WO2013065657A1 - Stacked piezoelectric element, ultrasound transducer, and method of manufacturing stacked piezoelectric element - Google Patents

Stacked piezoelectric element, ultrasound transducer, and method of manufacturing stacked piezoelectric element Download PDF

Info

Publication number
WO2013065657A1
WO2013065657A1 PCT/JP2012/077934 JP2012077934W WO2013065657A1 WO 2013065657 A1 WO2013065657 A1 WO 2013065657A1 JP 2012077934 W JP2012077934 W JP 2012077934W WO 2013065657 A1 WO2013065657 A1 WO 2013065657A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrode
piezoelectric element
layer
stacking direction
Prior art date
Application number
PCT/JP2012/077934
Other languages
French (fr)
Japanese (ja)
Inventor
西江純一
近藤親史
太田順司
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013065657A1 publication Critical patent/WO2013065657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes

Definitions

  • the present invention relates to a laminated piezoelectric element having a structure in which a piezoelectric layer and an electrode layer are laminated, an ultrasonic transducer that transmits or receives a sound wave using the laminated piezoelectric element, and a method for manufacturing the laminated piezoelectric element.
  • a laminated piezoelectric element that vibrates in the thickness direction of the piezoelectric layer and the electrode layer, an ultrasonic transducer that is used as a double feed detection sensor that detects double feeding of a sheet in a printing machine, and the laminated piezoelectric element It relates to the manufacturing method.
  • the ultrasonic transducer is used as a double feed detection sensor for detecting double feed of a sheet by a printing machine or the like.
  • Ultrasonic transducers used as double feed detection sensors are required to be downsized without lowering the sound pressure level or sensitivity level. From such a viewpoint, it is preferable to configure an ultrasonic transducer that directly uses the thickness vibration of the piezoelectric element.
  • a piezoelectric element that vibrates in thickness there is a laminated piezoelectric element in which a piezoelectric layer and an electrode layer are laminated and the thickness vibrates in the laminating direction.
  • the piezoelectric element when a driving voltage is applied between adjacent electrode layers, the piezoelectric element vibrates by changing the thickness of the piezoelectric layer.
  • the inactive region is that at least a part of the piezoelectric layer is not disposed between two electrode layers to which a driving voltage having a different potential is applied, and no deformation occurs even when a driving voltage is applied to the electrode layer. It is an area. On the other hand, at least a part of the piezoelectric layer is disposed between two electrode layers to which a driving voltage having a different potential is applied, and a region where deformation is caused by applying the driving voltage to the electrode layer is an active region. It is.
  • a polarization treatment step is performed in which a voltage is applied between adjacent electrode layers to align the direction of spontaneous polarization of crystals in a piezoelectric layer made of piezoelectric ceramics.
  • the polarization treatment step deformation occurs in the piezoelectric layer, so that cracks may occur at the interface between the layers or in the piezoelectric layer near the interface.
  • a laminated piezoelectric element having an inactive region Since the electrode layer is embedded in the piezoelectric layer, stress concentration occurs in the vicinity of the electrode end portion, and cracks are likely to occur in the piezoelectric layer.
  • the width of the inactive region is made larger than the thickness of the piezoelectric layer in order to prevent the occurrence of cracks in the piezoelectric layer in the polarization treatment step.
  • the thickness dimension is made larger or the element size is made smaller, the ratio of the inactive region to the whole laminated piezoelectric element increases. That is, in the multilayer piezoelectric element, the active region that vibrates effectively is small, and the inactive region that becomes a load against the vibration of the active region becomes large, so that the vibration of the multilayer piezoelectric element is hindered, and the desired performance, For example, it becomes difficult to achieve desired sound pressure and vibration efficiency.
  • a first object of the present invention is to provide a method for manufacturing a multilayer piezoelectric element capable of realizing the desired performance of the multilayer piezoelectric element while preventing the occurrence of cracks in the piezoelectric layer in the polarization process. It is to be realized.
  • a second object of the present invention is to provide a multilayer piezoelectric element that realizes the desired performance of the multilayer piezoelectric element using the above-described manufacturing method.
  • the third object of the present invention is to generate cracks in the piezoelectric layer in the polarization process even if the element size is reduced by the multilayer piezoelectric element that achieves the desired performance using the manufacturing method described above. It is an object of the present invention to provide an ultrasonic transducer that can easily prevent both and prevent a large active area.
  • the method for manufacturing a laminated piezoelectric element according to the present invention includes a step of forming a laminate block in which a piezoelectric sheet and an electrode pattern are laminated in a predetermined lamination direction, a step of firing the laminate block, and a lamination direction.
  • a polarization process step of applying a voltage between adjacent electrode patterns and a step of forming a multilayer piezoelectric element by dividing a multilayer block are performed in this order.
  • the piezoelectric sheet is partitioned into a plurality of element formation regions and removal regions in an in-plane direction perpendicular to the stacking direction, and the element formation regions are distributed and arranged in a matrix with the removal regions in between. Yes.
  • a part of the electrode pattern is arranged in the element formation region.
  • the multilayer block at least a part of the active region in which a part of the electrode pattern adjacent in the stacking direction overlaps in the stacking direction is arranged so as to overlap the element formation region. At least a part of the inactive region in which part of the electrode pattern adjacent in the stacking direction does not overlap in the stacking direction is arranged to overlap the removal region.
  • the distance between the end of the electrode pattern in each element formation region of the multilayer block and the end of the electrode pattern facing in the in-plane direction is larger than the thickness of the piezoelectric sheet in the stacking direction. It is characterized by that.
  • the polarization treatment process is performed on the laminated body block, handling facilities and processes are not required as in the case where the elements are individually polarized. Further, in the laminate block subjected to the polarization treatment step, the distance between the end of the electrode pattern in each element formation region and the end of the electrode pattern facing in the in-plane direction is the piezoelectric body in the laminate direction. Since it is larger than the thickness dimension of the sheet, the stress concentration due to the deformation of the piezoelectric sheet in the polarization treatment step is suppressed, and the generation of cracks in the piezoelectric seed in the inactive region can be suppressed.
  • the non-active region that partially overlaps the removal region is also removed, thereby reducing the proportion of the non-active region in the multilayer piezoelectric element.
  • the proportion of the active region can be increased, and desired performance of the multilayer piezoelectric element, for example, high sound pressure and vibration efficiency can be realized.
  • the width dimension of the inactive area overlapping the element forming area is smaller than the thickness dimension of the piezoelectric sheet in the laminating direction.
  • the laminated piezoelectric element is configured to reduce the proportion of the inactive region that becomes a vibration load and increase the proportion of the active region to achieve the desired sound pressure and vibration efficiency, Generation of cracks in the piezoelectric sheet can be suppressed.
  • the multilayer piezoelectric element according to the present invention is formed by the above-described manufacturing method, wherein a piezoelectric layer made of a piezoelectric sheet and an electrode layer made of an electrode pattern are laminated, and the piezoelectric layer and the electrode layer are laminated.
  • a non-active region in which the electrode layer adjacent in the stacking direction does not overlap is formed on a part of the peripheral edge in the in-plane direction orthogonal to the direction, and the width dimension of the non-active region is the stacking direction. It is preferable that every other electrode layer adjacent in the laminating direction is exposed on each element end face smaller than the thickness dimension of the piezoelectric layer.
  • the laminated piezoelectric element manufactured while suppressing the occurrence of cracks in the polarization process it is possible to achieve the desired sound pressure and vibration efficiency by increasing the area ratio of the active region.
  • the pair of electrode layers to which the drive voltage is applied are not exposed to the end face of the element, and the occurrence of electromigration can be suppressed.
  • an ultrasonic transducer includes the above-described laminated piezoelectric element, a case, and a terminal portion.
  • the case has a bottomed cylindrical shape in which the first end surface facing the sound wave transmission / reception direction is open and has an internal space, and the second end surface facing the first end surface is closed, and the case is piezoelectric in the sound wave transmission / reception direction.
  • the piezoelectric element is held in a state where the stacking direction of the elements is directed.
  • the terminal portion is provided such that the first end side is in contact with the outer side surface of the piezoelectric element and the inner side surface of the case, is electrically connected to the electrode layer of the piezoelectric element, and the second end side protrudes from the case.
  • the polarization processing step is performed on the laminated body block, handling facilities and processes can be eliminated as in the case of individually polarizing the elements.
  • the distance between the end of the electrode pattern in each element formation region and the end of the electrode pattern facing in the in-plane direction is the piezoelectric body in the laminate direction. Since it is larger than the thickness dimension of the sheet, stress concentration due to deformation of the piezoelectric layer in the polarization treatment step is suppressed, and generation of cracks in the piezoelectric layer in the inactive region can be suppressed.
  • the non-active region that partially overlaps the removal region is also removed, thereby reducing the proportion of the non-active region in the multilayer piezoelectric element.
  • the proportion of the active region can be increased, and it is possible to achieve desired performance, such as high sound pressure and vibration efficiency, in the laminated piezoelectric element and the ultrasonic transducer.
  • FIG. 1 It is a figure showing an example of composition of an ultrasonic transducer provided with a lamination type piezoelectric element concerning a 1st embodiment of the present invention, and a lamination type piezoelectric element concerning a 1st embodiment of the present invention. It is a figure which shows the structural example of the element part of the multilayer piezoelectric element which concerns on the 1st Embodiment of this invention. It is a figure explaining the manufacturing method of the lamination type piezoelectric element which concerns on the 1st Embodiment of this invention. It is a figure explaining the structural example of the laminated body block formed in the manufacturing process of the element part of the multilayer piezoelectric element which concerns on the 1st Embodiment of this invention.
  • a laminated piezoelectric element according to a first embodiment of the present invention will be described with reference to FIGS.
  • the laminated piezoelectric element according to this embodiment is used for an ultrasonic transducer for a double feed detection sensor, for example. Therefore, here, the description of the multilayer piezoelectric element according to the present embodiment will be made using a configuration example of an ultrasonic transducer including the multilayer piezoelectric element.
  • FIG. 1A is a cross-sectional view of an ultrasonic transducer 1 including a multilayer piezoelectric element 11 according to this embodiment.
  • FIG. 1B is a perspective view of the multilayer piezoelectric element 11.
  • the upward direction in the paper surface in FIG. 1A and the upward direction in the paper surface in FIG. 1B are front directions in which the ultrasonic transducer 1 transmits and receives ultrasonic waves.
  • the ultrasonic transducer 1 includes a metal cover 2, a resin case 3, a laminated piezoelectric element 11, external connection terminals 5 and 6, and conductive rubbers 7 and 8.
  • the multilayer piezoelectric element 11 has a substantially rectangular parallelepiped shape, and includes a matching portion 11A and an element portion 11B.
  • the matching portion 11A is located on the front side of the multilayer piezoelectric element 11 and is provided for matching the acoustic impedance between the element portion 11B and the outside (outside air).
  • the element portion 11B is located on the back side of the multilayer piezoelectric element 11, and is configured by laminating a plurality of electrode layers and a plurality of piezoelectric layers with the direction between the front and the back as the laminating direction.
  • the laminated piezoelectric element 11 is configured such that the thickness in the laminating direction changes (thickness vibration).
  • the multilayer piezoelectric element 11 is configured such that two side surfaces parallel to the stacking direction (the right side surface and the left side surface positioned in the horizontal direction in FIG. 1A) are the electrode connection portions. .
  • a more detailed configuration of the element unit 11B will be described later.
  • the resin case 3 is an injection-molded product of plastic resin, has a bottomed cylindrical shape with an opening on the front side, and is configured to be divided into a right side member and a left side member.
  • the resin case 3 holds the multilayer piezoelectric element 11 so that the end of the multilayer piezoelectric element 11 protrudes from the opening to the front side.
  • the metal cover 2 is made of a conductive metal material and has a cylindrical shape with an opening at the front and back.
  • the metal cover 2 holds the resin case 3.
  • the metal cover 2 is provided with a retaining portion 2 ⁇ / b> B, and the metal cover 2 can be detached from the resin case 3 by engaging the right side member and the left side member of the resin case 3. It is prevented.
  • the external connection terminals 5 and 6 are made of a conductive metal material, and are configured in a rod shape whose longitudinal direction is the direction in which sound waves are transmitted and received.
  • the external connection terminals 5 and 6 have front end portions disposed in the opening of the resin case 3, and rear end portions project from the back surface of the resin case 3.
  • the external connection terminal 5 is arranged on the left side of the multilayer piezoelectric element 11.
  • the external connection terminal 6 is disposed on the right side surface of the multilayer piezoelectric element 11.
  • the external connection terminal 5 has a front end formed in a meander shape, and a portion bent toward the multilayer piezoelectric element 11 faces an even number of metal layers exposed on the left side surface of the multilayer piezoelectric element 11. To do.
  • the external connection terminal 6 has a front end formed in a meander shape, and a portion bent toward the multilayer piezoelectric element 11 faces an odd-numbered metal layer exposed on the right side surface of the multilayer piezoelectric element 11. To do.
  • the conductive rubbers 7 and 8 are rubber sheets having anisotropic conductivity in the thickness direction.
  • the conductive rubber 7 is disposed on the left side of the multilayer piezoelectric element 11, that is, between the external connection terminal 5 and the multilayer piezoelectric element 11.
  • the conductive rubber 8 is disposed on the right side surface of the multilayer piezoelectric element 11, that is, between the external connection terminal 6 and the multilayer piezoelectric element 11.
  • the external connection terminals 5 and 6 are selectively electrically connected to the even-numbered metal layer or the odd-numbered metal layer of the multilayer piezoelectric element 11 through the conductive rubbers 7 and 8.
  • FIG. 2 is a diagram illustrating a detailed configuration of the element portion 11B of the multilayer piezoelectric element 11.
  • the front surface of the element unit 11B is arranged upward in the drawing, the right side serving as the connection portion with the external connection terminal 6 is arranged in the right direction of the drawing, and the front side is arranged in the left direction of the drawing.
  • Shows the state. 2B the front surface of the element portion 11B is arranged upward on the paper surface, the left side surface to be connected to the external connection terminal 5 is disposed on the right hand side of the paper surface, and the rear side surface is directed to the left front side of the paper surface. It shows the state of being placed in.
  • the element portion 11B is a rectangular columnar member that includes six piezoelectric layers and seven electrode layers, and the piezoelectric layers and the electrode layers are alternately stacked.
  • the piezoelectric layer is made of piezoelectric ceramics.
  • the distance between adjacent electrode layers, that is, the thickness dimension of the piezoelectric layer is about 0.8 mm to 1.2 mm.
  • the bottom surface is a square having a side of about 2 mm to 5 mm.
  • the seven electrode layers include four first electrode layers 12 and three second electrode layers 13.
  • the first electrode layer 12 and the second electrode layer 13 are piezoelectric so that the first electrode layer 12 becomes an odd-numbered electrode layer and the second electrode layer 13 becomes an even-numbered electrode layer.
  • the layers are alternately stacked via layers.
  • the first electrode layer 12 and the second electrode layer 13 are configured such that their shapes coincide with each other when rotated 180 ° in plan view.
  • the first electrode layer 12 includes an active region portion 12A, a first exposed portion 12B, and a second exposed portion 12C.
  • the second electrode layer 13 includes an active region portion 13A, a first exposed portion 13B, and a second exposed portion 13C.
