WO2013062378A2 - 벨트를 포함하는 분리형 엑츄에이터 - Google Patents

벨트를 포함하는 분리형 엑츄에이터 Download PDF

Info

Publication number
WO2013062378A2
WO2013062378A2 PCT/KR2012/008904 KR2012008904W WO2013062378A2 WO 2013062378 A2 WO2013062378 A2 WO 2013062378A2 KR 2012008904 W KR2012008904 W KR 2012008904W WO 2013062378 A2 WO2013062378 A2 WO 2013062378A2
Authority
WO
WIPO (PCT)
Prior art keywords
gear
pulley
module
deceleration
housing
Prior art date
Application number
PCT/KR2012/008904
Other languages
English (en)
French (fr)
Other versions
WO2013062378A3 (ko
Inventor
김병수
이정호
Original Assignee
로보티즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로보티즈 filed Critical 로보티즈
Publication of WO2013062378A2 publication Critical patent/WO2013062378A2/ko
Publication of WO2013062378A3 publication Critical patent/WO2013062378A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/041Combinations of toothed gearings only for conveying rotary motion with constant gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/325Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes

Definitions

  • the present invention relates to a separate actuator, and more particularly to a separate actuator that can control the joint motion of the robot through a plurality of reduction modules.
  • Robots are used in a variety of applications, ranging from industrial robots to humanoid robots, and flexible joint movement is possible through actuators with deceleration functions.
  • Actuator related to driving is a very important core part in this robot technology, and furthermore, the main components constituting the actuator can be a reducer, and there are various kinds of such reducers, such as gear type reducers and electric ball reducers. And cycloid reducer.
  • the gear type reducer is the most common type of reducer, and it uses the Involute Tooth Form.
  • the gear type reducer has an epicycloid curve and a hypocycloid curve. It is a speed reducer that allows the ball to rotate in the guide groove in the shape of the ball shape to execute deceleration rotation, and the harmonic drive reducer flexes only the elliptic motion part by a bearing that is swept into an oval shape when the wave generator bundle is rotated. It is transmitted to the plane and flexpline is a speed reducer that induces deceleration by rotating slowly by skipping the outermost ring gear one by one. Cycloid reducer is usually fixed pin and eccentrically rotates Trochoid Gear as a planetary gear. To be placed at the same angle It is a speed reducer that performs deceleration rotation only by rotating the trocoid gear through a pin hole and a pin, and there are also reducers which are mutually combined and deformed based on these.
  • cycloidal decelerators are widely used in fields requiring precise control because they can implement various reduction ratios and are advantageous for high precision and high speed reduction.
  • Prior arts related to such a speed reducer include Utility Model Registration No. 0325018, Korean Patent Publication No. 2010-0038146, and Korean Patent Publication No. 2011-0068500.
  • An object of the present invention is to provide a separate actuator module that can be flexibly selected by modularizing the primary deceleration module and the secondary deceleration module.
  • Another object of the present invention is to provide a separate actuator module having a high degree of freedom, expandability, and compatibility, thereby enabling various applications to meet the user's purpose.
  • the actuator for controlling the joint motion of the robot, the drive motor and at least one primary reduction gear rotated by the drive motor, and the housing in which the drive motor and the primary reduction gear is mounted.
  • Primary deceleration module provided;
  • a secondary deceleration module having one or more secondary deceleration gears that rotate by receiving power from the primary deceleration gear and a case in which the secondary deceleration gears are mounted;
  • a first pulley that is engaged with the first reduction gear and rotates with the first gear, and a first pulley housing in which the first gear and the first pulley are mounted and fixed to the housing.
  • Primary pulley module An output gear that rotates in engagement with the secondary reduction gear, a second gear that rotates in engagement with the output gear, a second pulley that rotates together with the second gear, and the second gear and the second pulley are mounted in the case
  • a secondary pulley module having a second pulley housing fixed to the second pulley housing; And a belt connected to the first and second pulleys to transmit power of the first pulley to the second pulley.
  • the belt may be a timing belt, and the first and second pulleys may have teeth formed on an outer circumferential surface thereof.
  • One of the first and second pulley modules may further include a tensioner for elastically pressing the belt.
  • the primary reduction gear may include a drive gear fixed to a rotation shaft of the drive motor; A driven gear meshing with the drive gear; And it is provided on the same axis as the driven gear to rotate with the driven gear, it may be provided with a transmission gear meshing with the first gear.
  • the secondary deceleration module may further include a position detector for detecting the output and converting the signal into an electrical signal.
  • the position detector may be any one of a magnetic absolute encoder, a potentiometer, and an optical rotation absolute encoder.
  • the secondary reduction gear may include a plurality of pin gears protruding from an inner circumferential surface of the mounting space of the case and formed along the inner circumferential surface; An input gear rotatably engaged with the output gear; First and second eccentric shafts which are eccentric from the rotation center of the input gear and sequentially protrude from the input gear; And first and second plate gears respectively installed on the first and second eccentric shafts and rotating in contact with the pin gears according to the rotation of the first and second eccentric shafts. It may further include an output member fixed to the plate gear to rotate with the plate gear.
  • the separate actuator further includes a position detector that detects rotation of the output member and converts the detected result into an electrical signal and transmits the detected position.
  • the position detector may be any one of a magnetic absolute encoder, a potentiometer and an optical rotary absolute encoder. .
  • the position detector sequentially penetrates through the input gear, the first and second eccentric shafts, and the first and second plate gears, and is fixed to an output shaft installed at the center of the output member and rotates together with the output shaft.
  • a second printed circuit board may be provided spaced apart from the magnet and mounted with a magnetic encoder configured to detect rotation of the magnet.
  • the position detector includes a rod housing installed at the center of the input side of the case; And a bearing inserted into the rod housing to support the rotating rod.
  • the position detector sequentially penetrates through the input gear, the first and second eccentric shafts, and the first and second plate gears, and is fixed to an output shaft installed at the center of the output member and rotates together with the output shaft.
  • Rotating rod A printed circuit board spaced apart from the rotating rod; And mounted on the printed circuit board, it may be provided with an encoder coupled to the lower end of the rotating rod to detect the rotation of the rotating rod.
  • the first and second eccentric shafts may be eccentric in opposite directions.
  • the number of teeth of the pin gears may be greater than the number of teeth of the first and second plate gears.
  • the separate actuator module is modularized into a primary deceleration module and a secondary deceleration module, thereby allowing a flexible selection of the user.
  • high degree of freedom, scalability, and compatibility can be secured, and various applications are possible according to the user's purpose.
  • FIG. 1 is a perspective view schematically showing a separate actuator according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the first pulley module illustrated in FIG. 1.
  • FIG. 3 is a diagram illustrating the second pulley module illustrated in FIG. 1.
  • FIG. 4 is a perspective view schematically showing a joint of a robot in which the belt shown in FIG. 1 is used.
  • FIG. 5 is an exploded perspective view of a separate actuator according to another embodiment of the present invention.
  • FIG. 6 is a view schematically showing the primary deceleration module shown in FIG. 1.
  • FIG. 7 is a view showing a combination of the separate actuator shown in FIG.
  • FIG. 8 is a view showing a combination of a separate actuator according to another embodiment of the present invention.
  • FIG. 9 is a perspective view schematically showing the secondary deceleration module shown in FIG.
  • FIG. 10 is an exploded perspective view of the secondary deceleration module shown in FIG. 9.
  • FIG. 11 is an exploded perspective view showing a cross section of the secondary reduction module illustrated in FIG. 9.
  • FIG. 12 is an exploded perspective view showing the secondary deceleration module and the position detector shown in FIG. 9.
  • FIG. 13 is an exploded perspective view showing the rotating rod, the magnet and the rod bearing shown in FIG. 12.
  • FIG. 14 is a perspective view schematically showing a position detector according to another embodiment of the present invention.
  • the power transmission device of the actuator according to the present invention on the premise of a modular actuator has a belt system as shown in FIG. That is, as shown in FIG. 1, the primary pulley module 300 is bolted or screwed on one side of the primary deceleration module 100, for example, the side on which the power transmission shaft is provided.
  • the secondary pulley module 400 is bolted or screwed on one side of the secondary deceleration module 200, for example, the side on which power is input for secondary deceleration.
  • the primary pulley module 300 and the secondary pulley module 400 are connected to each other to enable power transmission by the belt 500.
  • first and second deceleration modules 100 and 200 may be connected by the belt 500 in various forms in addition to the example of FIG. 1, and these structures may be applied to the joint motion of the robot as shown in FIG. 4.
  • a substantially rectangular primary module housing 310 is provided, and an inner center of the primary module housing 310 of the primary deceleration module 100 is provided.
  • a first pulley 330 is rotatably fixed to the first pulley 330 having a first gear 320 that is coupled to the transmission gear 170 for outputting power, and the belt 500 is wound around the first pulley 330.
  • the belt 500 which is the power transmission means according to the present invention can be used as long as the belt structure capable of power transmission up to the timing belt, including the flat belt.
  • the tooth puller is further provided on the outer circumferential surface of the first pulley 330 to be coupled with the timing belt.
  • the primary module housing 310 is configured such that one side is open so that the belt 500 can be drawn out through the opening.
  • the pair of first tensioners 340 are installed at both sides of the opening of the primary module housing 310 so as to apply tension to the belt 500 by suppressing the drawn belt 500. .
  • the first tensioner 340 is provided with a small roll in contact with the belt 500, the roll is fixed by a 'c' shaped support 346, the support 346 is the primary It is configured to move in the guide groove 344 formed on the upper and lower surfaces of the opening of the module housing 310, it is also configured to be adjusted by the adjustment bolt 342.
  • the belt 500 may be stably drawn out and disposed.
  • the secondary pulley module 400 fixed to the input side of the secondary deceleration module 200 is fixed as shown in FIG. 3.
  • the second pulley 430 having the primary module housing 410 and the second gear 420 in a configuration corresponding to the components embedded in the primary pulley module 300 described above also inside the secondary pulley module 400.
  • the second tensioner 440 for adjusting the tension of the belt 500 is provided in the same structure.
  • the secondary pulley module 400 since the secondary pulley module 400 cannot directly transmit power to the input side of the secondary deceleration module 200, the secondary pulley module 400 further includes a separate output gear 450 that is tooth-coupled with the second gear 420.
  • the belt 500 may rotate in a caterpillar shape and continuously transmit power.
  • the belt-type power transmission device used in the modular actuator according to the present invention is transferred to the secondary deceleration module 200 in the state in which the primary deceleration is made through the primary deceleration module 100 to make the secondary deceleration. Since a little deceleration through the first and second tensioners 340 and 440 is further performed in the step before losing, the secondary deceleration load in the secondary deceleration module 200 is further reduced, which has the advantage of improving efficiency.
  • the belt type power transmission device used for the modular actuator according to the present invention is to implement the actuator in a narrow space where it is difficult to install the actuator in an assembly state or to perform the actuator function while maintaining a certain interval or more. Even when the primary deceleration module 100 and the secondary deceleration module 200 are spaced apart from each other, a smooth and accurate power transmission and deceleration control are possible, thereby making it very useful and increasing the utilization range. This has the advantage of wider use of the actuator function.
  • the separate actuator according to the present invention includes a primary deceleration module 100 and a secondary deceleration module 200.
  • the most preferred embodiment according to the present invention is configured to implement a variety of reduction ratios and degrees of freedom by configuring a plurality of primary reduction module 100 in common, and a plurality of secondary reduction module 200 to have a variety of reduction ratios.
  • the primary deceleration module 100 is also implemented in plural number, the number of combinations increases exponentially and thus the reduction ratio and the degree of freedom can be varied in various ways.
