WO2013062342A1 - Convex outside rear view mirror using combined spherical and aspherical shape - Google Patents

Convex outside rear view mirror using combined spherical and aspherical shape Download PDF

Info

Publication number
WO2013062342A1
WO2013062342A1 PCT/KR2012/008835 KR2012008835W WO2013062342A1 WO 2013062342 A1 WO2013062342 A1 WO 2013062342A1 KR 2012008835 W KR2012008835 W KR 2012008835W WO 2013062342 A1 WO2013062342 A1 WO 2013062342A1
Authority
WO
WIPO (PCT)
Prior art keywords
rearview mirror
mirror
curvature
outdoor
driver
Prior art date
Application number
PCT/KR2012/008835
Other languages
French (fr)
Korean (ko)
Inventor
조석원
Original Assignee
Cho Seok Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cho Seok Won filed Critical Cho Seok Won
Publication of WO2013062342A1 publication Critical patent/WO2013062342A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • the present invention is a convex mirror that combines spherical and aspherical shapes to eliminate the blind spots in the horizontal and vertical directions by using the optical position of the driver's position and light in the blind spots that are not visually sensed when driving and parking the vehicle. Relates to an outdoor rearview mirror.
  • Automotive outdoor rearview mirrors have been used as one of the most basic parts of automobiles for a long time in terms of parking of vehicles and securing side and rear visibility.
  • One of the most demanding technologies for motorists is outdoor rear view mirrors that eliminate blind spots.
  • the outdoor rear view mirror of an automobile is an essential device for driving a driver safely while driving a vehicle, and its role is to allow a driver to recognize a vehicle moving left, right, and rear when changing directions. It prevents contact accidents or collisions.
  • outdoor rearview mirrors are equipped with a single rearview rearview mirror attached to the inside of the vehicle, and the outdoor rearview mirror of a flat or convex mirror suitable for the vehicle safety standard is installed on the driver's side and the front passenger's side on the outside of the vehicle to ensure safety when driving the vehicle. Deciding.
  • These laws are partially amended according to the speed of technology development, but they are almost the same in each country.
  • the shape of the mirror of the indoor rearview mirror and the outdoor rearview mirror has different conditions.
  • the indoor rearview mirror is a flat mirror, which is a condition that the magnification is "the size of the object and the image reflected on the mirror", and in the case of the outdoor rearview mirror, the curvature of the driver's seat and the passenger's side is different, so You can see that the size is different.
  • the outdoor rearview mirror is reduced in optical characteristics by using a convex mirror to secure a wide field of view, so that the lower part of the convex mirror has a font size of 4.5 mm or more and 6.5 mm or less to indicate that "the object is closer than the mirror is seen.” Make a mark.
  • an indoor rearview mirror and an outdoor rearview mirror are used to secure safety. Discomfort occurs to check alternately.
  • the outdoor rearview mirror may cause aberration of distance and aberration of judgment due to the difference in image size due to different curvatures of left and right.
  • the rearview mirror is divided into five sections of upper and lower inner, upper and lower center and outer section.
  • the technology for solving blind spots is provided by widening the viewing angle with different eccentricities and refractive indices.However, in the upper inner part, the eccentricity is "0" and the refractive index is "0" in the inner side from the inner side to the outer side.
  • the problem is that the driver has a problem of creating a new blind spot on the inside of the rearview mirror when the driver adjusts the rearview mirror in the horizontal direction, and the technology that the refractive power is equal at the boundary of each compartment is theoretical and practical manufacturing. awards are a very difficult technique.
  • the rise in the cost of the jig and the mold cost is expected to rise.
  • the technology of the aspherical convex mirror which is finally reduced to form a curvature of about 500 mm, is provided, but when the driver adjusts the rear mirror in the horizontal direction, there is a problem of creating a new blind spot inside the rear mirror,
  • a technology that helps to eliminate the blind spot when parking by forming the aspherical surface in the vertical direction, but the size of the image reflected on the end of the mirror is reduced due to the small curvature and there is a lot of image distortion.
  • Japan's "Wide-view Mirror with Wide Field of View” published on October 1, 2009 Japanese Patent No. 2009-220719
  • an additional small curvature is added to the lower part of the mirror in the vertical direction to secure the view angle on the road surface.
  • Japan's "outer mirror (three-way rearview mirror)” Japanese Patent Publication No. 2004-237959
  • Japanese Patent Publication No. 2004-237959 Japanese Patent Publication No. 2004-237959
  • the inner part is provided with a concave mirror installed toward the driver's seat and a main mirror, and a convex mirror that is installed adjacent to the lower end of the main mirror to illuminate the rear provides a technology for the driver's convenience.
  • the curvatures of convex and concave mirrors are different and the image size is different, which is likely to cause driver confusion.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2002-0092059
  • Patent Document 2 Korean Registered Patent No. 10-0867439
  • Patent Document 3 JP-A-7-300045
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2009-22079
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2004-237959
  • Patent Document 6 Japanese Unexamined Patent Publication No. 10-0610863
  • Patent Document 7 Japanese Patent Laid-Open No. 7-300045
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2009-22079
  • the present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide an outdoor rearview mirror for a vehicle to solve the problem that the size of the image due to different curvature of the left and right of the rearview mirror is different.
  • another object of the present invention is to provide an outdoor rearview mirror for a vehicle that eliminates another blind spot generated when the driver adjusts the rearview mirror left, right, up, and down to solve the blind spot.
  • another object of the present invention is to provide an outdoor rearview mirror for a vehicle that solves a problem in a vertical blind spot according to a height of a driver's seat of a vehicle.
  • Another object of the present invention is to provide an outdoor rearview mirror for a vehicle that eliminates the size and distortion of a common problem.
  • the convex lens outdoor rearview mirror that combines the shape of the spherical and the aspherical surface is an outdoor rearview mirror provided in the vehicle, the central spherical portion having a predetermined curvature;
  • it is eccentric by a certain amount in the left and right directions.
  • the central spherical portion preferably has a spherical shape having a curvature of 1,220 mm or more and a refractive power of 0.4 diopter or more.
  • the outer diameter of the spherical portion preferably has a spherical shape of 70% or more of the distance in the vertical direction with respect to the geometric center of the outdoor rearview mirror.
  • the symmetrical and gradually curvature of the circular shape is gradually circumferentially centered on the central spherical portion having the same curvature of a predetermined size in the outdoor rearview mirror provided in the side mirror and the center spherical portion from the boundary surface to the outer peripheral edge of the central spherical portion.
  • the aspherical surface portion is reduced to increase the refractive power, and the center of the central spherical portion and the geometric center of the rear mirror can be eccentric to solve the blind spots on the inner and outer sides of the rear mirror at the same time. The effect of preventing blind spots that occur according to the height of the driver's seat.
  • the spherical portion of the central spherical portion has a constant size to minimize spherical aberration
  • the peripheral portion of the other portion forms an aspherical portion to solve the distortion phenomenon of the distortion of the image on the outer circumference of the outdoor rearview mirror using the aspherical optical characteristics.
  • the outdoor rearview mirror of the present invention by applying a different radius of curvature of the conventional driver's seat and passenger's seat to improve the problem of the conventional rearview mirror that the size of the image is different, it is possible to apply the outdoor rearview mirror of the same curvature, the error of the size of the rear image There is another effect of getting rid of it.
  • the outdoor rearview mirror of the present invention has a circular symmetrical curvature with respect to the center portion of the spherical surface to eliminate another blind spot caused when the driver adjusts the rearview mirror left and right to secure the viewing angle.
  • the size of the side mirror is an important factor in solving the problem of noise and fuel economy of the vehicle, the size of the side mirror can be reduced when the outdoor rearview mirror of the present invention is applied, thereby reducing the noise and fuel efficiency of the vehicle. It has a different effect.
  • FIG. 1 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in a horizontal direction by a conventional side mirror;
  • FIG. 2 is a view illustrating that a new blind spot occurs as a result of adjusting the angle of the mirror to compensate for the blind spot of the conventional side mirror;
  • FIG 3 illustrates an area of an improved visual area in accordance with an embodiment of the present invention.
  • FIG. 4 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in the vertical direction by a side mirror attached to a conventional passenger vehicle.
  • FIG. 5 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in the vertical direction by a side mirror attached to a conventional commercial vehicle.
  • FIG. 6 illustrates an area of an improved viewing area in the vertical direction of a passenger vehicle according to the invention.
  • 7 illustrates an area of an improved viewing area in the vertical direction of a commercial vehicle according to the present invention
  • 7A is a side cutaway view of a mirror in accordance with the present invention
  • FIG. 8 is a view for explaining the improvement of the blind spot in the horizontal direction according to the embodiment of the present invention.
  • FIG. 9 is a view for explaining the improvement of the blind spot in the vertical direction according to the embodiment of the present invention.
  • FIG. 10 is a view for explaining the principle of forming the spherical and aspherical surface of the outdoor rearview mirror of the present invention.
  • FIG. 11 is a view for explaining the structure of the outdoor rearview mirror of a passenger vehicle according to an embodiment of the present invention.
  • FIG. 12 is a view for explaining the structure of the outdoor rearview mirror of a commercial vehicle according to the embodiment of the present invention.
  • FIG. 13 is a diagram for explaining distortion of an image formed on a lens
  • the driver sees the side mirror for observing the after-vehicle.
  • the light beam RII incident to the inner side of the outdoor rearview mirror 50 is in accordance with the law of light reflection.
  • the driver sees a ray RIO with an exit angle ⁇ '1 equal to the angle of incidence ⁇ 1 that forms the normal N-N 'at the point of incidence of RII.
  • the light ray ROI incident to the outside of the outdoor rearview mirror is similarly a light ray ROO having an emission angle ⁇ '0 equal to the angle of incidence ⁇ O formed by the normal line M-M 'at the point of incidence of the light ray ROI.
  • the driver will see.
  • the driver sees the virtual image of the object incident through the outdoor rearview mirror 50 and the viewing angle visible to the driver is the angle formed by the light beam RII formed on the inner side of the rearview mirror and the light beam ROI formed on the outer side of the rearview mirror.
  • the incident angle of the light incident on the inside and the outside of the rearview mirror forms a larger angle than the driver's seat to have a wider viewing angle. Therefore, the angle which synthesize
  • FIG. 1 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in a horizontal direction by a conventional side mirror
  • FIG. 2 is a view of adjusting a mirror angle to compensate for a blind spot of a conventional side mirror. Result The figure explains that a new blind spot occurs.
  • the rear viewing angle becomes ⁇ VA as shown in FIG. 1, and the angle ⁇ BL and the passenger seat side of the driver's side excluding the viewing angle ⁇ VA based on the horizontal direction of the left and right sides of the conventional outdoor rearview mirror 60.
  • the angle ⁇ BR becomes a blind spot that the driver cannot see.
  • the side mirror is attached at an angle of about 20 degrees before and after the driver's driving direction, and the manufacturer of the vehicle has the center of the top, bottom, left and right of the outdoor rearview mirror for the purpose of supplementing the blind spot and the driver's convenience. It aims for convenience by adjusting it vertically and horizontally.
  • the rearview mirrors of the driver's seat and the passenger's seat are adjusted.
  • the viewing angle can be secured by the angle ⁇ of the rearview mirror, and the viewing angle becomes ⁇ VL for the driver's seat and ⁇ VR for the passenger's seat.
  • the viewing angles of the driver's seat and the passenger's seat are directed outward by the adjusted angle, so that a new blind spot ⁇ BL is generated in which the inner part of each rearview mirror cannot secure a view.
  • FIG. 4 is a view showing a visible area and a blind spot area which are areas that the driver can grasp in the vertical direction by a side mirror attached to a conventional passenger vehicle
  • FIG. 5 is a side mirror attached to a conventional commercial vehicle. Is a view showing a visible area and a blind spot area, which are areas that can be grasped in the vertical direction
  • FIG. 9 is a view for explaining the improvement of the blind spot in the vertical direction according to the embodiment of the present invention.
  • the light beam RBI incident to the lower end of the outdoor rearview mirror 60 forms a normal line B-B 'at the point of incidence of the light beam RII according to the law of light reflection.
  • the driver sees an RBO beam with an exit angle equal to the angle of incidence.
  • the driver sees the light beam RTO having the same angle of incidence as the angle of incidence formed by the normal line T-T 'at the point of incidence of the light beam RTI.
  • the driver is at an angle formed by the light beam RBO formed at the lower end of the outdoor rearview mirror 60 and the light beam RTO formed at the upper end of the rearview mirror, and the viewing angle in the vertical direction is ⁇ VA, and the road surface and the incident light RBI.
  • This angle? BL becomes a blind spot that the driver cannot see in the vertical direction.
  • the vertical viewing angle is inconvenient to adjust the angle ⁇ in the vertical direction of the outdoor rearview mirror 60 in the case of a narrow parking space when the driver cannot secure the viewing angle to the rear of the rear of the vehicle.
  • the object of the present invention is to solve the blind spots by finding the cause of the problem through the geometric optical analysis of the viewing angle and to improve the problems of the prior art to secure a wider viewing angle, through which the image distortion and image size
  • the problem of repetitive monitoring of the outdoor rearview mirror and the outdoor rearview mirror may be improved by adjusting the angle of the outdoor rearview mirror to secure the viewing angle due to the difference and to secure the viewing angle.
  • the components of the viewing angle may include the driver's position DP, the incident angle ⁇ 0 of the outer portion of the rearview mirror, the incident angle ⁇ 1 of the inner portion, the incident angle ⁇ 2 of the upper portion, It consists of seven elements of the incident angle (alpha) 3 of the lower end part, and the curvature r of a rearview mirror.
  • Incident angles ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3 are determined from normals in which incident light is generated from the center of curvature of the spherical surface. As the incident angles ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3 increase, a wide viewing angle is secured. This angle of incidence is determined by the magnitude of curvature r of the outdoor rearview mirror.
  • the size of curvature r is infinite ( ⁇ )
  • a planar mirror is formed, and the size of the image reflected on the outdoor rearview mirror is the same as the size of the object at a single magnification, which causes a blind spot problem due to a narrow viewing angle.
  • the viewing angle is secured by the spherical rear view mirror.
  • the driver may cause a misunderstanding of the sense of distance to the object's position and distortion of the image. Doing An image reflected on the rearview mirror according to the magnitude of the curvature r may be described with reference to FIG. 13.
  • FIG. 13 is a diagram for describing distortion of an image formed on a lens.
  • the light rays Ray1 to Ray9 incident on the convex lens become shorter as the refractive index of light increases from the center of the lens to the outer periphery.
  • the phenomenon that the focal point of the image is different is called spherical aberration, and this spherical aberration is caused by lateral aberration (LSA) and vertical aberration (TSA), which is a vertical aberration, in which the aberration changes according to the focal length.
  • LSA lateral aberration
  • TSA vertical aberration
  • Such aberration can solve image distortion by applying an aspherical lens.
  • Aspheric lenses can reduce image distortion by applying different curvatures to lens surfaces where aberrations occur, unlike spherical lenses, to allow light incident on the central and peripheral portions to form a single focal point.
  • FIGS. 10 and 12 the outdoor rearview mirror 50 of the present invention will be described in detail with reference to FIGS. 10 and 12.
  • an embodiment of an outdoor rearview mirror of a passenger vehicle will be described with reference to FIG. 11, and an example will be described in detail with reference to an outdoor rearview mirror of a commercial vehicle having a high driver's seat height through FIG. 12.
  • the conventional outdoor rearview mirror 60 has a curvature r of a predetermined size in order to secure a wider viewing angle and is mounted at an angle of about 20 degrees before and after the vehicle.
  • the viewing angle ⁇ of the outdoor rearview mirror 60 secures the viewing angle of the side
  • the viewing angle of the outer end of the outdoor rearview mirror 60 secures the viewing angle by the adjusted angle ⁇
  • the viewing angle of the inner rearview mirror 60 Since the viewing angle is reduced by the adjusted angle ⁇ , the driver has a problem that the side and rear portions of the vehicle become blind spots to repeatedly watch the interior rearview mirror.
  • This problem is caused by forming a spherical surface having a constant size in the center based on the geometric center C-C 'of the outdoor rearview mirror as illustrated in FIG. 10 and then maintaining the same curvature r as the center spherical portion at the interface 50c of the spherical surface.
  • an outdoor rearview mirror 50 having a wider viewing angle by the bending angle ⁇ r is secured.
  • the bending angle ⁇ r of the outdoor rearview mirror 50 in which the wider viewing angle is secured has an effect of securing a viewing angle up to twice the size of the bending angle ⁇ r.
  • the shape of the outdoor rearview mirror attached to the vehicle should be considered.
  • the shape of outdoor rearview mirror varies according to the height of the driver's seat and the distance between the front and rear of the commercial vehicle.In the case of the passenger vehicle, the horizontal length is larger than the vertical direction. The length of the direction is larger than the horizontal direction.
  • the size of the spherical center portion 50a of the outdoor rearview mirror 50 is preferably determined to be about 70% of the length in the vertical direction and the commercial vehicle in the horizontal direction. This is to secure a wider viewing angle by deviating the spherical center of the outdoor rearview mirror, which is one of the features of the present invention, in the planar geometric center of the rearview mirror and in the left, right, and upward directions.
  • FIGS. 11 and 12 are views for explaining the structure of the outdoor rearview mirror 50 of a passenger vehicle according to an embodiment of the present invention
  • Figure 12 is a view for explaining the structure of the outdoor rearview mirror 50 of a commercial vehicle according to an embodiment of the present invention. It is for the drawing.
  • the shifted eccentricity ( ⁇ x, ⁇ y) is when the horizontal horizontal center line of the outdoor rearview mirror 50 is called Rx-Rx 'and the vertical center line is called Ry-Ry' and its center is called "CM".
  • CM geometric center
  • the geometric center "CM” of the rearview mirror 50 is eccentric to the center "Cc" of the central spherical section 50a of the outdoor rearview mirror 50, the area from the central spherical section 50a to the outer end and the area of the lower end section are greatly increased. In doing so, the driver can obtain a wider viewing angle.
  • the center line My-My 'of the central spherical portion 50a of the outdoor rearview mirror 50 is moved inward by ⁇ x to secure a wider viewing angle in the horizontal direction by expanding the area of the aspherical portion 50b.
  • the vertical blind spot generated as the height of the driver's seat becomes higher the center "Cc" of the center spherical portion 50a of the outdoor rearview mirror 50 in the vertical direction is similar to the above.
  • the present invention secures a wider viewing angle in the horizontal and vertical directions by eccentricizing the center of the central spherical portion and the geometric center of the outdoor rearview mirror by a predetermined amount, thereby preventing blind spots. It prevents blind spots that occur depending on the height of
  • the amount of eccentricity ( ⁇ x, ⁇ y) moving in the left, right, and upward directions is preferably about 10% before and after the size of the spherical center portion 50a of the outdoor rearview mirror 50.
  • the boundary surface 50c of the spherical center portion 50a is out of the edge of the periphery, so that the area of the aspherical portion 50b is narrowed and the viewing angle is also narrowed.
  • the size and the amount of eccentricity ( ⁇ x, ⁇ y) of the spherical center portion 50a can be variously modified without departing from the scope of the present invention.
  • the refractive index of the boundary surface 50c of the central spherical portion 50a is larger than the refractive index of the central spherical portion 50a, the image is distorted, so that the center portion 50a and the peripheral portion of the outdoor rearview mirror 50 are prevented.
  • the refractive power D is made equal to the boundary surface 50c of 50b, and the refractive power D is increased toward the peripheral portion 50d.
  • the refractive power (D) refers to the amount of light bent by the difference in the refractive index of the different media when the light passes through the glass (n '), the medium of the outdoor rearview mirror 50 in the air (n), this refractive power (D ) Decreases as the spherical curvature r increases and is proportional to the size of the refractive index n 'of the medium of the outdoor rearview mirror on which light is incident.
  • This refractive power (D) is represented by the following equation.
  • Equation 1 D is a refractive power, n is the refractive index of the air, n 'is the refractive index of the mirror, r means the curvature.
  • the refractive power is an important optical element for the embodiment of the present invention, and also through the optical characteristics of the aspherical portion 50b to improve the size difference and distance aberration due to the different curvature of the driver's seat and the passenger's seat, Describe the distortion problem.
  • the rear rearview mirror is formed in a state where a constant size sphere is formed in the center based on the geometric center C-C ′ of the rearview mirror and the curvature r is maintained at the interface 50c of the sphere. If both ends of the 60 are symmetrically bent about the center of the spherical center portion 50a by the bending angle ⁇ r, an aspherical surface portion 50b is formed to secure a wider viewing angle by the bending angle ⁇ r. do.
  • the aspherical surface portion 50b has a curvature r gradually decreasing from the boundary surface 50c of the central spherical surface portion 50a, and each surface of the peripheral portion 50b has a shape having a different curvature r.
  • the shape of the aspherical surface can be described with reference to FIGS. 11 and 12.
  • the horizontal rearview mirror 60 is horizontal.
  • Sectional cutaway of Rx-Rx 'which is the center line of a direction is Section Rx-Rx' of FIGS.
  • the curvature r of the central spherical portion 50a preferably has a spherical shape having a radius of about 1,220 mm or more. This is the case when the outdoor rearview mirror is a convex mirror as described in the background art.
  • the mean radius of curvature of the driver should be 120 cm or more and the radius of curvature on the mirror should be 12.5% of the difference in the mean radius of curvature.”
  • the average radius of curvature is not less than 89 cm (100 cm in the case of a passenger van for children) and 165 cm or less, and the difference between the radius of curvature and the average radius of curvature at each point is average. It should be less than 12.5 percent of the radius of curvature.
  • the radius of curvature of the central spherical portion 50a is 1,200mm
  • the radius of curvature of the aspherical portion 50b is smaller than 1,200mm, so the average curvature radius is smaller than 1,200mm, so the curvature of the central spherical portion 50a is It should have a curvature greater than 1200mm. Since the average radius of curvature is the average radius of curvature of the spherical portion 50a and the aspherical portion 50b, this may vary depending on the size of the curvature of the central spherical portion 50a, the bending position, and the bending angle ⁇ r.
  • the curvature r of the central spherical portion 50a preferably has a spherical shape with a radius of about 1,220 mm or more, and the average radius of curvature becomes 1,200 mm or more.
  • the shape of the aspherical surface 50b has a different curvature for each surface, and also has different refractive powers D on each surface of the rearview mirror due to different curvatures.
  • the shape of the aspherical surface may be described as FIGS. 11 and 12 as Ry-Ry 'cross-section cut in the vertical direction and the region Rx-Rx' in the horizontal cross-section.
  • the bottom reference line of the rear surface of the outdoor rearview mirror 50 is referred to as Bx-Bx '
  • the height of the rearview mirror in the Y-axis direction is constant from the spherical center portion 50a center line Ry-Ry' at regular intervals (d1 to d9) in the X-axis direction.
  • the angles are different and this is called sag value Sy in optics, and this sag value Sy is an element that determines the shape of an aspherical surface.
  • the difference in the curvature r between the constant intervals d1 to d9 in the X-axis direction means that the curvature value of the center portion of the spherical center portion 50a and the curvature r of the peripheral portion 50b decrease, so that the center portion of the spherical center portion 50a is reduced. It means that the center of gravity of the curvature of each of the interval (d1 ⁇ d9) is the eccentric (the center is distorted).
  • This eccentricity can be expressed by Equation 2 below, and this eccentric amount becomes an element for determining the shape of the aspherical surface, and the eccentric amount is called an eccentricity (e).
  • Equation 2 e is an eccentricity, a is a long radius, and b is a short radius.
  • the spherical center of the aspherical surface portion 50b and the outdoor rearview mirror 50 having the shape of the central spherical portion 50a and the refractive power D, the sag value Sy, and the eccentricity e, which are the elements of the aspherical surface,
  • 3 is a view illustrating an area of an improved blind spot in the side, rear, or horizontal direction according to an embodiment of the present invention
  • FIG. 6 is an improved visual area of a vertical direction of a passenger vehicle according to an embodiment of the present invention
  • 7 is a view illustrating an area of the improved visual area in the vertical direction of a commercial vehicle according to an embodiment of the present invention.
  • FIG. 3 illustrates an improvement in the side, rear, and horizontal blind spots.
  • the bending angle ⁇ r of the center spherical portion 50 is determined based on the boundary surface 50c of the center spherical portion 50a of the outdoor rearview mirror 50.
  • the driver's side can secure a wider viewing angle as ⁇ VAL and the passenger's side as ⁇ VAR, and ⁇ R on the driver's side, which is an adjustable angle of the driver's outdoor rearview mirror.
  • ⁇ L on the passenger seat side has the same symmetrical aspherical portion 50b as the inner side of the outdoor rearview mirror 50, so even if the angle of the inclination angle ⁇ r of the outdoor rearview mirror 50 of the present invention is adjusted, Since blind spots do not occur, the outer end portion secures a viewing angle equivalent to twice the size of the conventional blind spots.
  • the passenger side has a provision that the average curvature radius should be greater than 89cm (100cm in the case of a children's transport vehicle) and less than 165cm. This is to secure a wide viewing angle.
  • the present invention solves the above problem by increasing the centerline My-My 'of the central spherical portion 50a of the outdoor rearview mirror 50 by ⁇ x. Moving in the direction, the center line Ry-Ry 'and the eccentricity of the geometric vertical direction of the outdoor rearview mirror 50 can be generated to secure a wider viewing angle, so that rearview mirrors of different curvatures on the driver's seat and passenger's seat can be left or right. Since there is no problem even when the outdoor rearview mirror 50 is applied, there is an effect of eliminating the problem of the distance and the size of the image.
  • Another feature of the present invention is to minimize the distortion and blurring of the image due to the spherical aberration in which the focus of the image on the spherical surface is different. Since the spherical aberration occurs more toward the outer circumferential surface 50e of the spherical surface as described with reference to FIG. 13, the problem is solved by giving a bending angle ⁇ r at the boundary surface 50c of the central spherical portion 50a. I can solve it.
  • FIG. 14 is a view for explaining the principle that the light is refracted and the size and position of the image.
  • FIG. 14 illustrates the basic optical principle for a person having ordinary optical knowledge, and thus descriptions and formulas of specific symbols will be omitted.
  • the incident light since the incident light is further refracted toward the outer circumference of the convex lens as described with reference to FIG. 13, the incident light varies around the optical axis M-M 'and aberration occurs in the lateral direction. In addition, this aberration also causes aberration in the vertical direction, which causes a problem of image sharpness.
  • the present invention has another object to improve the distortion of the image through such aberration, so that the central portion 50a of the outdoor rearview mirror 50 has a circular spherical shape with almost no aberration, and the peripheral portion 50b has Aspheric shape minimizes the occurrence of aberrations.
  • the curvature of the outdoor rearview mirror is 1,200mm and 1,250mm
  • the shape of the outdoor rearview mirror is spherical or spherical or aspherical in the present invention
  • the thickness of the rearview mirror is 2mm
  • the rearview mirror Table 1 shows the results of analyzing five examples based on the geometrical optical principle assuming the left and right sizes of 180 mm, the position of the object 1.2 m in front of the mirror, and the size of the object 1 m.
  • Example 1 of Table 1 is a spherical outdoor rearview mirror having a conventional curvature of 1,200mm
  • Example 2 is a rearview mirror having an inclination angle ( ⁇ r) of 10 degrees at the boundary surface of the central spherical portion of the central spherical portion 1,200mm
  • Example 2 Outdoor rearview mirror with a curvature of 1,200mm at the center spherical surface and a bending angle ( ⁇ r) of 10 degrees at the boundary surface of the center spherical portion
  • Example 3 has a bending angle ( ⁇ r) at the boundary surface of the center spherical portion with an aspheric surface curvature of 1,250mm.
  • Example 4 Outdoor rearview mirror with 5 °
  • Example 4 has a curvature of 1,250mm in the center spherical part
  • the aspherical surface has a bending angle ( ⁇ r) of 10 ° at the interface of the center spherical part
  • Example 5 has a curvature of 1,250mm in the center spherical part. This is the result of analyzing the distortion of the image of the rearview mirror having a bending angle ⁇ r of 15 degrees at the boundary surface of the central spherical portion.
  • the refractive power D of the rearview mirror is a result of Equation 1
  • the amount of eccentricity e of the aspherical portion is a result of Equation 2.
  • Longitudinal transverse aberration is the result of geometric optical calculation through the above conditions.
  • the aberration is small and the aspect ratio of the image is also large, so that the distortion of the image can be reduced.
  • Example 2 if the curvature of the center spherical part is 1,200 mm, the curvature r of the outer peripheral part of the rearview mirror decreases, so the average curvature radius is 1,198 mm, and the average curvature radius of the driver's side is 120 cm. Above, the radius of curvature of each mirror should not be less than 12.5%. " In Examples 3 to 5, when the curvature of the central spherical part is performed at 1,250 mm, the average curvature radius is 1,249 mm, 1,248 mm, and 1,246 mm, respectively, to satisfy the safety regulations of the vehicle. In addition, the size of the spherical center portion 50a may be modified in various ways without departing from the scope of the present invention.
  • the size of the bending angle ⁇ r forming the aspherical surface portion is determined in consideration of the distortion of the image and the size of the image.
  • the bending angle ⁇ r is large, the image distortion and the size of the image It is a minor disadvantage, but the effect on the driver's field of vision is very small.
  • the present invention is characterized in that the size of the inclination angle ( ⁇ r) is 10 degrees or more because the securing of a wide viewing angle is an important element, the size of the bending angle ( ⁇ r) is the size of the curvature of the spherical center portion 50a and the inclination angle ( ⁇ r) Various modifications are also possible without departing from the scope of the present invention by adjusting the size of.
  • Equation 3 X is the distance in the optical axis direction, Y is the distance from the optical axis in the vertical direction (to the tangential plane of the aspherical vertex), R means the radius of curvature, K means the Conic constant do.
  • Equation 3 Given the constants K, A, B, C, D, etc. in Equation 3, the height and the shape of the aspherical surface are determined, and various modifications are also possible without departing from the scope of the present invention.
  • the present invention provides a side mirror in which blind spots, which are one of the unsolved technologies of the vehicle, are expected to be solved if an automobile manufacturer ships the present invention at the time of manufacture of the vehicle, thereby providing customer satisfaction. It is assumed that the present invention will be applied immediately.
  • the present invention enables the manufacture of the side mirror with a more compact size of the unnecessarily large size of the side mirror in order to solve the blind spots generated during driving of the vehicle, as well as to solve the conventional blind spots.
  • the compact size reduces the air resistance coefficient received while driving the vehicle, thereby increasing the fuel efficiency of the vehicle and also reducing the wind noise generated in the side mirror.
  • the present invention is capable of mass production of commercialization and applicable to various fields of industry.

