WO2013062198A1 - 영상 복호화 장치 - Google Patents

영상 복호화 장치 Download PDF

Info

Publication number
WO2013062198A1
WO2013062198A1 PCT/KR2012/003085 KR2012003085W WO2013062198A1 WO 2013062198 A1 WO2013062198 A1 WO 2013062198A1 KR 2012003085 W KR2012003085 W KR 2012003085W WO 2013062198 A1 WO2013062198 A1 WO 2013062198A1
Authority
WO
WIPO (PCT)
Prior art keywords
intra prediction
mode
block
quantization
prediction mode
Prior art date
Application number
PCT/KR2012/003085
Other languages
English (en)
French (fr)
Inventor
박신지
Original Assignee
(주)인터앱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI201231502T priority Critical patent/SI2773117T1/sl
Priority to RS20190168A priority patent/RS58300B1/sr
Application filed by (주)인터앱 filed Critical (주)인터앱
Priority to MX2015015072A priority patent/MX338989B/es
Priority to MX2015015066A priority patent/MX339135B/es
Priority to LTEP12843637.5T priority patent/LT2773117T/lt
Priority to ES12843637T priority patent/ES2710214T3/es
Priority to PL18181663T priority patent/PL3402199T3/pl
Priority to US14/124,576 priority patent/US9288488B2/en
Priority to EP18181673.7A priority patent/EP3402201B8/en
Priority to EP18181670.3A priority patent/EP3402200B1/en
Priority to CN201810105690.5A priority patent/CN108111848B/zh
Priority to JP2014531703A priority patent/JP5722506B2/ja
Priority to MX2015015076A priority patent/MX338990B/es
Priority to PL12843637T priority patent/PL2773117T3/pl
Priority to MX2015015069A priority patent/MX338988B/es
Priority to CN201810105702.4A priority patent/CN108174213B/zh
Priority to EP12843637.5A priority patent/EP2773117B1/en
Priority to MX2014003541A priority patent/MX2014003541A/es
Priority to EP18181663.8A priority patent/EP3402199B1/en
Priority to EP18181678.6A priority patent/EP3402202B8/en
Priority to DK12843637.5T priority patent/DK2773117T3/en
Priority to CN201280047349.XA priority patent/CN103931186B/zh
Publication of WO2013062198A1 publication Critical patent/WO2013062198A1/ko
Priority to US15/053,801 priority patent/US10587877B2/en
Priority to US15/053,797 priority patent/US10523941B2/en
Priority to US15/053,821 priority patent/US10523943B2/en
Priority to US15/053,814 priority patent/US10523942B2/en
Priority to CY20191100013T priority patent/CY1121422T1/el
Priority to HRP20190354TT priority patent/HRP20190354T1/hr
Priority to US16/781,624 priority patent/US11785218B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • H04N19/45Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder performing compensation of the inverse transform mismatch, e.g. Inverse Discrete Cosine Transform [IDCT] mismatch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/198Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including smoothing of a sequence of encoding parameters, e.g. by averaging, by choice of the maximum, minimum or median value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Definitions