  • Each of the active region portions 12A and 13A has a square shape in plan view, and is located at a position about 0.2 mm away from the end of each side of the element portion 11B, and at the center of the element portion 11B in plan view. It is formed so as to overlap in the stacking direction.
  • the first exposed portions 12B and 13B protrude in a convex shape from one side of the active region portions 12A and 13A (the first exposed portion 12B is a front side and the first exposed portion 13B is a back side).
  • the tip is exposed on the side surface of the element portion 11B.
  • the second exposed portions 12C and 13C include one side of the active region portions 12A and 13A (the second exposed portion 12C is on the right side, the second exposed portion 13C is on the left side) and the end of the element portion 11B.
  • the tip is exposed on the side surface of the element portion 11B.
  • the active region parts 12A and 13A overlap in plan view, the first exposed parts 12B overlap, the first exposed parts 13B overlap, and the second exposed parts 12C overlap.
  • the second exposed portions 13C are formed so as to overlap each other.
  • the active region portions 12A and 13A and the portion located between the active region portions 12A and 13A in the piezoelectric layer constitute an active region that mainly vibrates, and the portion excluding them vibrates. Therefore, a non-active region serving as a load is configured. That is, the active region is a square region having a side of 1.6 mm to 4.6 mm, which is arranged in the center when the element portion 11B is viewed in plan view.
  • the non-active region is a rectangular annular region having a width of 0.2 mm arranged around the active region in plan view of the element portion 11B.
  • the width of the non-active region is made smaller than the distance between the first electrode layer 12 and the second electrode layer 13, that is, the thickness of each piezoelectric layer, thereby reducing the active region.
  • the inactive area is made smaller and larger.
  • FIG. 3 is a flowchart for explaining an example of a manufacturing method of the multilayer piezoelectric element 11.
  • the individual multilayer piezoelectric elements 11 are taken out by dicing. Specifically, first, a block-size piezoelectric sheet constituting the laminate block is formed (S1).
  • the piezoelectric sheet is a piezoelectric ceramic green sheet made of a piezoelectric ceramic material. This piezoelectric sheet constitutes the first piezoelectric layer of the plurality of stacked piezoelectric elements 11.
  • an electrode pattern constituting the first electrode layer 12 is formed by printing on one of the two opposing surfaces of the piezoelectric sheet, and an electrode pattern constituting the second electrode layer 13 is formed on the other by printing. (S2).
  • a piezoelectric sheet constituting the second and subsequent piezoelectric layers is formed, and is laminated and bonded to the piezoelectric sheet on which the electrode pattern has been previously formed (S3).
  • the electrode pattern positioned between the piezoelectric sheet on which the electrode pattern has been previously formed and the newly laminated piezoelectric sheet on the surface not bonded to the piezoelectric sheet on which the electrode pattern has been previously formed is different.
  • An electrode pattern is formed by printing (S4). These are repeated until the number of stacked layers of the piezoelectric layer and the electrode layer reaches a specified number to form a stacked body block (S5).
  • the laminate block is polarized by applying a voltage between adjacent electrode patterns (S6 to S7).
  • a voltage between adjacent electrode patterns S6 to S7.
  • the direction of spontaneous polarization of crystals in the piezoelectric layer made of piezoelectric ceramics can be aligned, and good piezoelectric characteristics can be expressed in the plurality of stacked piezoelectric elements 11 divided from the stacked body block.
  • the polarization process is performed on the laminated body block, it is necessary to handle the individual multilayer piezoelectric elements 11 that are required when the individual multilayer piezoelectric elements 11 are polarized. No equipment or process is required.
  • the alignment block 11A is formed in the laminated body block (S8), and a plurality of laminated piezoelectric elements 11 are manufactured by being divided by dicing (S9).
  • FIG. 4 is a diagram for explaining the electrode pattern constituting the first electrode layer 12 and the electrode pattern constituting the second electrode layer 13 formed in each piezoelectric sheet in the above-described steps S3 to S4.
  • 4A shows a piezoelectric sheet constituting an odd-numbered piezoelectric layer in the multilayer piezoelectric element 11
  • FIG. 4B constitutes an even-numbered piezoelectric layer in the multilayer piezoelectric element 11.
  • a piezoelectric sheet is shown.
  • the 4A has an electrode pattern 22A formed on the front side.
  • the electrode pattern 22 ⁇ / b> A constitutes the first electrode layer 12 of the plurality of stacked piezoelectric elements 11.
  • an electrode pattern 22B is formed on the front side.
  • the electrode pattern 22 ⁇ / b> B constitutes the second electrode layer 13 of the plurality of stacked piezoelectric elements 11.
  • the piezoelectric sheets 21A and the piezoelectric sheets 21B are alternately stacked to constitute the above-described stacked body block.
  • Piezoelectric sheets 21 ⁇ / b> A and 21 ⁇ / b> B are each divided into a plurality of element formation regions 23 and removal regions 24.
  • the plurality of element formation regions 23 are regions that constitute any one of the piezoelectric layers of the multilayer piezoelectric element 11, and are distributed and arranged in a matrix on the main surfaces of the piezoelectric sheets 21A and 21B.
  • the removal region 24 is a region excluding the plurality of element formation regions 23 in the piezoelectric sheets 21A and 21B.
  • the arrangement and shape of the element formation region 23 and the removal region 24 are the same in the piezoelectric sheet 21A and the piezoelectric sheet 21B.
  • the electrode pattern 22A includes a terminal electrode portion 22A1 and a plurality of connecting electrode portions 22A2.
  • the terminal electrode portion 22A1 is formed in a line shape along two adjacent sides (lower side and right side in the drawing) of the four sides when the piezoelectric sheet 21A is viewed in plan.
  • a terminal for applying a voltage to the electrode pattern 22A in the polarization processing step is connected to the terminal electrode portion 22A1.
  • One end of each of the plurality of connecting electrode portions 22A2 is connected to the terminal electrode portion 22A1, extends from the one end to the left in the figure in a staircase shape, and a part thereof is positioned in the plurality of element formation regions 23. ing.
  • Each connecting electrode portion 22A2 is configured such that the portion at the corner of the staircase forms the first electrode layer 12 described above.
  • the first electrode layer 12 is formed by any one of the plurality of connecting electrode portions 22A2 in all the element formation regions 23 in the piezoelectric sheet 21A.
  • the electrode pattern 22B includes a terminal electrode portion 22B1 and a plurality of connecting electrode portions 22B2.
  • the terminal electrode portion 22B1 is formed in a line shape along two adjacent sides (upper side and left side in the drawing) of the four sides when the piezoelectric sheet 21B is viewed in plan.
  • a terminal for applying a voltage to the electrode pattern 22A in the polarization treatment step is connected to the terminal electrode portion 22B1.
  • One end of each of the plurality of connecting electrode portions 22B2 is connected to the terminal electrode portion 22B1, extends from the one end in a stepwise manner in a downward right direction in the drawing, and is formed so that a part thereof is positioned in the plurality of element forming regions 23. ing.
  • Each connecting electrode portion 22B2 is configured such that the portion at the corner of the staircase forms the second electrode layer 13 described above. Note that the second electrode layer 13 is formed by any one of the plurality of connection electrode portions 22B2 in all the element formation regions 23 in the piezoelectric sheet 21B.
  • connection electrode portion 22A2 and the connection electrode portion 22B2 are positioned one by one in the element formation region 23 where a part of each of the connection electrode portion 22A2 and the connection electrode portion 22B2 is located so that the electrodes do not overlap in the removal region 24. It is formed to deviate. That is, the removal region 24 is configured to be an inactive region. Further, in the piezoelectric sheets 21A and 21B, the element forming regions 23 are arranged at intervals of the same or larger dimensions as the thickness dimensions of the piezoelectric sheets 21A and 21B.
  • the rectangular annular region up to a position about 0.2 mm away from the end in each element forming region 23, and the removal region 24 The whole becomes the inactive region, and only the square region inside the rectangular annular inactive region in each element forming region 23 becomes the active region. That is, the dimension of the space between the adjacent active regions is at least larger than the dimension of the thickness of each piezoelectric layer (piezoelectric sheet 21A, 21B).
  • the polarization process is performed on the laminated body block in the manufacturing process described above, even if the piezoelectric layer is deformed in the active region, the end portions of the first electrode layer 12 and the second electrode layer 13 are not affected. Stress concentration generated in the piezoelectric layer in the vicinity is suppressed, and generation of cracks in the piezoelectric layer can be suppressed. Therefore, even when the multilayer piezoelectric element or ultrasonic transducer is downsized for use in a double feed detection sensor, the generation of cracks in the piezoelectric layer in the polarization process is prevented and the yield rate is increased. be able to. In addition, it is possible to achieve both downsizing and large sound pressure and vibration efficiency in the multilayer piezoelectric element and the ultrasonic transducer used for the double feed detection sensor.
  • Second Embodiment the structure and manufacturing method of the multilayer piezoelectric element according to the second embodiment of the present invention will be described.
  • an electrode pattern shape having a configuration suitable for increasing the number of stacked piezoelectric elements from one stacked body block will be described.
  • FIG. 5 is a diagram for explaining an electrode pattern formed on the piezoelectric sheet in the multilayer piezoelectric element according to this embodiment.
  • FIG. 5A shows a piezoelectric sheet constituting an odd-numbered piezoelectric layer in the multilayer piezoelectric element according to this embodiment
  • FIG. 5B shows an even number in the multilayer piezoelectric element according to this embodiment.
  • the piezoelectric sheet which comprises the piezoelectric layer of the layer is shown.
  • an electrode pattern 32A is formed on the front side.
  • the electrode pattern 32A constitutes an odd-numbered drive electrode of a plurality of stacked piezoelectric elements.
  • An electrode pattern 32B is formed on the front side of the piezoelectric sheet 31B shown in FIG.
  • the electrode pattern 32B constitutes an even-numbered drive electrode of a plurality of stacked piezoelectric elements.
  • the piezoelectric sheets 31A and the piezoelectric sheets 31B are alternately stacked to constitute a stacked body block.
  • Piezoelectric sheets 31 ⁇ / b> A and 31 ⁇ / b> B are each divided into a plurality of element formation regions 33 and removal regions 34.
  • the dimension of the intervals in the row direction of the plurality of element formation regions 33 arranged in a matrix is made smaller than that in the first embodiment.
  • An example is shown in which the number of element formation regions 33 arranged in the row direction is increased by one as compared to the first embodiment.
  • the electrode pattern 32A includes a terminal electrode portion 32A1 and a rectangular electrode portion 32A2.
  • the terminal electrode portion 32A1 is formed in a line shape along two adjacent sides (the lower side and the right side in the drawing) of the four sides when the piezoelectric sheet 31A is viewed in plan.
  • a terminal for applying a voltage to the electrode pattern 22A in the polarization processing step is connected to the terminal electrode portion 32A1.
  • One end of the rectangular electrode portion 32A2 is connected to the right side of the terminal electrode portion 32A1, extends linearly from one end to the left side, and part of the rectangular electrode portion 32A2 is positioned in the element formation region 33 arranged in two rows. Is formed.
  • a part of the rectangular electrode portion 32A2 is located at a portion excluding a part on the upper end side of the element formation region 33 in the first row and a part on the lower end side of the element formation region 33 in the second row. It is formed to do.
  • the electrode pattern 32B includes two rows of rectangular electrode portions 32B1 and 32B2.
  • the rectangular electrode portion 32B1 is formed in a line shape along one side (upper side in the drawing) of the four sides when the piezoelectric sheet 31B is viewed in plan.
  • the rectangular electrode portion 32B2 is formed on the lower side of the rectangular electrode portion 32B1 in parallel with the rectangular electrode portion 32B1, and the left side is connected to the rectangular electrode portion 32B1 by a connecting portion.
  • the rectangular electrode portions 32B1 and 32B2 are formed so that parts thereof are located in the element formation regions 33 in different rows.
  • the rectangular electrode portion 32 ⁇ / b> B ⁇ b> 1 is formed so that a part thereof is located in a portion excluding a part on the lower end side of the element formation region 33 in the first row.
  • the rectangular electrode part 32B2 is formed so that a part thereof is located in a part excluding a part on the upper end side of the element formation region 33 in the second row.
  • the rectangular electrode portion 32B1 is connected to a terminal for applying a voltage to the electrode pattern 32B in the polarization process.
  • the active region since the end of the electrode is separated from the end only at one side of each element forming region 33, the active region extends to the periphery of two sides perpendicular to the side. Therefore, it becomes easy to increase the ratio occupied by the active region to increase sound pressure and vibration efficiency. Further, since the number of elements to be taken increases, the manufacturing cost can be reduced. Further, by making the width dimension of the electrode non-formed portion between the electrode end portions larger than the thickness dimension of each piezoelectric layer, the piezoelectric element is subjected to the polarization process when the laminate block is subjected to the polarization process in the manufacturing process. Even when the layer is deformed, the stress concentration generated in the piezoelectric layer in the vicinity of the end portion of the electrode is suppressed, and the generation of cracks in the piezoelectric layer can be suppressed.
  • the present invention can be implemented, but the shape of the electrode pattern provided on the piezoelectric sheet is not limited to the above.
  • electrode patterns as shown in FIGS. 6 and 7 can also be cited as examples of other embodiments.
  • FIG. 6 is a diagram for explaining an electrode pattern formed on a piezoelectric sheet according to another embodiment of the present invention.
  • 6A shows a piezoelectric sheet constituting the odd-numbered piezoelectric layer in the multilayer piezoelectric element
  • FIG. 6B shows a piezoelectric sheet constituting the even-numbered piezoelectric layer.
  • a piezoelectric sheet 41A shown in FIG. 6A includes an electrode pattern in which electrode portions 42A1 and 42A2 are formed on the front side.
  • a piezoelectric sheet 41B shown in FIG. 6B includes an electrode pattern in which electrode patterns 42B1, 42B2, and 42B3 are formed on the front side.
  • Each of the piezoelectric sheets 41 ⁇ / b> A and 41 ⁇ / b> B is partitioned into a plurality of element formation regions 43 and removal regions 44.
  • Each of the electrode portions 42A1, 42A2, and 42B2 includes a line-shaped electrode extending in the column direction between two element forming regions 43 arranged in the row direction, and two electrodes on both sides orthogonal to the line-shaped electrode.
  • the electrode portions 42B1 and 42B3 have a shape in which the electrode portion 42B2 is divided into two at the center line along the column direction, and are arranged on both sides of the electrode portion 42B2. Even in such an electrode pattern shape, at least the width dimension of the electrode non-forming portion between the electrode end portions is made larger than the thickness dimension of each piezoelectric layer, so that the laminated block can be formed in the manufacturing process.
  • FIG. 7 is a diagram for explaining an electrode pattern formed on a piezoelectric sheet according to another embodiment of the present invention.
  • FIG. 7A shows a piezoelectric sheet constituting an odd-numbered piezoelectric layer in the multilayer piezoelectric element
  • FIG. 7B shows a piezoelectric sheet constituting an even-numbered piezoelectric layer.
  • An electrode pattern 52A is formed on the front side of the piezoelectric sheet 51A shown in FIG.
  • an electrode pattern 52B is formed on the front side.
  • Each of the piezoelectric sheets 51A and 51B is partitioned into a plurality of element formation regions 53 and removal regions 54.
  • the electrode patterns 52A and 52B have a shape in which connecting electrode portions are formed in a stepped manner as in the first embodiment, but the width becomes the first exposed portion of the electrode layer in the first embodiment. The difference is that the formed part is formed wide.
  • the width dimension of the electrode non-forming portion between the electrode end portions is made larger than the thickness dimension of each piezoelectric layer, so that the laminated block can be formed in the manufacturing process.
  • the piezoelectric layer is deformed when the polarization treatment is performed, the stress concentration generated in the piezoelectric layer near the electrode end is suppressed, and the generation of cracks in the piezoelectric layer can be suppressed.
  • the multilayer piezoelectric element and the manufacturing method thereof according to the present invention can be realized.
  • the scope of the present invention is not limited to any configuration as long as it is configured as described in the claims. May be.
  • each of the above-described piezoelectric sheets may be wider, and in that case, the electrode pattern may be an electrode pattern obtained by repeating the above-described one or an extended electrode pattern.
  • the specific shapes of the multilayer piezoelectric element and the ultrasonic transducer are not limited to those described above, and for example, the matching layer is not an essential configuration.