Abstract

The present invention relates to a convex outside rear view mirror for a vehicle, using a combined spherical and aspherical shape. The rear view mirror includes: a central spherical portion having a constant curvature, and an aspherical portion having a curvature that gradually decreases in circular symmetry to increase refracting power, with respect to a central point of the central spherical portion from a boundary of the central spherical portion to a periphery that is an outer circumferential edge. A central point of the central spherical portion is laterally and upwardly eccentric by a certain amount, with respect to a geometrically central point of the left, right, top, and bottom of the rear view mirror.

Description

구면 및 비구면의 형상을 조합한 볼록거울 실외 후사경Convex mirror outdoor rearview mirror combining spherical and aspherical shapes
본 발명은 차량의 운전 및 주차 시에 시각적으로 감지하지 못하는 사각지대를 운전자의 위치 및 빛의 광학적인 원리를 이용하여 수평 및 수직방향의 사각지대를 없애주는 구면 및 비구면의 형상을 조합한 볼록거울 실외 후사경에 관한 것이다.The present invention is a convex mirror that combines spherical and aspherical shapes to eliminate the blind spots in the horizontal and vertical directions by using the optical position of the driver's position and light in the blind spots that are not visually sensed when driving and parking the vehicle. Relates to an outdoor rearview mirror.
차량용 실외 후사경은 차량의 주차 및 측.후방 시야 확보라는 측면에서 오랜 기간 동안 자동차의 가장 기본적인 부품 중 하나로 사용되어 오고 있다. 자동차 운전자가 가장 바라는 기술 중에 하나가 사각지대가 해소된 실외 후사경이다. 자동차의 실외 후사경은 자동차 운전 시에 운전자에게 안전운전을 도모하는 필수적인 장치이고, 그 역할은 주행하는 운전자가 방향을 바꿀 때 좌.우측 및 후방에서 진행하는 자동차를 인식할 수 있도록 하여 차선 변경으로 인한 접촉사고나 추돌사고를 미연에 방지하는 역할을 한다. Automotive outdoor rearview mirrors have been used as one of the most basic parts of automobiles for a long time in terms of parking of vehicles and securing side and rear visibility. One of the most demanding technologies for motorists is outdoor rear view mirrors that eliminate blind spots. The outdoor rear view mirror of an automobile is an essential device for driving a driver safely while driving a vehicle, and its role is to allow a driver to recognize a vehicle moving left, right, and rear when changing directions. It prevents contact accidents or collisions.
이러한 실외 후사경은 차량 내부에 부착되는 단일 배율의 실내 후사경과, 차량 실외에는 운전자 측과 앞좌석 승객 측에는 차량 안전규격에 적합한 평면 또는 볼록거울의 실외 후사경을 설치하여 차량 운전 시 안전을 도모하도록 법규를 정하고 있다. 이러한 법규는 기술 개발의 속도에 따라 일부 개정이 이루어 지지만 국가별로 거의 대동소이하다. These outdoor rearview mirrors are equipped with a single rearview rearview mirror attached to the inside of the vehicle, and the outdoor rearview mirror of a flat or convex mirror suitable for the vehicle safety standard is installed on the driver's side and the front passenger's side on the outside of the vehicle to ensure safety when driving the vehicle. Deciding. These laws are partially amended according to the speed of technology development, but they are almost the same in each country.
이러한 실외 후사경에 요구되는 대한민국의 차량안전법규 항목은 "실내 후사경은 단일 배율의 평면거울" 일 것이라고 명시하고 있다. 또한 실외 후사경이 볼록거울일 경우 "운전자측의 평균 곡률 반경은 120cm 이상이고 거울 위의 각각의 곡률반경은 평균 곡률반경의 차이가 12.5%이하 일 것." 이라고 명시하고, 승객 측은 볼록거울의 후사경을 설치하는 경우에는 "평균 곡률반경이 89cm(어린이운송용 승합자동차의 경우에는 100cm)이상 165cm 이하이고, 각 점에서의 곡률반경과 평균 곡률반경의 차이는 평균 곡률반경 값의 12.5퍼센트 이하일 것."이라고 자동차 안전법규에서 정하고 있다. The Korean automobile safety regulations required for such outdoor rearview mirrors stated that "interior rearview mirrors would be flat mirrors with a single magnification." In addition, if the outdoor rearview mirror is a convex mirror, "The average radius of curvature of the driver should be 120cm or more, and the difference in average curvature radius on the mirror should be 12.5% or less." In the case of installing a rearview mirror of a convex mirror, the passenger side said, "The average radius of curvature is not less than 89 cm (100 cm in the case of a children's transport vehicle) and less than 165 cm, and the difference between the radius of curvature and the average radius of curvature at each point is average. It should be less than 12.5 percent of the radius of curvature. "
또한, "동일 후사경에 서로 다른 곡률을 가진 반사면이 2 이상인 경우에는 이 중 하나 이상의 반사면이 전단의 곡률반경조건을 충족하여야 한다."라고 명시되어 있다. It is also stated that "when there are two or more reflective surfaces with different curvatures in the same rearview mirror, one or more of these reflective surfaces must meet the curvature radius requirements of the shear."
상기 차량안전법규의 내용을 살펴 보면, 실내 후사경 및 실외 후사경의 거울의 형태는 서로 다른 조건을 구비한다. 즉, 실내 후사경은 평면 거울이고 이는 배율이 "물체의 크기와 거울에 비치는 상의 크기가 같아야 한다."는 조건이며, 실외 후사경의 경우 운전석 측과 승객 측의 곡률의 크기가 다르므로 거울에 비치는 상의 크기가 다름을 알 수 있다. Looking at the contents of the vehicle safety regulations, the shape of the mirror of the indoor rearview mirror and the outdoor rearview mirror has different conditions. In other words, the indoor rearview mirror is a flat mirror, which is a condition that the magnification is "the size of the object and the image reflected on the mirror", and in the case of the outdoor rearview mirror, the curvature of the driver's seat and the passenger's side is different, so You can see that the size is different.
즉, 실내 후사경 및 실외 후사경에 비치는 상의 크기는 전부 다르다는 것을 알 수 있다. 실외 후사경은 넓은 시야를 확보하기 위하여 볼록거울을 사용함에 따라 광학적인 특성상 상이 축소되므로 볼록거울의 아랫부분에 4.5밀리미터 이상 6.5밀리미터 이하의 글자크기로 "사물이 거울에 보이는 것보다 가까이 있음"을 알리는 표시를 한다. That is, it can be seen that the size of the image reflected on the indoor rearview mirror and the outdoor rearview mirror are all different. The outdoor rearview mirror is reduced in optical characteristics by using a convex mirror to secure a wide field of view, so that the lower part of the convex mirror has a font size of 4.5 mm or more and 6.5 mm or less to indicate that "the object is closer than the mirror is seen." Make a mark.
운전자는 종래의 실외 후사경을 구비한 차량을 운전할 때 차량의 좌.우측에 근접되어 있는 차량을 확인하지 못하고 추돌 사고가 발생하는 사례가 빈번하게 발생되며, 또한 안전의 확보를 위해 실내 후사경 및 실외 후사경을 반복하여 번갈아 확인하는 불편함이 발생한다. 또한, 실외 후사경은 좌.우측의 서로 다른 곡률로 인한 상의 크기의 차이로 인하여 거리의 착오 및 판단의 착오를 일으킬 수 있다. When driving a vehicle equipped with a conventional outdoor rearview mirror, a driver frequently fails to check a vehicle that is close to the left and right sides of the vehicle, and a collision accident occurs frequently.In addition, an indoor rearview mirror and an outdoor rearview mirror are used to secure safety. Discomfort occurs to check alternately. In addition, the outdoor rearview mirror may cause aberration of distance and aberration of judgment due to the difference in image size due to different curvatures of left and right.
따라서 실외 후사경에 비치지 않는 사각지대에 대한 해결책이 자동차 산업의 개선의 핵심과제라 할 수 있다. 이러한 문제를 해결하기 위한 수단 중, 2002년 12월 11일에 공개된 "볼록거울 일체형 차량용 미러의 제조방법" (공개번호 10-2002-0092059)의 경우, 실외 후사경의 외측 단에 조그마한 볼록거울을 형성하여 사각지대를 보완하는 것으로, 볼록거울에 비춰지는 축소된 상과 기타의 면에서 비춰지는 상의 크기의 차이로 거리 감각을 해소하는 데는 문제가 있다. Therefore, the solution to the blind spot that is not reflected in the outdoor rearview mirror is a key task of improving the automotive industry. In order to solve this problem, in the method of manufacturing a convex mirror integrated vehicle mirror published on December 11, 2002 (Publication No. 10-2002-0092059), a small convex mirror is placed on the outer end of the outdoor rearview mirror. As a supplement to the blind spot, there is a problem in solving the sense of distance due to the difference in the size of the image projected from the convex mirror and the image projected from the other side.
2008년 11월 06일에 등록된 "차량용 후면경" (특허등록번호 10-0867439)의 경우, 후면경을 내측 상.하부, 중앙 상.하부, 외측부의 5개 구간으로 구획을 나누어 각각의 구획 별로 서로 다른 편심 및 굴절율로 시야각을 넓힌 기술로 사각지대를 해결하는 기술이 제공되어 있으나, 상부 내측부의 경우 내측부부터 외측부 방향으로 약 20%의 구간이 편심율이 "0", 굴절율이 "0"인 평면거울을 구비하여 운전자가 수평방향으로 후면경을 조정을 할 때 후사경의 내측부에 새로운 사각지대를 만들 수 있는 문제가 있고, 각각의 구획의 경계면에 굴절력이 같도록 한다는 기술은 이론적이며 실제 제조상에는 상당히 어려운 기술이다. 또한 후면경의 제조 시 유리의 가공 특성상 지그 및 금형비의 상승의 문제로 원가의 상승이 예측된다. In the case of "vehicle rearview mirror" (Patent Registration No. 10-0867439) registered on 06/06/2008, the rearview mirror is divided into five sections of upper and lower inner, upper and lower center and outer section. The technology for solving blind spots is provided by widening the viewing angle with different eccentricities and refractive indices.However, in the upper inner part, the eccentricity is "0" and the refractive index is "0" in the inner side from the inner side to the outer side. The problem is that the driver has a problem of creating a new blind spot on the inside of the rearview mirror when the driver adjusts the rearview mirror in the horizontal direction, and the technology that the refractive power is equal at the boundary of each compartment is theoretical and practical manufacturing. Awards are a very difficult technique. In addition, due to the processing characteristics of the glass in the manufacture of the rear mirror, the rise in the cost of the jig and the mold cost is expected to rise.
1995년 11월 14일에 공개된 일본의 "자동차용 미러" (특개평7-300045호)의 경우, 후사경의 대부분의 면은 평면거울로 형성되고 외측부의 일부분에 수평 및 수직방향으로 점차적으로 곡률이 축소되어 최종적으로는 약 500mm의 곡률이 형성되는 비구면의 볼록거울의 기술이 제공되어 있으나 운전자가 수평방향으로 후면경을 조정을 할 때 후사경의 내측부에 새로운 사각지대를 만들 수 있는 문제가 있고, 또한, 수직방향의 비구면의 형성으로 주차시의 사각지대 해소에 도움을 주는 기술이 제공되어 있으나 미러의 끝단부에 비치는 상의 크기는 작은 곡률로 인하여 축소되고 상의 왜곡이 많은 문제가 있다. In the case of Japan's "Automotive Mirror" published on November 14, 1995 (Japanese Patent Application Laid-Open No. 7-300045), most surfaces of the rear view mirror are formed by flat mirrors and gradually bend in horizontal and vertical directions to a part of the outer part. As a result, the technology of the aspherical convex mirror, which is finally reduced to form a curvature of about 500 mm, is provided, but when the driver adjusts the rear mirror in the horizontal direction, there is a problem of creating a new blind spot inside the rear mirror, In addition, there is provided a technology that helps to eliminate the blind spot when parking by forming the aspherical surface in the vertical direction, but the size of the image reflected on the end of the mirror is reduced due to the small curvature and there is a lot of image distortion.
2009년 10월 1일에 공개된 일본의 "광범위한 시야를 가진 백미러" (특개2009-22079)의 경우, 미러의 수직방향 하부에 추가로 작은 곡률을 가진 부위를 추가하여 노면상의 시야 각을 확보하고 측면의 시야를 증대시키는 기술이 제공되어 있으나, 정규 영역을 제외한 주변부의 곡률증가로 상이 축소 및 왜곡되는 문제가 있다. 또한, 2004년 8월 26일에 공개된 일본의 "아우터 미러(3방향 백미러)" (특개 2004-237959)의 경우, 미러 하우징의 최외측부에 전방향을 비춰지는 볼록형상의 거울과, 하우징의 최내측부에는 운전석을 향해 설치된 오목거울과 메인 미러를 구비하고, 메인 미러의 하단부에 인접하여 설치하여 후방을 비춰주는 볼록거울이 구비되어 운전자의 편의를 도모하는 기술이 제공되어 있으나 제조가 복잡하고, 추가로 설치된 볼록 및 오목거울의 곡률이 서로 달라 상의 크기가 달라 운전자의 혼선을 빚을 가능성이 많다. In the case of Japan's "Wide-view Mirror with Wide Field of View" published on October 1, 2009 (Japanese Patent No. 2009-22079), an additional small curvature is added to the lower part of the mirror in the vertical direction to secure the view angle on the road surface. Although a technique of increasing the view of the side is provided, there is a problem that the image is reduced and distorted due to the increase in the curvature of the peripheral portion except the regular region. In addition, Japan's "outer mirror (three-way rearview mirror)" (Japanese Patent Publication No. 2004-237959), published on August 26, 2004, has a convex mirror that is projected in the outermost part of the mirror housing and the outermost of the housing. The inner part is provided with a concave mirror installed toward the driver's seat and a main mirror, and a convex mirror that is installed adjacent to the lower end of the main mirror to illuminate the rear provides a technology for the driver's convenience. The curvatures of convex and concave mirrors are different and the image size is different, which is likely to cause driver confusion.
또한, 2006년 8월 9일에 공개된 "사이드 미러용 반사경" (특개평10-0610863)의 경우, 사이드 미러로 이용되는 반사경의 중앙부와 양측 단부에 서로 다른 곡률을 주어 운전자의 시야 범위를 확대할 수 있도록 하는 사이드 미러용 반사경을 제공하는 기술이 소개되어 있으나, 이 기술은 상기 일본의 "자동차용 미러" (특개평7-300045호) 및 "광범위한 시야를 가진 백미러" (특개2009-22079)와 유사한 기술로써 수평방향의 사각지대 해소의 기술은 유효하나 수직방향의 문제를 해결하지 못하는 단점이 있다.In addition, in the case of the "mirror for side mirror" (Japanese Patent Application Laid-Open No. 10-0610863) published on August 9, 2006, the curvature range of the driver is extended by giving different curvatures to the center and both ends of the reflector used as side mirrors. A technique for providing a reflecting mirror for side mirrors has been introduced, but this technique has been described in the above-mentioned "Automotive mirror" (Japanese Patent Application Laid-Open No. 7-300045) and "Rear view mirror having a wide field of view" (Japanese Patent Publication No. 2009-22079). As a similar technique, the technique of eliminating horizontal blind spots is effective but does not solve the problem in the vertical direction.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 한국 공개특허 제10-2002-0092059(Patent Document 1) Korean Unexamined Patent Publication No. 10-2002-0092059
(특허문헌 2) 한국 등록 특허 제10-0867439(Patent Document 2) Korean Registered Patent No. 10-0867439
(특허문헌 3) 일본 공개특허 특개평7-300045호(Patent Document 3) JP-A-7-300045
(특허문헌 4) 일본 공개특허 특개2009-22079(Patent Document 4) Japanese Unexamined Patent Publication No. 2009-22079
(특허문헌 5) 일본 공개특허 특개2004-237959(Patent Document 5) Japanese Unexamined Patent Publication No. 2004-237959
(특허문헌 6) 일본 공개특허 특개평10-0610863(Patent Document 6) Japanese Unexamined Patent Publication No. 10-0610863
(특허문헌 7) 일본 공개특허 특개평7-300045(Patent Document 7) Japanese Patent Laid-Open No. 7-300045
(특허문헌 8) 일본 공개특허 특개2009-22079(Patent Document 8) Japanese Unexamined Patent Publication No. 2009-22079
본 발명은 상기와 같은 종래 기술들의 문제점을 해결하기 위한 것으로, 실외 후사경의 좌.우측의 서로 다른 곡률로 인한 상의 크기가 달라지는 문제를 해결하는 차량용 실외 후사경을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide an outdoor rearview mirror for a vehicle to solve the problem that the size of the image due to different curvature of the left and right of the rearview mirror is different.
또한, 운전자가 사각지대를 해소하기 위하여 실외 후사경을 좌.우 및 상.하로 조정 시 발생하는 또 다른 사각지대를 해소하는 차량용 실외 후사경을 제공하는데 또 다른 목적이 있다. In addition, another object of the present invention is to provide an outdoor rearview mirror for a vehicle that eliminates another blind spot generated when the driver adjusts the rearview mirror left, right, up, and down to solve the blind spot.