  • the present invention relates to an image decoding apparatus, and more particularly, to an apparatus using a quantization parameter predictor used to generate a residual block using quantization parameters of left and upper coding units of a current block.
  • image data In order to efficiently store or transmit image data, image data must be encoded.
  • Techniques for encoding image data include MPEG-1, MPEG-2, MPEG-4, and H.264 / MPEG-4 Advanced Video coding (AVC).
  • the techniques divide one picture into macroblocks, determine whether to perform intra encoding or inter encoding on a macroblock basis, and then encode each macroblock in the determined manner.
  • intra prediction is performed to increase the efficiency of intra coding. That is, instead of referring to a reference picture in order to encode a current block, a prediction block is generated using pixel values spatially adjacent to the current block to be encoded. In detail, an intra prediction mode having less distortion compared to an original macro block is selected using adjacent pixel values, and a prediction block for a current block to be encoded is generated using the selected intra prediction mode and adjacent pixel values. Then, a residual block composed of difference signals between the current block and the prediction block is generated, and the residual block is transformed, quantized, and entropy encoded. In addition, the intra prediction mode used to generate the prediction block is also encoded.
  • the coding efficiency of the texture may be improved by adaptively changing the quantization parameter, but in this case, a large number of bits are required to transmit the quantization parameter. Therefore, a method of effectively reducing the number of bits is required.
  • An object of the present invention is to improve the image quality by adaptively adjusting the quantization parameter of the current block according to the coding size, and by reducing the number of bits required to transmit the quantization parameter by encoding / decoding the quantization parameter effectively, An apparatus for improving the encoding and decoding efficiency of an image is provided.
  • an image decoding apparatus includes an intra prediction unit for regenerating an intra prediction mode of a current block and generating a prediction block in units of a current block or a subblock of the current block, and a residual signal.
  • An inverse scanning unit for transforming a quantized block into a two-dimensional quantization block, an inverse quantizer for inverse quantization of the quantization block using a quantization parameter, and an inverse transform unit for inversely transforming the inverse quantization block, to restore the quantization parameter
  • the quantization parameter predictor used is generated using the quantization parameter of the left quantization coding unit of the current coding unit (CU) and the quantization parameter of the upper coding unit.
  • the quantization parameter is generated by adding the quantization parameter predictor and the received residual quantization parameter, wherein the quantization parameter predictor is an average value of the quantization parameter of the left quantization coding unit and the quantization parameter of the upper coding unit.
  • the intra prediction unit of the image decoding apparatus configures an MPM group including three intra prediction modes by using intra prediction modes of the left and upper blocks of the current block, and uses the MPM group and the received intra prediction information.
  • the MPM group includes the planar mode, the DC mode, and the vertical mode.
  • An image decoding apparatus includes an intra predictor for reconstructing an intra prediction mode of a current block to generate a prediction block in units of a current block or a subblock of the current block, and inverse scanning for converting a residual signal into a two-dimensional quantization block.
  • a quantization parameter predictor including an inverse quantization unit for inversely quantizing the quantization block using a quantization parameter, and an inverse transform unit for inversely transforming the inverse quantization block, wherein the quantization parameter predictor used for reconstructing the quantization parameter is a current coding unit (CU). Quantization parameter of the left quantization coding unit and the quantization parameter of the upper coding unit.
  • the video quality can be improved by adaptively adjusting the quantization parameter according to the coding size, and by effectively encoding / decoding the quantization parameter, the number of bits required to transmit the quantization parameter can be reduced, thereby improving the compression efficiency of the image. .
  • FIG. 1 is a block diagram illustrating a video encoding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a video decoding apparatus according to an embodiment of the present invention.
  • FIG 3 illustrates a method of generating an intra prediction block in a video decoding apparatus, according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an intra prediction mode according to an embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating an intra prediction block device 300 according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a procedure for restoring a residual block according to an embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a procedure for recovering quantization parameters according to an embodiment of the present invention.
  • the video encoding apparatus and the video decoding apparatus may be a personal computer, a notebook computer, a personal digital assistant, a portable multimedia player, a smart phone, a wireless communication terminal, a server providing a service such as a TV, or the like.
  • the video encoding apparatus and the video decoding apparatus may include a communication device such as a communication modem for communicating with various devices or a wired / wireless communication network, a memory for encoding or decoding an image, or storing various programs and data for encoding or decoding; It may be a device having a microprocessor or the like for executing and controlling a program.
  • FIG. 1 is a block diagram illustrating a video encoding apparatus according to an embodiment of the present invention.
  • the video encoding apparatus 100 may include an intra predictor 110, an inter predictor 120, a transform and quantizer 130, an entropy encoder 140, an inverse quantization and inverse transform unit ( 150, a post processor 160, a picture buffer 170, a subtractor 190, and an adder 195.
  • the intra prediction unit 110 generates an intra prediction block by using the reconstructed pixels of the picture or slice that includes the current block.
  • the intra prediction unit 110 selects one of a preset number of intra prediction modes according to the size of the current block to be predictively encoded, and generates a prediction block according to the selected intra prediction mode.
  • the inter prediction unit 120 performs motion estimation using reference pictures stored in the picture buffer 170, and determines a reference picture index and a motion vector for motion prediction.
  • the inter prediction block of the current block is generated using the reference picture index and the motion vector.
  • the transform and quantization unit 130 transforms and quantizes the residual block of the prediction block generated by the current block and the intra prediction unit 110 or the inter prediction unit 120.
  • the transformation is done by one-dimensional transformation matrices in the horizontal and vertical directions.
  • the residual block of intra prediction is transformed by a transform matrix determined according to the size of the transform block (ie, the size of the residual block) and the intra prediction mode.
  • the residual block of inter prediction is transformed by a predetermined transform matrix.
  • the transform and quantization unit 130 quantizes the transform block using a quantization step size.
  • the quantization step size may be changed for each coding unit having a predetermined size or more.
  • the quantized transform block is provided to the inverse quantization and inverse transform unit 150 and the entropy encoder 140.
  • the inverse quantization and inverse transform unit 150 inverse quantizes the quantized transform block, and inversely transforms the inverse quantized transform block to restore a residual block.
  • the adder adds the residual block reconstructed by the inverse quantization and inverse transform unit 150 and the prediction block from the intra predictor 110 or the inter predictor 120 to generate a reconstructed block.
  • the post processor 160 is to improve the quality of the reconstructed picture and includes a deblocking filter 161, an offset applying unit 162, and a loop filtering unit 163.
  • the deblocking filtering unit 161 adaptively applies the deblocking filter to the boundary of the prediction block and the transform transform block.
  • the boundary can be defined by a boundary lying on an 8x8 grid.
  • the deblocking filtering unit 161 determines a boundary to filter, determines the boundary strength, and determines whether to apply a deblocking filter to the boundary when the boundary strength is greater than zero. do. If it is decided to filter the boundary, a filter to be applied to the boundary is selected and the boundary is filtered by the selected filter.
  • the offset applying unit 162 determines whether to apply an offset on a picture or slice basis in order to reduce a distortion between the original pixel and the pixel in the image which has passed through the deblocking filtering unit.
  • the slice may be divided into a plurality of offset regions, and an offset type may be determined for each offset region.
  • the offset type may include a predetermined number of edge offset types and band offset types. If the offset type is an edge offset type, the edge type to which each pixel belongs is determined, and an offset corresponding thereto is applied. The edge type is determined based on a distribution of two pixel values adjacent to the current pixel.
  • the loop filtering unit 163 adaptively loop-filters the reconstructed image based on a value obtained by comparing the reconstructed image passed through the offset applying unit 162 with the original image. It is determined whether to loop-filter the reconstructed image in coding units.
  • the size and coefficients of the loop filter to be applied according to each coding unit may vary.
  • Information indicating whether the adaptive loop filter is applied to each coding unit may be included in each slice header. In the case of a chrominance signal, it may be determined whether to apply an adaptive loop filter on a picture basis. Therefore, the slice header or the picture header may include information indicating whether each of the color difference components is filtered.
  • the picture buffer 170 receives the post-processed image data from the post processor 160 and restores and stores the image in a picture unit.
  • the picture may be an image in a frame unit or an image in a field unit.
  • the entropy encoder 140 entropy encodes the quantization coefficient information quantized by the transform and quantizer 130, intra prediction information received from the intra predictor 140, motion information received from the inter predictor 150, and the like. .
  • the entropy encoder 140 includes a scan unit 145 to convert coefficients of the quantized transform block into one-dimensional quantization coefficient information.
  • the scan unit 145 determines a scan type for transforming coefficients of the quantized transform block in one dimension.
  • the scan type may vary depending on the directional intra prediction mode and the size of the transform block.
  • the scan order of the quantization coefficients scans in the reverse direction.
  • the transform coefficients are divided into a plurality of subblocks and scanned.
  • the scan type applied to the transform coefficients of each subblock is the same.
  • the scan type applied between the lower blocks may be a zigzag scan or may be the same as the scan type applied to the conversion coefficients of the respective lower blocks.
  • FIG. 2 is a block diagram illustrating a video decoding apparatus 200 according to an embodiment of the present invention.
  • the video decoding apparatus 200 may include an entropy decoder 210, an inverse quantizer 220, an inverse transform unit 230, an intra predictor 240, an inter predictor 250, and the like.
  • the processor 260 includes a picture buffer 270 and an adder 280.
  • the entropy decoder 210 decodes the received bitstream and separates the received bitstream into intra prediction information, inter prediction information, and quantization coefficient information.
  • the entropy decoder 210 supplies the decoded intra prediction information to the intra predictor 240, and supplies the decoded inter prediction information to the inter predictor 250.
  • Entropy decoding 210 includes an inverse scan unit 215 for inverse scanning the decoded quantization coefficient information.
  • the inverse scan unit 215 converts the quantization coefficient information into a quantization block of a two-dimensional array.
  • One of a plurality of scan types is selected for the conversion.
  • the scan type may vary depending on the directional intra prediction mode and the size of the transform block.
  • the scan order of the quantization coefficients scans in the reverse direction.
  • the transform coefficients are divided into a plurality of subblocks and scanned.
  • the scan type applied to the transform coefficients of each subblock is the same.
  • the scan type applied between the lower blocks may be a zigzag scan or may be the same as the scan type applied to the conversion coefficients of the respective lower blocks.
  • the inverse quantization unit 220 determines a quantization step size predictor of the current coding unit, and reconstructs the quantization step size of the current coding unit by adding the determined quantization step size predictor and the received residual quantization step size.
  • the inverse quantization unit 220 inversely quantizes the quantization block by using the quantization step size and the inverse quantization matrix.
  • the quantization matrix is determined according to the size and prediction mode of the quantization block. That is, a quantization matrix is also selected for a quantization block of the same size based on at least one of the prediction mode and the intra prediction mode of the current block.
  • the inverse transform unit 230 inversely transforms the inverse quantized transform block to restore the residual block.
  • An inverse transform matrix to be applied to the inverse quantization block may be determined according to a prediction mode and an intra prediction mode.
  • the adder 280 generates a reconstructed block by adding the residual block reconstructed by the inverse transform unit 230 and the prediction block generated by the intra predictor 240 or the inter predictor 250.
  • the intra predictor 240 restores the intra prediction mode of the current block based on the intra prediction information received from the entropy decoder 210.
  • the prediction block is generated according to the reconstructed intra prediction mode.
  • the inter prediction unit 250 reconstructs the reference picture index and the motion vector based on the inter prediction information received from the entropy decoding unit 210.
  • the prediction block for the current block is generated using the reference picture index and the motion vector.
  • the prediction block is generated by applying the selected interpolation filter.
  • the operation of the post processor 260 is the same as the operation of the post processor 160 of FIG. 1, it is omitted.
  • the picture buffer 270 stores the decoded image post-processed by the post processor 260 in picture units.
  • FIG 3 illustrates a method of generating an intra prediction block according to an embodiment of the present invention.
  • the intra prediction information is entropy decoded from the received bitstream (S110).
  • the intra prediction information includes an intra prediction mode group indicator and a prediction mode index.
  • the intra prediction mode group indicator indicates whether the intra prediction mode of the current block belongs to an MPM group or a group other than the MPM.
  • the prediction mode index is information indicating a specific intra prediction mode in the intra prediction mode group indicated by the intra prediction mode group indicator.
  • the intra prediction mode group indicator may be received in the form of an unsigned integer. In this case, the intra prediction mode group indicator may be used without entropy decoding. Alternatively, the intra prediction mode group indicator may be adaptively entropy coded according to the type of the current slice. For example, entropy coding may be performed using a context determined according to the slice type. Therefore, the restoration may be performed using a context determined according to the current slice type.
  • the prediction mode index is entropy coded in a different manner than in the case of belonging to the MPM group. Therefore, entropy decoding is performed in a mutual manner even in entropy decoding.
  • the prediction mode index is binarized and entropy coded by a truncated Exp-Golomb code or a truncated unary scheme. Therefore, after obtaining the binarization information by performing entropy decoding, the prediction mode index is restored using the above schemes.
  • the prediction mode index may be binarized to a fixed length. Therefore, after obtaining the binarization information by performing entropy decoding, the prediction mode index may be restored.
  • the MPM group is generated using the intra prediction modes of blocks adjacent to the current block, and the intra prediction mode of the current block is restored using the MPM group (S120).
  • the MPM group consists of three intra prediction modes. It demonstrates with reference to FIG. 4 is a diagram illustrating an intra prediction mode according to an embodiment of the present invention.
  • the MPM group consists of the two intra prediction modes and one additional intra prediction mode.
  • the additional intra prediction mode may be a planner mode.
  • the additional intra prediction mode may be a DC mode.
  • the additional intra prediction mode may be a vertical mode or a horizontal mode.
  • the additional intra prediction mode may be an intra prediction mode having a directionality between the two intra prediction modes, or may be a DC mode or a planner mode.
  • the MPM group includes the intra prediction mode and two additional intra prediction modes.
  • the two additional intra prediction modes are set to two intra prediction modes adjacent to the intra prediction mode. If the intra prediction mode is a DC mode, the two additional intra prediction modes may be a planner mode and a vertical mode.
  • the MPM group includes the intra prediction mode and two additional intra prediction modes.
  • the two additional intra prediction modes are determined by the intra prediction mode.
  • the MPM group may include a DC mode, a planner mode, and a vertical mode.
  • the intra prediction mode indicated by the prediction mode index is selected from the MPM group to determine the intra prediction mode of the current block.
  • the intra prediction mode group indicator may be flag information indicating whether the intra prediction mode of the current block belongs to an MPM group or a group other than the MPM.
  • the intra prediction unit 240 may determine that the prediction mode index is one of intra prediction modes (hereinafter, referred to as residual intra prediction modes) except for intra prediction modes belonging to the MPM group.
  • the indicated intra prediction mode is determined as the intra prediction mode of the current block.
  • the prediction mode index given to the remaining intra prediction modes depends on the configuration of the MPM group. That is, the decoded prediction mode index indicates the index of the remaining intra prediction modes rearranged according to the configuration of the MPM group. Accordingly, the intra prediction mode of the current block is selected from the remaining intra prediction modes according to the decoded prediction mode index and the intra prediction modes belonging to the MPM group.
  • the residual intra prediction modes of the current block are rearranged in order of mode number, and the intra prediction mode of the order corresponding to the received prediction mode index is selected as the intra prediction mode of the current block.
  • the intra prediction mode of the current block may be determined by comparing the intra prediction mode index of the current block with an intra prediction mode number belonging to the MPM group.
  • the above method may be applied to a case in which a mode number 2 is assigned to a DC and a mode number 34 is assigned to a planner mode, and the directional modes are assigned to the remaining modes.
  • the method may be applied by applying a small mode number (for example, mode number 0) to the planner mode. Can be. In this case, the mode numbers of other subordinated mode numbers are increased by one.
  • the intra prediction mode of the current block is a planner mode and the remaining intra prediction mode includes a planner mode
  • the intra prediction mode index may include zero.
  • the intra prediction mode in the order corresponding to the prediction mode index is arranged in the order of planner mode, DC mode, and directional modes.
  • Intra prediction mode may be set.
  • mode number 0 may be assigned to planner mode
  • mode number 1 may be assigned to DC mode
  • mode number 0 may be assigned to DC mode and mode number 1 to planner mode.
  • the intra prediction mode of the current block may be determined by comparing the intra prediction mode index of the current block with the intra prediction mode number belonging to the MPM group.
  • the size of the prediction block is determined using the information indicating the transform size of the current block (S130).
  • the prediction block is generated using the intra prediction mode of the current block and the reference pixels of the current block.
  • the reference pixels are pixels reconstructed or pixels generated before the current block.
  • the size of the prediction block is smaller than the size of the current block, that is, when the current block is divided into a plurality of subblocks and intra prediction is performed, the same intra prediction mode is generated when the prediction block of each subblock is generated. Intra prediction mode of the current block) is used. Further, the predictive blocks of the second and subsequent subblocks in the decoding order are generated using the reconstruction pixels of the preceding subblocks. Therefore, after completion of prediction block generation, residual block generation, and reconstruction block generation in each subblock unit, a prediction block of a next subblock is generated.
  • the reference pixels are pixels that have already been decoded and reconstructed. If at least one of the reference pixels is determined to be invalid, reference pixels are generated (S150).
  • L is the number of bits for indicating the gradation of the luminance component.
  • reference pixels located at the nearest position among the valid reference pixels are copied to generate reference pixels.
  • the reference pixels are adaptively filtered according to the reconstructed intra prediction mode and the size of the prediction block (S170).
  • Reference pixels are not filtered when the intra prediction mode is the DC mode. Reference pixels are not filtered even when the intra prediction mode is the vertical mode and the horizontal mode. However, when the intra prediction mode is directional modes other than the vertical mode and the horizontal mode, the reference pixel is adaptively filtered according to the intra prediction mode and the size of the prediction block. When the size of the prediction block is 4x4, the reference pixel may not be filtered to reduce the complexity regardless of the intra prediction mode.
  • the filtering is for smoothing the amount of change in the pixel value between the reference pixels, and uses a low-pass filter.
  • the low-pass filter may be [1, 2, 1], which is a 3-tap filter, or [1, 2, 4, 2, 1], which is a 5-tap filter.
  • the size of the prediction block is 8x8 to 32x32, the reference pixel is filtered in a larger number of intra prediction modes as the size of the prediction block increases.
  • a prediction block is generated according to the intra prediction mode (S180).
  • the reference pixels used in the prediction block may be pixels adaptively filtered according to the size of the prediction block and the intra prediction mode.
  • the prediction pixel at the position adjacent to the reference pixels may be generated using the average value and the weighted average of the reference pixel adjacent to the prediction pixel.
  • the prediction pixel can be generated in the same manner as in the DC mode.
  • the reference pixel located in the vertical direction becomes a prediction pixel.
  • prediction pixels adjacent to the left pixel may be generated using the vertical reference pixels and the amount of change of the left reference pixels.
  • the change amount represents a change amount between a corner reference pixel and a reference pixel adjacent to the prediction pixel.
  • the prediction pixel may be generated in the same manner as the vertical mode is different from the vertical mode.
  • the intra prediction block generating apparatus 300 includes a parser 310, a prediction mode decoder 320, a prediction block size determiner 330, a reference pixel validity determiner 340, and a reference pixel generator ( 350, a reference pixel filtering unit 360, and a prediction block generator 370.
  • the parser 310 entropy decodes the intra prediction information and the transform block size information from the received bitstream.
  • the intra prediction information includes an intra prediction mode group indicator and a prediction mode index.
  • the intra prediction mode group indicator indicates whether the intra prediction mode of the current block belongs to an MPM group or a group other than the MPM.
  • the prediction mode index is information indicating a specific intra prediction mode in the intra prediction mode group indicated by the intra prediction mode group indicator.
  • the entropy decoding method of the intra prediction information is the same as S110 of FIG. 3.
  • the transform size information includes at least one flag (split_transform_flag) indicating a transform size transmitted from an encoder.
  • the prediction mode decoder 320 generates an MPM group by using intra prediction modes of blocks adjacent to the current block, and restores the intra prediction mode of the current block by using the MPM group and the entropy decoded intra prediction information.
  • the MPM group consists of three intra prediction modes.
  • the MPM group consists of the two intra prediction modes and one additional intra prediction mode.
  • the additional intra prediction mode may be a planner mode.
  • the additional intra prediction mode may be a DC mode.
  • the additional intra prediction mode may be a vertical mode or a horizontal mode.
  • the additional intra prediction mode may be an intra prediction mode having a directionality between the two intra prediction modes, or may be a DC mode or a planner mode.
  • the MPM group includes the intra prediction mode and two additional intra prediction modes.
  • the two additional intra prediction modes are set to two intra prediction modes adjacent to the intra prediction mode. If the intra prediction mode is a DC mode, the two additional intra prediction modes may be a planner mode and a vertical mode.
  • the MPM group includes the intra prediction mode and two additional intra prediction modes.
  • the two additional intra prediction modes are determined by the intra prediction mode.
  • the MPM group may include a DC mode, a planner mode, and a vertical mode.
  • the intra prediction mode indicated by the prediction mode index is selected from the MPM group to determine the intra prediction mode of the current block.
  • the intra prediction mode group indicator may be flag information indicating whether the intra prediction mode of the current block belongs to an MPM group or a group other than the MPM.
  • the intra prediction unit 240 may determine that the prediction mode index is one of intra prediction modes (hereinafter, referred to as residual intra prediction modes) except for intra prediction modes belonging to the MPM group.
  • the indicated intra prediction mode is determined as the intra prediction mode of the current block.
  • the prediction mode index given to the remaining intra prediction modes depends on the configuration of the MPM group. That is, the decoded prediction mode index indicates the index of the remaining intra prediction modes rearranged according to the configuration of the MPM group. Accordingly, the intra prediction mode of the current block is selected from the remaining intra prediction modes according to the decoded prediction mode index and the intra prediction modes belonging to the MPM group.
  • the residual intra prediction modes of the current block are rearranged in order of mode number, and the intra prediction mode of the order corresponding to the received prediction mode index is selected as the intra prediction mode of the current block.
  • the intra prediction mode of the current block may be determined by comparing the intra prediction mode index of the current block with an intra prediction mode number belonging to the MPM group.
  • the MPM group configuration method may be applied to a case in which a mode number 2 is assigned to a DC in the non-directional mode, a mode number 34 is assigned to the planner mode, and the directional modes are assigned to the remaining modes.
  • the method may be applied by applying a small mode number (for example, mode number 0) to the planner mode. Can be. In this case, the mode numbers of other subordinated mode numbers are increased by one.
  • the intra prediction mode of the current block is a planner mode and the remaining intra prediction mode includes a planner mode
  • the intra prediction mode index may include zero.
  • the intra prediction mode in the order corresponding to the prediction mode index is arranged in the order of planner mode, DC mode, and directional modes.
  • Intra prediction mode may be set.
  • mode number 0 may be assigned to planner mode
  • mode number 1 may be assigned to DC mode
  • mode number 0 may be assigned to DC mode and mode number 1 to planner mode.
  • the intra prediction mode of the current block may be determined by comparing the intra prediction mode index of the current block with the intra prediction mode number belonging to the MPM group.
  • the prediction block size determiner 330 determines the size of the prediction block of the current block by using the block transform size.
  • the size of the prediction block may have the size of the current block or the size of the subblock of the current block.
  • the prediction block is generated using the intra prediction mode of the current block and the reference pixels of the current block.
  • the reference pixels are pixels reconstructed or pixels generated before the current block.
  • the size of the prediction block is smaller than the size of the current block, that is, when the current block is divided into a plurality of subblocks and intra prediction is performed, the same intra prediction mode is generated when the prediction block of each subblock is generated. Intra prediction mode of the current block) is used. Further, the predictive blocks of the second and subsequent subblocks in the decoding order are generated using the reconstruction pixels of the preceding subblocks. Therefore, after completion of prediction block generation, residual block generation, and reconstruction block generation in each subblock unit, a prediction block of a next subblock is generated.
  • the reference pixel validity determination unit 340 determines whether all of the reference pixels of the block corresponding to the size of the prediction block are valid.
  • the reference pixels are pixels that have already been decoded and reconstructed.
  • the reference pixel generator 350 generates reference pixels when it is determined that at least one of the reference pixels is invalid.
  • L is the number of bits for indicating the gradation of the luminance component.
  • reference pixels located at the nearest position among the valid reference pixels are copied to generate reference pixels.
  • the reference pixel filtering unit 360 determines whether to filter the reference pixels and adaptively filters the reference pixels according to the reconstructed intra prediction mode and the size of the prediction block.
  • Reference pixels are not filtered when the intra prediction mode is the DC mode. Reference pixels are not filtered even when the intra prediction mode is the vertical mode and the horizontal mode. However, when the intra prediction mode is directional modes other than the vertical mode and the horizontal mode, the reference pixel is adaptively filtered according to the intra prediction mode and the size of the prediction block. When the size of the prediction block is 4x4, the reference pixel may not be filtered to reduce the complexity regardless of the intra prediction mode.
  • the filtering is for smoothing the amount of change in the pixel value between the reference pixels, and uses a low-pass filter.
  • the low-pass filter may be [1, 2, 1], which is a 3-tap filter, or [1, 2, 4, 2, 1], which is a 5-tap filter.
  • the size of the prediction block is 8x8 to 32x32, the reference pixel is filtered in a larger number of intra prediction modes as the size of the prediction block increases.
  • the prediction block generator 370 generates a prediction block according to the intra prediction mode.
  • the reference pixels used in the prediction block may be pixels adaptively filtered according to the size of the prediction block and the intra prediction mode.
  • the prediction pixel at the position adjacent to the reference pixels may be generated using the average value and the weighted average of the reference pixel adjacent to the prediction pixel.
  • the prediction pixel can be generated in the same manner as in the DC mode.
  • the reference pixel located in the vertical direction becomes a prediction pixel.
  • prediction pixels adjacent to the left pixel may be generated using the vertical reference pixels and the amount of change of the left reference pixels.
  • the change amount represents a change amount between a corner reference pixel and a reference pixel adjacent to the prediction pixel.
  • the prediction pixel may be generated in the same manner as the vertical mode is different from the vertical mode.
  • FIG. 6 is a block diagram illustrating a procedure for restoring a residual block according to an embodiment of the present invention.
  • a 2D quantization block is generated by decoding the residual signal received in the current block or subblock unit (S210).
  • the quantization block is inversely quantized using a quantization parameter (S220).
  • the inverse quantization block is inversely transformed to restore a residual block (S230).
  • FIG. 7 is a block diagram illustrating a procedure for recovering quantization parameters according to an embodiment of the present invention.
  • the reconstruction process of the quantization parameter may be performed by the inverse quantization unit 220 of FIG. 2.
  • a CU size of a minimum size (hereinafter, referred to as a minimum quantization CU size) that allows a change in the quantization parameter is restored (S310).
  • the minimum quantized CU size may be signaled in one of the following ways.
  • the first method it is possible to indicate whether to change the QP in LCU units or additionally changeable CUs below by using cu_qp_delta_enabled_flag in a sequence parameter set.
  • cu_qp_delta_enabled_flag the value of cu_qp_delta_enabled_flag is 1, that is, allowing QP Y change in a CU smaller than the LCU
  • the minimum quantized CU size may be signaled through max_cu_qp_delta_depth in a picture parameter set.
  • cu_qp_delta_enabled_flag and max_cu_qp_delta_depth are not transmitted, but the minimum quantized CU size is signaled as one information (cu_qp_delta_depth) through joint coding. That is, the sequence parameter set transmits the minimum quantization CU size through cu_qp_delta_depth without transmitting information related to the minimum quantization CU size. Accordingly, not only the number of bits required to transmit the minimum quantized CU size information can be reduced, but the size that allows the change of the quantization parameter can be adaptively adjusted for each PPS, thereby improving coding performance.
  • a quantization parameter predictor is obtained based on the minimum quantization CU size (S320).
  • the quantization parameter predictor may be generated using the left quantization parameter of the current CU and the upper quantization parameter predictor of the current CU. For example, an average value of the left quantization parameter and the upper quantization parameter may be set as the quantization parameter predictor.
  • the quantization parameter predictorization is added to the received residual quantization parameter to recover a quantization parameter (S330).
  • the quantization parameter of the current CU is restored. However, if the current CU is smaller than the minimum quantization CU size, the plurality of CUs included in the minimum quantization CU size have the same quantization parameter.

