WO2016115708A1 - Methods for chroma component coding with separate intra prediction mode - Google Patents

Methods for chroma component coding with separate intra prediction mode Download PDF

Info

Publication number
WO2016115708A1
WO2016115708A1 PCT/CN2015/071341 CN2015071341W WO2016115708A1 WO 2016115708 A1 WO2016115708 A1 WO 2016115708A1 CN 2015071341 W CN2015071341 W CN 2015071341W WO 2016115708 A1 WO2016115708 A1 WO 2016115708A1
Authority
WO
WIPO (PCT)
Prior art keywords
chroma
mode
prediction
component
chroma component
Prior art date
Application number
PCT/CN2015/071341
Other languages
French (fr)
Inventor
Xianguo Zhang
Kai Zhang
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2015/071341 priority Critical patent/WO2016115708A1/en
Priority to PCT/CN2016/070331 priority patent/WO2016115981A1/en
Priority to CN201680006803.5A priority patent/CN107211121B/en
Priority to US15/541,802 priority patent/US10321140B2/en
Publication of WO2016115708A1 publication Critical patent/WO2016115708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the invention relates generally to video coding process, including general video, Screen Content (SC) video, multi-view video and Three-Dimensional (3D) video processing.
  • SC Screen Content
  • 3D Three-Dimensional
  • the present invention relates to methods for how to generate the prediction data for each chroma component.
  • intra prediction there are multiple directional intra prediction candidates.
  • Fig. 1 and Table 1 the relationship between variable intraPredAngle and the corresponding direction index is shown in Fig. 1 and Table 1.
  • Each intra direction predicts the sample at position (x, y) of one Prediction Unit (PU) by ( (32-iFact) ⁇ ref [x+iIdx+1] +iFact ⁇ ref [x+iIdx+2 ] +16) >> 5, when the direction is relatively vertical (the direction index corresponding to the direction intraPredAngle is greater than or equal to 18) .
  • the array ref is the decoded line buffer above the current PU
  • LM linear-model
  • Single depth intra mode as referred in [JCT3V-H0087] , utilizes one predicted value from neighboring reconstructed samples as the prediction values for all inside samples without transmitting the prediction residuals;
  • LM chroma intra prediction as referred in JCTVC-L0240 and JCTVC-M0116, predicts chroma data from luma data by a linear model. As described in Fig.
  • LM chroma prediction modes can be further classified into Top+Left LM, TopOnly and LeftOnly modes, which are collectively referred to as Multi-LM chroma modes.
  • luma and chroma components can have different intra prediction modes through the transmission of 2 flags respectively for luma and chroma coding blocks. Moreover, the blocks for different chroma components must utilize the same prediction modes. As shown in table II for HEVC intra prediction mode transmission, only one flag of intra_chroma_pred_mode [x0] [y0] is utilized to indentify the prediction mode for both Cb and Cr chroma components.
  • Fig. 3 presents one decoding procedure example for the proposed method.
  • Fig. 1 is a diagram illustrating the common-used intra prediction directions in HEVC.
  • Fig. 2 is a diagram illustrating the referred different kinds of Multi-LM chroma modes.
  • Fig. 3 is a diagram illustrating one example for the proposed decoding process of chroma components.
  • the procedure of this method can be divided into steps of (1) Constructing candidate mode sets for different chroma components, including the first chroma component and non-first chroma components. (2) Using flags to select and identify best prediction modes for these chroma components. (3) Coding the binarization result of these best prediction modes and information for the component’ prediction residuals. Results show the method can achieve more than 1% bit-savings on the second chroma component.
  • the i-th chroma component’s candidate mode set includes M (i) modes from PLANAR, DC, HOR, VER, TOP+LEFT LM, OnlyTop LM, OnlyLeft LM, DM and so on, where M (i) is larger than 0 for any index i.
