WO2013063889A1 - Use of multiflora glycoside in preparing anti-hypoxic drug - Google Patents

Use of multiflora glycoside in preparing anti-hypoxic drug Download PDF

Info

Publication number
WO2013063889A1
WO2013063889A1 PCT/CN2012/071738 CN2012071738W WO2013063889A1 WO 2013063889 A1 WO2013063889 A1 WO 2013063889A1 CN 2012071738 W CN2012071738 W CN 2012071738W WO 2013063889 A1 WO2013063889 A1 WO 2013063889A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypoxia
group
wild
rosemary
activity
Prior art date
Application number
PCT/CN2012/071738
Other languages
French (fr)
Chinese (zh)
Inventor
李灵芝
张永亮
龚海英
王越
顾军
郭鹏
段晓彦
王舒
Original Assignee
中国人民武装警察部队后勤学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民武装警察部队后勤学院 filed Critical 中国人民武装警察部队后勤学院
Publication of WO2013063889A1 publication Critical patent/WO2013063889A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7024Esters of saccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • A61K36/738Rosa (rose)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Abstract

Provided is the use of multiflora glycoside in preparing an anti-hypoxic drug. A full body and cell level hypoxia model indicates that multiflora glycoside can significantly increase the survival time of a mouse with asphyxiant hypoxia, and has a significant protection effect on endothelial cell injury induced by hypoxia.

Description

野蔷薇苷在制备抗缺氧药物中的应用 技术领域  Application of wild rosemary in preparation of anti-hypoxia drugs
本发明涉及一种药物制品的用途, 特别是涉及一种野蔷薇苷在制备抗缺氧药物中的应 用。 背景技术  The present invention relates to the use of a pharmaceutical preparation, and more particularly to the use of wild rosemary in the preparation of an anti-hypoxia drug. Background technique
氧是人类及许多生物赖以生存的重要条件。 机体生命活动所需的氧不能得到充足的供 给的状态时则称为低氧或缺氧 (Hyp0Xia)。 缺氧将引起机体代谢、 机能、 甚至形态结构发 生异常改变。 严重或长期缺氧会给机体带来严重危害, 最终可导致机体心、 脑等重要脏器 由于能量供应不足而死亡。 氧和低氧是生命科学基本理论的重要课题。 低氧的形成可分为 三类: 第一类是外界环境氧含量降低, 使正常生理活动过程不能摄取足够氧, 如高原、 潜 水和航空等特殊环境导致的缺氧; 第二类是指因疾病等导致外界正常氧量不能充分到达机 体内, 造成心、 脑和呼吸系统等的缺氧; 第三类是机体活动所需氧消耗量超过了生理动员 能力, 造成相对氧供给不足, 常见于剧烈运动和超限量劳动。 长期低氧是危害人体健康的 重要隐患, 严重者甚至可危及生命。 因此, 防止低氧损伤已成为 21 世纪亟待解决的主要 医学问题之一。 Oxygen is an important condition for humans and many living things to survive. When the oxygen required for the life of the organism cannot be sufficiently supplied, it is called hypoxia or hypoxia (Hyp 0X ia). Hypoxia will cause abnormal changes in the body's metabolism, function, and even morphological structure. Severe or chronic hypoxia can cause serious harm to the body, which can eventually lead to death of vital organs such as the heart and brain of the body due to insufficient energy supply. Oxygen and hypoxia are important topics in the basic theory of life sciences. The formation of hypoxia can be divided into three categories: The first category is the reduction of the external environment oxygen content, so that normal physiological activities can not get enough oxygen, such as hypoxia caused by special environment such as plateau, diving and aviation; the second category refers to the cause Diseases and other causes that the normal oxygen level cannot reach the body, causing hypoxia in the heart, brain and respiratory system. The third type is that the oxygen consumption required by the body activity exceeds the physiological mobilization ability, resulting in insufficient relative oxygen supply. Strenuous exercise and excessive labor. Long-term hypoxia is an important hidden danger to human health. In severe cases, it can even be life-threatening. Therefore, prevention of hypoxic damage has become one of the major medical problems to be solved in the 21st century.
国际上关于低氧的研究主要集中于低氧遗传适应、 氧感受信号传导、 间歇性低氧和高 原病的防治等几个重要研究方向。 一方面向生命科学前沿细胞生物学和分子生物学发展, 另一方面注意整体的综合研究, 为此出现了多个学科互相渗透、 互相交融的研究局面。 有 关低氧与健康的问题也受到国内很多研究人员的关注, 其研究工作主要包括低氧诱导因子 (hypoxia inducible factor, HIF)、 细胞凋亡及间歇性低氧、 低压低氧等几个研究热点。  International research on hypoxia has focused on several important research directions such as hypoxic genetic adaptation, oxygen-sensing signaling, intermittent hypoxia, and prevention and treatment of high-grade diseases. On the one hand, the development of cell biology and molecular biology at the forefront of the life sciences, on the other hand, attention to the overall comprehensive research, for which a research situation in which multiple disciplines permeate and blend with each other emerges. The problems related to hypoxia and health have also attracted the attention of many researchers in China. The research work mainly includes hypoxia inducible factor (HIF), apoptosis and intermittent hypoxia, hypobaric hypoxia and other research hotspots. .
目前关于抗缺氧的研究多集中于中药或中药复方, 对于有效单体化合物进行深层次的 研究具有很大潜力。 深入挖掘和研究天然产物单体化合物的抗缺氧活性既有助于阐明中药 抗缺氧作用的物质基础及作用机制, 也有助于发现新型的具有抗缺氧作用的化学物质, 进 而挖掘、 研发出具有真正抗缺氧作用的新型化学药物, 将会产生重大的社会意义和社会价 值。  At present, most researches on anti-hypoxia focus on traditional Chinese medicine or traditional Chinese medicine, and have great potential for in-depth research on effective monomer compounds. In-depth exploration and research on the anti-hypoxia activity of natural product monomer compounds not only help to elucidate the material basis and mechanism of anti-hypoxia effect of traditional Chinese medicine, but also help to discover new chemical substances with anti-hypoxia effect, and then excavate and develop A new type of chemical drug with a true anti-hypoxia effect will have significant social and social value.
野蔷薇苷是蔷薇科植物中存在的一种具有三萜类成分, 具有 醇苷结构, 目前关于野 蔷薇苷的药理活性研究极少, 尚未见关于其抗缺氧活性的研究报导。 发明内容 Wild rose glucoside is a triterpenoid component found in Rosaceae plants and has an alcohol glycoside structure. At present, there are few studies on the pharmacological activity of wild rose glucoside, and no research report on its anti-hypoxia activity has been reported. Summary of the invention
本发明的目的是提供野蔷薇苷在制备抗缺氧药物中的应用。  The object of the present invention is to provide a use of wild rosemary in the preparation of an anti-hypoxia drug.
本发明的技术方案概述如下:  The technical solution of the present invention is summarized as follows:
野蔷薇苷在制备抗缺氧药物中的应用。  The application of wild rosemary in the preparation of anti-hypoxia drugs.
本发明通过整体及细胞水平缺氧模型, 观察野蔷薇苷的抗缺氧作用, 结果表明野蔷薇 苷可显著提高窒息性缺氧小鼠的存活时间, 对内皮细胞缺氧损伤亦具有显著的保护作用。 提供了野蔷薇苷在制备抗缺氧药物中的用途。 并且具有良好的临床应用前景。 具体实施方式  The present invention observes the anti-hypoxia effect of wild rosemary by the whole and cell level hypoxia model, and the results show that wild rosemary can significantly improve the survival time of asphyxiated hypoxic mice, and also has significant protection against endothelial cell hypoxia injury. effect. The use of wild rosemary in the preparation of anti-hypoxia drugs is provided. And has a good clinical application prospects. detailed description
本发明的实施例是为了使本领域的技术人员能够更好地理解本发明, 不对本发明作任 何限制。  The embodiments of the present invention are intended to enable those skilled in the art to better understand the present invention and are not intended to limit the invention.
野蔷薇苷购自安徽芜湖甙尔塔医药科技有限公司,含量 >98%。 以下是野蔷薇苷抗缺氧 作用的实验说明:  Wild rosegium glycosides were purchased from Anhui Wuhu Kuerta Pharmaceutical Technology Co., Ltd., with a content of >98%. The following is an experimental description of the anti-hypoxia effect of wild rosemary:
实验一 野蔷薇苷增强小鼠耐缺氧能力实验 Experiment 1 The experiment of wild rosemary in enhancing hypoxia tolerance in mice
1、 方法 1, method
100只昆明小鼠(中国人民解放军军事医学科学院实验动物中心提供,许可证号: SCK- (军) 2002-01 ), 体重(20±2) g。 随机分为对照组、 盐酸普奈洛尔组、 野蔷薇苷高中低剂 量组共 5组, 灌胃给药, 盐酸普奈洛尔和野蔷薇苷均用质量浓度为 0.3%的羧甲基纤维素钠 水溶液配制。 空白对照组按 Zml.Kg 的剂量给予质量浓度为 0.3%羧甲基纤维素钠 (CMC-Na) 溶液, 盐酸普奈洛尔组按 20 mg.Kg—1的剂量给予含盐酸普奈洛尔的 CMC-Na 溶液, 野蔷薇苷组分别按 20 mg.Kg-1 , 10 mg.Kg-1 , 5 mg.Kg 1的剂量给予含野蔷薇苷的 CMC-Na溶液, 给药体积均按为 Zml.Kg—1计算。 给药 50min后, 将小鼠放入 125ml广口瓶 中 (预先用水校正体积, 瓶内放置 5g钠石灰), 盖紧瓶塞, 以呼吸停止为标志, 记录小鼠 存活时间。 100 Kunming mice (provided by the Experimental Animal Center of the Academy of Military Medical Sciences of the People's Liberation Army, license number: SCK- (jun) 2002-01), weight (20 ± 2) g. They were randomly divided into the control group, the propranolol hydrochloride group, and the high-low-dose group of wild rosemary. The rats were administered by intragastric administration. Both propranolol hydrochloride and wild rosemary were treated with carboxymethyl fiber with a concentration of 0.3%. Prepared by aqueous sodium solution. The blank control group was given a concentration of 0.3% sodium carboxymethylcellulose (CMC-Na) at a dose of Zml.Kg, and the propranolol hydrochloride group was administered with propranolol at a dose of 20 mg.Kg- 1 . the CMC-Na solution, respectively glycosides multiflora 20 mg.Kg- 1, 10 mg.Kg- 1, administered dose of 5 mg.Kg 1 CMC-Na solution containing multiflora glycosides, are by dosing volume of Zml.Kg- 1 calculation. After 50 minutes of administration, the mice were placed in a 125 ml jar (pre-water corrected volume, 5 g of sodium lime was placed in the bottle), the stopper was capped, and the survival time of the mice was recorded with the respiratory arrest as a marker.
2、 结果 2, the result
与对照组相比野蔷薇苷 lOmg.Kg^ ZOmg.Kg 使小鼠在常压密闭条件下的存活时间 分别延长了 30.0%和 46.2%, 差异具有显著性 (Ρ<0.01) (表 1 ) 表 1野蔷薇苷对缺氧小鼠存活时间的影响 士 s, «=20) 组别 剂量 死亡时间 延长率 Compared with the control group, wild rosemary lOmg.Kg^ ZOmg.Kg prolonged the survival time of mice under normal pressure tight conditions by 30.0% and 46.2%, respectively, and the difference was significant (Ρ<0.01) (Table 1). Table 1 Effect of wild rosemary on survival time of hypoxic mice s, «=20) Group dose death time extension rate
(mg.Kg 1) (min) (%) 对照组 ― 16.9±2.9 ― (mg.Kg 1 ) (min) (%) Control group - 16.9 ± 2.9 ―
**  **
盐酸普奈洛尔组 20.0 25.2±2.5 49.2 野蔷薇苷 (低) 5.0 18.8±3.1 11.2 野蔷薇苷 (中) 10.0 21.9±3.9## 30.0 野蔷薇苷 (高) 20.0 24.7±2.8## 46.2 Propranolol hydrochloride group 20.0 25.2±2.5 49.2 wild rosemary (low) 5.0 18.8±3.1 11.2 wild rosemary (middle) 10.0 21.9±3.9 ## 30.0 wild rosemary (high) 20.0 24.7±2.8 ## 46.2
Note: **P<0.01 对照组; # P<0.05 模型组, ##P<0.01 模型组。 实验二 野蔷薇苷对 EA.hy926内皮细胞缺氧损伤的保护作用研究 Note: ** P <0.01 control group; # P <0.05 model group, ## P <0.01 model group. Experimental study on the protective effect of wild rose glucoside on hypoxia injury of EA.hy926 endothelial cells
1、 方法  1, method
( 1 ) EA. hy926内皮细胞缺氧损伤模型建立 EA.hy926内皮细胞用含 10%FBS的高糖 DMEM培养液(培养液含有 100 U/ml青霉素和 100 μ§/ιη1链霉素)在二氧化碳培养箱中培 养, 将生长成单层的 EA.hy926细胞换无血清无糖的 DMEM培养基连续培养 12小时后, 用预先以 95%N2-5%C02混合气饱和 30min的 D-hanks液替代正常培养基, 而后将培养板 移入混合气体培养箱 (95%N2、 5%C02、 02浓度 < 1%), 于 37°C缺氧培养 2 h。 (1) EA. hy926 endothelial cell hypoxia injury model established EA.hy926 endothelial cells with 10% FBS high glucose DMEM medium (culture medium containing 100 U/ml penicillin and 100 μ § /ιη1 streptomycin) in carbon dioxide The culture was carried out in an incubator, and the EA.hy926 cells grown into a single layer were continuously cultured for 12 hours in a serum-free and sugar-free DMEM medium, and then D-hanks which were previously saturated with a 95% N 2 -5% CO 2 mixture for 30 minutes. The medium was substituted for the normal medium, and then the plate was transferred to a mixed gas incubator (95% N 2 , 5% C0 2 , 0 2 concentration < 1%), and cultured under anoxic conditions at 37 ° C for 2 h.
( 2)实验分组 实验设空白对照组、缺氧模型组、缺氧 +野蔷薇苷 A组(l x l0_1()mOl/L)、 缺氧 +野蔷薇苷 B组 (l x lO—Umol/L)和缺氧 +野蔷薇苷 C组 ( I x l0_12mol/L)、 缺氧 +红景天 苷对照组(l x lO_5mol/L), 共 6组, 每组 8孔。 除空白对照组外, 其他各组均缺氧处理 2h, 正常对照组则于 37°C、 5%C02培养箱中同步孵育 2 h。 (2) Experimental group experiments: blank control group, hypoxia model group, hypoxia + wild rosemary group A (lx l0_ 1() m O l/L), hypoxia + wild rosemary B group (lx lO-Umol /L) and hypoxia + wild rosemary group C (I x l0_ 12 mol / L), hypoxia + salidroside control group (lx lO 5 mol / L), a total of 6 groups, each group of 8 wells. Except the blank control group, the other groups were treated with hypoxia for 2 h, while the normal control group was incubated for 2 h at 37 ° C in a 5% CO 2 incubator.
( 3 )缺氧损伤内皮细胞 MTT实验 取出各组样本, 每孔加入 20μ1 ΜΤΤ ( 5g/L), 于 37 V、 5%C02孵箱中继续孵育 4h, 终止培养, 倒板。 加入 15(^1 DMS0振摇 15min, 使结晶 充分溶解, 于测定波长 570nm、 参考波长 630nm处, 测定各孔吸光度 (A) 值。 (3) MTT assay of endothelial cells with hypoxia injury. Take samples of each group, add 20μ1 每 (5g/L) per well, continue to incubate for 4h in 37V, 5%C0 2 incubator, terminate the culture, and pour the plate. The crystal was sufficiently dissolved by adding 15 (^1 DMS0 for 15 min), and the absorbance (A) value of each well was measured at a measurement wavelength of 570 nm and a reference wavelength of 630 nm.
MTT代谢率 (%) =实验组 A值 /正常对照组 A值 X 100%  MTT metabolic rate (%) = experimental group A value / normal control group A value X 100%
(4) 生化指标检测 接种于 24孔板的 EA.hy926内皮细胞, 缺氧损伤模型组及野蔷薇 苷干预组缺氧处理 2h, 正常对照组二氧化碳培养箱同步孵育, 取各组细胞培养上清液 200μ1, 按试剂盒说明用比色法测定 NO含量、 NOS活性和 LDH活性, 硫代巴比妥酸比色 法测定细胞内 MDA含量, 用黄嘌吟氧化酶法测定细胞内 SOD活性。  (4) Biochemical indicators were detected in 24-well plates of EA.hy926 endothelial cells, hypoxia injury model group and wild rosemary intervention group for 2h hypoxia treatment, normal control carbon dioxide incubator was incubated simultaneously, taking each group of cell culture supernatant 200 μl of liquid, the NO content, NOS activity and LDH activity were determined by colorimetric method according to the kit description. The intracellular MDA content was determined by thiobarbituric acid colorimetric method, and the intracellular SOD activity was measured by xanthine oxidase method.
2、 结果 当心肌细胞因缺氧受到损伤时, 线粒体功能异常, 氧化呼吸链受损, 电子传递阻断, ATP产生减少。琥珀酸脱氢酶是琥珀酸氧化呼吸链里重要的复合酶之一,可催化琥珀酸脱氢 生成延胡索酸, 从而使 FAD接受两个氢原子生成 FADH2, 然后再将氢传递给 C0Q, 生成 CoQ¾, 继续呼吸链的电子传递过程。 所以, 琥珀酸脱氢酶的活性, 可以反映心肌细胞缺氧 损伤的程度。 MTT实验原理, 就是利用琥珀酸脱氢酶可以催化噻唑兰 (MTT ) 生成紫红色 不溶性有色产物的特性, 通过吸光度的测定来反映各组的细胞活性。 本实验检测结果显示: EA.hy926内皮细胞缺氧损伤 2h, 与正常对照组比较, 缺氧模型组吸光度值显著降低, 细胞 代谢活力降低, 培养液中 LDH活性显著升高, 表明细胞膜受缺氧损伤, 胞内 LDH外漏增 o 2, the result When cardiomyocytes are damaged by hypoxia, mitochondrial function is abnormal, oxidative respiratory chain is impaired, electron transfer is blocked, and ATP production is reduced. Succinate dehydrogenase is one of the important complex enzymes in the oxidized respiratory chain of succinic acid. It can catalyze the dehydrogenation of succinic acid to fumaric acid, so that FAD accepts two hydrogen atoms to form FADH 2 and then transfers hydrogen to C 0 Q. Generate CoQ3⁄4 and continue the electron transfer process of the respiratory chain. Therefore, the activity of succinate dehydrogenase can reflect the degree of hypoxia injury of cardiomyocytes. The principle of MTT experiment is to use succinate dehydrogenase to catalyze the property of thiazole blue (MTT) to produce purple-red insoluble colored products, and reflect the cell viability of each group by measuring the absorbance. The results of this experiment showed that: EA.hy926 endothelial cells were hypoxic-induced for 2 h. Compared with the normal control group, the absorbance value of the hypoxic model group was significantly decreased, the cell metabolic activity was decreased, and the LDH activity in the culture medium was significantly increased, indicating that the cell membrane was deprived of oxygen. Injury, intracellular LDH leakage increases o
力口。野蔷薇苷干预组及红景天苷组,与缺氧损伤模型组比较吸光度值均增加,培养液中 LDH 活性显著降低, 表明野蔷薇苷及红景天苷均能对抗缺氧对心肌细胞琥珀酸脱氢酶活性的损 害, 维持缺氧损伤细胞的呼吸功能; 缺氧导致细胞膜损伤时, 细胞内 LDH将外漏, 导致培 养基中 LDH活性升高, 本试验显示 3个剂量野蔷薇苷组与模型组相比培养基中 LDH活性 均明显降低, 表明野蔷薇苷可在急性缺氧条件下, 保持内皮细胞膜的完整性, 且野蔷薇苷的 上述作用具有剂量依赖效应 (表 2)。 Force mouth. In the wild rosemary intervention group and the salidroside group, the absorbance values were increased compared with the hypoxic injury model group, and the LDH activity in the culture medium was significantly decreased, indicating that both wild bovine and salidroside can resist hypoxia against cardiomyocytes. Damage to acid dehydrogenase activity, maintain the respiratory function of hypoxic-damaged cells; When hypoxia leads to cell membrane damage, intracellular LDH will leak out, resulting in increased LDH activity in the medium. This test shows three doses of wild rosemary group. Compared with the model group, the activity of LDH in the medium was significantly decreased, indicating that wild rosemary can maintain the integrity of endothelial cell membrane under acute hypoxia, and the above effects of wild rosemary have a dose-dependent effect (Table 2).
表 2 野蔷薇苷对缺氧损伤 EA.hy926细胞代谢活力及细胞外 LDH活性的影响  Table 2 Effect of wild rosemary on metabolic activity and extracellular LDH activity of EA.hy926 cells in hypoxia injury
( Λ: ± S, n=8)  (Λ: ± S, n=8)
组别 剂量 A值 LDH  Group dose A value LDH
( mol. I"1) (u. r1) 正常对照组 0.5424±0.0125 11.519±3.721 缺氧模型组 0.2478±0.0091 ** 78.937±5.339** 缺氧 +红景天苷组 0.4025±0.0132## 36.104±5.547## 缺氧 +野蔷薇苷组 (高) 0.4653±0.0151## 13.485±5.267## 缺氧 +野蔷薇苷组 (中) l x lO"11 0.3718±0.0143## 39.354±6.279## 缺氧 +野蔷薇苷组 (低) 0.3344±0.0087## 46.333±8.415## ( mol. I" 1 ) (u. r 1 ) normal control group 0.5424±0.0125 11.519±3.721 hypoxia model group 0.2478±0.0091 ** 78.937±5.339** hypoxia + salidroside group 0.4025±0.0132 ## 36.104 hypoxia ± 5.547 ## + multiflora glycosides (high) 0.4653 ± 0.0151 ## 13.485 ± 5.267 ## + multiflora hypoxia glycosides (in) lx lO "11 0.3718 ± 0.0143 ## 39.354 ± 6.279 ## hypoxia + wild rosemary group (low) 0.3344±0.0087 ## 46.333±8.415 ##
Note: **p<0.0\ vs对照组; # <0.01 vs模型组 Note: **p<0.0\ vs control group; # <0.01 vs model group
SOD反映了细胞清除自由基的能力, MDA反映了细胞膜脂质过氧化损伤程度, 缺氧损 伤模型组 EA.hy926 内皮细胞与正常对照组比较, SOD 活性下降, MDA含量显著增加 (^<0.01 ); 3个剂量野蔷薇苷干预组均可提高细胞内 SOD活性, 减少 LDH外漏和 MDA 的产生 (Ρ<0.01 ) (表 3 ), 表明野蔷薇苷可通过增强内皮细胞清除自由基的能力, 对抗缺 氧导致的细胞膜氧化损伤。 表 3野蔷薇苷对缺氧损伤 EA.hy926细胞内 SOD活性及 MDA含量的影响( x ± s, n=S) 组别 剂量 SOD MDA SOD reflects the ability of cells to scavenge free radicals. MDA reflects the degree of lipid peroxidation damage in cell membrane. Compared with normal control group, SOD activity decreased and MDA content increased significantly (^<0.01). Three doses of wild rosemary intervention group could increase intracellular SOD activity and reduce LDH leakage and MDA production (Ρ<0.01) (Table 3), indicating that wild rosemary can enhance the ability of endothelial cells to scavenge free radicals. Resistance to oxidative damage to cell membranes caused by hypoxia. Table 3 Effect of wild rosemary on SOD activity and MDA content in EA.hy926 cells under hypoxia injury (x ± s, n=S) Group dose SOD MDA
(mg.ml"1) ( nmol. mgprot"1 ) 正常对照组 50.38±3.80 13.25±1.34 缺氧模型组 21.44±2.55** 20.07±0.86** 缺氧 +红景天苷组 36.53±4.20## 11.64±0.71## 缺氧 +野蔷薇苷组 (高) o 34.61±5.87## 10.91±2.69# 缺氧 +野蔷薇苷组 (中) Ι χ ΙΟ"11 31.27±7.41# 11.53±0.72## o (mg.ml" 1 ) ( nmol. mgprot" 1 ) Normal control group 50.38±3.80 13.25±1.34 Hypoxic model group 21.44±2.55** 20.07±0.86** Hypoxia + salidroside group 36.53±4.20 ## 11.64±0.71 ##氧氧+野蔷蔷苷组(高) o 34.61±5.87 ## 10.91±2.69 #氧氧+野蔷蔷苷组(中) Ι χ ΙΟ" 11 31.27±7.41 # 11.53±0.72 ## o
缺氧 +野蔷薇苷组 (低) 32.30±4.63## 11.99±2.76# Hypoxia + wild rosemary group (low) 32.30±4.63 ## 11.99±2.76 #
Note: ** <0.01 vs对照组; #P<0.05 vs模型组; ##P<0.01 vs模型组  Note: ** <0.01 vs control group; #P<0.05 vs model group; ##P<0.01 vs model group
一氧化氮 (NO ) 对组织细胞缺血缺氧损伤具有保护作用, 可以扩张血管, 增加血流, 调节血管张力, 维持血压, 减少血管内皮的损伤, 保护血管内皮细胞的完整性。 推测其可 一定程度上提高血管内皮细胞抗缺氧损伤的能力。 缺氧损伤模型组与正常对照组比较 EA.hy9266内皮细胞 NO含量减少, NOS活性显著下降 (P<0.01), 而各剂量野蔷薇苷均可 提高 NO含量、 NOS活性 P<0.01), 并呈现剂量依赖效应。 (表 4 )  Nitric oxide (NO) has protective effects on ischemia and hypoxia injury of tissue cells, which can dilate blood vessels, increase blood flow, regulate vascular tone, maintain blood pressure, reduce damage of vascular endothelium, and protect the integrity of vascular endothelial cells. It is speculated that it can improve the ability of vascular endothelial cells to resist hypoxia injury to some extent. Compared with the normal control group, the NO content of EA.hy9266 endothelial cells decreased, and the activity of NOS decreased significantly (P<0.01). However, the dose of wild rosemary increased the NO content and NOS activity (P<0.01). Dose-dependent effect. (Table 4 )
