WO2013064114A1 - 一种图像块信号分量采样点的帧内解码方法和装置 - Google Patents

一种图像块信号分量采样点的帧内解码方法和装置 Download PDF

Info

Publication number
WO2013064114A1
WO2013064114A1 PCT/CN2012/084074 CN2012084074W WO2013064114A1 WO 2013064114 A1 WO2013064114 A1 WO 2013064114A1 CN 2012084074 W CN2012084074 W CN 2012084074W WO 2013064114 A1 WO2013064114 A1 WO 2013064114A1
Authority
WO
WIPO (PCT)
Prior art keywords
current block
signal component
prediction mode
sampling point
prediction
Prior art date
Application number
PCT/CN2012/084074
Other languages
English (en)
French (fr)
Inventor
杨海涛
周建同
區子廉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12846035.9A priority Critical patent/EP2768222A4/en
Publication of WO2013064114A1 publication Critical patent/WO2013064114A1/zh
Priority to US14/265,491 priority patent/US9674529B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an intra-frame decoding method and apparatus for image block signal component sampling points.
  • Intra coding refers to a technique of encoding image content using only spatial correlation in a current coded image block.
  • Inter-frame coding refers to a technique of encoding a current coded picture block using the temporal correlation of the current coded picture block with the coded picture block.
  • the H.264/AVC standard introduces an intra prediction technique for the first time to remove the spatial information redundancy of the current coded image block (hereinafter referred to as the current block) and the adjacent coded image block.
  • the HEVC scheme is a new generation video coding standardization scheme currently being studied by the International Organization for Standardization, which inherits and extends the intra prediction coding technique in the H.264/AVC standard.
  • the prediction mode set of the image block chroma component may include six selectable prediction modes: DM mode: predicting using a prediction mode of a current block luminance component as a prediction mode of a current block chrominance component;
  • LM mode Calculate the predicted value of the chroma component sample point based on the correlation model using the reconstructed value of the luma component sample point.
  • the correlation model parameter is reconstructed from the sample point of the luma component and the chroma component directly above the current block and the positive left side. The value is calculated;
  • DC mode using the average value of the reconstructed values of the chroma component sampling points immediately above the right block and the left side of the current block as the predicted value of the sampling point of the current block chroma component;
  • Planar mode Calculating the predicted value of the sampling point of the current block chroma component based on the assumption that the value of the chroma component sample point changes linearly and smoothly;
  • Horizontal mode using the reconstructed value of the adjacent chroma component sample points on the left side of the current block as the predicted value of all the chroma component sample points in the same row of the current block;
  • DC mode, vertical mode, horizontal mode, and planar mode are The basic prediction principles of the corresponding prediction modes in the H.264/AVC standard are the same, and the specific implementation methods are different.
  • LM mode and DM mode are two newly added prediction modes.
  • the mode and the certain prediction mode in which case the prediction mode is replaced with the replacement mode to form a new prediction mode set that does not include the repeated prediction mode.
  • the substitute mode may be a prediction mode that is different from all prediction modes in the prediction mode set of the chroma component, and may be, for example, a diagonal mode predicted in a diagonal direction.
  • Embodiments of the present invention provide an intra-frame decoding method and apparatus for image block signal component sampling points, so as to reduce the implementation complexity of the decoding end.
  • An embodiment of the present invention provides an intra-frame decoding method for an image block signal component sampling point, including: Obtaining prediction mode information of the first signal component of the current block from the video code stream;
  • An embodiment of the present invention further provides an intra-frame decoding method for an image block signal component sampling point, including: obtaining, in a decoding process, a prediction of a first signal component sampling point of a current block according to a prediction mode of a second signal component of the current block Value
  • An embodiment of the present invention further provides an intra-frame decoding method for an image block signal component sampling point, including: Obtaining prediction mode information of the current block from the video code stream;
  • An embodiment of the present invention further provides an intra-frame decoding apparatus for an image block signal component sampling point, including: a first acquiring unit, configured to obtain, from a video code stream, a prediction mode of a first signal component of a current block,
  • a first determining unit configured to determine, according to prediction mode information of the first signal component of the current block, a prediction mode of a first signal component of the current block, where a prediction mode of the first signal component of the current block is in a DM mode and an LM mode One type;
  • a first prediction unit configured to obtain, according to a prediction mode of the first signal component of the current block, a predicted value of a first signal component sampling point of the current block
  • a first calculating unit configured to obtain, according to the predicted value of the first signal component sampling point of the current block, a reconstructed value of the current block first signal component sampling point.
  • An embodiment of the present invention further provides an intra-frame decoding apparatus for an image block signal component sampling point, including: a second prediction unit, configured to obtain a current block according to a prediction mode of a second signal component of the current block in a decoding process. a predicted value of a signal component sampling point;
  • a second calculating unit configured to obtain, according to the predicted value of the first signal component sampling point of the current block, a reconstructed value of the current block first signal component sampling point.
  • the embodiment of the present invention further provides an intra-frame decoding device for an image block signal component sampling point, including: a second acquiring unit, configured to obtain prediction mode information of a current block from a video code stream; and a second determining unit, configured to The prediction mode information of the current block determines a prediction mode of the current block, and the prediction mode of the current block is used for a pre-third prediction unit of the first block component and the second signal component of the current block, according to the current block The prediction mode obtains a predicted value of a sampling point of the first signal component of the current block; And a third calculating unit, configured to obtain, according to the predicted value of the first signal component sampling point of the current block, a reconstructed value of the current block first signal component sampling point.
  • a second acquiring unit configured to obtain prediction mode information of a current block from a video code stream
  • a second determining unit configured to The prediction mode information of the current block determines a prediction mode of the current block, and the prediction mode of the current block is used for a
  • the technical solution provided by the embodiment of the present invention reduces the implementation complexity of the decoding end by providing a technical means for simplifying the set of prediction modes.
  • FIG. 1 is a flow chart of a decoding method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a decoding method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a decoding method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a decoding method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a decoding method according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a decoding method according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a decoding apparatus according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a decoding apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a decoding apparatus according to an embodiment of the present invention.
  • a video image signal typically includes one luminance component and two chrominance components.
  • Luminance components are typically represented by the symbol Y, which is typically represented by the symbols U, V.
  • the technical solution of the present invention can be used for mutual prediction between different components of other video image formats, such as the RGB format, in addition to the YUV format.
  • the embodiment of the present invention adopts the expressions of the first signal component and the second signal component.
  • the first signal component may be chrominance
  • the second signal component may be a luminance component
  • the image signal includes three signal components 1, G, B
  • the first signal component may be any one of the three signal components 1, G, B
  • the second signal The component may be one of three signal components R, G, B different from the first signal component; if the image signal is decomposed into a plurality of signal components in other manners, a similar method may be used to specify the first signal component And a second signal component.
  • the DM mode is that, according to the prediction mode of the second signal component of the current block, the first signal component sampling point of the current block is calculated from the reconstructed value of the first signal component sampling point around the current block.
  • a prediction mode of the predicted value is a prediction mode for calculating a predicted value of the first signal component sample point of the current block based on the reconstructed value of the current block second signal component sample point.
  • the first signal component is a chrominance component
  • the second signal component is a luminance component as an example.
  • the embodiment of the present invention considers that the DM mode and the planar mode, the DC mode, the horizontal mode, and the vertical mode are all the same, which indicates that there is redundancy in the prediction mode set of the existing chroma component, and the redundancy affects the video image. Compression efficiency increases the complexity of codec implementation.
  • the prediction mode set of the chroma component used in this embodiment includes only two prediction modes, DM mode and LM mode.
  • the DM mode is a prediction mode for calculating a predicted value of the current block chroma component sample point from a reconstructed value of a chroma component sample point of a current block according to a prediction mode of a current block luma component; the LM mode is based on a current block luminance The reconstructed value of the component sample point calculates a prediction mode of the predicted value of the current block chroma component sample point.
  • Both the DM mode and the LM mode are prediction modes unique to the chrominance components, and both use the correlation between the luminance component and the chrominance component to improve the compression efficiency.
  • the DM mode improves the compression efficiency of the chroma component prediction mode by using the correlation between the luma component and the chroma component prediction mode
  • the LM mode uses the correlation between the luma component and the chroma component sample value to improve the prediction accuracy of the chroma component sample value.
  • a feature of the prediction mode set of chroma components used in the embodiments of the present invention is that there is no redundant prediction mode in the set.
  • the set does not include an optional prediction mode of luminance components such as planar mode, DC mode, horizontal mode, and vertical mode, and thus does not represent the same prediction mode as the DM mode. Therefore, the decoding end does not need to adjust the prediction mode set content of the optional chroma component according to the prediction mode of the luma component to eliminate such redundancy, thereby reducing the complexity of the decoding end.
  • the embodiment of the present invention adopts a simple set of prediction modes of chroma components, so that the method for representing the prediction mode information of the chroma components in the video code stream is simpler than the prior art, thereby reducing the complexity of the encoding end.
  • the decoding complexity of the decoding end is reduced.
  • a simple codeword may be used in the code stream, such as 1 flag to indicate the prediction mode selection result; the prediction mode set in the chroma component only includes In the DM mode, no syntax elements are required in the code stream to independently represent the prediction mode selection result of the chroma component.
  • S10K obtains prediction mode information of the first signal component of the current block from the video code stream
  • the technical solution provided by the embodiment of the present invention reduces the implementation complexity of the decoding end by providing a technical means for including only the prediction mode set of the first signal component of the DM mode and the LM mode.
  • the intra-frame decoding method of the image block signal component sampling point provided by the embodiment of the present invention is described as follows, in which the first signal component is a chrominance component and the second signal component is a luminance component.
  • S20K obtains prediction mode information of the current block chroma component from the video bitstream.
  • S202 Determine a prediction mode of a current block chroma component according to the prediction mode information of the current block chroma component, where the prediction mode of the current block chroma component is one of a DM mode and an LM mode.
  • the chrominance component prediction mode set includes only two modes: the DM mode and the LM mode, so the prediction mode of the current block chrominance component determined according to the prediction mode information of the current block chrominance component is the DM mode and the LM.
  • the modes One of the modes.
  • the prediction mode information of the current block chroma component is taken as an example for description. It can be understood that the prediction mode information herein can also be represented by other means.
  • a flag may be used as the prediction mode information of the current block chroma component to indicate whether the prediction mode of the current block chroma component is the DM mode or the LM mode. For example, a flag of 0 may be used to indicate that the prediction mode of the chroma component of the current block is the DM mode, and a flag of 1 indicates that the prediction mode of the chroma component of the current block is the LM mode.
  • the entropy coding and entropy decoding methods for the flag of the current block can be performed as follows.
  • the context model used by the entropy encoder may be determined based on the values of the flag of the block on the current block and the flag of the left block. For example, 3 context models can be used to encode the flag of the current block.
  • a context model determining method is: adding the flag of the current block to the flag of the left block, and determining which one of the three context models is used according to the obtained value (may be 0, 1, or 2). The flag of the current block.
  • the encoder and decoder use the same method to determine the context model.
  • the encoder writes the flag of the current block to the code stream based on the determined context model; and the decoder obtains the fl g of the current block from the code stream based on the determined context model.
  • the current block upper block and the left block refer to an upper image block and a left image block adjacent to the current block in spatial positional relationship. If If the upper block or the left block does not exist, or the flag of the upper block and the left block does not exist, the flag of the upper block or the left block may be set to a default value, and the context model of the flag of the current block is determined using the above method.
  • the flag of the current block may also be encoded using only a certain context model. Further, instead of using the context model, the binary arithmetic codec can be directly performed on the flag of the current block.
  • the encoder can directly write the flag of the current block into the code stream, and the decoder can directly obtain the flag of the current block from the video code stream.
  • the current block color may be calculated from the reconstructed value of the chroma component sampling point around the current block according to the prediction mode of the current block luma component.
  • the predicted value of the degree component sampling point That is, the prediction mode of the current block luma component may be used as the prediction mode of the current block chroma component, and the current block chroma component sample is calculated from the reconstructed value of the chroma component sample points around the current block according to the prediction mode of the current block chroma component.
  • the predicted value of the point If it is determined in S202 that the prediction mode of the current block chrominance component is the LM mode, the predicted value of the current block chrominance component sampling point may be calculated based on the reconstructed value of the current block luminance component sampling point.
  • the prediction mode of the current block luminance component may include one of a DC mode, a vertical mode, a horizontal mode, and a planar mode, or may be another directional prediction mode.
  • the method for obtaining the predicted value of the sampling point of the current block chroma component in the LM and DM modes may adopt a prior art method, and details are not described herein again.
  • the reconstructed value of the current block chroma component sample point is calculated based on the obtained predicted value of the current block chroma component sample point and the residual value of the reconstructed current block chroma component sample point.
  • the residual value of the current block chroma component sample point can be obtained based on the residual information of the current block chroma component sample point obtained in the video bitstream.
  • the residual value of the sampling point of the current block chroma component may be reconstructed by using the method in the H.264/AVC standard or the current HEVC scheme, and will not be described in detail herein.
  • the technical solution provided by the embodiment of the present invention provides a color including only the DM mode and the LM mode.
  • the intra-frame decoding method of the image block signal component sampling point provided by the embodiment of the present invention is as follows:
  • the S30K always obtains the predicted value of the sampling point of the first signal component of the current block according to the prediction mode of the second signal component of the current block during the decoding process.
  • the technical solution provided by the embodiment of the present invention reduces the implementation complexity of the decoding end by obtaining the prediction method of the prediction value of the first signal component of the current block according to the prediction mode of the second signal component of the current block in the decoding process. degree.
  • the intra-frame decoding method of the image block signal component sampling point provided by the embodiment of the present invention is described as follows:
  • the first signal component is a chrominance component
  • the second signal component is a luminance component.
  • the prediction value of the current block chroma component sampling point is always obtained according to the prediction mode of the current block luminance component in the decoding process.
  • only one DM mode prediction mode is included in the prediction mode set of the chrominance component, and the prediction mode of the current block luminance component is always used as the prediction mode of the current block chrominance component in the decoding process. It should be noted that in some embodiments, only one DM mode is included in the prediction mode set of the chroma component, and one prediction mode can also be understood as a prediction mode set in which the chroma component does not exist, but simply according to the current block luminance. The prediction mode of the component determines the prediction mode of the current block chrominance component.
  • the LM mode is further excluded as an optional prediction mode of the chrominance component.
  • the LM mode needs to calculate the correlation model parameters of the luminance component and the chrominance component. Compared with the prediction modes of other existing chrominance components, the computational complexity is higher, so the power consumption is higher, and it is not suitable for some low-power movements.
  • the codec application of the device is further excluded as an optional prediction mode of the chrominance component.
  • the prediction mode of the chroma component in the embodiment of the present invention is only the DM mode, it is not necessary to transmit any prediction mode information to the decoder for the chroma component in the code stream.
  • the decoder uses the prediction mode of the current block luminance component as the prediction mode of the current block chrominance component. In other words, the luminance component and the chromaticity score The same prediction mode is used for the quantity.
  • S40K obtains a predicted value of the current block chroma component sample point according to the prediction mode of the current block luminance component.
  • the predicted value of the current block chroma component sample point may be calculated from the reconstructed value of the chroma component sample point around the current block according to the prediction mode of the luma component.
  • the prediction mode of the current block luma component is used as the prediction mode of the current block chroma component, and the current block is calculated from the reconstructed value of the chroma component sample point around the current block according to the prediction mode of the current block chroma component.
  • the predicted value of the chroma component sample point may be calculated from the reconstructed value of the chroma component sample point around the current block according to the prediction mode of the current block chroma component.
  • the reconstructed value of the current block chroma component sample point is calculated based on the obtained predicted value of the current block chroma component sample point and the residual value of the reconstructed current block chroma component sample point.
  • the residual value of the current block chroma component sample point may be obtained based on the residual information of the current block chroma component sample point obtained in the video bitstream.
  • the current block color can be reconstructed by using the H.264/AVC standard or the current HEVC scheme. The residual value of the sample points of the degree component will not be described in detail here.
