대의 방향인 제2 방향으로 감겨지는 제2 와이어 수단(250); 및 상기 제1 부양체(100)가 상승 운동을 할 때는 상기 제2 부양체(200)가 하강 운동을 하고, 상기 제1 부양체(100)가 하강 운동을 할 때는 상기 제2 부양체(200)가 상승 운동을 하도록, 상기 제1 피치각 조절수단 및 제2 피치각 조절수단을 제어하는 제어부를 포함한다.

Description

[규칙 제26조에 의한 보정 20.11.2012] 공중 풍력 발전 시스템
본 발명은 공중 풍력발전 시스템에 관한 것으로, 보다 상세하게는 복수의 부양체를 이용하여 상승 운동 및 하강 운동을 연동시켜 연속적으로 발전을 할 수 있는 공중 풍력발전 시스템에 관한 것이다.
우리나라는 현재 에너지원 단위(국내 총생산당 소비에너지)가 세계에서 가장 높은 수준이며, 에너지 국외 의존도는 전체 사용량의 약 97%이고, 대부분이 화석연료 및 핵발전에 의한 것이다. 그리고 재생에너지는 전체 사용량의 2%이하에 불과하므로, 환경을 고려할 때 재생에너지의 개발이 절실히 요구되고 있는 실정이다.
이러한 재생에너지의 발전 방법에는 태양에너지를 이용한 태양광발전, 해양파 에너지를 이용한 조력발전, 바람을 이용한 풍력발전 등이 있다.
태양광발전 및 조력발전은 시설투자비가 많이 소요되고, 아직까지 발전효율이 높지 않다는 문제점을 가지고 있어서, 상대적으로 풍력발전장치가 많이 개발되고 있다.
일반적으로 풍력발전기는 풍력을 받아 회전력을 발생시키는 다수개의 블레이드를 갖는 풍차와, 상기 풍차의 회전력에 의해 전기를 생산하는 발전기와, 상기 풍차와 발전기를 지지하는 지지장치로 구성되어 있다. 이러한 풍력발전기가 안정적인 발전조건을 유지하기 위하여는 풍량이 일정하고 일정 이상의 강한 풍속이 유지되는 장소에 설치해야 하므로 설치 장소에 제약이 뒤따르고, 바람의 흐름이 정상류에 가까운 높은 고도에 풍차가 위치해야 하므로 풍차의 지지장치가 과도하게 높아져서 많은 설치비용이 요구되는 어려움이 뒤따르는 단점이 있다.
이러한 문제를 해결하기 위하여, 한국공개특허공보 제10-2011-0108633호에는 지상의 한정된 공간에서 탈피하여 높은 고도에서 강한 바람을 통해 발전효율을 높일 수 있도록, 부양기체가 주입된 부양체에 바람에 의해 회전되는 터빈익이 설치된 풍력발전수단을 장착하고, 이 부양체를 와이어 권취수단에 연결된 고정와이어에 의해 연결하여 공중에 부상시켜 운전하는 공중풍력발전장치가 개시되어 있다(도 14 참조).
그러나, 이러한 공중 풍력발전장치는 터빈익이 설치된 풍력발전수단이 공중에 부상되어 있는 부양체에 장착됨으로써, 부양체에 작용하는 하중이 너무 커서 부양체의 크기가 과도하게 커지는 문제점이 있다.
이러한 문제를 해결하기 위하여, 한국공개특허공보 제10-2010-0112323호에는 내부에 공기보다 가벼운 가스가 충전되어 공중으로 부상 가능한 2개의 공기튜브 각각을 길이가 다른 2개의 와이어에 연결하고, 이 와이어들을 2개의 회전 샤프트에 연결하여, 상기 공기튜브가 바람의 저항을 많이 받을 때 와이어가 상기 회전 샤프트로부터 풀어지면서 상기 회전 샤프트를 회전시켜, 그 회전력에 의해 발전기를 구동시키는 공중풍력발전기가 개시되어 있다(도 15 참조).
그러나, 이러한 공중 풍력발전장치는 2개의 공기튜브에 각각 연결된 와이어의 길이를 다르게 하고 와이어를 공기튜브에 중심 위치와 편심위치에 연결하여, 와이어의 길이차에 의해 공기튜브를 바람에 대하여 누운 상태와 세워진 상태를 조절하는 방식인데, 이러한 방식에 의해 공기튜브의 바람에 대한 자세를 제어할 경우에는 정확한 제어가 어려워서 안정적인 발전을 달성하기 어려운 문제가 있다.
따라서, 본 발명은 전술한 문제점을 고려하여, 본 발명에 따르면, 한 쌍의 부양체로 이루어진 공중 풍력발전 시스템에서, 제 1 부양체가 상승 운동을 할 때는 제 2 부양체가 하강 운동을 하고, 제 1 부양체가 하강 운동을 할 때는 제 2 부양체가 상승 운동을 하도록 제어되어, 제 1 부양체의 제 1 와이어 수단과 제 2 부양체의 제 2 와이어 수단에 의해 항상 와이어 권취수단이 회전함으로써 지속적인 발전이 이루어질 수 있는 공중 풍력발전 시스템을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템은, 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개, 수평 꼬리날개 및 수직 꼬리날개가 구비된 제1 부양체; 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개, 수평 꼬리날개 및 수직 꼬리날개가 구비된 제2 부양체; 상기 제1 부양체가 제1 고도와 제2 고도 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제1 부양체의 주날개의 피치각을 조절하여 상기 주날개의 양력 및 항력을 제어하는 제1 피치각 조절수단; 상기 제2 부양체가 제3 고도와 제4 고도 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제2 부양체의 주날개의 피치각을 조절하여 상기 주날개의 양력 및 항력을 제어하는 제2 피치각 조절수단; 회전력에 의해 전기를 생산하는 발전기가 결합되는 와이어 권취수단; 상기 제1 부양체에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향으로 감겨지는 제1 와이어 수단; 상기 제2 부양체에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향과 반대의 방향인 제2 방향으로 감겨지는 제2 와이어 수단; 및 상기 제1 부양체가 상승 운동을 할 때는 상기 제2 부양체가 하강 운동을 하고, 상기 제1 부양체가 하강 운동을 할 때는 상기 제2 부양체가 상승 운동을 하도록, 상기 제1 피치각 조절수단 및 제2 피치각 조절수단을 제어하는 제어부를 포함한다.
전술한 공중 풍력발전 시스템에 따르면, 제 1 부양체가 상승 운동을 할 때는 제 2 부양체가 하강 운동을 하고, 제 1 부양체가 하강 운동을 할 때는 제 2 부양체가 상승 운동을 하도록 제어되어, 제 1 부양체의 제 1 와이어 수단과 제 2 부양체의 제 2 와이어 수단에 의해 항상 와이어 권취수단이 회전함으로써 지속적인 발전이 이루어질 수 있으며; 한쪽 부양체가 하강 운동을 하여 와이어 수단이 느슨하게 처질 때에는 다른쪽 부양체가 상승 운동을 하면서 와이어 권취수단을 회전시키고, 이 와이어 권취수단의 회전에 의해 느슨하게 처진 와이어 수단을 와이어 권취수단에 감음으로써 와이어 수단이 느슨하게 처지는 것을 방지할 수 있게 된다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제1 부양체의 제1 고도와 제2 고도와의 높이차(△h1)가 상기 제2 부양체의 제3 고도와 제4 고도와의 높이차(△h2)와 동일하며, 상기 제1 부양체의 최고 고도인 제2 고도가 상기 제2 부양체의 최저 고도인 제3 고도 보다 낮게 설정되는 것이 바람직하다.
이와 같이, 상기 제1 부양체의 제1 고도와 제2 고도와의 높이차(△h1)가 상기 제2 부양체의 제3 고도와 제4 고도와의 높이차(△h2)와 동일하게 됨으로써, 제 1 부양체의 상승 또는 하강 운동이 제 2 부양체의 하강 또는 상승 운동과 정확하게 연동될 수 있게 된다. 또한, 제1 부양체의 최고 고도인 제2 고도가 제2 부양체의 최저 고도인 제3 고도 보다 낮게 설정함으로써, 제 1 부양체 및 제 2 부양체는 서로 다른 높이의 영역에서 왕복운동을 하게 되어 양 부양체가 서로 겹치지 않게 되어 충돌이 발생하지 않게 된다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체 및 제 2 부양체 각각이 한 쌍의 동체로 이루어질 수 있다. 상기 제 1 부양체의 각각의 동체들이 제 1 연결부재에 의해 고정되게 연결되며, 상기 제 2 부양체의 각각의 동체들이 제 3 연결부재에 의해 고정되게 연결될 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제1 부양체에는 각각의 동체들이 제 2 연결부재에 의해 고정되게 연결되며, 상기 제 2 연결부재의 중앙에는 상하로 관통하는 관통 구멍이 설치되며, 상기 제2 비행선의 제2 와이어 수단이 상기 관통 구멍을 관통할 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제1 부양체에는 각각의 동체들이 제 2 연결부재에 의해 고정되게 연결되며, 상기 제 2 연결부재의 중앙에는 상하로 관통하는 원통부재가 설치되며, 상기 원통부재는 그 중간부에서 전후방향의 회전축 및 좌우방향의 회전축에 의해 상기 제 2 연결부재에 결합되며, 상기 제2 부양체의 제2 와이어 수단이 상기 원통부재를 관통할 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서, 예를 들어, 윗쪽에 위치한 제 2 부양체와 아래쪽에 위치한 제 1 부양체를 향하여 부는 바람의 방향이 서로 달라질 경우, 상기 부양체들은 서로 다른 방향으로 이동하려고 한다. 이렇게 될 경우, 제 1 와이어 수단 및 제 2 와이어 수단의 와이어 권취수단에 감김 또는 풀림동작이 원활하지 않게 될 수 있으므로, 제 1 와이어 수단과 제 2 와이어 수단이 서로 멀리 떨어지지 않게 할 필요가 있다. 따라서, 제 2 부양체의 제 2 와이어 수단을 제 1 부양체의 동체에 설치된 내부원통의 내부로 관통시키면, 제 1 와이어 수단과 제 2 와이어 수단이 항상 일정한 거리를 유지할 수 있게 된다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 원통부재는 그 중간부에서 전후방향의 회전축 및 좌우방향의 회전축에 의해 상기 제1 부양체에 결합될 수 있다. 이와 같이, 상기 원통부재가 중간부에서 전후방향의 회전축 및 좌우방향의 회전축에 의해 결합되면, 원통부재의 상단부 또는 하단부가 전, 후, 좌, 우로의 운동이 가능해지므로, 제 1 부양체 및 제 2 부양체가 서로 다른 방향으로 이동하려고 할 때, 제 2 와이어 수단이 원통부재의 상단부 또는 하단부에서 간섭되는 현상을 감소시킬 수 있게 된다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 와이어 수단은 중앙에 관통 구멍이 형성된 상대 회전을 할 수 있는 상하 두개의 디스크를 포함하는 제 1 회전판 조인트에 의해 상기 제 1 부양체에 연결되며, 상기 제 2 와이어 수단은 상대 회전을 할 수 있는 상하 두개의 디스크를 포함하는 제 2 회전판 조인트에 의해 상기 제 2 부양체에 연결된다. 그리고, 상기 제 2 와이어 수단은 상기 제 1 부양체의 원통부재 및 제 1 회전판 조인트의 관통 구멍을 관통할 수 있다. 또한, 상기 제 1 회전판 조인트 및 상기 제 2 회전판 조인트는 각각 상부디스크와 하부디스크를 포함하고, 상기 상부디스크와 상기 하부디스크가 결합부재 및 체결부재에 의해 결합되며, 상기 상부디스크와 상기 하부디스크의 맞물림면에 복수의 제 1 볼이 배치되고, 상기 상부디스크와 상기 결합부재의 맞물림면에 복수의 제 2 볼이 배치될 수 있다. 즉, 본 발명에 따른 제 1 회전판 조인트 및 제 2 회전판 조인트는 상하 2개의 디스크가 서로 상대 회전운동을 할 수 있는 베어링 구조로 이루어질 수 있다. 상기 제 1 회전판 조인트의 상부 디스크는 제 1 부양체에 연결되어 장력을 받으며, 하부 디스크는 제 1 와이어 수단에 의해 연결되어 장력을 받게 된다. 또한 상기 제 2 회전판 조인트의 상부 디스크는 제 2 부양체에 연결되어 장력을 받으며, 하부 디스크는 제 2 와이어 수단에 의해 연결되어 장력을 받게 되며, 상기 제 2 와이어 수단은 상기 제 1 부양체의 원통부재 및 제 1 회전판 조인트의 중앙의 관통 구멍을 관통한다. 따라서, 부양체가 요잉운동을 할 때, 상기 제 1 회전판 조인트의 상부 디스크는 자유롭게 회전을 하지만 하부 디스크는 와이어 수단에 작용하는 장력에 의해 고정되므로, 상기 제 1 부양체 및 제 2 부양체가 서로 다른 방향으로 회전하더라도 제 1 와이어 수단과 제 2 와이어 수단이 서로 꼬이는 현상이 방지될 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 와이어 권취수단은 윈치로 이루어질 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체의 제 1 와이어 수단은 제 1 윈치에 제 1 방향으로 감기며, 상기 제 2 부양체의 제 2 와이어 수단은 제 2 윈치에 상기 제 1 방향과는 반대의 방향인 제 2 방향으로 감길 수 있으며; 상기 제 1 부양체가 제 1 고도로 설정되고, 상기 제 2 부양체가 제 4 고도로 설정된 상태에서, 상기 제 1 윈치와 상기 제 2 윈치가 결합될 수 있다.
상기와 같이, 상기 제 1 부양체가 제 1 고도로 설정되어 상승 운동의 시작점에 위치되고, 상기 제 2 부양체가 제 4 고도로 설정되어 하강 운동의 시작점에 위치된 상태에서, 상기 제 1 윈치와 제 2 윈치가 서로 결합됨으로써 상기 제 1 부양체의 상승 또는 하강 운동이 상기 제 2 부양체의 하강 또는 상승운동과 연동될 수 있게 된다. 즉, 상기 제 1 윈치 및 제 2 윈치가 서로 같은 방향으로 회전을 하여도 상기 제 1 부양체 및 제 2 부양체는 서로 다른 방향으로 상승 또는 하강운동을 할 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 윈치 및 제 2 윈치는 상기 제 1 와이어 수단 및 제 2 와이어 수단의 장력 방향(부양체가 와이어 수단을 당기는 방향)으로 회전 가능하게 설치될 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 와이어 수단 및 제 2 와이어 수단은 각각 전기 전도성 재질층, 상기 전기 전도성 재질층을 둘러싸는 탄소섬유층 및 상기 탄소섬유층의 외부에 형성된 코팅층을 포함할 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체 및 제 2 부양체가 각각 상승 운동을 할 때, 상기 제 1 부양체의 주날개 및 상기 제 2 부양체의 주날개의 각각의 양력 및 항력이 최적이 될 수 있는 받음각(angle of attack)을 가지도록, 상기 제어부가 상기 제 1 피치각 조절수단 및 상기 제 2 피치각 조절수단을 제어한다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체가 2개이며, 상기 제 2 부양체가 2개로 이루어질 수 있다.
본 발명에 따르면, 한 쌍의 부양체로 이루어진 공중 풍력발전 시스템에서, 제 1 부양체가 상승 운동을 할 때는 제 2 부양체가 하강 운동을 하고, 제 1 부양체가 하강 운동을 할 때는 제 2 부양체가 상승 운동을 하도록 제어되어, 제 1 부양체의 제 1 와이어 수단과 제 2 부양체의 제 2 와이어 수단에 의해 항상 와이어 권취수단이 회전함으로써 지속적인 발전이 이루어질 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 공중 풍력발전 시스템의 부양체의 상승 운동을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 공중 풍력발전 시스템의 부양체의 하강 운동을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 공중 풍력발전 시스템의 기본원리를 설명하는 도면이다.
도 4는 본 발명의 다른 실시예에 따른 공중 풍력발전 시스템을 나타내는 도면이다.
도 5는 본 발명의 다른 실시예에 따른 공중 풍력발전 시스템의 제 1 부양체의 제 2 연결부재를 확대하여 나타낸 도면으로서, 제 2 연결부재의 원통부재와 제 2 와이어 수단의 결합상태를 나타내는 도면이다.
도 6은 본 발명의 다른 실시예에 따른 공중 풍력발전 시스템을 나타내는 도면이다.
도 7은 본 발명의 다른 실시예에 따른 공중 풍력발전 시스템을 나타내는 도면이다.
도 8은 도 6의 공중 풍력발전시스템의 회전판 조인트의 운동을 나타내는 도면이다.
도 9는 공중 풍력발전시스템에 이용되는 회전판 조인트의 내부 구성을 나타내는 단면도이다.
도 10은 본 발명의 다른 실시예에 따른 공중 풍력발전시스템의 윈치 구조를 나타내는 도면이다.
도 11는 본 발명의 일 실시예에 따른 공중 풍력발전시스템의 와이어 수단의 구조를 나타내는 도면이다.
도 12는 본 발명의 다른 실시예에 따른 공중 풍력발전시스템을 나타내는 도면이다.
도 13은 본 발명의 또 다른 실시예에 따른 공중 풍력발전시스템을 나타내는 도면이다.
도 14는 종래 기술의 공중 풍력발전장치를 나타내는 도면이다.
도 15는 종래 기술의 다른 공중 풍력발전장치를 나타내는 도면이다.
전술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다.
특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며 본 출원의 명세서에서 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들은 도면에 예시하고 본 출원의 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 한정되지는 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소들로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.
어떠한 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떠한 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 또는 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하기 위한 다른 표현들, 즉 "∼사이에"와 "바로 ∼사이에" 또는 "∼에 인접하는"과 "∼에 직접 인접하는" 등의 표현도 마찬가지로 해석되어야 한다.
본 출원의 명세서에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원의 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상세히 설명하도록 한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 공중 풍력발전 시스템은, 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개(120), 수평 꼬리날개(130) 및 수직 꼬리날개(140)가 구비된 제1 부양체(100); 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개(220), 수평 꼬리날개(230) 및 수직 꼬리날개(240)가 구비된 제2 부양체(200); 상기 제1 부양체(100)가 제1 고도(h1)와 제2 고도(h2) 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제1 부양체(100)의 주날개(120)의 피치각을 조절하여 상기 주날개(120)의 양력 및 항력을 제어하는 제1 피치각 조절수단; 상기 제2 부양체(200)가 제3 고도(h3)와 제4 고도(h4) 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제2 부양체(200)의 주날개(220)의 피치각을 조절하여 상기 주날개(220)의 양력 및 항력을 제어하는 제2 피치각 조절수단; 회전력에 의해 전기를 생산하는 발전기가 결합되는 와이어 권취수단; 상기 제1 부양체(100)에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향으로 감겨지는 제1 와이어 수단(150); 상기 제2 부양체(200)에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향과 반대의 방향인 제2 방향으로 감겨지는 제2 와이어 수단(250); 및 상기 제1 부양체(100)가 상승 운동을 할 때는 상기 제2 부양체(200)가 하강 운동을 하고, 상기 제1 부양체(100)가 하강 운동을 할 때는 상기 제2 부양체(200)가 상승 운동을 하도록, 상기 제1 피치각 조절수단 및 제2 피치각 조절수단을 제어하는 제어부를 포함한다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제1 부양체(100)의 제1 고도(h1)와 제2 고도(h2), 제2 부양체(200)의 제3 고도(h3)와 제4 고도(h4)는 바람이 지표면과의 마찰의 영향을 덜 받는 고도로 설정되는 것이 바람직하다. 예를 들어, 상기 제1 고도(h1), 제2 고도(h2), 제3 고도(h3), 제4 고도(h4)는 지표면으로부터 약 600m에서 1200m 범위의 고도내에서 설정될 수 있다. 또한, 바람의 세기가 강한 지역에서는 상기 고도범위보다 낮은 고도로 설정될 수도 있다.
또한, 상기 제1 부양체(100) 및 제2 부양체(200)의 상승 및 하강 운동 거리, 즉 상기 제1 부양체(100)의 제1 고도(h1)와 제2 고도(h2)와의 높이차(△h1)와 제2 부양체의 제3 고도와 제4 고도와의 높이차(△h2)는, 예를 들어, 약 30m 내지 100m 범위로 설정될 수 있다. 또한, 상기 제1 부양체(100) 및 제2 부양체(200)가 각각 복수인 경우 또는 제1 부양체(100) 및 제2 부양체(200)의 각각의 동체가 한 쌍으로 이루어진 경우에는 높이차(△h1, △h2)가 상기와 다른 범위로 설정될 수도 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체(100) 및 제 2 부양체(200) 각각이 하나의 동체로 이루어질 수 있지만, 한 쌍의 동체로 이루어질 수도 있다. 이와 같이, 제 1 부양체(100) 및 제 2 부양체(200)가 각각 2개의 동체를 구비함으로써, 부양체의 상승력이 증가되어 발전 능력을 증대시킬 수 있다. 제 1 부양체(100) 및 제 2 부양체(200)가 각각 한 쌍의 동체로 이루어진 경우에는, 상기 제 1 부양체(100)의 각각의 동체들이 제 1 연결부재(190)에 의해 고정되게 연결되며, 상기 제 2 부양체(200)의 각각의 동체들이 제 3 연결부재(290)에 의해 고정되게 연결될 수 있다.