또한, 차량의 운전석의 높이에 따른 수직방향의 사각지대의 문제를 해결하는 차량용 실외 후사경을 제공하는데 또 다른 목적이 있다. In addition, another object of the present invention is to provide an outdoor rearview mirror for a vehicle that solves a problem in a vertical blind spot according to a height of a driver's seat of a vehicle.
또한, 상기 종래 기술들의 공통적인 문제인 상의 크기와 왜곡을 해소하는 차량용 실외 후사경을 제공하는데 또 다른 목적이 있다.In addition, another object of the present invention is to provide an outdoor rearview mirror for a vehicle that eliminates the size and distortion of a common problem.
상기와 같은 목적을 달성하기 위하여, 본 발명의 실시예에 따른 구면 및 비구면의 형상을 조합한 볼록렌즈 실외 후사경은 자동차에 구비되는 실외 후사경으로서, 기 서정된 크기의 곡률을 가진 중앙 구면부와; 상기 중앙 구면부의 경계면으로부터 외주 가장자리까지 중앙 구면부의 중심점을 기준으로 원상의 대칭으로 점차 곡률이 축소되어 굴절력이 증가되는 비구면부;를 구비하고, 상기 중앙 구면부의 중심점은 후사경의 좌우 및 상하의 기하학적 중심점을 기준으로 좌우 및 상측 방향으로 일정한 량만큼 편심된 것이다.In order to achieve the above object, the convex lens outdoor rearview mirror that combines the shape of the spherical and the aspherical surface according to an embodiment of the present invention is an outdoor rearview mirror provided in the vehicle, the central spherical portion having a predetermined curvature; An aspherical surface having a curvature gradually reduced in curvature in a circular symmetry from the boundary surface of the central spherical portion to the outer circumferential edge thereof to increase the refractive power, and the center point of the central spherical portion includes the left and right geometric center points of the rear and rear mirrors; As a reference, it is eccentric by a certain amount in the left and right directions.
상기 중앙 구면부는 곡률이 1,220mm 이상의 구면 형상을 구비하고, 굴절력이 0.4디옵터 이상인 것이 바람직하다.The central spherical portion preferably has a spherical shape having a curvature of 1,220 mm or more and a refractive power of 0.4 diopter or more.
또한, 구면부의 외경은 실외 후사경의 기하학적 중심을 기준으로 수직방향의 거리의 70%이상의 구면의 형상을 구비하는 것이 바람직하다.In addition, the outer diameter of the spherical portion preferably has a spherical shape of 70% or more of the distance in the vertical direction with respect to the geometric center of the outdoor rearview mirror.
본 발명에 의하면, 사이드 미러에 구비되어 있는 실외 후사경에 일정한 크기의 동일한 곡률을 가진 중앙 구면부와, 상기 중앙 구면부의 경계면으로부터 외주 가장자리까지 중앙 구면부의 중심점을 기준으로 원상의 대칭이면서 점진적으로 곡률이 축소되어 굴절력이 증가되는 비구면부를 구비하고, 중앙구면부의 중심점과 후사경의 기하학적인 중심을 편심을 시킴으로써 후사경의 내측 및 외측의 사각지대를 동시에 해결 할 수 있고, 특히, 수직방향의 편심은 주차 및 차량의 운전석의 높이에 따라 발생하는 사각지대를 방지하는 효과가 있다. According to the present invention, the symmetrical and gradually curvature of the circular shape is gradually circumferentially centered on the central spherical portion having the same curvature of a predetermined size in the outdoor rearview mirror provided in the side mirror and the center spherical portion from the boundary surface to the outer peripheral edge of the central spherical portion. The aspherical surface portion is reduced to increase the refractive power, and the center of the central spherical portion and the geometric center of the rear mirror can be eccentric to solve the blind spots on the inner and outer sides of the rear mirror at the same time. The effect of preventing blind spots that occur according to the height of the driver's seat.
또한, 중앙구면부의 구면부는 일정한 크기로 구면수차를 최소화하고 기타의 부위인 주변부는 비구면부를 형성하여 비구면의 광학적 특성을 이용하여 실외 후사경의 외주부의 상의 찌그러지는 상의 왜곡 현상을 해소하는 또 다른 효과가 있다. In addition, the spherical portion of the central spherical portion has a constant size to minimize spherical aberration, and the peripheral portion of the other portion forms an aspherical portion to solve the distortion phenomenon of the distortion of the image on the outer circumference of the outdoor rearview mirror using the aspherical optical characteristics. have.
또한, 본 발명의 실외 후사경은, 종래의 운전석 및 승객석의 곡률반경이 서로 다르게 적용하여 상의 크기가 달라지는 종래의 후사경의 문제를 개선하여 동일한 곡률의 실외 후사경을 적용할 수 있어 후방의 상의 크기의 착오를 없애는 또 다른 효과가 있다. In addition, the outdoor rearview mirror of the present invention, by applying a different radius of curvature of the conventional driver's seat and passenger's seat to improve the problem of the conventional rearview mirror that the size of the image is different, it is possible to apply the outdoor rearview mirror of the same curvature, the error of the size of the rear image There is another effect of getting rid of it.
또한, 본 발명의 실외 후사경은 구면의 중앙부를 기준으로 원상의 대칭인 곡률을 구비함으로써 운전자가 시야각의 확보를 위하여 후사경을 좌.우로 조정을 할 때 발생하는 또 다른 사각지대를 없애주는 또 다른 효과가 있다. In addition, the outdoor rearview mirror of the present invention has a circular symmetrical curvature with respect to the center portion of the spherical surface to eliminate another blind spot caused when the driver adjusts the rearview mirror left and right to secure the viewing angle. There is.
또한, 본 발명은 자동차의 소음과 연비절감의 문제를 해결하는데 있어서 사이드미러의 크기는 중요한 요인이므로 본 발명의 실외 후사경의 적용 시 사이드미러의 크기를 줄일 수 있어 자동차의 소음과 연비절감을 하는데 또 다른 효과가 있다. In addition, since the size of the side mirror is an important factor in solving the problem of noise and fuel economy of the vehicle, the size of the side mirror can be reduced when the outdoor rearview mirror of the present invention is applied, thereby reducing the noise and fuel efficiency of the vehicle. It has a different effect.
도 1은 종래의 사이드미러에 의해 운전자가 수평방향으로 파악할 수 있는 영역인 가시영역과 사각지대 영역을 나타낸 도면.1 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in a horizontal direction by a conventional side mirror;
도 2는 종래의 사이드미러의 사각지대의 보완을 위해 미러의 각도를 조정한 결과 새로운 사각지대가 발생함을 설명하는 도면2 is a view illustrating that a new blind spot occurs as a result of adjusting the angle of the mirror to compensate for the blind spot of the conventional side mirror;
도 3은 본 발명에 실시예에 따른 개선된 시각 지역의 영역을 설명하는 도면.3 illustrates an area of an improved visual area in accordance with an embodiment of the present invention.
도 4는 종래의 승용차량에 부착되는 사이드미러에 의해 운전자가 수직방향으로 파악할 수 있는 영역인 가시영역과 사각지대 영역을 나타낸 도면. 4 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in the vertical direction by a side mirror attached to a conventional passenger vehicle.
도 5는 종래의 상용차량에 부착되는 사이드미러에 의해 운전자가 수직방향으로 파악할 수 있는 영역인 가시영역과 사각지대 영역을 나타낸 도면. 5 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in the vertical direction by a side mirror attached to a conventional commercial vehicle.
도 6은 본 발명에 따른 승용차량의 수직방향의 개선된 시각 지역의 영역을 설명하는 도면.6 illustrates an area of an improved viewing area in the vertical direction of a passenger vehicle according to the invention.
도 7은 본 발명에 따른 상용차량의 수직방향의 개선된 시각 지역의 영역을 설명하는 도면. 도 7a는 본 발명에 따른 미러의 측면 절개도7 illustrates an area of an improved viewing area in the vertical direction of a commercial vehicle according to the present invention; 7A is a side cutaway view of a mirror in accordance with the present invention
도 8은 본 발명의 실시예에 다른 수평방향의 사각지역의 개선을 설명하기 위한 도면.8 is a view for explaining the improvement of the blind spot in the horizontal direction according to the embodiment of the present invention.
도 9는 본 발명의 실시예에 다른 수직방향의 사각지역의 개선을 설명하기 위한 도면.9 is a view for explaining the improvement of the blind spot in the vertical direction according to the embodiment of the present invention.
도 10은 본 발명의 실외 후사경의 구면 및 비구면의 형성 원리를 설명하기 위한 도면. 10 is a view for explaining the principle of forming the spherical and aspherical surface of the outdoor rearview mirror of the present invention.
도 11은 본 발명으로 실시예에 따른 승용차량의 실외 후사경의 구조를 설명하기 위한 도면. 11 is a view for explaining the structure of the outdoor rearview mirror of a passenger vehicle according to an embodiment of the present invention.
도 12는 본 발명으로 실시예에 따른 상용차량의 실외 후사경의 구조를 설명하기 위한 도면. 12 is a view for explaining the structure of the outdoor rearview mirror of a commercial vehicle according to the embodiment of the present invention.
도 13은 렌즈에 맺히는 상의 왜곡을 설명하기 위한 도면 FIG. 13 is a diagram for explaining distortion of an image formed on a lens; FIG.
도 14는 빛이 굴절되는 원리와 상의 크기 및 위치를 설명하기 위한 도면14 is a view for explaining the principle that the light is refracted and the size and position of the image
이하 설명되는 실시 예들은 당 분야에서 통상적인 광학적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. The embodiments described below are provided to more fully explain the present invention to those skilled in the art.
먼저 본 발명을 설명하기 위하여 실외용 후사경의 수평방향 및 수직방향의 사각지대가 발생하는 원리를 기하광학적인 원리를 이용하여 도 1과 도 2 및 도 8를 통하여 설명하고자 한다. First, in order to explain the present invention, a principle of generating a blind spot in a horizontal direction and a vertical direction of an outdoor rearview mirror will be described with reference to FIGS. 1, 2, and 8 by using a geometrical optical principle.
도 8에서 운전자의 위치를 DP라고 할 때 운전자는 차량 후.측면을 관찰하기 위하여 사이드미러를 볼 때, 실외 후사경(50)의 내측부로 입사하는 광선(RII)은 빛의 반사의 법칙에 따라 광선 RII의 입사점에서 법선인 N-N'와 이루는 입사각(α1) 과 같은 출사각(α'1)을 이룬 광선 RIO를 운전자가 보게 된다. 또한, 실외 후사경의 외측부로 입사하는 광선(ROI)은 마찬가지로 광선(ROI)의 입사점에서 법선인 M-M'과 이루는 입사각(αO)과 같은 출사각(α'0) 을 이룬 광선(ROO)을 운전자가 보게 된다. When the driver's position in FIG. 8 is referred to as DP, the driver sees the side mirror for observing the after-vehicle. When the driver views the side mirror, the light beam RII incident to the inner side of the outdoor rearview mirror 50 is in accordance with the law of light reflection. The driver sees a ray RIO with an exit angle α'1 equal to the angle of incidence α1 that forms the normal N-N 'at the point of incidence of RII. Further, the light ray ROI incident to the outside of the outdoor rearview mirror is similarly a light ray ROO having an emission angle α'0 equal to the angle of incidence αO formed by the normal line M-M 'at the point of incidence of the light ray ROI. The driver will see.
따라서, 운전자는 실외 후사경(50)을 통하여 입사되는 사물의 허상을 보게 되며 운전자가 볼 수 있는 시야각은 후사경의 내측부에 형성되는 광선(RII)와 후사경의 외측부에 형성되는 광선(ROI)가 이루는 각도가 된다. Accordingly, the driver sees the virtual image of the object incident through the outdoor rearview mirror 50 and the viewing angle visible to the driver is the angle formed by the light beam RII formed on the inner side of the rearview mirror and the light beam ROI formed on the outer side of the rearview mirror. Becomes
승객석의 실외 후사경(50)은 운전자의 위치(DP)에서 먼 거리에 있으므로 후사경의 내.외측에 입사되는 광선의 입사각은 운전석보다 더 큰 각도를 형성하여 더 넓은 시야각을 가진다. 따라서, 운전석이 가지는 시야각과 승객석이 가지는 시야각을 합성한 각도가 실제의 시야각이 된다. 이러한 수평방향의 시야각의 문제를 해석하기 위하여 도 1및 도 2를 참조로 설명할 수 있다. Since the outdoor rearview mirror 50 of the passenger seat is far from the driver's position DP, the incident angle of the light incident on the inside and the outside of the rearview mirror forms a larger angle than the driver's seat to have a wider viewing angle. Therefore, the angle which synthesize | combined the viewing angle which a driver's seat has and the viewing angle which a passenger's seat has becomes an actual viewing angle. In order to analyze the problem of the horizontal viewing angle can be described with reference to FIGS. 1 and 2.
도 1은 종래의 사이드미러에 의해 운전자가 수평방향으로 파악할 수 있는 영역인 가시영역과 사각지대 영역을 나타낸 도면이고, 도 2는 종래의 사이드미러의 사각지대의 보완을 위해 미러의 각도를 조정한 결과 새로운 사각지대가 발생함을 설명하는 도면이다. FIG. 1 is a view showing a visible area and a blind spot area which are areas that a driver can grasp in a horizontal direction by a conventional side mirror, and FIG. 2 is a view of adjusting a mirror angle to compensate for a blind spot of a conventional side mirror. Result The figure explains that a new blind spot occurs.
이러한 시야각을 기하광학적으로 작도하면 도 1과같이 후면 시야각은 θVA가 되며, 종래의 실외 후사경(60)의 좌.우측의 수평방향을 기준으로 시야각(θVA)을 제외한 운전석측의 각도θBL과 승객석 측의 각도 θBR은 운전자가 볼 수 없는 사각지대가 된다. When such a viewing angle is geometrically constructed, the rear viewing angle becomes θVA as shown in FIG. 1, and the angle θBL and the passenger seat side of the driver's side excluding the viewing angle θVA based on the horizontal direction of the left and right sides of the conventional outdoor rearview mirror 60. The angle θBR becomes a blind spot that the driver cannot see.
보통 사이드미러는 운전자의 주행방향을 기준으로 약 20도의 전.후의 각도로 부착되어 있고, 차량의 제조회사는 이러한 사각지대의 보완 및 운전자의 편의를 위하여 실외 후사경의 상.하 및 좌.우의 중심을 기준으로 수직 및 수평방향으로 조정이 되도록 하여 편의를 도모하고 있다. Normally, the side mirror is attached at an angle of about 20 degrees before and after the driver's driving direction, and the manufacturer of the vehicle has the center of the top, bottom, left and right of the outdoor rearview mirror for the purpose of supplementing the blind spot and the driver's convenience. It aims for convenience by adjusting it vertically and horizontally.
하지만, 도 2에 예시된 것과 같이 운전자가 측면에 접근하는 차량의 시야각을 확보하기 위하여 사이드 미러의 실외 후사경(60)의 각도(θL,θR)을 작게 하면, 운전석 및 승객석의 후사경의 경우 조정된 후사경의 각도(θ)만큼 시야각을 확보할 수 있고, 그 시야각은 운전석은 θVL이 되고 승객석은 θVR이 된다. 이때, 운전석 및 승객석의 시야각은 조정된 각도만큼 바깥쪽으로 향하므로 각각의 후사경의 내측부는 시야를 확보할 수 없는 새로운 사각지대 θBL이 발생된다. 따라서, 운전자는 차량 측면의 시야각을 확보했으나 새로운 사각지대의 발생으로 실내 후사경을 반복해서 주시하는 불편함이 발생한다. 또한, 종래의 차량용 실외 후사경(60)의 설치 위치는 차량의 운전석의 높이와 차량의 앞뒤바퀴의 축간 거리에 따라 주차 시에도 사각지대가 발생한다. 이러한 사각지대는 도 4과 도 5 및 도 9를 통하여 설명하고자 한다. 이러한 사각지대는 도 9에서 설명할 수 있다. However, as illustrated in FIG. 2, when the driver decreases the angles θL and θR of the outdoor rearview mirror 60 of the side mirror to secure the viewing angle of the vehicle approaching the side surface, the rearview mirrors of the driver's seat and the passenger's seat are adjusted. The viewing angle can be secured by the angle θ of the rearview mirror, and the viewing angle becomes θVL for the driver's seat and θVR for the passenger's seat. At this time, the viewing angles of the driver's seat and the passenger's seat are directed outward by the adjusted angle, so that a new blind spot θBL is generated in which the inner part of each rearview mirror cannot secure a view. Therefore, although the driver secures the viewing angle of the side of the vehicle, the inconvenience of repeatedly watching the interior rearview mirror occurs due to the occurrence of a new blind spot. In addition, the installation position of the conventional vehicle rearview mirror 60 for the vehicle, blind spots occur even when parking, depending on the height of the driver's seat of the vehicle and the axial distance of the front and rear wheels of the vehicle. This blind spot will be described with reference to FIGS. 4, 5, and 9. This blind spot can be described in FIG.
도 4는 종래의 승용차량에 부착되는 사이드미러에 의해 운전자가 수직방향으로 파악할 수 있는 영역인 가시영역과 사각지대 영역을 나타낸 도면이고, 도 5는 종래의 상용차량에 부착되는 사이드미러에 의해 운전자가 수직방향으로 파악할 수 있는 영역인 가시영역과 사각지대 영역을 나타낸 도면이고, 도 9는 본 발명의 실시예에 다른 수직방향의 사각지역의 개선을 설명하기 위한 도면이다. 4 is a view showing a visible area and a blind spot area which are areas that the driver can grasp in the vertical direction by a side mirror attached to a conventional passenger vehicle, and FIG. 5 is a side mirror attached to a conventional commercial vehicle. Is a view showing a visible area and a blind spot area, which are areas that can be grasped in the vertical direction, and FIG. 9 is a view for explaining the improvement of the blind spot in the vertical direction according to the embodiment of the present invention.
도 9에서 운전자의 위치를 DP라고 할 때, 실외 후사경(60)의 하단부로 입사하는 광선(RBI)은 빛의 반사의 법칙에 따라 광선(RII)의 입사점에서 법선인 B-B'와 이루는 입사각과 같은 출사각을 이룬 광선(RBO)를 운전자가 보게 된다. 또한, 후사경의 상단부로 입사하는 광선(RTI)은 마찬가지로 광선(RTI)의 입사점에서 법선인 T-T'와 이루는 입사각과 같은 출사각을 이룬 광선(RTO)을 운전자가 보게 된다. 따라서, 운전자는 실외 후사경(60)의 하단부에 형성되는 광선(RBO)와 후사경의 상단부에 형성되는 광선(RTO)가 이루는 각도가 되며 수직방향의 시야각은 θVA 가 되며, 노면과 입사광선(RBI)이 이루는 각도 θBL이 수직방향으로 운전자가 볼 수 없는 사각지대가 된다. 수직방향의 시야각은 차량의 후미의 뒷부분까지 운전자가 시야각을 확보하지 못할 경우 좁은 주차공간의 경우 운전자는 실외 후사경(60)의 수직방향으로 각도(θ)를 조정하는 불편함이 따른다. In FIG. 9, when the driver's position is referred to as DP, the light beam RBI incident to the lower end of the outdoor rearview mirror 60 forms a normal line B-B 'at the point of incidence of the light beam RII according to the law of light reflection. The driver sees an RBO beam with an exit angle equal to the angle of incidence. In addition, the driver sees the light beam RTO having the same angle of incidence as the angle of incidence formed by the normal line T-T 'at the point of incidence of the light beam RTI. Accordingly, the driver is at an angle formed by the light beam RBO formed at the lower end of the outdoor rearview mirror 60 and the light beam RTO formed at the upper end of the rearview mirror, and the viewing angle in the vertical direction is θVA, and the road surface and the incident light RBI. This angle? BL becomes a blind spot that the driver cannot see in the vertical direction. The vertical viewing angle is inconvenient to adjust the angle θ in the vertical direction of the outdoor rearview mirror 60 in the case of a narrow parking space when the driver cannot secure the viewing angle to the rear of the rear of the vehicle.
본 발명은 이러한 시야각의 기하광학적인 해석을 통하여 문제 발생의 원인을 규명하고 종래기술들의 문제점을 개선하여 더 넓은 시야각을 확보를 통하여 사각지대의 해소하는데 그 목적이 있으며, 이를 통해 상의 왜곡 및 상의 크기의 차이로 인한 거리감의 문제의 개선과, 시야각 확보를 위하여 실외 후사경의 각도 조정으로 실외 후사경과 실외 후사경을 반복적으로 감시하는 문제를 개선할 수 있다. The object of the present invention is to solve the blind spots by finding the cause of the problem through the geometric optical analysis of the viewing angle and to improve the problems of the prior art to secure a wider viewing angle, through which the image distortion and image size The problem of repetitive monitoring of the outdoor rearview mirror and the outdoor rearview mirror may be improved by adjusting the angle of the outdoor rearview mirror to secure the viewing angle due to the difference and to secure the viewing angle.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다. Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
상기 시야각의 구성요소는 도 8 및 도 9에서 설명한 바와 같이 운전자의 위치(DP), 후사경의 외측부분의 입사각도(α0), 내측부분의 입사각도(α1) , 상단부의 입사각도(α2), 하단부의 입사각도(α3) 및 후사경의 곡률(r)의 7가지의 요소로 구성된다. As described with reference to FIGS. 8 and 9, the components of the viewing angle may include the driver's position DP, the incident angle α0 of the outer portion of the rearview mirror, the incident angle α1 of the inner portion, the incident angle α2 of the upper portion, It consists of seven elements of the incident angle (alpha) 3 of the lower end part, and the curvature r of a rearview mirror.
또한 입사각(α0,α1,α2,α3)은 입사광선이 구면의 곡률중심으로부터의 생성되는 법선으로부터 그 각도가 결정되며 입사각 (α0,α1,α2,α3)이 커질수록 넓은 시야각이 확보된다. 이러한 입사각은 실외 후사경의 곡률(r)의 크기로 결정된다. Incident angles α0, α1, α2, and α3 are determined from normals in which incident light is generated from the center of curvature of the spherical surface. As the incident angles α0, α1, α2, and α3 increase, a wide viewing angle is secured. This angle of incidence is determined by the magnitude of curvature r of the outdoor rearview mirror.
곡률(r)의 크기가 무한대(∞)이면 평면거울이 형성되고 실외 후사경에 비취지는 상의 크기는 단일배율로 사물의 크기와 동일하여 좁은 시야각으로 인하여 사각지대의 문제를 발생시키므로, 일반적으로 볼록거울의 구면의 후사경으로 시야각을 확보한다. 이러한 곡률(r)이 작을수록 넓은 시야각을 확보할 수 있으나 축소된 상의 크기로 인하여 운전자는 사물의 위치에 대한 거리감의 착오와 상의 왜곡을 일으킬 수 있으므로 적당한 곡률(r)의 크기를 법규를 통하여 규정을 하고 있다. 이러한 곡률(r)의 크기에 따라 후사경에 비치는 상은 도 13에서 설명할 수 있다. If the size of curvature r is infinite (∞), a planar mirror is formed, and the size of the image reflected on the outdoor rearview mirror is the same as the size of the object at a single magnification, which causes a blind spot problem due to a narrow viewing angle. The viewing angle is secured by the spherical rear view mirror. The smaller the curvature r is, the wider the viewing angle can be secured. However, due to the reduced size of the driver, the driver may cause a misunderstanding of the sense of distance to the object's position and distortion of the image. Doing An image reflected on the rearview mirror according to the magnitude of the curvature r may be described with reference to FIG. 13.
도 13은 렌즈에 맺히는 상의 왜곡을 설명하기 위한 도면이다. 도 13에서 볼록렌즈에 입사한 광선(Ray1~Ray9)은 렌즈의 중심에서 외주로 갈수록 빛의 굴절율이 커져서 상이 맺히는 초점은 짧아지게 된다. 상이 맺히는 초점이 달라지는 현상을 구면수차라고 하며, 이러한 구면수차는 초점의 거리에 따라 달라지는 수차를 횡수차(LSA), 상이 맺히는 상하방향의 수차인 종수차(TSA)가 발생되며 이러한 수차는 구면에 맺히는 상의 왜곡과 번짐을 만든다. 따라서, 작은 곡률은 그 왜곡이 심하고 상의 크기가 작아지므로 최적화된 곡률의 조건이 필요하게 된다. FIG. 13 is a diagram for describing distortion of an image formed on a lens. FIG. In FIG. 13, the light rays Ray1 to Ray9 incident on the convex lens become shorter as the refractive index of light increases from the center of the lens to the outer periphery. The phenomenon that the focal point of the image is different is called spherical aberration, and this spherical aberration is caused by lateral aberration (LSA) and vertical aberration (TSA), which is a vertical aberration, in which the aberration changes according to the focal length. It creates distortion and bleeding of the image. Therefore, the small curvature is severely distorted and the size of the image is small, so the condition of the optimized curvature is required.
이러한 수차는 비구면 렌즈를 적용함으로서 상의 왜곡을 해결할 수 있다. 비구면렌즈는 구면렌즈와는 다르게 수차가 발생하는 렌즈면에 서로 다른 곡률을 적용함으로써 중심부 및 주변부에 입사한 빛을 하나의 초점에 맺히도록 하여 상의 왜곡 현상을 감소시킬 수 있다. Such aberration can solve image distortion by applying an aspherical lens. Aspheric lenses can reduce image distortion by applying different curvatures to lens surfaces where aberrations occur, unlike spherical lenses, to allow light incident on the central and peripheral portions to form a single focal point.
이하 도 10과 실시 예인 도 11, 도 12를 참조하여 본 발명의 실외 후사경(50)에 대한 상세한 설명하기로 한다. 여기서, 도 11을 통하여 승용차량의 실외 후사경의 실시 예를 설명하고, 도 12를 통하여 운전석의 높이가 높은 상용차량의 실외 후사경에 예에 대해서 상세히 설명하기로 한다. Hereinafter, the outdoor rearview mirror 50 of the present invention will be described in detail with reference to FIGS. 10 and 12. Herein, an embodiment of an outdoor rearview mirror of a passenger vehicle will be described with reference to FIG. 11, and an example will be described in detail with reference to an outdoor rearview mirror of a commercial vehicle having a high driver's seat height through FIG. 12.
도 11은 본 발명의 실외 후사경의 구면 및 비구면의 형성 원리를 설명하기 위해 수평방향으로 절개한 도면이다. 도 11을 참조하면, 종래의 실외 후사경(60)은 더욱 넓은 시야각을 확보하기 위하여 일정한 크기의 곡률(r)을 구비하여 차량에 약 20도 전.후의 각도로 장착이 된다. 운전자는 측면의 시야각을 확보하기 위하여 실외 후사경(60)의 각도(θ)를 조정하게 되면 실외 후사경(60)의 외측단부의 시야각은 조정된 각도(θ)만큼 시야각을 확보하게 되고 반대로 내측부의 시야각은 조정된 각도(θ)만큼 시야각이 줄어들게 되어 운전자는 차량측면 및 뒷부분은 사각지대가 되어 실내 후사경으로 반복하여 주시하는 문제가 발생한다. 11 is a view cut in the horizontal direction to explain the formation principle of the spherical and aspherical surface of the outdoor rearview mirror of the present invention. Referring to FIG. 11, the conventional outdoor rearview mirror 60 has a curvature r of a predetermined size in order to secure a wider viewing angle and is mounted at an angle of about 20 degrees before and after the vehicle. When the driver adjusts the angle θ of the outdoor rearview mirror 60 to secure the viewing angle of the side, the viewing angle of the outer end of the outdoor rearview mirror 60 secures the viewing angle by the adjusted angle θ, and conversely, the viewing angle of the inner rearview mirror 60. Since the viewing angle is reduced by the adjusted angle θ, the driver has a problem that the side and rear portions of the vehicle become blind spots to repeatedly watch the interior rearview mirror.
이러한 문제는 도 10에 예시된 것과 같이 실외 후사경의 기하학적 중심 C-C'를 기준으로 중앙부에 일정한 크기의 구면을 형성한 다음 구면의 경계면(50c)에서 중앙구면부과 동일한 곡률(r)을 유지한 상태에서 일정한 크기의 각도(θr)로 실외 후사경(60)의 양측단부를 밴딩을 하면 그 밴딩각(θr)만큼 더 넓은 시야각이 확보가 되는 실외 후사경(50)이 만들어진다. 또한, 이러한 더 넓은 시야각이 확보된 실외 후사경(50)의 밴딩각(θr)은 밴딩각(θr)의 크기의 2배에 이르는 시야각을 확보할 수 있는 효과가 있게 된다. This problem is caused by forming a spherical surface having a constant size in the center based on the geometric center C-C 'of the outdoor rearview mirror as illustrated in FIG. 10 and then maintaining the same curvature r as the center spherical portion at the interface 50c of the spherical surface. In the state, when both ends of the outdoor rearview mirror 60 are bent at an angle θr of a predetermined size, an outdoor rearview mirror 50 having a wider viewing angle by the bending angle θr is secured. In addition, the bending angle θr of the outdoor rearview mirror 50 in which the wider viewing angle is secured has an effect of securing a viewing angle up to twice the size of the bending angle θr.
그리고, 상기 중앙 구면부(50a)의 크기를 결정하기 위하여 차량에 부착되어 있는 실외 후사경의 형상을 고려해야 한다. 승용차량과 상용차량의 운전석의 높이 및 차량의 앞뒤거리의 크기에 따라 실외 후사경의 형상은 다른 데, 승용 차량의 경우 수평방향의 길이가 수직방향보다 크고, 상용차량은 운전석의 높이가 커지므로 수직방향의 길이가 수평방향보다 크다. In addition, in order to determine the size of the central spherical portion 50a, the shape of the outdoor rearview mirror attached to the vehicle should be considered. The shape of outdoor rearview mirror varies according to the height of the driver's seat and the distance between the front and rear of the commercial vehicle.In the case of the passenger vehicle, the horizontal length is larger than the vertical direction. The length of the direction is larger than the horizontal direction.
따라서, 실외 후사경(50)의 구면중앙부(50a)의 크기는 승용차량의 수직방향, 상용차량은 수평방향의 길이의 약 70% 전후의 크기로 결정함이 바람직하다. 이는 본 발명의 특징 중의 하나인 실외 후사경의 구면중심을 후사경의 평면상 기하학적 중심과 좌.우 및 상측 방향으로 편심을 시켜 더 넓은 시야각을 확보하기 위함이다. Therefore, the size of the spherical center portion 50a of the outdoor rearview mirror 50 is preferably determined to be about 70% of the length in the vertical direction and the commercial vehicle in the horizontal direction. This is to secure a wider viewing angle by deviating the spherical center of the outdoor rearview mirror, which is one of the features of the present invention, in the planar geometric center of the rearview mirror and in the left, right, and upward directions.
상기 편심을 통한 더 넓은 시야각을 확보하기 위한 설명으로 도 11과 도 12를 참조할 수 있다. 도 11은 본 발명으로 실시 예에 따른 승용차량의 실외 후사경(50)의 구조를 설명하기 위한 도면이고, 도 12는 본 발명으로 실시 예에 따른 상용차량의 실외 후사경(50)의 구조를 설명하기 위한 도면이다. Reference may be made to FIGS. 11 and 12 as a description for securing a wider viewing angle through the eccentricity. 11 is a view for explaining the structure of the outdoor rearview mirror 50 of a passenger vehicle according to an embodiment of the present invention, Figure 12 is a view for explaining the structure of the outdoor rearview mirror 50 of a commercial vehicle according to an embodiment of the present invention. It is for the drawing.
상기 이동된 편심량(δx,δy)은 실외 후사경(50)의 기하학적 수평방향의 중심선을 Rx-Rx'라고 하고 수직방향의 중심선을 Ry-Ry'라고 하고 그 중심을 "CM"이라고 할 때, 실외 후사경(50)의 기하학적 중심 "CM"을 실외 후사경(50)의 중앙구면부(50a)의 중심 "Cc"로 편심 시키게 되면 중앙 구면부(50a)로부터 외측단부까지의 면적과 하단부의 면적을 크게 할 경우 운전자는 더 넓은 시야각을 확보할 수 있다. The shifted eccentricity (δx, δy) is when the horizontal horizontal center line of the outdoor rearview mirror 50 is called Rx-Rx 'and the vertical center line is called Ry-Ry' and its center is called "CM". When the geometric center "CM" of the rearview mirror 50 is eccentric to the center "Cc" of the central spherical section 50a of the outdoor rearview mirror 50, the area from the central spherical section 50a to the outer end and the area of the lower end section are greatly increased. In doing so, the driver can obtain a wider viewing angle.
즉, 실외 후사경(50)의 중앙 구면부(50a)의 중심선 My-My'를 δx만큼 내측방향으로 이동시켜 비구면부(50b)의 면적의 확대로 수평방향으로 더 넓은 시야각을 확보한다. 또한 상용차량처럼 운전석의 높이가 높아질수록 발생하는 수직방향의 사각지역은 상기와 동일하게 수직방향으로 실외 후사경(50)의 중앙구면부(50a)의 중심"Cc"을 실외 후사경(50)의 기하학적 중심선 Mx-Mx'를 δy만큼 상측 방향으로 이동을 시키면 실외 후사경(50)의 하단부의 비구면부(50b)의 면적의 확대로 더 넓은 시야각이 확보되어 차량의 높이의 제약으로 발생하는 사각지역을 해소하고 주차 시에 후사경을 조정하는 문제를 해결할 수 있다. That is, the center line My-My 'of the central spherical portion 50a of the outdoor rearview mirror 50 is moved inward by δx to secure a wider viewing angle in the horizontal direction by expanding the area of the aspherical portion 50b. In addition, as in the case of a commercial vehicle, the vertical blind spot generated as the height of the driver's seat becomes higher, the center "Cc" of the center spherical portion 50a of the outdoor rearview mirror 50 in the vertical direction is similar to the above. When the center line Mx-Mx 'is moved upward by δy, a wider viewing angle is secured by expanding the area of the aspherical portion 50b at the lower end of the outdoor rearview mirror 50, thereby eliminating the blind spot caused by the constraint of the height of the vehicle. This can solve the problem of adjusting the rearview mirror when parking.
따라서, 본 발명은 중앙구면부의 중심과 실외 후사경의 기하학적 중심을 일정한 량만큼 편심 시킴으로써 수평방향 및 수직방향의 더 넓은 시야각을 확보하여 사각지대를 방지하여 운전자가 측.후방의 사각지대, 차량의 운전석의 높이에 따라 발생하는 사각지대를 방지하는 효과를 준다. Therefore, the present invention secures a wider viewing angle in the horizontal and vertical directions by eccentricizing the center of the central spherical portion and the geometric center of the outdoor rearview mirror by a predetermined amount, thereby preventing blind spots. It prevents blind spots that occur depending on the height of
그리고, 상기 좌.우 및 상측 방향으로 이동시키는 편심량(δx,δy)은 실외 후사경(50)의 구면중앙부(50a)의 크기의 약 10% 전.후가 바람직하다. In addition, the amount of eccentricity (δx, δy) moving in the left, right, and upward directions is preferably about 10% before and after the size of the spherical center portion 50a of the outdoor rearview mirror 50.
만일 편심량(δx,δy)의 크기가 커지게 되면, 구면중앙부(50a)의 경계면(50c)이 주변부의 가장자리를 벗어나게 되어 비구면부(50b)의 면적이 좁아지게 되고 동시에 시야각도 좁아지게 된다. 이러한 구면중앙부(50a)의 크기 및 편심량(δx,δy)은 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 이때, 중앙구면부(50a)의 경계면(50c)의 굴절율이 중앙구면부(50a)의 굴절율보다 크게 되면 상이 찌그러지는 현상이 발생하므로 이를 방지하기 위하여 실외 후사경(50)의 중앙부(50a)와 주변부(50b)의 경계면(50c)을 기준으로 굴절력(D)이 같아지도록 하고 주변부(50d)로 갈수록 굴절력(D)이 증가하도록 한다. 여기서, 굴절력(D)은 빛이 공기(n) 중에서 실외 후사경(50)의 매질인 유리(n')로 통과했을 때 서로 다른 매질의 굴절율의 차이로 빛이 꺾이는 양을 의미하며 이 굴절력(D)은 구면의 곡률(r)이 커질수록 작아지며 빛이 입사된 실외 후사경의 매질의 굴절률(n')의 크기에 비례한다. 이러한 굴절력(D)은 다음과 같은 식으로 표시된다.If the sizes of the eccentric amounts δx and δy are increased, the boundary surface 50c of the spherical center portion 50a is out of the edge of the periphery, so that the area of the aspherical portion 50b is narrowed and the viewing angle is also narrowed. The size and the amount of eccentricity (δx, δy) of the spherical center portion 50a can be variously modified without departing from the scope of the present invention. At this time, when the refractive index of the boundary surface 50c of the central spherical portion 50a is larger than the refractive index of the central spherical portion 50a, the image is distorted, so that the center portion 50a and the peripheral portion of the outdoor rearview mirror 50 are prevented. The refractive power D is made equal to the boundary surface 50c of 50b, and the refractive power D is increased toward the peripheral portion 50d. Here, the refractive power (D) refers to the amount of light bent by the difference in the refractive index of the different media when the light passes through the glass (n '), the medium of the outdoor rearview mirror 50 in the air (n), this refractive power (D ) Decreases as the spherical curvature r increases and is proportional to the size of the refractive index n 'of the medium of the outdoor rearview mirror on which light is incident. This refractive power (D) is represented by the following equation.
수학식 1
Figure PCTKR2012008835-appb-M000001
Equation 1
Figure PCTKR2012008835-appb-M000001
상기 수학식 1에서 D는 굴절력이고, n은 공기의 굴절율이며, n'는 거울의 굴절율을 뜻하고, r은 곡률을 의미한다.In Equation 1, D is a refractive power, n is the refractive index of the air, n 'is the refractive index of the mirror, r means the curvature.
상기 굴절력은 본 발명의 구체화를 위한 중요한 광학적인 요소이고 또한, 상기 비구면부(50b)의 광학적인 특성을 통하여 운전석 및 승객석의 다른 곡률로 인한 상의 크기 차이 및 거리의 착오를 개선하고 구면거울의 상의 왜곡 문제에 대한 설명을 실시한다. The refractive power is an important optical element for the embodiment of the present invention, and also through the optical characteristics of the aspherical portion 50b to improve the size difference and distance aberration due to the different curvature of the driver's seat and the passenger's seat, Describe the distortion problem.
도 11에 예시된 것과 같이 실외 후사경의 기하학적 중심 C-C'를 기준으로 중앙부에 일정한 크기의 구면을 형성한 다음 구면의 경계면(50c)에서 구면과 동일한 곡률(r)을 유지한 상태에서 실외 후사경(60)의 양측단부를 밴딩각(θr)만큼 구면중앙부(50a)의 중심을 기준으로 대칭적으로 밴딩을 하면 그 밴딩각(θr)만큼 더 넓은 시야각이 확보가 되는 비구면부(50b)가 형성된다. 이 비구면부(50b)는 중앙구면부(50a)의 경계면(50c)에서부터 점점 곡률(r)이 작아지며 주변부(50b)의 각각의 면은 서로 다른 곡률(r)을 가진 형상을 구비하게 된다. 이러한 비구면의 형상은 실시 예의 도면인 도 11과 도 12로 설명을 할 수 있다. 도 11 및 도12에서 실외 후사경의 중앙구면부(50a)를 중심으로 기하학적 수평방향의 중심선을 Rx-Rx'라고 하고 수직방향의 중심선을 Ry-Ry'라고 할 때, 실외 후사경(60)의 수평방향의 중심선인 Rx-Rx'을 단면 절개한 도면이 도 11 및 12의 Section Rx-Rx' 이다. 이때 중앙구면부(50a)의 곡률(r)은 바람직하게는 반경 약 1,220mm이상의 구면의 형상을 구비한다. 이는 배경기술에서 설명한 바와 같이 실외 후사경이 볼록거울일 경우 중 "운전자측의 평균 곡률 반경은 120cm 이상이고 거울 위의 각각의 곡률반경은 평균 곡률반경의 차이가 12.5%이하 일 것." 이라고 명시하고, 승객 측은 볼록거울의 후사경을 설치하는 경우에는 "평균 곡률반경이 89cm(어린이운송용 승합자동차의 경우에는 100cm) 이상 165cm 이하이고, 각 점에서의 곡률반경과 평균곡률 반경의 차이는 평균 곡률반경 값의 12.5퍼센트 이하일 것."이라고 자동차 안전법규에서 정하고 있다. As illustrated in FIG. 11, the rear rearview mirror is formed in a state where a constant size sphere is formed in the center based on the geometric center C-C ′ of the rearview mirror and the curvature r is maintained at the interface 50c of the sphere. If both ends of the 60 are symmetrically bent about the center of the spherical center portion 50a by the bending angle θr, an aspherical surface portion 50b is formed to secure a wider viewing angle by the bending angle θr. do. The aspherical surface portion 50b has a curvature r gradually decreasing from the boundary surface 50c of the central spherical surface portion 50a, and each surface of the peripheral portion 50b has a shape having a different curvature r. The shape of the aspherical surface can be described with reference to FIGS. 11 and 12. In FIGS. 11 and 12, when the center line in the geometric rearward direction 50a of the outdoor rearview mirror is referred to as Rx-Rx 'and the centerline in the vertical direction is referred to as Ry-Ry', the horizontal rearview mirror 60 is horizontal. Sectional cutaway of Rx-Rx 'which is the center line of a direction is Section Rx-Rx' of FIGS. At this time, the curvature r of the central spherical portion 50a preferably has a spherical shape having a radius of about 1,220 mm or more. This is the case when the outdoor rearview mirror is a convex mirror as described in the background art. "The mean radius of curvature of the driver should be 120 cm or more and the radius of curvature on the mirror should be 12.5% of the difference in the mean radius of curvature." In the case of installing a rearview mirror of a convex mirror, the passenger said, "The average radius of curvature is not less than 89 cm (100 cm in the case of a passenger van for children) and 165 cm or less, and the difference between the radius of curvature and the average radius of curvature at each point is average. It should be less than 12.5 percent of the radius of curvature. "
이를 참조하면, 중앙구면부(50a)의 곡률반경이 1,200mm이라고 하면 비구면부(50b)의 곡률반경은 1,200mm보다 작게 되므로 평균 곡률반경이 1,200mm보다 작게 되므로 중앙구면부(50a)의 곡률은 1,200mm보다 큰 곡률을 구비하여야 한다. 상기 평균 곡률반경은 구면부(50a) 및 비구면부(50b)의 평균 곡률반경이므로 이는, 중앙구면부(50a)의 곡률의 크기, 밴딩의 위치 및 밴딩각(θr)에 따라 달라질 수 있지만, 본 발명은 후술의 시뮬레이션한 실시 예를 참조로 할 때, 중앙구면부(50a)의 곡률(r)은 바람직하게는 반경 약 1,220mm이상의 구면의 형상을 구비하게 되면 평균 곡률반경은 1,200mm이상이 된다. 상기 비구면(50b)의 형상은 각각의 면마다 곡률이 다른 형상을 구비하게 되고, 또한, 서로 다른 곡률로 인하여 후사경의 각각의 면에는 서로 다른 굴절력(D)을 가지게 된다. Referring to this, if the radius of curvature of the central spherical portion 50a is 1,200mm, the radius of curvature of the aspherical portion 50b is smaller than 1,200mm, so the average curvature radius is smaller than 1,200mm, so the curvature of the central spherical portion 50a is It should have a curvature greater than 1200mm. Since the average radius of curvature is the average radius of curvature of the spherical portion 50a and the aspherical portion 50b, this may vary depending on the size of the curvature of the central spherical portion 50a, the bending position, and the bending angle θr. In the present invention, referring to the following simulated embodiment, the curvature r of the central spherical portion 50a preferably has a spherical shape with a radius of about 1,220 mm or more, and the average radius of curvature becomes 1,200 mm or more. . The shape of the aspherical surface 50b has a different curvature for each surface, and also has different refractive powers D on each surface of the rearview mirror due to different curvatures.
이러한 비구면의 형상은 도 11 및 12에서 수평방향의 단면 절개된 영역 Rx-Rx'와 수직방향으로 단면 절개된 Ry-Ry'로 설명할 수 있다. 실외 후사경(50) 배면의 최하단의 기준선을 Bx-Bx'라고 할 때 구면중앙부(50a) 중심선 Ry-Ry'로 부터 X축 방향의 일정한 간격(d1~d9)마다 Y축 방향으로 후사경의 높이가 각가 다르며 이를 광학에서는 새그값(Sy)이라고 하고 이 새그값(Sy)은 비구면의 형상을 결정하는 요소가 된다. 또한, X축 방향의 일정한 간격(d1~d9) 마다의 곡률(r)이 다르다는 것은 구면중앙부(50a) 중심부의 곡률값과 주변부(50b)의 곡률(r)이 적어지므로 구면중앙부(50a) 중심부의 곡률의 중심에서 각각의 일정한 간격(d1~d9)마다 이심(중심이 틀어짐)이 되어있음을 의미한다. 이러한 이심량은 하기의 수학식 2로 표시할 수 있으며 이러한 이심량은 비구면의 형상을 결정하는 요소가 되며 이심된 량을 이심율(e)이라고 한다.The shape of the aspherical surface may be described as FIGS. 11 and 12 as Ry-Ry 'cross-section cut in the vertical direction and the region Rx-Rx' in the horizontal cross-section. When the bottom reference line of the rear surface of the outdoor rearview mirror 50 is referred to as Bx-Bx ', the height of the rearview mirror in the Y-axis direction is constant from the spherical center portion 50a center line Ry-Ry' at regular intervals (d1 to d9) in the X-axis direction. The angles are different and this is called sag value Sy in optics, and this sag value Sy is an element that determines the shape of an aspherical surface. In addition, the difference in the curvature r between the constant intervals d1 to d9 in the X-axis direction means that the curvature value of the center portion of the spherical center portion 50a and the curvature r of the peripheral portion 50b decrease, so that the center portion of the spherical center portion 50a is reduced. It means that the center of gravity of the curvature of each of the interval (d1 ~ d9) is the eccentric (the center is distorted). This eccentricity can be expressed by Equation 2 below, and this eccentric amount becomes an element for determining the shape of the aspherical surface, and the eccentric amount is called an eccentricity (e).
수학식 2
Figure PCTKR2012008835-appb-M000002
Equation 2
Figure PCTKR2012008835-appb-M000002
상기 수학식 2에서 e는 이심율이고, a는 장반경이며, b는 단반경을 의미한다.In Equation 2, e is an eccentricity, a is a long radius, and b is a short radius.
이상의 중앙구면부(50a)의 형상과 비구면의 요소인 굴절력(D), 형상요소인 새그값(Sy) 및 이심율(e)을 구비한 비구면부(50b) 및 실외 후사경(50)의 구면중심을 후사경의 평면상 기하학적 중심과 좌.우 및 상측 방향으로 편심(δx,δy) 시켜 종래의 실외 후사경(60)의 문제점을 개선한 실시 예에 대해서 설명하고자 한다.The spherical center of the aspherical surface portion 50b and the outdoor rearview mirror 50 having the shape of the central spherical portion 50a and the refractive power D, the sag value Sy, and the eccentricity e, which are the elements of the aspherical surface, An embodiment in which the problem of the conventional outdoor rearview mirror 60 is improved by eccentricity (δx, δy) in the planar geometric center of the rearview mirror and left, right, and upward directions.
본 발명의 실시 예인 도 11 및 12의 실외 후사경(50)을 장착한 차량의 시야각이 더 넓은 시야각이 확보되어 사각지대를 개선한 도면은 도 3, 도 7 및 도 8로 설명할 수 있다. 도 3는 본 발명에 실시 예에 따른 측.후방 즉, 수평방향의 개선된 사각지역의 영역을 설명하는 도면이고, 도 6는 본 발명에 실시 예에 따른 승용차량의 수직방향의 개선된 시각 지역의 영역을 설명하는 도면이고, 도 7은 본 발명에 실시 예에 따른 상용차량의 수직방향의 개선된 시각 지역의 영역을 설명하는 도면이다.  3, 7 and 8 may be described with reference to the wider viewing angle of the vehicle equipped with the outdoor rearview mirror 50 of FIGS. 11 and 12 to improve the blind spot. 3 is a view illustrating an area of an improved blind spot in the side, rear, or horizontal direction according to an embodiment of the present invention, and FIG. 6 is an improved visual area of a vertical direction of a passenger vehicle according to an embodiment of the present invention. 7 is a view illustrating an area of the improved visual area in the vertical direction of a commercial vehicle according to an embodiment of the present invention.
도 3은 측.후방 즉 수평방향의 사각지대의 개선에 대한 것으로 실외 후사경(50)의 중앙구면부(50a)의 경계면(50c)을 기준으로 일정량의 밴딩각(θr)을 중앙구면부의 중심을 기준으로 원형의 대칭성을 가진 형상으로 밴딩각(θr)을 구비함으로써 운전석측은 θVAL, 승객석측은 θVAR만큼 더 넓은 시야각을 확보할 수 있고, 또한, 운전자가 조정할 수 있는 실외 후사경의 조정각인 운전석측의 θR, 승객석측의 θL은 실외 후사경(50)의 내측부도 외측부와 동일한 대칭성의 비구면부(50b)를 구비하므로 본 발명의 실외 후사경(50) 경사각(θr)의 2배의 각도를 조정하여도 내측부의 사각지대는 발생하지 않아 외측단부는 2배에 상당하는 시야각을 확보하므로 종래의 후사경의 사각지대를 해소할 수 있다. 또한, 승객 측은 볼록거울의 후사경을 설치하는 경우에는 "평균 곡률반경이 89cm(어린이운송용 승합자동차의 경우에는 100cm) 이상 165cm 이하이어야 한다."는 조항은 운전석보다 승객석측의 곡률이 작도록 하여 더 넓은 시야각을 확보하기 위함이다. 이러한, 운전석 및 승객석의 서로 다른 곡률은 서로 다른 상의 크기 및 거리감을 느끼므로, 본 발명은 이러한 상기의 문제를 실외 후사경(50)의 중앙구면부(50a)의 중심선 My-My'를 δx 만큼 내측방향으로 이동시키면 실외 후사경(50)의 기하학적 수직방향의 중심선 Ry-Ry'와 편심이 발생하여 한층 더 넓은 시야각을 확보할 수 있으므로 운전석 및 승객석측의 서로 다른 곡률의 후사경을 좌.우 동일한 형태의 실외 후사경(50)을 적용하여도 문제가 없으므로 거리 및 상의 크기에 대한 문제를 없애는 효과가 있다. FIG. 3 illustrates an improvement in the side, rear, and horizontal blind spots. The bending angle θr of the center spherical portion 50 is determined based on the boundary surface 50c of the center spherical portion 50a of the outdoor rearview mirror 50. By providing the bending angle θr in the shape of circular symmetry as a reference, the driver's side can secure a wider viewing angle as θVAL and the passenger's side as θVAR, and θR on the driver's side, which is an adjustable angle of the driver's outdoor rearview mirror. , ΘL on the passenger seat side has the same symmetrical aspherical portion 50b as the inner side of the outdoor rearview mirror 50, so even if the angle of the inclination angle θr of the outdoor rearview mirror 50 of the present invention is adjusted, Since blind spots do not occur, the outer end portion secures a viewing angle equivalent to twice the size of the conventional blind spots. In the case of installing a rearview mirror of a convex mirror, the passenger side has a provision that the average curvature radius should be greater than 89cm (100cm in the case of a children's transport vehicle) and less than 165cm. This is to secure a wide viewing angle. Since the different curvatures of the driver's seat and the passenger's seat feel different phase sizes and sense of distance, the present invention solves the above problem by increasing the centerline My-My 'of the central spherical portion 50a of the outdoor rearview mirror 50 by δx. Moving in the direction, the center line Ry-Ry 'and the eccentricity of the geometric vertical direction of the outdoor rearview mirror 50 can be generated to secure a wider viewing angle, so that rearview mirrors of different curvatures on the driver's seat and passenger's seat can be left or right. Since there is no problem even when the outdoor rearview mirror 50 is applied, there is an effect of eliminating the problem of the distance and the size of the image.
또한, 도 6 및 도 7은 종래의 실외 후사경의 수직방향으로 발생하는 사각지대를 운전자는 수직방향으로 실외 후사경의 각도(θ)를 조정하여 차량의 운전석의 높이에 맞게 조정하고 또한, 주차 시에도 이 각도(θ)를 조정하는 불편함이 있다. 본 발명에서는 상기와 동일한 실외 후사경(50)을 구비하고 실외 후사경(50)의 중앙구면부(50a)의 중심선 Mx-Mx'를 δy만큼 상측 방향으로 이동시키면 실외 후사경(50)의 기하학적 수직방향의 중심선 Rx-Rx'와 편심이 발생하여 한층 더 넓은 시야각을 확보할 수 있으므로 차량의 운전석의 높이에 다른 사각지대와 주차 시 실외 후사경의 각도(θ)를 조정하는 불편함을 없앨 수 있다. 6 and 7 show that the blind spot generated in the vertical direction of the conventional outdoor rearview mirror is adjusted to the height of the driver's seat of the vehicle by adjusting the angle θ of the outdoor rearview mirror in the vertical direction, and also when parking. There is an inconvenience in adjusting this angle [theta]. In the present invention, if the same as the above-described outdoor rearview mirror 50 and the center line Mx-Mx 'of the central spherical portion 50a of the outdoor rearview mirror 50 is moved upward by δy in the geometric vertical direction of the outdoor rearview mirror 50 Since the center line Rx-Rx 'and the eccentricity can be obtained to secure a wider viewing angle, it is possible to eliminate the inconvenience of adjusting the angle (θ) of the outdoor rearview mirror when parking in a different blind spot and the height of the driver's seat.
본 발명의 또 다른 특징 중의 하나는 구면에 상이 맺히는 초점이 달라지는 구면수차로 인한 상의 왜곡과 번짐을 최소화하는 데 있다. 이러한 구면수차는 상기 도 13을 통하여 설명한 바와 같이 구면의 외주면(50e)으로 갈수록 많은 수차가 발생하므로 본 발명에서는 중앙구면부(50a)의 경계면(50c)에서 밴딩각(θr)을 줌으로써 그 문제를 해결할 수 있다. Another feature of the present invention is to minimize the distortion and blurring of the image due to the spherical aberration in which the focus of the image on the spherical surface is different. Since the spherical aberration occurs more toward the outer circumferential surface 50e of the spherical surface as described with reference to FIG. 13, the problem is solved by giving a bending angle θr at the boundary surface 50c of the central spherical portion 50a. I can solve it.
[규칙 제26조에 의한 보정 11.12.2012] 
표 1
Figure WO-DOC-TABLE-1
[Revision 11.12.2012 under Rule 26]
Table 1
Figure WO-DOC-TABLE-1
상기 구면수차 및 상의 왜곡에 대한 문제는 실시예인 표 1, 도 13 및 도 14로 설명을 할 수가 있다. 도 14은 빛이 굴절되는 원리와 상의 크기 및 위치를 설명하기 위한 도면이다. 도 14는 광학적인 기본 원리는 통상적인 광학적인 지식을 가진 사람을 위하여 설명하므로 구체적인 부호의 설명 및 공식은 생략하기로 한다. Problems with respect to the spherical aberration and the distortion of the image can be described in Tables 1, 13, and 14 as examples. 14 is a view for explaining the principle that the light is refracted and the size and position of the image. FIG. 14 illustrates the basic optical principle for a person having ordinary optical knowledge, and thus descriptions and formulas of specific symbols will be omitted.
도 14에서 렌즈의 중심으로 형성된 광축M-M'의 한지점A로부터 s만큼 떨어진 지점에 크기가 y인 물체가 렌즈의 한 면인 B지점(s1면)에 광선이 입사되면 렌즈의 곡률 중심인 C를 기준으로 법선 N-N'가 만들어지고 이때의 광선의 입사각은 α가 되며, 이는 서로 다른 매질(n,n')로 광선이 통과하므로 매질의 차이로 인하여 굴절이 이루어져 렌즈의 후면(s2면)의 중심에서 s'만큼 떨어진 지점에서 크기가 y'인 상이 맺히게 된다. 여기서 상의 크기 y'및 y의 비를 배율이라고 정하고 이 배율은 s 및 s'의 비와 동일하다. In FIG. 14, when an object having a size of y is incident on the point B of the optical axis M-M 'formed as the center of the lens by s, a light beam is incident on the point B (s1 surface) of one side of the lens, the center of curvature C of the lens. The normal N-N 'is made based on the angle of incidence and the angle of incidence of the ray becomes α. This is because the ray passes through different media (n, n'), which causes refraction due to the difference in the media. At a point s 'away from the center of the image, an image of size y' is formed. Here, the ratio of the magnitudes y 'and y of the phase is defined as the magnification, which is equal to the ratio of s and s'.
이때 도 13에서 설명한 것처럼 입사광은 볼록 렌즈의 외주로 갈수록 더 굴절이 되므로 입사광은 광축M-M'을 중심으로 달라지며 횡방향으로 수차가 발생한다. 또한, 이러한 수차는 수직방향으로도 수차를 발생시키므로 상의 선명성의 문제를 야기한다. At this time, since the incident light is further refracted toward the outer circumference of the convex lens as described with reference to FIG. 13, the incident light varies around the optical axis M-M 'and aberration occurs in the lateral direction. In addition, this aberration also causes aberration in the vertical direction, which causes a problem of image sharpness.
본 발명은 이러한 수차를 통한 상의 왜곡을 개선하는 데 또 다른 목적이 있으므로 실외 후사경(50)의 중앙부(50a)는 수차의 발생이 거의 없는 크기의 원형의 구면의 형상을 구비하고 주변부(50b)는 비구면 형상으로 수차의 발생을 최소화한다. The present invention has another object to improve the distortion of the image through such aberration, so that the central portion 50a of the outdoor rearview mirror 50 has a circular spherical shape with almost no aberration, and the peripheral portion 50b has Aspheric shape minimizes the occurrence of aberrations.
이하 본 발명의 구체적인 실시를 위한 몇 가지의 전제조건 즉, 실외 후사경의 곡률을 1,200mm 및 1,250mm로 하고 실외 후사경의 형상을 구면 또는 본 발명의 구면 및 비구면의 형상, 후사경의 두께를 2mm, 후사경의 좌.우의 크기를 180mm, 사물의 위치를 거울 앞의 1.2m, 사물의 크기를 1m로 가정하여 5가지의 실시예를 기하광학적인 원리로 분석한 결과가 상기 표 1이다. Some prerequisites for specific implementation of the present invention are that the curvature of the outdoor rearview mirror is 1,200mm and 1,250mm, and the shape of the outdoor rearview mirror is spherical or spherical or aspherical in the present invention, the thickness of the rearview mirror is 2mm, the rearview mirror Table 1 shows the results of analyzing five examples based on the geometrical optical principle assuming the left and right sizes of 180 mm, the position of the object 1.2 m in front of the mirror, and the size of the object 1 m.
표 1에서 후사경 중심으로부터 거리를 10mm단위마다 후사경의 각 면의 상의 왜곡 및 배율, 굴절력, 편심율, 각 면의 곡률을 분석하였다. In Table 1, the distortion and magnification, the refractive power, the eccentricity, and the curvature of each surface of each side of the rear mirror are analyzed at a distance from the center of the rear mirror in 10 mm units.
표 1의 실시 예1은 종래의 곡률이 1,200mm인 구면 실외 후사경, 실시 예2는 중앙구면부의 곡률은 1,200mm이고 비구면부는 중앙구면부의 경계면에서 경사각(θr)을 10도인 후사경, 실시 예2는 중앙구면부의 곡률은 1,200mm이고 비구면부는 중앙구면부의 경계면에서 밴딩각(θr)을 10도로 한 실외 후사경, 실시 예3는 중앙구면부의 곡률은 1,250mm이고 비구면부는 중앙구면부의 경계면에서 밴딩각(θr)이 5도인 실외 후사경, 실시 예4는 중앙구면부의 곡률은 1,250mm이고 비구면부는 중앙구면부의 경계면에서 밴딩각(θr)이 10도인 후사경, 실시 예5는 중앙구면부의 곡률은 1,250mm이고 비구면부는 중앙구면부의 경계면에서 밴딩각(θr)이 15도인 후사경의 상의 왜곡을 분석한 결과이다. Example 1 of Table 1 is a spherical outdoor rearview mirror having a conventional curvature of 1,200mm, Example 2 is a rearview mirror having an inclination angle (θr) of 10 degrees at the boundary surface of the central spherical portion of the central spherical portion 1,200mm, Example 2 Outdoor rearview mirror with a curvature of 1,200mm at the center spherical surface and a bending angle (θr) of 10 degrees at the boundary surface of the center spherical portion, Example 3 has a bending angle (θr) at the boundary surface of the center spherical portion with an aspheric surface curvature of 1,250mm. Outdoor rearview mirror with 5 °), Example 4 has a curvature of 1,250mm in the center spherical part, and the aspherical surface has a bending angle (θr) of 10 ° at the interface of the center spherical part, and Example 5 has a curvature of 1,250mm in the center spherical part. This is the result of analyzing the distortion of the image of the rearview mirror having a bending angle θr of 15 degrees at the boundary surface of the central spherical portion.
여기서, 후사경의 굴절력(D)은 상기 수학식 1의 결과이며, 비구면부의 이심량(e)은 수학식 2의 결과이다. 종.횡수차는 상기 조건을 통한 기하광학적인 계산의 결과치이다. Here, the refractive power D of the rearview mirror is a result of Equation 1, and the amount of eccentricity e of the aspherical portion is a result of Equation 2. Longitudinal transverse aberration is the result of geometric optical calculation through the above conditions.
실시 예인 표 1을 참조하여 보면 모든 실시 예는 미세하지만 수차가 발생한다. 이러한 수차는 작을수록 좋지만 본 발명에서는 밴딩각(θr)이 커서 넓은 시야각을 확보하고 또한 수차가 작으면서 상의 배율이 100%에 가까운 실시 예가 가장 양호하다. Referring to Table 1, which is an embodiment, all examples are fine but aberration occurs. The smaller the aberration, the better. However, in the present invention, the banding angle θr is large, so that the wide viewing angle is secured, and the embodiment has the smallest aberration while the image magnification is close to 100%.
또한, 구면볼록거울의 실시 예1과 본 발명의 실시예인 실시 예3 내지 실시 예 5와 비교하면 수차가 작아지고 또한 상의 횡배율도 크므로 상의 왜곡을 줄일 수가 있다. In addition, compared with the first embodiment of the spherical convex mirror and the third embodiment to the fifth embodiment of the present invention, the aberration is small and the aspect ratio of the image is also large, so that the distortion of the image can be reduced.
또한, 실시 예2의 경우 중앙 구면부의 곡률을 1,200mm로 할 경우 후사경의 외주부의 곡률(r)은 줄어들므로 평균 곡률반경은 1,198mm로 되어 자동차의 안전법규의 "운전자측의 평균 곡률 반경은 120cm 이상이고 거울 위의 각각의 곡률반경은 평균 곡률반경의 차이가 12.5%이하 일 것."을 만족하지 못하게 된다. 실시 예3~5에서는 중앙구면부의 곡률을 1,250mm으로 실시할 경우 평균 곡률반경은 각각 1,249mm, 1,248mm, 1,246mm로 되어 자동차의 안전법규를 만족할 수 있다. 또한, 이러한 구면중앙부(50a)의 크기는 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. In addition, in the case of Example 2, if the curvature of the center spherical part is 1,200 mm, the curvature r of the outer peripheral part of the rearview mirror decreases, so the average curvature radius is 1,198 mm, and the average curvature radius of the driver's side is 120 cm. Above, the radius of curvature of each mirror should not be less than 12.5%. " In Examples 3 to 5, when the curvature of the central spherical part is performed at 1,250 mm, the average curvature radius is 1,249 mm, 1,248 mm, and 1,246 mm, respectively, to satisfy the safety regulations of the vehicle. In addition, the size of the spherical center portion 50a may be modified in various ways without departing from the scope of the present invention.
또한, 비구면부를 형성하는 밴딩각(θr)의 크기는 상의 왜곡 및 상의 크기를 고려해서 결정되며, 본 발 명의 실시 예4 및 5의 결과에서 밴딩각(θr)이 큰 경우 상의 왜곡 및 상의 크기가 미세하게 불리하지만 운전자의 시야에 미치는 영향이 극히 미약함을 알 수 있다. 따라서, 본 발명은 넓은 시야각의 확보가 중요한 요소이므로 경사각(θr)의 크기를 10도 이상인 것을 특징으로 하며 이러한 밴딩각(θr)의 크기는 구면중앙부(50a)의 곡률의 크기 및 경사각(θr)의 크기를 조정해서 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 또한 가능하다.In addition, the size of the bending angle θr forming the aspherical surface portion is determined in consideration of the distortion of the image and the size of the image.In the results of Examples 4 and 5 of the present invention, when the bending angle θr is large, the image distortion and the size of the image It is a minor disadvantage, but the effect on the driver's field of vision is very small. Therefore, the present invention is characterized in that the size of the inclination angle (θr) is 10 degrees or more because the securing of a wide viewing angle is an important element, the size of the bending angle (θr) is the size of the curvature of the spherical center portion 50a and the inclination angle (θr) Various modifications are also possible without departing from the scope of the present invention by adjusting the size of.
이러한 변형 중 또 다른 방법 중의 하나는 상의 왜곡을 최소화하기 위하여 비구면부의 설계를 비구면의 공식을 이용하여 적용할 수 있음은 물론이다. 이러한 비구면부의 공식은 아래의 수학식 3과 같다.One of the other methods of such deformation is, of course, to apply the design of the aspherical surface to minimize the distortion of the image using the aspherical formula. The aspherical formula is as shown in Equation 3 below.
수학식 3
Figure PCTKR2012008835-appb-M000003
Equation 3
Figure PCTKR2012008835-appb-M000003
상기 수학식 3에서 X은 광축 방향의 거리이고, Y는 광축에서부터 수직방향으로의(비구면정점의 접선평면까지의) 거리이며, R은 곡률반경을 뜻하고, K는 코닉(Conic) 상수를 의미한다.In Equation 3, X is the distance in the optical axis direction, Y is the distance from the optical axis in the vertical direction (to the tangential plane of the aspherical vertex), R means the radius of curvature, K means the Conic constant do.
상기 수학식 3에서 K,A,B,C,D 등의 상수가 주어지면 높이 및 즉 비구면의 형상이 결정되어 지며, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 또한 가능하다.Given the constants K, A, B, C, D, etc. in Equation 3, the height and the shape of the aspherical surface are determined, and various modifications are also possible without departing from the scope of the present invention.
본 발명의 산업상 이용 가능성은 종래의 사각지대를 보완하는 볼록거울 등의 보조수단을 소비자가 직접 구매하여 부착하거나, 또한 사각지대를 완전히 해소하지 못한 종래의 후사경을 부착한 상태로 운전하는 차량이 아직까지 대부분이다. 본 발명은 자동차제조사가 차량의 제조 시에 본 발명품을 장착하여 출고한다면 소비자가 기대하는 차량의 미해결 기술중의 하나인 사각지대가 해소되는 사이드미러를 제공하므로 고객의 만족을 줄 수 있어 자동차제조사는 즉시 본 발명품을 적용하리라 추정된다. Industrial applicability of the present invention is that a vehicle driving with a conventional rearview mirror that does not completely eliminate the blind spots, or directly attached to the consumer by purchasing a secondary means such as a convex mirror that complements the blind spots. Most are still. The present invention provides a side mirror in which blind spots, which are one of the unsolved technologies of the vehicle, are expected to be solved if an automobile manufacturer ships the present invention at the time of manufacture of the vehicle, thereby providing customer satisfaction. It is assumed that the present invention will be applied immediately.
또한, 본 발명품은 차량의 운전 중에 발생하는 사각지대의 해결은 물론이고, 종래의 사각지대 해소를 위하여 불필요하게 큰 사이드미러의 크기를 더 콤팩트한 싸이즈로 사이드미러의 제조가 가능하도록 한다. 이러한 콤팩트한 싸이즈는 차량의 운전 중에 받는 공기저항계수를 줄여 차량의 연비를 증가시키고 또한, 사이드미러에서 발생하는 윈드노이즈를 또한 줄일 수 있는 효과가 있다. In addition, the present invention enables the manufacture of the side mirror with a more compact size of the unnecessarily large size of the side mirror in order to solve the blind spots generated during driving of the vehicle, as well as to solve the conventional blind spots. The compact size reduces the air resistance coefficient received while driving the vehicle, thereby increasing the fuel efficiency of the vehicle and also reducing the wind noise generated in the side mirror.
따라서, 본 발명품은 상업화의 양산이 가능하고 산업상 여러 분야에 적용이 가능하다.Therefore, the present invention is capable of mass production of commercialization and applicable to various fields of industry.