Abstract

A stacked body block is formed in which electrode patterns (22A, 22B) and piezoelectric body sheets (21A, 21B) are stacked in a prescribed stacking direction, the stacked body block is fired, a voltage is applied between the electrode patterns (22A, 22B) which are adjacent in the stacking direction, and the stacked body block is segmented, forming stacked piezoelectric elements. In the piezoelectric body sheets (21A, 21B), element forming regions (23) are dispersed so as to form a matrix with an exclusion region (24) therebetween. The measurement of the gap between the end part of the electrode pattern (22A, 22B) in each element forming region (23) and the end part of the electrode pattern (22A, 22B) facing same in an in-plane direction is greater than the thickness measurement of the piezoelectric body sheets (21A, 21B).

Description

積層型圧電素子、超音波トランスデューサー、および積層型圧電素子の製造方法Multilayer piezoelectric element, ultrasonic transducer, and method of manufacturing multilayer piezoelectric element
 この発明は、圧電層と電極層とを積層した構造の積層型圧電素子、積層型圧電素子を用いて音波を送波または受波する超音波トランスデューサー、および積層型圧電素子の製造方法に関する。特には、圧電層と電極層との積層方向に厚み振動する積層型圧電素子、印刷機等でシートの重送を検知する重送検知センサとして用いられる超音波トランスデューサー、および、積層型圧電素子の製造方法に関する。 The present invention relates to a laminated piezoelectric element having a structure in which a piezoelectric layer and an electrode layer are laminated, an ultrasonic transducer that transmits or receives a sound wave using the laminated piezoelectric element, and a method for manufacturing the laminated piezoelectric element. In particular, a laminated piezoelectric element that vibrates in the thickness direction of the piezoelectric layer and the electrode layer, an ultrasonic transducer that is used as a double feed detection sensor that detects double feeding of a sheet in a printing machine, and the laminated piezoelectric element It relates to the manufacturing method.
 超音波トランスデューサーは、印刷機等でシートの重送を検出する重送検知センサとして用いられている。 The ultrasonic transducer is used as a double feed detection sensor for detecting double feed of a sheet by a printing machine or the like.
 重送検知センサとして用いられる超音波トランスデューサーでは、音圧レベルや感度レベルを低下させることなく小型化することが求められている。そのような観点からは、圧電素子の厚み振動を直接利用する超音波トランスデューサーを構成することが好適である。 Ultrasonic transducers used as double feed detection sensors are required to be downsized without lowering the sound pressure level or sensitivity level. From such a viewpoint, it is preferable to configure an ultrasonic transducer that directly uses the thickness vibration of the piezoelectric element.
 厚み振動する圧電素子として、圧電層と電極層とを積層し、その積層方向に厚み振動する積層型圧電素子がある。積層型圧電素子では、隣接する電極層間に駆動電圧が印加されることで、圧電層の厚みが変化することにより振動する。 As a piezoelectric element that vibrates in thickness, there is a laminated piezoelectric element in which a piezoelectric layer and an electrode layer are laminated and the thickness vibrates in the laminating direction. In the laminated piezoelectric element, when a driving voltage is applied between adjacent electrode layers, the piezoelectric element vibrates by changing the thickness of the piezoelectric layer.
 積層型圧電素子では、隣接する電極層にそれぞれ異なる電位の駆動電圧が印加されるため、隣接する電極層それぞれが同一の素子端面に露出していると、駆動電圧によるエレクトロマイグレーションで絶縁破壊が発生する可能性がある。そのため、積層型圧電素子の少なくとも1つの素子端面に、隣接する電極層のうちの一方のみを露出させ、他方は露出しないようにすることで、1つの素子端面に同じ電位の駆動電圧が印加される電極層のみが露出するとともに、当該面の近傍に振動に寄与しない非活性領域を設ける構成が採用されることがある(例えば、特許文献1,2参照)。非活性領域とは、圧電体層の少なくとも一部が異なる電位の駆動電圧が印加される2つの電極層の間に配置されておらず、電極層に駆動電圧が印加されても変形が生じない領域である。一方、圧電体層の少なくとも一部が異なる電位の駆動電圧が印加される2つの電極層の間に配置されており、電極層に駆動電圧が印加されることで変形が生じる領域が、活性領域である。 In stacked piezoelectric elements, drive voltages with different potentials are applied to adjacent electrode layers, so if adjacent electrode layers are exposed on the same element end face, dielectric breakdown occurs due to electromigration caused by the drive voltage. there's a possibility that. Therefore, only one of the adjacent electrode layers is exposed on at least one element end face of the multilayer piezoelectric element, and the other is not exposed, so that a driving voltage having the same potential is applied to one element end face. In some cases, a configuration is employed in which only the electrode layer is exposed and an inactive region that does not contribute to vibration is provided in the vicinity of the surface (see, for example, Patent Documents 1 and 2). The inactive region is that at least a part of the piezoelectric layer is not disposed between two electrode layers to which a driving voltage having a different potential is applied, and no deformation occurs even when a driving voltage is applied to the electrode layer. It is an area. On the other hand, at least a part of the piezoelectric layer is disposed between two electrode layers to which a driving voltage having a different potential is applied, and a region where deformation is caused by applying the driving voltage to the electrode layer is an active region. It is.
 また、積層型圧電素子の製造では、隣接する電極層間に電圧を印加することによって圧電セラミックスからなる圧電層における結晶の自発分極の方向をそろえる分極処理工程が行われる。分極処理工程では、圧電層に変形が生じるため、各層の界面や、界面近傍の圧電層にクラックが発生することがある。特に、非活性領域を有する積層型圧電素子では、
電極層が圧電層に埋設されているため、電極端部の近傍で応力集中が起こって圧電層にクラックが発生し易い。そのため、非活性領域を有する積層型圧電素子において、電極端部と素子端面との距離、即ち、非活性領域の幅の寸法を、圧電層の厚みの寸法よりも十分に大きくすることにより、圧電層におけるクラックの発生を防止する技術が提案されている(例えば、特許文献3参照。)。
In the production of the laminated piezoelectric element, a polarization treatment step is performed in which a voltage is applied between adjacent electrode layers to align the direction of spontaneous polarization of crystals in a piezoelectric layer made of piezoelectric ceramics. In the polarization treatment step, deformation occurs in the piezoelectric layer, so that cracks may occur at the interface between the layers or in the piezoelectric layer near the interface. In particular, in a laminated piezoelectric element having an inactive region,
Since the electrode layer is embedded in the piezoelectric layer, stress concentration occurs in the vicinity of the electrode end portion, and cracks are likely to occur in the piezoelectric layer. Therefore, in a laminated piezoelectric element having an inactive region, the distance between the electrode end and the element end surface, that is, the width of the inactive region is made sufficiently larger than the thickness of the piezoelectric layer, thereby A technique for preventing the occurrence of cracks in the layer has been proposed (see, for example, Patent Document 3).
特開平7-135348号公報JP-A-7-135348 特開2008-244458号公報JP 2008-244458 A 特開昭61-69299号公報JP-A-61-69299
 特許文献3に示された積層型圧電素子では、分極処理工程での圧電層におけるクラックの発生を防ぐために非活性領域の幅の寸法を圧電層の厚みの寸法よりも大きくするが、圧電層の厚みの寸法をより大きくしたり、素子サイズをより小さくしたりする場合には、積層型圧電素子全体に対して非活性領域が占める割合が増えることになる。即ち、積層型圧電素子において、有効に振動する活性領域が小さく、その活性領域の振動に対する負荷となる非活性領域が大きなものになるため、積層型圧電素子の振動が阻害され、所望の性能、例えば所望の音圧や振動効率を実現することが難しくなる。特に、重送検知センサに積層型圧電素子を用いる場合には、素子サイズの格段の小型化が望まれるため、分極処理工程での圧電層におけるクラックの防止と、大きな活性領域の確保とを両立させることが強く求められている。 In the multilayer piezoelectric element disclosed in Patent Document 3, the width of the inactive region is made larger than the thickness of the piezoelectric layer in order to prevent the occurrence of cracks in the piezoelectric layer in the polarization treatment step. When the thickness dimension is made larger or the element size is made smaller, the ratio of the inactive region to the whole laminated piezoelectric element increases. That is, in the multilayer piezoelectric element, the active region that vibrates effectively is small, and the inactive region that becomes a load against the vibration of the active region becomes large, so that the vibration of the multilayer piezoelectric element is hindered, and the desired performance, For example, it becomes difficult to achieve desired sound pressure and vibration efficiency. In particular, when a multilayer piezoelectric element is used for the double feed detection sensor, it is desired to significantly reduce the element size. Therefore, it is possible to prevent cracks in the piezoelectric layer and ensure a large active area in the polarization process. There is a strong demand for it.
 そこで、本発明の第1の目的は、分極処理工程での圧電層におけるクラックの発生を防ぎながら、積層型圧電素子の所望の性能を実現することが可能な、積層型圧電素子の製造方法を実現することにある。 Accordingly, a first object of the present invention is to provide a method for manufacturing a multilayer piezoelectric element capable of realizing the desired performance of the multilayer piezoelectric element while preventing the occurrence of cracks in the piezoelectric layer in the polarization process. It is to be realized.
 また、本発明の第2の目的は、上述の製造方法を用いて積層型圧電素子の所望の性能を実現した積層型圧電素子を提供することにある。 A second object of the present invention is to provide a multilayer piezoelectric element that realizes the desired performance of the multilayer piezoelectric element using the above-described manufacturing method.
 また、本発明の第3の目的は、上述の製造方法を用いて所望の性能を実現した積層型圧電素子により、素子サイズを小型化しても、分極処理工程での圧電層におけるクラックの発生の防止と、大きな活性領域の確保とを両立させることが容易な、超音波トランスデューサーを提供することにある。 The third object of the present invention is to generate cracks in the piezoelectric layer in the polarization process even if the element size is reduced by the multilayer piezoelectric element that achieves the desired performance using the manufacturing method described above. It is an object of the present invention to provide an ultrasonic transducer that can easily prevent both and prevent a large active area.
 本発明に係る積層型圧電素子の製造方法は、所定の積層方向に圧電体シートと電極パターンとが積層された積層体ブロックを形成する工程と、積層体ブロックを焼成する工程と、積層方向に隣接する電極パターンの間に電圧を印加する分極処理工程と、積層体ブロックを分割して積層型圧電素子を形成する工程とを、この順に実施する。圧電体シートは、前記積層方向に垂直な面内方向で複数の素子形成領域と除去領域とに区画され、前記素子形成領域は前記除去領域を間に介して行列をなすように分散配置されている。電極パターンは、一部が前記素子形成領域に配置されている。また、積層体ブロックにおいて、積層方向に隣接する電極パターンの一部が積層方向に重なる活性領域は、少なくとも一部が素子形成領域に重なり配置されている。積層方向に隣接する電極パターンの一部が積層方向に重なっていない非活性領域は、少なくとも一部が除去領域に重なり配置されている。ここで、積層体ブロックの各素子形成領域における電極パターンの端部は、面内方向に対向する電極パターンの端部との間隔の寸法が、積層方向での圧電体シートの厚み寸法よりも大きいことを特徴としている。 The method for manufacturing a laminated piezoelectric element according to the present invention includes a step of forming a laminate block in which a piezoelectric sheet and an electrode pattern are laminated in a predetermined lamination direction, a step of firing the laminate block, and a lamination direction. A polarization process step of applying a voltage between adjacent electrode patterns and a step of forming a multilayer piezoelectric element by dividing a multilayer block are performed in this order. The piezoelectric sheet is partitioned into a plurality of element formation regions and removal regions in an in-plane direction perpendicular to the stacking direction, and the element formation regions are distributed and arranged in a matrix with the removal regions in between. Yes. A part of the electrode pattern is arranged in the element formation region. In the multilayer block, at least a part of the active region in which a part of the electrode pattern adjacent in the stacking direction overlaps in the stacking direction is arranged so as to overlap the element formation region. At least a part of the inactive region in which part of the electrode pattern adjacent in the stacking direction does not overlap in the stacking direction is arranged to overlap the removal region. Here, the distance between the end of the electrode pattern in each element formation region of the multilayer block and the end of the electrode pattern facing in the in-plane direction is larger than the thickness of the piezoelectric sheet in the stacking direction. It is characterized by that.
 この方法では、分極処理工程を積層体ブロックに対して行うことになるため、素子を個別に分極処理する場合のように、ハンドリングのための設備や工程が不要である。また、分極処理工程が施される積層体ブロックでは、各素子形成領域における電極パターンの端部と、面内方向に対向する電極パターンの端部との間隔の寸法が、積層方向での圧電体シートの厚み寸法よりも大きいので、分極処理工程での圧電体シートの変形による応力集中が抑制され、非活性領域での圧電体シードにおけるクラックの発生を抑制することができる。その上、除去領域を除いて素子形成領域から積層型圧電素子を分割することで、除去領域に一部が重なる非活性領域も除かれるため、積層型圧電素子において非活性領域が占める割合を減じて、活性領域の割合を増やすことができ、積層型圧電素子の所望の性能、例えば高い音圧や振動効率を実現することが可能になる。 In this method, since the polarization treatment process is performed on the laminated body block, handling facilities and processes are not required as in the case where the elements are individually polarized. Further, in the laminate block subjected to the polarization treatment step, the distance between the end of the electrode pattern in each element formation region and the end of the electrode pattern facing in the in-plane direction is the piezoelectric body in the laminate direction. Since it is larger than the thickness dimension of the sheet, the stress concentration due to the deformation of the piezoelectric sheet in the polarization treatment step is suppressed, and the generation of cracks in the piezoelectric seed in the inactive region can be suppressed. In addition, by dividing the multilayer piezoelectric element from the element formation region except for the removal region, the non-active region that partially overlaps the removal region is also removed, thereby reducing the proportion of the non-active region in the multilayer piezoelectric element. Thus, the proportion of the active region can be increased, and desired performance of the multilayer piezoelectric element, for example, high sound pressure and vibration efficiency can be realized.
 上述の積層型圧電素子の製造方法で用いる積層体ブロックは、素子形成領域に重なる非活性領域の幅の寸法が、積層方向での圧電体シートの厚み寸法よりも小さいと好適である。 In the laminated body block used in the above-described method for producing a laminated piezoelectric element, it is preferable that the width dimension of the inactive area overlapping the element forming area is smaller than the thickness dimension of the piezoelectric sheet in the laminating direction.
 これにより、積層型圧電素子において、振動の負荷となる非活性領域の割合を減じ、活性領域の割合を稼いで所望の音圧や振動効率を実現する構成であっても、分極処理工程での圧電体シートにおけるクラックの発生を抑制することができる。 As a result, even if the laminated piezoelectric element is configured to reduce the proportion of the inactive region that becomes a vibration load and increase the proportion of the active region to achieve the desired sound pressure and vibration efficiency, Generation of cracks in the piezoelectric sheet can be suppressed.
 また、本発明に係る積層型圧電素子は、上述の製造方法により形成されていて、圧電体シートからなる圧電層と、電極パターンからなる電極層とが積層され、圧電層と電極層との積層方向に直交する面内方向での周縁部の一部に、前記積層方向に隣接する前記電極層が重なっていない非活性領域が形成されていて、その非活性領域の幅の寸法が積層方向での圧電層の厚み寸法よりも小さく、各素子端面には、前記積層方向に隣接する前記電極層が一つ置きに露出すると好適である。 The multilayer piezoelectric element according to the present invention is formed by the above-described manufacturing method, wherein a piezoelectric layer made of a piezoelectric sheet and an electrode layer made of an electrode pattern are laminated, and the piezoelectric layer and the electrode layer are laminated. A non-active region in which the electrode layer adjacent in the stacking direction does not overlap is formed on a part of the peripheral edge in the in-plane direction orthogonal to the direction, and the width dimension of the non-active region is the stacking direction. It is preferable that every other electrode layer adjacent in the laminating direction is exposed on each element end face smaller than the thickness dimension of the piezoelectric layer.