表 4 野蔷薇苷对缺氧损伤 EA.hy926细胞 NO含量及 NOS活性的影响( x ± s, n=8) 组别 剂量 (mg.mr1) ΝΟ(μιηο1丄 -1) NOSiU.ml"1) 正常对照组 12.83±1.45 1.937±0.078 缺氧模型组 4.26±0. 98 ** 0.669±0.152** 红景天苷组 38.58±1.26## 1.201±0.122## 缺氧 +野蔷薇苷组 (高) 51.72±2.80## 2.542±1.082## 缺氧 +野蔷薇苷组 (中) Ι χ ΙΟ"11 30.42±4.19## 1.352±0.067## 缺氧 +野蔷薇苷组 (低) 16.71±2.09## 1.115±0.054## Note: ** <0.01 vs对照组; ##Ρ<0.01 vs模型组 实验三 野蔷薇苷对神经元缺氧损伤的保护作用研究 Table 4 Effect of wild rosemary on NO content and NOS activity in EA.hy926 cells induced by hypoxia (x ± s, n=8) Group dose (mg.mr 1 ) ΝΟ(μιηο1丄-1 ) NOSiU.ml" 1 ) Normal control group 12.83±1.45 1.937±0.078 Hypoxic model group 4.26±0. 98 ** 0.669±0.152** Salidroside group 38.58±1.26 ## 1.201±0.122 ##氧氧+野蔷薇苷组(高51.72±2.80 ## 2.542±1.082 ##氧氧+野蔷 苷 组 (中) Ι ΙΟ ΙΟ" 11 30.42±4.19 ## 1.352±0.067 ##氧氧+野蔷蔷苷组(低) 16.71±2.09 # # 1.115±0.054 ## Note: ** <0.01 vs. control group; ## Ρ<0.01 vs model group experiment Three wild rose glucosides protective effect on neuronal hypoxia injury
1、 方法 1, method
( 1 )神经元缺氧损伤模型建立 取 24h内新生 SD大鼠海马神经元于 37 °C、 5%C02培养 箱中培养 7d后, 接种于 24孔板, 于混合气体培养箱 (95%N2、 5%C02、 02浓度 < 1%) 中 37(1) Establishment of neuron hypoxia injury model The hippocampal neurons of newborn SD rats were cultured in 37 °C, 5% CO 2 incubator for 7 days, and then inoculated into 24-well plates in a mixed gas incubator (95%). N 2 , 5% C0 2 , 0 2 concentration < 1%) Medium 37
°0缺氧培养 3h。 °0 hypoxia culture for 3h.
( 2 )实验分组 实验设空白对照组、缺氧模型组、缺氧 +野蔷薇苷 A组( 1 X 10— 1( )1/L)、 缺氧 +野蔷薇苷 B组 ( 1 X 10— "mol/L) 和缺氧 +野蔷薇苷 C组 ( 1 X 10— 12mol/L)、 缺氧 +红景 天苷对照组 (1 X 10— 5mol/L), 共 6组, 每组 8孔。 除空白对照组外, 其他各组均缺氧处理 3h, 正常对照组则于 37°C、 5%C02培养箱中同步孵育 3 h。 (2) Experimental group experiments were performed with blank control group, hypoxia model group, hypoxia + wild rosemary A group ( 1 X 10-1 ( ) 1 / L), hypoxia + wild rosemary B group ( 1 X 10 - "mol/L" and hypoxia + wild rosemary group C (1 X 10-12 mol/L), hypoxia + red Glycosides day control group (1 X 10- 5 mol / L ), a total of 6 groups, 8 wells each. Except the blank control group, the other groups were treated with hypoxia for 3 h, while the normal control group was incubated for 3 h at 37 ° C in a 5% CO 2 incubator.
( 3) 缺氧损伤神经元 MTT实验 取出各组样本, 每孔加入 20μ1 MTT ( 5g/L), 于 37 °C、 5%C02孵箱中继续孵育 4h, 终止培养, 倒板。 加入 150μ1 DMS0振摇 15min, 使结晶充 分溶解, 于测定波长 570nm、 参考波长 630nm处, 测定各孔吸光度 (A) 值。 (3) MTT assay of hypoxic-injured neurons. Samples of each group were taken, 20 μl MTT (5 g/L) was added to each well, and incubation was continued for 4 h at 37 °C in a 5% CO 2 incubator. The culture was terminated and inverted. The crystal was sufficiently dissolved by adding 150 μl of DMS0 for 15 minutes, and the absorbance (A) of each well was measured at a measurement wavelength of 570 nm and a reference wavelength of 630 nm.
(4) 生化指标检测 接种于 24孔板的海马神经元, 除空白对照组外, 其他各组均缺 氧处理 3h, 正常对照组则于 37°C、 5%C02培养箱中同步孵育 3 h。 培养结束后取上清液按 (4) Biochemical indicators were detected in hippocampal neurons in 24-well plates. Except for the blank control group, all other groups were treated with hypoxia for 3 h, while the normal control group was incubated at 37 ° C in a 5% CO 2 incubator. h. After the culture is finished, take the supernatant and press
Ο Ο o  Ο Ο o
试剂盒说明测定 LDH活性; 细胞加 ο 0. 25%胰酶消化, 血清中止, 离心 1000r/min, lOmin, 0. 01M PBS lml溶解沉淀制成细胞悬液, 超声粉碎, 按试剂盒说明检测 SOD活性及 MDA含 量。 The kit describes the determination of LDH activity; cells plus ο 0.25% trypsin digestion, serum suspension, centrifugation 1000r / min, lOmin, 0. 01M PBS lml dissolved precipitate into a cell suspension, ultrasonic pulverization, detection of SOD according to the kit instructions Activity and MDA content.
( 5)海马神经元台盼蓝染色 海马神经元各实验组培养液中加入 lml 0. 04%的台盼蓝, 混匀, 光镜下观察, 计数蓝染细胞数量, 与总细胞数量之比作为死亡率, 并对死亡率进行 统计学分析。  (5) Hippocampal neurons trypan blue stained hippocampal neurons in each experimental group were added lml 0. 04% trypan blue, mixed, observed under light microscope, count the number of blue-stained cells, and the total number of cells As a mortality rate, a statistical analysis of mortality was performed.
2、 结果  2, the result
海马神经元缺氧损伤 3h, 吸光度值较正常对照组显著减小 ( 0. 01 )。 野蔷薇苷 3个 剂量组与缺氧损伤模型组比较吸光度值增加 ( 〈0. 01, 0. 05 )0 与正常对照组比较, 缺 氧损伤模型组海马神经元 LDH外漏量增加( 〈0. 01 ), 3个剂量野蔷薇苷组神经元 LDH外漏 量均降低 ( 0. 01 ) (表 5)。 The hippocampal neurons were hypoxic-induced for 3 h, and the absorbance values were significantly lower than the normal control group (0.01). Multiflora glycosides and three dose groups hypoxia model group increased absorbance values (<0.01, 0.05) 0 compared with normal control group, model group, hypoxia hippocampal neurons increased LDH leakage (<0 01), the leakage of LDH in neurons of the three doses of wild rosemary group decreased (0.01) (Table 5).
野蔷薇苷对缺氧损伤神经元代谢活力及细胞外 LDH活性的影响( X ± s, n=6) 组别 剂 量 Α值 LDH(U.L)  Effects of wild rosemary on neuronal metabolic activity and extracellular LDH activity in hypoxic injury (X ± s, n=6) group dose devaluation LDH(U.L)
(mol.L"1 ) (mol.L" 1 )
正常对照组 0.5241±0.0105 195.221±19.521 缺氧模型组 0.1908±0.0385" 521.854±58.352" 缺氧 +红景天苷组 0.3025±0.0351## 288.214±31.245## 缺氧 +野蔷薇苷组(高) 0.3102±0.0431## 261.358±30.871##) 缺氧 +野蔷薇苷组(中) Ι χ ΙΟ"11 0.2645±0.0395## 291.132±21.025## 缺氧 +野蔷薇苷组 (低) 0.2342±0.0287# 329.185±23. 512## Note: **Ρ<0.01 对照组; ##Ρ<0.01 vs模型组, #P<0.05 vs模型组。 Normal control group 0.5241±0.0105 195.221±19.521 hypoxia model group 0.1908±0.0385"521.854±58.352" hypoxia + salidroside group 0.3025±0.0351 ## 288.214±31.245 ##氧氧+野蔷薇苷组(高) 0.3102 ±0.0431 ## 261.358±30.871 ##) Hypoxia + wild rosemary group (middle) Ι χ ΙΟ" 11 0.2645±0.0395 ## 291.132±21.025 ##氧氧+野蔷蔷苷组(低) 0.2342±0.0287 # 329.185 ±23. 512 ## Note: **Ρ<0.01 control group; ## Ρ<0.01 vs model group, #P<0.05 vs model group.
与正常对照组比较, 缺氧损伤模型组海马神经元胞内 SOD活性下降 (P<0.01 ); 与缺 氧模型组相比, 各剂量野蔷薇苷均可减少缺氧损伤引起的 LDH外漏 (Ρ <0.01 ), 提高细胞 内 SOD活性, 减少 MDA的产生 (Ρ <0.01 )。 (表 6) 表 6 野蔷薇苷对野蔷薇苷对缺氧损伤神经元 SOD活性及 MDA含量的影响( X ± s, n=6) 组别 剂量 SOD MDACompared with the normal control group, the intracellular SOD activity of hippocampal neurons in the hypoxia injury model group decreased (P<0.01). Compared with the hypoxia model group, each dose of wild rosemary could reduce the LDH leakage caused by hypoxia injury ( Ρ <0.01), increased intracellular SOD activity, reduced MDA production (Ρ <0.01). (Table 6) Table 6 Effect of wild rosemary on the SOD activity and MDA content of wild hypothyroidism neurons (X ± s, n=6) group dose SOD MDA
(mg.ml"1) ( nmol. mgprot"1 ) 正常对照组 27.735±2.804 0.167 ± 0.015 缺氧模型组 8.682±1.941" 0.403 ± 0.026" 缺氧 +红景天苷组 18.476±1.633## 0.168 ± 0.018## 缺氧 +野蔷薇苷组 (高) 19.421±2.176## 0.155 ± 0.017## 缺氧 +野蔷薇苷组 (中) Ι χ ΙΟ"11 16.583±2.965## 0.192 ± 0.013 ## (mg.ml" 1 ) ( nmol. mgprot" 1 ) Normal control group 27.735±2.804 0.167 ± 0.015 Hypoxia model group 8.682±1.941" 0.403 ± 0.026" Hypoxia + salidroside group 18.476±1.633 ## 0.168 ± 0.018 ##缺氧+野蔷薇苷组(高) 19.421±2.176 ## 0.155 ± 0.017 ##氧氧+野蔷蔷苷组(中) Ι χ ΙΟ" 11 16.583±2.965 ## 0.192 ± 0.013 ##
Ο Ο o  Ο Ο o
缺氧 +野蔷薇苷组 (低) ο 12.390±1.642## 0.223 ± 0.019## Hypoxia + wild rosemary group (low) ο 12.390±1.642 ## 0.223 ± 0.019 ##
Note: **Ρ<0.01 vs对照组, ##Ρ<0.01 vs缺氧模型组 Note: **Ρ<0.01 vs control group, ##Ρ<0.01 vs hypoxia model group
台盼蓝染色可将死细胞染成蓝色, 而活细胞不能着色。 对照组未见蓝染细胞; 模型组 大片细胞坏死蓝染, 细胞连接断开, 细胞开始成片状脱壁, 有些区域只剩下单个细胞; 野 蔷薇苷干预后, 高浓度组仅见个别死亡细胞蓝染, 无细胞脱壁现象; 中浓度组蓝染细胞散 在, 与模型组相比, 数量明显减少, 但蓝染细胞数量比高浓度组稍有增高; 低浓度组蓝染 细胞数量对比模型组减少近 1/2 ; 红景天苷组个别细胞蓝染, 数量与中浓度组无明显差异。 经一年动物实验观察, 应用本发明药物对动物未发现明显的毒副作用。  Trypan blue staining stains dead cells blue, while living cells do not. In the control group, no blue-stained cells were observed. In the model group, large cells were necrotic and blue-stained, the cells were disconnected, and the cells began to flaky, leaving only a single cell in some areas. After the intervention of wild rose, the high-concentration group only saw individual dead cells. Blue staining, cell-free detachment; blue-stained cells in the middle concentration group were scattered, compared with the model group, the number was significantly reduced, but the number of blue-stained cells was slightly higher than that in the high-concentration group; The reduction was nearly 1/2; the individual cells in the salidroside group were blue-stained, and the number was not significantly different from the medium-concentration group. After one year of animal experiment observation, no obvious side effects were observed on the animals by using the drug of the present invention.
以上可看出, 野蔷薇苷具有显著的抗缺氧损伤作用, 此外动物实验证实该药物毒性较 低, 可以用于制备防治缺氧损伤的药物。  It can be seen from the above that wild saponin has significant anti-hypoxia damage effect, and animal experiments have confirmed that the drug has low toxicity and can be used for preparing drugs for preventing and treating hypoxia injury.
以下为用野蔷薇苷制备药物制品的实施例:  The following are examples of the preparation of pharmaceutical preparations using wild rosemary:
实施例 1 Example 1
以野蔷薇苷为原料制成的片剂  a tablet made from wild rosemary
野蔷薇苷 20mg  Wild rosemary 20mg
淀粉 25mg  Starch 25mg
15%淀粉浆 适量  15% starch slurry
硬脂酸镁 适量  Magnesium stearate
将上述配方按传统加工方式制成片剂。  The above formulation was made into tablets by conventional processing.
实施例 2 Example 2
以野蔷薇苷为原料制成的胶囊  Capsules made from wild rosemary
野蔷薇苷 20mg  Wild rosemary 20mg
淀粉 70mg  Starch 70mg
按传统制药工艺制备, 装入 2号胶囊。 实施例 3 Prepared according to the traditional pharmaceutical process, filled with No. 2 capsules. Example 3
以野蔷薇苷为原料制成的口服糖浆剂:  Oral syrup made from wild rosemary:
20mg  20mg
200mg  200mg
50%乙醇 lml  50% ethanol lml
5mg  5mg
苯甲酸钠 3mg  Sodium benzoate 3mg
水加至 10ml  Add water to 10ml
将上述组分加入水中调至所需量, 混匀后装瓶即可 实施例 4  Add the above components to the required amount in water, mix and bottle, then Example 4
以野蔷薇苷为原料制成的颗粒剂:  Granules made from wild rosemary:
野蔷薇苷 20mg  Wild rosemary 20mg
蔗糖 300mg  Sucrose 300mg
橘子香精 3mg  Orange Flavor 3mg
食用色素 适量  Food coloring
将上述组分混合后制成颗粒, 包装。  The above components are mixed to form granules and packaged.

Claims

权 利 right
1. 野蔷薇苷在制备抗缺氧药物中的应用。 1. The application of wild rosemary in the preparation of anti-hypoxia drugs.
PCT/CN2012/071738 2011-11-04 2012-02-28 Use of multiflora glycoside in preparing anti-hypoxic drug WO2013063889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103459453A CN102499932B (en) 2011-11-04 2011-11-04 Application of multinoside to preparing anti-hypoxia medicament
CN201110345945.3 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013063889A1 true WO2013063889A1 (en) 2013-05-10

Family

ID=46212108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071738 WO2013063889A1 (en) 2011-11-04 2012-02-28 Use of multiflora glycoside in preparing anti-hypoxic drug

Country Status (2)

Country Link
CN (1) CN102499932B (en)
WO (1) WO2013063889A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102988348A (en) * 2012-11-19 2013-03-27 何晓涛 Application of Aphanamixoid A for preparing anti-hypoxic medicine
CN103877105B (en) * 2014-04-08 2016-01-06 杨献美 A kind of pharmaceutical composition of resisting hyperplasia of mammary glands and application thereof
CN106798747A (en) * 2017-02-22 2017-06-06 中国人民武装警察部队后勤学院 A kind of application of Euscaphicoside in anti-anoxic medicine is prepared

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141965A (en) * 2005-10-27 2008-03-12 兆领有限公司 Pharmaceutical composition and method for regenerating myofibers in the treatment of muscle injuries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141965A (en) * 2005-10-27 2008-03-12 兆领有限公司 Pharmaceutical composition and method for regenerating myofibers in the treatment of muscle injuries

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, LUJUN ET AL.: "N-butanol extract of Potentilla anserina L. inhibited injury resulted by acute hypobaric hypoxia in mice", ACTA ACADEMIAE MEDICINAE CPAF, vol. 20, no. 3, March 2011 (2011-03-01), pages 169 - 172 *
WANG, SHU: "Studies on chemical constituents from the n-butanol extract of Potentilla anserine L. and the anti-hypoxia activity", MASTER'S DISSERATION OF TIANJIN MEDICAL UNIVERSITY, 2009 *

Also Published As

Publication number Publication date
CN102499932A (en) 2012-06-20
CN102499932B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
Zhao et al. Diuretic activity of the ethanol and aqueous extracts of the surface layer of Poria cocos in rat
WO2017133468A1 (en) Pulchinenoside and application as inhibitor of ev71 virus
Xian et al. Coriolus versicolor aqueous extract ameliorates insulin resistance with PI3K/Akt and p38 MAPK signaling pathways involved in diabetic skeletal muscle
CN105176844B (en) A kind of Chinese medicine of Inonotus obliquus or the two-way solid fermentation method of Chinese medicine slag
CN105418410B (en) Emodin derivates and its application in the medicine of AntiHIV1 RT activity 1 is prepared
WO2013063889A1 (en) Use of multiflora glycoside in preparing anti-hypoxic drug
CN102485237A (en) Sweet wormwood herb brewed liquid, brewing technology thereof, and preparation method of starter thereof
Wang et al. Therapeutic mechanism and effect of camptothecin on dextran sodium sulfate-induced ulcerative colitis in mice
CN102824339B (en) Application of sodium butyrate in preparation of hypoxic pulmonary hypertension control medicines
CN102038678A (en) Application of dihydroartemisinin to preparation of tumor cell autophagy induction medicament
CN105534966B (en) Application of the γ-aminobutyric acid as the active constituent of enhancing chemosensitivity
CN104000877A (en) Blood glucose reducing composition and application thereof
CN109771428B (en) Application of tripterine and erastin in medicine for treating non-small cell lung cancer
Cai‑hong et al. The latest research progress of novel coronavirus" Omicron sub‑variant BA. 5".
CN102228501B (en) Chinese medicinal composition for resisting anoxia and fatigue and preparation method thereof
CN114533885B (en) Compound pharmaceutical composition with isoliensinine and chemotherapeutic drugs as active ingredients
CN110179915A (en) Application of the Shenmai injection in the drug resistance drug that preparation reverses antineoplastic
CN112972438B (en) Lignan compound from radix paeoniae rubra, and preparation method and application thereof
AU2021104015A4 (en) Composition of nadh for relieving alcohol and protecting liver and use thereof
Sharmila et al. Anti-diabetic potential of Indian medicinal plants with Garcinia kola and Syzygium cumini
US20060024327A1 (en) Composition for controlling blood sugar
CN107865842A (en) Applications of the Isovitexin in anti-anoxic medicine is prepared
CN101574340B (en) Rhododendrin and application of rhododendrin and salts thereof in preparing anti-tumor medicament
CN102000136B (en) Method for extracting components having antibacterial activity from fruit of pedunculate herpetospermum
CN108785319A (en) Purposes of the Phenylpropanoid Glycosides glycoside in preparing IDO inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846101

Country of ref document: EP

Kind code of ref document: A1