Claims (1)

  1. 자동차에 구비되는 실외 후사경에 있어서,In the outdoor rearview mirror provided in the car,
    기 설정된 크기의 곡률을 가진 중앙 구면부와;A central spherical portion having a curvature of a preset size;
    상기 중앙 구면부를 제외한 상기 실외 후사경의 좌우 및 상하면은 상기 중앙 구면부의 중심점(광축)을 기준으로 상기 중앙 구면부의 경계면으로부터 상기 실외 후사경의 외주 가장자리까지 원상의 대칭으로 점차 곡률이 축소되어 굴절력이 증가되는 비구면부;를 구비하되, The right and left and top and bottom surfaces of the outdoor rearview mirror excluding the central sphere are gradually reduced in curvature in a circular symmetry from the boundary surface of the central spherical section to the outer circumferential edge of the outdoor rearview mirror with respect to the center point (optical axis) of the central spherical section to increase refractive power. Aspherical portion; provided with,
    상기 중앙 구면부의 중심점(광축)은 상기 실외 후사경의 좌우 및 상하의 기하학적 중심점을 기준으로 내측 수평 방향으로 일정한 량만큼 편심이 되어있고, 상측 수직 방향으로 일정한 량만큼 편심이 되어 있는 것을 특징으로 하는 구면 및 비구면의 형상을 조합한 볼록거울의 자동차용 실외 후사경.The center point (optical axis) of the central spherical portion is eccentric by a certain amount in the inner horizontal direction with respect to the left and right and the top and bottom geometric center point of the outdoor rearview mirror, and the spherical and characterized in that the eccentric by a certain amount in the upper vertical direction Outdoor rearview mirror for convex mirror that combines aspherical shapes.
PCT/KR2012/008835 2011-10-27 2012-10-26 Convex outside rear view mirror using combined spherical and aspherical shape WO2013062342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0110632 2011-10-27
KR1020110110632A KR101221600B1 (en) 2011-10-27 2011-10-27 Convex outside back mirror using spherical and aspherical shape

Publications (1)

Publication Number Publication Date
WO2013062342A1 true WO2013062342A1 (en) 2013-05-02

Family

ID=47841721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008835 WO2013062342A1 (en) 2011-10-27 2012-10-26 Convex outside rear view mirror using combined spherical and aspherical shape

Country Status (2)

Country Link
KR (1) KR101221600B1 (en)
WO (1) WO2013062342A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300045A (en) * 1994-05-06 1995-11-14 Hiroshi Kondo Mirror for automobile
JPH1059071A (en) * 1996-08-26 1998-03-03 Sakae Riken Kogyo Kk Rearview mirror for vehicle
JPH11151978A (en) * 1997-11-20 1999-06-08 Tokai Rika Co Ltd Mirror for vehicle and mirror surface shape setting method of mirror for vehicle
KR100942809B1 (en) * 2008-10-08 2010-02-17 김진동 Method for producing inside rear view mirror for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300045A (en) * 1994-05-06 1995-11-14 Hiroshi Kondo Mirror for automobile
JPH1059071A (en) * 1996-08-26 1998-03-03 Sakae Riken Kogyo Kk Rearview mirror for vehicle
JPH11151978A (en) * 1997-11-20 1999-06-08 Tokai Rika Co Ltd Mirror for vehicle and mirror surface shape setting method of mirror for vehicle
KR100942809B1 (en) * 2008-10-08 2010-02-17 김진동 Method for producing inside rear view mirror for vehicle

Also Published As

Publication number Publication date
KR101221600B1 (en) 2013-01-14

Similar Documents

Publication Publication Date Title
KR100867439B1 (en) Rear vision mirror for vehicle
US20030147163A1 (en) Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
US5214540A (en) Curved mirror optical systems
JPH07504375A (en) Vehicle rear vision system
CN209640589U (en) One kind looking around wide-angle without thermalization camera lens and automobile panoramic round-looking system
WO2022147911A1 (en) Double-telecentric projection lens and head-up display device for vehicle
JPWO2019163171A1 (en) Mobile body with head-up display and head-up display
US20230161135A1 (en) Imaging lens system
CN113294742B (en) Car light device, projection lens and manufacturing method thereof
WO2013062342A1 (en) Convex outside rear view mirror using combined spherical and aspherical shape
JP4971180B2 (en) An indirect observation system that minimizes blind spots without distorting the formed image
TWI794486B (en) Mobile vehicle assistance system and processing method thereof
CN115718361A (en) Optical system, camera and vehicle
CN216118219U (en) Vehicle-mounted head-up display system
WO2012015134A1 (en) Vehicle side mirror
CN109975960A (en) One kind looking around wide-angle without thermalization camera lens and automobile panoramic round-looking system
TWI629509B (en) Display device with ordinary windshield and automobile head-up display system using the same
KR20130046329A (en) Convex outside back mirror using spherical and aspherical shape
CN218866202U (en) Optical lens and vehicle-mounted camera module applying same
CN214097947U (en) Low-distortion vehicle-mounted all-round looking optical image system
JPH05346539A (en) Optical system for display panel enlargement
KR20150047832A (en) Optical System for Head Up Display
TWI811987B (en) Optical lens
CN218446222U (en) Head-up display optical system for commercial vehicle
CN214795426U (en) Head-up display optical system adopting free curved array lens for visual angle expansion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843612

Country of ref document: EP

Kind code of ref document: A1