Abstract

본 발명에 따른 영상 복호화 장치는 현재 블록의 인트라 예측 모드를 복원하여 현재 블록 또는 현재 블록의 서브블록 단위로 예측 블록을 생성하는 인트라 예측부와, 잔차신호를 2차원의 양자화 블록으로 변환하는 역스캐닝부와, 상기 양자화 블록을 양자화 파라미터를 이용하여 역양자화하는 역양자화부와, 상기 역양자화 블록을 역변환하는 역변환부를 포함하고, 상기 양자화 파라미터를 복원하기 위해 이용되는 양자화 파라미터 예측자는 현재 코딩 유닛(CU)의 좌측 양자화 코딩 유닛의 양자화 파라미터 및 상측 코딩 유닛의 양자화 파라미터를 이용하여 생성한다. 따라서, 양자화 파라미터를 부호화 크기에 따라 적응적으로 조절함으로써 영상 품질을 향상시키고, 상기 양자화 파라미터를 효과적으로 부호화/복호화함으로써, 양자화 파라미터 전송에 소요되는 비트수를 줄여, 영상의 압축효율을 향상시킬 수 있다.

Description

영상 복호화 장치
본 발명은 영상 복호화 장치에 관한 것으로, 잔차 블록을 생성하기 위해 이용되는 양자화 파라미터 예측자를 현재 블록의 좌측 및 상측 코딩 유닛의 양자화 파라미터를 이용하는 장치에 관한 것이다.
영상 데이터를 효율적으로 저장하거나 전송하기 위해서는 영상 데이터를 부호화하여야 한다. 영상 데이터를 부호화하는 기술로는 MPEG-1, MPEG-2, MPEG-4, H.264/MPEG-4 AVC(Advanced Video coding) 등이 있다. 상기 기술들은 하나의 픽처를 매크로 블록으로 나누고, 상기 매크로 블록 단위로 인트라 부호화를 수행할지 인터 부호화를 수행할지를 결정한 후, 상기 결정된 방식으로 각각의 매크로 블록을 부호화한다.
가장 최근의 영상 압축 기술인 H.264에서는 인트라 부호화의 효율을 높이기 위해 인트라 예측을 수행한다. 즉, 현재 블록을 부호화하기 위해서 참조 픽처를 참조하는 것이 아니라, 부호화하려는 현재 블록과 공간적으로 인접한 화소값을 이용하여 예측 블록을 생성한다. 구체적으로, 인접한 화소값을 이용하여 원본 매크로 블록과 비교하여 왜곡이 적은 인트라 예측 모드를 선택하고, 선택된 인트라 예측 모드 및 인접한 화소값을 이용하여 부호화하려는 현재 블록에 대한 예측 블록을 생성한다. 그리고, 현재 블록과 예측 블록의 차이신호들로 구성되는 잔차블록을 생성하고, 상기 잔차 블록을 변환, 양자화, 엔트로피 부호화한다. 또한, 상기 예측 블록을 생성하는데 이용된 인트라 예측 모드도 부호화한다.
그러나, H.264에서는 현재 블록의 좌측 및 상측 블록의 인트라 예측 모드들의 방향성과 무관하게 현재 블록의 인트라 예측 모드를 부호화하여 부호화 효율이 떨어지는 문제점이 있다. 또한, 잔차블록의 부호화 효율을 증가시키기 위해 인트라 예측 모드의 수가 증가하는 경우에는 H.264의 인트라 예측 모드 부호화 방식보다 더욱 부호화 효율이 높은 인트라 예측 모드를 부호화/복호화하는 방식이 요구된다.
또한, H.264와 달리 다양한 크기의 부호화 단위가 허용되는 경우, 양자화 파라미터를 적응적으로 변경하여 텍스쳐의 부호화 효율을 향상시킬 수 있으나, 이 경우 양자화 파라미터를 전송하기 위해 많은 비트수가 필요하다. 따라서, 상기 비트수를 효과적으로 줄일 수 있는 방식이 요구된다.
본 발명이 이루고자 하는 목적은 현재 블록의 양자화 파라미터를 부호화 크기에 따라 적응적으로 조절함으로써 영상 품질을 향상시키고, 상기 양자화 파라미터를 효과적으로 부호화/복호화함으로써, 양자화 파라미터 전송에 소요되는 비트수를 줄임으로서, 영상의 부호화 및 복호화 효율을 향상시키는 장치를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 영상 복호화 장치는 현재 블록의 인트라 예측 모드를 복원하여 현재 블록 또는 현재 블록의 서브블록 단위로 예측 블록을 생성하는 인트라 예측부와, 잔차신호를 2차원의 양자화 블록으로 변환하는 역스캐닝부와, 상기 양자화 블록을 양자화 파라미터를 이용하여 역양자화하는 역양자화부와, 상기 역양자화 블록을 역변환하는 역변환부를 포함하고, 상기 양자화 파라미터를 복원하기 위해 이용되는 양자화 파라미터 예측자는 현재 코딩 유닛(CU)의 좌측 양자화 코딩 유닛의 양자화 파라미터 및 상측 코딩 유닛의 양자화 파라미터를 이용하여 생성된다.
상기 영상 복호화 장치에서, 상기 양자화 파라미터는 상기 양자화 파라미터 예측자 및 수신된 잔여 양자화 파라미터를 더하여 생성되고, 상기 양자화 파라미터 예측자는 상기 좌측 양자화 코딩 유닛의 양자화 파라미터 및 상기 상측 코딩 유닛의 양자화 파라미터의 평균값이다.
상기 영상 복호화 장치의 상기 인트라 예측부는 현재 블록의 좌측 및 상측 블록의 인트라 예측 모드를 이용하여 3개의 인트라 예측 모드를 포함하는 MPM 그룹을 구성하고, 상기 MPM 그룹 및 수신된 인트라 예측 정보를 이용하여 현재 블록의 인트라 예측 모드를 복원하고, 현재 블록의 좌측 및 상측 블록의 인트라 예측 모드가 모두 유효하지 않은 경우, 상기 MPM 그룹은 플래너 모드, DC 모드 및 수직 모드를 포함하도록 한다.
본 발명에 따른 영상 복호화 장치는 현재 블록의 인트라 예측 모드를 복원하여 현재 블록 또는 현재 블록의 서브블록 단위로 예측 블록을 생성하는 인트라 예측부와, 잔차신호를 2차원의 양자화 블록으로 변환하는 역스캐닝부와, 상기 양자화 블록을 양자화 파라미터를 이용하여 역양자화하는 역양자화부와, 상기 역양자화 블록을 역변환하는 역변환부를 포함하고, 상기 양자화 파라미터를 복원하기 위해 이용되는 양자화 파라미터 예측자는 현재 코딩 유닛(CU)의 좌측 양자화 코딩 유닛의 양자화 파라미터 및 상측 코딩 유닛의 양자화 파라미터를 이용하여 생성한다.
따라서, 양자화 파라미터를 부호화 크기에 따라 적응적으로 조절함으로써 영상 품질을 향상시키고, 상기 양자화 파라미터를 효과적으로 부호화/복호화함으로써, 양자화 파라미터 전송에 소요되는 비트수를 줄여, 영상의 압축효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 동영상 부호화 장치를 나타내는 블록 구성도이다.
도 2는 본 발명의 일 실시예에 따른 동영상 복호화 장치를 나타내는 블록 구성도이다.
도 3은 본 발명의 일 실시예에 따른 동영상 복호화 장치에서의 인트라 예측 블록을 생성하는 방법에 대해 설명한다.
도 4는 본 발명에 일 실시예에 따른 인트라 예측 모드를 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 인트라 예측 블록 장치(300)를 나타내는 블록 구성도이다.
도 6은 본 발명의 일 실시예에 따른 잔차 블록을 복원하는 순서를 나타내는 블록도이다.
도 7은 본 발명의 일 실시예에 다른 양자화 파라미터를 복원하는 순서를 나타내는 블록도이다.
이하, 본 발명의 여러가지 실시예들을 예시적인 도면을 통해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
본 발명에 따른 동영상 부호화 장치 및 동영상 복호화 장치는 개인용 컴퓨터, 노트북, 개인용 휴대 단말기, 휴대형 멀티미디어 플레이, 스마트폰, 무선 통신 단말기, TV 등의 사용자 단말기 또는 서비스를 제공하는 서버 등일 수 있다. 또한, 상기 동영상 부호화 장치 및 동영상 복호화 장치는 각종 기기 또는 유무선 통신망과 통신을 수행하기 위한 통신 모뎀 등의 통신 장치, 영상을 부호화하거나 복호화하거나 부호화 또는 복호화를 위한 각종 프로그램과 데이터를 저장하기 위한 메모리, 프로그램을 실행하여 연산 및 제어하기 위한 마이크로프로세서 등을 구비하는 장치일 수 있다.
도 1은 본 발명의 일 실시예에 따른 동영상 부호화 장치를 나타내는 블록 구성도이다.
본 발명에 일 실시예에 따른 동영상 부호화 장치(100)는 인트라 예측부(110), 인터 예측부(120), 변환 및 양자화부(130), 엔트로피 부호화부(140), 역양자화 및 역변환부(150), 후처리부(160), 픽쳐 버퍼(170), 감산부(190) 및 가산부(195)를 포함한다.
인트라 예측부(110)는 현재 블록이 포함되는 픽쳐 또는 슬라이스의 복원된 화소들을 이용하여 인트라 예측 블록을 생성한다. 인트라 예측부(110)는 예측 부호화할 현재 블록의 크기에 따라 미리 설정된 개수의 인트라 예측 모드 중에 하나를 선택하고, 상기 선택된 인트라 예측 모드에 따라 예측 블록을 생성한다.
인터 예측부(120)는 상기 픽쳐 버퍼(170)에 저장된 참조 픽쳐들을 이용하여 움직임 추정을 수행하고, 움직임 예측을 위하여 참조 픽쳐 인덱스 및 움직임 벡터를 결정한다. 그리고, 상기 참조 픽쳐 인덱스 및 움직임 벡터를 이용하여 현재 블록의 인터 예측 블록을 생성한다.
변환 및 양자화부(130)는 현재 블록과 인트라 예측부(110) 또는 인터 예측부(120)에서 생성된 예측 블록의 잔차 블록을 변환하고 양자화한다. 상기 변환은 수평 및 수직 방향의 1차원 변환 매트릭스에 의해 행해진다. 인트라 예측의 잔차 블록은 변환 블록의 크기(즉, 잔차 블록의 크기) 및 인트라 예측 모드에 따라 결정되는 변환 매트릭스에 의해 변환된다. 인터 예측의 잔차 블록은 미리 정해진 변환 매트릭스에 의해 변환된다.
변환 및 양자화부(130)는 상기 변환 블록을 양자화 스텝 사이즈를 이용하여 양자화한다. 상기 양자화 스텝 사이즈는 미리 정해진 크기 이상의 부호화 단위별로 변경될 수 있다.
상기 양자화된 변환 블록은 역양자화 및 역변환부(150)와 엔트로피 부호화부(140)로 제공된다.
역양자화 및 역변환부(150)는 상기 양자화된 변환 블록을 역양자화하고, 상기 역양화된 변환 블록을 역변환하여 잔차 블록을 복원한다. 가산기는 상기 역양자화 및 역변환부(150)에 의해 복원된 잔차 블록과 인트라 예측부(110) 또는 인터 예측부(120)로부터의 예측 블록을 더하여 복원 블록을 생성한다.
후처리부(160)는 복원된 픽쳐의 화질을 개선하기 위한 것으로, 디블로킹 필터링부(161), 오프셋 적용부(162) 및 루프 필터링부(163)을 포함한다.
디블록킹 필터링부(161)는 예측 블록 및 변환 변환 블록의 경계에 디블록킹 필터를 적응적으로 적용한다. 상기 경계는 8x8 그리드에 놓여 있는 경계로 한정할 수 있다. 디블록킹 필터링부(161)는 필터링할 경계(boundary)를 결정하고, 상기 경계 강도(bounary strength)를 결정하고, 상기 경계 강도가 0보다 큰 경우에는 디블록킹 필터를 상기 경계에 적용할지 여부를 판단한다. 상기 경계를 필터링할 것으로 결정하면, 상기 경계에 적용할 필터를 선택하고, 선택된 필터로 경계를 필터링한다.
오프셋 적용부(162)는 디블록킹 필터링부를 거친 영상내의 화소와 원본 화소간의 차이값(distortion)을 감소시키기 위하여, 픽쳐 또는 슬라이스 단위로 오프셋을 적용할지 여부를 결정한다. 또는 슬라이스를 복수개의 오프셋 영역들로 분할하고, 각 오프셋 영역별로 오프셋 타입을 결정할 수 있다. 오프셋 타입은 미리 정해진 개수의 에지 오프셋 타입과 밴드 오프셋 타입을 포함할 수 있다. 오프셋 타입이 에지 오프셋 타입일 경우에는 각 화소가 속하는 에지 타입을 결정하여, 이에 대응하는 오프셋을 적용한다. 상기 에지 타입은 현재 화소와 인접하는 2개의 화소값의 분포를 기준으로 결정한다.
루프 필터링부(163)는 오프셋 적용부(162)를 거친 복원된 영상과 원본 영상을 비교한 값을 기초로 복원 영상을 적응적으로 루프 필터링한다. 코딩 단위로 복원 영상을 루프 필터링할지 여부가 결정된다. 각 코딩 유닛에 따라 적용될 루프 필터의 크기 및 계수는 달라질 수 있다. 코딩 유닛별 상기 적응적 루프 필터의 적용 여부를 나타내는 정보는 각 슬라이스 헤더에 포함될 수 있다. 색차 신호의 경우에는, 픽쳐 단위로 적응적 루프 필터의 적용 여부를 결정할 수 있다. 따라서, 색차 성분 각각이 필터링되는지 여부를 나타내는 정보를 슬라이스 헤더 또는 픽쳐 헤더가 포함할 수 있다.
픽쳐 버퍼(170)는 후처리된 영상 데이터를 후처리부(160)로부터 입력 받아 픽쳐(picture) 단위로 영상을 복원하여 저장한다. 픽쳐는 프레임 단위의 영상이거나 필드 단위의 영상일 수 있다.
엔트로피 부호화부(140)는 변환 및 양자화부(130)에 의해 양자화된 양자화 계수정보, 인트라 예측부(140)로부터 수신된 인트라 예측 정보, 인터 예측부(150)로부터 수신된 움직임 정보 등를 엔트로피 부호화한다. 엔트로피 부호화부(140)는 상기 양자화된 변환 블록의 계수들을 1차원의 양자화 계수정보들로 변환하기 위해, 스캔부(145)를 포함한다.
스캔부(145)는 상기 양자화된 변환 블록의 계수들을 1차원으로 변환하기 위한 스캔 타입을 결정한다. 스캔 타입은 방향성 인트라 예측 모드 및 변환 블록의 크기에 따라 달라질 수 있다. 양자화 계수들의 스캔순서는 역방향으로 스캔한다.
상기 양자화된 변호나 블록이 소정 크기보다 큰 경우에는, 상기 변환 계수들이 복수개의 하위블록으로 분할되어 스캔된다. 각각의 하위블록의 상기 변환 계수들에 적용되는 스캔타입은 동일하다. 상기 하위 블록들 사이에 적용되는 스캔 타입은 지그재그 스캔일 수도 있고, 상기 각 하위블록의 변환계수들에 적용되는 스캔 타입과 동일할 수도 있다.
도2는 본 발명의 일 실시예에 따른 동영상 복호화 장치(200)를 나타내는 블록 구성도이다.
본 발명의 일실시예에 따른 동영상 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 인터 예측부(250), 후처리부(260), 픽쳐 버퍼(270), 가산부(280)를 포함한다.
엔트로피 복호화부(210)는 수신된 비트스트림을 복호하여, 인트라 예측 정보, 인터 예측 정보, 양자화 계수 정보 등으로 분리한다. 엔트로피 복호화부(210)는 복호화된 인트라 예측정보를 인트라 예측부(240)로 공급하고, 복호화된 인터 예측 정보를 인터 예측부(250)에 공급한다. 엔트로피 복호화(210)는 상기 복호화된 양자화 계수 정보를 역스캔하기 위한 역스캔부(215)를 포함한다.
역스캔부(215)는 상기 양자화 계수 정보를 2차원 배열의 양자화 블록으로 변환한다. 상기 변환을 위해 복수개의 스캔 타입 중에 하나를 선택한다. 스캔 타입은 방향성 인트라 예측 모드 및 변환 블록의 크기에 따라 달라질 수 있다. 양자화 계수들의 스캔순서는 역방향으로 스캔한다. 상기 양자화된 변호나 블록이 소정 크기보다 큰 경우에는, 상기 변환 계수들이 복수개의 하위블록으로 분할되어 스캔된다. 각각의 하위블록의 상기 변환 계수들에 적용되는 스캔타입은 동일하다. 상기 하위 블록들 사이에 적용되는 스캔 타입은 지그재그 스캔일 수도 있고, 상기 각 하위블록의 변환계수들에 적용되는 스캔 타입과 동일할 수도 있다.