본 발명에 따른 공중 풍력발전 시스템에 이용되는 부양체(100, 200)의 내부에는 공기 보다 가벼운 기체가 충전되어 부양체(100, 200)가 공중에 부양이 가능하게 된다. 부양체 내부에 충전되는 기체는, 예를 들어, 헬륨, 수소 등이 이용될 수 있다. 또한, 상기 부양체(100, 200)에는 적어도 한 쌍의 주날개(120, 220), 한 쌍의 수평 꼬리날개(130, 230) 및 수직 꼬리날개(140, 240)가 구비된다. 또한 상기 부양체(100, 200)가 각각 한 쌍의 동체로 이루어진 경우에는, 상기 부양체(100, 200)들의 각각은 동체 중앙의 외측면에 주날개가 부착될 수도 있지만, 도 7에 도시된 바와 같이 주날개는 각각의 동체 중앙의 내측면에 주날개(320)가 부착될 수도 있다.
상기 부양체(100, 200)의 주날개(120, 220)에는 피치각 조절수단(미도시)이 각각 구비되어, 상기 부양체(100, 200)의 주날개(120, 220)의 피치각을 조절하여 주날개(120, 220)에 작용하는 양력 및 항력을 제어하게 된다. 본 발명에 이용되는 부양체(100, 200)는 비행선 등의 부양체로 이루어질 수 있다.
상기 부양체(100, 200)에는 와이어 수단(150, 250)의 일단이 연결되며, 상기 와이어 수단(150, 250)의 타단은 지상에 배치된 와이어 권취수단에 감겨진다. 이와 같이, 상기 부양체(100, 200)가 와이어 수단(150, 250)에 의해 와이어 권취수단에 연결됨에 따라, 상기 부양체(100, 200)가 주날개(120, 220)에 작용하는 양력에 의해 상승 운동을 할 경우에는 와이어 수단(150, 250)에 장력이 작용하여 와이어 수단이 와이어 권취수단으로부터 풀리면서 와이어 권취수단이 회전을 하게 된다. 상기 와이어 권취수단에는 발전기가 부착되는데, 상기와 같이 부양체(100, 200)의 상승 운동에 따라 와이어 권취수단이 회전 운동을 하면, 이 와이어 권취수단의 회전 운동에 의해 발전기가 함께 회전되어 전기를 발전하게 된다. 상기 와이어 권취수단은 윈치로 이루어지는 것이 바람직하다.
본 발명에 따른 공중 풍력발전 시스템에서 부양체(100, 200)들과 와이어 권취수단을 연결하는 와이어 수단(150, 250)들은 상기 부양체(100, 200)들의 상승력에 의해 와이어 권취수단을 회전시켜 장력에 충분히 견딜 수 있는 강도로 제작되어야 한다. 또한, 공중에 부양되어 있는 부양체(100, 200)들은 낙뢰에 노출될 우려가 많으므로, 낙뢰에 의한 충격 전류를 지하로 흘려보낼 수 있는 구조가 필요하게 된다. 따라서, 본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 부양체(100, 200)의 소정 위치에 공지 기술의 피뢰침이 설치될 수 있으며, 도 10에 도시된 바와 같이, 상기 제 1 와이어 수단(150)은 각각 내부층을 전기 전도성 재질층(151)으로 형성하여 통전이 가능하게 구성하며, 외부층을 탄소섬유층(152)으로 구성할 수 있다. 이 경우, 와이어 수단의 내부 전기 전도성 재질층은 일단은 부양체에 설치관 피뢰침과 접속되며, 타단은 지하에 접지된다. 또한, 상기 탄소섬유층(152)의 외부에 코팅층(153)을 포함할 수 있다. 이와 같이, 와이어 수단(150)의 외부에 코팅층(153)을 형성함으로써 와이어 수단을 자외선에 의한 노출 및 다른 부재와의 마찰로부터 내구성이 향상될 수 있다. 상기 코팅층(153)은, 예를 들어, 폴리우레탄재질로 이루어질 수 있다. 제 2 와이어 수단(250)도 제 1 와이어 수단(150)과 동일하게 전기 전도성 재질층, 탄소섬유층 및 코팅층으로 구성된다.
이어서, 본 발명에 따른 공중 풍력발전 시스템에서 와이어 수단들의 꼬임을 방지할 수 있는 실시예에 대하여 설명한다.
본 발명의 다른 실시예에 따른 공중 풍력발전 시스템에서, 예를 들어, 윗쪽에 위치한 제 2 부양체(200)와 아래쪽에 위치한 제 1 부양체(100)를 향하여 부는 바람의 방향이 서로 달라질 경우, 상기 부양체(100, 200)들은 서로 다른 방향으로 이동하려고 한다. 이렇게 될 경우, 제 1 와이어 수단(150) 및 제 2 와이어 수단(250)의 와이어 권취수단에 감김 또는 풀림동작이 원활하지 않게 될 수 있으므로, 제 1 와이어 수단과 제 2 와이어 수단이 서로 멀리 떨어지지 않게 할 필요가 있다. 따라서, 본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제1 부양체(100)에는 각각의 동체들이 제 2 연결부재(191)에 의해 고정되게 연결되며, 상기 제 2 연결부재(191)의 중앙에는 상하로 관통하는 관통 구멍(180)이 설치되며, 상기 제2 부양체(200)의 제2 와이어 수단(250)이 상기 관통 구멍(180)을 관통할 수 있다. 이와 같이 구성하면, 상기 제 1 와이어 수단(150)과 제 2 와이어 수단(250)이 항상 일정한 거리를 유지할 수 있게 된다.
또한, 도 5에 도시된 바와 같이, 상기 제1 부양체(100)에는 각각의 동체들이 제 2 연결부재(191)에 의해 고정되게 연결되며, 상기 제 2 연결부재(191)의 중앙에는 상하로 관통하는 원통부재(181)가 설치되며, 상기 원통부재(181)는 그 중간부에서 전후방향의 회전축 및 좌우방향의 회전축에 의해 상기 제 2 연결부재(191)에 결합되며, 상기 제2 부양체(200)의 제2 와이어 수단(250)이 상기 원통부재(181)를 관통할 수 있다. 이와 같이 구성하면, 상기 원통부재(181)의 상단부 또는 하단부가 전, 후, 좌, 우로의 운동이 가능해지므로, 제 1 부양체(100) 및 제 2 부양체(200)가 서로 다른 방향으로 이동하려고 할 때, 제 2 와이어 수단(250)이 원통부재(181)의 상단부 또는 하단부에서 간섭되는 현상을 감소시킬 수 있게 된다.
또한, 상기 제 1 와이어 수단(150)은 상대 회전을 할 수 있고 중앙에 관통 구멍(160c)이 형성된 상하 두개의 디스크(160a, 160b)로 이루어지는 제 1 회전판 조인트(160)에 의해 상기 제 1 부양체(100)에 연결될 수 있다. 상기 제 1 회전판 조인트(160)의 상부 디스크(160a)는 적어도 2지점에서 상기 제 1 부양체(100)에 연결될 수 있다. 상기 제 2 와이어 수단(250)은 상대 회전을 할 수 있는 상하 두개의 디스크로 이루어지는 제 2 회전판 조인트(260)에 의해 상기 제 2 부양체(200)에 연결될 수 있다. 상기 제 2 회전판 조인트(260)의 상부 디스크는 적어도 2지점에서 상기 제 2 부양체(200)에 연결될 수 있다. 이와 같은 구성에서, 상기 제 2 와이어 수단(250)은 상기 제 1 부양체(100)의 원통부재(181) 및 제 1 회전판 조인트(160)의 관통 구멍(160c)을 관통하게 된다. 상기 제 1 회전판 조인트(160) 및 상기 제 2 회전판 조인트(260)는 각각 상하 2개의 디스크가 서로 상대 회전운동을 할 수 있는 베어링 구조로 이루어지는 것이 바람직하다.
예를 들어, 제 1 회전판 조인트의 구성을 설명하면, 도 8에 도시된 바와 같이, 상부디스크(160d)와 하부디스크(160e)가 구비되며, 상부디스크(160d)와 하부디스크(160e)는 결합부재(160f)와 체결부재(160i)에 의해 결합되며, 상기 상부디스크(160d)와 하부디스크(160e)의 맞물림면에는 복수의 제 1 볼(160g)이 배치되고, 상기 상부디스크(160d)와 결합부재(160f)의 맞물림면에는 복수의 제 2 볼(160h)이 배치되는 구성으로 이루어질 수 있다. 제 2 회전판 조인트(260)도 중앙에 관통 구멍이 형성되지 않은 것을 제외하고는 상기 제 1 회전판 조인트(160)의 구성과 동일하게 구성될 수 있다. 상기 제 1 회전판 조인트(160)의 상부 디스크는 제 1 부양체(100)에 연결되어 장력을 받으며, 하부 디스크는 제 1 와이어 수단(150)에 의해 연결되어 장력을 받게 된다. 또한 상기 제 2 회전판 조인트(260)의 상부 디스크는 제 2 부양체(200)에 연결되어 장력을 받으며, 하부 디스크는 제 2 와이어 수단(250)에 의해 연결되어 장력을 받게 되며, 상기 제 2 와이어 수단(250)은 상기 제 1 부양체(100)의 원통부재(181) 및 제 1 회전판 조인트(160)의 중앙의 관통 구멍(160c)을 관통한다. 따라서, 부양체가 요잉운동을 할 때, 상기 회전판 조인트의 상부 디스크는 자유롭게 회전을 하지만 하부 디스크는 와이어 수단에 작용하는 장력에 의해 고정되므로, 상기 제 1 부양체(100) 및 제 2 부양체(200)가 서로 다른 방향으로 회전하더라도 제 1 와이어 수단(150)과 제 2 와이어 수단(250)이 서로 꼬이는 현상이 방지될 수 있다.
본 발명의 다른 실시예에 따른 공중 풍력발전 시스템에서는, 상기 와이어 권취수단은 윈치로 이루어질 수 있다. 또한, 상기 와이어 권취수단은 제 1 부양체(100)의 제 1 와이어 수단(150)을 감는 제 1 윈치(170)와 제 2 부양체(200)의 제 2 와이어 수단(250)을 감는 제 2 윈치(270)가 독립적으로 구성될 수 있다. 이와 같이, 각 부양체(100, 200)의 윈치를 독립적으로 구성하면, 제 1 부양체(100)를 제 1 고도(h1)에 세팅하고, 제 2 부양체(200)를 제 4 고도(h4)에 세팅한 상태에서 제 1 윈치(170)와 제 2 윈치(270)를 서로 결합시키면, 제 1 부양체(100) 및 제 2 부양체(200)의 작동위치를 용이하게 설정할 수 있게 된다. 상기와 같이, 상기 제 1 부양체(100)가 제 1 고도(h1)로 설정되어 상승 운동의 시작점에 위치되고, 상기 제 2 부양체(200)가 제 4 고도(h4)로 설정되어 하강 운동의 시작점에 위치된 상태에서, 상기 제 1 윈치(170)와 제 2 윈치(270)가 서로 결합된다. 상기 구성에서, 각 윈치(170, 270)에 와이어 수단(150, 250)이 감기는 방향은 서로 반대방향이며, 제 1 윈치(170) 및 제 2 윈치(270)가 서로 결합된 상태에서 두 개의 윈치가 함께 회전할 경우, 하나의 윈치에 연결된 부양체가 상승 운동을 하면, 다른 하나의 윈치에 연결된 부양체는 하강 운동을 하게 된다.
본 발명의 다른 실시예에 따른 공중 풍력발전 시스템에서는, 와이어 권취수단 또는 제 1 윈치(170) 및 제 2 윈치(270)는 상기 제 1 와이어 수단(150) 및 제 2 와이어 수단(250)의 장력 방향(부양체들(100, 200)이 와이어 수단들(150, 250)을 당기는 방향)으로 회전이 가능하도록 설치될 수 있다. 예를 들어, 도 11에 도시된 바와 같이, 지상에 회전지지체(400)를 설치하고, 상기 회전지지체(400) 위에서 자유롭게 회전할 수 있는 회전판상에 윈치(170, 270) 및 발전기(300)를 설치하면, 상기 제 1 부양체(100) 및 제 2 부양체(200)가 바람의 방향에 따라 이동하더라도 항상 와이어 권취수단 또는 제 1 윈치(170)와 제 2 윈치(270)가 제 1 와이어 수단(150)과 제 2 와이어 수단(250)의 장력 방향을 향하여 배향되므로, 윈치에 의한 와이어 수단의 감김 및 풀림동작이 원활하게 될 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체(100) 및 제 2 부양체(200)가 각각 상승 운동을 할 때, 상기 제 1 부양체(100)의 주날개(120) 및 상기 제 2 부양체(200)의 주날개(220)의 각각의 양력 및 항력이 최적이 될 수 있는 받음각을 가지도록, 상기 제어부(미도시)가 상기 제 1 피치각 조절수단(미도시) 및 상기 제 2 피치각 조절수단(미도시)을 제어한다. 여기서, 제어부와 피치각 조절수단의 상세한 구성 및 작용에 대하여는 설명을 생략한다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체(100)및 제 2 부양체(200)에 설치되는 소형의 블레이드 타입의 풍력발전기 또는 태양광발전판을 이용하여 생성된 전원에 의해 상기 제어부, 상기 제 1 피치각 조절수단 및 상기 제 2 피치각 조절수단이 구동될 수 있다.
본 발명의 일 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체(100) 및 제 2 부양체(200)에는 GPS장치와 3차원 자이로스코프 센서가 설치되어, 상기 제 1 부양체(100) 및 제 2 부양체(200)의 자세 및 고도에 대한 정보를 상기 제어부로 전송하며, 상기 제어부에서는 상기 GPS장치와 3차원 자이로스코프 센서로부터 전송된 정보에 기초하여 상기 제 1 부양체 및 제 2 부양체의 상승 또는 하강 운동을 제어할 수 있다.
본 발명의 다른 실시예에 따른 공중 풍력발전 시스템에서는, 도 13에 도시된 바와 같이, 상기 제 1 부양체(100, 100')가 2개이며, 상기 제 2 부양체(200, 200')가 2개로 이루어질 수 있다. 이와 같이, 제 1 부양체(100, 100') 및 제 2 부양체(200, 200')를 2개로 구성함으로써, 부양체의 상승력이 증가되어 발전 능력을 증대시킬 수 있다.
이어서, 본 발명에 따른 공중 풍력발전 시스템의 작용효과에 대하여 설명한다.
제 1 부양체(100)는 공중 풍력발전을 위해 상기 제 1 부양체(100)의 내부에 충전된 기체의 부양력에 의해 기저고도인 제 1 고도(h1)까지 상승된다. 전술한 바와 같이, 상기 제 1 부양체(100)는 제 1 와이어 수단(150)에 의해 와이어 권취수단에 연결되어 있으므로, 제 1 고도(h1)에서의 제 1 부양체(100)의 부양시스템 전체의 무게는 제 1 부양체(100)의 무게(M1)와 와이어 권취수단에서 제 1 고도(h1)까지의 제 1 와이어 수단(150)의 무게(m1)를 합한 것이 된다. 또한, 상기 제 1 부양체(100)가 여기고도인 제 2 고도(h2)까지 상승하였을 때의 제 1 부양체(100)의 부양시스템 전체의 무게는 제 1 부양체(100)의 무게(M1)와 와이어 권취수단에서 제 2 고도(h2)까지의 제 1 와이어 수단(150)의 무게(m2)를 합한 것이 된다.
상기 제 1 부양체(100)의 내부에 충전되는 기체의 양(V1)은 제 1 부양체(100)가 제 1 고도(h1)의 위치에 유지될 수 있는 부양력(LVF1)을 발생시킬 수 있는 양으로 정해진다.
제 1 부양체(100)의 주날개(120)의 피치각을 조절하여 상기 주날개(120)에 양력을 발생시켜서 제 1 부양체(100)를 제 1 고도(h1)로부터 제 2 고도(h2)까지 상승시킬 때 발생하는 상승력1은 하기의 식(1)과 같다.
상승력1 = LF + DF + TDF ------------------------------------ (1)
여기서, LF는 주날개에 작용하는 양력, DF는 주날개에 작용하는 항력, TDF는 와이어 수단에 작용하는 항력이다.
제 1 부양체(100)가 제 1 고도(h1)에서 제 2 고도(h2)로 상승 이동하는 동안 주날개(120)의 피치각은 피치조절수단에 의해 식(1)의 상승력1("LF + DF + TDF"의 합력)이 최대가 되는 각도로 계속적으로 변하도록 전자제어 되어진다.
상기 상승력1은 제 2 고도(h2)와 제 1 고도(h1) 차이 만큼의 제 1 와이어 수단(150)의 무게(m2 - m1)를 들어올리는 힘과 발전을 위해 제 1 와이어 수단(150)을 잡아당겨서 와이어 권취수단을 회전시키는 힘으로 이용된다.
제 1 부양체(100)의 주날개(120)의 피치각을 조절하여 상기 주날개(120)에 다운포스를 발생시켜서 제 1 부양체(100)를 제 2 고도(h2)로부터 제 1 고도(h1)까지 하강시킬 때 발생하는 하강력1은 하기의 식(2)와 같다.
하강력1 = DWF + (m2 - m1) - DF - TDF ---------------------- (2)
여기서, DWF(-LF)는 주날개에 작용하는 다운포스, DF는 주날개에 작용하는 항력, TDF는 와이어 수단에 작용하는 항력, (m2 - m1)은 제 1 고도(h1)에서 제 2 고도(h2)까지의 제 1 와이어 수단의 무게이다.
이어서, 제 2 부양체(200)의 하강 및 상승 운동에 대하여 설명한다.
제 2 부양체(200)는 공중 풍력발전을 위해 제 2 부양체(200)의 내부에 충전된 기체의 부양력에 의해 여기고도인 제 4 고도(h4)까지 상승된다. 전술한 바와 같이, 상기 제 2 부양체(200)는 제 2 와이어 수단(250)에 의해 와이어 권취수단에 연결되어 있으므로, 제 4 고도(h4)에서의 제 2 부양체(200)의 부양시스템 전체의 무게는 제 2 부양체(200)의 무게(M2)와 와이어 권취수단에서 제 4 고도(h4)까지의 제 2 와이어 수단(250)의 무게(m4)를 합한 것이 된다. 또한, 상기 제 2 부양체(200)가 기저고도인 제 3 고도(h3)까지 하강하였을 때의 제 2 부양체(200)의 부양시스템 전체의 무게는 제 2 부양체(200)의 무게(M2)와 와이어 권취수단에서 제 3 고도(h3)까지의 제 2 와이어 수단(250)의 무게(m3)를 합한 것이 된다.
상기 제 2 부양체(200)의 내부에 충전되는 기체의 양(V2)은 제 2 부양체(200)가 제 4 고도(h4)의 위치에 유지될 수 있는 부양력(LVF2)을 발생시킬 수 있는 양으로 정해진다.
제 2 부양체(200)의 주날개(220)의 피치각을 조절하여 상기 주날개(220)에 다운포스를 발생시켜서 제 2 부양체(200)를 제 4 고도(h4)로부터 제 3 고도(h3)까지 하강시킬 때 발생하는 하강력2는 하기의 식(3)과 같다.
하강력2 = DWF + (m4 - m3) - DF - TDF ------------------------- (3)
여기서, DWF(-LF)는 주날개에 작용하는 다운포스, DF는 주날개에 작용하는 항력, TDF는 와이어 수단에 작용하는 항력, (m4 - m3)은 제 4 고도(h4)에서 제 3 고도(h3)까지의 제 2 와이어 수단의 무게이다.
제 2 부양체(200)의 주날개(220)의 피치각을 조절하여 상기 주날개(220)에 양력을 발생시켜서 제 2 부양체(200)를 제 3 고도(h3)로부터 제 4 고도(h4)까지 상승시킬 때 발생하는 상승력2는 하기의 식(4)와 같다.
상승력2 = LF + DF + TDF ---------------------------------------- (4)
여기서, LF는 주날개에 작용하는 양력, DF는 주날개에 작용하는 항력, TDF는 와이어 수단에 작용하는 항력이다.
제 2 부양체(200)가 제 3 고도(h3)에서 제 4 고도(h4)로 상승 이동하는 동안 주날개(220)의 피치각은 피치조절수단에 의해 식(4)의 상승력2("LF + DF + TDF"의 합력)이 최대가 되는 각도로 계속적으로 변하도록 전자제어 되어진다.
상기 상승력2는 제 4 고도(h4)와 제 3 고도(h3) 차이 만큼의 제 2 와이어 수단(250)의 무게(m4 - m3)를 들어올리는 힘과 발전을 위해 제 2 와이어 수단(250)을 잡아당겨서 와이어 권취수단을 회전시키는 힘으로 이용된다.
본 발명에 따른 공중 풍력발전 시스템에서는, 예를 들어, 하나의 제 1 부양체(100)와 하나의 제 2 부양체(200)가 제 1 와이어 수단(150), 제 2 와이어 수단(250) 및 와이어 권취수단에 의해 연결되며, 상기 제1 부양체(100)가 상승 운동을 할 때는 상기 제2 부양체(200)가 하강 운동을 하고, 상기 제1 부양체(100)가 하강 운동을 할 때는 상기 제2 부양체(200)가 상승 운동을 하도록 제어부(미도시)에 의해 제어된다. 도 3에 도시된 바와 같이, 제 1 부양체(100)와 제 2 부양체(200) 중 하나가 상승하는 동안 다른 하나는 하강하고, 다음 주기에서는 서로 반대로 연동하여 운동을 하면서 지상의 와이어 권취수단에 결합된 발전기를 회전시키게 된다. 이와 같이, 제 1 부양체(100)와 제 2 부양체(200)가 서로 상반된 운동을 하는 구성으로 이루어지므로, 와이어 권취수단에서의 제 1 와이어 수단(150)의 감김방향(제 1 방향)과 제 2 와이어 수단(250)의 감김방향(제 2 방향)은 서로 반대방향으로 된다. 따라서, 도 3에 도시된 바와 같이, 제 1 부양체(100)가 기저고도인 제 1 고도(h1)에서 여기고도인 제 2 고도(h2)까지 상승 운동을 할 때, 제 2 부양체(200)는 여기고도인 제 4 고도(h4)에서 기저고도인 제 3 고도(h3)까지 하강 운동을 하고; 다음 주기에서는 제 1 부양체(100)가 제 2 고도(h2)에서 제 1 고도(h1)까지 하강 운동을 할 때, 제 2 부양체(200)는 제 3 고도(h3)에서 제 4 고도(h4)까지 상승 운동을 하는 사이클을 반복하면서, 와이어 권취수단 또는 윈치를 왕복 회전운동시켜 발전기를 회전시켜 전기를 발생시키는 것이다.
본 발명의 다른 실시예에 따른 공중 풍력발전 시스템에서는, 상기 제 1 부양체(100) 및 제 2 부양체(200) 각각이 한 쌍의 동체로 이루어질 수 있는데, 제 1 부양체(100)의 상승 또는 하강 운동을 제 2 부양체(200)의 하강 또는 상승 운동에 대응시켜 양 부양체(100, 200)가 서로 상반된 운동을 함으로써 와이어 권취수단을 왕복회전운동시키는 작용은 제 1 부양체 및 제 2 부양체가 각각 하나의 동체로 이루어진 시스템과 동일하다.
본 발명의 다른 실시예에 따른 공중 풍력발전 시스템에서는, 제 1 부양체(100, 100')가 2개이며, 제 2 부양체(200, 200')가 2개로 이루어질 수 있다. 도 12에 도시된 바와 같이, 제 1 부양체(100, 100')는 경계고도 이하에서 상승 또는 하강운동을 하고, 제 2 부양체는 경계고도 이상에서 하강 또는 상승운동을 한다. 이와 같이, 제 1 부양체(100, 100,)의 상승 또는 하강 운동을 제 2 부양체(200, 200,)의 하강 또는 상승 운동에 대응시켜 양 부양체(100, 100')(200, 200')가 서로 상반된 운동을 함으로써 와이어 권취수단을 왕복회전운동시키는 작용은 제 1 부양체 및 제 2 부양체가 각각 하나로 이루어진 시스템과 동일하다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (11)