 これにより、分極処理工程でのクラックの発生を抑制しながら製造した積層型圧電素子において、活性領域の面積割合を稼いで所望の音圧や振動効率を実現することができる。また、駆動電圧が印加される電極層の対が、ともに素子端面に露出することが無く、エレクトロマイグレーションの発生を抑制することができる。 Thereby, in the laminated piezoelectric element manufactured while suppressing the occurrence of cracks in the polarization process, it is possible to achieve the desired sound pressure and vibration efficiency by increasing the area ratio of the active region. In addition, the pair of electrode layers to which the drive voltage is applied are not exposed to the end face of the element, and the occurrence of electromigration can be suppressed.
 また、本発明に係る超音波トランスデューサーは、上述の積層型圧電素子と、ケースと、端子部と、を備えている。ケースは、音波の送受方向を向く第1端面が開口して内部空間を有し、第1端面に対向する第2端面が閉塞する有底筒状に構成されていて、音波の送受方向に圧電素子の積層方向を向けた状態で圧電素子を保持する。端子部は、第一端側が、圧電素子の外側面とケースの内側面とに接して設けられていて、圧電素子の電極層に導通し、第二端側が、ケースから突出している。 Further, an ultrasonic transducer according to the present invention includes the above-described laminated piezoelectric element, a case, and a terminal portion. The case has a bottomed cylindrical shape in which the first end surface facing the sound wave transmission / reception direction is open and has an internal space, and the second end surface facing the first end surface is closed, and the case is piezoelectric in the sound wave transmission / reception direction. The piezoelectric element is held in a state where the stacking direction of the elements is directed. The terminal portion is provided such that the first end side is in contact with the outer side surface of the piezoelectric element and the inner side surface of the case, is electrically connected to the electrode layer of the piezoelectric element, and the second end side protrudes from the case.
 これにより、極めて小型の積層型圧電素子を利用する超音波トランスデューサーであっても、分極処理工程でのクラックの発生を抑制して製造でき、小型化と音圧や振動効率の向上を実現することが可能になる。 As a result, even ultrasonic transducers that use extremely small stacked piezoelectric elements can be manufactured while suppressing the generation of cracks in the polarization process, thereby realizing miniaturization and improved sound pressure and vibration efficiency. It becomes possible.
 この発明によれば、分極処理工程を積層体ブロックに対して行うことになるため、素子を個別に分極処理する場合のように、ハンドリングのための設備や工程を不要にできる。また、分極処理工程が施される積層体ブロックでは、各素子形成領域における電極パターンの端部と、面内方向に対向する電極パターンの端部との間隔の寸法が、積層方向での圧電体シートの厚み寸法よりも大きいので、分極処理工程での圧電層の変形による応力集中が抑制され、非活性領域での圧電層におけるクラックの発生を抑制することができる。その上、除去領域を除いて素子形成領域から積層型圧電素子を分割することで、除去領域に一部が重なる非活性領域も除かれるため、積層型圧電素子において非活性領域が占める割合を減じて、活性領域の割合を増やすことができ、積層型圧電素子や超音波トランスデューサーにおいて所望の性能、例えば高い音圧や振動効率を実現することが可能になる。 According to the present invention, since the polarization processing step is performed on the laminated body block, handling facilities and processes can be eliminated as in the case of individually polarizing the elements. Further, in the laminate block subjected to the polarization treatment step, the distance between the end of the electrode pattern in each element formation region and the end of the electrode pattern facing in the in-plane direction is the piezoelectric body in the laminate direction. Since it is larger than the thickness dimension of the sheet, stress concentration due to deformation of the piezoelectric layer in the polarization treatment step is suppressed, and generation of cracks in the piezoelectric layer in the inactive region can be suppressed. In addition, by dividing the multilayer piezoelectric element from the element formation region except for the removal region, the non-active region that partially overlaps the removal region is also removed, thereby reducing the proportion of the non-active region in the multilayer piezoelectric element. Thus, the proportion of the active region can be increased, and it is possible to achieve desired performance, such as high sound pressure and vibration efficiency, in the laminated piezoelectric element and the ultrasonic transducer.
本発明の第1の実施形態に係る積層型圧電素子および本発明の第1の実施形態に係る積層型圧電素子を備える超音波トランスデューサーの構成例を示す図である。It is a figure showing an example of composition of an ultrasonic transducer provided with a lamination type piezoelectric element concerning a 1st embodiment of the present invention, and a lamination type piezoelectric element concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る積層型圧電素子の素子部の構成例を示す図である。It is a figure which shows the structural example of the element part of the multilayer piezoelectric element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る積層型圧電素子の製造方法について説明する図である。It is a figure explaining the manufacturing method of the lamination type piezoelectric element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る積層型圧電素子の素子部の製造工程で形成する積層体ブロックの構成例について説明する図である。It is a figure explaining the structural example of the laminated body block formed in the manufacturing process of the element part of the multilayer piezoelectric element which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る積層型圧電素子の素子部の製造工程で形成する積層体ブロックの構成例について説明する図である。It is a figure explaining the structural example of the laminated body block formed in the manufacturing process of the element part of the multilayer piezoelectric element which concerns on the 2nd Embodiment of this invention. 本発明の他の実施形態に係る積層型圧電素子の素子部の製造工程で形成する積層体ブロックの構成例について説明する図である。It is a figure explaining the structural example of the laminated body block formed in the manufacturing process of the element part of the multilayer piezoelectric element which concerns on other embodiment of this invention. 本発明の他の実施形態に係る積層型圧電素子の素子部の製造工程で形成する積層体ブロックの構成例について説明する図である。It is a figure explaining the structural example of the laminated body block formed in the manufacturing process of the element part of the multilayer piezoelectric element which concerns on other embodiment of this invention.
《第1の実施形態》
 以下、本発明の第1の実施形態に係る積層型圧電素子について図1~図4に基づいて説明する。本実施形態に係る積層型圧電素子は、例えば重送検知センサ用の超音波トランスデューサーに用いられるものである。そこで、ここでは積層型圧電素子を備える超音波トランスデューサーの構成例を用いて、本実施形態に係る積層型圧電素子の説明を進める。
<< First Embodiment >>
Hereinafter, a laminated piezoelectric element according to a first embodiment of the present invention will be described with reference to FIGS. The laminated piezoelectric element according to this embodiment is used for an ultrasonic transducer for a double feed detection sensor, for example. Therefore, here, the description of the multilayer piezoelectric element according to the present embodiment will be made using a configuration example of an ultrasonic transducer including the multilayer piezoelectric element.
 図1(A)は、本実施形態に係る積層型圧電素子11を備える超音波トランスデューサー1の断面図である。図1(B)は、積層型圧電素子11の斜視図である。なお、図1(A)における紙面内の上方向、および図1(B)における紙面内の上方向が、超音波トランスデューサー1が超音波を送受する正面方向である。 FIG. 1A is a cross-sectional view of an ultrasonic transducer 1 including a multilayer piezoelectric element 11 according to this embodiment. FIG. 1B is a perspective view of the multilayer piezoelectric element 11. In addition, the upward direction in the paper surface in FIG. 1A and the upward direction in the paper surface in FIG. 1B are front directions in which the ultrasonic transducer 1 transmits and receives ultrasonic waves.
 超音波トランスデューサー1は、金属カバー2と、樹脂ケース3と、積層型圧電素子11と、外部接続端子5,6と、導電性ゴム7,8と、を備えている。 The ultrasonic transducer 1 includes a metal cover 2, a resin case 3, a laminated piezoelectric element 11, external connection terminals 5 and 6, and conductive rubbers 7 and 8.
 積層型圧電素子11は、図1(B)に示すように概略直方体状であり、整合部11Aと素子部11Bとを備えている。整合部11Aは、積層型圧電素子11の正面側に位置していて、素子部11Bと外界(外気)との音響インピーダンスの整合を取るために設けられている。素子部11Bは、積層型圧電素子11の背面側に位置していて、正面-背面間の方向を積層方向として複数の電極層と複数の圧電層とが積層されて構成されている。積層型圧電素子11は、積層方向の厚みが変化(厚み振動)するように構成されている。また、積層型圧電素子11は、積層方向に平行な2側面(図1(A)における紙面内の左右方向に位置する右側面および左側面)が、電極接続部となるように構成されている。素子部11Bのより詳細な構成については後述する。 As shown in FIG. 1B, the multilayer piezoelectric element 11 has a substantially rectangular parallelepiped shape, and includes a matching portion 11A and an element portion 11B. The matching portion 11A is located on the front side of the multilayer piezoelectric element 11 and is provided for matching the acoustic impedance between the element portion 11B and the outside (outside air). The element portion 11B is located on the back side of the multilayer piezoelectric element 11, and is configured by laminating a plurality of electrode layers and a plurality of piezoelectric layers with the direction between the front and the back as the laminating direction. The laminated piezoelectric element 11 is configured such that the thickness in the laminating direction changes (thickness vibration). In addition, the multilayer piezoelectric element 11 is configured such that two side surfaces parallel to the stacking direction (the right side surface and the left side surface positioned in the horizontal direction in FIG. 1A) are the electrode connection portions. . A more detailed configuration of the element unit 11B will be described later.
 樹脂ケース3は、プラスチック樹脂の射出成型品であり、正面側が開口する有底筒状であり、右側面側の部材と左側面側の部材とに分割可能に構成されている。
 樹脂ケース3は、開口から正面側に積層型圧電素子11の端部が突出するように、積層型圧電素子11を保持している。
The resin case 3 is an injection-molded product of plastic resin, has a bottomed cylindrical shape with an opening on the front side, and is configured to be divided into a right side member and a left side member.
The resin case 3 holds the multilayer piezoelectric element 11 so that the end of the multilayer piezoelectric element 11 protrudes from the opening to the front side.
 金属カバー2は、導電性を持つ金属材料からなり、正面および背面が開口する筒状に構成されている。金属カバー2は、樹脂ケース3を保持している。金属カバー2には、抜け止部2Bが設けられていて、樹脂ケース3の右側面側の部材と左側面側の部材とに係合することにより、金属カバー2が樹脂ケース3から抜けることが防止されている。 The metal cover 2 is made of a conductive metal material and has a cylindrical shape with an opening at the front and back. The metal cover 2 holds the resin case 3. The metal cover 2 is provided with a retaining portion 2 </ b> B, and the metal cover 2 can be detached from the resin case 3 by engaging the right side member and the left side member of the resin case 3. It is prevented.
 外部接続端子5,6は、導電性を持つ金属材料からなり、音波の送受方向を長手方向とする棒状に構成されている。外部接続端子5,6は、正面側の端部が樹脂ケース3の開口内に配置されていて、背面側の端部が樹脂ケース3の背面から突出している。外部接続端子5は、積層型圧電素子11の左側面側に配置されている。外部接続端子6は、積層型圧電素子11の右側面側に配置されている。外部接続端子5は、正面側の端部がミアンダ状に形成されていて、積層型圧電素子11側へ屈曲した部分が、積層型圧電素子11の左側面に露出する偶数層の金属層に対面する。外部接続端子6は、正面側の端部がミアンダ状に形成されていて、積層型圧電素子11側へ屈曲した部分が、積層型圧電素子11の右側面に露出する奇数層の金属層に対面する。 The external connection terminals 5 and 6 are made of a conductive metal material, and are configured in a rod shape whose longitudinal direction is the direction in which sound waves are transmitted and received. The external connection terminals 5 and 6 have front end portions disposed in the opening of the resin case 3, and rear end portions project from the back surface of the resin case 3. The external connection terminal 5 is arranged on the left side of the multilayer piezoelectric element 11. The external connection terminal 6 is disposed on the right side surface of the multilayer piezoelectric element 11. The external connection terminal 5 has a front end formed in a meander shape, and a portion bent toward the multilayer piezoelectric element 11 faces an even number of metal layers exposed on the left side surface of the multilayer piezoelectric element 11. To do. The external connection terminal 6 has a front end formed in a meander shape, and a portion bent toward the multilayer piezoelectric element 11 faces an odd-numbered metal layer exposed on the right side surface of the multilayer piezoelectric element 11. To do.
 導電性ゴム7,8は、厚み方向に異方導電性を持つゴムシートである。導電性ゴム7は、積層型圧電素子11の左側面側、即ち、外部接続端子5と積層型圧電素子11との間に配置されている。導電性ゴム8は、積層型圧電素子11の右側面側、即ち、外部接続端子6と積層型圧電素子11との間に配置されている。導電性ゴム7,8を介して、外部接続端子5,6は積層型圧電素子11の偶数層の金属層、または奇数層の金属層に選択的に電気的に接続されている。 The conductive rubbers 7 and 8 are rubber sheets having anisotropic conductivity in the thickness direction. The conductive rubber 7 is disposed on the left side of the multilayer piezoelectric element 11, that is, between the external connection terminal 5 and the multilayer piezoelectric element 11. The conductive rubber 8 is disposed on the right side surface of the multilayer piezoelectric element 11, that is, between the external connection terminal 6 and the multilayer piezoelectric element 11. The external connection terminals 5 and 6 are selectively electrically connected to the even-numbered metal layer or the odd-numbered metal layer of the multilayer piezoelectric element 11 through the conductive rubbers 7 and 8.
 図2は、積層型圧電素子11の素子部11Bの詳細構成について説明する図である。図2(A)は、素子部11Bの正面を紙面の上向きに配置し、外部接続端子6との接続部となる右側面を紙面の右手向きに配置し、前側面を紙面の左手前向きに配置した状態を示している。また、図2(B)は、素子部11Bの正面を紙面の上向きに配置し、外部接続端子5との接続部となる左側面を紙面の右手向きに配置し、後側面を紙面の左手前向きに配置した状態を示している。 FIG. 2 is a diagram illustrating a detailed configuration of the element portion 11B of the multilayer piezoelectric element 11. In FIG. 2A, the front surface of the element unit 11B is arranged upward in the drawing, the right side serving as the connection portion with the external connection terminal 6 is arranged in the right direction of the drawing, and the front side is arranged in the left direction of the drawing. Shows the state. 2B, the front surface of the element portion 11B is arranged upward on the paper surface, the left side surface to be connected to the external connection terminal 5 is disposed on the right hand side of the paper surface, and the rear side surface is directed to the left front side of the paper surface. It shows the state of being placed in.
 素子部11Bは、6つの圧電層と7つの電極層とを有し、圧電層と電極層とが交互に積層されてなる矩形柱状の部材である。圧電層は、圧電セラミックスからなる。隣接する電極層の間隔、即ち圧電層の厚み寸法は、約0.8mm~1.2mmである。また底面は、一辺が約2mm~5mmの正方形である。 The element portion 11B is a rectangular columnar member that includes six piezoelectric layers and seven electrode layers, and the piezoelectric layers and the electrode layers are alternately stacked. The piezoelectric layer is made of piezoelectric ceramics. The distance between adjacent electrode layers, that is, the thickness dimension of the piezoelectric layer is about 0.8 mm to 1.2 mm. The bottom surface is a square having a side of about 2 mm to 5 mm.
 7つの電極層は、4つの第1の電極層12と、3つの第2の電極層13を含む。第1の電極層12と第2の電極層13とは、第1の電極層12が奇数層目の電極層となり、第2の電極層13が偶数層目の電極層となるように、圧電層を介して交互に積層されている。第1の電極層12と第2の電極層13とは、平面視して、180°回転させると互いに形状が一致するように構成されている。 The seven electrode layers include four first electrode layers 12 and three second electrode layers 13. The first electrode layer 12 and the second electrode layer 13 are piezoelectric so that the first electrode layer 12 becomes an odd-numbered electrode layer and the second electrode layer 13 becomes an even-numbered electrode layer. The layers are alternately stacked via layers. The first electrode layer 12 and the second electrode layer 13 are configured such that their shapes coincide with each other when rotated 180 ° in plan view.