  • the non-first chroma component prediction mode set can include one special designed prediction mode, namely the CB_DM mode, which makes the non-first chroma component inherit the first component’s prediction mode.
  • the non-first chroma component prediction mode set can include one special designed prediction mode, namely the PRE_DM mode, which makes the k-th chroma component inherit the k-1-th component’s prediction mode.
  • step (2) there are separate flags to be encoded and decoded to indentify the prediction modes of different chroma components.
  • flags are utilized to signal the combination of different chroma components’ prediction modes. For example, using one flag equal to 0 to denote both Cb and Cr components’ prediction mode are DM (derived mode) , which means chroma prediction modes are the same as luma prediction mode.
  • a third embodiment of step (2) flags for the second chroma component prediction mode is only transmitted when the prediction mode of the first component belongs to a limited set of prediction modes.
  • the second chroma component prediction mode can be derived from neighboring block’s second chroma component prediction mode.
  • step (2) if the prediction mode of the current chroma component is CB_DM, the prediction mode of the first chroma component will be selected for the current chroma component.
  • step (2) if the decoded prediction mode of the current chroma component is PRE_DM, the prediction mode of its before chroma component will be selected for the current chroma component.
  • step (3) the coding and transmission of these chroma components’ residual data can be either after the coding and transmission of their corresponding component’s prediction mode flags or after all the chroma prediction mode flags are coded and transmitted.
  • step (3) there is no overlap between the arithmetic coding contexts utilized to signal the i-th chroma component’s prediction mode and those for the j-th chroma component’s, when i is not equal to j.
  • step (3) there is no overlap between the arithmetic coding contexts utilized to signal the i-th chroma component’s coding symbols for the prediction residuals and those of the j-th chroma component’s , when i is not equal to j.
  • step (3) the CB_DM or PRE_DM mode of the non-first chroma component is signaled in stream with the shortest binarization length.
  • the DM mode of non-first chroma component is not signalized with the shortest binarization length. For example, 2 symbols are utilized to signalize the overall four candidate chroma modes among DM, Planar, DC, VER, HOR and so on.
  • step (3) beyond the contexts for signalizing the candidate DM mode or any Multi-LM chroma mode, there are no less than 1 arithmetic coding contexts utilized to signal the other candidate chroma modes.
  • an embodiment of the present invention can be a circuit integrated into a video compression chip or program codes integrated into video compression software to perform the processing described herein.
  • An embodiment of the present invention may also be program codes to be executed on a Digital Signal Processor (DSP) to perform the processing described herein.
  • DSP Digital Signal Processor
  • the invention may also involve a number of functions to be performed by a computer processor, a digital signal processor, a microprocessor, or field programmable gate array (FPGA) .
  • processors can be configured to perform particular tasks according to the invention, by executing machine-readable software code or firmware code that defines the particular methods embodied by the invention.
  • the software code or firmware codes may be developed in different programming languages and different format or style.
  • the software code may also be compiled for different target platform.
  • different code formats, styles and languages of software codes and other means of configuring code to perform the tasks in accordance with the invention will not depart from the spirit and scope of the invention.

Abstract

Methods of chroma intra prediction for general videos are disclosed. Several methods are proposed for coding the chroma components with their own prediction modes, and even their own contexts.

Description

METHODS FOR CHROMA COMPONENT CODING WITH SEPARATE INTRA PREDICTION MODE TECHNICAL FIELD
The invention relates generally to video coding process, including general video, Screen Content (SC) video, multi-view video and Three-Dimensional (3D) video processing. In particular, the present invention relates to methods for how to generate the prediction data for each chroma component.
BACKGROUND
In intra prediction, there are multiple directional intra prediction candidates. For example, in HEVC, the relationship between variable intraPredAngle and the corresponding direction index is shown in Fig. 1 and Table 1. Each intra direction predicts the sample at position (x, y) of one Prediction Unit (PU) by ( (32-iFact) ×ref [x+iIdx+1] +iFact×ref [x+iIdx+2 ] +16) >> 5, when the direction is relatively vertical (the direction index corresponding to the direction intraPredAngle is greater than or equal to 18) . In this expression, the array ref is the decoded line buffer above the current PU, idx is the floor position of the pixel in ref which (x, y) points to along the intra direction (i.e., idx= ( (y+1) × intraPredAngle) >>5 ) , and iFact is the distance between the floor poistion and pointed position (i.e., iFact = ( (y+1) × intraPredAngle) &31) .
Beside these directions, DC and Planar modes are also utilized in HEVC. Beyond HEVC, well-known intra prediction methods include linear-model (LM) chroma intra prediction, single depth intra mode and so on. Single depth intra mode, as referred in [JCT3V-H0087] , utilizes one predicted value from neighboring reconstructed samples as the prediction values for all inside samples without transmitting the prediction residuals; LM chroma intra prediction, as referred in JCTVC-L0240 and JCTVC-M0116, predicts chroma data from luma data by a linear model. As described in Fig. 2, according which neighboring samples are utilized as reference, LM chroma prediction modes can be further classified into Top+Left LM, TopOnly and LeftOnly modes, which are collectively referred to as Multi-LM chroma modes.  (a) Left+Top LM chroma mode; (b) Left-Only LM chroma modes; (c) Top-Only LM chroma modes.
Table 1. Specification of intraPredAngle
Figure PCTCN2015071341-appb-000001
One common point of the above intra prediction methods is that, luma and chroma components can have different intra prediction modes through the transmission of 2 flags respectively for luma and chroma coding blocks. Moreover, the blocks for different chroma components must utilize the same prediction modes. As shown in table II for HEVC intra prediction mode transmission, only one flag of intra_chroma_pred_mode [x0] [y0] is utilized to indentify the prediction mode for both Cb and Cr chroma components.
Table 1. Specification of intra_chroma_pred_mode
Figure PCTCN2015071341-appb-000002
The problem is that, different chroma prediction blocks do not always utilize the same prediction mode. Therefore, it is proposed to transmit separate flags for different chroma components to indentify these components’ prediction modes and  code each chroma components with separate intra prediction mode.
SUMMARY
It is proposed to permit utilizing different prediction modes for different chroma components while coding kinds of non-4:0:0 videos in this application.
In practical video codec, typically at the decoder side, the method has following important procedures.
(1) Decoding the symbols used to identify the chroma prediction modes. For example, two flags respectively for Cb and Cr components can be transmitted to identify their prediction modes. Another feasible way is to transmit one flag to indentify different combinations of Cb and Cr’s prediction modes.
(2) Separate prediction mode decoding. For example, among the normal Cr and Cr chroma components, when Cr component prediction mode can be transmitted after Cb prediction mode, Cb prediction mode can be utilized as one candidate for Cr component. In such case, a more efficient chroma prediction mode coding method is proposed in this patent application.
At the encoder side, procedures corresponding to the decoding procedures are necessarily required.
Fig. 3 presents one decoding procedure example for the proposed method. One example for the proposed decoding process of chroma components.
Other aspects and features of the invention will become apparent to those with ordinary skill in the art upon review of the following descriptions of specific embodiments.
BRIEF DESCRIPTION OF DRAWINGS
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
Fig. 1 is a diagram illustrating the common-used intra prediction directions in HEVC.
Fig. 2 is a diagram illustrating the referred different kinds of Multi-LM  chroma modes.
Fig. 3 is a diagram illustrating one example for the proposed decoding process of chroma components.
DETAILED DESCRIPTION
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
The procedure of this method can be divided into steps of (1) Constructing candidate mode sets for different chroma components, including the first chroma component and non-first chroma components. (2) Using flags to select and identify best prediction modes for these chroma components. (3) Coding the binarization result of these best prediction modes and information for the component’ prediction residuals. Results show the method can achieve more than 1% bit-savings on the second chroma component.
A first embodiment of step (1) , the i-th chroma component’s candidate mode set includes M (i) modes from PLANAR, DC, HOR, VER, TOP+LEFT LM, OnlyTop LM, OnlyLeft LM, DM and so on, where M (i) is larger than 0 for any index i.
A second embodiment of step (1) , the non-first chroma component prediction mode set can include one special designed prediction mode, namely the CB_DM mode, which makes the non-first chroma component inherit the first component’s prediction mode.
A third embodiment of step (1) , the non-first chroma component prediction mode set can include one special designed prediction mode, namely the PRE_DM mode, which makes the k-th chroma component inherit the k-1-th component’s prediction mode.
A first embodiment of step (2) , there are separate flags to be encoded and decoded to indentify the prediction modes of different chroma components.
A second embodiment of step (2) , flags are utilized to signal the combination of different chroma components’ prediction modes. For example, using  one flag equal to 0 to denote both Cb and Cr components’ prediction mode are DM (derived mode) , which means chroma prediction modes are the same as luma prediction mode.
A third embodiment of step (2) , flags for the second chroma component prediction mode is only transmitted when the prediction mode of the first component belongs to a limited set of prediction modes.
Another embodiment of step (2) , the second chroma component prediction mode can be derived from neighboring block’s second chroma component prediction mode.
Another embodiment of step (2) , if the prediction mode of the current chroma component is CB_DM, the prediction mode of the first chroma component will be selected for the current chroma component.
Another embodiment of step (2) , if the decoded prediction mode of the current chroma component is PRE_DM, the prediction mode of its before chroma component will be selected for the current chroma component.
A first embodiment of step (3) , the coding and transmission of these chroma components’ residual data can be either after the coding and transmission of their corresponding component’s prediction mode flags or after all the chroma prediction mode flags are coded and transmitted.
Another embodiment of step (3) , there is no overlap between the arithmetic coding contexts utilized to signal the i-th chroma component’s prediction mode and those for the j-th chroma component’s, when i is not equal to j.
Another embodiment of step (3) , there is no overlap between the arithmetic coding contexts utilized to signal the i-th chroma component’s coding symbols for the prediction residuals and those of the j-th chroma component’s , when i is not equal to j.
Another embodiment of step (3) , the CB_DM or PRE_DM mode of the non-first chroma component is signaled in stream with the shortest binarization length.
Another embodiment of step (3) , the DM mode of non-first chroma component is not signalized with the shortest binarization length. For example, 2 symbols are utilized to signalize the overall four candidate chroma modes among DM, Planar, DC, VER, HOR and so on.
Another embodiment of step (3) , beyond the contexts for signalizing the candidate DM mode or any Multi-LM chroma mode, there are no less than 1  arithmetic coding contexts utilized to signal the other candidate chroma modes.
The proposed method described above can be used in a video encoder as well as in a video decoder. Embodiments of the method according to the present invention as described above may be implemented in various hardware, software codes, or a combination of both. For example, an embodiment of the present invention can be a circuit integrated into a video compression chip or program codes integrated into video compression software to perform the processing described herein. An embodiment of the present invention may also be program codes to be executed on a Digital Signal Processor (DSP) to perform the processing described herein. The invention may also involve a number of functions to be performed by a computer processor, a digital signal processor, a microprocessor, or field programmable gate array (FPGA) . These processors can be configured to perform particular tasks according to the invention, by executing machine-readable software code or firmware code that defines the particular methods embodied by the invention. The software code or firmware codes may be developed in different programming languages and different format or style. The software code may also be compiled for different target platform. However, different code formats, styles and languages of software codes and other means of configuring code to perform the tasks in accordance with the invention will not depart from the spirit and scope of the invention.
The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described examples are to be considered in all respects only as illustrative and not restrictive. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art) . Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (22)

  1. A method of chroma-component intra prediction for video/image coding, wherein different chroma components can have different prediction modes.
  2. The method as claimed in claim 1, wherein the method can comprise the following steps of
    -Constructing candidate mode sets for different chroma components separately, .
    -Selecting best prediction modes for different chroma components separately.
    -Signaling the information of the best prediction modes for different chroma components separately.
  3. The method as claimed in claim 2, wherein there are M (i) modes in the i-th chroma component’s candidate mode set, including but not limited to. PLANAR, DC, HOR, VER, TOP+LEFT LM, OnlyTop LM, OnlyLeft LM, DM, the new designed CB_DM and PRE_DM prediction modes. M (i) is larger than 0 for any index i.
  4. The method as claimed in claim 3, wherein the non-first chroma component in the CB_DM mode inherits the first chroma component’s prediction mode.
  5. The method as claimed in claim 3, wherein the k-th chroma component in the PRE_DM mode inherits the (k-1) -th component’s prediction mode.
  6. The method as claimed in claim 2, wherein in the chroma-component prediction mode selection procedure, different chroma component can have different prediction modes.
  7. The method as claimed in claim 6, wherein a value X can be signaled to indicate the combination of different chroma components’ prediction modes, In an exemplary combination, first chroma component’s prediction mode is HOR and second chroma component’s prediction mode is VER.
  8. The method as claimed in claim 7, wherein X equal to 0 can indicate both CB and CR’s prediction mode are DM modes
  9. The method as claimed in claim 6, wherein the second chroma component prediction mode is only signaled when the prediction mode of the first component belongs to a limited set of prediction modes.
  10. The method as claimed in claim 6, wherein separate syntax elemnts are  encoded and decoded to indicate the prediction modes of different chroma components.
  11. The method as claimed in claim 6, wherein if the prediction mode of the second chroma component is CB_DM, the prediction mode of the first chroma component will be used for the second chroma component.
  12. The method as claimed in claim 6, wherein if the decoded prediction mode of the kth chroma component is PRE_DM, the prediction mode of the k-1 th chroma component will be used for the kth chroma component.
  13. The method as claimed in claim 2, wherein for the procedure of signaling the information of the best prediction modes, multiple chroma-component prediction modes are transmitted in video stream and utilized to decode different chroma components.
  14. The method as claimed in claim 13, wherein the transmission of first and non-first chroma component residual data can be either after the transmission of their corresponding component’s prediction mode flags or after all the chroma components’ prediction mode flags are transmitted.
  15. The method as claimed in claim 13, wherein the arithmetic coding contexts are different for the i-th chroma component’s prediction mode and those for the j-th chroma component’s , when i is not equal to j.
  16. The method as claimed in claim 13, wherein the arithmetic coding contexts are different for the transformed or untransformed residuals of the i-th chroma component and of the j-th chroma component, when i is not equal to j.
  17. The method as claimed in claim 13, wherein the CB_DM or PRE_DM mode of the non-first chroma component is binarized with the shortest binarization length.
  18. The method as claimed in claim 13, wherein the DM mode of non-first chroma component is binarized with the binarization length longer or equal to that of the CB_DM or PRE_DM mode.
  19. The method as claimed in claim 13, wherein the chroma mode for one non-first chroma component is binarized as a fixed length codeword with n bits when the mode is not CB_DM, PRE_DM, and any Multi-LM chroma mode, but can be DM.
  20. The method as claimed in claim 13, wherein for the first chroma component, beyond the contexts for signalizing the candidate DM mode or any Multi- LM chroma mode, there are no less than 1 contexts utilized to signal the other candidate chroma modes.
  21. The method as claimed in claim 11, wherein for one non-first chroma component, beyond the contexts for signalizing the CB_DM, PRE_DM mode or any Multi-LM chroma mode, there is no less than 1 context utilized to signal the other candidate chroma modes.
  22. The method as claimed in claim 2, wherein another more-detailed coding process of the method for videos with two chroma components includes the following steps at least.
    -Candidate modes construction. Constructing different candidate mode sets for the first and second chroma components. CB_DM mode is added into the candidate set for the second chroma component.
    -Mode Selection. For one encoding process, a mode decision process is conducted to select the best combination of modes for different components, including cases of different components having the same modes and different components having different modes. For one decoding process, the prediction mode for each component is obtained through flag parsing.
    -Obtaining Prediction data. Obtaining the prediction data for each chroma data block. If the selected mode is CB_DM, the first chroma component’s prediction mode should be selected to get the second chroma component’s prediction data.
    -Flag and residual Transmission. Mode flags and prediction residual coding data Transmission. Different order can be followed: The best mode of the first chroma component with the information for its prediction residuals followed by the best mode of the second chroma component with the information for its prediction residuals, Or the best modes of the first and second chroma component followed by their information for its prediction residuals.
PCT/CN2015/071341 2015-01-22 2015-01-22 Methods for chroma component coding with separate intra prediction mode WO2016115708A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/071341 WO2016115708A1 (en) 2015-01-22 2015-01-22 Methods for chroma component coding with separate intra prediction mode
PCT/CN2016/070331 WO2016115981A1 (en) 2015-01-22 2016-01-07 Method of video coding for chroma components
CN201680006803.5A CN107211121B (en) 2015-01-22 2016-01-07 Video encoding method and video decoding method
US15/541,802 US10321140B2 (en) 2015-01-22 2016-01-07 Method of video coding for chroma components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071341 WO2016115708A1 (en) 2015-01-22 2015-01-22 Methods for chroma component coding with separate intra prediction mode

Publications (1)

Publication Number Publication Date
WO2016115708A1 true WO2016115708A1 (en) 2016-07-28

Family

ID=56416292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071341 WO2016115708A1 (en) 2015-01-22 2015-01-22 Methods for chroma component coding with separate intra prediction mode

Country Status (1)

Country Link
WO (1) WO2016115708A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108591A1 (en) * 2018-12-01 2020-06-04 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
WO2020258378A1 (en) * 2019-06-25 2020-12-30 北京大学 Video image processing method and device, and storage medium
US10939128B2 (en) 2019-02-24 2021-03-02 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
US10979717B2 (en) 2018-11-06 2021-04-13 Beijing Bytedance Network Technology Co., Ltd. Simplified parameter derivation for intra prediction
US11057642B2 (en) 2018-12-07 2021-07-06 Beijing Bytedance Network Technology Co., Ltd. Context-based intra prediction
US11115655B2 (en) 2019-02-22 2021-09-07 Beijing Bytedance Network Technology Co., Ltd. Neighboring sample selection for intra prediction
US11438581B2 (en) 2019-03-24 2022-09-06 Beijing Bytedance Network Technology Co., Ltd. Conditions in parameter derivation for intra prediction
US11871004B2 (en) 2019-06-25 2024-01-09 SZ DJI Technology Co., Ltd. Video image processing method and device, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222645A (en) * 2007-01-12 2008-07-16 三菱电机株式会社 Image encoding device, image decoding device, image encoding method, and image decoding method
US20110032987A1 (en) * 2009-08-10 2011-02-10 Samsung Electronics Co., Ltd. Apparatus and method of encoding and decoding image data using color correlation
CN103096051A (en) * 2011-11-04 2013-05-08 华为技术有限公司 Image block signal component sampling point intra-frame decoding method and device thereof
CN103220508A (en) * 2012-01-20 2013-07-24 华为技术有限公司 Coding and decoding method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222645A (en) * 2007-01-12 2008-07-16 三菱电机株式会社 Image encoding device, image decoding device, image encoding method, and image decoding method
US20110032987A1 (en) * 2009-08-10 2011-02-10 Samsung Electronics Co., Ltd. Apparatus and method of encoding and decoding image data using color correlation
CN103096051A (en) * 2011-11-04 2013-05-08 华为技术有限公司 Image block signal component sampling point intra-frame decoding method and device thereof
CN103220508A (en) * 2012-01-20 2013-07-24 华为技术有限公司 Coding and decoding method and device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438598B2 (en) 2018-11-06 2022-09-06 Beijing Bytedance Network Technology Co., Ltd. Simplified parameter derivation for intra prediction
US11930185B2 (en) 2018-11-06 2024-03-12 Beijing Bytedance Network Technology Co., Ltd. Multi-parameters based intra prediction
US10979717B2 (en) 2018-11-06 2021-04-13 Beijing Bytedance Network Technology Co., Ltd. Simplified parameter derivation for intra prediction
US10999581B2 (en) 2018-11-06 2021-05-04 Beijing Bytedance Network Technology Co., Ltd. Position based intra prediction
US11019344B2 (en) 2018-11-06 2021-05-25 Beijing Bytedance Network Technology Co., Ltd. Position dependent intra prediction
US11025915B2 (en) 2018-11-06 2021-06-01 Beijing Bytedance Network Technology Co., Ltd. Complexity reduction in parameter derivation intra prediction
US11902507B2 (en) 2018-12-01 2024-02-13 Beijing Bytedance Network Technology Co., Ltd Parameter derivation for intra prediction
WO2020108591A1 (en) * 2018-12-01 2020-06-04 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
US11057642B2 (en) 2018-12-07 2021-07-06 Beijing Bytedance Network Technology Co., Ltd. Context-based intra prediction
US11595687B2 (en) 2018-12-07 2023-02-28 Beijing Bytedance Network Technology Co., Ltd. Context-based intra prediction
US11115655B2 (en) 2019-02-22 2021-09-07 Beijing Bytedance Network Technology Co., Ltd. Neighboring sample selection for intra prediction
US11729405B2 (en) 2019-02-24 2023-08-15 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
US10939128B2 (en) 2019-02-24 2021-03-02 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
US11438581B2 (en) 2019-03-24 2022-09-06 Beijing Bytedance Network Technology Co., Ltd. Conditions in parameter derivation for intra prediction
US11871004B2 (en) 2019-06-25 2024-01-09 SZ DJI Technology Co., Ltd. Video image processing method and device, and storage medium
WO2020258378A1 (en) * 2019-06-25 2020-12-30 北京大学 Video image processing method and device, and storage medium

Similar Documents

Publication Publication Date Title
WO2016115708A1 (en) Methods for chroma component coding with separate intra prediction mode
US10321140B2 (en) Method of video coding for chroma components
CN107079160B (en) Video coding method using separate coding trees for luminance and chrominance
US9596479B2 (en) Method of pulse-code modulation and palette coding for video coding
AU2011354441B2 (en) Method and apparatus of improved intra luma prediction mode coding
US10924746B2 (en) Method and apparatus for adaptive motion vector precision
US10218957B2 (en) Method of sub-PU syntax signaling and illumination compensation for 3D and multi-view video coding
EP2991349B1 (en) Method of palette index signaling for image and video coding
CN107257466B (en) Method and apparatus for intra prediction mode coding
CN110365976B (en) Video coding method using intra picture block based copy prediction
JP6352452B2 (en) Method and apparatus for syntactic binarization and context adaptive coding in video coding
CA2948683C (en) Methods for palette size signaling and conditional palette escape flag signaling
WO2015180014A1 (en) An improved merge candidate list construction method for intra block copy
WO2015100522A1 (en) Methods for inter-component residual prediction
US10070145B2 (en) Method of coding based on string matching for video compression
WO2016008161A1 (en) Temporal derived bi-directional motion vector predictor
KR20140010182A (en) Encoding/decoding method and apparatus
US10142610B2 (en) Method for sub-range based coding a depth lookup table
WO2017008255A1 (en) Advanced intra prediction mode signaling in video coding
WO2015149698A1 (en) Method of motion information coding
EP3135036A1 (en) Method and apparatus for palette table prediction and signaling
WO2016115736A1 (en) Additional intra prediction modes using cross-chroma-component prediction
WO2015192372A1 (en) A simplified method for illumination compensation in multi-view and 3d video coding
EP3266217A1 (en) Method and apparatus for index map coding in video and image compression
JP2022546898A (en) Video image processing method, apparatus and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878385

Country of ref document: EP

Kind code of ref document: A1