  1. 공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개, 수평 꼬리날개 및 수직 꼬리날개가 구비된 제1 비행선;
    공기 보다 가벼운 기체가 내부에 충전되어 공중으로 부상이 가능하며, 주날개, 수평 꼬리날개 및 수직 꼬리날개가 구비된 제2 비행선;
    상기 제1 비행선이 제1 고도와 제2 고도 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제1 비행선의 주날개의 피치각을 조절하여 상기 주날개의 양력 및 항력을 제어하는 제1 피치각 조절수단;
    상기 제2 비행선이 제3 고도와 제4 고도 사이에서 상승 운동 또는 하강 운동을 할 수 있도록, 상기 제2 비행선의 주날개의 피치각을 조절하여 상기 주날개의 양력 및 항력을 제어하는 제2 피치각 조절수단;
    회전력에 의해 전기를 생산하는 발전기가 결합되는 와이어 권취수단;
    상기 제1 비행선에 일단이 연결되며, 타단이 상기 와이어 권취수단에 제1 방향으로 감겨지는 제1 와이어 수단;
    상기 제2 비행선에 일단이 연결되며, 타단이 상기 와이어 권취수단에 상기 제1 방향과 반대의 방향인 제2 방향으로 감겨지는 제2 와이어 수단; 및
    상기 제1 비행선이 상승 운동을 할 때는 상기 제2 비행선이 하강 운동을 하고, 상기 제1 비행선이 하강 운동을 할 때는 상기 제2 비행선이 상승 운동을 하도록, 상기 제1 피치각 조절수단 및 제2 피치각 조절수단을 제어하는 제어부를 포함하며,
    상기 제1 비행선의 제1 고도와 제2 고도와의 높이차(△h1)가 상기 제2 비행선의 제3 고도와 제4 고도와의 높이차(△h2)와 동일하며,
    상기 제1 비행선의 최고 고도인 제2 고도가 상기 제2 비행선의 최저 고도인 제3 고도보다 낮게 설정되는 것을 특징으로 하는 공중 풍력발전 시스템.
  2. 제 1 항에 있어서,
    상기 제 1 비행선 및 제 2 비행선 각각이 한 쌍의 동체로 이루어지며, 각각의 동체들이 제 1 연결부재에 의해 고정되게 연결된 것을 특징으로 하는 공중 풍력발전 시스템.
  3. 제 2 항에 있어서,
    상기 제1 비행선에는 각각의 동체들이 제 2 연결부재에 의해 고정되게 연결되며, 상기 제 2 연결부재의 중앙에는 상하로 관통하는 관통 구멍이 설치되며,
    상기 제2 비행선의 제2 와이어 수단이 상기 관통 구멍을 관통하는 것을 특징으로 하는 공중 풍력발전 시스템.
  4. 제 2 항에 있어서,
    상기 제1 비행선에는 각각의 동체들이 제 2 연결부재에 의해 고정되게 연결되며, 상기 제 2 연결부재의 중앙에는 상하로 관통하는 원통부재가 설치되며, 상기 원통부재는 그 중간부에서 전후방향의 회전축 및 좌우방향의 회전축에 의해 상기 제 2 연결부재에 결합되며,
    상기 제2 비행선의 제2 와이어 수단이 상기 원통부재를 관통하는 것을 특징으로 하는 공중 풍력발전 시스템.
  5. 제 3 항에 있어서,
    상기 제 1 와이어 수단은 중앙에 관통 구멍이 형성된 상대 회전을 할 수 있는 상하 두개의 디스크를 포함하는 제 1 회전판 조인트에 의해 상기 제 1 비행선에 연결되며,
    상기 제 2 와이어 수단은 상대 회전을 할 수 있는 상하 두개의 디스크를 포함하는 제 2 회전판 조인트에 의해 상기 제 2 비행선에 연결되며, 상기 제 1 비행선의 제 2 연결부재의 관통 구멍 및 제 1 회전판 조인트의 관통 구멍을 관통하는 것을 특징으로 하는 공중 풍력발전 시스템.
  6. 제 4 항에 있어서,
    상기 제 1 회전판 조인트 및 상기 제 2 회전판 조인트는 각각 상부디스크와 하부디스크를 포함하고, 상기 상부디스크와 상기 하부디스크가 결합부재 및 체결부재에 의해 결합되며, 상기 상부디스크와 상기 하부디스크의 맞물림면에 복수의 제 1 볼이 배치되고, 상기 상부디스크와 상기 결합부재의 맞물림면에 복수의 제 2 볼이 배치되는 것을 특징으로 하는 공중 풍력발전 시스템.
  7. 제 1 항에 있어서,
    상기 와이어 권취수단은 제 1 윈치와 제 2 윈치로 이루어지는 것을 특징으로 하는 공중 풍력발전 시스템.
  8. 제 1 항에 있어서,
    상기 제 1 비행선의 제 1 와이어 수단은 제 1 윈치에 제 1 방향으로 감기며, 상기 제 2 비행선의 제 2 와이어 수단은 제 2 윈치에 상기 제 1 방향과는 반대의 방향인 제 2 방향으로 감기고,
    상기 제 1 비행선이 제 1 고도로 설정되고, 상기 제 2 비행선이 제 4 고도로 설정된 상태에서, 상기 제 1 윈치와 상기 제 2 윈치가 결합되어 함께 회전운동을 하게 되는 것을 특징으로 하는 공중 풍력발전 시스템.
  9. 제 7 항에 있어서,
    상기 제 1 윈치 및 제 2 윈치는 상기 제 1 와이어 수단 및 제 2 와이어 수단의 장력 방향으로 회전 가능하게 설치되는, 공중 풍력발전 시스템.
  10. 제 1 항에 있어서,
    상기 제 1 와이어 수단 및 제 2 와이어 수단은 각각 전기 전도성 재질층, 상기 전기 전도성 재질층을 둘러싸는 탄소섬유층 및 상기 탄소섬유층의 외부에 형성된 코팅층을 포함하는 것을 특징으로 하는 공중 풍력발전 시스템.
  11. 제 1 항에 있어서,
    상기 제 1 비행선이 2개이며, 상기 제 2 비행선이 2개인 것을 특징으로 하는 공중 풍력발전 시스템.
PCT/KR2012/008709 2011-11-04 2012-10-23 공중 풍력 발전 시스템 WO2013065987A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110114313A KR101167857B1 (ko) 2011-11-04 2011-11-04 공중 풍력 발전 시스템
KR10-2011-0114313 2011-11-04

Publications (2)

Publication Number Publication Date
WO2013065987A2 true WO2013065987A2 (ko) 2013-05-10
WO2013065987A3 WO2013065987A3 (ko) 2013-06-27

Family

ID=46717258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008709 WO2013065987A2 (ko) 2011-11-04 2012-10-23 공중 풍력 발전 시스템

Country Status (2)

Country Link
KR (1) KR101167857B1 (ko)
WO (1) WO2013065987A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100242A1 (en) * 2013-12-29 2015-07-02 Google Inc. Methods and systems for winding a tether
FR3109412A1 (fr) 2020-04-21 2021-10-22 Nicolas Papaxanthos Système de récupération de l’énergie du vent composé de deux ailes inversées.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386581B1 (ko) 2012-10-19 2014-04-21 은 호 박 공중 부양 튜브 2배 증가 풍력 발전기
KR101715731B1 (ko) * 2015-04-10 2017-03-13 장수영 비행체 운용시스템
KR101942263B1 (ko) * 2018-04-25 2019-01-25 한국전력공사 풍력을 이용한 발전장치 및 발전방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020040948A1 (en) * 2000-08-30 2002-04-11 Ragner Gary Dean Axial-mode linear wind-trubine
JP2004232461A (ja) * 2003-01-28 2004-08-19 正人 ▲たか▼岡 発電装置
US20070126241A1 (en) * 2005-11-28 2007-06-07 Olson Gaylord G Wind Drive Apparatus For An Aerial Wind Power Generation System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020040948A1 (en) * 2000-08-30 2002-04-11 Ragner Gary Dean Axial-mode linear wind-trubine
JP2004232461A (ja) * 2003-01-28 2004-08-19 正人 ▲たか▼岡 発電装置
US20070126241A1 (en) * 2005-11-28 2007-06-07 Olson Gaylord G Wind Drive Apparatus For An Aerial Wind Power Generation System

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100242A1 (en) * 2013-12-29 2015-07-02 Google Inc. Methods and systems for winding a tether
US9352930B2 (en) 2013-12-29 2016-05-31 Google Inc. Methods and systems for winding a tether
CN106062359A (zh) * 2013-12-29 2016-10-26 谷歌公司 用于缠绕系绳的方法和系统
FR3109412A1 (fr) 2020-04-21 2021-10-22 Nicolas Papaxanthos Système de récupération de l’énergie du vent composé de deux ailes inversées.

Also Published As

Publication number Publication date
WO2013065987A3 (ko) 2013-06-27
KR101167857B1 (ko) 2012-07-23

Similar Documents

Publication Publication Date Title
JP5189647B2 (ja) マルチポイント係留及び安定化システム、及び流れを用いた水中用タービンのための制御方法
CN103328815B (zh) 用于从流体的流动水流中产生电能的系统和方法
CN104074670B (zh) 模块化海洋能发电装置
WO2013065987A2 (ko) 공중 풍력 발전 시스템
US20160318628A1 (en) Spar Buoy Platform
AU2013101720A4 (en) A tethered airborne wind power generator system
CN211874639U (zh) 一种可被动偏航的双风轮漂浮式海上风力发电装置
US8937395B2 (en) Ocean floor mounting of wave energy converters
WO2011046333A2 (ko) 환체방사형 터빈블레이드 풍력발전 시스템
CN101117941A (zh) 系缆气球风力涡轮发电机
WO2015129974A1 (ko) 수면 부양식 고효율 수차 발전기
JP2004232461A (ja) 発電装置
WO2014025124A1 (ko) 풍력발전장치
WO2020256247A1 (ko) 부유식 풍력발전기의 해상 이송수단
CN201050449Y (zh) 系缆气球风力涡轮发电机
WO2011025343A2 (ko) 기구 풍력 집중식 발전기
WO2016060498A1 (ko) 스크린 파력 발전장치
CN1454291A (zh) 框架组合式风车
KR101179682B1 (ko) 부유식 해상 풍력발전설비
CN103511187B (zh) 一种聚风型风力发电装置
CN117404253A (zh) 一种垂直轴漂浮式的海上风力发电设备及其工作控制方法
CN105736221A (zh) 模块化海洋能发电装置
KR100956269B1 (ko) 연을 이용한 풍력발전장치
WO2011122895A2 (ko) 유체를 이용한 동력발생장치
KR101348610B1 (ko) 풍력발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846555

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12846555

Country of ref document: EP

Kind code of ref document: A2