역양자화부(220)는 현재 코딩 유닛의 양자화 스텝 사이즈 예측자를 결정하고, 상기 결정된 양자화 스텝 사이즈 예측자와 수신된 잔차 양자화 스텝 사이즈를 더하여 현재 코딩 유닛의 양자화 스텝 사이즈를 복원한다. 역양자화부(220)는 상기 양자화 스텝 사이즈와 역양자화 매트릭스를 이용하여 상기 양자화 블록을 역양자화한다. 상기 양자화 블록의 크기 및 예측모드에 따라 상기 양자화 매트릭스가 결정된다. 즉, 동일 크기의 양자화 블록에 대해서도 상기 현재 블록의 예측 모드 및 인트라 예측 모드 중 적어도 하나에 기초하여 양자화 매트릭스가 선택된다.
역변환부(230)는 역양자화된 변환 블록을 역변환하여 잔차 블록을 복원한다. 상기 역양자화 블록에 적용할 역변환 매트릭스는 예측 모드 및 인트라 예측 모드에 따라 결정될 수 있다.
가산부(280)는 역변환부(230)에 의해 복원된 잔차 블록과 인트라 예측부(240) 또는 인터 예측부(250)에 의해 생성되는 예측 블록을 더하여 복원 블록을 생성한다.
인트라 예측부(240)는 엔트로피 복호화부(210)로부터 수신된 인트라 예측 정보에 기초하여 현재 블록의 인트라 예측 모드를 복원한다. 그리고, 복원된 인트라 예측 모드에 따라 예측 블록을 생성한다.
인터 예측부(250)는 엔트로피 복호화부(210)로부터 수신된 인터 예측 정보에 기초하여 참조 픽쳐 인덱스와 움직임 벡터를 복원한다. 그리고, 상기 참조 픽쳐 인덱스와 움직임 벡터를 이용하여 현재 블록에 대한 예측 블록을 생성한다. 소수 정밀도의 움직임 보상이 적용될 경우에는 선택된 보간 필터를 적용하여 예측 블록을 생성한다.
후처리부(260)의 동작은 도 1의 후처리부(160)의 동작과 동일하므로 생략한다.
픽쳐 버퍼(270)는 후처리부(260)에 의해 후처리된 복호 영상을 픽쳐 단위로 저장한다.
도 3은 본 발명의 일 실시예에 따른 인트라 예측 블록을 생성하는 방법에 대해 설명한다.
먼저, 수신된 비트스트림으로부터 인트라 예측 정보를 엔트로피 복호화한다(S110).
인트라 예측 정보는 인트라 예측 모드 그룹 지시자와 예측모드 인덱스를 포함한다. 상기 인트라 예측 모드 그룹 지시자는 현재 블록의 인트라 예측 모드가 MPM 그룹에 속하는지 MPM 이외의 그룹에 속하는지를 나타낸다. 예측모드 인덱스는 인트라 예측 모드 그룹 지시자가 나타내는 인트라 예측 모드 그룹 내에서의 특정 인트라 예측 모드를 나타내는 정보이다.
상기 인트라 예측 모드 그룹 지시자는 unsigned integer의 형태로 수신될 수 있다. 이 경우, 상기 인트라 예측 모드 그룹 지시자는 엔트로피 복호화되지 않고 사용될 수도 있다. 또는 상기 인트라 예측 모드 그룹 지시자는 현재 슬라이스의 타입에 따라 적응적으로 엔트로피 부호화될 수도 있다. 예를 들어, 상기 슬라이스 타입에 따라 결정되는 컨텍스트를 이용하여 엔트로피 부호화될 수 있다. 따라서, 복원시에도 현재 슬라이스 타입에 따라 결정되는 컨텍스트를 이용하여 복원될 수 있다. 상기 예측 모드 인덱스는 MPM 그룹에 속하는 경우와, 그렇지 않은 경우에 서로 다른 방식으로 엔트로피 부호화된다. 따라서, 엔트로피 복호화시에도 서로 방식으로 엔트로피 복호화된다. 구체적으로, 상기 인트라 예측 모드 그룹 지시자가 현재 블록의 인트라 예측 모드가 MPM 그룹에 속하는 것을 나타내면, 상기 예측 모드 인덱스는 truncated Exp-Golomb code 또는 truncated unary 방식으로 이진화되어 엔트로피 부호화된다. 따라서, 엔트로피 복호화를 수행하여 이진화 정보를 얻은 후에, 상기 방식들을 이용하여 예측모드 인덱스를 복원한다. 상기 인트라 예측 모드 그룹 지시자가 현재 블록의 인트라 예측 모드가 MPM 그룹에 속하지 않는 것을 나타내면, 상기 예측 모드 인덱스는 고정길이로 이진화될 수 있다. 따라서, 엔트로피 복호화를 수행하여 이진화 정보를 얻은 후에, 상기 예측모드 인덱스를 복원할 수 있다.
다음으로, 현재 블록에 인접한 블록들의 인트라 예측 모드를 이용하여 MPM 그룹을 생성하고, 상기 MPM 그룹을 이용하여 현재 블록의 인트라 예측모드를 복원한다(S120). MPM 그룹은 3개의 인트라 예측 모드로 구성된다. 도 4를 참조하여 설명한다. 도 4는 본 발명에 일 실시예에 따른 인트라 예측 모드를 나타내는 도면이다.
1) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드가 모두 존재하고 서로 다른 경우, 상기 MPM 그룹은 상기 2개의 인트라 예측 모드와 1개의 추가 인트라 예측 모드로 구성된다.
상기 2개의 인트라 예측 모드들 중 하나가 DC 모드이고, 다른 하나가 플래터 모드가 아닌 경우에는 상기 추가 인트라 예측 모드는 플래너 모드일 수 있다. 마찬가지로, 상기 두 개의 인트라 예측 모드 중 하나가 플래너 모드이고, 다른 하나가 DC 모드인 경우에는 상기 추가 인트라 예측 모드는 DC 모드일 수 있다.
상기 2개의 인트라 예측 모드가 DC 모드 및 플래너 모드인 경우에는 상기 추가 인트라 예측 모드는 수직 모드 또는 수평 모드일 수 있다.
상기 2개의 인트라 예측 모드가 DC 모드 및 플래너 모드가 아닌 경우에는, 상기 추가 인트라 예측 모드는 상기 2개의 인트라 예측 모드 사이들 사이의 방향성을 갖는 인트라 예측모드이거나, DC 모드 또는 플래너 모드일 수 있다.
2) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드가 모두 존재하고 동일한 경우, 상기 MPM 그룹은 상기 인트라 예측 모드 및 2개의 추가 인트라 예측 모드들을 포함한다.
상기 인트라 예측 모드가 DC 모드 및 플래너 모드가 아닌 경우에는 상기 2개의 추가 인트라 예측 모드들은 상기 인트라 예측 모드에 인접하는 2개의 인트라 예측 모드들로 설정된다. 상기 인트라 예측 모드가 DC 모드이면, 상기 2개의 추가 인트라 예측 모드들은 플래너 모드 및 수직 모드일 수 있다.
3) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드들 중 하나만이 존재하는 경우, 상기 MPM 그룹은 상기 인트라 예측 모드 및 2개의 추가 인트라 예측 모드들을 포함한다. 상기 2개의 추가 인트라 예측 모드들은 상기 인트라 예측 모드에 의해 결정된다.
4) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드들이 모두 존재하지 않는 경우, 상기 MPM 그룹은 DC 모드, 플래너 모드 및 수직 모드를 포함할 수 있다.
상기 인트라 예측 모드 그룹 지시자가 상기 MPM 그룹을 나타내면, 상기 예측모드 인덱스가 나타내는 인트라 예측 모드를 상기 MPM 그룹에서 선택하여 현재 블록의 인트라 예측 모드로 결정한다. 상기 인트라 예측 모드 그룹 지시자는 현재 블록의 인트라 예측 모드가 MPM 그룹에 속하는지 MPM 이외의 그룹에 속하는지를 나타내는 플래그 정보일 수 있다.
상기 인트라 예측 모드 그룹 지시자가 상기 MPM 그룹을 나타내지 않으면, 인트라 예측부(240)는 MPM 그룹에 속한 인트라 예측 모드들을 제외한 인트라 예측 모드들(이하, 잔여 인트라 예측 모드들이라 함) 중에서 상기 예측 모드 인덱스가 나타내는 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 결정한다. 상기 잔여 인트라 예측 모드들에 주어지는 예측 모드 인덱스는 MPM 그룹의 구성에 따라 달라진다. 즉, 상기 복호된 예측 모드 인덱스는 MPM 그룹의 구성에 따라 재배열된 잔여 인트라 예측 모드들의 인덱스를 나타낸다. 따라서, 상기 복호된 예측 모드 인덱스 및 MPM 그룹에 속하는 인트라 예측 모드들에 따라 현재 블록의 인트라 예측 모드를 상기 잔여 인트라 예측 모드들 중에서 선택한다.
구체적으로, 현재 블록의 상기 잔여 인트라 예측 모드들을 모드번호순으로 재배열하고, 상기 수신된 예측 모드 인덱스에 대응하는 순서의 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 선택한다. 이 경우, 상기 잔여 인트라 예측 모드들을 재배열할 수도 있지만, 현재 블록의 상기 인트라 예측 모드 인덱스와 상기 MPM 그룹에 속하는 인트라 예측 모드번호를 비교하여 현재 블록의 인트라 예측 모드를 결정할 수도 있다.
상기 방법은 비방향성 모드 중 DC에 모드번호 2, 플래너 모드에 모드번호 34를 부여하고, 나머지 모드들에 방향성 모드들을 부여한 경우에 적용될 수 있다. 그러나, 현재 블록의 인트라 예측 모드로 플래너 모드 및 DC 모드가 선택될 확률이 다른 방향성 모드들보다 높기 때문에, 플래너 모드에 작은 모드번호(예를 들어, 모드 번호 0)을 적용하여 상기 방법을 적용할 수 있다. 이 경우, 다른 후순위 모드번호들의 모드번호가 1씩 증가하게 된다.
또는 비방향성 모드들에 가장 낮은 인덱스들을 부여할 수도 있다. 일예로, 현재 블록의 인트라 예측 모드가 플래너 모드이고, 상기 잔여 인트라 예측모드에 플래너 모드가 포함되는 경우, 상기 인트라 예측모드 인덱스는 0을 포함할 수 있다. 다른 예로, 상기 잔여 인트라 예측 모드에 플래너 모드 및 DC 모드가 포함되는 경우, 플래너 모드, DC 모드, 방향성 모드들 순으로 정렬된 상태에서 상기 예측모드 인덱스에 대응하는 순서의 인트라 예측모드가 현재 블록의 인트라 예측모드로 설정될 수 있다. 또 다른 예로, 플래너 모드에 모드번호 0, DC 모드에 모드번호 1을 할당하거나, DC 모드에 모드번호 0, 플래너 모드에 모드번호 1을 할당할 수도 있다. 이 경우, 현재 블록의 상기 인트라 예측 모드 인덱스와 상기 MPM 그룹에 속하는 인트라 예측 모드번호를 비교하여 현재 블록의 인트라 예측 모드를 결정할 수 있다.
다음으로, 현재 블록의 변환 크기를 나타내는 정보를 이용하여 예측 블록의 크기를 결정한다(S130).
상기 예측 블록의 크기가 현재 블록의 크기와 동일한 경우에는, 현재 블록의 인트라 예측 모드 및 현재 블록의 참조 화소들을 이용하여 예측 블록을 생성한다. 상기 참조화소는 현재 블록 이전에 복원된 화소들 또는 생성된 화소들이다.
상기 예측 블록의 크기가 현재 블록의 크기보다 작은 경우, 즉, 현재 블록이 복수개의 서브블록으로 나누어져 인트라 예측이 수행되는 경우에는, 각 서브블록의 예측 블록 생성시에 동일한 인트라 예측 모드(즉, 현재 블록의 인트라 예측 모드)가 이용된다. 또한, 복호화 순서상 두번째 이후의 서브블록들의 예측 블록은 선행하는 서브블록들의 복원화소를 이용하여 생성된다. 따라서, 각 서브블록 단위로 예측블록 생성, 잔차블록 생성 및 복원블록 생성이 끝난 후에 다음 순서의 서브블록의 예측블록이 생성된다.
다음으로, 상기 예측 블록의 크기에 대응하는 블록의 참조화소들이 모두 유효한지를 판단한다(S140). 상기 참조화소들은 이미 복호화되어 복원된 화소들이다. 상기 참조화소들 중 적어도 하나가 유효하지 않은 것으로 판단되는 경우에는 참조화소들을 생성한다(S150).
구체적으로, 모든 참조화소들이 유효하지 않은 것으로 판단되는 경우에는, 2L-1 값으로 대체한다. 여기서 L은 휘도성분의 계조를 나타내기 위한 비트수이다.
유효하지 않은 참조화소 위치를 기준으로 한쪽 방향으로만 유효한 참조화소가 존재하는 경우에는 상기 유효한 참조화소 중 가장 가까운 위치에 있는 참조화소를 복사하여 참조화소들을 생성한다.
유효하지 않은 참조화소 위치를 기준으로 유효한 참조화소가 양쪽방향 모두에 존재할 경우, 미리 정해진 방향의 가장 가까운 위치의 참조화소를 복사하거나, 각각의 방향으로 가장 인접한 참조화소 2개의 평균값으로 참조화소를 생성할 수 있다.
다음으로, 참조화소를 필터링할지 여부를 결정한다(S160). 상기 복원된 인트라 예측 모드 및 예측 블록의 크기에 따라 상기 참조화소들을 적응적으로 필터링한다(S170).
인트라 예측 모드가 DC 모드인 경우에는 참조화소들을 필터링하지 않는다. 인트라 예측 모드가 수직 모드 및 수평 모드인 경우에도 참조화소들을 필터링하지 않는다. 그러나, 인트라 예측 모드가 상기 수직 모드 및 수평 모드 이외의 방향성 모드들인 경우에는, 상기 인트라 예측 모드 및 상기 예측 블록의 크기에 따라 적응적으로 참조 화소를 필터링한다. 상기 예측 블록의 크기가 4x4인 경우에는, 인트라 예측 모드에 관계없이, 복잡도 감소를 위해 참조화소를 필터링하지 않을 수 있다. 상기 필터링은 참조화소들 사이의 화소값의 변화량을 스무딩(smoothing)하기 위한 것으로, low-pass filter를 이용한다. Low-pass filter는 3-tap 필터인 [1, 2, 1] 또는 5-tap 필터인 [1, 2, 4, 2, 1]일 수 있다. 상기 예측 블록의 크기가 8x8~32x32인 경우, 상기 예측블록의 크기가 커짐에 따라 더 많은 수의 인트라 예측 모드들에서 참조화소를 필터링한다.
다음으로, 인트라 예측 모드에 따라 예측 블록을 생성한다(S180). 상기 예측 블록에 사용되는 참조화소들은 상기 예측 블록의 크기 및 인트라 예측모드에 따라 적응적으로 필터링된 화소들일 수 있다.
DC 모드에서는 (x=0,..N-1, y=-1) 위치의 N개의 상측 참조화소들과 (x=-1, y=0,..M-1) 위치의 좌측 참조화소들 및 (x=-1, y=-1) 위치의 코너화소의 평균값이 예측블록의 예측화소로 결정될 수 있다. 그러나, 상기 참조화소들과 인접하는 위치의 예측 화소는 상기 평균값과 상기 예측화소에 인접하는 참조화소의 가중평균을 이용하여 생성할 수 있다. 플래너 모드에서도, 상기 DC 모드에서와 동일한 방식으로 예측화소를 생성할 수 있다.
수직 모드에서는 수직방향에 위치하는 참조화소가 예측화소가 된다. 그러나, 좌측 화소와 인접한 예측 화소들은 상기 수직방향의 참조화소와, 상기 좌측 참조화소들의 변화량을 이용하여 생성될 수 있다. 상기 변화량은 코너 참조화소와 상기 예측 화소에 인접하는 참조화소 사이의 변화량을 나타낸다. 수평 모드에서도 상기 수직모드와 방향만 틀릴 뿐, 동일한 방식으로 예측화소를 생성할 수 있다.
도 5는 본 발명의 일 실시예에 따른 인트라 예측 블록 장치(300)를 나타내는 블록 구성도이다. 본 발명에 따른 인트라 예측 블록 생성 장치(300)는 파싱부(310), 예측모드 복호화부(320), 예측블록 크기 결정부(330), 참조화소 유효성 판단부(340), 참조화소 생성부(350), 참조화소 필터링부(360), 예측 블록 생성부(370)를 포함한다.
파싱부(310)는 수신된 비트스트림으로부터 인트라 예측 정보 및 변환블록 크기 정보를 엔트로피 복호화한다.
인트라 예측 정보는 인트라 예측 모드 그룹 지시자와 예측모드 인덱스를 포함한다. 상기 인트라 예측 모드 그룹 지시자는 현재 블록의 인트라 예측 모드가 MPM 그룹에 속하는지 MPM 이외의 그룹에 속하는지를 나타낸다. 예측모드 인덱스는 인트라 예측 모드 그룹 지시자가 나타내는 인트라 예측 모드 그룹 내에서의 특정 인트라 예측 모드를 나타내는 정보이다. 상기 인트라 예측 정보의 엔트로피 복호화 방법은 도 3의 S110과 동일하다.
상기 변환 크기 정보는 부호기로부터 전송되는 변환 크기를 나타내는 적어도 하나 이상의 플래그(split_transform_flag)를 포함한다.
예측모드 복호화부(320)는 현재 블록에 인접한 블록들의 인트라 예측 모드를 이용하여 MPM 그룹을 생성하고, 상기 MPM 그룹 및 상기 엔트로피 복호화된 인트라 예측 정보를 이용하여 현재 블록의 인트라 예측모드를 복원한다. MPM 그룹은 3개의 인트라 예측 모드로 구성된다. 예측모드 복호화부(320)는
1) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드가 모두 존재하고 서로 다른 경우, 상기 MPM 그룹은 상기 2개의 인트라 예측 모드와 1개의 추가 인트라 예측 모드로 구성된다.
상기 2개의 인트라 예측 모드들 중 하나가 DC 모드이고, 다른 하나가 플래터 모드가 아닌 경우에는 상기 추가 인트라 예측 모드는 플래너 모드일 수 있다. 마찬가지로, 상기 두 개의 인트라 예측 모드 중 하나가 플래너 모드이고, 다른 하나가 DC 모드인 경우에는 상기 추가 인트라 예측 모드는 DC 모드일 수 있다.
상기 2개의 인트라 예측 모드가 DC 모드 및 플래너 모드인 경우에는 상기 추가 인트라 예측 모드는 수직 모드 또는 수평 모드일 수 있다.
상기 2개의 인트라 예측 모드가 DC 모드 및 플래너 모드가 아닌 경우에는, 상기 추가 인트라 예측 모드는 상기 2개의 인트라 예측 모드 사이들 사이의 방향성을 갖는 인트라 예측모드이거나, DC 모드 또는 플래너 모드일 수 있다.
2) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드가 모두 존재하고 동일한 경우, 상기 MPM 그룹은 상기 인트라 예측 모드 및 2개의 추가 인트라 예측 모드들을 포함한다.
상기 인트라 예측 모드가 DC 모드 및 플래너 모드가 아닌 경우에는 상기 2개의 추가 인트라 예측 모드들은 상기 인트라 예측 모드에 인접하는 2개의 인트라 예측 모드들로 설정된다. 상기 인트라 예측 모드가 DC 모드이면, 상기 2개의 추가 인트라 예측 모드들은 플래너 모드 및 수직 모드일 수 있다.
3) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드들 중 하나만이 존재하는 경우, 상기 MPM 그룹은 상기 인트라 예측 모드 및 2개의 추가 인트라 예측 모드들을 포함한다. 상기 2개의 추가 인트라 예측 모드들은 상기 인트라 예측 모드에 의해 결정된다.
4) 현재 블록의 상측 및 좌측 블록의 인트라 예측 모드들이 모두 존재하지 않는 경우, 상기 MPM 그룹은 DC 모드, 플래너 모드 및 수직 모드를 포함할 수 있다.
상기 인트라 예측 모드 그룹 지시자가 상기 MPM 그룹을 나타내면, 상기 예측모드 인덱스가 나타내는 인트라 예측 모드를 상기 MPM 그룹에서 선택하여 현재 블록의 인트라 예측 모드로 결정한다. 상기 인트라 예측 모드 그룹 지시자는 현재 블록의 인트라 예측 모드가 MPM 그룹에 속하는지 MPM 이외의 그룹에 속하는지를 나타내는 플래그 정보일 수 있다.
상기 인트라 예측 모드 그룹 지시자가 상기 MPM 그룹을 나타내지 않으면, 인트라 예측부(240)는 MPM 그룹에 속한 인트라 예측 모드들을 제외한 인트라 예측 모드들(이하, 잔여 인트라 예측 모드들이라 함) 중에서 상기 예측 모드 인덱스가 나타내는 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 결정한다. 상기 잔여 인트라 예측 모드들에 주어지는 예측 모드 인덱스는 MPM 그룹의 구성에 따라 달라진다. 즉, 상기 복호된 예측 모드 인덱스는 MPM 그룹의 구성에 따라 재배열된 잔여 인트라 예측 모드들의 인덱스를 나타낸다. 따라서, 상기 복호된 예측 모드 인덱스 및 MPM 그룹에 속하는 인트라 예측 모드들에 따라 현재 블록의 인트라 예측 모드를 상기 잔여 인트라 예측 모드들 중에서 선택한다.
구체적으로, 현재 블록의 상기 잔여 인트라 예측 모드들을 모드번호순으로 재배열하고, 상기 수신된 예측 모드 인덱스에 대응하는 순서의 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 선택한다. 이 경우, 상기 잔여 인트라 예측 모드들을 재배열할 수도 있지만, 현재 블록의 상기 인트라 예측 모드 인덱스와 상기 MPM 그룹에 속하는 인트라 예측 모드번호를 비교하여 현재 블록의 인트라 예측 모드를 결정할 수도 있다.
상기 MPM 그룹 구성 방법은 비방향성 모드 중 DC에 모드번호 2, 플래너 모드에 모드번호 34를 부여하고, 나머지 모드들에 방향성 모드들을 부여한 경우에 적용될 수 있다. 그러나, 현재 블록의 인트라 예측 모드로 플래너 모드 및 DC 모드가 선택될 확률이 다른 방향성 모드들보다 높기 때문에, 플래너 모드에 작은 모드번호(예를 들어, 모드 번호 0)을 적용하여 상기 방법을 적용할 수 있다. 이 경우, 다른 후순위 모드번호들의 모드번호가 1씩 증가하게 된다.
또는 비방향성 모드들에 가장 낮은 인덱스들을 부여할 수도 있다. 일예로, 현재 블록의 인트라 예측 모드가 플래너 모드이고, 상기 잔여 인트라 예측모드에 플래너 모드가 포함되는 경우, 상기 인트라 예측모드 인덱스는 0을 포함할 수 있다. 다른 예로, 상기 잔여 인트라 예측 모드에 플래너 모드 및 DC 모드가 포함되는 경우, 플래너 모드, DC 모드, 방향성 모드들 순으로 정렬된 상태에서 상기 예측모드 인덱스에 대응하는 순서의 인트라 예측모드가 현재 블록의 인트라 예측모드로 설정될 수 있다. 또 다른 예로, 플래너 모드에 모드번호 0, DC 모드에 모드번호 1을 할당하거나, DC 모드에 모드번호 0, 플래너 모드에 모드번호 1을 할당할 수도 있다. 이 경우, 현재 블록의 상기 인트라 예측 모드 인덱스와 상기 MPM 그룹에 속하는 인트라 예측 모드번호를 비교하여 현재 블록의 인트라 예측 모드를 결정할 수 있다.
예측블록 크기 결정부(330)는 상기 블록 변환 크기를 이용하여 현재 블록의 예측 블록의 크기를 결정한다. 예측 블록의 크기는 현재 블록의 크기 또는 현재 블록의 서브블록의 크기를 가질 수 있다.
상기 예측 블록의 크기가 현재 블록의 크기와 동일한 경우에는, 현재 블록의 인트라 예측 모드 및 현재 블록의 참조 화소들을 이용하여 예측 블록을 생성한다. 상기 참조화소는 현재 블록 이전에 복원된 화소들 또는 생성된 화소들이다.
상기 예측 블록의 크기가 현재 블록의 크기보다 작은 경우, 즉, 현재 블록이 복수개의 서브블록으로 나누어져 인트라 예측이 수행되는 경우에는, 각 서브블록의 예측 블록 생성시에 동일한 인트라 예측 모드(즉, 현재 블록의 인트라 예측 모드)가 이용된다. 또한, 복호화 순서상 두번째 이후의 서브블록들의 예측 블록은 선행하는 서브블록들의 복원화소를 이용하여 생성된다. 따라서, 각 서브블록 단위로 예측블록 생성, 잔차블록 생성 및 복원블록 생성이 끝난 후에 다음 순서의 서브블록의 예측블록이 생성된다.
참조화소 유효성 판단부(340)는 상기 예측 블록의 크기에 대응하는 블록의 참조화소들이 모두 유효한지를 판단한다. 상기 참조화소들은 이미 복호화되어 복원된 화소들이다.
참조화소 생성부(350)는 상기 참조화소들 중 적어도 하나가 유효하지 않은 것으로 판단되는 경우에는 참조화소들을 생성한다.
구체적으로, 모든 참조화소들이 유효하지 않은 것으로 판단되는 경우에는, 2L-1 값으로 대체한다. 여기서 L은 휘도성분의 계조를 나타내기 위한 비트수이다.
유효하지 않은 참조화소 위치를 기준으로 한쪽 방향으로만 유효한 참조화소가 존재하는 경우에는 상기 유효한 참조화소 중 가장 가까운 위치에 있는 참조화소를 복사하여 참조화소들을 생성한다.
유효하지 않은 참조화소 위치를 기준으로 유효한 참조화소가 양쪽방향 모두에 존재할 경우, 미리 정해진 방향의 가장 가까운 위치의 참조화소를 복사하거나, 각각의 방향으로 가장 인접한 참조화소 2개의 평균값으로 참조화소를 생성할 수 있다.
참조화소 필터링부(360)는 참조화소를 필터링할지 여부를 결정하고, 상기 복원된 인트라 예측 모드 및 예측 블록의 크기에 따라 상기 참조화소들을 적응적으로 필터링한다.
인트라 예측 모드가 DC 모드인 경우에는 참조화소들을 필터링하지 않는다. 인트라 예측 모드가 수직 모드 및 수평 모드인 경우에도 참조화소들을 필터링하지 않는다. 그러나, 인트라 예측 모드가 상기 수직 모드 및 수평 모드 이외의 방향성 모드들인 경우에는, 상기 인트라 예측 모드 및 상기 예측 블록의 크기에 따라 적응적으로 참조 화소를 필터링한다. 상기 예측 블록의 크기가 4x4인 경우에는, 인트라 예측 모드에 관계없이, 복잡도 감소를 위해 참조화소를 필터링하지 않을 수 있다. 상기 필터링은 참조화소들 사이의 화소값의 변화량을 스무딩(smoothing)하기 위한 것으로, low-pass filter를 이용한다. Low-pass filter는 3-tap 필터인 [1, 2, 1] 또는 5-tap 필터인 [1, 2, 4, 2, 1]일 수 있다. 상기 예측 블록의 크기가 8x8~32x32인 경우, 상기 예측블록의 크기가 커짐에 따라 더 많은 수의 인트라 예측 모드들에서 참조화소를 필터링한다.
예측블록 생성부(370)는 인트라 예측 모드에 따라 예측 블록을 생성한다. 상기 예측 블록에 사용되는 참조화소들은 상기 예측 블록의 크기 및 인트라 예측모드에 따라 적응적으로 필터링된 화소들일 수 있다.
DC 모드에서는 (x=0,..N-1, y=-1) 위치의 N개의 상측 참조화소들과 (x=-1, y=0,..M-1) 위치의 좌측 참조화소들 및 (x=-1, y=-1) 위치의 코너화소의 평균값이 예측블록의 예측화소로 결정될 수 있다. 그러나, 상기 참조화소들과 인접하는 위치의 예측 화소는 상기 평균값과 상기 예측화소에 인접하는 참조화소의 가중평균을 이용하여 생성할 수 있다. 플래너 모드에서도, 상기 DC 모드에서와 동일한 방식으로 예측화소를 생성할 수 있다.
수직 모드에서는 수직방향에 위치하는 참조화소가 예측화소가 된다. 그러나, 좌측 화소와 인접한 예측 화소들은 상기 수직방향의 참조화소와, 상기 좌측 참조화소들의 변화량을 이용하여 생성될 수 있다. 상기 변화량은 코너 참조화소와 상기 예측 화소에 인접하는 참조화소 사이의 변화량을 나타낸다. 수평 모드에서도 상기 수직모드와 방향만 틀릴 뿐, 동일한 방식으로 예측화소를 생성할 수 있다.
도 6은 본 발명의 일 실시예에 따른 잔차 블록을 복원하는 순서를 나타내는 블록도이다.
현재 블록 또는 서브블록 단위로 수신된 잔차신호를 복호화하여 2차원 양자화 블록을 생성한다(S210).
양자화 파라미터를 이용하여 상기 양자화 블록을 역양자화한다(S220).
상기 역양자화 블록을 역변환하여 잔차 블록을 복원한다(S230).
도 7은 본 발명의 일실시예에 다른 양자화 파라미터를 복원하는 순서를 나타내는 블록도이다. 양자화 파라미터의 복원 과정은 도 2의 역양자화부(220)에서 수행될 수 있다.
양자화 파라미터의 변경을 허용하는 최소 크기의 CU 사이즈(이하, 최소 양자화 CU 사이즈라 함)를 복원한다(S310).
상기 최소 양자화 CU 사이즈는 다음의 방법 중 하나로 시그널링될 수 있다.
첫번째 방법에서는, 시퀀스 파라미터 세트(sequence parameter set)에서 cu_qp_delta_enabled_flag를 이용하여 QP를 LCU 단위로 변경할지 또는 그 하위의 CU에서도 추가적으로 변경이 가능하도록 할지 여부를 나타낼 수 있다. cu_qp_delta_enabled_flag의 값이 1, 즉, LCU보다 작은 CU에서의 QPY 변경을 허용하는 경우에는, 픽쳐 파라미터 세트(picture parameter set)에서 max_cu_qp_delta_depth를 통해 최소 양자화 CU 사이즈를 시그널링 할 수 있다.
두번째 방법에서는, cu_qp_delta_enabled_flag와 max_cu_qp_delta_depth를 각각 전송하는 것이 아니라, 조인트 코딩을 통해 하나의 정보(cu_qp_delta_depth)로 상기 최소 양자화 CU 사이즈를 시그널링한다. 즉, 시퀀스 파라미터 세트에서는 최소 양자화 CU 사이즈와 관련된 정보를 전송하지 않고, 픽쳐 파라미터 세트에서 cu_qp_delta_depth를 통해 최소 양자화 CU 사이즈를 전송한다. 이에 따라, 상기 최소 양자화 CU 사이즈 정보를 전송하는데 소요되는 비트수를 줄일 수 있을 뿐 아니라, 양자화 파라미터의 변경을 허용하는 크기를 PPS마다 적응적으로 조절할 수 있어, 부호화 성능이 향상될 수 있다.
상기 최소 양자화 CU 사이즈에 기초하여, 양자화 파라미터 예측자를 구한다(S320). 상기 양자화 파라미터 예측자는 현재 CU의 좌측 양자화 파라미터 및 현재 CU의 상측 양자화 파라미터 예측자를 이용하여 생성할 수 있다. 예를 들어, 상기 좌측 양자화 파라미터 및 상측 양자화 파라미터의 평균값을 상기 양자화 파라미터 예측자로 설정할 수 있다.
상기 양자화 파라미터 예측자화 수신된 잔차 양자화 파라미터를 더하여 양자화 파라미터를 복원한다(S330)
현재 CU가 상기 최소 양자화 CU 사이즈보다 크거나 같은 경우에는 현재 CU의 양자화 파라미터를 복원한다. 그러나, 현재 CU가 상기 최소 양자화 CU 사이즈보다 작으면, 상기 최소 양자화 CU 사이즈에 포함되는 복수개의 CU는 동일한 양자화 파라미터를 갖는다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (7)