  • the technical solution provided by the embodiment of the present invention reduces the implementation complexity of the decoding end by using the prediction mode of the current block luminance component as the technical means of the prediction mode of the current block chrominance component in the decoding process.
  • the intra-frame decoding method of the image block signal component sampling point provided by the embodiment of the present invention is as follows:
  • S50K obtains prediction mode information of the current block from the video code stream
  • S502. Determine, according to prediction mode information of the current block, a prediction mode of a current block, where a prediction mode of the current block is used for prediction of a first signal component and a second signal component of a current block.
  • the technical solution provided by the embodiment of the present invention is to make the prediction mode of the first signal component of the current block
  • the prediction mode of the second person signal component of the current block is a technical means of the same prediction mode, thereby reducing the implementation complexity of the decoding end.
  • the intra-frame decoding method of the image block signal component sampling point provided by the embodiment of the present invention is described as follows, in which the first signal component is a chrominance component and the second signal component is a luminance component.
  • the S60K obtains the prediction mode information of the current block from the video code stream.
  • S602. Determine a prediction mode of the current block according to the prediction mode information of the current block, where the prediction mode of the current block is used for prediction of a current block chrominance component and a luminance component.
  • the prediction mode of the current block can be understood as the same prediction mode as the prediction mode of the current block luminance component and the prediction mode of the current block chrominance component.
  • the decoding side can be determined by the prediction mode information of the current block in the video bitstream.
  • the prediction mode of the current block may include one of a DC mode, a vertical mode, a horizontal mode, and a planar mode, or may be another directional prediction mode. Taking the horizontal right direction as a reference, the prediction direction angles of the vertical mode and the horizontal mode are 90 degrees and 0 degrees, respectively.
  • the other party Directional prediction is a generalization of horizontal prediction and vertical prediction, and its prediction direction is more elaborate, which can be
  • the prediction mode information of the current block indicates that the prediction mode of the current block is one of the above 34 prediction modes.
  • the reconstructed value of the current block chroma component sample point is calculated based on the obtained predicted value of the current block chroma component sample point and the residual value of the reconstructed current block chroma component sample point.
  • the residual value of the current block chroma component sample point may be based on the residual signal of the current block chroma component sample point obtained in the video bitstream. Get the interest.
  • the residual value of the current block chroma component sample point may be reconstructed by using the method in the H.264/AVC standard or the current HEVC scheme, and is not described in detail herein.
  • an embodiment of the present invention provides an intra decoding device for sampling a signal component of an image block, including:
  • the first obtaining unit 701 is configured to obtain, from the video code stream, prediction mode information of the first signal component of the current block.
  • the first determining unit 702 is configured to determine, according to the prediction mode information of the first block component of the current block, a prediction mode of the first block component of the current block, where the prediction mode of the first block component of the current block is in the DM mode and the LM mode.
  • a first prediction unit 703 configured to obtain, according to a prediction mode of the first signal component of the current block, a predicted value of a first signal component sampling point of the current block;
  • the first calculating unit 704 is configured to obtain, according to the predicted value of the first signal component sampling point of the current block, a reconstructed value of the current block first signal component sampling point.
  • the first prediction unit 703 is specifically configured to determine, according to the prediction mode information of the first signal component of the current block, that the prediction mode of the first signal component of the current block is a DM mode, according to the current block.
  • the prediction mode of the second signal component calculates a predicted value of the first signal component sampling point of the current block from a reconstructed value of the first signal component sampling point around the current block.
  • the first prediction unit 703 is specifically configured to determine, according to the prediction mode information of the first signal component of the current block, that the prediction mode of the first signal component of the current block is the LM mode, based on the current block.
  • the reconstructed value of the signal component sampling point is used to calculate the apparatus provided in the embodiment of the present invention for the first signal component sampling point of the current block, and is used to implement the method shown in FIG. 1 and FIG. 2, and details are not described herein again.
  • an embodiment of the present invention reduces the implementation complexity of the decoding end by providing a technical means for including only the prediction mode set of the first signal component of the DM mode and the LM mode.
  • an embodiment of the present invention provides an intra-frame decoding apparatus for an image block signal component sampling point, including:
  • a second prediction unit 801 configured to obtain, according to a prediction mode of the second signal component of the current block, a prediction value of a sampling point of the first block of the current block in the decoding process
  • the second calculating unit 802 is configured to obtain a reconstructed value of the current block first signal component sampling point according to the predicted value of the current block first signal component sampling point.
  • the second prediction unit 801 is specifically configured to calculate, according to a prediction mode of the second signal component, a first signal component of the current block from a reconstructed value of a first signal component sampling point around the current block. The predicted value of the sample point.
  • the apparatus provided by the embodiment of the present invention is used to implement the methods shown in FIG. 3 and FIG. 4, and details are not described herein again.
  • an embodiment of the present invention reduces the implementation complexity of the decoding end by obtaining the prediction method of the prediction value of the first signal component sampling point of the current block according to the prediction mode of the second signal component of the current block in the decoding process.
  • an embodiment of the present invention provides an intra-frame decoding apparatus for an image block signal component sampling point, including:
  • the second obtaining unit 901 is configured to obtain prediction mode information of the current block from the video code stream, where the second determining unit 902 is configured to determine, according to the prediction mode information of the current block, a prediction mode of the current block, where the current block is a prediction mode is used by the third prediction unit 903 of the current block first signal component and the second signal component, configured to obtain a prediction value of the current block first signal component sampling point according to the prediction mode of the current block;
  • the third calculating unit 904 is configured to obtain a reconstructed value of the first signal component sampling point of the current block according to the predicted value of the first signal component sampling point of the current block.
  • the third prediction unit 903 is specifically configured to calculate, according to the prediction mode of the current block, the first signal component sampling point of the current block from the reconstructed value of the first signal component sampling point around the current block. The predicted value.
  • the device provided by the embodiment of the present invention is used to implement the method shown in FIG. 5 and FIG. Said.
  • the device provided by the embodiment of the present invention reduces the implementation complexity of the decoding end by making the prediction mode of the first signal component of the current block and the prediction mode of the second human signal component of the current block into the same prediction mode.
  • the technical effect of another aspect of the embodiment of the present invention is also that the complexity of the encoding end can be reduced.
  • the content of the prediction mode set of the existing HEVC chrominance component needs to be adjusted according to the luminance component prediction mode.
  • the specific embodiment at the time of entropy coding is that the codeword allocation of the prediction mode of the chrominance component needs to be dynamically adjusted according to the prediction mode of the luminance component.
  • the prediction mode of the luma component is a vertical mode
  • the codeword originally used to represent the vertical mode in the chroma component will be used to represent the alternate mode.
  • the prediction mode set content of the chroma component provided by the embodiment of the present invention does not need to be adjusted according to the luminance component prediction mode, thereby reducing the complexity.
  • the number of selectable prediction modes in the prediction mode set of the existing HEVC chroma component is large, and the computational complexity of the coding end in the prediction mode selection process is high, and the prediction mode set of the chroma component provided by the embodiment of the present invention is reduced.
  • the number of optional prediction modes which reduces the choice of prediction mode Computational complexity.
  • the simulation of coding time saving as shown in Table X shows that the encoding time of the intra prediction encoded image is reduced by about 10%.
  • the prediction mode set of the chroma component provided by the embodiment of the present invention has substantially no effect on the video image compression efficiency, as shown in Table Y:
  • Video encoders, decoders are widely used in a variety of communication devices or electronic devices, such as: digital TV, set-top boxes, media gateways, mobile phones, wireless devices, personal data assistants
  • PDA personal digital assistant
  • handheld or portable computer GPS receiver/navigator, camera, video player, video camera, video recorder, surveillance equipment, video conferencing and video telephony equipment, etc.
  • Such devices include processors, memory, and interfaces for transmitting data.
  • the video codec can be implemented directly by a digital circuit or chip such as a DSP (digital signal processor) or by software code driven by a processor executing the flow in the software code.
  • DSP digital signal processor
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明实施例提供一种图像块信号分量采样点的帧内解码方法和装置,其中方法包括:从视频码流中获得当前块第一信号分量的预测模式信息;根据所述当前块第一信号分量的预测模式信息确定当前块第一信号分量的预测模式,所述当前块第一信号分量的预测模式为DM模式和LM模式中的一种;根据所述当前块第一信号分量的预测模式获得当前块第一信号分量采样点的预测值;根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量采样点的重建值。本发明实施例提供的技术方案降低了解码端的实现复杂度。

Description

说 明 书 一种图像块信号分量采样点的帧内解码方法和装置
技术领域 本发明涉及通信技术领域,特别涉及一种图像块信号分量采样点的帧内 解码方法和装置。
背景技术 现有视频图像编码技术中包括帧内编码技术与帧间编码技术。 帧内编码 指仅利用当前编码图像块中的空间相关性对图像内容进行编码的技术。 帧间 编码指利用当前编码图像块与已编码图像块的时间相关性对当前编码图像块 进行编码的技术。 为提高图像的帧内编码效率,H.264/AVC标准首次引入帧内预测技术来去 除当前编码图像块(以下简称当前块)与邻近已编码图像块的空间信息冗余。 HEVC方案为当前国际标准化组织正在研究的新一代视频编码标准化方案,它 继承了 H.264/AVC标准中的帧内预测编码技术并进行扩展。其中图像块色度分 量的预测模式集合可以包括 6种可选的预测模式: DM模式:使用当前块亮度分量的预测模式作为当前块色度分量的预测模 式进行预测;
LM模式:基于相关性模型用亮度分量采样点的重建值计算色度分量采样 点的预测值,相关性模型参数由当前块正上方与正左侧的亮度分量与色度分 量的采样点的重建值计算得到;
DC模式:使用当前块正上方和正左侧邻近的色度分量采样点的重建值的 平均值作为当前块色度分量采样点的预测值;
平面Planar)模式:基于色度分量采样点的值在空间线性平滑变化的假设 计算当前块色度分量采样点的预测值;
水平模式:使用当前块正左侧邻近的色度分量采样点的重建值作为当前 块同一行内所有色度分量采样点的预测值;
竖直模式:使用当前块正上方邻近的色度分量采样点的重建值作为当前 块同一列内所有色度分量采样点的预测值。
上述预测模式中 , DC模式、 竖直模式、 水平模式以及平面模式与 H.264/AVC标准中的对应预测模式基本原理相同 ,具体实施方法有所不同。 LM 模式与 DM模式是新添加的两种预测模式。 除上述预测模式外,还有一个替补 模式,若当前块亮度分量的预测模式与预测模式集合中其余某预测模式相同 时,则色度分量预测模式集合中包含两种相同的预测模式,即 DM模式与所述 某预测模式,此时则使用替补模式替换所述某预测模式,从而构成新的不包 含重复预测模式的预测模式集合。 替补模式可以是与色度分量的预测模式集 合中所有预测模式均不相同的预测模式,例如可以是沿对角线方向预测的对 角线模式。
但在现有的 HEVC方案中 ,色度分量的预测模式集合的选择使解码端的实 现复杂度比较高。 发明内容
本发明实施例提供一种图像块信号分量采样点的帧内解码方法和装置, 以降低解码端的实现复杂度。
本发明实施例提供一种图像块信号分量采样点的帧内解码方法,包括: 从视频码流中获得当前块第一信号分量的预测模式信息;
根据所述当前块第一信号分量的预测模式信息确定当前块第一信号分量 的预测模式,所述当前块第一信号分量的预测模式为 DM模式和 LM模式中的 一种;
根据所述当前块第一信号分量的预测模式获得当前块第一信号分量采样 点的预测值;
根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量 采样点的重建值。
本发明实施例还提供一种图像块信号分量采样点的帧内解码方法,包括: 在解码过程中始终根据所述当前块第二信号分量的预测模式获得当前块 第一信号分量采样点的预测值;
根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量 采样点的重建值。
本发明实施例还提供一种图像块信号分量采样点的帧内解码方法,包括: 从视频码流中获得当前块的预测模式信息;
根据所述当前块的预测模式信息确定当前块的预测模式,所述当前块的 预测模式用于当前块第一信号分量和第二信号分量的预测;
根据所述当前块的预测模式获得当前块第一信号分量采样点的预测值; 根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量 采样点的重建值。
本发明实施例还提供一种图像块信号分量采样点的帧内解码装置,包括: 第一获取单元,用于从视频码流中获得当前块第一信号分量的预测模式 碧、,
第一确定单元,用于根据所述当前块第一信号分量的预测模式信息确定 当前块第一信号分量的预测模式,所述当前块第一信号分量的预测模式为 DM 模式和 LM模式中的一种;
第一预测单元,用于根据所述当前块第一信号分量的预测模式获得当前 块第一信号分量采样点的预测值; 第一计算单元,用于根据所述当前块第一信号分量采样点的预测值获得 当前块第一信号分量采样点的重建值。
本发明实施例还提供一种图像块信号分量采样点的帧内解码装置,包括: 第二预测单元,用于在解码过程中始终根据所述当前块第二信号分量的 预测模式获得当前块第一信号分量采样点的预测值;
第二计算单元,用于根据所述当前块第一信号分量采样点的预测值获得 当前块第一信号分量采样点的重建值。
本发明实施例还提供一种图像块信号分量采样点的帧内解码装置,包括: 第二获取单元,用于从视频码流中获得当前块的预测模式信息; 第二确定单元,用于根据所述当前块的预测模式信息确定当前块的预测 模式,所述当前块的预测模式用于当前块第一信号分量和第二信号分量的预 第三预测单元,用于根据所述当前块的预测模式获得当前块第一信号分 量采样点的预测值; 第三计算单元,用于根据所述当前块第一信号分量采样点的预测值获得 当前块第一信号分量采样点的重建值。
本发明实施例提供的技术方案,通过提供简化预测模式集合的技术手段, 从而降低了解码端的实现复杂度。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍 ,显而易见地,下面描述中的附图仅仅是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的 前提下,还可以根据这些附图获得其他的附图。
图 1为本发明一个实施例的解码方法流程图 ;
图 2为本发明一个实施例的解码方法流程图 ;
图 3为本发明一个实施例的解码方法流程图 ;
图 4为本发明一个实施例的解码方法流程图 ;
图 5为本发明一个实施例的解码方法流程图 ; 图 6为本发明一个实施例的解码方法流程图 ; 图 7为本发明一个实施例的解码装置示意图 ; 图 8为本发明一个实施例的解码装置示意图 ;
图 9为本发明一个实施例的解码装置示意图。
具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行 清楚、 完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 视频图像信号通常包括一个亮度分量与两个色度分量。 亮度分量通常使 用符号 Y表示,色度分量通常使用符号 U、 V表示。 但可以理解的 ,本发明技 术方案除了用于 YUV格式外,还可以用于其它视频图像格式不同分量间的相 互预测,如 RGB格式等。 为方便叙述,本发明实施例采用第一信号分量和第二信号分量的表述。 若图像信号包括亮度信号分量与色度信号分量,则第一信号分量可以是色度 分量,第二信号分量可以是亮度分量;若图像信号包括1、 G、 B三个信号分 量,则第一信号分量可以是1、 G、 B三个信号分量中任意一个信号分量,第 二信号分量可以是与第一信号分量不同的 R、 G、 B三个信号分量中的一个信 号分量;若按照其它方式将图像信号分解为多个信号分量,则可采用类似的 方法规定第一信号分量与第二信号分量。
本发明实施例中 ,所述 DM模式为根据所述当前块第二信号分量的预测模 式从所述当前块周边的第一信号分量采样点的重建值计算所述当前块第一信 号分量采样点的预测值的预测模式;所述 LM模式为基于当前块第二信号分量 采样点的重建值计算当前块第一信号分量采样点的预测值的预测模式。
下面本发明实施例以第一信号分量是色度分量,第二信号分量是亮度分 量为例进行说明。
本发明实施例考虑到 DM模式与平面模式、 DC模式、 水平模式和竖直模 式均有可能相同 ,这说明现有色度分量的预测模式集合中存在冗余,而这种 冗余会影响视频图像压縮效率,增加编解码实现的复杂度。 为去除色度分量的预测模式集合中的冗余,本实施例所使用的色度分量 的预测模式集合仅包含 DM模式与 LM模式两种预测模式。其中 , DM模式为根 据当前块亮度分量的预测模式从当前块周边的色度分量采样点的重建值计算 所述当前块色度分量采样点的预测值的预测模式; LM模式为基于当前块亮度 分量采样点的重建值计算当前块色度分量采样点的预测值的预测模式。 DM模 式与 LM模式都是色度分量所特有的预测模式,都利用亮度分量与色度分量间 的相关性提高压縮效率。 DM模式利用亮度分量与色度分量预测模式的相关性 提高色度分量预测模式的压縮效率, LM模式利用亮度分量与色度分量采样值 的相关性,提高色度分量采样值的预测准确度。
本发明实施例中所使用色度分量的预测模式集合的特点在于,集合中不 存在冗余预测模式。 原因在于,该集合中并不包含平面模式、 DC模式、 水平 模式和竖直模式等亮度分量的可选预测模式,因此不会与 DM模式表示相同的 预测模式。 从而解码端无需根据亮度分量的预测模式调整可选色度分量的预 测模式集合内容来消除这种冗余,从而降低了解码端的复杂度。 另一方面, 本发明实施例采用了简单的色度分量的预测模式集合,从而在视频码流中表 示色度分量的预测模式信息的方法相对于现有技术更加简单,从而在降低编 码端复杂度的同时也降低了解码端的解码复杂度。 例如,在色度分量的预测 模式集合仅包括 DM模式和 LM模式时,码流中可以采用简单的码字,如 1个 flag 来表示预测模式选择结果;在色度分量的预测模式集合仅包括 DM模式时,码 流中无需任何语法元素来独立表示色度分量的预测模式选择结果。
下面结合图 1所示,对本发明实施例提供的图像块信号分量采样点的帧内 解码方法说明如下:
S10K 从视频码流中获得当前块第一信号分量的预测模式信息;
5102、 根据所述当前块第一信号分量的预测模式信息确定当前块第一信 号分量的预测模式,所述当前块第一信号分量的预测模式为 DM模式和 LM模 式中的一种;
5103、 根据所述当前块第一信号分量的预测模式获得当前块第一信号分 量采样点的预测值; S104、 根据所述当前块第一信号分量采样点的预测值获得当前块第一信 号分量采样点的重建值。
本发明实施例提供的技术方案,通过提供仅包括 DM模式和 LM模式的第 一信号分量的预测模式集合的技术手段,从而降低了解码端的实现复杂度。 下面结合图 2所示,以第一信号分量是色度分量,第二信号分量是亮度分 量为例,对本发明实施例提供的图像块信号分量采样点的帧内解码方法说明 如下:
S20K 从视频码流中获得当前块色度分量的预测模式信息。
S202、 根据所述当前块色度分量的预测模式信息确定当前块色度分量的 预测模式,所述当前块色度分量的预测模式为 DM模式和 LM模式中的一种。
本发明实施例中 ,色度分量预测模式集合仅包含两种模式: DM模式和 LM 模式,所以根据当前块色度分量的预测模式信息确定的当前块色度分量的预 测模式为 DM模式和 LM模式中的一种。
本发明实施例中以当前块色度分量的预测模式信息为 flag为例进行说明。 可以理解的,这里的预测模式信息也可以通过其他方式表示。 本发明实施例 中 ,可以使用一个 flag作为当前块色度分量的预测模式信息表示当前块色度分 量的预测模式是 DM模式还是 LM模式。 例如,可以使 flag为 0表示当前块的色 度分量的预测模式是 DM模式, flag为 1表示当前块的色度分量的预测模式是 LM模式。
对于当前块的 flag的熵编码和熵解码方法可以采用如下方法进行。
若熵编码模式为基于上下文模型的二进制算数编码,则可基于当前块上 块与左块的 flag的取值确定熵编码器所使用的上下文模型。 例如,可以使用 3 个上下文模型来编码当前块的 flag。 此时一种上下文模型确定方法为 ,将当前 块上块与左块的 flag相加,根据得到的数值(可能是 0 , 1 ,或 2 )来确定使用 3 个上下文模型中的哪一个来编码当前块的 flag。编码器与解码器使用相同的方 法确定上下文模型。编码器基于所确定的上下文模型将当前块的 flag写入码流; 而解码器则基于所确定的上下文模型从码流中获取当前块的 flag。 当前块上块 与左块指在空间位置关系上与当前块相邻的上方图像块与左侧图像块。 若当 前块上块或左块不存在,或上块与左块的 flag不存在,则可以将上块或左块的 flag设置为一个默认值,再使用上述方法确定当前块的 flag的上下文模型。
某些实施方式中 ,为简化编解码操作,也可仅使用一个确定的上下文模 型来编码当前块的 flag。 进一步的,也可以不使用上下文模型,直接对当前块 的 flag进行二进制算数编解码。
若熵编码模式为变长编码,则编码器可以直接将当前块的 flag写入码流, 而解码器可以直接从视频码流中获取当前块的 flag
S203、 根据所述当前块色度分量的预测模式获得当前块色度分量采样点 的预测值。
本发明实施例中 ,若在 S202中确定当前块色度分量的预测模式为 DM模式 , 则可以根据当前块亮度分量的预测模式从当前块周边的色度分量采样点的重 建值计算当前块色度分量采样点的预测值。 也即可以将当前块亮度分量的预 测模式作为当前块色度分量的预测模式,根据当前块色度分量的预测模式从 当前块周边的色度分量采样点的重建值计算当前块色度分量采样点的预测值。 若在 S202中确定当前块色度分量的预测模式为 LM模式,则可以基于当前 块亮度分量采样点的重建值计算当前块色度分量采样点的预测值。
本发明实施例中 ,当前块亮度分量的预测模式可以包括 DC模式、 竖直模 式、水平模式和平面模式的一种,也可以是其它方向性预测模式。在 LM和 DM 模式下获得当前块色度分量采样点的预测值的方法可以采用现有技术的方法, 在此不再赘述。
S204、 根据所述当前块色度分量采样点的预测值获得当前块色度分量采 样点的重建值。
基于所获取的当前块色度分量采样点的预测值与重建得到的当前块色度 分量采样点的残差值计算当前块色度分量采样点的重建值。 当前块色度分量 采样点的残差值可以基于视频码流中得到的当前块色度分量采样点的残差信 息获得。 具体可采用 H.264/AVC标准或当前 HEVC方案中的方法重建当前块色 度分量采样点的残差值,在此不再详细描述。
本发明实施例提供的技术方案,通过提供仅包括 DM模式和 LM模式的色 度分量的预测模式集合的技术手段,从而降低了解码端的实现复杂度。 下面结合图 3所示,对本发明实施例提供的图像块信号分量采样点的帧内 解码方法说明如下:
S30K 在解码过程中始终根据所述当前块第二信号分量的预测模式获得 当前块第一信号分量采样点的预测值。
S302、 根据所述当前块第一信号分量采样点的预测值获得当前块第一信 号分量采样点的重建值。
本发明实施例提供的技术方案,通过在解码过程中始终根据所述当前块 第二信号分量的预测模式获得当前块第一信号分量采样点的预测值的技术手 段,从而降低了解码端的实现复杂度。 下面结合图 4所示,以第一信号分量是色度分量,第二信号分量是亮度分 量为例,对本发明实施例提供的图像块信号分量采样点的帧内解码方法说明 如下: 本发明实施例中 ,在解码过程中始终根据所述当前块亮度分量的预测模 式获得当前块色度分量采样点的预测值。 也即色度分量的预测模式集合中仅 包括 DM模式一种预测模式,在解码过程中始终将当前块亮度分量的预测模式 作为当前块色度分量的预测模式。 需要注意的是,在某些实施方式中 ,色度 分量的预测模式集合中仅包括 DM模式一种预测模式也可以理解为并不存在 色度分量的预测模式集合,只是简单的根据当前块亮度分量的预测模式确定 当前块色度分量的预测模式。
本发明实施例中 ,进一步排除了 LM模式作为色度分量的可选预测模式。 LM模式需要计算亮度分量与色度分量的相关性模型参数,与其它已有色度分 量的预测模式相比,计算复杂度较高, 因此功耗较高,并不适用于某些低功 耗移动设备的编解码应用。
因为本发明实施例中色度分量的预测模式仅为 DM模式,所以在码流中无 需为色度分量传输任何预测模式信息到解码器。 解码器则使用当前块亮度分 量的预测模式作为当前块色度分量的预测模式。 换言之,亮度分量与色度分 量使用相同的预测模式。
S40K 根据所述当前块亮度分量的预测模式获得当前块色度分量采样点 的预测值。
本发明实施例中 ,可以根据所述亮度分量的预测模式从所述当前块周边 的色度分量采样点的重建值计算所述当前块色度分量采样点的预测值。 也即 将当前块亮度分量的预测模式作为当前块色度分量的预测模式,根据所述当 前块色度分量的预测模式从所述当前块周边的色度分量采样点的重建值计算 所述当前块色度分量采样点的预测值。
S402、 根据所述当前块色度分量采样点的预测值获得当前块色度分量采 样点的重建值。
基于所获取的当前块色度分量采样点的预测值与重建得到的当前块色度 分量采样点的残差值计算当前块色度分量采样点的重建值。 当前块色度分量 采样点的残差值可以基于视频码流中得到的当前块色度分量采样点的残差信 息获得。 具体可采用 H.264/AVC标准或当前 HEVC方案中的方法重建当前块色 度分量采样点的残差值,在此不再详细描述。
本发明实施例提供的技术方案,通过在解码过程中始终将当前块亮度分 量的预测模式作为当前块色度分量的预测模式的技术手段,从而降低了解码 端的实现复杂度。 下面结合图 5所示,对本发明实施例提供的图像块信号分量采样点的帧内 解码方法说明如下:
S50K 从视频码流中获得当前块的预测模式信息;
5502、 根据所述当前块的预测模式信息确定当前块的预测模式,所述当 前块的预测模式用于当前块第一信号分量和第二信号分量的预测;
5503、 根据所述当前块的预测模式获得当前块第一信号分量采样点的预 测值;
5504、 根据所述当前块第一信号分量采样点的预测值获得当前块第一信 号分量采样点的重建值。
本发明实施例提供的技术方案,通过使当前块第一信号分量的预测模式 与所述当前块第二人信号分量的预测模式为同一种预测模式的技术手段,从 而降低了解码端的实现复杂度。 下面结合图 6所示,以第一信号分量是色度分量,第二信号分量是亮度分 量为例,对本发明实施例提供的图像块信号分量采样点的帧内解码方法说明 如下:
S60K 从视频码流中获得当前块的预测模式信息。
S602、 根据所述当前块的预测模式信息确定当前块的预测模式,所述当 前块的预测模式用于当前块色度分量和亮度分量的预测。
当前块的预测模式可以理解为当前块亮度分量的预测模式与当前块色度 分量的预测模式为同一种预测模式。 在解码端可以通过视频码流中的当前块 的预测模式信息确定。
本发明实施例中 ,当前块的预测模式可以包括 DC模式、 竖直模式、 水平 模式和平面模式的一种,也可以是其它方向性预测模式。 以水平向右方向作 为基准,竖直模式与水平模式的预测方向角度分别为 90度与 0度。 所述其它方 向性预测是水平预测与竖直预测的推广,其预测方向角度更为精细,可以是
45度, 60度等。 假定当前块共有 34种可选的预测模式,包括 DC模式、 竖直模 式、 水平模式和平面模式以及其它方向性预测模式,则可以使用一个最可能 预测模式 flag与一个 5比特的定长码作为当前块的预测模式信息表示当前块的 预测模式是上述 34种预测模式的一种。
5603、根据所述当前块的预测模式获得当前块色度分量采样点的预测值。 本发明实施例中 , 因为当前块亮度分量的预测模式与所述当前块色度分 量的预测模式为同一种预测模式,从而根据当前块的预测模式从所述当前块 周边的色度分量采样点的重建值计算所述当前块色度分量采样点的预测值。
5604、 根据所述当前块色度分量采样点的预测值获得当前块色度分量采 样点的重建值。
基于所获取的当前块色度分量采样点的预测值与重建得到的当前块色度 分量采样点的残差值计算当前块色度分量采样点的重建值。 当前块色度分量 采样点的残差值可以基于视频码流中得到的当前块色度分量采样点的残差信 息获得。 具体可采用 H.264/AVC标准或当前 HEVC方案中的方法重建当前块色 度分量采样点的残差值,在此不再详细描述。
本发明实施例提供的技术方案,通过使当前块亮度分量的预测模式与所 述当前块色度分量的预测模式为同一种预测模式的技术手段,从而降低了解 码端的实现复杂度。 如图 7所示,本发明实施例提供一种图像块信号分量采样点的帧内解码装 置,包括:
第一获取单元 701 ,用于从视频码流中获得当前块第一信号分量的预测模 式信息;
第一确定单元 702 ,用于根据所述当前块第一信号分量的预测模式信息确 定当前块第一信号分量的预测模式,所述当前块第一信号分量的预测模式为 DM模式和 LM模式中的一种;
第一预测单元 703 ,用于根据所述当前块第一信号分量的预测模式获得当 前块第一信号分量采样点的预测值; 第一计算单元 704 ,用于根据所述当前块第一信号分量采样点的预测值获 得当前块第一信号分量采样点的重建值。
某些实施方式中 ,所述第一预测单元 703具体用于,若根据所述当前块第 一信号分量的预测模式信息确定当前块第一信号分量的预测模式为 DM模式, 根据所述当前块第二信号分量的预测模式从所述当前块周边的第一信号分量 采样点的重建值计算所述当前块第一信号分量采样点的预测值。
某些实施方式中 ,所述第一预测单元 703具体用于,若根据所述当前块第 一信号分量的预测模式信息确定当前块第一信号分量的预测模式为 LM模式, 基于当前块第二信号分量采样点的重建值计算当前块第一信号分量采样点的 本发明实施例提供的装置,用于实现图 1和图 2所示的方法,在此不再赘 述。
本发明实施例提供的装置,通过提供仅包括 DM模式和 LM模式的第一信 号分量的预测模式集合的技术手段,从而降低了解码端的实现复杂度。 如图 8所示,本发明实施例提供一种图像块信号分量采样点的帧内解码装 置,包括:
第二预测单元 801 ,用于在解码过程中始终根据所述当前块第二信号分量 的预测模式获得当前块第一信号分量采样点的预测值;
第二计算单元 802 ,用于根据所述当前块第一信号分量采样点的预测值获 得当前块第一信号分量采样点的重建值。
某些实施方式中 ,第二预测单元 801具体用于,根据所述第二信号分量的 预测模式从所述当前块周边的第一信号分量采样点的重建值计算所述当前块 第一信号分量采样点的预测值。
本发明实施例提供的装置,用于实现图 3和图 4所示的方法,在此不再赘 述。
本发明实施例提供的装置,通过在解码过程中始终根据所述当前块第二 信号分量的预测模式获得当前块第一信号分量采样点的预测值的技术手段, 从而降低了解码端的实现复杂度。 如图 9所示,本发明实施例提供一种图像块信号分量采样点的帧内解码装 置,包括:
第二获取单元 901 ,用于从视频码流中获得当前块的预测模式信息; 第二确定单元 902 ,用于根据所述当前块的预测模式信息确定当前块的预 测模式,所述当前块的预测模式用于当前块第一信号分量和第二信号分量的 第三预测单元 903 ,用于根据所述当前块的预测模式获得当前块第一信号 分量采样点的预测值;
第三计算单元 904 ,用于根据所述当前块第一信号分量采样点的预测值获 得当前块第一信号分量采样点的重建值。
某些实施方式中 ,第三预测单元 903具体用于,根据所述当前块的预测模 式从所述当前块周边的第一信号分量采样点的重建值计算所述当前块第一信 号分量采样点的预测值。
本发明实施例提供的装置,用于实现图 5和图 6所示的方法,在此不再赘 述。
本发明实施例提供的装置,通过使当前块第一信号分量的预测模式与所 述当前块第二人信号分量的预测模式为同一种预测模式的技术手段,从而降 低了解码端的实现复杂度。 本发明实施例另一方面的技术效果还在于可以降低编码端的复杂度。 现 有的 HEVC色度分量的预测模式集合内容需要根据亮度分量预测模式进行调 整。 在熵编码时的具体体现为需要根据亮度分量的预测模式对色度分量的预 测模式的码字分配进行动态调整。例如,若亮度分量的预测模式为竖直模式, 则原本用于表示色度分量中竖直模式的码字将用于表示替补模式。 本发明实 施例提供的色度分量的预测模式集合内容无需根据亮度分量预测模式进行调 整,从而降低了复杂度。
而且,现有 HEVC色度分量的预测模式集合中可选预测模式数量较多,编 码端在预测模式选择过程的计算复杂度较高,而本发明实施例提供的色度分 量的预测模式集合减少了可选预测模式的数量,从而降低了预测模式选择的 计算复杂度。如表 X所示的关于编码节约时间的仿真表明 帧内预测编码图像 的编码时间减少了大约 10 %
Figure imgf000029_0001
在实现本发明实施例前述所述的有益效果的同时,本发明实施例提供的 色度分量的预测模式集合对视频图像压縮效率基本没有影响,如表 Y所示:
Figure imgf000029_0002
本发明实施例提供的技术可以应用在数字信号处理领域中 ,通过编码器, 解码器实现。 视频编码器,解码器广泛应用于各种通讯设备或电子设备中 , 例如:数字电视、 机顶盒、 媒体网关,移动电话,无线装置,个人数据助理
( PDA ) ,手持式或便携式计算机, GPS接收机 /导航器,照相机,视频播放 器,摄像机,录像机,监控设备,视频会议和可视电话设备等等。 这类设备 中包括处理器,存储器,以及传输数据的接口。 视频编解码器可以直接由数 字电路或芯片例如 DSP ( digital signal processor )实现,或者由软件代码驱动 一处理器执行软件代码中的流程而实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读 取存储介质中 ,该程序在执行时,执行包括上述方法实施例的步骤;而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其 限制;尽管参照前述实施例对本发明进行了详细的说明 ,本领域的普通技术 人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要求 书
1、 一种图像块信号分量采样点的帧内解码方法,其特征在于,所述方法 包括:
从视频码流中获得当前块第一信号分量的预测模式信息;
根据所述当前块第一信号分量的预测模式信息确定当前块第一信号分量 的预测模式,所述当前块第一信号分量的预测模式为 DM模式和 LM模式中的 一种;
根据所述当前块第一信号分量的预测模式获得当前块第一信号分量采样 点的预测值;
根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量 采样点的重建值。
2、 根据权利要求 1所述的方法,其特征在于,若根据所述当前块第一信 号分量的预测模式信息确定当前块第一信号分量的预测模式为 DM模式,则所 述根据所述当前块第一信号分量的预测模式获得当前块第一信号分量采样点 的预测值包括:根据所述当前块第二信号分量的预测模式从所述当前块周边 的第一信号分量采样点的重建值计算所述当前块第一信号分量采样点的预测 值。
3、 根据权利要求 1或 2所述的方法,其特征在于,若根据所述当前块第一 信号分量的预测模式信息确定当前块第一信号分量的预测模式为 LM模式,则 所述根据所述当前块第一信号分量的预测模式获得当前块第一信号分量采样 点的预测值包括:
基于当前块第二信号分量采样点的重建值计算当前块第一信号分量采样 点的预测值。
4、 根据权利要求 1至 3任一项所述的方法,其特征在于,所述 DM模式为 根据所述当前块第二信号分量的预测模式从所述当前块周边的第一信号分量 采样点的重建值计算所述当前块第一信号分量采样点的预测值的预测模式; 所述 LM模式为基于当前块第二信号分量采样点的重建值计算当前块第一信 号分量采样点的预测值的预测模式
5、 根据权利要求 1至 4任一项所述的方法,其特征在于,所述第一信号分 量是色度分量,所述第二信号分量是亮度分量。
6、 一种图像块信号分量采样点的帧内解码方法,其特征在于,所述方法 包括:
在解码过程中始终根据所述当前块第二信号分量的预测模式获得当前块 第一信号分量采样点的预测值;
根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量 采样点的重建值。
7、 根据权利要求 6所述的方法,其特征在于,所述根据所述当前块第二 信号分量的预测模式获得当前块第一信号分量采样点的预测值包括:
根据所述当前块第二信号分量的预测模式从所述当前块周边的第一信号 分量采样点的重建值计算所述当前块第一信号分量采样点的预测值。
8、 根据权利要求 6或 7所述的方法,其特征在于,所述第一信号分量是色 度分量,所述第二信号分量是亮度分量。
9、 一种图像块信号分量采样点的帧内解码方法,其特征在于,所述方法 包括:
从视频码流中获得当前块的预测模式信息;
根据所述当前块的预测模式信息确定当前块的预测模式,所述当前块的 预测模式用于当前块第一信号分量和第二信号分量的预测;
根据所述当前块的预测模式获得当前块第一信号分量采样点的预测值; 根据所述当前块第一信号分量采样点的预测值获得当前块第一信号分量 采样点的重建值。
10、 根据权利要求 9所述的方法,其特征在于,所述根据所述当前块的预 测模式获得当前块第一信号分量采样点的预测值包括:
根据所述当前块的预测模式从所述当前块周边的第一信号分量采样点的 重建值计算所述当前块第一信号分量采样点的预测值。
11、 根据权利要求 9或 10所述的方法,其特征在于,所述第一信号分量是 色度分量,所述第二信号分量是亮度分量。
12、 一种图像块信号分量采样点的帧内解码装置,其特征在于,所述装 置包括:
第一获取单元,用于从视频码流中获得当前块第一信号分量的预测模式 碧、,
第一确定单元,用于根据所述当前块第一信号分量的预测模式信息确定 当前块第一信号分量的预测模式,所述当前块第一信号分量的预测模式为 DM 模式和 LM模式中的一种;
第一预测单元,用于根据所述当前块第一信号分量的预测模式获得当前 块第一信号分量采样点的预测值;
第一计算单元,用于根据所述当前块第一信号分量采样点的预测值获得 当前块第一信号分量采样点的重建值。
13、根据权利要求 12所述的装置,其特征在于,所述第一预测单元用于: 若根据所述当前块第一信号分量的预测模式信息确定当前块第一信号分 量的预测模式为 DM模式,根据所述当前块第二信号分量的预测模式从所述当 前块周边的第一信号分量采样点的重建值计算所述当前块第一信号分量采样 点的预测值。
14、 根据权利要求 12或 13所述的装置,其特征在于,所述第一预测单元 用于:
若根据所述当前块第一信号分量的预测模式信息确定当前块第一信号分 量的预测模式为 LM模式,基于当前块第二信号分量采样点的重建值计算当前 块第一信号分量采样点的预测值。
15、 一种图像块信号分量采样点的帧内解码装置,其特征在于,所述装 置包括: 第二预测单元,用于在解码过程中始终根据所述当前块第二信号分量的 预测模式获得当前块第一信号分量采样点的预测值;
第二计算单元,用于根据所述当前块第一信号分量采样点的预测值获得 当前块第一信号分量采样点的重建值。
16、根据权利要求 15所述的装置,其特征在于,所述第二预测单元用于: 根据所述第二信号分量的预测模式从所述当前块周边的第一信号分量采 样点的重建值计算所述当前块第一信号分量采样点的预测值。
17、 一种图像块信号分量采样点的帧内解码装置,其特征在于,所述装 置包括:
第二获取单元,用于从视频码流中获得当前块的预测模式信息; 第二确定单元,用于根据所述当前块的预测模式信息确定当前块的预测 模式,所述当前块的预测模式用于当前块第一信号分量和第二信号分量的预 第三预测单元,用于根据所述当前块的预测模式获得当前块第一信号分 量采样点的预测值;
第三计算单元,用于根据所述当前块第一信号分量采样点的预测值获得 当前块第一信号分量采样点的重建值。
18、根据权利要求 17所述的装置,其特征在于,所述第三预测单元用于: 根据所述当前块的预测模式从所述当前块周边的第一信号分量采样点的 重建值计算所述当前块第一信号分量采样点的预测值。
PCT/CN2012/084074 2011-11-04 2012-11-05 一种图像块信号分量采样点的帧内解码方法和装置 WO2013064114A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12846035.9A EP2768222A4 (en) 2011-11-04 2012-11-05 INTRA FRAME DECODING METHOD AND DEVICE FOR PICTOR BLOCK SIGNAL COMPONENT APPLICATION POINT
US14/265,491 US9674529B2 (en) 2011-11-04 2014-04-30 Intra-frame decoding method and apparatus for signal component sampling point of image block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110344943.2 2011-11-04
CN201110344943.2A CN103096051B (zh) 2011-11-04 2011-11-04 一种图像块信号分量采样点的帧内解码方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/265,491 Continuation US9674529B2 (en) 2011-11-04 2014-04-30 Intra-frame decoding method and apparatus for signal component sampling point of image block

Publications (1)

Publication Number Publication Date
WO2013064114A1 true WO2013064114A1 (zh) 2013-05-10

Family

ID=48191373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084074 WO2013064114A1 (zh) 2011-11-04 2012-11-05 一种图像块信号分量采样点的帧内解码方法和装置

Country Status (4)

Country Link
US (1) US9674529B2 (zh)
EP (1) EP2768222A4 (zh)
CN (1) CN103096051B (zh)
WO (1) WO2013064114A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170071594A (ko) * 2014-10-28 2017-06-23 미디어텍 싱가폴 피티이. 엘티디. 비디오 코딩을 위한 가이드된 크로스-컴포넌트 예측 방법
WO2016115708A1 (en) * 2015-01-22 2016-07-28 Mediatek Singapore Pte. Ltd. Methods for chroma component coding with separate intra prediction mode
CN107211121B (zh) 2015-01-22 2020-10-23 联发科技(新加坡)私人有限公司 视频编码方法与视频解码方法
MX2021006450A (es) 2019-01-10 2021-07-02 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento de descodificacion de imagenes, descodificador y medio de almacenamiento informatico.
WO2023039859A1 (zh) * 2021-09-17 2023-03-23 Oppo广东移动通信有限公司 视频编解码方法、设备、系统、及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784015A (zh) * 2004-12-02 2006-06-07 中国科学院计算技术研究所 一种帧内图像预测编码方法
CN101646081A (zh) * 2009-06-18 2010-02-10 杭州高特信息技术有限公司 一种avs快速帧内预测方法及装置
WO2011126348A2 (en) * 2010-04-09 2011-10-13 Lg Electronics Inc. Method and apparatus for processing video data

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100536573C (zh) * 2004-01-16 2009-09-02 北京工业大学 基于方向的dc预测方法及用于视频编码的帧内预测方法
CN101820546A (zh) * 2009-02-27 2010-09-01 源见科技(苏州)有限公司 帧内预测方法
CN101964906B (zh) * 2009-07-22 2012-07-04 北京工业大学 基于纹理特性的快速帧内预测方法和装置
JP2014500692A (ja) * 2010-12-23 2014-01-09 サムスン エレクトロニクス カンパニー リミテッド 映像予測単位についてのイントラ予測モード符号化方法及び装置、並びに映像予測単位についてのイントラ予測モード復号化方法及び装置
US10123008B2 (en) * 2011-06-17 2018-11-06 Hfi Innovation Inc. Method and apparatus for coding of intra prediction mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784015A (zh) * 2004-12-02 2006-06-07 中国科学院计算技术研究所 一种帧内图像预测编码方法
CN101646081A (zh) * 2009-06-18 2010-02-10 杭州高特信息技术有限公司 一种avs快速帧内预测方法及装置
WO2011126348A2 (en) * 2010-04-09 2011-10-13 Lg Electronics Inc. Method and apparatus for processing video data

Also Published As

Publication number Publication date
CN103096051B (zh) 2017-04-12
US20140233641A1 (en) 2014-08-21
EP2768222A4 (en) 2016-01-13
US9674529B2 (en) 2017-06-06
CN103096051A (zh) 2013-05-08
EP2768222A1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US11876977B2 (en) Intra-frame prediction and decoding methods and apparatuses for image signal
WO2013107177A1 (zh) 编解码方法和装置
WO2013113217A1 (zh) 解码方法和装置
WO2018127090A1 (zh) 图像预测方法和相关设备
CN114501010B (zh) 图像编码方法、图像解码方法及相关装置
WO2021004153A1 (zh) 图像预测方法、编码器、解码器以及存储介质
WO2016167935A1 (en) Rate-constrained fallback mode for display stream compression
TW201725905A (zh) 用於非4:4:4色度子採樣之顯示串流壓縮(dsc)之熵寫碼技術
WO2021238540A1 (zh) 图像编码方法、图像解码方法及相关装置
WO2013064114A1 (zh) 一种图像块信号分量采样点的帧内解码方法和装置
WO2021185257A1 (zh) 图像编码方法、图像解码方法及相关装置
JP2017515377A (ja) ディスプレイストリーム圧縮(dsc)のためのラグランジュパラメータ計算のためのシステムおよび方法
KR20130070644A (ko) 비디오 코딩 방법, 장치 및 컴퓨터 프로그램
WO2021244197A1 (zh) 图像编码方法、图像解码方法及相关装置
WO2021147464A1 (zh) 视频处理方法、装置及电子设备
CN115866297A (zh) 视频处理方法、装置、设备及存储介质
WO2021180220A1 (zh) 图像编码和解码方法及装置
WO2021012942A1 (zh) 残差编码、解码方法及装置、存储介质及电子装置
US11985309B2 (en) Picture coding method, picture decoding method, and related apparatuses
CN113965764B (zh) 图像编码方法、图像解码方法及相关装置
CN117676143A (zh) 一种编解码方法及装置
KR20040046321A (ko) 동영상 복호화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012846035

Country of ref document: EP