 第1の電極層12は、活性領域部12Aと第1の露出部12Bと第2の露出部12Cとを備える。同様に、第2の電極層13は、活性領域部13Aと第1の露出部13Bと第2の露出部13Cとを備える。活性領域部12A,13Aは、それぞれ、平面視して正方形状であり、素子部11Bの各辺の端部から約0.2mm離れた位置が端であり、素子部11Bの平面視した中央で積層方向に重なるように形成されている。第1の露出部12B,13Bは、活性領域部12A,13Aの一辺(第1の露出部12Bは正面側の辺、第1の露出部13Bは背面側の辺)から凸状に突出するように形成されており、素子部11Bの側面に先端が露出する。第2の露出部12C,13Cは、活性領域部12A,13Aの一辺(第2の露出部12Cは右側面側、第2の露出部13Cは左側面側の辺)と素子部11Bの端との間に設けられており、素子部11Bの側面に先端が露出する。即ち、素子部11Bは、平面視して活性領域部12A,13Aが重なり、第1の露出部12B同士が重なり、第1の露出部13B同士が重なり、第2の露出部12C同士が重なり、第2の露出部13C同士が重なるように形成されている。 The first electrode layer 12 includes an active region portion 12A, a first exposed portion 12B, and a second exposed portion 12C. Similarly, the second electrode layer 13 includes an active region portion 13A, a first exposed portion 13B, and a second exposed portion 13C. Each of the active region portions 12A and 13A has a square shape in plan view, and is located at a position about 0.2 mm away from the end of each side of the element portion 11B, and at the center of the element portion 11B in plan view. It is formed so as to overlap in the stacking direction. The first exposed portions 12B and 13B protrude in a convex shape from one side of the active region portions 12A and 13A (the first exposed portion 12B is a front side and the first exposed portion 13B is a back side). The tip is exposed on the side surface of the element portion 11B. The second exposed portions 12C and 13C include one side of the active region portions 12A and 13A (the second exposed portion 12C is on the right side, the second exposed portion 13C is on the left side) and the end of the element portion 11B. The tip is exposed on the side surface of the element portion 11B. That is, in the element part 11B, the active region parts 12A and 13A overlap in plan view, the first exposed parts 12B overlap, the first exposed parts 13B overlap, and the second exposed parts 12C overlap. The second exposed portions 13C are formed so as to overlap each other.
 したがって、積層型圧電素子11では、活性領域部12A,13Aと圧電層における活性領域部12A,13Aの間に位置する部分とが、主として振動する活性領域を構成し、それらを除く部分が、振動に対して負荷となる非活性領域を構成することになる。即ち、活性領域は、素子部11Bを平面視して中央に配置される、一辺が1.6mm~4.6mmの正方形状の領域である。非活性領域は、素子部11Bを平面視して、活性領域の周囲に配置される幅0.2mmの矩形環状の領域である。本実施形態では、非活性領域の幅の寸法を第1の電極層12と第2の電極層13との間の間隔、即ち各圧電層の厚みの寸法よりも小さくすることにより、活性領域を大きくし、非活性領域を小さくしている。積層型圧電素子11の振動の負荷となる非活性領域よりも、主として振動する活性領域を大きくすることで、素子部11Bを備える積層型圧電素子11は、大きな音圧や振動効率を確保することができる。また、素子部11Bの4つの側面それぞれには、第1の電極層12または第2の電極層13の一方のみしか露出していない。そのため、素子部11Bを備える積層型圧電素子11では、エレクトロマイグレーションが発生しにくい。 Therefore, in the multilayer piezoelectric element 11, the active region portions 12A and 13A and the portion located between the active region portions 12A and 13A in the piezoelectric layer constitute an active region that mainly vibrates, and the portion excluding them vibrates. Therefore, a non-active region serving as a load is configured. That is, the active region is a square region having a side of 1.6 mm to 4.6 mm, which is arranged in the center when the element portion 11B is viewed in plan view. The non-active region is a rectangular annular region having a width of 0.2 mm arranged around the active region in plan view of the element portion 11B. In this embodiment, the width of the non-active region is made smaller than the distance between the first electrode layer 12 and the second electrode layer 13, that is, the thickness of each piezoelectric layer, thereby reducing the active region. The inactive area is made smaller and larger. By making the active region that mainly vibrates larger than the inactive region that becomes a vibration load of the multilayer piezoelectric element 11, the multilayer piezoelectric element 11 including the element portion 11B ensures a large sound pressure and vibration efficiency. Can do. Further, only one of the first electrode layer 12 and the second electrode layer 13 is exposed on each of the four side surfaces of the element portion 11B. Therefore, electromigration is unlikely to occur in the multilayer piezoelectric element 11 including the element portion 11B.
 次に、積層型圧電素子11の製造方法について説明していく。図3は、積層型圧電素子11の製造方法の一例について説明するフローチャートである。 Next, a method for manufacturing the multilayer piezoelectric element 11 will be described. FIG. 3 is a flowchart for explaining an example of a manufacturing method of the multilayer piezoelectric element 11.
 本実施形態では、積層型圧電素子11の製造において、複数の積層型圧電素子11を含む1つの積層体ブロックを製造した後、ダイシングによって個々の積層型圧電素子11を取り出す。具体的には、まず、積層体ブロックを構成するブロックサイズの圧電体シートを成形する(S1)。圧電体シートは、圧電セラミック材料からなる圧電セラミックグリーンシートである。この圧電体シートは、複数の積層型圧電素子11の第1層目の圧電層を構成するものである。そして、この圧電体シートの互いに対向する2つの面の一方に第1の電極層12を構成する電極パターンを印刷により形成し、他方に第2の電極層13を構成する電極パターンを印刷により形成する(S2)。 In the present embodiment, in the manufacture of the multilayer piezoelectric element 11, after manufacturing one multilayer block including the plurality of multilayer piezoelectric elements 11, the individual multilayer piezoelectric elements 11 are taken out by dicing. Specifically, first, a block-size piezoelectric sheet constituting the laminate block is formed (S1). The piezoelectric sheet is a piezoelectric ceramic green sheet made of a piezoelectric ceramic material. This piezoelectric sheet constitutes the first piezoelectric layer of the plurality of stacked piezoelectric elements 11. Then, an electrode pattern constituting the first electrode layer 12 is formed by printing on one of the two opposing surfaces of the piezoelectric sheet, and an electrode pattern constituting the second electrode layer 13 is formed on the other by printing. (S2).
 その後、第2層目以降の圧電層を構成する圧電体シートを成形し、先に電極パターンが形成された圧電体シートに積層して接着し(S3)、新たに積層された圧電体シートにおける先に電極パターンが形成された圧電体シートと接着されていない面に、先に電極パターンが形成された圧電体シートと新たに積層された圧電体シートとの間に位置する電極パターンとは異なる電極パターンを印刷により形成する(S4)。これらを圧電層および電極層の積層数が規定数となるまで繰り返して積層体ブロックを構成する(S5)。 Thereafter, a piezoelectric sheet constituting the second and subsequent piezoelectric layers is formed, and is laminated and bonded to the piezoelectric sheet on which the electrode pattern has been previously formed (S3). The electrode pattern positioned between the piezoelectric sheet on which the electrode pattern has been previously formed and the newly laminated piezoelectric sheet on the surface not bonded to the piezoelectric sheet on which the electrode pattern has been previously formed is different. An electrode pattern is formed by printing (S4). These are repeated until the number of stacked layers of the piezoelectric layer and the electrode layer reaches a specified number to form a stacked body block (S5).
 その後、積層体ブロックが焼成された後、隣接する電極パターン間に電圧が印加されることで積層体ブロックは分極処理される(S6~S7)。これにより、圧電セラミックスからなる圧電層における結晶の自発分極の方向をそろえることができ、積層体ブロックから分割される複数の積層型圧電素子11において、良好な圧電特性を発現させることが可能になる。また、分極処理工程を積層体ブロックに対して行うことになるため、個々の積層型圧電素子11に対して分極処理を行う場合に必要となる、個々の積層型圧電素子11をハンドリングするための設備や工程が不要である。この後、積層体ブロックには整合部11Aが形成され(S8)、ダイシングによって分割されることにより複数の積層型圧電素子11が製造される(S9)。 Then, after the laminate block is fired, the laminate block is polarized by applying a voltage between adjacent electrode patterns (S6 to S7). As a result, the direction of spontaneous polarization of crystals in the piezoelectric layer made of piezoelectric ceramics can be aligned, and good piezoelectric characteristics can be expressed in the plurality of stacked piezoelectric elements 11 divided from the stacked body block. . In addition, since the polarization process is performed on the laminated body block, it is necessary to handle the individual multilayer piezoelectric elements 11 that are required when the individual multilayer piezoelectric elements 11 are polarized. No equipment or process is required. After that, the alignment block 11A is formed in the laminated body block (S8), and a plurality of laminated piezoelectric elements 11 are manufactured by being divided by dicing (S9).
 図4は、前述のステップS3~S4で、各圧電体シートに形成される第1の電極層12を構成する電極パターン及び第2の電極層13を構成する電極パターンについて説明する図である。図4(A)は、積層型圧電素子11における奇数層目の圧電層を構成する圧電体シートを示し、図4(B)は、積層型圧電素子11における偶数層目の圧電層を構成する圧電体シートを示している。 FIG. 4 is a diagram for explaining the electrode pattern constituting the first electrode layer 12 and the electrode pattern constituting the second electrode layer 13 formed in each piezoelectric sheet in the above-described steps S3 to S4. 4A shows a piezoelectric sheet constituting an odd-numbered piezoelectric layer in the multilayer piezoelectric element 11, and FIG. 4B constitutes an even-numbered piezoelectric layer in the multilayer piezoelectric element 11. A piezoelectric sheet is shown.
 図4(A)に示す圧電体シート21Aは、正面側に電極パターン22Aが形成されている。電極パターン22Aは、複数の積層型圧電素子11の第1の電極層12を構成するものである。図4(B)に示す圧電体シート21Bは、正面側に電極パターン22Bが形成されている。電極パターン22Bは、複数の積層型圧電素子11の第2の電極層13を構成するものである。圧電体シート21Aと圧電体シート21Bとは、交互に積層されて、上述の積層体ブロックを構成するものである。 4A has an electrode pattern 22A formed on the front side. The electrode pattern 22 </ b> A constitutes the first electrode layer 12 of the plurality of stacked piezoelectric elements 11. In the piezoelectric sheet 21B shown in FIG. 4B, an electrode pattern 22B is formed on the front side. The electrode pattern 22 </ b> B constitutes the second electrode layer 13 of the plurality of stacked piezoelectric elements 11. The piezoelectric sheets 21A and the piezoelectric sheets 21B are alternately stacked to constitute the above-described stacked body block.
 圧電体シート21A,21Bは、それぞれ、複数の素子形成領域23と、除去領域24とに区画される。複数の素子形成領域23は、それぞれ積層型圧電素子11のいずれかの圧電層を構成する領域であり、圧電体シート21A,21Bの主面内で行列に並ぶように分散配置されている。除去領域24は、圧電体シート21A,21Bにおける複数の素子形成領域23を除く領域である。圧電体シート21Aと圧電体シート21Bとで、素子形成領域23や除去領域24の配置および形状は一致している。 Piezoelectric sheets 21 </ b> A and 21 </ b> B are each divided into a plurality of element formation regions 23 and removal regions 24. The plurality of element formation regions 23 are regions that constitute any one of the piezoelectric layers of the multilayer piezoelectric element 11, and are distributed and arranged in a matrix on the main surfaces of the piezoelectric sheets 21A and 21B. The removal region 24 is a region excluding the plurality of element formation regions 23 in the piezoelectric sheets 21A and 21B. The arrangement and shape of the element formation region 23 and the removal region 24 are the same in the piezoelectric sheet 21A and the piezoelectric sheet 21B.
 電極パターン22Aは、端子電極部22A1と、複数の連結電極部22A2とを備えている。端子電極部22A1は、圧電体シート21Aを平面視した際の四辺のうちの隣接する2辺(図中の下辺および右辺)に沿って線路状に形成されている。端子電極部22A1には、分極処理工程において電極パターン22Aに電圧を印加する端子が接続される。複数の連結電極部22A2は、それぞれ一端が端子電極部22A1に接続されていて、一端から図中左上がりで階段状に延びて、一部が複数の素子形成領域23に位置するように形成されている。各連結電極部22A2は、階段の角となる位置の部分が前述の第1の電極層12を形成するように構成されている。なお、圧電体シート21Aにおける全ての素子形成領域23には、複数の連結電極部22A2のいずれかにより第1の電極層12が形成されている。 The electrode pattern 22A includes a terminal electrode portion 22A1 and a plurality of connecting electrode portions 22A2. The terminal electrode portion 22A1 is formed in a line shape along two adjacent sides (lower side and right side in the drawing) of the four sides when the piezoelectric sheet 21A is viewed in plan. A terminal for applying a voltage to the electrode pattern 22A in the polarization processing step is connected to the terminal electrode portion 22A1. One end of each of the plurality of connecting electrode portions 22A2 is connected to the terminal electrode portion 22A1, extends from the one end to the left in the figure in a staircase shape, and a part thereof is positioned in the plurality of element formation regions 23. ing. Each connecting electrode portion 22A2 is configured such that the portion at the corner of the staircase forms the first electrode layer 12 described above. The first electrode layer 12 is formed by any one of the plurality of connecting electrode portions 22A2 in all the element formation regions 23 in the piezoelectric sheet 21A.
 同様に、電極パターン22Bは、端子電極部22B1と、複数の連結電極部22B2とを備えている。端子電極部22B1は、圧電体シート21Bを平面視した際の四辺のうちの隣接する2辺(図中の上辺および左辺)に沿って線路状に形成されている。端子電極部22B1には、分極処理工程において電極パターン22Aに電圧を印加する端子が接続される。複数の連結電極部22B2は、それぞれ一端が端子電極部22B1に接続されていて、一端から図中右下がりで階段状に延びて、一部が複数の素子形成領域23に位置するように形成されている。各連結電極部22B2は、階段の角となる位置の部分が前述の第2の電極層13を形成するように構成されている。なお、圧電体シート21Bにおける全ての素子形成領域23には、複数の連結電極部22B2のいずれかにより第2の電極層13が形成されている。 Similarly, the electrode pattern 22B includes a terminal electrode portion 22B1 and a plurality of connecting electrode portions 22B2. The terminal electrode portion 22B1 is formed in a line shape along two adjacent sides (upper side and left side in the drawing) of the four sides when the piezoelectric sheet 21B is viewed in plan. A terminal for applying a voltage to the electrode pattern 22A in the polarization treatment step is connected to the terminal electrode portion 22B1. One end of each of the plurality of connecting electrode portions 22B2 is connected to the terminal electrode portion 22B1, extends from the one end in a stepwise manner in a downward right direction in the drawing, and is formed so that a part thereof is positioned in the plurality of element forming regions 23. ing. Each connecting electrode portion 22B2 is configured such that the portion at the corner of the staircase forms the second electrode layer 13 described above. Note that the second electrode layer 13 is formed by any one of the plurality of connection electrode portions 22B2 in all the element formation regions 23 in the piezoelectric sheet 21B.
 本実施形態では、連結電極部22A2および連結電極部22B2は、互いに、除去領域24において電極の重なりが生じることがないように、各々の一部が位置する素子形成領域23の位置が一つずつずれるように形成されている。即ち、除去領域24は、非活性領域となるように構成されている。また、圧電体シート21A,21Bにおいて、各素子形成領域23は、圧電体シート21A,21Bの厚み寸法と同じ、もしくは、より大きい寸法の間隔で配置されている。 In the present embodiment, the connection electrode portion 22A2 and the connection electrode portion 22B2 are positioned one by one in the element formation region 23 where a part of each of the connection electrode portion 22A2 and the connection electrode portion 22B2 is located so that the electrodes do not overlap in the removal region 24. It is formed to deviate. That is, the removal region 24 is configured to be an inactive region. Further, in the piezoelectric sheets 21A and 21B, the element forming regions 23 are arranged at intervals of the same or larger dimensions as the thickness dimensions of the piezoelectric sheets 21A and 21B.
 したがって、圧電体シート21Aと圧電体シート21Bとを積層してなる積層体ブロックにおいては、各素子形成領域23における端から約0.2mm離れた位置までの矩形環状の領域と、除去領域24の全体とが非活性領域となり、各素子形成領域23における矩形環状の非活性領域の内側の正方形の領域のみが活性領域となる。即ち、隣接する活性領域の対向する間隔の寸法は、少なくとも、各圧電層(圧電体シート21A,21B)の厚みの寸法よりも大きいものになる。 Therefore, in the laminated body block formed by laminating the piezoelectric sheet 21A and the piezoelectric sheet 21B, the rectangular annular region up to a position about 0.2 mm away from the end in each element forming region 23, and the removal region 24 The whole becomes the inactive region, and only the square region inside the rectangular annular inactive region in each element forming region 23 becomes the active region. That is, the dimension of the space between the adjacent active regions is at least larger than the dimension of the thickness of each piezoelectric layer ( piezoelectric sheet 21A, 21B).
 このことを言い換えれば、各素子形成領域23における第1の電極層12の端部と、面内方向に対向する電極パターン22Aの端部との間隔の寸法、および、第2の電極層13の端部と、面内方向に対向する電極パターン22Bの端部との間隔の寸法が、積層方向での圧電層の厚みの寸法よりも大きいということである。 In other words, the distance between the end portion of the first electrode layer 12 in each element formation region 23 and the end portion of the electrode pattern 22A facing in the in-plane direction, and the second electrode layer 13 That is, the distance between the end and the end of the electrode pattern 22B facing in the in-plane direction is larger than the thickness of the piezoelectric layer in the stacking direction.