  1. 현재 블록의 인트라 예측 모드를 복원하여 현재 블록 또는 현재 블록의 서브블록 단위로 예측 블록을 생성하는 인트라 예측부;
    잔차신호를 2차원의 양자화 블록으로 변환하는 역스캐닝부;
    상기 양자화 블록을 양자화 파라미터를 이용하여 역양자화하는 역양자화부; 및
    상기 역양자화 블록을 역변환하는 역변환부를 포함하고,
    상기 양자화 파라미터를 복원하기 위해 이용되는 양자화 파라미터 예측자는 현재 코딩 유닛(CU)의 좌측 양자화 코딩 유닛의 양자화 파라미터 및 상측 코딩 유닛의 양자화 파라미터를 이용하여 생성되는 것을 특징으로 하는 영상 복호화 장치.
  2. 제1항에 있어서, 상기 양자화 파라미터는 상기 양자화 파라미터 예측자 및 수신된 잔여 양자화 파라미터를 더하여 생성되는 것을 특징으로 하는 영상 복호화 장치.
  3. 제1항에 있어서, 상기 양자화 파라미터 예측자는 상기 좌측 양자화 코딩 유닛의 양자화 파라미터 및 상기 상측 코딩 유닛의 양자화 파라미터의 평균값인 것을 특징으로 하는 영상 복호화 장치.
  4. 제1항에 있어서, 상기 인트라 예측부는 현재 블록의 좌측 및 상측 블록의 인트라 예측 모드를 이용하여 3개의 인트라 예측 모드를 포함하는 MPM 그룹을 구성하고, 상기 MPM 그룹 및 수신된 인트라 예측 정보를 이용하여 현재 블록의 인트라 예측 모드를 복원하는 것을 특징으로 하는 영상 복호화 장치.
  5. 제4항에 있어서, 현재 블록의 좌측 및 상측 블록의 인트라 예측 모드가 모두 유효하지 않은 경우, 상기 MPM 그룹은 플래너 모드, DC 모드 및 수직 모드를 포함하는 것을 특징으로 하는 영상 복호화 장치.
  6. 제4항에 있어서, 상기 인트라 예측 정보는 수신된 인트라 예측 모드 그룹 지시자와 예측 모드 인덱스를 포함하는 것을 특징으로 하는 영상 복호화 장치.
  7. 제4항에 있어서, 상기 인트라 예측 정보는 수신된 인트라 예측 모드 그룹 지시자와 예측 모드 인덱스를 포함하는 것을 특징으로 하는 영상 복호화 장치.
PCT/KR2012/003085 2011-10-24 2012-04-20 영상 복호화 장치 WO2013062198A1 (ko)

Priority Applications (29)

Application Number Priority Date Filing Date Title
CN201810105702.4A CN108174213B (zh) 2011-10-24 2012-04-20 图像解码装置
PL12843637T PL2773117T3 (pl) 2011-10-24 2012-04-20 Urządzenie dekodujące obraz
MX2015015072A MX338989B (es) 2011-10-24 2012-04-20 Aparato para la decodificacion de imagenes.
MX2015015066A MX339135B (es) 2011-10-24 2012-04-20 Aparato para la decodificacion de imagenes.
LTEP12843637.5T LT2773117T (lt) 2011-10-24 2012-04-20 Vaizdo dekodavimo aparatas
ES12843637T ES2710214T3 (es) 2011-10-24 2012-04-20 Aparato de decodificación de imágenes
PL18181663T PL3402199T3 (pl) 2011-10-24 2012-04-20 Sposób dekodowania obrazu
US14/124,576 US9288488B2 (en) 2011-10-24 2012-04-20 Imaging decoding apparatus
EP18181673.7A EP3402201B8 (en) 2011-10-24 2012-04-20 Image decoding method
EP18181670.3A EP3402200B1 (en) 2011-10-24 2012-04-20 Image decoding apparatus
CN201810105690.5A CN108111848B (zh) 2011-10-24 2012-04-20 图像解码装置
JP2014531703A JP5722506B2 (ja) 2011-10-24 2012-04-20 映像復号化装置
MX2015015076A MX338990B (es) 2011-10-24 2012-04-20 Aparato para la decodificacion de imagenes.
SI201231502T SI2773117T1 (sl) 2011-10-24 2012-04-20 Aparat za dekodiranje slike
MX2015015069A MX338988B (es) 2011-10-24 2012-04-20 Aparato para la decodificacion de imagenes.
CN201280047349.XA CN103931186B (zh) 2011-10-24 2012-04-20 图像解码装置
EP12843637.5A EP2773117B1 (en) 2011-10-24 2012-04-20 Image decoding apparatus
MX2014003541A MX2014003541A (es) 2011-10-24 2012-04-20 Aparato para la decodificacion de imagenes.
EP18181663.8A EP3402199B1 (en) 2011-10-24 2012-04-20 Image decoding method
EP18181678.6A EP3402202B8 (en) 2011-10-24 2012-04-20 Image decoding apparatus
DK12843637.5T DK2773117T3 (en) 2011-10-24 2012-04-20 picture decoding
RS20190168A RS58300B1 (sr) 2011-10-24 2012-04-20 Uređaj za dekodiranje slike
US15/053,801 US10587877B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
US15/053,797 US10523941B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
US15/053,821 US10523943B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
US15/053,814 US10523942B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
CY20191100013T CY1121422T1 (el) 2011-10-24 2019-01-07 Διαταξη αποκωδικοποιησης εικονας
HRP20190354TT HRP20190354T1 (hr) 2011-10-24 2019-02-22 Uređaj za dekodiranje slike
US16/781,624 US11785218B2 (en) 2011-10-24 2020-02-04 Image decoding apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110108460 2011-10-24
KR10-2011-0108456 2011-10-24
KR10-2011-0108460 2011-10-24
KR20110108456 2011-10-24

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US14/124,576 A-371-Of-International US9288488B2 (en) 2011-10-24 2012-04-20 Imaging decoding apparatus
US201414124576A Substitution 2011-10-24 2014-04-10
US15/053,814 Continuation US10523942B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
US15/053,797 Continuation US10523941B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
US15/053,801 Continuation US10587877B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus
US15/053,821 Continuation US10523943B2 (en) 2011-10-24 2016-02-25 Image decoding apparatus

Publications (1)

Publication Number Publication Date
WO2013062198A1 true WO2013062198A1 (ko) 2013-05-02

Family

ID=48168004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003085 WO2013062198A1 (ko) 2011-10-24 2012-04-20 영상 복호화 장치

Country Status (18)

Country Link
US (6) US9288488B2 (ko)
EP (5) EP3402199B1 (ko)
JP (5) JP5722506B2 (ko)
KR (1) KR20130045155A (ko)
CN (6) CN108093261B (ko)
CY (1) CY1121422T1 (ko)
DK (4) DK3402202T3 (ko)
ES (5) ES2935823T3 (ko)
HR (1) HRP20190354T1 (ko)
HU (5) HUE050655T2 (ko)
LT (1) LT2773117T (ko)
MX (5) MX2014003541A (ko)
PL (5) PL2773117T3 (ko)
PT (4) PT3402201T (ko)
RS (1) RS58300B1 (ko)
SI (1) SI2773117T1 (ko)
TR (1) TR201819073T4 (ko)
WO (1) WO2013062198A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113561A (ko) 2010-04-09 2011-10-17 한국전자통신연구원 적응적인 필터를 이용한 인트라 예측 부호화/복호화 방법 및 그 장치
KR20130050149A (ko) * 2011-11-07 2013-05-15 오수미 인터 모드에서의 예측 블록 생성 방법
KR102365685B1 (ko) 2015-01-05 2022-02-21 삼성전자주식회사 인코더의 작동 방법과 상기 인코더를 포함하는 장치들
EP3334160A1 (en) * 2015-11-06 2018-06-13 Huawei Technologies Co., Ltd. Method and apparatus for de-quantization of transform coefficients, and decoding device
CN110572649B (zh) 2016-04-29 2023-04-07 世宗大学校产学协力团 用于对图像信号进行编码和解码的方法和装置
CN109661819B (zh) 2016-08-31 2023-11-07 株式会社Kt 用于处理视频信号的方法和设备
CN109479144A (zh) * 2016-10-13 2019-03-15 富士通株式会社 图像编码/解码方法、装置以及图像处理设备
US11039130B2 (en) * 2016-10-28 2021-06-15 Electronics And Telecommunications Research Institute Video encoding/decoding method and apparatus, and recording medium in which bit stream is stored
EP3552393B1 (en) * 2016-12-23 2023-03-08 Huawei Technologies Co., Ltd. An encoding apparatus for signaling an extension directional intra-prediction mode within a set of directional intra-prediction modes
CN117255195A (zh) 2017-05-17 2023-12-19 株式会社Kt 用于解码视频的方法和用于编码视频的方法
WO2018221554A1 (ja) * 2017-06-01 2018-12-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、符号化方法、復号装置及び復号方法
JP2022505470A (ja) 2018-11-08 2022-01-14 インターデジタル ヴイシー ホールディングス, インコーポレイテッド ブロックの面に基づくビデオの符号化又は復号のための量子化
CN112752101B (zh) * 2019-10-29 2022-02-22 北京新唐思创教育科技有限公司 一种视频质量优化方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075767A (ko) * 2008-01-05 2009-07-09 경희대학교 산학협력단 인접 블록의 공간 예측 방향성을 이용하여 화면 내 예측모드를 추정하는 인코딩 및 디코딩 방법, 그 장치
WO2009102296A1 (en) * 2006-12-22 2009-08-20 Qualcomm Incorporated Systems and methods for efficient spatial intra predictabilty determination (or assessment)
KR20110003414A (ko) * 2009-07-04 2011-01-12 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
KR20110018189A (ko) * 2009-08-17 2011-02-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060109247A (ko) * 2005-04-13 2006-10-19 엘지전자 주식회사 베이스 레이어 픽처를 이용하는 영상신호의 엔코딩/디코딩방법 및 장치
US8761252B2 (en) 2003-03-27 2014-06-24 Lg Electronics Inc. Method and apparatus for scalably encoding and decoding video signal
TWI347172B (en) 2004-01-19 2011-08-21 Suntory Holdings Ltd Beverage comprising fine pulp, production method of same, and edible material for same
JP2006005438A (ja) * 2004-06-15 2006-01-05 Sony Corp 画像処理装置およびその方法
WO2006004331A1 (en) * 2004-07-07 2006-01-12 Samsung Electronics Co., Ltd. Video encoding and decoding methods and video encoder and decoder
KR100654436B1 (ko) * 2004-07-07 2006-12-06 삼성전자주식회사 비디오 코딩 방법과 디코딩 방법, 및 비디오 인코더와디코더
NO322043B1 (no) * 2004-12-30 2006-08-07 Tandberg Telecom As Fremgangsmate for forenklet entropikoding
KR20070016663A (ko) 2005-08-04 2007-02-08 김해광 블록 기반 영상 부호화 및 재생 방법 및 장치
KR100723507B1 (ko) 2005-10-12 2007-05-30 삼성전자주식회사 I-프레임 움직임 예측을 이용한 동영상 압축 장치의 적응양자화 제어기 및 적응 양자화 제어 방법
WO2008004940A1 (en) * 2006-07-07 2008-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Video data management
ZA200900032B (en) * 2006-07-07 2010-03-31 Ericsson Telefon Ab L M Video data management
US8571104B2 (en) * 2007-06-15 2013-10-29 Qualcomm, Incorporated Adaptive coefficient scanning in video coding
US20090161757A1 (en) * 2007-12-21 2009-06-25 General Instrument Corporation Method and Apparatus for Selecting a Coding Mode for a Block
US8542730B2 (en) 2008-02-22 2013-09-24 Qualcomm, Incorporated Fast macroblock delta QP decision
CN100596202C (zh) * 2008-05-30 2010-03-24 四川虹微技术有限公司 一种快速帧内模式选择方法
KR101306834B1 (ko) * 2008-09-22 2013-09-10 에스케이텔레콤 주식회사 인트라 예측 모드의 예측 가능성을 이용한 영상 부호화/복호화 장치 및 방법
US8582645B2 (en) 2009-06-11 2013-11-12 Texas Instruments Incorporated Reducing flicker in the display of video streams
WO2011031332A1 (en) * 2009-09-14 2011-03-17 Thomson Licensing Methods and apparatus for efficient video encoding and decoding of intra prediction mode
WO2011078562A2 (ko) * 2009-12-21 2011-06-30 한국전자통신연구원 인트라 예측 부호화 방법 및 부호화 방법, 그리고 상기 방법을 수행하는 인트라 예측 부호화 장치 및 인트라 예측 복호화 장치
JP4924708B2 (ja) 2009-12-28 2012-04-25 ソニー株式会社 復号装置及び方法
CN102754442A (zh) * 2010-02-10 2012-10-24 Lg电子株式会社 处理视频信号的方法和装置
US8588303B2 (en) * 2010-03-31 2013-11-19 Futurewei Technologies, Inc. Multiple predictor sets for intra-frame coding
PL3125553T3 (pl) * 2010-08-17 2018-09-28 M&K Holdings Inc. Sposób kodowania trybu intra-predykcji
US20120114034A1 (en) 2010-11-08 2012-05-10 Mediatek Inc. Method and Apparatus of Delta Quantization Parameter Processing for High Efficiency Video Coding
WO2012122495A1 (en) 2011-03-10 2012-09-13 Huawei Technologies Co., Ltd. Using multiple prediction sets to encode extended unified directional intra mode numbers for robustness
CN102209243B (zh) * 2011-05-27 2012-10-24 山东大学 基于线性模型的深度图帧内预测方法
US9654785B2 (en) * 2011-06-09 2017-05-16 Qualcomm Incorporated Enhanced intra-prediction mode signaling for video coding using neighboring mode
KR20110111339A (ko) * 2011-08-23 2011-10-11 한국전자통신연구원 화면내 예측 시스템에서 최적 모드를 예측하는 장치 및 방법
GB2494468B (en) * 2011-09-12 2014-01-15 Canon Kk Method and device for encoding or decoding information representing prediction modes
CN106851300B (zh) 2011-09-13 2020-05-26 寰发股份有限公司 基于最可能模式的帧内预测模式的方法及装置
CN107197309B (zh) * 2011-10-07 2020-02-18 英迪股份有限公司 对视频信号进行解码的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102296A1 (en) * 2006-12-22 2009-08-20 Qualcomm Incorporated Systems and methods for efficient spatial intra predictabilty determination (or assessment)
KR20090075767A (ko) * 2008-01-05 2009-07-09 경희대학교 산학협력단 인접 블록의 공간 예측 방향성을 이용하여 화면 내 예측모드를 추정하는 인코딩 및 디코딩 방법, 그 장치
KR20110003414A (ko) * 2009-07-04 2011-01-12 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
KR20110018189A (ko) * 2009-08-17 2011-02-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치

Also Published As

Publication number Publication date
EP3402201B1 (en) 2022-08-10
EP2773117A4 (en) 2015-04-29
CY1121422T1 (el) 2020-05-29
LT2773117T (lt) 2018-12-27
CN108093261B (zh) 2022-01-04
CN108093260B (zh) 2022-01-04
JP2015136173A (ja) 2015-07-27
DK3402201T3 (da) 2022-10-31
US20140219339A1 (en) 2014-08-07
PL2773117T3 (pl) 2019-05-31
EP3402199B1 (en) 2020-03-04
US20160182908A1 (en) 2016-06-23
TR201819073T4 (tr) 2019-01-21
PL3402202T3 (pl) 2022-12-19
PT3402200T (pt) 2022-12-07
HUE059717T2 (hu) 2022-12-28
JP2015156683A (ja) 2015-08-27
EP3402202B8 (en) 2022-09-14
US10587877B2 (en) 2020-03-10
DK3402200T3 (da) 2023-04-24
JP5722506B2 (ja) 2015-05-20
EP3402201B8 (en) 2022-09-14
HUE060005T2 (hu) 2023-01-28
US10523941B2 (en) 2019-12-31
PT3402202T (pt) 2022-09-23
RS58300B1 (sr) 2019-03-29
CN108111848A (zh) 2018-06-01
JP5989841B2 (ja) 2016-09-07
US20160173880A1 (en) 2016-06-16
MX338988B (es) 2016-05-09
CN108093262A (zh) 2018-05-29
ES2710214T3 (es) 2019-04-23
EP3402201A1 (en) 2018-11-14
JP2015136172A (ja) 2015-07-27
EP3402199A1 (en) 2018-11-14
US20160182909A1 (en) 2016-06-23
CN108093262B (zh) 2022-01-04
US20200177881A1 (en) 2020-06-04
EP3402202B1 (en) 2022-08-10
CN108093260A (zh) 2018-05-29
JP2015136174A (ja) 2015-07-27
PL3402201T3 (pl) 2022-12-19
CN108111848B (zh) 2022-07-12
MX339135B (es) 2016-05-13
DK3402202T3 (da) 2022-10-31
CN108093261A (zh) 2018-05-29
US9288488B2 (en) 2016-03-15
HUE050655T2 (hu) 2020-12-28
EP3402200B1 (en) 2022-11-23
US11785218B2 (en) 2023-10-10
JP2014530557A (ja) 2014-11-17
MX338989B (es) 2016-05-09
JP5989839B2 (ja) 2016-09-07
HUE060890T2 (hu) 2023-04-28
CN103931186B (zh) 2018-03-09
ES2927471T3 (es) 2022-11-07
KR20130045155A (ko) 2013-05-03
JP5989838B2 (ja) 2016-09-07
CN103931186A (zh) 2014-07-16
ES2928699T3 (es) 2022-11-22
EP2773117A1 (en) 2014-09-03
MX338990B (es) 2016-05-09
US10523943B2 (en) 2019-12-31
HRP20190354T1 (hr) 2019-04-05
ES2789198T3 (es) 2020-10-26
EP3402202A1 (en) 2018-11-14
US20160173879A1 (en) 2016-06-16
HUE041726T2 (hu) 2019-05-28
PT2773117T (pt) 2019-03-04
MX2014003541A (es) 2014-08-26
DK2773117T3 (en) 2019-03-18
PL3402199T3 (pl) 2020-08-24
SI2773117T1 (sl) 2019-02-28
ES2935823T3 (es) 2023-03-10
EP2773117B1 (en) 2018-11-28
US10523942B2 (en) 2019-12-31
JP5989840B2 (ja) 2016-09-07
CN108174213A (zh) 2018-06-15
EP3402200A1 (en) 2018-11-14
CN108174213B (zh) 2022-07-12
PL3402200T3 (pl) 2023-04-11
PT3402201T (pt) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2013062197A1 (ko) 영상 복호화 장치
WO2013062198A1 (ko) 영상 복호화 장치
WO2013062196A1 (ko) 영상 복호화 장치
WO2013062195A1 (ko) 인트라 예측 모드 복호화 방법 및 장치
WO2012018197A2 (ko) 인트라 예측 복호화 장치
WO2012018198A2 (ko) 예측 블록 생성 장치
WO2013062194A1 (ko) 복원 블록을 생성하는 방법 및 장치
WO2018174402A1 (ko) 영상 코딩 시스템에서 변환 방법 및 그 장치
WO2012134085A2 (ko) 인트라 예측 모드에서의 영상 복호화 방법
WO2011133002A2 (ko) 영상 부호화 장치 및 방법
WO2011068331A2 (ko) 비디오 인코딩 장치 및 그 인코딩 방법, 비디오 디코딩 장치 및 그 디코딩 방법, 및 거기에 이용되는 방향적 인트라 예측방법
WO2011145819A2 (ko) 영상 부호화/복호화 장치 및 방법
WO2013069932A1 (ko) 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치
WO2009113791A2 (ko) 영상 부호화장치 및 영상 복호화장치
WO2011126285A2 (ko) 부호화 모드에 대한 정보를 부호화, 복호화하는 방법 및 장치
WO2009157665A2 (ko) 블록 변환을 이용한 인트라 예측 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
WO2012093854A2 (ko) 코딩 유닛 단위 병렬 인트라예측을 이용한 부호화/복호화 방법 및 장치
WO2013069996A1 (ko) 변환을 이용한 주파수 도메인 상의 적응적 루프 필터를 이용한 영상 부호화/복호화 방법 및 장치
WO2011068332A2 (ko) 공간적 예측장치 및 그 예측방법, 그것을 이용한 영상 부호화 장치 및 방법, 및 영상 복호화 장치 및 방법
WO2016204372A1 (ko) 영상 코딩 시스템에서 필터 뱅크를 이용한 영상 필터링 방법 및 장치
WO2014084671A2 (ko) 트랜스폼을 이용한 영상 부호화/복호화 방법 및 장치
WO2013015484A1 (ko) 연성 디블록킹 필터링을 이용한 부호화/복호화 방법 및 장치
WO2021145691A1 (ko) 적응적 색상 변환을 이용하는 비디오 부호화 및 복호화
WO2011049321A2 (ko) 움직임 보상 프레임의 필터링을 이용한 영상 부호화/복호화 방법 및 장치
WO2020091293A1 (ko) 칼라 좌표축 변환을 이용한 영상 부호화/복호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012843637

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014531703

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/003541

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14124576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE