WO2013064065A1 - 应用数据处理方法及装置 - Google Patents

应用数据处理方法及装置 Download PDF

Info

Publication number
WO2013064065A1
WO2013064065A1 PCT/CN2012/083819 CN2012083819W WO2013064065A1 WO 2013064065 A1 WO2013064065 A1 WO 2013064065A1 CN 2012083819 W CN2012083819 W CN 2012083819W WO 2013064065 A1 WO2013064065 A1 WO 2013064065A1
Authority
WO
WIPO (PCT)
Prior art keywords
keep
alive
user equipment
sent
data packet
Prior art date
Application number
PCT/CN2012/083819
Other languages
English (en)
French (fr)
Inventor
李志军
郝振武
谢宝国
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013064065A1 publication Critical patent/WO2013064065A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections

Definitions

  • the present invention relates to the field of communications, and in particular to an application data processing method and apparatus.
  • a User Equipment UE
  • a terminal or a user terminal
  • AS Application Server
  • the UE does not send a keep-alive message to the AS for a long time
  • the AS may consider that the UE has not exited normally or moved to the unsignaled area, causing communication with the AS, thereby actively deregistering the UE, and thus between the UE and the AS. Both the IP connection and the application layer registration relationship will be released.
  • the keepalive messages sent by the UE to the AS are usually relatively small.
  • the UE usually sends a keepalive message to the AS at a fixed time, for example: 60 seconds. In the middle of sending the keepalive message twice, the UE may not send any other message to the AS, because the user may have no operation during this time.
  • PS Packet Service
  • the structure relates to: UE, UMTS Terrestrial Radio Access Network (UMTS) UTRAN), Evolved UMTS (E-UTRAN), Serving GPRS Supporting Node (SGSN), Mobile Management Entity (MME), Ownership Home Location Register (HLR) / Home Subscriber Server (HSS), S-GW, Packet Data Network Gateway (P-GW), Gateway GPRS Support Node (Gateway GPRS Supporting Node, referred to as GGSN), AS.
  • UMTS Terrestrial Radio Access Network UMTS
  • E-UTRAN Evolved UMTS
  • SGSN Serving GPRS Supporting Node
  • MME Mobile Management Entity
  • HLR Ownership Home Location Register
  • HSS Home Subscriber Server
  • S-GW Packet Data Network Gateway
  • P-GW Gateway GPRS Support Node
  • Gateway GPRS Supporting Node referred to as GGSN
  • AS Gateway GPRS Supporting Node
  • the UE can access the core network through UMTS and E-UTRAN to implement IP interconnection with the AS. Before the UE sends a keep-alive message, the UE must have attached to the core network and has already registered with the AS. A suitable IP connection has been established for the UE in the core network, and the UE has also been assigned an IP address. The IP data packets sent by the UE to the AS must pass through the public data network gateway entity (PGW in EUTRAN and GGSN in GERAN/UTRAN).
  • PGW public data network gateway entity
  • the base station will release the wireless side connection of the UE, including the wireless signaling bearer for transmitting signaling, and used for transmitting data.
  • Wireless data bearer When the base station releases the radio side connection of the UE, the base station (such as the eNodeB) may release the connection between the base station and the core network user plane entity (such as the SGW/PGW), and further cause the core network to connect the state of the UE from the connected state (CONNECTED). ) Go to the idle state (IDLE).
  • the base station such as the eNodeB
  • the core network user plane entity such as the SGW/PGW
  • the radio side may have released the radio side connection of the UE, and the UE may also enter the idle state in the core network.
  • the UE needs to initiate IP data (the keepalive message of the IP layer)
  • the UE must request to establish a wireless side connection, and the core network is also required to perform corresponding processing.
  • These processes usually take a lot of steps.
  • the network will release the wireless side connection of the UE and prompt the UE to enter the idle state.
  • the UE may initiate IP keepalive again. The above situation causes great waste for network resources.
  • Step S201 The UE is attached to the network, and the network establishes an IP connection for the UE, and allocates an IP address.
  • Step S202 The UE initiates registration with the AS, and then the UE transmits data according to the service requirement and the AS through the interaction message.
  • the network transits the UE from the connected state to the idle state, the wireless side releases the wireless connection and bearer of the UE, and releases the base station (for example, eNodeB) and the user plane entity (for example, SGW /PGW) connection;
  • Step S204 after the UE keepalive time arrives, the UE decides to initiate a keep-alive message to the AS;
  • Step S205 the UE initiates an RRC connection request to the base station, and initiates a service request to the core network (Service
  • the UE initiates an RRC connection request to create a radio bearer.
  • the UE initiates a service request by requiring the core network to prepare suitable resources for the UE.
  • Step S206 The base station forwards the service request of the UE to the SGSN/MME.
  • Step S207 The SGSN/MME performs authentication on the UE according to the requirement.
  • the SGSN/MME requests the base station to create a context for the UE.
  • Step S209 The base station creates a UE for the UE. Radio bearer, and notify the UE;
  • Step S210 After the base station creates a radio bearer for the UE, the UE sends an IP keep-alive message to the AS by the user.
  • Step S211 After the UE sends the IP keep-alive message to the AS, if the UE does not send the IP data for a certain period of time, Then, the base station releases the wireless connection and bearer of the UE, and releases the connection of the base station to the user plane entity.
  • the core network may also transition the UE from the connected state to the idle state.
  • the release of the wireless connection of the UE by the base station is based on determining that the UE does not have any uplink and downlink data within a certain period of time.
  • the connection between the base station and the core network user plane entity SGW/PGW, GGSN
  • the base station releases the radio bearer of the UE when the timer arrives. Then, when the UE wants to initiate IP keep-alive next time, it must establish a wireless connection with the base station, and the base station is required to create a radio bearer, and the core network is required to activate the UE into a connected state and set the relevant context.
  • the present invention provides an application data processing method and apparatus to solve at least the above problems, in view of the problem that the keepalive between the terminal and the application server has a detrimental effect on the network.
  • an application data processing method including: receiving application data sent by a user equipment by using control plane signaling; after receiving the application data, sending the application data by using an IP data packet Give the application server.
  • the IP data packet sent by the user equipment by using control plane signaling is received, where the application data is encapsulated into the IP data packet; after receiving the IP data packet, sending the IP data packet Give the application server.
  • the application data includes: keep-alive information for protection.
  • the public data network gateway receives the keep-alive information sent by the user equipment by using control plane signaling; the public data network gateway sends a keep-alive for the user equipment to keep alive for the user equipment. data pack.
  • the method further includes: the mobility management network element receiving the user equipment The keep-alive information sent by the control plane signaling; the mobility management network element sends a bearer control message to the public data network gateway, where the bearer control message carries the keep-alive information.
  • the mobility management network element receives the NAS message sent by the user equipment, where the NAS message carries the keep-alive information.
  • the mobility management network element receives a protocol configuration option (PCO) cell sent by the user equipment, and sends the PCO cell to the public by using the bearer control message.
  • PCO protocol configuration option
  • the keep-alive agent receives the keep-alive information sent by the user equipment by using control plane signaling; the keep-alive agent sends the keep-alive data packet to the application server, where the keep-alive agent acts as Functional entities are deployed independently.
  • the keep-alive agent receives the keep-alive information sent by the mobility management network element or the public data network gateway.
  • the keep-alive information is carried in a Non-Access Stratum (NAS) message, or the keep-alive information is carried in a PCO cell.
  • NAS Non-Access Stratum
  • the public data network gateway directly receives the PCO cell carrying the keep-alive information from the user equipment, and sends the PCO cell to the keep-alive agent.
  • the public data network gateway includes: a Gateway General Packet Radio Service Supporting Node (GGSN) and/or a PGW; and/or, the mobility management network element includes: Serving GPRS Support Node SGSN and/or Mobility Management Entity MME.
  • the access network receives the keep-alive information from the user equipment, and carries the keep-alive information to the mobility management network element sent by the NAS message or the PCO cell.
  • the user equipment sends the keep-alive information to the access network by using at least one of the following manners: carrying the keep-alive information in a NAS message, and carrying the keep-alive information in a PCO cell,
  • the keep-alive information is carried in RRC signaling.
  • the RRC signaling includes at least one of the following: an RRC connection setup request, and an RRC connection completion.
  • the method further includes: the user equipment carrying the connection indication information in the RRC connection setup request, where the connection indication information is used to indicate that the access network does not create a user plane bearer for the user equipment.
  • the method further includes: the connection indication information includes: the reason that the RRC connection request is set to the initial signaling.
  • the keep-alive information includes at least one of the following: a keep-alive cell, a keep-alive packet, where the keep-alive cell is configured to construct a keep-alive packet.
  • the keep-alive information includes: identifier information, where the identifier information is used to identify a keep-alive cell or a keep-alive data packet corresponding to the user equipment; after receiving the identifier information, searching and identifying the identifier Corresponding keep-alive cells or keep-alive packets, and send the keep-alive data packet or the keep-alive data packet constructed according to the keep-alive cell to the application server.
  • the sending, by the application server, the keep-alive data packet for keeping the user equipment in a keep-alive manner after receiving the keep-alive information includes: sending the network element of the keep-alive data packet to the application server And the user equipment periodically sends the keep-alive data packet to the application server, and the user equipment suppresses a local keep-alive procedure.
  • the network element that sends the keep-alive data packet to the application server replaces the user equipment to periodically send the keep-alive data packet to the application server, the network element receives the user equipment.
  • the sending, by the network element, the keep-alive data packet to the application server periodically, the network element includes: acquiring, by the network element, a state of the user equipment, where the state of the user equipment needs to be performed.
  • the keep-alive data packet is periodically sent to the application server instead of the user equipment.
  • an application data processing apparatus including: a receiving module, configured to receive application data sent by a user equipment through control plane signaling; and a sending module, configured to receive the application data Thereafter, the application data is sent to the application server through the IP data packet.
  • the device is located on a public data network gateway.
  • the device is deployed as a functional entity independently.
  • the application data includes: keep-alive information for keeping alive.
  • the receiving module is configured to receive an IP data packet sent by the user equipment by using control plane signaling, where the application data is encapsulated into the IP data packet; and the sending module is configured to receive the IP data. After the packet, the IP data packet is sent to the application server.
  • an application data processing method includes receiving an IP data packet sent by a user equipment through control plane signaling, and sending the IP data packet according to an IP route. Receive the address for the target.
  • the receiving the IP data packet sent by the user equipment by using the control plane signaling comprises: receiving an IP data packet sent by the user equipment by using control plane signaling, where the control plane signaling includes an RRC message sent by the user to the base station node, The NAS message sent by the base station node to the mobility management network element and the GTP control message sent by the mobility management network element to the public data network gateway; or the IP data packet sent by the user equipment through the control plane signaling, where The control plane signaling includes a NAS message sent by the user equipment to the mobility management network element and a GTP control message sent by the mobility management network element to the public data network gateway; or receiving an IP sent by the user equipment by using control plane signaling.
  • control plane signaling includes an RRC message sent by the user to the base station node, The NAS message sent by the base station node to the mobility management network element and the GTP control message sent by the mobility management network element to the public data network gateway; or receiving an IP sent by the user equipment by using control plane signaling.
  • the data packet where the control plane signaling includes a bearer control message sent by the user equipment to the public data network gateway, where the bearer control message carries a PCO cell, and the PCO cell carries the IP data packet.
  • the IP data packet includes keep-alive information for protection.
  • sending the IP data packet to the target receiving address according to the IP route comprises: after receiving, by the public data network gateway, the IP data packet sent by the user equipment by using control plane signaling, according to the IP routing direction The target receiving address transmits the IP data packet.
  • an application data processing apparatus including a receiving module, configured to receive an IP data packet sent by a user equipment through control plane signaling, and a sending module, configured to: The packet is sent to the destination receiving address.
  • the receiving module is configured to: receive an IP data packet sent by the user equipment by using control plane signaling, where the control plane signaling includes an RRC message sent by the user to the base station node, where the base station node sends the mobility
  • the NAS message of the management network element and the GTP control message sent by the mobility management network element to the public data network gateway or the IP data packet sent by the user equipment through the control plane signaling, where the control plane signaling includes the user
  • the NAS message sent by the device to the mobility management network element and the mobility management network element are sent to the public data network.
  • the gateway a GTP control message of the gateway; or receiving an IP data packet sent by the user equipment through the control plane signaling, where the control plane signaling includes a bearer control message sent by the user equipment to the public data network gateway, where the bearer control message is carried a PCO cell, the PCO cell carrying the IP data packet.
  • the IP data packet includes keep-alive information for protection.
  • the sending module is configured to send the IP data packet to the target receiving address according to an IP route after receiving the IP data packet sent by the user equipment through control plane signaling.
  • the application data sent by the user equipment through the control plane signaling is received; after receiving the application data, the application data is sent to the application server through the IP data packet.
  • FIG. 1 is a schematic diagram of an architecture of a UE accessing a packet domain according to the related art
  • FIG. 2 is a flowchart of implementing a keep-alive after an UE accesses a packet domain according to the related art
  • FIG. 4 is a block diagram showing the structure of an application data processing apparatus according to an embodiment of the present invention
  • FIG. 5 is a flowchart according to a first embodiment of the present invention
  • FIG. 6 is a flowchart according to an embodiment of the present invention.
  • a preferred embodiment of the present invention is a flowchart 1 of a UE transmitting a keep-alive cell to a GGSN/PGW through RRC signaling.
  • FIG. 7 is a first embodiment of the present invention.
  • FIG. 8 is a flowchart of a second embodiment of a preferred embodiment of the present invention, in which a UE sends a keep-alive cell to a GGSN/PGW through NAS signaling; 9 is a flowchart of a UE transmitting a keep-alive cell to a GGSN/PGW through a PCO parameter according to a preferred embodiment 3 of the present invention; FIG. 10 is a schematic structural diagram of a second embodiment according to the present invention; FIG. According to a preferred embodiment of the second embodiment of the present invention, the UE sends the keep-alive cell to the ⁇ , ⁇ a flowchart for transmitting the IP keep-alive packet to the AS according to the keep-alive cell; FIG.
  • FIG. 12 is a preferred embodiment according to the second embodiment of the present invention.
  • Embodiment 2 the UE first sends the keep-alive cell to the KAP, the KAP saves the keep-alive cell, and then the UE instructs the KAP to send an IP keep-alive packet to the AS.
  • FIG. 13 is a third embodiment according to the present invention.
  • FIG. 14 is a flowchart of an application data processing method according to an embodiment of the present invention;
  • FIG. 15 is a flowchart of an application data processing method according to an embodiment of the present invention;
  • FIG. . BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings.
  • the UE sends the application data that is to be sent to the application server through the IP data stream, and is carried in the control plane signaling to the relay node in the network (for example, In the following embodiments, the keep-alive agent, GGSN/PGW, etc., the relay node replaces the UE to encapsulate the application data into an IP data packet and sends it to the application server.
  • the keep-alive agent for keep-alive information, it can be considered as one type of application data.
  • application data is not limited to one of the keep-alive information.
  • Step S1402 Receive application data sent by a user equipment by using control plane signaling
  • Step S1404 receiving After the application data, the application data is sent to the application server through the IP data packet.
  • the application data that needs to be sent through the IP data stream is carried by the control plane signaling, so that it is no longer necessary to establish a bearer of the user plane, thereby solving the problem.
  • the above steps not only solve the background The problem of sending keep-alive information mentioned in the technology, and also solving the problem when other types of application data are transmitted.
  • the processing of the keep-alive information is taken as an example, but the present invention is not limited thereto, and the following embodiments are equally applicable to other types of application data.
  • the user equipment can directly send the application data, and then the application data is encapsulated into an IP data packet and sent to the application server by the network element and/or the functional entity that receives the application data.
  • the application data may also be encapsulated in the IP data packet by the user equipment, and the network element and/or the functional entity that receives the IP data packet sends the received IP data packet to the application server.
  • a mobility management network element and a public data network gateway are involved.
  • FIG. 3 is a flowchart of a keep-alive method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps.
  • Step S302 Receive keep-alive information for keep-alive sent by the user equipment by using control plane signaling; Step S304, after receiving the keep-alive information, send the keep-alive data for keeping the user equipment keep-alive after receiving the keep-alive information package.
  • the user equipment does not send the keep-alive information through the user plane, but sends the keep-alive information for keep-alive through control plane signaling, so that the access network or the core network is used. It is no longer necessary to establish a connection of the user plane entity, thereby reducing the effect of keep-alive on the network resources, and solving the adverse impact on the network caused by the keep-alive between the user equipment and the application server in the related art. problem.
  • the above steps may be performed by a public data network gateway, for example, a GGSN, and/or a PGW, or may be a functional entity that is separately set to implement keep-alive.
  • the functional entity is called a keep-alive agent.
  • the live agent may be a combination of one or more servers, or may be a function module, which may be located on an existing functional entity that performs other functions, for example, may be located on the GGSN/PGW (ie, equivalent to GGSN/PGW). Perform the above steps). How to set up the keep-alive agent can be selected according to the actual network conditions and application conditions. The following is an example of the keep-alive agent located in the GGSN/PGW and the keep-alive agent independent setting.
  • the keep alive agent is located on the GGSN/PGW.
  • the GGSN/PGW receives the keep-alive information sent by the user equipment through the control plane signaling; the GGSN/PGW sends the keep-alive data packet to the application server.
  • This method does not require any changes to the existing network architecture, and only needs to add the function of the keep-alive agent to the GGSN/PGW.
  • the mobility management network element may carry the keep-alive information and send it to the GGSN/PGW through a message of control plane signaling, such as a bearer control message.
  • the keep-alive information received by the mobility management network element may be carried in the NAS message or may be carried in the PCO cell. If it is carried in the PCO cell, the PCO cell may be directly sent to the GGSN through the bearer control message.
  • PGW Preferred example 2, the keep alive agent is set independently. In this way, the existing network architecture needs to be changed. Since the GGSN/PGW needs more functions, the method can reduce the requirements on the GGSN/PGW.
  • the keep-alive agent can receive the keep-alive information sent by the mobility management network element or the GGSN/PGW.
  • the keep-alive information can be carried in the NAS message, and of course can also be carried in the PCO cell. If the user equipment carries the keep-alive information in the PCO cell, the GGSN/PGW can directly receive the PCO cell carrying the keep-alive information from the user equipment, and then send the PCO cell to the keep-alive agent, so that the GGSN/PGW can be implemented. The user equipment interacts directly with the GGSN/PGW. Regardless of the above preferred example 1 or preferred example 2, the following preferred embodiments may be used for the transmission of keep-alive information between the access network and the terminal.
  • the control plane signaling message or transmission mode may also be selected to transmit (including sending and receiving) keep-alive information, for example, for the access network to send keep-alive information, a comparison
  • the preferred implementation manner is that the access network receives the keep-alive information from the user equipment, and the keep-alive information may be carried in the mobility management network element sent by the NAS message or the PCO cell.
  • the user equipment may send the keep-alive information to the access network by using at least one of the following manners: carrying the keep-alive information in the NAS message, and carrying the keep-alive information in the In the PCO cell, the keep-alive information is carried in the RRC signaling.
  • the RRC signaling includes at least one of the following: an RRC connection setup request, and an RRC connection completion.
  • the user equipment may carry the connection indication information in the RRC connection setup request (for example, the reason for the RRC connection request is set to the initial signaling), where the connection indication information is used.
  • the keep-alive information is used in the foregoing embodiment. In the process of actual application, different keep-alive information may be used for keep-alive.
  • the keep-alive information may include at least one of the following: a keep-alive cell, a keep-alive packet. , wherein the keep-alive cell is set to construct a keep-alive packet.
  • the keep-alive information includes: identifier information, where the identifier information is used to identify a keep-alive cell or a keep-alive data packet corresponding to the user equipment; after the received identifier information, A keep-alive cell or a keep-alive packet corresponding to the identifier, and sending a keep-alive packet or a keep-alive packet constructed according to the keep-alive cell to the application server.
  • the keep-alive cell is no longer needed to be sent between the user equipment and the keep-alive agent, and the corresponding identifier is directly sent, thereby reducing the amount of data transmitted between the user equipment and the keep-alive agent.
  • the keep-alive agent can perform the keep-alive processing instead of the user equipment, that is, the keep-alive agent periodically sends the keep-alive data packet to the application server instead of the user equipment, and the user equipment suppresses the local keep-alive procedure. .
  • the keep-alive agent may obtain the keep-alive information in advance through control plane signaling or an IP bearer with the user equipment.
  • the embodiment further provides a keep-alive device, which is configured to implement the above embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • 4 is a block diagram showing the structure of an application data processing apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes: a receiving module 42 and a transmitting module 44. The structure will be described below.
  • the receiving module 42 is configured to receive application data that is sent by the user equipment through the control plane signaling, and the sending module 44 is configured to send the application data to the application server by using the IP data packet after receiving the application data.
  • the sending module is configured to encapsulate the application data into an IP data packet and send it to the application server.
  • the receiving module is configured to receive an IP data packet sent by the user equipment through control plane signaling, wherein the application data is encapsulated into an IP data packet; and the sending module is configured to send the IP data packet after receiving the IP data packet Give the application server.
  • the application data may include: keep-alive information for keep-alive.
  • the receiving module 42 is configured to receive the keep-alive information for the keep-alive sent by the user equipment through the control plane signaling, and the sending module 44 is connected to the receiving module. 42.
  • the above device may be located on a public data network gateway (e.g., located on the GGSN/PGW), or the device may be deployed as a functional entity independently.
  • Step S502 The UE passes Control plane signaling delivers the keep-alive cell to the GGSN/PGW; Step S504, after the GGSN/PGW receives the keep-alive cell, constructs an IP keep-alive packet sent to the AS, or uses the IP provided by the UE to keep alive
  • the data packet sends an IP keep-alive message to the AS by sending an IP packet.
  • the keep-alive cell sent by the UE may be in the following format: format one, used to construct a combination of several keep-alive parameters of the IP containing data packet, and these parameters may indicate
  • the GGSN/PGW constructs (or utilizes) the IP keep-alive packet, and the IP keep-alive packet is used to send an IP keep-alive message to the AS; for example, in the IP keep-alive parameter, the IP keep-alive message sender (ie, UE) is specified. ) IP address, send port, IP address of the receiving end (ie AS), port.
  • the UE may specify a protocol used to perform IP keep-alive, according to which the IP may contain a specific content of the data packet. Or the UE can explicitly indicate the content of the IP keep-alive packet.
  • Protocol keep-alive packet where the content of the IP packet is an IP keep-alive message addressed to the AS, and the GGSN/PGW can directly send the IP keep-alive packet to the AS; in this embodiment,
  • the UE can transmit the keep-alive cell to the GGSN/PGW through control plane signaling.
  • Method 1 as shown in FIG. 6, 7, the UE carries the keep-alive cell in the RRC signaling, and the base station will keep the keep-alive letter.
  • the element is sent to the SGSN/MME through the NAS message, and the SGSN/MME transmits the keep-alive cell to the GGSN/PGW by using the bearer control message;
  • the second method as shown in FIG.
  • the UE carries the keep-alive cell in the NAS signaling, and sends it to the SGSN/MME.
  • the SGSN/MME transmits the keep-alive cell to the GGSN/PGW through the bearer control message.
  • the UE carries the keep-alive cell in the PCO parameter and sends it to the GGSN/PGW.
  • FIG. 6 is a first embodiment of the present invention. The UE sends the keep-alive cell to the GGSN through RRC signaling. /PGW flow chart one. As shown in FIG.
  • the UE sends the keep-alive cell to the base station through the RRC signaling, and the base station sends the keep-alive cell to the SGSN/MME through the NAS message, and the SGSN/MME sends the keep-alive cell to the GGSN by using the bearer control message.
  • the GGSN/PGW constructs/generates an IP keep-alive message according to the keep-alive cell and sends it to the AS.
  • Step S602 the UE initiates an RRC connection request to the access network (referred to as RAN) (for example, a base station), and carries the keep-alive cell; since the UE disconnects the wireless connection between the UE and the base station before the UE wishes to initiate the IP keep-alive, Therefore, the UE needs to initiate an RRC connection request to the base station, and requests the base station to establish an RRC connection for it.
  • RAN access network
  • a keep-alive cell may be carried.
  • the UE may set the cause value of the RRC connection request to "originating signaling" (MO Signaling base station identifies "originated signaling""
  • the base station takes out the keep-alive cell, encapsulates it into the NAS message, and sends it to the SGSN/MME.
  • the specific NAS message may be A newly defined NAS keep-alive message, or carrying a keep-alive cell in another suitable NAS message. Step S606, after receiving the NAS message, the SGSN/MME takes out the keep-alive cell and uses the bearer control message to hold the keep-alive cell.
  • the GGSN/PGW After receiving the bearer control message, the GGSN/PGW obtains the keep-alive cell carried in the GGSN/PGW. According to the content of the keep-alive cell, the GGSN/PGW sends an IP keep-alive message to the application server AS. After receiving the IP keep-alive message, the AS may return the appropriate message/IP packet.
  • the keep-alive cells received by GGSN/PGW may be: A combination of several keep-alive parameters used to construct an IP containing data packet. According to these parameters, the GGSN/PGW constructs an IP keep-alive packet sent to the AS; for example, the keep-alive cell contains a number of keep-alive parameters, according to which the GGSN/PGW can construct an IP keep-alive data addressed to the AS.
  • the source address is the IP address of the UE
  • the source port is the port of the UE
  • the destination address is the IP address of the AS
  • the destination port is the port of the AS.
  • the content of the IP data packet is generated according to the keep-alive protocol, or according to the specified message content. Or, a specific IP keep-alive packet.
  • the GGSN/PGW sends this IP keep-alive packet directly to the AS.
  • Step S610 the GGSN/PGW returns a bearer control response to the SSGN/MME.
  • the response may carry the appropriate IP keep-alive response value; if the GGSN/PGW successfully sends the IP keep-alive message to the AS, the Bay U GGSN/PGW may set the value of the IP keep-alive response value to "success", otherwise set For "failure.”
  • the SGSN/MME returns a NAS response to the base station.
  • the NAS response may carry an appropriate IP keep-alive response value, indicating whether the IP keep-alive message is successfully sent.
  • step S614 the base station returns an RRC connection setup message to the UE, and requests the UE to prepare the RRC connection resource.
  • the RRC connection response may carry a suitable IP keep-alive response value.
  • Step S616 After the UE prepares the RRC connection resource, the UE returns an RRC connection complete message to the base station.
  • the SGSN/MME receives the keep-alive cell sent by the UE, if the current UE is in an idle state, the SGSN/MME may not trigger the UE to be in an active state, thus avoiding the UE. The status is changed frequently, reducing the resource consumption caused by the state change. In the preferred embodiment shown in FIG.
  • FIG. 7 is a flowchart 2 of a preferred embodiment of the present invention, in which a UE sends a keep-alive cell to a GGSN/PGW through RRC signaling. The difference between the manner described in FIG. 7 and the manner in FIG.
  • FIG. 8 is a flowchart of a method for transmitting a keep-alive cell to a GGSN/PGW by using a NAS signaling manner according to a preferred embodiment 2 of the present invention. As shown in FIG. 8, the UE sends the keep-alive cell to the SGSN/MME through the NAS signaling, and the SGSN/MME sends the keep-alive cell to the GGSN/PGW through the bearer control message.
  • the GGSN/PGW constructs/generates an IP keep-alive message according to the keep-alive cell and sends it to the AS.
  • the difference from the preferred embodiment shown in FIG. 6 and FIG. 7 is that the UE carries the keep-alive cell in the NAS layer message, and the interaction between the SGSN/MME and the GGSN/PGW, and the interaction between the GGSN/PGW and the AS.
  • the preferred embodiments shown in Figures 6 and 7 are the same.
  • Step S802 The UE sends a NAS message to the SGSN/MME, and carries the keep-alive cell.
  • the specific NAS message may be a newly defined NAS keep-alive message, or carry the keep-alive cell in other suitable NAS messages.
  • Step S810 SGSN /MME returns a NAS response to the UE.
  • the NAS response may carry a suitable IP keep-alive response value, indicating whether the IP keep-alive message has been successfully sent.
  • the UE since the UE does not establish a radio bearer before transmitting the IP keep-alive cell, the UE still needs to initiate an RRC connection setup procedure to the base station.
  • the UE may set the RRC connection cause value to be MO Signaling.
  • the SGSN/MME when receiving the keep-alive cell, the SGSN/MME may not trigger the state transition process of the UE, such that Inefficiencies and resource consumption caused by frequent switching of the state of the UE can be avoided.
  • 9 is a flow chart of a UE transmitting a keep-alive cell to a GGSN/PGW through a PCO parameter according to a preferred embodiment 3 of the first embodiment of the present invention. As shown in FIG. 9, the UE carries the keep-alive cell SGSN/MME in the PCO cell by carrying the create/change message, and the SGSN/MME transparently transmits the PCO cell to the GGSN/PGW.
  • the GGSN/PGW constructs/generates an IP keep-alive message according to the keep-alive cell and sends it to the AS.
  • the difference from the embodiment shown in FIG. 8 is that, in step S902, the UE carries the keep-alive cell in the PCO cell, and the SGSN/MME transparently transmits the PCO cell in step S904.
  • the UE since the UE does not establish a radio bearer before transmitting the IP keep-alive cell, the UE still needs to initiate an RRC connection setup procedure to the base station.
  • the UE may set the RRC connection cause value to MOSignaling.
  • the UE carries the keep-alive cell to the GGSN/PGW through control plane signaling, and the GGSN/PGW constructs or generates an IP data packet to send an IP keep-alive message to the AS.
  • This method requires the GGSN/PGW to act as a Keep-Alive Proxy (KAP), and this keep-alive agent may need to understand the special keep-alive protocol format, so this method may not be the most suitable for GGSN/PGW. .
  • KAP Keep-Alive Proxy
  • FIG. 10 is a schematic diagram of an architecture according to Embodiment 2 of the present invention. As shown in Figure 10, keep-alive cells can be transmitted between the SGSN/MME, GGSN/PGW, and KAP through the internal interface.
  • the KAP can be independently configured on the UE, and the UE proposes a keep-alive request to the KAP through the IP connection.
  • the UE can deliver the keep-alive cell to the KAP in the following manner: In the first mode, the UE transmits the keep-alive cell to the SGSN/MME through the NAS signaling, and the SGSN/MME sends the keep-alive to the KAP. The message carries the keep-alive cell. In the second mode, the UE transmits the keep-alive cell to the GGSN/PGW through the PCO, and the GGSN/PGW sends the keep-alive message to the KAP to carry the keep-alive cell. The method sends the keep-alive cell to the KAP. The keep-alive cell is included in the message sent by the UE to the KAP. FIG.
  • Step S1102 The UE sends a keep-alive cell to the KAP by: In the first step, the step S1102al to the step S1102a2, the UE includes the keep-alive cell in the RRC signaling and the NAS signaling in the RRC mode and the NAS mode, and sends the message to the SGSN/MME.
  • the SGSN/MME After receiving the keep-alive cell, the SGSN/MME sends a keep-alive message to the KAP, carrying the keep-alive cell; mode 2, step S1102b 1 to step S1102b2, the UE keeps the keep-alive cell in the PCO letter through the PCO mode. In the meta, it is sent directly to the GGSN/PGW.
  • the GGSN/PGW After receiving the keep-alive cell, the GGSN/PGW sends a keep-alive message to the KAP, and carries the keep-alive cell; mode 3, step S1102c, the UE directly sends a keep-alive message to the KAP, carrying the keep-alive cell; Step S1104, KAP After the keepalive message, according to the instruction of the keep-alive cell, the IP keep-alive packet is constructed/generated, and the IP keep-alive message is sent to the AS. In step S1106, the return process of the subsequent keep-alive response is the same as the previous embodiment. In the preferred embodiment described in FIG.
  • FIG. 12 is a flowchart of a second embodiment of the present invention, in which a UE first sends a keep-alive cell to a KAP, and the KAP saves a keep-alive cell, and then the UE instructs the KAP to send an IP keep-alive packet to the AS. . As shown in FIG. 12, the foregoing manner is improved. The UE sends the keep-alive cell to the KAP for the first time.
  • the UE only needs to notify the KAP to send an IP keep-alive message to the AS according to the specific keep-alive cell.
  • the improvement process the amount of information transmission in the process of the pre-activation of the UE may be reduced.
  • the UE may implement the keep-alive request indication in the RRC connection request message, and the base station may not create the radio for the UE.
  • Data plane bearers, even wireless signaling plane bearers, can greatly save wireless resources through this improvement of wireless signaling.
  • the process includes the following steps: Step S1202: The UE is attached to the network; Step S1204: The UE sends a keep-alive cell to the KAP through the network.
  • the UE sends RRC signaling to the base station, where the RRC message is sent.
  • the order carries a keep-alive cell.
  • the base station After receiving the keep-alive cell, the base station carries the keep-alive cell in the NAS signaling and sends it to the SGSN/MME.
  • the SGSN/MME After receiving the NAS message, the SGSN/MME carries the keep-alive cell in the bearer control message and sends it to the GGSN/PGW.
  • the GGSN/PGW sends a keep-alive message to the KAP, carrying the keep-alive cell.
  • the UE may send the keep-alive cell to the KAP through the network.
  • the UE may send the keep-alive cell to the GGSN/PGW through the PCO.
  • Step S1206 After receiving the keep-alive cell, the KAP saves the keep-alive cell locally. If necessary, the KAP may construct an IP keep-alive packet to be sent to the AS; Step S1208, after a certain time, the base station releases the wireless connection of the UE, and the UE enters an idle state; Step S1210, after which, the UE needs to go to the AS due to the application requirement.
  • the IP keepalive is initiated.
  • step S1216 the UE initiates RRC signaling, and carries a keep-alive indication in the RRC signaling.
  • the keep-alive indication may identify the keep-alive cell that the UE previously sent to the keep-alive proxy KAP.
  • the KAP can also find a specific keep-alive cell by using the keep-alive instruction.
  • the keepalive indication the UE may be directly carried in the RRC signaling, and then extracted by the base station from the RRC signaling, and forwarded to the SGSN/MME through the NAS message.
  • the UE may carry the NAS message in the RRC signaling, and carry the keep-alive indication in the NAS message, and the base station does not parse the NAS content, and directly forwards the NAS message to the SGSN/MME.
  • Step S1214 the base station sends a NAS message to the SGSN/MME, and carries the keep-alive indication sent by the UE.
  • Step S1216 to step S1218 the SGSN/MME sends a keep-alive message to the KAP through the GGSN/PGW, and carries the keep-alive instruction;
  • the SGSN/MME may also directly send a keep-alive message to the KAP through the internal interface, and carry the keep-alive indication.
  • Step S1220 After receiving the keep-alive indication sent by the UE, the KAP constructs/generates an IP keep-alive packet according to the keep-alive context corresponding to the keep-alive indication, and sends the data to the AS; Step S1222 to Step S1228, according to the configuration policy, The KAP sends an IP keep-alive message to the AS for success/failure. The KAP needs to send a keep-alive response to the UE. The keep-alive response is carried in the message sent by the network to the UE, as described in detail in the previous embodiments.
  • the core network does not trigger the state transition of the UE, that is, if the current UE is in the idle state, the state of the UE will not be triggered to become the connected state.
  • Embodiment 3 Considering the process described in the second embodiment (FIG. 12), the UE still needs to initiate a signaling connection actively for each keep-alive, which is also a small overhead for the network. If the UE is notified of the keep-alive proxy KAP, instead of the UE periodically initiating keep-alive, the signaling overhead can be greatly reduced.
  • FIG. 13 is a flowchart of a KAP instead of a UE periodically initiating IP keepalive to an AS according to Embodiment 3 of the present invention. As shown in FIG. 13, the process includes the following steps: Steps S1302 to S1306, the UE is attached to the network, and the keepalive cell is sent to the KAP through the network, and the specific details are as described in the foregoing embodiment. In the process of this embodiment, the UE is in the process.
  • the keepalive cell sent to the KAP adds a parameter of the IP keep-alive cycle, and the KAP is required to periodically send an IP keep-alive packet to the AS according to the IP keep-alive cycle.
  • Step S1308 after a fixed time, the base station releases the wireless connection of the UE, and the UE enters an idle state.
  • Step S1310 The KAP calculates a keep-alive period according to the keep-alive cell sent by the UE. When the keep-alive period arrives, it decides to initiate the IP instead of the UE.
  • the KAP queries the network for the current state of the UE before initiating the IP keep-alive instead of the UE.
  • step S1312a the KAP queries the GGSN/PGW for the status of the UE:
  • the KAP query request if the GGSN/PGW has the IP context of the UE, the UE may be considered to be currently in an active state, then the GGSN /PGW returns the current state of the UE as active (or "online").
  • the UE may be considered to be currently active.
  • the SGSN/MME returns the current state of the UE as active (or "online”). Based on the current state of the UE queried from the network, the KAP determines whether to continue to initiate IP keep-alive according to the policy. Typically, if the UE is currently "active” then the KAP initiates IP keepalive instead of the UE. If the UE is currently "inactive", the KAP may cancel the initiation of IP keepalive. In step S1314, the KAP sends an IP keep-alive message packet to the AS. Thereafter, the KAP periodically sends an IP keep-alive message packet to the AS.
  • FIG. 15 is a flowchart 2 of an application data processing method according to an embodiment of the present invention. As shown in FIG.
  • Step S1502 Receive an IP data packet sent by a user equipment by using control plane signaling
  • Step S1504 Send the IP data packet to the target receiving address according to the IP route.
  • the receiving the IP data packet sent by the user equipment by using the control plane signaling includes: receiving an IP data packet sent by the user equipment by using control plane signaling, where the control plane signaling includes an RRC message sent by the user to the base station node, and the base station node
  • the IP data packet sent by the user equipment through the control plane signaling, where the control plane signaling includes The NAS message sent by the user equipment to the mobility management network element and the GTP control message sent by the mobility management network element to the public data network gateway; or the IP data packet sent by the user equipment through control plane signaling, where the control plane signaling
  • the bearer control message is sent by the user equipment to the public data network gateway, where the bear
  • the receiving the IP data packet sent by the user equipment through the control plane signaling includes: the user equipment carries the IP data packet in the RRC message and sends the data packet to the base station node, where the base station node carries the IP data packet in the NAS message and sends the information to the mobility.
  • the management network element the mobility management network element carries the IP data packet in the GTP control message and sends it to the public data network gateway; or, the user equipment carries the IP data packet in the NAS message and sends it to the mobility management network element, and mobility management The network element carries the IP data packet in the GTP control message and sends it to the public data network gateway.
  • the user equipment carries the IP data packet in the PCO cell and sends the IP data packet to the public data network gateway through the bearer control message.
  • the IP data packet includes keep-alive information for protection.
  • sending the IP data packet to the target receiving address according to the IP route comprises: after receiving the IP data packet sent by the user equipment through the control plane signaling, the public data network gateway sends the IP data packet to the target receiving address according to the IP route.
  • An embodiment of the present invention further provides an application data processing apparatus. The structural block diagram thereof is shown in FIG. 4, and the apparatus includes: a receiving module 42 and a sending module 44.
  • the receiving module 42 is configured to receive an IP data packet sent by the user equipment by using control plane signaling
  • the sending module 44 is configured to send the IP data packet to the target receiving address according to the IP routing.
  • the receiving module 42 is configured to: receive an IP data packet sent by the user equipment by using control plane signaling, where the control plane signaling includes an RRC message sent by the user to the base station node, and the base station node sends the NAS to the mobility management network element.
  • the bearer control message carries the PCO cell in the bearer control message, and the PCO cell carries the IP data packet.
  • the IP data packet includes keep-alive information for protection.
  • the sending module 44 is configured to send the IP data packet to the target receiving address according to the IP route after receiving the IP data packet sent by the user equipment through the control plane signaling.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • a processor is provided that is configured to execute program units stored in a memory, the modules included in the program units being the modules mentioned in any of the above embodiments.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种应用数据处理方法及装置,该方法包括接收用户设备通过控制面信令发送的应用数据;在接收到所述应用数据之后,将所述应用数据通过IP数据包发送给应用服务器。本发明解决了相关技术中终端和应用服务器保活对网络带来的不利影响的问题,达到了降低由于频繁保活对系统带来资源消耗的效果。

Description

应用数据处理方法及装置
技术领域 本发明涉及通信领域, 具体而言, 涉及一种应用数据处理方法及装置。 背景技术 在移动通信中, 用户设备 (User Equipment, 简称 UE) (或者也称为终端、 或用 户终端) 经常需要和应用服务器 (Application Server, 简称为 AS) 之间通过保活消息 来保持 IP连接。 如果 UE长时间不发送保活消息给 AS, AS很可能会认为 UE当前已 经非正常退出或移动到无信号区域导致无法和 AS通讯, 从而会主动注销 UE的注册, 从而 UE和 AS之间的 IP连接、 应用层注册关系都会被释放。 一般而言, UE发往 AS的保活消息通常都比较小, UE通常会间隔一个固定的时 间给 AS发送保活消息, 比如: 60秒。 UE在发送两次保活消息中间, 可能没有任何 其他消息发往 AS, 因为用户可能在这段时间内没有任何操作。 图 1是根据相关技术下 UE接入到分组 (Packet Service, PS) 域的架构示意图, 如图 1所示, 该结构涉及到了: UE、 UMTS陆地无线接入网 (UMTS Terrestrial Radio Access Network, 简称为 UTRAN)、 演进的陆地无线接入网 (Evolved UMTS简称为 E-UTRAN)、 服务 GPRS支持节点 (Serving GPRS Supporting Node, 简称为 SGSN)、 移动性管理实体 (Mobile Management Entity, 简称 MME)、 归属位置寄存器 (Home Location Register, 简称为 HLR) /归属用户服务器 (Home Subscriber Server, 简称为 HSS)、 S-GW、 分组数据网络网关(Packet Data Network Gateway, 简称为 P-GW)、 网 关 GPRS支持节点 (Gateway GPRS Supporting Node, 简称为 GGSN)、 AS。
UE可通过 UMTS、 E-UTRAN接入到核心网, 实现和 AS的 IP互连互通。 在 UE 发送保活消息前, UE必须已经附着到核心网, 并且已经注册到 AS。 在核心网已经为 UE建立了合适的 IP连接, UE也已经被分配了 IP地址。 UE向 AS发送的 IP数据包, 必须经过公共数据网网关实体 (在 EUTRAN 中是 PGW, 在 GERAN/UTRAN 中是 GGSN)。 在正常情况下, 如果 UE在一段时间内没有任何数据和信令通过基站发往核 心网, 基站将释放 UE的无线侧连接, 包括用于传输信令的无线信令承载、 用于传输 数据的无线数据承载。基站释放 UE的无线侧连接的同时,可能会导致基站(如 eNodeB ) 释放基站和核心网用户面实体(如 SGW/PGW)间的连接, 并进一步导致核心网将 UE 的状态从连接态 (CONNECTED) 转到空闲态 (IDLE)。 基于这种原因, 当 UE发起 IP层的保活消息时, 无线侧可能已释放 UE的无线侧 连接, 在核心网 UE也可能已经进入空闲态。 在这种情况下, 当 UE需要发起 IP数据 (IP层的保活消息) 时, UE必须请求创建无线侧连接, 核心网也被要求做出相应的 一些处理。 这些处理过程通常会耗费很多步骤, 然而 UE发送完该保活消息后, 可能 又不会有任何其他的数据发送, 因而网络将会释放 UE的无线侧连接、 促使 UE进入 空闲态, 而稍后 UE可能再次发起 IP保活。 上述情况, 对于网络资源而言, 造成了极大的浪费, 尤其是对无线而言, 基站频 繁地为 UE创建、 释放无线侧连接, 仅仅是为了传输很小的 IP数据包。 如果在一个基 站下大量 UE具有这类相似的行为, 将过多地消耗基站的资源, 严重限制了基站的并 发服务能力。 图 2是根据相关技术中 UE接入到分组域后和 AS实现保活的流程图, 该图是以 UE接入到 E-UTRAN为例进行说明, 如图 2所示, 该流程包括如下步骤: 步骤 S201, UE附着到网络, 网络为 UE建立 IP连接, 分配 IP地址; 步骤 S202, UE向 AS发起注册, 其后, UE根据业务需要和 AS通过交互消息传 递数据; 步骤 S203, UE和 AS间无消息交互或数据传输, 一段时间后, 网络将 UE从连接 态转入空闲态, 无线侧释放 UE的无线连接和承载, 并释放基站 (例如, eNodeB) 和 用户面实体 (例例如, SGW/PGW) 间的连接; 步骤 S204, UE的保活时间到达后, UE决定向 AS发起保活消息; 步骤 S205, UE 向基站发起 RRC连接请求, 并向核心网发起服务请求 (Service
Request);
UE发起 RRC连接请求是为了创建无线承载, UE发起服务请求是要求核心网为 UE准备好合适的资源。 步骤 S206, 基站将 UE的服务请求转给 SGSN/MME; 步骤 S207, SGSN/MME根据需要, 对 UE执行鉴权; 步骤 S208, SGSN/MME要求基站为 UE创建上下文; 步骤 S209, 基站为 UE创建无线承载, 并通知 UE; 步骤 S210, UE在基站为 UE创建好无线承载后, 通过用户面向 AS发送 IP保活 消息; 步骤 S211, UE向 AS发送完 IP保活消息后, 如果 UE在一定时间内不再发送 IP 数据, 则基站释放 UE的无线连接和承载, 同时释放基站到用户面实体的连接。 核心 网也可能将 UE从连接态转入空闲态。 基站对 UE的无线连接的释放, 基于判断在一定时间内 UE没有上任何上下行数 据。 当基站和核心网用户面实体 (SGW/PGW、 GGSN) 间的连接被释放时, 将促使 UE从连接态变成空闲态。 仔细分析上述流程可以看出, 如果 UE和 AS间的保活定时器时间比较长, 大于 基站所设置的释放 UE的无线承载的定时器, 则在 UE向 AS发送 IP保活消息后, 如 果 UE后续没有任何消息发往 AS, 或者 AS不发送任何消息给 UE, 则基站会在定时 器到达时候释放 UE的无线承载。 则等到下次 UE再想发起 IP保活的时候, 必须要和 基站建立无线连接, 要求基站创建无线承载, 要求核心网将 UE激活成连接态并设置 相关上下文。 然而, 这一系列的步骤仅仅是为了实现 UE向 AS发送一条非常简单的 IP保活消息。 当存在大量 UE进行保活时, 对核心网也构成了一定的影响, 核心网需要频繁地 将 UE在连接态和空闲态进行转换, 并设置相应的上下文。 针对相关技术中终端和应用服务器之间的保活 (以上以保活为例进行了说明, 对 于其他应用数据也有可能存在相似的问题) 对网络带来不利影响的问题, 目前尚未提 出有效的解决方案。 发明内容 针对相关技术中终端和应用服务器之间的保活对网络带来不利影响的问题, 本发 明实施例提供了一种应用数据处理方法及装置, 以至少解决上述问题。 根据本发明的一个方面, 提供了一种应用数据处理方法, 包括: 接收用户设备通 过控制面信令发送的应用数据; 在接收到所述应用数据之后, 将所述应用数据通过 IP 数据包发送给应用服务器。 优选地, 接收所述用户设备通过控制面信令发送的 IP数据包, 其中, 所述应用数 据封装成所述 IP数据包; 在接收到所述 IP数据包之后, 将所述 IP数据包发送给所述 应用服务器。 优选地, 所述应用数据包括: 用于保护的保活信息。 优选地,公共数据网网关接收所述用户设备通过控制面信令发送的所述保活信息; 所述公共数据网网关向所述应用服务器发送用于对所述用户设备进行保活的保活数据 包。 优选地, 在所述公共数据网网关接收所述用户设备通过控制面信令发送的用于保 活的所述保活信息之前, 所述方法还包括: 移动性管理网元接收所述用户设备通过控 制面信令发送的所述保活信息; 所述移动性管理网元向所述公共数据网网关发送承载 控制消息, 其中, 所述承载控制消息中携带有所述保活信息。 优选地, 所述移动性管理网元接收所述用户设备发送的 NAS 消息, 其中, 所述 NAS消息中携带有所述保活信息。 优选地, 所述移动性管理网元接收所述用户设备发送的协议配置选项 (Protocol Configuration Option, 简称为 PCO)信元, 并通过所述承载控制消息将所述 PCO信元 发送给所述公共数据网网关, 其中, 所述 PCO信元中携带有所述保活信息。 优选地, 保活代理接收所述用户设备通过控制面信令发送的所述保活信息; 所述 保活代理向所述应用服务器发送所述保活数据包, 其中, 所述保活代理作为功能实体 独立部署。 优选地, 所述保活代理接收移动性管理网元或公共数据网网关发送的所述保活信 息。 优选地, 所述保活信息携带在非接入层(Non Access Stratum, 简称为 NAS)消息 中, 或者, 所述保活信息携带在 PCO信元中。 优选地, 所述公共数据网网关直接接收来自所述用户设备的携带有所述保活信息 的 PCO信元, 并将所述 PCO信元发送给所述保活代理。 优选地, 所述公共数据网网关包括: 网关通用分组无线业务支持节点 (Gateway General Packet Radio Service Supporting Node, 简称为 GGSN) 禾口 /或 PGW; 和 /或, 所 述移动性管理网元包括: 服务 GPRS支持节点 SGSN和 /或移动性管理实体 MME。 优选地, 接入网接收来自所述用户设备的保活信息, 并将所述保活信息携带在 NAS消息或 PCO信元中发送给的所述移动性管理网元。 优选地, 所述用户设备通过以下方式至少之一向所述接入网发送所述保活信息: 将所述保活信息携带在 NAS消息中、 将所述保活信息携带在 PCO信元中、 将所述保 活信息携带在 RRC信令。 优选地, 所述 RRC信令包括以下至少之一: RRC连接建立请求、 RRC连接完成。 优选地,所述方法还包括: 所述用户设备在 RRC连接建立请求中携带连接指示信 息, 其中, 所述连接指示信息用于指示接入网不为所述用户设备创建用户面承载。 优选地, 所述方法还包括: 所述连接指示信息包括: RRC连接请求的原因设置为 始发的信令。 优选地, 所述保活信息包括以下至少之一: 保活信元、 保活数据包, 其中, 所述 保活信元设置为构建保活数据包。 优选地, 所述保活信息包括: 标识信息, 其中, 所述标识信息用于标识与所述用 户设备对应的保活信元或者保活数据包; 接收到标识信息之后, 查找与所述标识对应 的保活信元或保活数据包, 并向所述应用服务器发送根据所述保活信元构建的保活数 据包或查找到的保活数据包。 优选地, 在接收到所述保活信息之后向所述应用服务器发送用于对所述用户设备 进行保活的保活数据包包括: 向所述应用服务器发送所述保活数据包的网元, 代替所 述用户设备周期性地向所述应用服务器发送所述保活数据包, 并且, 所述用户设备抑 制本地的保活流程。 优选地, 在向所述应用服务器发送所述保活数据包的网元代替所述用户设备周期 性地向所述应用服务器发送所述保活数据包的情况下, 所述网元接收用户设备通过控 制面信令发送的所述保活信息,或者接收所述用户设备通过与所述网元建立 IP承载发 送的所述保活信息。 优选地, 所述网元代替所述用户设备周期性地向所述应用服务器发送所述保活数 据包包括: 所述网元获取所述用户设备的状态, 在所述用户设备的状态需要进行保活 的情况下, 代替所述用户设备周期性地向所述应用服务器发送所述保活数据包。 根据本发明的另一个方面, 还提供了一种应用数据处理装置, 包括: 接收模块, 设置为接收用户设备通过控制面信令发送的应用数据; 发送模块, 设置为在接收到所 述应用数据之后, 通过 IP数据包向应用服务器发送所述应用数据。 优选地, 所述装置位于公共数据网网关上。 优选地, 所述装置作为功能实体独立部署。 优选地, 所述应用数据包括: 用于保活的保活信息。 优选地, 接收模块, 设置为接收所述用户设备通过控制面信令发送的 IP数据包, 其中, 所述应用数据封装成所述 IP数据包; 发送模块, 设置为在接收到所述 IP数据 包之后, 将所述 IP数据包发送给所述应用服务器。 根据本发明的另一个方面, 还提供了一种应用数据处理方法, 一种应用数据处理 方法, 包括接收用户设备通过控制面信令发送的 IP数据包; 根据 IP路由将所述 IP数 据包发送给目标接收地址。 优选地, 接收用户设备通过控制面信令发送的 IP数据包包括: 接收用户设备通过 控制面信令发送的 IP数据包,其中,所述控制面信令包括用户发送给基站节点的 RRC 消息,所述基站节点发送给移动性管理网元的 NAS消息和所述移动性管理网元发送给 公共数据网网关的 GTP控制消息; 或接收用户设备通过控制面信令发送的 IP数据包, 其中,所述控制面信令包括用户设备发送给移动性管理网元的 NAS消息和所述移动性 管理网元发送给公共数据网网关的 GTP控制消息;或接收用户设备通过控制面信令发 送的 IP数据包, 其中, 所述控制面信令包括用户设备发送给公共数据网网关的承载控 制消息, 所述承载控制消息中携带 PCO信元, 所述 PCO信元中携带所述 IP数据包。 优选地, 所述 IP数据包包括用于保护的保活信息。 优选地, 根据 IP路由将所述 IP数据包发送给目标接收地址包括: 所述公共数据 网网关接收到所述用户设备通过控制面信令发送的所述 IP数据包之后, 根据 IP路由 向所述目标接收地址发送所述 IP数据包。 根据本发明的另一个方面, 还提供了一种应用数据处理装置, 包括接收模块, 用 于接收用户设备通过控制面信令发送的 IP数据包; 发送模块, 用于根据 IP路由将所 述 IP数据包发送给目标接收地址。 优选地, 所述接收模块用于: 接收用户设备通过控制面信令发送的 IP数据包, 其 中,所述控制面信令包括用户发送给基站节点的 RRC消息,所述基站节点发送给移动 性管理网元的 NAS消息和所述移动性管理网元发送给公共数据网网关的 GTP控制消 息; 或接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令包括用 户设备发送给移动性管理网元的 NAS 消息和所述移动性管理网元发送给公共数据网 网关的 GTP控制消息; 或接收用户设备通过控制面信令发送的 IP数据包, 其中, 所 述控制面信令包括用户设备发送给公共数据网网关的承载控制消息, 所述承载控制消 息中携带 PCO信元, 所述 PCO信元中携带所述 IP数据包。 优选地, 所述 IP数据包包括用于保护的保活信息。 优选地, 所述发送模块用于在接收到所述用户设备通过控制面信令发送的所述 IP 数据包之后, 根据 IP路由向所述目标接收地址发送所述 IP数据包。 通过本发明, 采用接收用户设备通过控制面信令发送的应用数据; 在接收到所述 应用数据之后, 将所述应用数据通过 IP数据包发送给应用服务器。解决了相关技术中 终端和应用服务器保活对网络带来的不利影响的问题, 达到了降低由于频繁保活对系 统带来资源消耗的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术下 UE接入到分组域的架构示意图; 图 2是根据相关技术中 UE接入到分组域后和 AS实现保活的流程图; 图 3是根据本发明实施例的保活方法的流程图; 图 4是根据本发明实施例的应用数据处理装置的结构框图; 图 5是根据本发明实施例一的流程图; 图 6是根据本发明实施例一的优选实施方式一, UE通过 RRC信令方式将保活信 元发送给 GGSN/PGW的流程图一; 图 7是根据本发明实施例一的优选实施方式一, UE通过 RRC信令方式将保活信 元发送给 GGSN/PGW的流程图二; 图 8是根据本发明实施例一的优选实施方式二, UE通过 NAS信令方式将保活信 元发送给 GGSN/PGW的流程图; 图 9是根据本发明实施例一的优选实施方式三, UE通过 PCO参数将保活信元发 送给 GGSN/PGW的流程图; 图 10是根据本发明实施例二的架构示意图; 图 11是根据本发明实施例二的优选实施方式一, UE将保活信元发送给 ΚΑΡ, ΚΑΡ 根据保活信元向 AS发送 IP保活数据包的流程图; 图 12是根据本发明实施例二的优选实施方式二, UE先将保活信元发送给 KAP, KAP保存保活信元, 其后, UE指示 KAP向 AS发送 IP保活数据包的流程图; 图 13是根据本发明实施例三, KAP代替 UE周期性地向 AS发起 IP保活的流程 图; 图 14是根据本发明实施例的应用数据处理方法的流程图; 图 15是根据本发明实施例的应用数据处理方法的流程图二。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在以下实施例中描述了 UE和应用服务器间通讯的方式: UE将原本要通过 IP数 据流发往应用服务器的应用数据, 承载在控制面信令中发送到网络中的中继节点 (例 如, 在以下实施例中提到的保活代理、 GGSN/PGW等), 由中继节点代替 UE将应用 数据封装成 IP数据包发送给应用服务器。对于保活信息而言, 其可以认为是应用数据 的一种。 但是, 应用数据并不限于保活信息这一种。 图 14是根据本发明实施例的应用数据处理方法的流程图, 如图 14所示, 该流程 包括如下步骤: 步骤 S1402, 接收用户设备通过控制面信令发送的应用数据; 步骤 S1404, 在接收到应用数据之后, 将应用数据通过 IP数据包发送给应用服务 器。 通过上述步骤, 将原来需要通过 IP数据流发送的应用数据通过控制面信令承载, 从而不再需要建立用户面的承载, 从而可以解决问题。 上述步骤不仅仅能够解决背景 技术中所提到的保活信息发送所存在的问题, 而且还能够解决其他类型应用数据发送 时的问题。 在以下实施例中, 以保活信息的处理为例进行说明, 但是并不限于此, 其 他类型的应用数据也同样可以适用以下的实施例。 优选地, 用户设备可以直接发送应用数据, 然后由接收到该应用数据的网元和 / 或功能实体将该应用数据封装成 IP数据包发送给应用服务器。 当然, 也可以由用户设 备将应用数据封装在 IP数据包中, 接收到该 IP数据包的网元和 /或功能实体将接收到 IP数据包发送给应用服务器。 在以下实施例中涉及到移动性管理网元、 公共数据网网关, 对于移动性管理网元 而言, 能够起到移动性管理功能的实体均可以认为是移动性管理网元, 例如, SGSN、 MME 等。 同样, 对于公共数据网关而言, 能够起到同数据网络连接并起到网关作用 的功能实体均可以认为是公共数据网关, 例如, GGSN、 PGW等。 在以下实施例中, 以应用数据为保活信息为例, 提供了一种保活方法, 图 3是根 据本发明实施例的保活方法的流程图, 如图 3所示, 该方法包括以下步骤: 步骤 S302, 接收用户设备通过控制面信令发送的用于保活的保活信息; 步骤 S304,在接收到保活信息之后向应用服务器发送用于对用户设备进行保活的 保活数据包。 通过以上步骤, 通过上述步骤, 用户设备不再通过用户面来发送保活信息, 而是 通过控制面信令来发送用于保活的保活信息, 这样无论对于接入网还是核心网而言均 不再需要建立用户面实体的连接, 从而起到了降低保活对网络资源影响的效果, 解决 了相关技术中用户设备和应用服务器间进行保活而带来的对网络带来的不利影响的问 题。 执行上述步骤的可以是公共数据网网关, 例如, GGSN、 和 /或 PGW, 也可以是为 了实现保活而单独设置的功能实体, 在以下实施例中将该功能实体称为保活代理, 保 活代理可以是一个或多个服务器的组合, 也可以是一个功能模块, 该功能模块可以位 于现有的执行其他功能的功能实体上, 例如, 可以位于 GGSN/PGW上 (即相当于是 GGSN/PGW执行上述步骤)。 保活代理的如何设置可以根据实际的网络状况和应用状 况来选择。 以下以保活代理位于 GGSN/PGW 以及保活代理独立设置为例进行说明。 以下的说明仅仅是举例说明, 并不限于此。 优选示例一, 保活代理位于 GGSN/PGW上。保活代理位于 GGSN/PGW上时, 即 GGSN/PGW接收用户设备通过控制面信令发送的保活信息; GGSN/PGW向应用服务 器发送保活数据包。 这种方式不需要对现有的网络架构进行任何的改变, 只需要在 GGSN/PGW上增加保活代理的功能即可。 移动性管理网元 (例如, SGSN、 MME) 可以通过控制面信令的消息, 例如承载 控制消息, 来携带保活信息并发送给 GGSN/PGW。移动性管理网元接收到的保活信息 可以携带在 NAS消息中, 也可以携带在 PCO信元中, 如果是携带在 PCO信元中可以 直接通过承载控制消息将该 PCO信元发送给 GGSN/PGW。 优选示例二, 保活代理独立设置。 这种方式, 需要对现有的网络架构进行改变, 由于方式一需要 GGSN/PGW承担更多的功能,因此,这种方式可以降低对 GGSN/PGW 的要求。 对于这种方式, 保活代理可以接收移动性管理网元或 GGSN/PGW发送的保活信 息。 保活信息可以携带在 NAS消息中, 当然也可以携带在 PCO信元中。 如果用户设 备将保活信息携带在 PCO信元中, 那么, GGSN/PGW可以直接接收来自用户设备的 携带有保活信息的 PCO信元, 然后将 PCO信元发送给保活代理, 这样可以实现用户 设备和 GGSN/PGW直接交互。 无论是上述优选示例一还是优选示例二, 接入网和终端之间的保活信息的传输均 可以使用如下的优选实施方式。 对于接入网 (包括基站) 而言, 也可以选择控制面信令的消息或传输方式来传输 (包括发送和接收) 保活信息, 例如, 对于接入网发送保活信息而言, 一个较优的实 施方式是接入网接收来自用户设备的保活信息, 可以将保活信息携带在 NAS 消息或 PCO信元中发送给的移动性管理网元。 又例如, 对于用户设备向接入网发送保活信息 而言, 用户设备可以通过以下方式至少之一向接入网发送保活信息: 将保活信息携带 在 NAS消息中、将保活信息携带在 PCO信元中、将保活信息携带在 RRC信令。其中, RRC信令包括以下至少之一: RRC连接建立请求、 RRC连接完成。 优选地, 为了防止接入网建立用户面承载,用户设备可以在 RRC连接建立请求中 携带连接指示信息 (例如, RRC 连接请求的原因设置为始发的信令), 其中, 连接指 示信息用于指示接入网不为用户设备创建用户面承载。 上述实施例中使用了保活信息, 在实际应用的过程中, 可以使用不同的保活信息 来进行保活, 例如, 保活信息可以包括以下至少之一: 保活信元、 保活数据包, 其中, 保活信元设置为构建保活数据包。 作为一个较优的保活信息的实施方式, 保活信息包括: 标识信息, 其中, 标识信 息用于标识与用户设备对应的保活信元或者保活数据包; 接收到的标识信息之后, 查 找与标识对应的保活信元或保活数据包, 并向应用服务器发送根据保活信元构建的保 活数据包或查找到的保活数据包。 该优选实施方式, 用户设备和保活代理之间不再需 要发送保活信元, 而直接发送相应的标识, 从而减低了用户设备和保活代理之间传输 的数据量。 作为一个更优的实施例, 保活代理可以代替用户设备来进行保活处理, 即保活代 理代替用户设备周期性地向应用服务器发送保活数据包, 并且, 用户设备抑制本地的 保活流程。 通过这样的方式, 用户设备不再需要保活, 可以进一步地减少网络流量, 并且, 这种处理方式更加有效地解决了保活过程中所带来的问题。 在保活代理替代用 户设备进行保活处理的情况下, 保活代理可以预先通过控制面信令或者与用户设备之 间的 IP承载来获取保活信息。 对应于上述方法, 本实施例还提供了一种保活装置, 该装置设置为实现上述实施 例及优选实施方式, 已经进行过说明的不再赘述。 如以下所使用的, 术语 "模块 "可以 实现预定功能的软件和 /或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来 实现, 但是硬件, 或者软件和硬件的组合的实现也是可能并被构想的。 图 4是根据本 发明实施例的应用数据处理装置的结构框图, 如图 4所示, 该装置包括: 接收模块 42 和发送模块 44, 下面对该结构进行说明。 接收模块 42,设置为接收用户设备通过控制面信令发送的应用数据;发送模块 44, 设置为在接收到应用数据之后, 通过 IP数据包向应用服务器发送应用数据。 优选地, 发送模块设置为将应用数据封装成 IP数据包发送给应用服务器。 优选地,接收模块,设置为接收用户设备通过控制面信令发送的 IP数据包,其中, 应用数据封装成 IP数据包; 发送模块, 设置为在接收到 IP数据包之后, 将 IP数据包 发送给应用服务器。 所述应用数据可以包括: 用于保活的保活信息。 此时, 接收模块 42, 设置为接收 用户设备通过控制面信令发送的用于保活的保活信息; 发送模块 44, 连接至接收模块 42, 设置为在接收到保活信息之后向应用服务器发送用于对用户设备进行保活的保活 数据包。 优选地, 上述装置可以位于公共数据网网关上 (例如, 位于 GGSN/PGW上), 或 者, 上述装置作为功能实体独立部署。 下面结合优选实施例和附图进行说明, 以下优选实施例结合了上述实施例及优选 实施方式。 实施例一 图 5 是根据本发明实施例一的流程图, 如图 5 所示, UE 将保活信元传递给 GGSN/PGW, 进而发送给 AS, 该流程包括如下步骤: 步骤 S502, UE通过控制面信令将保活信元传递给 GGSN/PGW; 步骤 S504, 当 GGSN/PGW收到保活信元后, 构造发往 AS的 IP保活数据包, 或 者利用 UE所提供的 IP保活数据包, 通过发送 IP数据包的方式向 AS发送 IP保活消 息。 具体地, 在本实施例中, UE所发送的保活信元可以是如下格式: 格式一, 用以构造 IP 包含数据包的若干保活参数的组合, 这些参数可以指示
GGSN/PGW如何构造 (或利用) IP保活数据包, 该 IP保活数据包用以向 AS发送 IP 保活消息; 比如: IP保活参数中, 规定了 IP保活消息发送端 (即 UE) 的 IP地址、 发 送端口、 接收端 (即 AS) 的 IP地址、 端口。 另外, UE可以指定执行 IP保活所采用 的协议, 根据该协议可以构造 IP包含数据包的具体内容。或者 UE可以明确地指明 IP 保活数据包的内容。 格式二, 一个具体的 IP保活数据包, 这时 IP数据包的内容是发往 AS的 IP保活 消息, GGSN/PGW可直接向 AS发送该 IP保活数据包; 在本实施例中, UE通过控制面信令将保活信元传递给 GGSN/PGW, 可以采用如 下几种方法: 方法一, 如图 6、 7, UE在 RRC信令中携带保活信元, 基站将保活信元通过 NAS 消息发送给 SGSN/MME , SGSN/MME 通过承载控制消息将保活信元传递给 GGSN/PGW; 方法二,如图 8, UE在 NAS信令中携带保活信元,发送给 SGSN/MME, SGSN/MME 通过承载控制消息将保活信元传递给 GGSN/PGW; 方法三, 如图 9, UE在 PCO参数中携带保活信元, 发送给 GGSN/PGW; 具体实施方式 1 图 6是根据本发明实施例一的优选实施方式一, UE通过 RRC信令方式将保活信 元发送给 GGSN/PGW的流程图一。 如图 6所示, UE通过 RRC信令将保活信元发送 到基站, 基站通过 NAS消息将保活信元发送给 SGSN/MME, SGSN/MME通过承载控 制消息将保活信元发送给 GGSN/PGW。 GGSN/PGW根据保活信元, 构造 /生成 IP保 活消息, 发送给 AS。 步骤 S602, UE向接入网 (简称为 RAN) (例如, 基站) 发起 RRC连接请求, 携 带保活信元; 由于 UE在希望发起 IP保活前, UE和基站的无线连接是断开的, 所以 UE需要 先向基站发起 RRC连接请求,请求基站为其建立 RRC连接。在该 RRC连接请求消息 中, 可以携带保活信元。 为了避免基站为 UE创建无线用户面承载 (Radio Data Bearer, 简称 RDB), UE 可以将 RRC连接请求的原因值设定为"始发的信令" (MO Signaling 基站识别"始发 的信令 "后, 不再为 UE创建无线用户面承载。 步骤 S604, 基站收到 UE的 RRC连接请求后, 取出保活信元, 封装到 NAS消息 中, 发送给 SGSN/MME; 具体的 NAS消息, 可以是一条新定义的 NAS保活消息, 或者在其他合适的 NAS 消息里面携带保活信元。 步骤 S606, SGSN/MME收到 NAS消息后, 取出保活信元, 通过承载控制消息将 保活信元发送给 GGSN/PGW; 步骤 S608, GGSN/PGW收到承载控制消息后, 获得其中携带的保活信元。 根据 该保活信元的内容, GGSN/PGW向应用服务器 AS发送 IP保活消息, AS收到 IP保活 消息后, 可能会返回合适的消息 /IP数据包;
GGSN/PGW收到的保活信元可能是: 用以构造 IP包含数据包的若干保活参数的组合。 根据这些参数, GGSN/PGW构 造发往 AS的 IP保活数据包; 比如,保活信元中包含若干的保活参数, 根据这些参数, GGSN/PGW可以构造一个发往 AS的 IP保活数据包, 源地址为 UE的 IP地址, 源端 口为 UE的端口, 目标地址为 AS的 IP地址, 目标端口为 AS的端口, IP数据包的内 容根据保活协议生成,或者根据指定的消息内容。或者是,一个具体的 IP保活数据包。 GGSN/PGW将这个 IP保活数据包直接发给 AS。 步骤 S610, GGSN/PGW向 SSGN/MME返回承载控制响应。其中, 响应中可能携 带合适的 IP保活响应值; 如果 GGSN/PGW将 IP保活消息成功发往 AS, 贝 U GGSN/PGW可以设置 IP保活 响应值的取值为"成功", 否则设置为"失败"。 步骤 S612, SGSN/MME向基站返回 NAS响应。其中, NAS响应中可能携带合适 的 IP保活响应值, 说明 IP保活消息有没有成功发出; 步骤 S614, 基站向 UE返回 RRC连接设置消息, 要求 UE自身准备 RRC连接资 源。 其中, RRC连接响应中可能携带合适的 IP保活响应值; 步骤 S616, UE准备好 RRC连接资源后, 向基站返回 RRC连接完成消息; 步骤 S618, 后续其他步骤。 在本实施例中, 需要指出的是, 当 SGSN/MME收到 UE发送的保活信元后, 如果 当前 UE为空闲态, SGSN/MME可以不将 UE触发成激活态, 这样将避免 UE的状态 频繁地被改变, 降低状态改变所带来的资源消耗。 在图 6所示的优选实施方式中, UE在 RRC连接请求中携带保活信元。 然而, 这 种方式具有一定的局限性, 因为 RRC连接请求通常长度受到限制, 发送超过其限制长 度的数据可能会由于无线自身机制导致数据发送的不稳定。因此,可以考虑在 RRC连 接建立完成时, UE在向基站发送 RRC连接完成消息时携带保活信元。 图 7是根据本发明实施例一的优选实施方式一, UE通过 RRC信令方式将保活信 元发送给 GGSN/PGW的流程图二。 图 7描述了的方式和图 6方式的不同包括: 步骤 S702~S706, UE先通过步骤 S702~S704请求基站创建无线资源, 然后在步 骤 S706的 RRC连接完成消息中携带保活信元。 步骤 S718,基站收到 SGSN/MME发送的 NAS响应消息后, 向 UE发送下行 RRC 信令, 携带响应值。 图 8是根据本发明实施例一的优选实施方式二, UE通过 NAS信令方式将保活信 元发送给 GGSN/PGW的流程图。 如图 8所示, UE通过 NAS信令将保活信元发送到 送给 SGSN/MME, SGSN/MME通过承载控制消息将保活信元发送给 GGSN/PGW。
GGSN/PGW根据保活信元, 构造 /生成 IP保活消息, 发送给 AS。 和图 6、7所示的优选实施方式不同之处在于, UE在 NAS层消息中携带保活信元, 而 SGSN/MME和 GGSN/PGW的交互、 GGSN/PGW和 AS间的交互则和图 6、 7所示 的优选实施方式相同。 步骤 S802, UE向 SGSN/MME发送 NAS消息, 携带保活信元; 具体的 NAS消息, 可以是一条新定义的 NAS保活消息, 或者在其他合适的 NAS 消息里面携带保活信元。 步骤 S804〜步骤 S808, SGSN/MME将保活信元通过承载控制消息将保活信元发 送给 GGSN/PGW, GGSN/PGW根据保活信元内容向 AS发送 IP保活消息; 步骤 S810, SGSN/MME向 UE返回 NAS响应。 其中, NAS响应中可能携带合适 的 IP保活响应值, 说明 IP保活消息有没有成功发出。 同样地, 由于 UE在发送 IP保活信元前并没有建立无线承载, 所以 UE仍然需要 向基站发起 RRC连接建立过程。 为了避免建立无线用户面承载, UE可以设置 RRC 连接原因值为 MO Signaling 同样地, 对 SGSN/MME而言, 在收到保活信元时, SGSN/MME可以不触发 UE 的状态变迁过程, 这样可避免频繁切换 UE的状态所导致的低效率和资源消耗。 图 9是根据本发明实施例一的优选实施方式三, UE通过 PCO参数将保活信元发 送给 GGSN/PGW的流程图。 如图 9所示, UE通过承载创建 /变更消息, 在 PCO信元 中携带保活信元 SGSN/MME , SGSN/MME 将 PCO 信元透传给 GGSN/PGW。
GGSN/PGW根据保活信元, 构造 /生成 IP保活消息, 发送给 AS。 和图 8所示的实施方式的不同之处在于,在步骤 S902中, UE在 PCO信元中携带 保活信元, 而 SGSN/MME在步骤 S904中透传该 PCO信元。 同样地, 由于 UE在发送 IP保活信元前并没有建立无线承载, 所以 UE仍然需要 向基站发起 RRC连接建立过程。 为了避免建立无线用户面承载, UE可以设置 RRC 连接原因值为 MOSignaling。 同样地, 对 SGSN/MME而言, 在收到保活信元时, SGSN/MME可以不触发 UE 的状态变迁过程, 这样可避免频繁切换 UE的状态所导致的低效率和资源消耗。 实施例二 在实施例一中, UE 通过控制面信令将保活信元携带到 GGSN/PGW , 由 GGSN/PGW构造或生成 IP数据包发送 IP保活消息给 AS。这种方式要求 GGSN/PGW 充当保活代理 (Keep-Alive Proxy, 简称 KAP), 并且这种保活代理可能需要理解特殊 的保活协议格式, 因而这种方式对 GGSN/PGW未必是最合适的。 一种改进的方式, 是将按保活信元构造 IP保活数据包 (即 IP保活消息) 的功能 隔离出来, 由单独的保活代理来执行。 KAP的部署, 可以由运营商控制, KAP到其他 网元的接口, 可以基于内部接口。 图 10 是根据本发明实施例二的架构示意图。 如图 10 所示, SGSN/MME、 GGSN/PGW和 KAP间可以通过内部接口传递保活信元。 另外, 在 UE上可以独立配 置 KAP, UE通过 IP连接向 KAP提出保活要求。 弓 I入保活代理 KAP后, UE可以通过如下方式将保活信元传递给 KAP: 方式一, UE通过 NAS信令将保活信元传递给 SGSN/MME, SGSN/MME向 KAP 发送保活消息, 携带保活信元; 方式二, UE通过 PCO方式,将保活信元传递给 GGSN/PGW, GGSN/PGW向 KAP 发送保活消息, 携带保活信元; 方式三, UE通过用户面方式将保活信元发送给 KAP。 保活信元被包含在 UE发 往 KAP的消息中。 图 11是根据本发明实施例二的优选实施方式一, UE将保活信元发送给 ΚΑΡ, ΚΑΡ 根据保活信元向 AS发送 IP保活数据包的流程图。 如图 11所示, 该流程包括如下步 骤: 步骤 S1102, UE通过如下方式将保活信元发送给 KAP: 方式 1, 步骤 S1102al〜步骤 S1102a2, UE通过 RRC方式、 NAS方式, 将保活信 元包含在 RRC信令、 NAS信令中, 发送给 SGSN/MME。 SGSN/MME收到保活信元 后, 向 KAP发送保活消息, 携带保活信元; 方式 2,步骤 S 1102b 1〜步骤 S1102b2, UE通过 PCO方式,将保活信元保活在 PCO 信元中, 直接发送到 GGSN/PGW。 GGSN/PGW收到保活信元后, 向 KAP发送保活消 息, 携带保活信元; 方式 3, 步骤 S1102c, UE向 KAP直接发送保活消息, 携带保活信元; 步骤 S1104, KAP收到保活消息后, 根据保活信元的指示, 构造 /生成 IP保活数 据包, 向 AS发送 IP保活消息; 步骤 S1106, 后续保活响应的返回过程, 和前面实施方式相同。 在图 11所描述的优选实施方式中, UE每次都需要将完整的保活信元发送给 KAP, KAP根据该保活信元来构成 /生成发往 AS的 IP保活数据包。 这很显然造成了一定的 浪费, 因为 UE和特定 AS之间的 IP保活形式基本是固定的。 图 12是根据本发明实施例二的优选实施方式二, UE先将保活信元发送给 KAP, KAP保存保活信元, 其后, UE指示 KAP向 AS发送 IP保活数据包的流程图。, 如图 12所示, 对上述方式进行了改进, 通过 UE首次将保活信元发送给 KAP, 其后, UE 只需要通知 KAP根据特定的保活信元来发送 IP保活消息给 AS。 通过这一改进过程, 可以降低后续 UE发起保活过程中的信息传递量, 尤其对无线资源而言, UE可以实现 在 RRC连接请求消息中携带保活请求指示,而基站可以不为 UE创建无线数据面承载、 甚至是无线信令面承载, 通过对无线信令的这一改进, 可以极大地节省无线资源。 如图 12所示, 该流程包括如下步骤: 步骤 S 1202, UE附着到网络; 步骤 S1204, UE通过网络向 KAP发送保活信元; 本步骤中, UE向基站发送 RRC信令, 在 RRC信令中携带保活信元。基站收到保 活信元后,在 NAS信令中携带保活信元, 发送给 SGSN/MME。 SGSN/MME接到 NAS 消息后, 在承载控制消息中携带保活信元, 发送给 GGSN/PGW。 GGSN/PGW向 KAP 发送保活消息, 携带保活信元。 当然, 根据前述实施例, UE通过网络向 KAP发送保活信元还可以有其他方式, 比如, UE通过 PCO方式将保活信元发送给 GGSN/PGW。 步骤 S1206, KAP收到保活信元后, 在本地保存保活信元。 根据需要, KAP可能 构造 IP保活数据包发往 AS; 步骤 S1208, 一定时间后, 基站释放 UE的无线连接, UE进入空闲态; 步骤 S1210, 其后, UE由于应用程序的需要, 需要向 AS发起 IP保活; 步骤 S1216, UE发起 RRC信令, 在 RRC信令中携带保活指示; 该保活指示, 可以标识 UE先前发送到保活代理 KAP的保活信元。 而 KAP通过 该保活指示, 也可以查找到具体的保活信元。 该保活指示, UE可以直接携带在 RRC信令中,后续由基站从 RRC信令中提取出 来,经过 NAS消息转发给 SGSN/MME。或者, UE可以在 RRC信令中携带 NAS消息, 并在 NAS消息中携带该保活指示, 则基站不解析 NAS内容,直接将 NAS消息转发给 SGSN/MME。 步骤 S1214, 基站向 SGSN/MME发送 NAS消息, 携带 UE发送的保活指示; 步骤 S 1216〜步骤 S1218, SGSN/MME经过 GGSN/PGW向 KAP发送保活消息, 携带所述保活指示; 当然, 如前述实施例和实施方式所述, SGSN/MME也可能通过内部接口向 KAP 直接发送保活消息, 携带所述保活指示。 步骤 S1220, 当 KAP收到 UE发送的保活指示后, 根据保活指示所对应的保活上 下文, 构造 /生成 IP保活数据包, 发往 AS; 步骤 S1222〜步骤 S1228, 根据配置策略, 如果 KAP向 AS发送 IP保活消息成功 / 失败, KAP需要将保活响应发送给 UE。 保活响应被携带在网络发往 UE的消息中, 具体地如前述实施例所描述。 如前述实施例和实施方式所述, 在本流程过程中, 核心网不触发 UE的状态转换, 即如果当前 UE在空闲态, 将不会触发 UE的状态变成连接态。 实施例三 考虑到实施例二所描述的流程 (图 12) 中, UE仍然需要在每次保活时主动发起 信令连接, 对网络也是一个不小的开销。 如果考虑 UE通知保活代理 KAP, 代替 UE 周期性发起保活, 则可以极大地降低信令开销。 为了避免当 UE移出位置区域、 失去 信号等异常情况时 KAP仍然持续地为 UE保活,可以让 KAP周期性地从网络检查 UE 的状态。 图 13是根据本发明的实施例三, KAP代替 UE周期性地向 AS发起 IP保活的流 程图。 如图 13所示, 该流程包括如下步骤: 步骤 S1302〜步骤 S1306, UE附着到网络, 经过网络向 KAP发送保活信元, 具体 细节如前述实施方式; 在本实施例的流程中, UE在发往 KAP的保活信元中,添加了 IP保活周期的参数, 要求 KAP根据该 IP保活周期, 周期性地向 AS发送 IP保活数据包。 步骤 S1308, —定时间后, 基站释放 UE的无线连接, UE进入空闲态; 步骤 S1310, KAP根据 UE发送的保活信元, 计算保活周期, 当保活周期到达时, 决定代替 UE发起 IP保活; 步骤 S1312, 可选地, KAP在代替 UE发起 IP保活前, 向网络查询 UE当前的状 态。 可以采用如下方式: 方式一, 如步骤 S1312a, KAP向 GGSN/PGW查询 UE的状态: 响应于 KAP的查 询请求, 如果 GGSN/PGW上有 UE的 IP上下文, 可以认为 UE当前处于活动状态, 则 GGSN/PGW返回 UE当前的状态为活动 (或者 "在线")。 方式二, 如步骤 S1312b, KAP向 SGSN/MME查询 UE的状态: 响应于 KAP的 查询请求, 如果 SGSN/MME上有 UE的上下文, 并且 UE未从网络注销, 可以认为 UE当前处于活动状态, 则 SGSN/MME返回 UE当前的状态为活动 (或者 "在线")。 根据从网络查询到的 UE的当前状态, KAP根据策略决定是否继续发起 IP保活。 典型地, 如果 UE当前"活动"则 KAP代替 UE发起 IP保活, 如果 UE当前"不活动", 可能 KAP取消发起 IP保活。 步骤 S1314, KAP向 AS发送 IP保活消息包。 其后, KAP周期性地向 AS发送 IP 保活消息包。 在本实施例中, 当 UE要求 KAP代替 UE发送 IP保活消息给 AS后, UE需要自 行抑制自身发起的 IP保活流程。 另外, UE向 KAP发送保活信元的过程, 可以使用用户面的方式, 即 UE通过 IP 承载直接向 KAP 发送保活消息, 携带保活信元, 该过程不需要经过控制面节点 (如 SGSN/MME)。 实施例四 图 15是根据本发明实施例的应用数据处理方法的流程图二, 如图 15所示, 该流 程包括以下步骤: 步骤 S1502, 接收用户设备通过控制面信令发送的 IP数据包; 步骤 S1504, 根据 IP路由将 IP数据包发送给目标接收地址。 优选地, 接收用户设备通过控制面信令发送的 IP数据包包括: 接收用户设备通过 控制面信令发送的 IP数据包, 其中, 控制面信令包括用户发送给基站节点的 RRC消 息,基站节点发送给移动性管理网元的 NAS消息和移动性管理网元发送给公共数据网 网关的 GTP控制消息; 或, 接收用户设备通过控制面信令发送的 IP数据包, 其中, 控制面信令包括用户设备发送给移动性管理网元的 NAS 消息和移动性管理网元发送 给公共数据网网关的 GTP控制消息; 或接收用户设备通过控制面信令发送的 IP数据 包, 其中, 控制面信令包括用户设备发送给公共数据网网关的承载控制消息, 承载控 制消息中携带 PCO信元, PCO信元中携带所述 IP数据包。 也就是说, 接收用户设备 通过控制面信令发送的 IP数据包包括: 用户设备将 IP数据包携带在 RRC消息中发送 给基站节点, 基站节点将 IP数据包携带在 NAS消息中发送给移动性管理网元, 移动 性管理网元将 IP数据包携带在 GTP控制消息中发送给公共数据网网关; 或, 用户设 备将 IP数据包携带在 NAS消息中发送给移动性管理网元,移动性管理网元将 IP数据 包携带在 GTP控制消息中发送给公共数据网网关; 或, 用户设备在 PCO信元中携带 IP数据包, 通过承载控制消息发送给公共数据网网关。 优选地, 所述 IP数据包包括用于保护的保活信息。 优选地, 根据 IP路由将 IP数据包发送给目标接收地址包括: 公共数据网网关接 收到用户设备通过控制面信令发送的 IP数据包之后, 根据 IP路由向目标接收地址发 送该 IP数据包。 本发明实施例还提供了一种应用数据处理装置, 其结构框图如图 4所示, 该装置 包括: 接收模块 42和发送模块 44。 接收模块 42, 用于接收用户设备通过控制面信令发送的 IP数据包; 发送模块 44, 用于根据 IP路由将 IP数据包发送给目标接收地址。 优选地, 接收模块 42用于: 接收用户设备通过控制面信令发送的 IP数据包, 其 中,控制面信令包括用户发送给基站节点的 RRC消息,基站节点发送给移动性管理网 元的 NAS消息和移动性管理网元发送给公共数据网网关的 GTP控制消息; 或接收用 户设备通过控制面信令发送的 IP数据包, 其中, 控制面信令包括用户设备发送给移动 性管理网元的 NAS消息和移动性管理网元发送给公共数据网网关的 GTP控制消息; 或接收用户设备通过控制面信令发送的 IP数据包, 其中, 控制面信令包括用户设备发 送给公共数据网网关的承载控制消息, 承载控制消息中携带 PCO信元, PCO信元中 携带 IP数据包。 优选地, 该 IP数据包包括用于保护的保活信息。 优选地, 发送模块 44用于在接收到用户设备通过控制面信令发送的 IP数据包之 后, 根据 IP路由向目标接收地址发送所述 IP数据包。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 在本优选实施例中提供了一种处理器, 该处理器被配置成执行存储在存储器中的 程序单元, 这些程序单元包括的模块可以为以上任意一个实施例中所提到的模块。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种应用数据处理方法, 包括:
接收用户设备通过控制面信令发送的应用数据;
在接收到所述应用数据之后,将所述应用数据通过 IP数据包发送给应用服 务器。
2. 根据权利要求 1所述的方法, 其中,
接收所述用户设备通过控制面信令发送的 IP数据包, 其中, 所述应用数据 封装成所述 IP数据包;
在接收到所述 IP数据包之后, 将所述 IP数据包发送给所述应用服务器。
3. 根据权利要求 1所述的方法, 其中, 所述应用数据包括: 用于保护的保活信息。
4. 根据权利要求 3所述的方法, 其中,
公共数据网网关接收所述用户设备通过控制面信令发送的所述保活信息; 所述公共数据网网关向所述应用服务器发送用于对所述用户设备进行保活 的数据包。
5. 根据权利要求 4所述的方法, 其中, 在所述公共数据网网关接收所述用户设备 通过控制面信令发送的用于保活的所述保活信息之前, 所述方法还包括:
移动性管理网元接收所述用户设备通过控制面信令发送的所述保活信息; 所述移动性管理网元向所述公共数据网网关发送承载控制消息, 其中, 所 述承载控制消息中携带有所述保活信息。
6. 根据权利要求 5所述的方法, 其中, 所述移动性管理网元接收所述用户设备发 送的非接入层 NAS消息, 其中, 所述 NAS消息中携带有所述保活信息。
7. 根据权利要求 5所述的方法, 其中, 所述移动性管理网元接收所述用户设备发 送的协议配置选项 PCO信元, 并通过所述承载控制消息将所述 PCO信元发送 给所述公共数据网网关, 其中, 所述 PCO信元中携带有所述保活信息。
8. 根据权利要求 3所述的方法, 其中, 保活代理接收所述用户设备通过控制面信令发送的所述保活信息; 所述保活代理向所述应用服务器发送所述保活数据包, 其中, 所述保活代 理作为功能实体独立部署。
9. 根据权利要求 8所述的方法, 其中, 所述保活代理接收移动性管理网元或公共 数据网网关发送的所述保活信息。
10. 根据权利要求 7所述的方法, 其中, 所述保活信息携带在 NAS消息中, 或者, 所述保活信息携带在 PCO信元中。
11. 根据权利要求 10所述的方法,其中,所述公共数据网网关直接接收来自所述用 户设备的携带有所述保活信息的 PCO信元, 并将所述 PCO信元发送给所述保 活代理。
12. 根据权利要求 5至 7、 9至 10中任一项所述的方法, 其中,
接入网接收来自所述用户设备的保活信息,并将所述保活信息携带在 NAS 消息或 PCO信元中发送给的所述移动性管理网元。
13. 根据权利要求 4至 11中任一项所述的方法, 其中,
所述公共数据网网关包括:网关通用分组无线业务支持节点 GGSN和 /或分 组数据网络网关 PGW; 和 /或
所述移动性管理网元包括:服务 GPRS支持节点 SGSN和 /或移动性管理实 体 MME。
14. 根据权利要求 12所述的方法,其中,所述用户设备通过以下方式至少之一向所 述接入网发送所述保活信息:
将所述保活信息携带在 NAS消息中、将所述保活信息携带在 PCO信元中、 将所述保活信息携带在 RRC信令。
15. 根据权利要求 14所述的方法, 其中, 所述 RRC信令包括以下至少之一: RRC 连接建立请求、 RRC连接完成。
16. 根据权利要求 14所述的方法, 其中, 还包括: 所述用户设备在 RRC连接建立 请求中携带连接指示信息, 其中, 所述连接指示信息用于指示接入网不为所述 用户设备创建用户面承载。
17. 根据权利要求 16 所述的方法, 其中, 还包括: 所述连接指示信息包括: RRC 连接请求的原因设置为始发的信令。
18. 根据权利要求 3所述的方法, 其中, 所述保活信息包括以下至少之一: 保活信 元、 保活数据包, 其中, 所述保活信元设置为构建保活数据包。
19. 根据权利要求 3所述的方法, 其中, 所述保活信息包括: 标识信息, 其中, 所 述标识信息用于标识与所述用户设备对应的保活信元或者保活数据包; 接收到 标识信息之后, 查找与所述标识对应的保活信元或保活数据包, 并向所述应用 服务器发送根据所述保活信元构建的保活数据包或查找到的保活数据包。
20. 根据权利要求 3、 4、 8、 18或 19所述的方法, 其中, 在接收到所述保活信息之 后向所述应用服务器发送用于对所述用户设备进行保活的保活数据包包括: 向所述应用服务器发送所述保活数据包的网元, 代替所述用户设备周期性 地向所述应用服务器发送所述保活数据包, 并且, 所述用户设备抑制本地的保 活流程。
21. 根据权利要求 20所述的方法,其中,在向所述应用服务器发送所述保活数据包 的网元代替所述用户设备周期性地向所述应用服务器发送所述保活数据包的情 况下, 所述网元接收用户设备通过控制面信令发送的所述保活信息, 或者接收 所述用户设备通过与所述网元建立 IP承载发送的所述保活信息。
22. 根据权利要求 20所述的方法,其中,所述网元代替所述用户设备周期性地向所 述应用服务器发送所述保活数据包包括:
所述网元获取所述用户设备的状态, 在所述用户设备的状态需要进行保活 的情况下,代替所述用户设备周期性地向所述应用服务器发送所述保活数据包。
23. 一种应用数据处理装置, 包括:
接收模块, 设置为接收用户设备通过控制面信令发送的应用数据; 发送模块, 设置为在接收到所述应用数据之后,通过 IP数据包向应用服务 器发送所述应用数据。 根据权利要求 23所述的装置, 其中, 所述装置位于公共数据网网关上, 或者, 所述装置作为功能实体独立部署。
25. 根据权利要求 23或 24所述的装置, 其中, 所述应用数据包括: 用于保活的保 活信息。
26. 根据权利要求 23或 24所述的装置, 其中, 接收模块, 设置为接收所述用户设备通过控制面信令发送的 IP数据包, 其 中, 所述应用数据封装成所述 IP数据包;
发送模块, 设置为在接收到所述 IP数据包之后, 将所述 IP数据包发送给 所述应用服务器。
27. 一种应用数据处理方法, 包括:
接收用户设备通过控制面信令发送的 IP数据包;
根据 IP路由将所述 IP数据包发送给目标接收地址。
28. 根据权利要求 27所述的方法, 其中, 接收用户设备通过控制面信令发送的 IP 数据包包括:
接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令 包括用户发送给基站节点的 RRC消息, 所述基站节点发送给移动性管理网元 的 NAS消息和所述移动性管理网元发送给公共数据网网关的 GTP控制消息; 或
接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令 包括用户设备发送给移动性管理网元的 NAS消息和所述移动性管理网元发送 给公共数据网网关的 GTP控制消息; 或 接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令 包括用户设备发送给公共数据网网关的承载控制消息,所述承载控制消息中携 带 PCO信元, 所述 PCO信元中携带所述 IP数据包。
29. 根据权利要求 27或 28所述的方法, 其中, 所述 IP数据包包括用于保护的保 活信息。
30. 根据权利要求 27或 28所述的方法, 其中, 根据 IP路由将所述 IP数据包发送 给目标接收地址包括:
所述公共数据网网关接收到所述用户设备通过控制面信令发送的所述 IP 数据包之后, 根据 IP路由向所述目标接收地址发送所述 IP数据包。
31. 一种应用数据处理装置, 包括: 接收模块, 用于接收用户设备通过控制面信令发送的 IP数据包; 发送模块, 用于根据 IP路由将所述 IP数据包发送给目标接收地址。
32. 根据权利要求 31所述的装置, 其中, 所述接收模块用于- 接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令 包括用户发送给基站节点的 RRC消息, 所述基站节点发送给移动性管理网元 的 NAS消息和所述移动性管理网元发送给公共数据网网关的 GTP控制消息; 或
接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令 包括用户设备发送给移动性管理网元的 NAS消息和所述移动性管理网元发送 给公共数据网网关的 GTP控制消息; 或 接收用户设备通过控制面信令发送的 IP数据包, 其中, 所述控制面信令 包括用户设备发送给公共数据网网关的承载控制消息,所述承载控制消息中携 带 PCO信元, 所述 PCO信元中携带所述 IP数据包。
33. 根据权利要求 31或 32所述的装置, 其中, 所述 IP数据包包括用于保护的保 活信息。
34. 根据权利要求 31或 32所述的装置,其中,所述发送模块用于在接收到所述用 户设备通过控制面信令发送的所述 IP数据包之后, 根据 IP路由向所述目标接 收地址发送所述 IP数据包。
PCT/CN2012/083819 2011-11-04 2012-10-31 应用数据处理方法及装置 WO2013064065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103461010A CN103096293A (zh) 2011-11-04 2011-11-04 应用数据处理方法及装置
CN201110346101.0 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013064065A1 true WO2013064065A1 (zh) 2013-05-10

Family

ID=48191333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083819 WO2013064065A1 (zh) 2011-11-04 2012-10-31 应用数据处理方法及装置

Country Status (2)

Country Link
CN (1) CN103096293A (zh)
WO (1) WO2013064065A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104469949B (zh) * 2013-09-23 2018-10-12 中国移动通信集团公司 无线网络中的保活方法、装置及系统
CN106162943B (zh) * 2015-04-27 2019-08-16 中国移动通信集团公司 一种保活消息处理方法、装置、系统和相关设备
CN107155222B (zh) * 2016-03-03 2020-04-17 中国移动通信集团公司 一种基于保活的上下文管理方法及设备
EP3732831A1 (en) * 2017-12-29 2020-11-04 Qualcomm Incorporated Techniques for maintaining connected state
EP4080926A4 (en) * 2020-08-10 2023-04-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL AND SERVER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043452A (zh) * 2007-03-14 2007-09-26 华为技术有限公司 无线系统中控制面信令传输的方法、系统及装置
CN101754240A (zh) * 2008-12-22 2010-06-23 中兴通讯股份有限公司 Rach传输承载异常检测方法及无线网络控制器
US20100322124A1 (en) * 2009-06-23 2010-12-23 Nokia Corporation Method and apparatus for optimizing energy consumption for wireless connectivity
CN102149215A (zh) * 2010-02-05 2011-08-10 华为技术有限公司 传输保活信息的方法及终端和网络设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8195393B2 (en) * 2009-06-30 2012-06-05 Apple Inc. Analyzing and consolidating track file data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043452A (zh) * 2007-03-14 2007-09-26 华为技术有限公司 无线系统中控制面信令传输的方法、系统及装置
CN101754240A (zh) * 2008-12-22 2010-06-23 中兴通讯股份有限公司 Rach传输承载异常检测方法及无线网络控制器
US20100322124A1 (en) * 2009-06-23 2010-12-23 Nokia Corporation Method and apparatus for optimizing energy consumption for wireless connectivity
CN102149215A (zh) * 2010-02-05 2011-08-10 华为技术有限公司 传输保活信息的方法及终端和网络设备

Also Published As

Publication number Publication date
CN103096293A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
US10652945B2 (en) Mobile terminated call improvements
JP6392831B2 (ja) 選択されたインターネットプロトコルトラフィックオフロードのサポートをブロードキャストするための方法および装置
EP3459319B1 (en) System, methods, media encoding logic and radio access network node for optimized idle and active state transitions of user equipment in a network environment
US20130136032A1 (en) Method and apparatus for managing communications of a physical network entity
TW201947980A (zh) 用於在無線通信系統中使用區域資料網路的方法和裝置
WO2009097811A1 (zh) 分组域用户处理电路域业务的方法、装置及系统
WO2009043209A1 (fr) Procédé permettant d'établir une porteuse vers un terminal utilisateur en mode repos
JP5904206B2 (ja) 通信システム、通信方法及び通信プログラム
WO2009097733A1 (zh) 分组域业务处理方法、装置及系统
EP3110187B1 (en) Method for selecting shunt gateway and controller
WO2010015170A1 (zh) 移动性管理处理方法、系统和设备
WO2013064065A1 (zh) 应用数据处理方法及装置
US20220248370A1 (en) Signaling Delivery in a Wireless Network
WO2012103773A1 (zh) 中继系统的过载控制方法及系统
WO2011085623A1 (zh) 本地接入网关获取终端的寻呼信息的方法和系统
WO2015085545A1 (zh) 一种ps业务恢复方法、msc/vlr及mme
WO2018087034A1 (en) Infrequent small data for battery saving wireless devices
EP2930975B1 (en) Method and mme for processing a circuit switched network service
WO2010040268A1 (zh) 一种网络侧与空闲状态终端分离的方法
WO2015010325A1 (zh) 数据传输方法及装置
EP3310116A1 (en) Downlink data notification
US11503654B2 (en) Connecting to a packet data network (PDN) based on priority
WO2017000577A1 (zh) 一种寻呼方法及系统
WO2012130118A1 (zh) 一种用户去附着方法和系统
WO2012100622A1 (zh) 一种网元过载的用户释放方法、系统、基站、mme和rn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844996

Country of ref document: EP

Kind code of ref document: A1