 そのため、前述の製造工程で積層体ブロックに対して分極処理を行う際に、活性領域で圧電層の変形が生じても、第1の電極層12と第2の電極層13との端部の近傍で圧電層に生じる応力集中は抑制され、圧電層でのクラックの発生を抑制することができる。したがって、積層型圧電素子や超音波トランスデューサーを、重送検知センサに用いるために小型化するような場合であっても、分極処理工程での圧電層におけるクラックの発生を防いで良品率を高めることができる。そして、重送検知センサに用いる積層型圧電素子や超音波トランスデューサーにおいて小型化と大きな音圧や振動効率とを両立させることができる。 Therefore, when the polarization process is performed on the laminated body block in the manufacturing process described above, even if the piezoelectric layer is deformed in the active region, the end portions of the first electrode layer 12 and the second electrode layer 13 are not affected. Stress concentration generated in the piezoelectric layer in the vicinity is suppressed, and generation of cracks in the piezoelectric layer can be suppressed. Therefore, even when the multilayer piezoelectric element or ultrasonic transducer is downsized for use in a double feed detection sensor, the generation of cracks in the piezoelectric layer in the polarization process is prevented and the yield rate is increased. be able to. In addition, it is possible to achieve both downsizing and large sound pressure and vibration efficiency in the multilayer piezoelectric element and the ultrasonic transducer used for the double feed detection sensor.
≪第2の実施形態≫
 次に、本発明の第2の実施形態に係る積層型圧電素子の構成および製造方法について説明する。本実施形態では、1つの積層体ブロックからの積層型圧電素子の取り個数を増やすのに適した構成の電極パターン形状について説明する。
<< Second Embodiment >>
Next, the structure and manufacturing method of the multilayer piezoelectric element according to the second embodiment of the present invention will be described. In this embodiment, an electrode pattern shape having a configuration suitable for increasing the number of stacked piezoelectric elements from one stacked body block will be described.
 図5は、本実施形態に係る積層型圧電素子で圧電体シートに形成される電極パターンについて説明する図である。図5(A)は、本実施形態に係る積層型圧電素子における奇数層目の圧電層を構成する圧電体シートを示し、図5(B)は、本実施形態に係る積層型圧電素子における偶数層目の圧電層を構成する圧電体シートを示している。 FIG. 5 is a diagram for explaining an electrode pattern formed on the piezoelectric sheet in the multilayer piezoelectric element according to this embodiment. FIG. 5A shows a piezoelectric sheet constituting an odd-numbered piezoelectric layer in the multilayer piezoelectric element according to this embodiment, and FIG. 5B shows an even number in the multilayer piezoelectric element according to this embodiment. The piezoelectric sheet which comprises the piezoelectric layer of the layer is shown.
 図5(A)に示す圧電体シート31Aは、正面側に電極パターン32Aが形成されている。電極パターン32Aは、複数の積層型圧電素子の奇数層目の駆動電極を構成するものである。図5(B)に示す圧電体シート31Bは、正面側に電極パターン32Bが形成されている。電極パターン32Bは、複数の積層型圧電素子の偶数層目の駆動電極を構成するものである。圧電体シート31Aと圧電体シート31Bとは、交互に積層されて、積層体ブロックを構成するものである。 In the piezoelectric sheet 31A shown in FIG. 5A, an electrode pattern 32A is formed on the front side. The electrode pattern 32A constitutes an odd-numbered drive electrode of a plurality of stacked piezoelectric elements. An electrode pattern 32B is formed on the front side of the piezoelectric sheet 31B shown in FIG. The electrode pattern 32B constitutes an even-numbered drive electrode of a plurality of stacked piezoelectric elements. The piezoelectric sheets 31A and the piezoelectric sheets 31B are alternately stacked to constitute a stacked body block.
 圧電体シート31A,31Bは、それぞれ、複数の素子形成領域33と、除去領域34とに区画される。なお、本実施形態においては、積層型圧電素子の取り個数を増やすために、行列に並ぶ複数の素子形成領域33の行方向での間隔の寸法を、第1の実施形態よりも小さいものにし、第1の実施形態よりも行方向に配置される素子形成領域33の数を一つ増やした例を示している。 Piezoelectric sheets 31 </ b> A and 31 </ b> B are each divided into a plurality of element formation regions 33 and removal regions 34. In the present embodiment, in order to increase the number of stacked piezoelectric elements, the dimension of the intervals in the row direction of the plurality of element formation regions 33 arranged in a matrix is made smaller than that in the first embodiment. An example is shown in which the number of element formation regions 33 arranged in the row direction is increased by one as compared to the first embodiment.
 電極パターン32Aは、端子電極部32A1と、長方形電極部32A2とを備えている。端子電極部32A1は、圧電体シート31Aを平面視した際の四辺のうちの隣接する2辺(図中の下辺および右辺)に沿って線路状に形成されている。端子電極部32A1には、分極処理工程において電極パターン22Aに電圧を印加する端子が接続される。長方形電極部32A2は、一端が端子電極部32A1の右辺側に接続されていて、一端から左辺側に直線状に延びており、その一部が2行に並ぶ素子形成領域33に位置するように形成されている。より詳細には、長方形電極部32A2は、その一部が1列目の素子形成領域33の上端側の一部と2列目の素子形成領域33の下端側の一部とを除く部分に位置するように形成されている。 The electrode pattern 32A includes a terminal electrode portion 32A1 and a rectangular electrode portion 32A2. The terminal electrode portion 32A1 is formed in a line shape along two adjacent sides (the lower side and the right side in the drawing) of the four sides when the piezoelectric sheet 31A is viewed in plan. A terminal for applying a voltage to the electrode pattern 22A in the polarization processing step is connected to the terminal electrode portion 32A1. One end of the rectangular electrode portion 32A2 is connected to the right side of the terminal electrode portion 32A1, extends linearly from one end to the left side, and part of the rectangular electrode portion 32A2 is positioned in the element formation region 33 arranged in two rows. Is formed. More specifically, a part of the rectangular electrode portion 32A2 is located at a portion excluding a part on the upper end side of the element formation region 33 in the first row and a part on the lower end side of the element formation region 33 in the second row. It is formed to do.
 電極パターン32Bは、2列の長方形電極部32B1,32B2を備えている。長方形電極部32B1は、圧電体シート31Bを平面視した際の四辺のうちの1辺(図中の上辺)に沿って線路状に形成されている。長方形電極部32B2は、長方形電極部32B1と平行に、長方形電極部32B1の下辺側に形成されていて、左辺側が接続部によって長方形電極部32B1と接続されている。長方形電極部32B1,32B2は、その一部がそれぞれ異なる行の素子形成領域33に位置するように形成されている。より詳細には、長方形電極部32B1は、その一部が1列目の素子形成領域33の下端側の一部を除く部分に位置するように形成されている。長方形電極部32B2は、その一部が2列目の素子形成領域33の上端側の一部を除く部分に位置するように形成されている。なお、長方形電極部32B1は、分極処理工程において電極パターン32Bに電圧を印加する端子が接続される。 The electrode pattern 32B includes two rows of rectangular electrode portions 32B1 and 32B2. The rectangular electrode portion 32B1 is formed in a line shape along one side (upper side in the drawing) of the four sides when the piezoelectric sheet 31B is viewed in plan. The rectangular electrode portion 32B2 is formed on the lower side of the rectangular electrode portion 32B1 in parallel with the rectangular electrode portion 32B1, and the left side is connected to the rectangular electrode portion 32B1 by a connecting portion. The rectangular electrode portions 32B1 and 32B2 are formed so that parts thereof are located in the element formation regions 33 in different rows. More specifically, the rectangular electrode portion 32 </ b> B <b> 1 is formed so that a part thereof is located in a portion excluding a part on the lower end side of the element formation region 33 in the first row. The rectangular electrode part 32B2 is formed so that a part thereof is located in a part excluding a part on the upper end side of the element formation region 33 in the second row. The rectangular electrode portion 32B1 is connected to a terminal for applying a voltage to the electrode pattern 32B in the polarization process.
 本実施形態では、各素子形成領域33の一辺でのみ端部から電極の端部が離れるため、その辺に垂直な2つの辺の周辺まで活性領域となる。そのため、活性領域の占める割合をより大きくして、音圧や振動効率を高めることが容易となる。また、素子の取り個数が増えるため、製造コストを低くすることができる。また、少なくとも、電極端部間の電極非形成部分の幅の寸法を、各圧電層の厚みの寸法よりも大きくすることにより、製造工程で積層体ブロックに対して分極処理を施す際に、圧電層の変形が生じても、電極端部の近傍で圧電層に生じる応力集中は抑制され、圧電層でのクラックの発生を抑制することができる。 In this embodiment, since the end of the electrode is separated from the end only at one side of each element forming region 33, the active region extends to the periphery of two sides perpendicular to the side. Therefore, it becomes easy to increase the ratio occupied by the active region to increase sound pressure and vibration efficiency. Further, since the number of elements to be taken increases, the manufacturing cost can be reduced. Further, by making the width dimension of the electrode non-formed portion between the electrode end portions larger than the thickness dimension of each piezoelectric layer, the piezoelectric element is subjected to the polarization process when the laminate block is subjected to the polarization process in the manufacturing process. Even when the layer is deformed, the stress concentration generated in the piezoelectric layer in the vicinity of the end portion of the electrode is suppressed, and the generation of cracks in the piezoelectric layer can be suppressed.
≪その他の実施形態≫
 以上の各実施形態で説明したように本発明は実施することができるが、圧電体シートに設ける電極パターンの形状は、上述のものに限られるものではない。例えば、図6や図7に示すような電極パターンも、その他の実施形態の一例として挙げることができる。
<< Other Embodiments >>
As described in the above embodiments, the present invention can be implemented, but the shape of the electrode pattern provided on the piezoelectric sheet is not limited to the above. For example, electrode patterns as shown in FIGS. 6 and 7 can also be cited as examples of other embodiments.
 図6は、本発明のその他の実施形態に係る圧電体シートに形成される電極パターンについて説明する図である。図6(A)は、積層型圧電素子における奇数層目の圧電層を構成する圧電体シートについて、図6(B)は偶数層目の圧電層を構成する圧電体シートについて示している。 FIG. 6 is a diagram for explaining an electrode pattern formed on a piezoelectric sheet according to another embodiment of the present invention. 6A shows a piezoelectric sheet constituting the odd-numbered piezoelectric layer in the multilayer piezoelectric element, and FIG. 6B shows a piezoelectric sheet constituting the even-numbered piezoelectric layer.
 図6(A)に示す圧電体シート41Aは、正面側に電極部42A1,42A2が形成された電極パターンを備えている。図6(B)に示す圧電体シート41Bは、正面側に電極パターン42B1,42B2,42B3が形成された電極パターンを備えている。圧電体シート41A,41Bは、それぞれ、複数の素子形成領域43と、除去領域44とに区画される。電極部42A1,42A2,42B2は、それぞれ、行方向に並ぶ二つの素子形成領域43の間に列方向に延設された線路状の電極と、その線路状電極に直交して両脇の2つの素子形成領域を覆う長方形状の電極とからなり、互いに行方向にずれて配置されている。電極部42B1,42B3は、電極部42B2を列方向に沿う中心線で2つに分断した形状であり、電極部42B2の両脇に配置されている。このような電極パターンの形状であっても、少なくとも、電極端部間の電極非形成部分の幅の寸法を、各圧電層の厚みの寸法よりも大きくすることにより、製造工程で積層体ブロックに対して分極処理を施す際に、圧電層の変形が生じても、電極端部の近傍で圧電層に生じる応力集中は抑制され、圧電層でのクラックの発生を抑制することができる。 A piezoelectric sheet 41A shown in FIG. 6A includes an electrode pattern in which electrode portions 42A1 and 42A2 are formed on the front side. A piezoelectric sheet 41B shown in FIG. 6B includes an electrode pattern in which electrode patterns 42B1, 42B2, and 42B3 are formed on the front side. Each of the piezoelectric sheets 41 </ b> A and 41 </ b> B is partitioned into a plurality of element formation regions 43 and removal regions 44. Each of the electrode portions 42A1, 42A2, and 42B2 includes a line-shaped electrode extending in the column direction between two element forming regions 43 arranged in the row direction, and two electrodes on both sides orthogonal to the line-shaped electrode. It consists of a rectangular electrode that covers the element formation region, and is arranged so as to be shifted from each other in the row direction. The electrode portions 42B1 and 42B3 have a shape in which the electrode portion 42B2 is divided into two at the center line along the column direction, and are arranged on both sides of the electrode portion 42B2. Even in such an electrode pattern shape, at least the width dimension of the electrode non-forming portion between the electrode end portions is made larger than the thickness dimension of each piezoelectric layer, so that the laminated block can be formed in the manufacturing process. On the other hand, even when the piezoelectric layer is deformed when the polarization treatment is performed, the stress concentration generated in the piezoelectric layer near the electrode end is suppressed, and the generation of cracks in the piezoelectric layer can be suppressed.
 図7は、本発明のその他の実施形態に係る圧電体シートに形成される電極パターンについて説明する図である。図7(A)は、積層型圧電素子における奇数層目の圧電層を構成する圧電体シートについて、図7(B)は偶数層目の圧電層を構成する圧電体シートについて示している。 FIG. 7 is a diagram for explaining an electrode pattern formed on a piezoelectric sheet according to another embodiment of the present invention. FIG. 7A shows a piezoelectric sheet constituting an odd-numbered piezoelectric layer in the multilayer piezoelectric element, and FIG. 7B shows a piezoelectric sheet constituting an even-numbered piezoelectric layer.
 図7(A)に示す圧電体シート51Aは、正面側に電極パターン52Aが形成されている。図7(B)に示す圧電体シート51Bは、正面側に電極パターン52Bが形成されている。圧電体シート51A,51Bは、それぞれ、複数の素子形成領域53と、除去領域54とに区画される。電極パターン52A,52Bは、第1の実施形態と同様に階段状に連結電極部が形成されている形状であるが、第1の実施形態で電極層の第1の露出部となる幅狭に形成された部分が幅広に形成されている点で相違する。このような電極パターンの形状であっても、少なくとも、電極端部間の電極非形成部分の幅の寸法を、各圧電層の厚みの寸法よりも大きくすることにより、製造工程で積層体ブロックに対して分極処理を施す際に、圧電層の変形が生じても、電極端部の近傍で圧電層に生じる応力集中は抑制され、圧電層でのクラックの発生を抑制することができる。 An electrode pattern 52A is formed on the front side of the piezoelectric sheet 51A shown in FIG. In the piezoelectric sheet 51B shown in FIG. 7B, an electrode pattern 52B is formed on the front side. Each of the piezoelectric sheets 51A and 51B is partitioned into a plurality of element formation regions 53 and removal regions 54. The electrode patterns 52A and 52B have a shape in which connecting electrode portions are formed in a stepped manner as in the first embodiment, but the width becomes the first exposed portion of the electrode layer in the first embodiment. The difference is that the formed part is formed wide. Even in such an electrode pattern shape, at least the width dimension of the electrode non-forming portion between the electrode end portions is made larger than the thickness dimension of each piezoelectric layer, so that the laminated block can be formed in the manufacturing process. On the other hand, even when the piezoelectric layer is deformed when the polarization treatment is performed, the stress concentration generated in the piezoelectric layer near the electrode end is suppressed, and the generation of cracks in the piezoelectric layer can be suppressed.
 以上の各実施形態で説明したように、本発明の積層型圧電素子およびその製造方法は実現できるが、本発明の範囲は特許請求の範囲に記載した構成であれば、どのような変更を加えても良い。例えば、上述した各圧電体シートはより広大なものであってもよく、その場合には、電極パターンは、上述したものを繰り返したような電極パターンや、延長したような電極パターンとするとよい。また、積層型圧電素子や超音波トランスデューサーの具体的形状も上述のものに限られず、例えば整合層は必須の構成ではない。 As described in the above embodiments, the multilayer piezoelectric element and the manufacturing method thereof according to the present invention can be realized. However, the scope of the present invention is not limited to any configuration as long as it is configured as described in the claims. May be. For example, each of the above-described piezoelectric sheets may be wider, and in that case, the electrode pattern may be an electrode pattern obtained by repeating the above-described one or an extended electrode pattern. Further, the specific shapes of the multilayer piezoelectric element and the ultrasonic transducer are not limited to those described above, and for example, the matching layer is not an essential configuration.
1…超音波トランスデューサー
2…金属カバー
2B…抜け止部
3…樹脂ケース
5,6…外部接続端子
7,8…導電性ゴム
11…積層型圧電素子
11A…整合部
11B…素子部
12…第1の電極層
13…第2の電極層
12A,13A…活性領域部
12B,13B…第1の露出部
12C,13C…第2の露出部
21A,21B,31A,31B,41A,41B,51A,51B…圧電体シート
22A,22B,32A,32B,52A,52B…電極パターン
22A1,22B1…端子電極部
22A2,22B2…連結電極部
23,33,43,53…素子形成領域
24,34,44,54…除去領域
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic transducer 2 ... Metal cover 2B ... Stopping part 3 ... Resin case 5, 6 ... External connection terminal 7, 8 ... Conductive rubber 11 ... Laminated piezoelectric element 11A ... Matching part 11B ... Element part 12 ... No. 1st electrode layer 13 ... 2nd electrode layer 12A, 13A ... Active region part 12B, 13B ... 1st exposed part 12C, 13C ... 2nd exposed part 21A, 21B, 31A, 31B, 41A, 41B, 51A, 51B: Piezoelectric sheets 22A, 22B, 32A, 32B, 52A, 52B ... Electrode patterns 22A1, 22B1 ... Terminal electrode portions 22A2, 22B2 ... Connection electrode portions 23, 33, 43, 53 ... Element formation regions 24, 34, 44, 54 ... removal area