  • the first preferred deceleration module 100 which is the most preferred embodiment, is commonly used will be described.
  • the secondary deceleration module 200 includes a gear type reducer that is commonly used in the art, a reducer that mainly uses an Involute Tooth Form;
  • An electric reducer configured to cause the ball to rotate in the guide groove having a shape in which an epicycloid curve and a hypocycloid curve face each other to execute deceleration rotation;
  • As the bundle of elliptical wave generators rotates only elliptical movements are transferred to the flexplane by bearings that are swept in an elliptical shape, and the flexplane slowly rotates by skipping the outermost ring gear one by one to induce a deceleration.
  • Wow; Cycloid reducers can be used to fix the pin gears and eccentrically rotate the plate gears having epitaxial teeth as planetary gears, and a decelerator made of a combination thereof can be used.
  • the primary deceleration module 100 is configured to decelerate power of the driving motor 120, which is input from the primary deceleration module 100 itself, through a gear ratio. do.
  • the primary deceleration module 100 is connected to the module housing 110, the drive motor 120 embedded in the module housing 110, the power supply and shutdown of the primary deceleration module 100, communication A main PCB 130 for performing control, a sub-PCB 140 for controlling the driving of the driving motor 120 by receiving the position of the output shaft, a driving gear 150 fixed to the rotating shaft of the driving motor 120, and
  • the driven gear 160 is coupled to the drive gear 150 to induce a primary deceleration, and the transmission gear 170 is formed integrally with the driven gear 160 and transmits power to the secondary reduction module 200. It consists of.
  • the driving gear 150 and the driven gear 160 for implementing the reduction unit may use both a spur gear type or a harmonic gear type and a combination thereof.
  • the spur gear type may be understood as a conventional spur gear type
  • the harmonic gear type is a known gear type having little backlash unlike other gear types, and it is preferable to apply it to a robot requiring precise control.
  • the primary reduction module 100 is provided.
  • the secondary deceleration module 200 further includes position detection means such as a magnetic absolute encoder, a potentiometer, an optical rotary absolute encoder, and the like, to detect the position of the secondary output shaft and feed it back to the PCB.
  • position detection means such as a magnetic absolute encoder, a potentiometer, an optical rotary absolute encoder, and the like, to detect the position of the secondary output shaft and feed it back to the PCB.
  • the actuator deceleration module according to the present invention for coupling the primary deceleration module 100 and the secondary deceleration module 200, the tab (Tab) on the coupling surface of the primary deceleration module 100, respectively
  • a plurality of coupling holes 180 are formed, preferably quadrangular, and a plurality of coupling holes 210 having tabs are formed on a defect surface of the secondary reduction module 200.
  • a plurality of unit grid-type bolt holes 182 formed in multiples of the unit grids are formed on at least one side of the first and second reduction modules 100 and 200 so as to increase the expandability.
  • the unit grid bolt holes 182 are arranged so that at least four bolt balls form a substantially rectangular shape at regular intervals to form a unit grid which is a basic grid, and a plurality of other bolt balls are formed by multiples thereof based on the unit grid. It has a structure that is formed.
  • the unit lattice has a structure in which a plurality of unit grids are repeatedly formed, and thus, the plurality of primary deceleration modules having different sizes can be connected to each other to easily increase the volume, that is, increase scalability. Therefore, the user can increase or decrease the size (volume) of the actuator module in proportion to the unit grid according to the use.
  • the present invention has the advantage that the user can be arbitrarily changed to have a variety of volumes because these modules are modularized in multiples of the unit grid.
  • the positioning pin 190 is further provided at any position of the coupling surfaces of the primary and secondary modules 100 and 200 as shown in FIG. 5, the assembly can be performed quickly, smoothly and more accurately in a very short time. It can be very advantageous.
  • the output member 220 provided in the secondary deceleration module 200 is a member for outputting the reduced power.
  • the output member 220 is normally formed in the form of a shaft. It was very inconvenient because it had to be assembled in the form of connecting or connecting the ring, but in the present invention, by changing it to a circular flange type, and forming a plurality of bolt holes (not shown) in the flange surface simply tighten the bolt in the required position Ease of use is further enhanced because it allows the use of reduced power.
  • FIG. 7 illustrates a general type in which an input shaft and an output shaft that are powered when the primary deceleration module 100 and the secondary deceleration module 200 are assembled are kept in parallel.
  • the actuator module as shown in FIG. 8 may be implemented.
  • the input shaft and the output shaft that power the power are orthogonal to each other.
  • the actuator module according to the present invention can perform the secondary deceleration through the secondary deceleration module 200 while performing the primary deceleration function through the primary deceleration module 100 more precisely It can be used in fields requiring precise and precise control, and furthermore, since it is composed of modules with specifications, the expansion and contraction of the actuator is free, and the replacement combination is possible to have the desired reduction ratio according to the user's environment. Has an advantage.
  • Secondary reduction module is a reduction gear using an internal gear of the epitrochoid tooth type.
  • the pin gear 11 and the plate gear 300 which will be described later, may have a tooth shape in the form of epitroid, but may have an involute tooth shape.
  • the case 100 has a cylindrical mounting space.
  • the pin gear 110 protrudes from the inner circumferential surface of the mounting space and is formed along the inner circumferential surface.
  • the pin gear 110 may be integrally molded when the case 100 is molded.
  • the conventional pin gear 110 employs a method in which roll-shaped pins are planted and fixed one by one in the case 100. Therefore, as well as the assembly tolerance, it is produced separately, it is difficult to achieve the object that requires high precision and high deceleration due to the processing error during the production, causing a malfunction.
  • the pin gear 110 corresponding to the plate gear 300 having the epitroid tooth shape is integrated together in the case 100 forming step, thereby integrating the processing error as well. Errors can be minimized and manufacturing costs can be reduced.
  • the input gear 200 may be mounted in a mounting space of the case 100, and may be connected to a motor through a lower end (or based on FIG. 9) (or an input side) of the case 100.
  • the transmission gear 170 described above is engaged with the input gear 200 to transmit power to the input gear 200. That is, the drive gear and the input gear 200 are engaged with a spur gear type or a helical gear type, and the rotation shaft of the drive gear and the rotation shaft of the input gear are arranged in parallel with each other.
  • the input gear 200 may be directly connected to the rotating shaft of the motor, or may be engaged with the drive gear in a bevel gear type.
  • the first and second eccentric shafts S1 and S2 protrude sequentially from the input gear 200 toward the output side, and the first eccentric shaft S1 is closer to the input gear 200 than the second eccentric shaft S2. Is located.
  • the first and second eccentric shafts are eccentric from the center of rotation of the input gear 200, and the eccentric direction is the opposite direction, but the eccentric amount is substantially the same.
  • the first and second eccentric shafts S1 and S2 are connected to the input gear 200 through the central axis 210.
  • the first and second plate gears 302 and 304 are circular disk shapes of the same size and have an epitroid tooth shape.
  • the first and second plate gears 302 and 304 are tightly fixed to each other and have a plurality of plate holes 310 formed around the center thereof. As shown in FIG. 11, the first and second plate gears 302 and 304 are coupled to each other through a fixing pin 330 inserted into the plate hole 310, and may transmit power to the output member 500.
  • the first plate gear 302 is rotatably installed on the first eccentric shaft S1
  • the second plate gear 304 is rotatably installed on the second eccentric shaft S2.
  • the first and second plate gears 302 and 304 are disposed eccentrically with each other and rotate while contacting the pin gear 110 in accordance with the rotation of the first and second eccentric shafts S1 and S2. The speed is reduced according to the difference in the number of teeth of the gears 302 and 304 and the pin gear 110.
  • the motor decelerates and rotates at the gear ratio of the number of teeth). For example, if the number of teeth of the plate gear 300 is 50, the number of teeth of the pin gear 110 is 51, and the plate gear 300 has a reduction ratio of 1/50.
  • the vibration generated through the first and second plate gears 302 and 304 may be cancelled. And it can double the engagement with the pin gear (110).
  • the output member 500 has a binding hole 520, the binding pin 340 protruding from one surface of the plate gear 300 is inserted into the binding hole 520, the first and second plate gear (302, 304) And the output member 500 to bind.
  • the case 100 has a bearing groove 120 recessed along the inner circumferential surface, and the bearing groove 120 is located at the output side of the pin gear 110.
  • the cross roller bearing 400 is installed at the output side of the plate gear 300, and the output member 500 is installed at the output side of the cross roller bearing 400.
  • a part of the cross roller bearing 400 is inserted into the bearing groove 120, and the other part is inserted into the recessed groove (not shown) from the lower surface of the output member 500 (based on FIG. 5).
  • the output member 500 can smoothly rotate in a state supported by the cross roller bearing 400.
  • the cross roller bearing 400 is described as an example, but the cross roller bearing 400 may be replaced with another bearing.
  • a bearing housing (not shown) including a cross roller bearing 400 is separately fixed to the output side of the case 100.
  • the outer ring of the cross roller bearing 400 is integrally formed with the case 100, and through this, the cross roller bearing 400 may be integrally implemented with the case 100. Errors and processing errors can be minimized.
  • bearing housing does not need to be fixed separately as in the related art, additionally required fixing bolts can be omitted and cost can be reduced, and precise centering work can be omitted during assembly, thereby improving accuracy and productivity. have.
  • weight and weight can be realized by minimizing volume and weight.
  • the output member 500 is in the form of a circular flange, which has the advantage that the connection for the output is very free and easy.
  • the output member 500 has an output shaft 510 installed at the center.
  • the secondary deceleration module further includes a position detector 600 and may detect rotation of the output member 500.
  • the position detector 600 may be an encoder capable of detecting the position of the output member 500 (or the output shaft 510) by detecting the number of rotations according to the rotational direction of the output member 500, and the magnetic encoder as an absolute encoder. Can be. However, as discussed below, the position detector 600 may be replaced with a potentiometer or optical rotary absolute encoder.
  • the position detector 600 converts the detected position information into an electrical signal and transmits it to a controller (not shown). The controller may control an input value of the motor through feedback.
  • the rotating rod 610 is fixed to the output shaft 510 by sequentially passing through the input gear 200, the first and second eccentric shafts S1 and S2, and the center of the plate gear 300.
  • the magnet 620 is built in the input side of the rotation rod 610.
  • the load housing 640 is installed at the center of the input side of the case 100, and the load bearing 630 is inserted into the load housing 640 to support the rotating rod 610 in which the magnet 620 is built.
  • the printed circuit board 650 is spaced apart from the magnet 620, and a magnetic encoder, which is a position detector 652, is mounted on the printed circuit board 650.
  • the position detector 652 may be located on an opening (not shown) of the rod housing 640 to detect a change in magnetic flux density when the magnet 620 rotates, thereby detecting the position of the rotating rod 610. have.
  • the power input through the transmission gear 170 is decelerated at a constant reduction ratio through the secondary reduction module is output through the output member 500
  • the position detector 600 is the position of the output member 500
  • the encoder includes a mounting part 621 and a rotor 623, the mounting part 621 is mounted on the printed circuit board 650, and the rotor 623 is mounted with a mounting part ( 621 is rotatably installed.
  • the lower end of the rotary rod 610 is coupled to the rotor 623, the encoder detects the rotation of the rotary rod 610 and feeds back to the controller.
  • the encoder can be a potentiometer or an optical rotary absolute encoder.
  • the above-described position detector 600 may be applied to another type of secondary deceleration module. That is, the pin gear 110 may be installed in a mounting space separately from the case 100, and a bearing housing (not shown) including the cross roller bearing 400 may be installed separately from the case 100.
  • the present invention can be applied to various actuators including robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmission Devices (AREA)
  • General Details Of Gearings (AREA)

Abstract

본 발명의 일 실시예에 의하면, 로봇의 관절 운동을 제어하는 엑츄에이터는, 구동모터 및 상기 구동모터에 의해 회전하는 하나 이상의 1차 감속기어, 그리고 상기 구동모터 및 상기 1차 감속기어가 실장되는 하우징을 구비하는 1차 감속모듈; 상기 1차 감속기어로부터 동력을 전달받아 회전하는 하나 이상의 2차 감속기어 및 상기 2차 감속기어가 실장되는 케이스를 구비하는 2차 감속모듈; 상기 1차 감속기어에 맞물려 회전하는 제1 기어 및 상기 제1 기어와 함께 회전하는 제1 풀리, 그리고 상기 제1 기어 및 상기 제1 풀리가 실장되어 상기 하우징에 고정되는 제1 풀리하우징을 구비하는 1차 풀리모듈; 상기 2차 감속기어에 맞물려 회전하는 출력기어, 상기 출력기어에 맞물려 회전하는 제2 기어, 상기 제2 기어와 함께 회전하는 제2 풀리, 그리고 상기 제2 기어 및 상기 제2 풀리가 실장되어 상기 케이스에 고정되는 제2 풀리하우징을 구비하는 2차 풀리모듈; 그리고 상기 제1 및 제2 풀리에 연결되어 상기 제1 풀리의 동력을 상기 제2 풀리에 전달하는 벨트를 포함한다.

Description

벨트를 포함하는 분리형 엑츄에이터
본 발명은 분리형 엑츄에이터에 관한 것으로, 더욱 상세하게는 복수의 감속모듈을 통해 로봇의 관절 운동을 제어할 수 있는 분리형 엑츄에이터에 관한 것이다.
로봇은 산업용 로봇부터 휴머노이드 로봇에 이르기까지 다양하게 사용되고 있으며, 감속기능을 갖춘 엑츄에이터를 통해 유연한 관절 운동이 가능하다.
특히, 최근 급격히 발전하고 있는 로봇공학 기술은 기존에 산업용으로만 활용되던 로봇공학 메커니즘들이 타 산업분야로까지 접목되어 기술의 융복합이 진행되고 있는데, 이를 테면 가정용 청소로봇, 프로그래밍 교육용 로봇, 완구용 로봇, 엔터테이먼트용 로봇 등의 개발과 생산을 들 수 있다.
이러한 로봇 기술에서 구동과 관계된 엑츄에이터는 매우 중요한 핵심 부품이며, 더 나아가 엑츄에이터를 구성하는 주된 구성으로 감속기를 들 수 있고, 이러한 감속기로는 여러 종류를 들 수 있는데, 대표적인 예로 기어식 감속기, 전동볼식 감속기, 사이클로이드 감속기 등을 들 수 있다.
이때, 기어식 감속기는 가장 많이 사용하고 있는 일반적인 감속기로서 인볼루트 치형(Involute Tooth Form)을 사용하는 감속기를 말하고, 전동볼식 감속기는 에피사이클로이드 곡선(Epicycloid Curve)과 하이포사이클로이드 곡선(Hypocycloid Curve)이 마주보는 형상의 안내홈 내를 볼이 전동(轉動)하여 감속회전을 실행시키도록 한 감속기를 말하며, 하모닉 드라이브 감속기는 타원형으로 된 웨이브 제네레이터 뭉치가 회전하면 타원형으로 쓸려 돌아가는 베어링에 의해 타원운동 부분만 플렉스플라인으로 전달되고 플렉스플라인은 천천히 맨 바깥쪽 링기어를 한칸씩 건너 뛰면서 회전하여 감속을 유도하는 감속기를 말하며, 사이클로이드 감속기는 보통 핀을 고정하고 유성기어로서 트로코이드 기어(Trochoid Gear)를 편심회전시켜 트로코이드 내에 동일한 각도로 배치되어 있는 핀구멍 및 핀을 통해 트로코이드 기어의 자전만을 실행시켜 감속회전을 얻도록 한 감속기를 말하며, 이들을 기본으로 상호 조합 변형한 감속기들도 존재하고 있다.
이들 중에서 특히, 사이클로이드 감속기(Cycloid Decelerator)는 다양한 감속비를 구현할 수 있고 고정밀 고감속에 유리하므로 정밀 제어가 필요한 분야에 많이 활용되고 있다. 이와 같은 감속기와 관련된 선행기술로는 등록실용신안공보 제0325018호 및 한국공개특허공보 제2010-0038146호, 그리고 한국공개특허공보 제2011-0068500호 등이 있다.
그런데, 개시된 선행 기술들을 포함한 다양한 감속기의 경우, 하나의 하우징 안에 감속기어가 설치된 구조이므로, 감속기의 크기가 증가할 뿐만 아니라, 사용자가 감속비를 쉽게 조합할 수 없는 문제가 있다. 또한, 사용자의 요구(중심거리, 기어타입, 기어비 등)을 유연하게 선택할 수 없는 한계가 있다.
본 발명의 목적은 1차 감속모듈 및 2차 감속모듈로 모듈화시켜 유연한 선택이 가능한 분리형 엑츄에이터 모듈을 제공하는 데 있다.
본 발명의 다른 목적은 높은 자유도 및 확장성, 그리고 호환성을 갖추고, 이를 통해 사용자의 목적에 맞도록 다양한 어플리케이션이 가능한 분리형 엑츄에이터 모듈을 제공하는 데 있다.
본 발명의 또 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 의하면, 로봇의 관절 운동을 제어하는 엑츄에이터는, 구동모터 및 상기 구동모터에 의해 회전하는 하나 이상의 1차 감속기어, 그리고 상기 구동모터 및 상기 1차 감속기어가 실장되는 하우징을 구비하는 1차 감속모듈; 상기 1차 감속기어로부터 동력을 전달받아 회전하는 하나 이상의 2차 감속기어 및 상기 2차 감속기어가 실장되는 케이스를 구비하는 2차 감속모듈; 상기 1차 감속기어에 맞물려 회전하는 제1 기어 및 상기 제1 기어와 함께 회전하는 제1 풀리, 그리고 상기 제1 기어 및 상기 제1 풀리가 실장되어 상기 하우징에 고정되는 제1 풀리하우징을 구비하는 1차 풀리모듈; 상기 2차 감속기어에 맞물려 회전하는 출력기어, 상기 출력기어에 맞물려 회전하는 제2 기어, 상기 제2 기어와 함께 회전하는 제2 풀리, 그리고 상기 제2 기어 및 상기 제2 풀리가 실장되어 상기 케이스에 고정되는 제2 풀리하우징을 구비하는 2차 풀리모듈; 그리고 상기 제1 및 제2 풀리에 연결되어 상기 제1 풀리의 동력을 상기 제2 풀리에 전달하는 벨트를 포함한다.
상기 벨트는 타이밍 벨트이며, 상기 제1 및 제2 풀리는 외주면에 형성된 치형을 가질 수 있다.
상기 제1 및 제2 풀리모듈 중 어느 하나는 상기 벨트를 탄성가압하는 텐셔너를 더 구비할 수 있다.
상기 1차 감속기어는, 상기 구동모터의 회전축에 고정된 구동기어; 상기 구동기어에 맞물리는 종동기어; 그리고 상기 종동기어와 동일한 축 상에 설치되어 상기 종동기어와 함께 회전하며, 상기 제1 기어에 맞물리는 전달기어를 구비할 수 있다.
상기 2차 감속모듈은 상기 출력을 감지하고 전기적 신호로 변환하여 전송하는 위치검출기를 더 구비하며, 상기 위치검출기는 마그네틱 절대 엔코더, 포텐셔미터, 광학식 회전 절대 엔코더 중 어느 하나일 수 있다.
상기 2차 감속기어는, 상기 케이스의 실장공간의 내주면으로부터 돌출되어 상기 내주면을 따라 형성되는 복수의 핀기어들; 상기 출력기어에 맞물려 회전가능한 입력기어; 상기 입력기어의 회전중심으로부터 편심되며, 상기 입력기어로부터 순차적으로 돌출된 제1 및 제2 편심축; 그리고 상기 제1 및 제2 편심축 상에 각각 설치되며, 상기 제1 및 제2 편심축의 회전에 따라 상기 핀기어와 접촉하여 각각 회전하는 제1 및 제2 판기어를 구비하며, 상기 분리형 액츄에이터는 상기 판기어에 고정되어 상기 판기어와 함께 회전하는 출력부재를 더 포함할 수 있다.
상기 분리형 액츄에이터는 상기 출력부재의 회전을 감지하며 감지된 결과를 전기적 신호로 변환하여 전송하는 위치검출기를 더 포함하며, 상기 위치검출기는 마그네틱 절대 엔코더, 포텐셔미터, 광학식 회전 절대 엔코더 중 어느 하나일 수 있다.
상기 위치검출기는, 상기 입력기어와 상기 제1 및 제2 편심축, 그리고 상기 제1 및 제2 판기어를 차례로 관통하며, 상기 출력부재의 중앙에 설치된 출력축에 일단이 고정되어 상기 출력축과 함께 회전하는 회전로드; 상기 회전로드의 타단에 고정설치된 마그네트; 그리고 상기 마그네트로부터 이격설치되며, 상기 마그네트의 회전을 감지하는 마그네틱 엔코더가 실장된 제2 인쇄회로기판을 구비할 수 있다.
상기 위치검출기는, 상기 케이스의 입력측 중앙에 설치되는 로드하우징; 그리고 상기 로드하우징에 삽입되어 상기 회전로드를 지지하는 베어링을 더 구비할 수 있다.
상기 위치검출기는, 상기 입력기어와 상기 제1 및 제2 편심축, 그리고 상기 제1 및 제2 판기어를 차례로 관통하며, 상기 출력부재의 중앙에 설치된 출력축에 일단이 고정되어 상기 출력축과 함께 회전하는 회전로드; 상기 회전로드로부터 이격설치되는 인쇄회로기판; 그리고 상기 인쇄회로기판에 실장되며, 상기 회전로드의 하단과 결합하여 상기 회전로드의 회전을 감지하는 엔코더를 구비할 수 있다.
상기 제1 및 제2 편심축은 반대 방향으로 편심될 수 있다.
상기 핀기어들의 잇수는 상기 제1 및 제2 판기어의 잇수보다 클 수 있다.
본 발명의 일 실시예에 따르면, 분리형 엑츄에이터 모듈은 1차 감속모듈 및 2차 감속모듈로 모듈화시켜 사용자의 유연한 선택이 가능하다. 또한, 높은 자유도 및 확장성, 그리고 호환성을 확보할 수 있으며, 이를 통해 사용자의 목적에 맞도록 다양한 어플리케이션이 가능하다.
도 1은 본 발명의 일 실시예에 따른 분리형 엑츄에이터를 개략적으로 나타내는 사시도이다.
도 2는 도 1에 도시한 제1 풀리모듈을 나타내는 도면이다.
도 3은 도 1에 도시한 제2 풀리모듈을 나타내는 도면이다.
도 4는 도 1에 도시한 벨트가 사용된 로봇의 관절을 개략적으로 나타내는 사시도이다.
도 5는 본 발명의 다른 실시예에 따른 분리형 엑츄에이터의 분해사시도이다.
도 6은 도 1에 도시한 1차 감속모듈을 개략적으로 나타내는 도면이다.
도 7은 도 5에 도시한 분리형 엑츄에이터의 조합을 나타내는 도면이다.
도 8은 본 발명의 또 다른 실시예에 따른 분리형 엑츄에이터의 조합을 나타내는 도면이다.
도 9는 도 1에 도시한 2차 감속모듈을 절개하여 개략적으로 도시한 사시도이다.
도 10은 도 9에 도시한 2차 감속모듈의 분해사시도이다.
도 11은 도 9에 도시한 2차 감속모듈의 단면을 나타내는 분해사시도이다.
도 12은 도 9에 도시한 2차 감속모듈과 위치검출기를 나타내는 분해사시도이다.
도 13은 도 12에 도시한 회전로드 및 마그네트, 로드베어링을 나타내는 분해사시도이다.
도 14는 본 발명의 다른 실시예에 따른 위치검출기를 개략적으로 나타내는 사시도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도 1 내지 도 3을 참고하여 더욱 상세히 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
모듈화된 엑츄에이터를 전제로 한 본 발명에 따른 엑츄에이터의 동력전달장치는 도 1에 예시한 형태인 벨트 방식을 갖는다. 즉, 도 1에 도시된 바와 같이, 1차 감속모듈(100)의 일측면, 이를 테면 동력전달축이 구비된 쪽 면 상에는 1차풀리모듈(300)이 볼트 혹은 나사 고정된다.
마찬가지로, 2차 감속모듈(200)의 일측면, 이를 테면 동력이 2차 감속을 위해 입력되는 쪽 면 상에는 2차풀리모듈(400)이 볼트 혹은 나사 고정된다. 그리고, 상기 1차풀리모듈(300)과 2차풀리모듈(400)은 벨트(500)에 의해 동력전달 가능하게 서로 연결된다.
뿐만 아니라, 도 1의 예시 외에 다양한 형태로 1,2차 감속모듈(100,200)이 벨트(500)에 의해 연결될 수 있으며, 이들 구조는 도 4와 같이 로봇의 관절 운동에 적용될 수 있다.
한편, 도 2에서와 같이 1차풀리모듈(300)의 경우, 대략 사각형상의 1차모듈하우징(310)이 구비되고, 상기 1차모듈하우징(310) 내부 중심에는 1차 감속모듈(100)의 동력을 출력하는 전달기어(170)와 치결합되는 제1기어(320)를 갖는 제1풀리(330)가 회전가능하게 축 고정되고, 상기 제1풀리(330)에는 벨트(500)가 감긴다. 여기에서, 본 발명에 따른 동력전달수단인 벨트(500)는 평벨트를 비롯하여 타이밍벨트까지 동력전달 가능한 벨트 구조체라면 모두 사용가능하다. 다만, 타이밍벨트일 경우 상기 제1풀리(330)의 외주면에 타이밍벨트와 결합되기 위한 치형이 더 구비된 풀리여야 한다는 점만 차이가 날 뿐이다.
또한, 상기 1차모듈하우징(310)은 일측변이 개방되어 있어 개방부를 통해 벨트(500)가 인출될 수 있도록 구성된다. 그리고, 상기 1차모듈하우징(310)의 개방부 양측에는 제1텐셔너(340) 한 쌍이 간격을 두고 설치되어 인출된 벨트(500)를 탄압함으로서 벨트(500)에 장력을 부여할 수 있도록 구성된다.
이때, 상기 제1텐셔너(340)는 상기 벨트(500)와 접촉되는 소형 롤이 구비되고, 이 롤은 'ㄷ' 형상의 지지대(346)에 의해 고정되며, 상기 지지대(346)는 상기 1차모듈하우징(310)의 개방부 상하면에 형성된 가이드홈(344)을 타고 움직일 수 있도록 구성되고, 또한 조절볼트(342)에 의해 조절되게 구성된다. 따라서, 상기 벨트(500)는 견실 안정적으로 인출되고 배치될 수 있다.
이와 동일하게, 도 3과 같이 2차 감속모듈(200)의 입력측 면에도 고정된 2차풀리모듈(400)이 고정된다. 상기 2차풀리모듈(400) 내부에도 앞서 설명한 1차풀리모듈(300)에 내장된 구성들과 대응되는 구성으로 1차모듈하우징(410), 제2기어(420)를 갖는 제2풀리(430), 벨트(500)의 텐션을 조절하기 위한 제2텐셔너(440)가 동일한 구조로 구비된다. 다만, 2차풀리모듈(400)에서는 2차 감속모듈(200)의 입력측으로 직접 동력을 전달할 수 없는 구조이므로 상기 제2기어(420)와 치결합되는 별도의 출력기어(450)를 더 구비하고 있다는 점에서 차이가 날 뿐이고, 출력기어(450)는 2차 감속모듈(200)에 구비된 입력기어(202)와 치결합되게 된다. 따라서, 1,2차 감속모듈(100,200)이 벨트(500)에 의해 상호 결합되면 상기 벨트(500)는 무한궤도 형태로 회전되면서 연속적으로 동력을 전달할 수 있게 된다.
본 발명을 바람직한 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 바람직한 실시예에 한정되지 않는다.
이하, 본 발명의 실시예를 첨부된 도 4 내지 도 14를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하기로 하며, 이하에서 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다.
도 8과 같이 배열하면 감속기 개수를 줄이면서 효율적인 동작이 가능하도록 로봇 관절 부분을 설계할 수 있게 된다. 이와 같이, 본 발명에 따른 모듈화 된 엑츄에이터에 사용되는 벨트형 동력전달장치는 1차 감속모듈(100)을 통해 1차 감속이 이루어진 상태에서 2차 감속모듈(200)로 전달되어 2차 감속이 이루어지기 전 단계에서 제1,2텐셔너(340,440)를 통한 약간의 감속이 더 이루어지기 때문에 사실상 2차 감속모듈(200)에서의 2차 감속 부하를 더욱 더 경감시키게 되어 효율을 향상시키는 장점을 가진다.
더구나, 본 발명에 따른 모듈화 된 엑츄에이터에 사용되는 벨트형 동력전달장치는 엑츄에이터를 조립체 상태로 설치하기 어려운 협소 공간상에서 엑츄에이터를 구현하고자 할 때 또는 일정 이상의 간격을 유지한 채 엑츄에이터 기능을 수행하고자 할 때 1차 감속모듈(100)과 2차 감속모듈(200)을 상호 이격시킨 상태에서도 원활하고 정확한 동력전달 및 감속 제어가 가능하므로 매우 유용하고 활용폭을 높일 수 있게 된다. 이를 통해, 엑츄에이터의 기능 활용을 더욱 더 폭넓게 할 수 있는 장점을 갖게 된다.
도 5에서와 같이, 본 발명에 따른 분리형 엑츄에이터는 1차 감속모듈(100)과 2차 감속모듈(200)로 구성된다. 여기에서, 본 발명에 따른 가장 바람직한 실시예는 1차 감속모듈(100)은 공통으로 활용하고, 2차 감속모듈(200)을 다양한 감속비를 갖도록 다수로 구성하여 다양한 감속비와 자유도를 구현할 수 있도록 구성하는 것이고, 더 나아가서는 상기 1차 감속모듈(100)도 다수개로 구현하게 되면 기하급수적으로 늘어나는 조합수를 갖게 되어 감속비와 자유도를 매우 다양하게 가변시킬 수 있게 된다. 다만, 본 발명에서는 가장 바람직한 실시예인 1차 감속모듈(100)을 공통으로 활용하는 경우만 예시적으로 설명하기로 한다.
아울러, 2차 감속모듈(200)은 당해 분야에서 통상적으로 가장 많이 사용하고 있는 기어식 감속기, 주로 인볼루트 치형(Involute Tooth Form)을 사용하는 감속기와; 에피싸이클로이드 곡선(Epicycloid Curve)과 하이포 싸이클로이드 곡선(Hypocycloid Curve)이 마주보는 형상의 안내홈 내를 볼이 전동(轉動)하여 감속회전을 실행시키도록 한 전동식 감속기와; 타원형으로 된 웨이브 제네레이터 뭉치가 회전하면 타원형으로 쓸려 돌아가는 베어링에 의해 타원운동 부분만 플렉스플라인으로 전달되고 플렉스플라인은 천천히 맨 바깥쪽 링기어를 한칸씩 건너 뛰면서 회전하여 감속을 유도하는 하모닉 드라이브 감속기와; 핀기어 고정하고 유성기어로서 에피트로코이드 치형을 갖는 판기어를 편심회전시켜 감속비를 얻는 싸이클로이드 감속기 등이 사용될 수 있으며, 그 이외에도 이들의 조합으로 이루어진 변형된 감속기도 사용될 수 있음은 물론이다.
특히, 1차 감속모듈(100)은 도 1 및 도 2에 도시된 바와 같이, 1차 감속모듈(100) 자체에서 입력인 구동모터(120)의 동력을 기어비를 통해 1차 감속할 수 있도록 구성된다. 이를 위해, 1차 감속모듈(100)은 모듈하우징(110)과, 상기 모듈하우징(110)에 내장되는 구동모터(120)와, 1차 감속모듈(100)의 전원공급 및 차단, 통신과 관련된 제어를 수행하는 메인PCB(130)와, 출력축의 위치를 피드백 받아 구동모터(120)의 구동을 제어하는 서브PCB(140)와, 구동모터(120)의 회전축에 고정된 구동기어(150)와, 구동기어(150)에 치결합되어 1차 감속을 유도하는 종동기어(160)와, 종동기어(160)에 일체로 형성되고 2차 감속모듈(200)로 동력을 전달하는 전달기어(170)로 구성된다.
이 경우, 감속부를 구현하는 상기 구동기어(150)와 종동기어(160)는 스퍼기어 타입 혹은 하모닉기어 타입 및 이들을 조합한 형태 모두 사용할 수 있다. 이때, 스퍼기어 타입은 통상적인 평기어 타입으로 이해하면 되고, 하모닉기어 타입은 다른 기어 타입과 다르게 백래쉬(Backlash)가 거의 없는 공지된 기어 타입으로서 정밀 제어가 요구되는 로봇에 적용함이 바람직하다.
덧붙여, 본 발명에서는 1차 감속모듈(100)의 출력축과 2차 감속모듈(200)의 입력축이 기어 결합, 바람직하기로는 평기어 결합되는 형태로 연결접속되기 때문에 1차 감속모듈(100)에 구비된 1차 감속기(구동기어+종동기어)에 의한 1차 감속기능과, 2차 감속모듈(200)에 구비된 2차 감속기에 의한 2차 감속기능 외에, 1차 감속모듈(100)과 2차 감속모듈(200)의 연결부에서의 감속기능(평기어 결합), 즉 중간감속이 더 수행되므로 감속효율이 더욱 더 증진되게 된다.
뿐만 아니라, 2차 감속모듈(200)에는 도시하지 않았지만 2차 출력축의 위치를 검출하여 상기 PCB로 피드백시키도록 마그네틱 절대 엔코더, 포텐셔미터, 광학식 회전 절대 엔코더 등과 같은 위치검출수단이 더 구비된다.
한편, 도 5에서와 같이, 본 발명에 따른 엑츄에이터 감속모듈은 1차 감속모듈(100)과 2차 감속모듈(200)의 결합을 위해 각각 1차 감속모듈(100)의 결합면에는 탭(Tab)이 형성된 다수, 바람직하게는 사각을 이루는 4개의 결합공(180)이 형성되고, 2차 감속모듈(200)의 결함면에도 탭이 형성된 다수개의 결합구멍(210)이 형성된다.
뿐만 아니라, 확장성을 높이도록 상기 1,2차 감속모듈(100,200)의 적어도 일측면에는 단위격자의 배수로 형성되는 다수의 단위격자형 볼트공(182)이 형성된다.
상기 단위격자형 볼트공(182)은 적어도 4개의 볼트공이 일정간격을 두고 대략 사각형상을 이루도록 배치되어 기본격자인 단위격자를 이루고, 이 단위격자를 기본으로 그 배수만큼씩 다수의 다른 볼트공들이 형성되는 구조를 갖는다. 바꾸어 말하자면, 단위격자가 다수 반복형성된 구조를 갖게 되며, 이를 통해 크기가 다른 1차 감속모듈 다수개를 서로 연결하여 볼륨을 키우기 쉽도록, 다시 말해 확장성을 높일 수 있게 된다. 따라서, 사용자가 용도에 따라 엑츄에이터 모듈의 크기(볼륨)을 단위격자에 비례하여 키우거나 줄일 수 있다.
결국, 본 발명은 이러한 모듈들이 단위격자의 배수로 모듈화되어 있기 때문에 다양한 볼륨을 갖도록 사용자가 임의로 가변시킬 수 있는 장점을 가진다. 특히, 도 5의 예시와 같이 1,2차 모듈(100,200)의 결합면 중 임의의 위치에 위치결정핀(190)을 더 구비하게 되면 조립시 신속하면서 원활하고 더 정확한 조립을 아주 짧은 시간내에 달성할 수 있으므로 매우 유리하다 하겠다.
뿐만 아니라, 2차 감속모듈(200)에 구비되는 출력부재(220)는 감속된 동력을 출력하는 부재로서, 기존에는 보통 샤프트(Shaft) 형태로 이루어져 있었기 때문에 감속된 동력을 사용하기 위해서는 샤프트에 커플링을 연결하거나 혹은 키결합하는 형태로 조립해야 했기 때문에 매우 불편하였지만, 본 발명에서는 이를 원형 플랜지 타입으로 바꾸고, 플랜지면에 다수의 볼트공(도면번호 생략)을 형성하여 필요 위치에 단순히 볼트만 조이면 감속된 동력을 사용할 수 있게 하여 주므로 사용상 편의성이 더욱 더 증진된다.
이와 같은 개념을 토대로 도 7과 같은 엑츄에이터 모듈을 구현할 수 있다. 예컨대, 도 7의 경우는 일반형으로 1차 감속모듈(100)과 2차 감속모듈(200)이 조립되었을 때 동력을 주는 입력축과 출력축이 평행하게 유지되는 형태를 보여 준다.
다른 예로, 도 8와 같은 엑츄에이터 모듈도 구현할 수 있다. 도 8의 경우는 직교형으로 1차 감속모듈(100)과 2차 감속모듈(200)이 조립되었을 때 동력을 주는 입력축과 출력축이 서로 직교되게 유지되는 형태를 보여 준다.
이상에서와 같이, 본 발명에 따른 엑츄에이터 모듈은 1차 감속모듈(100)을 통해 1차 감속기능을 수행하면서 또한 2차 감속모듈(200)을 통해 2차 감속도 연속적으로 수행할 수 있어 보다 정교하고 정밀한 제어를 요하는 분야에 활용될 수 있으며, 나아가 규격을 갖는 모듈로 이루어져 있기 때문에 엑츄에이터의 확장과 축소가 자유롭고, 사용자의 환경에 따라 원하는 감속비를 갖도록 교체 조합이 가능하여 사용자의 자유도를 극대화시키는 장점을 갖는다.
본 발명의 일 실시예에 따른 2차 감속모듈은 에피트로코이드(Epitrochoid) 치형의 내접기어를 사용하는 감속기이다. 후술하는 핀기어(11) 및 판기어(300)는 에피트로코이드 형태의 치형을 가지나, 이와 달리 인볼루트(involute) 치형을 가질 수 있다.
도 9 및 도 10에 도시한 바와 같이, 케이스(100)는 원통 형상의 실장공간을 가진다. 핀기어(110)는 실장공간의 내주면으로부터 돌출되어 내주면을 따라 형성된다. 핀기어(110)는 케이스(100) 성형시 일체로 성형될 수 있다.
반면에, 한국공개특허공보 2010-0038146호에 개시된 바와 같이, 종래의 핀기어(110)는 롤 형상의 핀을 하나씩 일일이 케이스(100)에 심어 고정되는 방식을 채용하였다. 따라서, 조립공차는 물론, 별개로 제작하므로 제작시 가공오차가 발생하여 고정밀 및 고감속을 요하는 목적을 달성하기 곤란하며, 작동불량을 초래하는 원인이 되었다. 그러나, 본 발명의 일 실시예에 따르면, 에피트로코이드 치형을 갖는 판기어(300)와 대응되는 핀기어(110)를 케이스(100) 성형단계에서 함께 성형하여 일체화하며, 이를 통해 가공오차는 물론 조립오차를 최소화할 수 있으며, 제조비용을 절감할 수 있다.
입력기어(200)는 케이스(100)의 실장공간 내에 실장될 수 있으며, 케이스(100)의 하단(도 9를 기준으로)(또는 입력측)을 통해 모터에 연결될 수 있다. 앞서 설명한 전달기어(170)는 입력기어(200)에 맞물려 입력기어(200)에 동력을 전달한다. 즉, 구동기어와 입력기어(200)는 평기어(spur gear) 타입 또는 헬리컬 기어(helical gear) 타입으로 맞물리며, 구동기어의 회전축과 입력기어의 회전축은 서로 나란하게 배치된다. 다만, 본 실시예와 달리, 입력기어(200)는 모터의 회전축에 직접 연결되거나, 베벨기어 타입으로 구동기어에 맞물릴 수 있다.
제1 및 제2 편심축(S1,S2)은 입력기어(200)로부터 출력측을 향해 순차적으로돌출되며, 제1 편심축(S1)은 제2 편심축(S2) 보다 입력기어(200)에 근접하여 위치한다. 제1 및 제2 편심축은 입력기어(200)의 회전중심으로부터 편심되며, 편심방향은 반대방향이나, 편심량은 대체로 동일하다. 제1 및 제2 편심축(S1,S2)은 중심축(210)을 통해 입력기어(200)에 연결된다.
제1 및 제2 판기어(302,304)는 동일한 크기의 원형 디스크 형상이며, 에피트로코이드 치형을 가진다. 제1 및 제2 판기어(302,304)는 서로 밀착되어 고정되며, 중심을 기준으로 둘레에 형성된 복수의 판공(310)을 가진다. 도 11에 도시한 바와 같이, 제1 및 제2 판기어(302,304)는 판공(310)에 삽입된 고정핀(330)을 통해 상호 결속되며, 출력부재(500)에 동력을 전달할 수 있다.
제1 판기어(302)는 제1 편심축(S1)에 회전가능하도록 설치되며, 제2 판기어(304)는 제2 편심축(S2)에 회전가능하도록 설치된다. 제1 및 제2 판기어(302,304)는 서로 편심되게 배치되며, 제1 및 제2 편심축(S1,S2)의 회전에 따라 핀기어(110)와 접촉하면서 회전하나, 제1 및 제2 판기어(302,304)와 핀기어(110)의 잇수(number of teeth) 차이에 따라 감속된다.
판기어(300)는 핀기어(110)의 잇수보다 1개 더 많은 잇수를 가지므로, 판기어(300)는 입력기어(200)의 회전수 대비 "1/n"(n=판기어(300)의 잇수)의 감속비로 감속하여 회전한다. 예를 들어, 판기어(300)의 잇수가 50이라면, 핀기어(110)의 잇수는 51이며, 판기어(300)는 1/50의 감속비를 가진다.
한편, 제1 및 제2 판기어(302,304)를 반대방향으로 편심시킨 상태에서 출력부재(500)에 동력을 전달하는 경우, 제1 및 제2 판기어(302,304)를 통해 발생하는 진동을 상쇄할 수 있으며, 핀기어(110)와 맞물림을 2배로 강화할 수 있다. 또한, 출력부재(500)는 결속공(520)을 가지며, 판기어(300)의 일면으로부터 돌출된 결속핀(340)은 결속공(520)에 삽입되어 제1 및 제2 판기어(302,304)와 출력부재(500)를 결속한다.
도 11 및 도 12에 도시한 바와 같이, 케이스(100)는 내주면을 따라 함몰형성된 베어링홈(120)을 가지며, 베어링홈(120)은 핀기어(110)의 출력측에 위치한다. 크로스롤러 베어링(400)은 판기어(300)의 출력측에 설치되며, 출력부재(500)는 크로스롤러 베어링(400)의 출력측에 설치된다. 크로스롤러 베어링(400)의 일부는 베어링홈(120)에 삽입설치되며, 나머지는 출력부재(500)의 하부면으로부터(도 5를 기준으로) 함몰형성된 홈(도시안함)에 삽입설치된다. 출력부재(500)는 크로스롤러 베어링(400)에 의해 지지된 상태에서 원활하게 회전할 수 있다. 본 실시예에서는 크로스롤러 베어링(400)을 예로 들어 설명하고 있으나, 크로스롤러 베어링(400)은 다른 베어링으로 대체될 수 있다.
종래에는 케이스(100)의 출력측 외면에 크로스롤러 베어링(400)을 포함한 베어링하우징(도시안함)이 별도로 고정설치되었다. 그러나, 본 실시예에 따르면, 크로스롤러 베어링(400)의 외륜이 케이스(100)와 일체로 형성된 것으로 볼 수 있으며, 이를 통해 크로스롤러 베어링(400)을 케이스(100)와 일체로 구현할 수 있어 조립오차나 가공오차를 최소화할 수 있다.
특히, 종래와 같이 베어링하우징을 별도로 고정할 필요가 없으므로, 부수적으로 필요한 고정볼트를 생략할 수 있어 비용절감이 가능하며, 조립시 정밀하게 이루어지는 센터링 작업을 생략할 수 있어 정밀도 및 생산성을 향상시킬 수 있다. 이와 별도로, 부피 및 무게를 최소화함으로써 경량화 및 소형화를 구현할 수 있다.
출력부재(500)는 원형 플랜지 형태이며, 이로 인해 출력을 위한 접속이 매우 자유롭고 용이한 장점을 가진다. 출력부재(500)는 중앙에 설치된 출력축(510)을 가진다.
도 11 및 도 12에 도시한 바와 같이, 2차 감속모듈은 위치검출기(600)를 더 포함하며, 출력부재(500)의 회전을 감지할 수 있다. 위치검출기(600)는 출력부재(500)의 회전방향에 따른 회전수를 감지하여 출력부재(500)(또는 출력축(510))의 위치를 감지할 수 있는 엔코더일 수 있으며, 절대 엔코더로서 마그네틱 엔코더일 수 있다. 그러나, 후술하는 바와 같이, 위치검출기(600)는 포텐셔미터(potentiometer) 또는 광학식 회전 절대 엔코더로 대체될 수 있다. 위치검출기(600)는 검출된 위치정보를 전기적 신호로 변환하여 제어기(도시안함)에 전송하며, 제어기는 피드백을 통해 모터의 입력값을 제어할 수 있다.
회전로드(610)는 입력기어(200)와 제1 및 제2 편심축(S1,S2), 그리고 판기어(300)의 중심을 차례로 관통하여 출력축(510)에 고정된다. 마그네트(620)는 회전로드(610)의 입력측에 내장된다. 로드하우징(640)은 케이스(100)의 입력측 중앙에 설치되며, 로드베어링(630)은 로드하우징(640)에 삽입설치되어 마그네트(620)가 내장된 회전로드(610)를 지지한다.
인쇄회로기판(650)은 마그네트(620)로부터 이격설치되며, 위치검출자(652)인 마그네틱 엔코더가 인쇄회로기판(650)에 실장된다. 위치검출자(652)는 로드하우징(640)의 개구(도시안함) 상에 위치하여 마그네트(620)의 회전시 자속밀도의 변화를 감지하며, 이를 통해 회전로드(610)의 위치를 감지할 수 있다.
상술한 바에 의하면, 전달기어(170)를 통해 입력된 동력은 2차 감속모듈을 통해 일정한 감속비로 감속되어 출력부재(500)를 통해 출력되며, 위치검출기(600)는 출력부재(500)의 위치정보를 제어기에 피드백함으로써 제어기는 출력부재(500)의 회전을 정밀하게 제어할 수 있다.
도 14에 도시한 바와 같이, 엔코더는 마운팅부(621)와 회전자(623)를 구비하며, 마운팅부(621)는 인쇄회로기판(650) 상에 실장되고 회전자(623)는 마운팅부(621)에 회전가능하게 설치된다. 회전로드(610)의 하단은 회전자(623)에 결합되며, 엔코더는 회전로드(610)의 회전을 감지하여 제어기에 피드백한다. 엔코더는 포텐셔미터 또는 광학식 회전 절대 엔코더일 수 있다.
한편, 앞서 설명한 위치검출기(600)는 다른 형태의 2차 감속모듈에 적용될 수 있다. 즉, 핀기어(110)가 케이스(100)와 별도로 실장공간에 설치될 수 있으며, 크로스롤러 베어링(400)을 포함한 베어링하우징(도시안함)이 케이스(100)와 별도로 설치될 수 있다.
본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.
본 발명은 로봇을 포함한 다양한 엑츄에이터에 응용될 수 있다.

Claims (12)

  1. 로봇의 관절 운동을 제어하는 엑츄에이터에 있어서,
    구동모터 및 상기 구동모터에 의해 회전하는 하나 이상의 1차 감속기어, 그리고 상기 구동모터 및 상기 1차 감속기어가 실장되는 하우징을 구비하는 1차 감속모듈;
    상기 1차 감속기어로부터 동력을 전달받아 회전하는 하나 이상의 2차 감속기어 및 상기 2차 감속기어가 실장되는 케이스를 구비하는 2차 감속모듈;
    상기 1차 감속기어에 맞물려 회전하는 제1 기어 및 상기 제1 기어와 함께 회전하는 제1 풀리, 그리고 상기 제1 기어 및 상기 제1 풀리가 실장되어 상기 하우징에 고정되는 제1 풀리하우징을 구비하는 1차 풀리모듈;
    상기 2차 감속기어에 맞물려 회전하는 출력기어, 상기 출력기어에 맞물려 회전하는 제2 기어, 상기 제2 기어와 함께 회전하는 제2 풀리, 그리고 상기 제2 기어 및 상기 제2 풀리가 실장되어 상기 케이스에 고정되는 제2 풀리하우징을 구비하는 2차 풀리모듈; 및
    상기 제1 및 제2 풀리에 연결되어 상기 제1 풀리의 동력을 상기 제2 풀리에 전달하는 벨트를 포함하는 것을 특징으로 하는 분리형 엑츄에이터.
  2. 제1항에 있어서,
    상기 벨트는 타이밍 벨트이며,
    상기 제1 및 제2 풀리는 외주면에 형성된 치형을 가지는 것을 특징으로 하는 분리형 엑츄에이터.
  3. 제1항에 있어서,
    상기 제1 및 제2 풀리모듈 중 어느 하나는 상기 벨트를 탄성가압하는 텐셔너를 더 구비하는 것을 특징으로 하는 분리형 엑츄에이터.
  4. 제1항에 있어서,
    상기 1차 감속기어는,
    상기 구동모터의 회전축에 고정된 구동기어;
    상기 구동기어에 맞물리는 종동기어; 및
    상기 종동기어와 동일한 축 상에 설치되어 상기 종동기어와 함께 회전하며, 상기 제1 기어에 맞물리는 전달기어를 구비하는 것을 특징으로 하는 분리형 액츄에이터.
  5. 제1항에 있어서,
    상기 2차 감속모듈은 상기 출력을 감지하고 전기적 신호로 변환하여 전송하는 위치검출기를 더 구비하며,
    상기 위치검출기는 마그네틱 절대 엔코더, 포텐셔미터, 광학식 회전 절대 엔코더 중 어느 하나인 것을 특징으로 하는 분리형 액츄에이터.
  6. 제1항에 있어서,
    상기 2차 감속기어는,
    상기 케이스의 실장공간의 내주면으로부터 돌출되어 상기 내주면을 따라 형성되는 복수의 핀기어들;
    상기 출력기어에 맞물려 회전가능한 입력기어;
    상기 입력기어의 회전중심으로부터 편심되며, 상기 입력기어로부터 순차적으로 돌출된 제1 및 제2 편심축; 및
    상기 제1 및 제2 편심축 상에 각각 설치되며, 상기 제1 및 제2 편심축의 회전에 따라 상기 핀기어와 접촉하여 각각 회전하는 제1 및 제2 판기어를 구비하며,
    상기 분리형 액츄에이터는 상기 판기어에 고정되어 상기 판기어와 함께 회전하는 출력부재를 더 포함하는 것을 특징으로 하는 분리형 액츄에이터.
  7. 제6항에 있어서,
    상기 분리형 액츄에이터는 상기 출력부재의 회전을 감지하며 감지된 결과를 전기적 신호로 변환하여 전송하는 위치검출기를 더 포함하며,
    상기 위치검출기는 마그네틱 절대 엔코더, 포텐셔미터, 광학식 회전 절대 엔코더 중 어느 하나인 것을 특징으로 하는 분리형 액츄에이터.
  8. 제7항에 있어서,
    상기 위치검출기는,
    상기 입력기어와 상기 제1 및 제2 편심축, 그리고 상기 제1 및 제2 판기어를 차례로 관통하며, 상기 출력부재의 중앙에 설치된 출력축에 일단이 고정되어 상기 출력축과 함께 회전하는 회전로드;
    상기 회전로드의 타단에 고정설치된 마그네트; 및
    상기 마그네트로부터 이격설치되며, 상기 마그네트의 회전을 감지하는 마그네틱 엔코더가 실장된 제2 인쇄회로기판을 구비하는 것을 특징으로 하는 분리형 액츄에이터.
  9. 제8항에 있어서,
    상기 위치검출기는,
    상기 케이스의 입력측 중앙에 설치되는 로드하우징; 및
    상기 로드하우징에 삽입되어 상기 회전로드를 지지하는 베어링을 더 구비하는 것을 특징으로 하는 분리형 액츄에이터.
  10. 제7항에 있어서,
    상기 위치검출기는,
    상기 입력기어와 상기 제1 및 제2 편심축, 그리고 상기 제1 및 제2 판기어를 차례로 관통하며, 상기 출력부재의 중앙에 설치된 출력축에 일단이 고정되어 상기 출력축과 함께 회전하는 회전로드;
    상기 회전로드로부터 이격설치되는 인쇄회로기판; 및
    상기 인쇄회로기판에 실장되며, 상기 회전로드의 하단과 결합하여 상기 회전로드의 회전을 감지하는 엔코더를 구비하는 것을 특징으로 하는 분리형 액츄에이터.
  11. 제6항에 있어서,
    상기 제1 및 제2 편심축은 반대 방향으로 편심되는 것을 특징으로 하는 분리형 액츄에이터.
  12. 제6항에 있어서,
    상기 핀기어들의 잇수는 상기 제1 및 제2 판기어의 잇수보다 큰 것을 특징으로 하는 분리형 액츄에이터.
PCT/KR2012/008904 2011-10-26 2012-10-26 벨트를 포함하는 분리형 엑츄에이터 WO2013062378A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0110071 2011-10-26
KR1020110110071A KR101351528B1 (ko) 2011-10-26 2011-10-26 분리형 엑츄에이터

Publications (2)

Publication Number Publication Date
WO2013062378A2 true WO2013062378A2 (ko) 2013-05-02
WO2013062378A3 WO2013062378A3 (ko) 2013-06-20

Family

ID=48168735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008904 WO2013062378A2 (ko) 2011-10-26 2012-10-26 벨트를 포함하는 분리형 엑츄에이터

Country Status (2)

Country Link
KR (1) KR101351528B1 (ko)
WO (1) WO2013062378A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020437A (ja) * 2016-02-10 2018-02-08 株式会社国際電気通信基礎技術研究所 外部駆動型の関節構造体
WO2019221703A1 (en) * 2018-05-15 2019-11-21 Sri International Shaft couplings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004714A1 (en) * 2018-06-27 2020-01-02 Alienrobot Inc. Integrated actuator using small size cycloid-type reducer
KR200491796Y1 (ko) * 2019-12-09 2020-06-04 (주)에일리언로봇 초소형 사이클로이드 타입 감속기를 이용한 일체형 액추에이터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040017431A (ko) * 2002-08-21 2004-02-27 (주)로봇앤드디자인 로봇의 기준링크
KR100454333B1 (ko) * 2002-04-17 2004-10-28 대영공업 주식회사 조립이 간편한 감속기모터구조
KR20080001537U (ko) * 2006-11-29 2008-06-03 (주)카이맥스 엔코더가 부착된 기어드모터
KR20100038146A (ko) * 2008-10-03 2010-04-13 가부시키가이샤 이토세이사쿠쇼 로터리 감속기
KR20110068500A (ko) * 2009-12-16 2011-06-22 김유학 다축 싸이클로이드 감속기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454333B1 (ko) * 2002-04-17 2004-10-28 대영공업 주식회사 조립이 간편한 감속기모터구조
KR20040017431A (ko) * 2002-08-21 2004-02-27 (주)로봇앤드디자인 로봇의 기준링크
KR20080001537U (ko) * 2006-11-29 2008-06-03 (주)카이맥스 엔코더가 부착된 기어드모터
KR20100038146A (ko) * 2008-10-03 2010-04-13 가부시키가이샤 이토세이사쿠쇼 로터리 감속기
KR20110068500A (ko) * 2009-12-16 2011-06-22 김유학 다축 싸이클로이드 감속기

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020437A (ja) * 2016-02-10 2018-02-08 株式会社国際電気通信基礎技術研究所 外部駆動型の関節構造体
CN109070343A (zh) * 2016-02-10 2018-12-21 株式会社国际电气通信基础技术研究所 外部驱动型的关节结构体
EP3415283A4 (en) * 2016-02-10 2019-10-16 Advanced Telecommunications Research Institute International EXTERNAL DRIVE JOINT STRUCTURE
CN109070343B (zh) * 2016-02-10 2021-09-21 株式会社国际电气通信基础技术研究所 外部驱动型的关节结构体
US11325244B2 (en) 2016-02-10 2022-05-10 Advanced Telecommunications Research Institute International Externally-driven joint structure
US11794336B2 (en) 2016-02-10 2023-10-24 Advanced Telecommunications Research Institute International Externally-driven joint structure
WO2019221703A1 (en) * 2018-05-15 2019-11-21 Sri International Shaft couplings
US12018725B2 (en) 2018-05-15 2024-06-25 Sri International Shaft couplings

Also Published As

Publication number Publication date
KR20130045694A (ko) 2013-05-06
KR101351528B1 (ko) 2014-01-16
WO2013062378A3 (ko) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2013062376A2 (ko) 분리형 엑츄에이터
WO2013062375A2 (ko) 위치 피드백이 가능한 사이클로이드 감속기
WO2014069696A1 (ko) 액츄에이터 어셈블리
WO2012057410A1 (ko) 동력전달장치
WO2013062378A2 (ko) 벨트를 포함하는 분리형 엑츄에이터
US8638013B2 (en) Electromechanical device, actuator using the same, and motor
US20120176007A1 (en) Electric machine device, actuator using the same, motor, robot, and robot hand
EP0713284B1 (en) Motor device with a reduction gear
WO2016117809A1 (ko) 동력전달장치
WO2012060610A2 (ko) 하이브리드 감속기
WO2015023080A1 (ko) 감속기
CN110238834B (zh) 一种机器人
US11602860B2 (en) Tool changing system of robot manipulator
WO2019054651A1 (ko) 백래시 방지 싸이클로이드 감속기
US8567278B2 (en) Zero backlash preload gears
WO2023051806A1 (zh) 一种肩部执行器组件及机器人
US11759945B2 (en) Dual-output-shaft servo and robot
WO2015156598A1 (ko) 입력 합성 장치
WO2017057946A1 (ko) 감속기
WO2018164334A1 (ko) 서보모터와 연결되는 변속기 및 서보모터와 변속기를 구비하는 동력장치
CN113843776A (zh) 一种模块化执行器、机械臂及机器人
WO2023116423A1 (zh) 电机及电子设备
WO2015167031A1 (ko) 입출력 위치피드백을 갖는 다입력방식 감속기
WO2018043914A1 (ko) 초고 감속용 유성치차 감속장치
WO2016125994A1 (ko) 동력전달장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844022

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12844022

Country of ref document: EP

Kind code of ref document: A2