Claims (4)

  1.  所定の積層方向に、前記積層方向に垂直な面内方向で複数の素子形成領域と除去領域とに区画され、前記素子形成領域は前記除去領域を間に介して行列をなすように分散配置されている圧電体シートと、一部が前記素子形成領域に配置されている複数の電極パターンとが積層された積層体ブロックを形成する工程と、
     前記積層体ブロックを焼成する工程と、
     前記積層方向に隣接する前記電極パターンの間に電圧を印加する分極処理工程と、
     前記積層体ブロックを分割して積層型圧電素子を形成する工程と、
    をこの順に実施する積層型圧電素子の製造方法であって、
     前記積層体ブロックにおいて、
    前記積層方向に隣接する前記電極パターンの一部が前記積層方向に重なる活性領域は、少なくとも一部が前記素子形成領域に重なり配置され、前記積層方向に隣接する前記電極パターンの一部が前記積層方向に重なっていない非活性領域は、少なくとも一部が前記除去領域に重なり配置され、各前記素子形成領域における前記電極パターンの端部は、面内方向に対向する前記電極パターンの端部との間隔の寸法が、前記積層方向での前記圧電体シートの厚み寸法よりも大きいことを特徴としている積層型圧電素子の製造方法。
    A predetermined stacking direction is partitioned into a plurality of element formation regions and removal regions in an in-plane direction perpendicular to the stacking direction, and the element formation regions are distributed and arranged in a matrix with the removal regions in between. Forming a laminate block in which a piezoelectric sheet and a plurality of electrode patterns, some of which are arranged in the element formation region, are laminated,
    Firing the laminate block;
    A polarization treatment step of applying a voltage between the electrode patterns adjacent to each other in the stacking direction;
    Dividing the laminate block to form a laminated piezoelectric element;
    Is a manufacturing method of a laminated piezoelectric element that implements in this order,
    In the laminate block,
    An active region in which a part of the electrode pattern adjacent in the stacking direction overlaps in the stacking direction is at least partially overlapped with the element formation region, and a part of the electrode pattern adjacent in the stacking direction is the stacked layer A non-active region that does not overlap in the direction is at least partially overlapped with the removal region, and an end portion of the electrode pattern in each element formation region is in contact with an end portion of the electrode pattern facing in an in-plane direction. A method for manufacturing a multilayer piezoelectric element, wherein a distance dimension is larger than a thickness dimension of the piezoelectric sheet in the stacking direction.
  2.  前記積層体ブロックは、前記素子形成領域に重なる前記非活性領域の幅の寸法が、前記積層方向での前記圧電体シートの厚み寸法よりも小さい、請求項1に記載の積層型圧電素子の製造方法。 2. The multilayer piezoelectric element according to claim 1, wherein in the multilayer block, the width dimension of the inactive region overlapping the element formation region is smaller than the thickness dimension of the piezoelectric sheet in the stacking direction. Method.
  3.  請求項1または2に記載の積層型圧電素子の製造方法により形成された積層型圧電素子であって、
     前記圧電体シートからなる圧電層と、前記電極パターンからなる電極層とが積層され、前記圧電層と前記電極層との積層方向に直交する面内方向での周縁部の一部に、前記積層方向に隣接する前記電極層が重なっていない非活性領域が形成されていて、前記非活性領域の幅の寸法が前記積層方向での前記圧電層の厚み寸法よりも小さく、各素子端面には、前記積層方向に隣接する前記電極層が一つ置きに露出することを特徴とする、積層型圧電素子。
    A multilayer piezoelectric element formed by the method for manufacturing a multilayer piezoelectric element according to claim 1 or 2,
    A piezoelectric layer made of the piezoelectric sheet and an electrode layer made of the electrode pattern are laminated, and the laminated layer is formed on a part of a peripheral portion in an in-plane direction perpendicular to the lamination direction of the piezoelectric layer and the electrode layer. A non-active region in which the electrode layers adjacent in the direction do not overlap is formed, the width of the non-active region is smaller than the thickness of the piezoelectric layer in the stacking direction, The stacked piezoelectric element, wherein every other electrode layer adjacent in the stacking direction is exposed.
  4.  請求項1または2に記載の積層型圧電素子の製造方法により形成された積層型圧電素子と、
     音波の送受方向を向く第1端面が開口して内部空間を有し、前記第1端面に対向する第2端面が閉塞する有底筒状に構成されていて、前記音波の送受方向に前記圧電素子の積層方向を向けた状態で前記圧電素子を保持するケースと、
     第一端側が、前記圧電素子の外側面と前記ケースの内側面とに接して設けられていて、前記圧電素子の電極層に導通し、第二端側が、前記ケースから突出している端子部と、を備える超音波トランスデューサー。
    A multilayer piezoelectric element formed by the multilayer piezoelectric element manufacturing method according to claim 1 or 2,
    A first end face facing the sound wave transmission / reception direction is open to have an internal space, and a second end face opposite to the first end face is configured to have a bottomed cylindrical shape, and the piezoelectric element extends in the sound wave transmission / reception direction. A case for holding the piezoelectric element in a state in which the stacking direction of the elements is directed;
    A first end side is provided in contact with an outer side surface of the piezoelectric element and an inner side surface of the case, and is electrically connected to an electrode layer of the piezoelectric element, and a second end side protrudes from the case; , Comprising an ultrasonic transducer.
PCT/JP2012/077934 2011-10-31 2012-10-30 Stacked piezoelectric element, ultrasound transducer, and method of manufacturing stacked piezoelectric element WO2013065657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-239340 2011-10-31
JP2011239340 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065657A1 true WO2013065657A1 (en) 2013-05-10

Family

ID=48192004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077934 WO2013065657A1 (en) 2011-10-31 2012-10-30 Stacked piezoelectric element, ultrasound transducer, and method of manufacturing stacked piezoelectric element

Country Status (1)

Country Link
WO (1) WO2013065657A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158743A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 Mother piezoelectric element, laminated piezoelectric element, and manufacturing method for laminated piezoelectric element
US20170203333A1 (en) * 2014-07-30 2017-07-20 Kyocera Corporation Piezoelectric element, acoustic generator, acoustic generation device, and electronic apparatus
WO2019211755A1 (en) * 2018-04-30 2019-11-07 Vermon S.A. Ultrasound transducer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103378A (en) * 1980-12-19 1982-06-26 Tdk Corp Preparation of piezoelectric element
JPH0564295A (en) * 1991-08-31 1993-03-12 Nippon Dempa Kogyo Co Ltd Manufacture of ultrasonic probe
JPH06260696A (en) * 1993-03-04 1994-09-16 Murata Mfg Co Ltd Partially polarizing method for piezoelectric element
JPH08213667A (en) * 1995-01-31 1996-08-20 Nippon Cement Co Ltd Manufacture of ceramics multilayered piezoelectric element
JP2003199195A (en) * 2001-12-28 2003-07-11 Ngk Spark Plug Co Ltd Langevin type ultrasonic wave vibrator
JP2008306131A (en) * 2007-06-11 2008-12-18 Nihon Ceratec Co Ltd Laminated piezoelectric element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103378A (en) * 1980-12-19 1982-06-26 Tdk Corp Preparation of piezoelectric element
JPH0564295A (en) * 1991-08-31 1993-03-12 Nippon Dempa Kogyo Co Ltd Manufacture of ultrasonic probe
JPH06260696A (en) * 1993-03-04 1994-09-16 Murata Mfg Co Ltd Partially polarizing method for piezoelectric element
JPH08213667A (en) * 1995-01-31 1996-08-20 Nippon Cement Co Ltd Manufacture of ceramics multilayered piezoelectric element
JP2003199195A (en) * 2001-12-28 2003-07-11 Ngk Spark Plug Co Ltd Langevin type ultrasonic wave vibrator
JP2008306131A (en) * 2007-06-11 2008-12-18 Nihon Ceratec Co Ltd Laminated piezoelectric element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170203333A1 (en) * 2014-07-30 2017-07-20 Kyocera Corporation Piezoelectric element, acoustic generator, acoustic generation device, and electronic apparatus
US10010909B2 (en) * 2014-07-30 2018-07-03 Kyocera Corporation Piezoelectric element, acoustic generator, acoustic generation device, and electronic apparatus
WO2016158743A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 Mother piezoelectric element, laminated piezoelectric element, and manufacturing method for laminated piezoelectric element
JPWO2016158743A1 (en) * 2015-03-30 2017-10-12 株式会社村田製作所 Mother piezoelectric element, multilayer piezoelectric element, and method of manufacturing multilayer piezoelectric element
CN107408621A (en) * 2015-03-30 2017-11-28 株式会社村田制作所 The manufacture method of female piezoelectric element and Piezoelektrisches mehrschichtelement and Piezoelektrisches mehrschichtelement
US10916691B2 (en) 2015-03-30 2021-02-09 Murata Manufacturing Co., Ltd. Mother piezoelectric element, laminated piezoelectric element, and manufacturing method for laminated piezoelectric element
WO2019211755A1 (en) * 2018-04-30 2019-11-07 Vermon S.A. Ultrasound transducer
CN112041091A (en) * 2018-04-30 2020-12-04 维蒙股份公司 Ultrasonic transducer
CN112041091B (en) * 2018-04-30 2022-03-18 维蒙股份公司 Ultrasonic transducer

Similar Documents

Publication Publication Date Title
US10276774B2 (en) Multilayer ceramic structure, manufacturing method therefor and piezoelectric actuator
JP4069160B2 (en) Ultrasonic actuator
JP5234008B2 (en) Multilayer piezoelectric element and piezoelectric pump
JP4069161B2 (en) Piezoelectric element and ultrasonic actuator
US9117993B2 (en) Piezoelectric element and stacked piezoelectric structure
WO2010035437A1 (en) Piezoelectric stack
WO2013065657A1 (en) Stacked piezoelectric element, ultrasound transducer, and method of manufacturing stacked piezoelectric element
JP5798699B1 (en) Electroacoustic transducer
US9466779B2 (en) Piezoelectric actuator and method of manufacturing piezoelectric actuator
US9682560B2 (en) Methods of manufacturing piezoelectric element, liquid ejecting head, and ultrasonic transducer
JP5403170B2 (en) Multilayer piezoelectric actuator and piezoelectric vibration device
JP5319195B2 (en) Vibrator
KR101493014B1 (en) Piezoelectric speaker and electronic device having the same
CN113066924B (en) Thin film piezoelectric sensing element and manufacturing method thereof, sensing device and terminal
JP6720959B2 (en) Vibrating device
JP7434732B2 (en) Piezoelectric element
JP2007312600A (en) Piezoelectric element and ultrasonic actuator
EP3261365B1 (en) Ultrasonic sensor
JP7425964B2 (en) Piezoelectric element
JP5687278B2 (en) Multilayer piezoelectric actuator
US11581479B2 (en) Piezoelectric element
JP2001085753A (en) Piezoelectric actuator
JP2007300798A (en) Piezoelectric element and ultrasonic actuator
JP5147300B2 (en) Multilayer piezoelectric element
JP5447693B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP