WO2013061966A1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
WO2013061966A1
WO2013061966A1 PCT/JP2012/077362 JP2012077362W WO2013061966A1 WO 2013061966 A1 WO2013061966 A1 WO 2013061966A1 JP 2012077362 W JP2012077362 W JP 2012077362W WO 2013061966 A1 WO2013061966 A1 WO 2013061966A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
heat transfer
plate
flow path
temperature fluid
Prior art date
Application number
PCT/JP2012/077362
Other languages
French (fr)
Japanese (ja)
Inventor
功 樋渡
愛 岩城
健司 楠
Original Assignee
株式会社日阪製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日阪製作所 filed Critical 株式会社日阪製作所
Priority to JP2013540787A priority Critical patent/JP6097696B2/en
Priority to US14/354,120 priority patent/US20140338870A1/en
Priority to CN201280048896.XA priority patent/CN103946663B/en
Priority to EP12843569.0A priority patent/EP2772718B1/en
Publication of WO2013061966A1 publication Critical patent/WO2013061966A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/10Arrangements for sealing the margins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/20Fastening; Joining with threaded elements
    • F28F2275/205Fastening; Joining with threaded elements with of tie-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element

Definitions

  • the present invention relates to a plate heat exchanger that exchanges heat between a high-temperature fluid and a low-temperature fluid. Specifically, the present invention provides a low-temperature flow path and a flow path for circulating a high-temperature fluid between the heat transfer plates by laminating a plurality of heat transfer plates and interposing a gasket around the heat transfer plates. The present invention relates to a plate heat exchanger in which flow paths for circulating fluid are alternately formed.
  • the plate heat exchanger includes a plurality of rectangular heat transfer plates 20 between a rectangular plate-shaped fixed frame 11 in a vertical posture and a rectangular plate-shaped moving frame 12 in a vertical posture. 20, are stacked in a vertical posture, and as shown in FIG. 9, the first flow path 1 and the second flow path 2 are alternately formed between the heat transfer plate 20 and the heat transfer plate 20, The high temperature fluid H and the low temperature fluid C are heat-exchanged by circulating the high temperature fluid H through the first flow path 1 and flowing the low temperature fluid C through the second flow path 2.
  • passage holes 11a to 11d serving as the entrances and exits of the fluids H and C are provided, and the moving frame 12 is not provided with a passage hole.
  • dedicated plates hereinafter referred to as “D plates” and “E plates”
  • Passage holes are provided at the four corners of the D plate 31, and gaskets (hereinafter referred to as “D gaskets”) 140 surrounding the passage holes are interposed between the D plate 31 and the fixed frame 11. It is disguised.
  • the E plate 32 is not provided with a passage hole.
  • the heat transfer plate 20 is provided with passage holes 21 to 24 serving as inlets and outlets of the fluids H and C at the four corners, and a heat transfer portion (not numbered) is provided at the intermediate portion.
  • the upper and lower passage holes 21 and 22 communicate with the heat transfer section, and the upper right and lower passage holes 23 and 24 open to the heat transfer section. Do not do it, or vice versa.
  • the gasket 130 is a separate or illustrated flow path forming gasket 131 that surrounds the outer peripheral portion (inner side along the outer peripheral edge) of each heat transfer plate 20 and a communication path forming gasket 132 that surrounds the passage holes 21 to 24. It is said that it was formed integrally.
  • the upper and lower communication passage forming gaskets 132, 132 surround the right upper and lower passage holes 23, 24, thereby blocking the left upper and lower passage holes 21, 22 and the first flow path 1.
  • the first flow path 1 through which the high-temperature fluid H flows is provided by the flow path forming gasket 131 surrounding the left and upper passage holes 21 and 22 and the heat transfer section. Yes.
  • the upper and lower communication passage forming gaskets 132 and 132 surround the left and upper passage holes 21 and 22, thereby blocking the right and upper passage holes 23 and 24 and the second flow path 2.
  • the second flow path through which the low-temperature fluid C circulates because the flow path forming gasket 131 surrounds the upper and lower communication path forming gaskets 132 and 132 and the heat transfer section. 2 is provided.
  • the high temperature fluid H flows downward from the upper left passage hole 21 through the first flow path 1 and is discharged from the lower left passage hole 22, and the low temperature fluid C is discharged from the lower right passage hole 24 to the second.
  • the fluids H and C are heat-exchanged by flowing upward in the flow path 2 and being discharged from the upper right passage hole 23.
  • a plurality of cassette plates in which the outer peripheral portions of the two heat transfer plates are permanently joined by laser welding or brazing are stacked in a vertical posture, and a gasket is interposed on the outer peripheral portion of the cassette plate.
  • a junction type plate heat exchanger in which a first flow path or a second flow path is formed in a cassette plate, and a second flow path or a first flow path is formed between the cassette plate and the cassette plate. It is described in Document 1 and the like.
  • Patent Document 2 discloses a plate heat exchanger having a double (two) gasket in which a part of a gasket for use and a part of a communication passage forming gasket are arranged in parallel. This plate heat exchanger is characterized in that the double gasket is fixed to the heat transfer plate without using an adhesive, and the other portion of the gasket is bonded to the heat transfer plate using an adhesive.
  • the double gasket is interposed between the heat transfer plates that are stacked (alternately), so that there is no double gasket and a flow path that connects the heat transfer portion and the passage hole is formed. Yes.
  • the portion of the heat transfer plate where the double gasket is not interposed is easily deformed by the internal pressure, but the double gasket is not bonded to the heat transfer plate by an adhesive. The pressure resistance is improved.
  • the high-temperature fluid H flowing into the first flow path 1 flows through the communication passage 3 formed by the communication passage forming gasket 132 surrounding the passage hole 21 as shown in FIG. Yes.
  • the communication path forming gasket 132 forming the communication path 3 through which the high temperature fluid H circulates has an inside (wet contact side) in contact with the high temperature fluid H in a wet heat environment. Therefore, thermal degradation proceeds such as hardening or softening due to long-term use.
  • the main component of the gasket 132 for forming the communication path is a polymer (RH)
  • it reacts with oxygen (O 2 ) when heated by the high temperature fluid H to generate an alkyl radical (R ⁇ ).
  • O 2 oxygen
  • the alkyl radical (R ⁇ ) reacts with oxygen to generate peroxy radical (ROO ⁇ ).
  • the peroxy radical (ROO.) Reacts with the polymer (RH) to generate peroxide (ROOH).
  • This peroxide (ROOH) is unstable and easily decomposes into alkoxy radicals (RO.) And hydroxyl radicals (OH.).
  • the liquid contact side is in contact with the high temperature fluid H and the non-liquid contact side is in contact with the atmosphere.
  • the main component polymer collapses due to the oxidative degradation reaction, the number of radicals increases, and molecular chain scission and cross-linking reactions proceed.
  • the inherent elasticity of the rubber is lost, and the structure of the communication path forming gasket 132 is in a compression environment. This is due to insufficient surface pressure due to the progress of compression set and the development of cracks. Break occurs. Due to this breakage, the high temperature fluid H may leak from the communication path 3 into the second flow path and mix with the low temperature fluid C.
  • the plate heat exchanger described in Patent Document 2 has a double gasket inside.
  • the communication path forming gasket 132 forming the communication path 3 through which the high temperature fluid H flows is not doubled, oxidation deterioration may occur and the high temperature fluid H may leak to the outside.
  • an object of the present invention is to provide a plate heat exchanger in which a communication path forming gasket that forms a communication path through which a high-temperature fluid flows is prevented from deteriorating.
  • a plurality of heat transfer plates in which a plurality of passage holes are formed are stacked, and a flow path forming gasket is interposed between the outer peripheral portions of adjacent heat transfer plates.
  • the first flow path through which the high-temperature fluid flows and the second fluid through which the low-temperature fluid flows are alternately formed with the heat transfer plate as a boundary, and the communication passage forming gaskets surrounding the passage holes are adjacent to each other.
  • a communication path for allowing fluid to flow into and out of the first flow path and a communication path for allowing fluid to flow into and out of the second flow path are formed, and the communication path forming gasket includes the passage hole An inner gasket member surrounding the inner gasket and an outer gasket member surrounding the inner gasket.
  • the communication path forming gasket may be doubled only between the heat transfer plates forming the communication path through which the high-temperature fluid flows. Good.
  • the plate heat exchanger according to the present invention is formed by laminating a plurality of cassette plates in which the outer peripheral portions of two heat transfer plates having a plurality of passage holes are permanently connected, and for each adjacent cassette plate.
  • a flow path forming gasket is interposed between the outer peripheral portions, and a communication path forming gasket surrounding the passage hole is interposed between adjacent heat transfer plates, so that the inside of the cassette plate and the interval between the cassette plates can be reduced.
  • the first flow path through which the high temperature fluid flows or the second flow path through which the low temperature fluid flows are alternately formed, and the communication path forming gasket includes an inner gasket member surrounding the passage hole and an outer gasket member surrounding the inner gasket. And is doubled.
  • a drainage hole is formed in the heat transfer plate between the inner gasket member and the outer gasket member of the communication path forming gasket.
  • a configuration can be employed.
  • an air supply hole is formed in the heat transfer plate between the inner gasket member and the outer gasket member between the communication path forming gaskets,
  • a configuration in which an inert gas is filled in a sealed space surrounded by the inner and outer gasket members and the heat transfer plate can be employed.
  • FIG. 1 It is a general
  • FIG. 6 shows a second embodiment of the plate heat exchanger according to the present invention, and is an enlarged cross-sectional view of an essential part taken along line VV of FIG. It is a principal part expanded sectional view which shows 3rd Embodiment of the plate-type heat exchanger which concerns on this invention. It is a schematic perspective view which shows the conventional plate type heat exchanger. It is a general
  • FIGS. A first embodiment of a plate heat exchanger according to the present invention will be described with reference to FIGS. However, the same parts as in the prior art will be described with the same reference numerals. In the following description, descriptions such as up, down, left, and right are examples of each embodiment, and it is needless to say that actual positions may be different.
  • the plate heat exchanger includes a first flow path 1 and a second flow path between a heat transfer plate 20 and a heat transfer plate 20 as in the prior art. 2, the high-temperature fluid H is circulated through the first flow path 1, and the low-temperature fluid C is circulated through the second flow path 2.
  • the first flow path 1 and the second flow path 2 are provided by a gasket 30 interposed between the heat transfer plate 20 and the heat transfer plate 20.
  • a flow path forming gasket 31 surrounding the outer peripheral portion of the heat transfer plate 20 and a communication path forming gasket 32 surrounding the passage holes 21 to 24 are integrally formed (shown in FIGS. 1 and 2). Or it forms so that it may become another body (shown in FIG. 3).
  • the boundary portion between the heat transfer portion and the passage holes 21 to 24 is shared.
  • double line gasket a communication path forming gasket (hereinafter referred to as “double line gasket”) 32 provided with a communication path 3 through which the high-temperature fluid H flows. Is a double of the inner gasket member 32a and the outer gasket member 32b. Accordingly, double grooves are formed in the heat transfer plate 20 corresponding to the inner gasket member 32a and the outer gasket member 32b of the double line gasket 32.
  • the inner gasket member 32a is formed in an annular shape so as to surround the passage holes 21 and 22.
  • the outer gasket member 32 b is formed in a deformed trapezoidal shape, and a boundary portion with the second flow path 2 is shared with the flow path forming gasket 31.
  • the double line gasket 32 in which the flow path forming gasket 31 and the communication path forming gasket 32 are formed separately from each other includes an annular inner gasket member 32a surrounding the passage holes 21 and 22, respectively.
  • the annular outer gasket member 32b surrounding the inner gasket member 32a is concentrically arranged in parallel. Therefore, the outer gasket member 32 b does not have a portion shared with the flow path forming gasket 31.
  • the communication path 3 through which the high-temperature fluid H flows is provided by the double line gasket 32 surrounding the left and upper passage holes 21 and 22.
  • the communication passage 3 through which the low-temperature fluid C flows is formed in the upper and lower passage holes 23, 24 by the communication passage forming gasket 132 of a general gasket (hereinafter referred to as “single line gasket”) 130 used conventionally.
  • the double line gasket 32 may be provided by surrounding the upper and lower passage holes 23, 24.
  • the communication path forming gasket 132 of the single line gasket 130 blocks the right and left upper and lower passage holes 23 and 24, and the flow path forming gasket 131 surrounds the left and upper left and right passage holes 21 and 22 and the heat transfer section.
  • the flow path forming gasket 131 provided with the first flow path 1 may also be configured such that the inner gasket member and the outer gasket member are doubled in parallel. By doing so, the gasket provided with the first flow path 1 can be prevented from being oxidized and deteriorated.
  • the flow path forming gasket 131 provided with the second flow path 2 may also be configured such that the inner gasket member and the outer gasket member are doubled in parallel. By doing so, the first flow path 1 and the second flow path 2 can be assembled without being distinguished.
  • gasket 30 and the single line gasket 130 are alternately interposed between the adjacent heat transfer plates 20 and 20, whereby the high temperature fluid H flows through the first flow path 1 from the passage hole 21 on the left side.
  • the low temperature fluid C is discharged from the lower left passage hole 22, while the low temperature fluid C flows through the second flow path 2 from the lower right passage hole 24 and is discharged from the upper right passage hole 23. Heat is exchanged between H and the low-temperature fluid C.
  • the high-temperature fluid H flows into the first flow path 1 by flowing through the communication path 3 on the left side.
  • the high-temperature fluid H in the communication path 3 touches the inner gasket member 32a of the double line gasket 32.
  • the high-temperature fluid H does not touch the atmosphere. The oxidation degradation reaction is difficult.
  • the high temperature fluid H flowing through the lower left communication passage 3 is heat-exchanged with the low temperature fluid C and is cooled, so the gasket 32 forming the lower left flow passage 3 is not double but single. It may be. Even if the communication passage 3 for communicating the upper and lower passage holes 23, 24 is provided by the communication passage forming gasket 132 of the single line gasket 130, the low temperature fluid C flows in the communication passage 3, The communication path forming gasket 132 does not become so hot that it is oxidized and deteriorated.
  • the double line gasket 32 does not crack, and the high temperature fluid H does not leak from the communication path 3.
  • a portion of the heat transfer plate 20 sandwiched between the inner gasket member 32a and the outer gasket member 32b of the double line gasket 32 is provided with both or both of the drainage holes 25 and the air supply holes 26. It is characterized by that.
  • the drainage hole 25 is provided with an annular gasket 33 between the heat transfer plates 20 and 20 provided with the first flow path 1.
  • the drainage hole 25 is made continuous by the gasket 33.
  • the nozzle 13 continuing to the drainage hole 25 is attached to the fixed frame 11, and when the high temperature fluid H leaks from the nozzle 13 as shown in FIG. 6, the inner gasket member It can be detected that 32a is leaking due to cracks or the like.
  • 5 and 6 are double D gaskets in which the double line gasket 32 shown in FIG. 2 is interposed between the heat transfer plates 20 and between the fixed frame 11 and the D plate 20d.
  • the plate type heat exchanger of the second embodiment can be implemented even with the double line gasket 32 shown in FIG.
  • the air supply holes 26 are formed so that the inner gasket member 32a is more resistant to oxidative degradation. That is, an inert gas such as nitrogen is supplied from the air supply hole 26 into a sealed space surrounded by the inner gasket member 32a and the outer gasket member 32b of the double line gasket 32 and the two heat transfer plates 20, and the inner gasket member. Prevent 32a from contacting oxygen at all.
  • FIG. 4 By interposing the annular gasket 33, the inert gas is supplied into the sealed space from the nozzle 14 that is connected to the gasket 33 and attached to the frame 11. As shown in FIG. 4, a nozzle 14 for supplying this inert gas is attached to the fixed frame 11.
  • the drainage hole 25 and the air supply hole 26 may be provided only in the upper left communication passage 3 through which the high temperature fluid H flows at a high temperature, but the double lower side in which the lower left communication passage 3 through which the cooled high temperature fluid H flows is provided.
  • the drain gasket 25 and the air supply hole 26 in the line gasket 32, it can be assembled upside down. Accordingly, in this case, when the liquid discharge hole 25 and the air supply hole 26 are turned upside down, the liquid discharge hole 25 becomes the air supply hole 26 and the air supply hole 26 becomes the liquid discharge hole 25.
  • the third embodiment is characterized in that a double line gasket 32 is interposed between a cassette plate 200 and a plurality of cassette plates 200 stacked in a vertical posture.
  • the cassette plate 200 is obtained by permanently connecting the outer peripheral portions of the two heat transfer plates 20 and 20 by laser welding or brazing (indicated by black circles in FIG. 7).
  • a second flow path 2 through which the flow path 1 or the low temperature fluid C flows is provided.
  • a plurality of cassette plates 200 are stacked, and a second flow path 2 for circulating the low temperature fluid C or a first flow path 1 for circulating the high temperature fluid H is provided between the cassette plates 200 and 200.
  • a gasket 30 is interposed on the outer peripheral portion of the stacked cassette plate 200 and cassette plate 200.
  • the gasket 30 is a combination of a flow path forming gasket (not shown) interposed at the permanently connected outer peripheral portion of the cassette plate 200 and a double line gasket 32 provided with the communication path 3.
  • a flow path forming gasket (not shown) interposed at the permanently connected outer peripheral portion of the cassette plate 200 and a double line gasket 32 provided with the communication path 3.
  • an annular inner gasket member 32a surrounding the passage holes 21 and 22 and an outer gasket member 32b surrounding the inner gasket member 32a are concentrically arranged in parallel.
  • the outer gasket member 31b is interposed inside the permanent connection as shown in the figure.
  • the outer gasket member 32b is interposed between the permanently connected portions 201, and the inner gasket member 31a is interposed between the permanently connected inner sides (lines interposed in the outer gasket member 31b in FIG. 7). Be dressed.
  • the communication passage 3 is formed by a double line gasket 32 surrounding the passage holes 21 and 22.
  • the inner gasket member 32a of the double line gasket 32 is in contact with the high-temperature fluid H, but the reaction with oxygen in the atmosphere is suppressed and oxidative degradation is suppressed.
  • the double line gasket 32 is prevented from cracking and settling due to aging, and the high temperature fluid H does not leak early.
  • the high temperature fluid H does not leak. can do.
  • a plurality of heat transfer plates 20 in which a plurality of passage holes 21, 22, 23, and 24 are formed are stacked, and between the outer peripheral portions of the adjacent heat transfer plates 20.
  • the gasket 31 for channel formation By interposing the gasket 31 for channel formation, the first channel 1 for circulating the high-temperature fluid H and the second fluid 2 for circulating the low-temperature fluid C are alternately formed with the heat transfer plate 20 as a boundary.
  • the communication passage forming gaskets 32 and 32 surrounding the passage holes 21, 22, 23 and 24 are interposed between the adjacent heat transfer plates 20, thereby allowing the fluids H and C to flow through the first flow path 1.
  • the communication path 3 that flows into and out of the second flow path 2 and the communication path 3 that flows into and out of the second flow path 2 are formed, and the communication path forming gasket 32 is an inner gasket member 32a that surrounds the passage holes 21, 22, 23, and 24. And the outer side surrounding the inner gasket 32a And a gasket member 32b are doubly. For this reason, the communication passage forming gasket 32 is formed by double the inner gasket member 32a and the outer gasket member 32b so as to surround the passage holes 21, 22, 23, 24, thereby forming the communication passage 3.
  • the communication path forming gasket 32 is doubly arranged in parallel only between the heat transfer plates 20 forming the communication path 3 through which the high-temperature fluid H flows. ing. Accordingly, in view of the fact that the gasket deterioration for the communication passage forming gasket 32 that forms the communication passage 3 through which the high-temperature fluid H circulates easily proceeds due to the oxidation deterioration reaction, only the gasket 32 for communication passage formation is doubled.
  • the communication path forming gasket 32 that forms a flow path through which the fluid C flows is made a single layer.
  • the plate heat exchanger includes a plurality of cassette plates 200 in which the outer peripheral portions of the two heat transfer plates 20, 20 having a plurality of passage holes 21, 22, 23, 24 are permanently connected.
  • the flow path forming gaskets 31 are interposed between the outer peripheral portions of the adjacent cassette plates 200 and 200 which are stacked, and the communication path forming gaskets 32 surrounding the passage holes 21, 22, 23 and 24 are adjacent to each other.
  • the communication path forming gasket 32 is formed and has an inner gasket member 32a surrounding the passage hole and an outer gasket member 32b surrounding the inner gasket 32a. It is heavy. For this reason, the communication path forming gasket 32 interposed between the cassette plate 200 and the cassette plate 200 is doubled by the inner gasket member 32a and the outer gasket member 32b. In the case where the first flow path 1 through which H flows is provided, the communication path forming gasket 32 is less likely to undergo oxidative deterioration reaction, suppresses the progress of gasket deterioration, and prevents the high temperature fluid H from leaking from the communication path 3. Can do.
  • the drainage holes 25 are formed in the heat transfer plate 20 between the inner gasket member 32a and the outer gasket member 32b of the communication path forming gasket 32. Has been. Therefore, the drainage holes 25 are formed in the heat transfer plate 20 between the inner gasket member 32a and the outer gasket member 32b, so that the inner gasket is removed from the inner gasket member 32a due to the settling due to thermal deterioration and aging deterioration. The leaked high temperature fluid H can be discharged from the drain hole 25 in the outer gasket member 32b.
  • the air supply holes 26 are formed in the heat transfer plate 20 between the inner gasket member 32a and the outer gasket member 32b between the communication path forming gaskets 32.
  • the sealed space surrounded by the inner and outer gasket members and the heat transfer plate 20 is filled with an inert gas.
  • the inert gas is filled in the sealed space surrounded by the inner gasket member 32a, the outer gasket member 32b, and the heat transfer plate 20, thereby eliminating the air present in the sealed space.
  • the oxidation deterioration reaction of the inner gasket member 32a can be suppressed as much as possible.
  • the plate type heat exchanger for stacking the cassette plates 200 described in the third embodiment also includes the exhaust holes and the air supply holes 26 described in the second embodiment, and in the first embodiment.
  • the communication path forming gasket 32 may be doubled only on the upstream side of the first flow path 1.
  • the nozzle 13 continuing to the drainage hole 25 and the nozzle 14 continuing to the air supply hole 26 may be provided in the moving frame 12 instead of the fixed frame 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In the present invention, a plurality of heat transfer plates are stacked, said heat transfer plates having a plurality of through holes formed therein. Flow-path forming gaskets are interposed between the outer peripheral sections of the adjacent heat transfer plates, whereby the heat transfer plates are used as boundaries to alternately form first flow paths for circulating high-temperature fluid, second flow paths for circulating low-temperature fluid, and connecting paths for the inflow and outflow of fluid to and from the first flow paths and second flow paths. Connection-path forming gaskets which surround the through holes are interposed between adjacent heat transfer plates, whereby connection paths for the inflow and outflow of fluid to and from the first flow paths and connection paths for the inflow and outflow of fluid to and from the second flow paths are formed. The connection-path forming gaskets are formed having inner gasket members that surround the through holes and, overlapping the inner gasket members, outer gasket members that surround the inner gasket members.

Description

プレート式熱交換器Plate heat exchanger 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2011-233098号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2011-2333098, and is incorporated herein by reference.
 本発明は、高温流体と低温流体とを熱交換させるプレート式熱交換器に関する。詳しくは、本発明は、複数枚の伝熱プレートを積層し、各伝熱プレート間の外周部などにガスケットを介装することにより、各伝熱プレート間に高温流体を流通させる流路と低温流体を流通させる流路とを交互に形成したプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger that exchanges heat between a high-temperature fluid and a low-temperature fluid. Specifically, the present invention provides a low-temperature flow path and a flow path for circulating a high-temperature fluid between the heat transfer plates by laminating a plurality of heat transfer plates and interposing a gasket around the heat transfer plates. The present invention relates to a plate heat exchanger in which flow paths for circulating fluid are alternately formed.
 プレート式熱交換器は、図8に示すように、鉛直姿勢の長方形板状の固定フレーム11と鉛直姿勢の長方形板状の移動フレーム12との間に複数枚の長方形状の伝熱プレート20,20,…を鉛直姿勢で積層し、図9に示すように、この伝熱プレート20と伝熱プレート20との間に第1流路1と第2流路2とを交互に形成し、第1流路1に高温流体Hを流通させ、第2流路2に低温流体Cを流通させることで、高温流体Hと低温流体Cとを熱交換する。 As shown in FIG. 8, the plate heat exchanger includes a plurality of rectangular heat transfer plates 20 between a rectangular plate-shaped fixed frame 11 in a vertical posture and a rectangular plate-shaped moving frame 12 in a vertical posture. 20, are stacked in a vertical posture, and as shown in FIG. 9, the first flow path 1 and the second flow path 2 are alternately formed between the heat transfer plate 20 and the heat transfer plate 20, The high temperature fluid H and the low temperature fluid C are heat-exchanged by circulating the high temperature fluid H through the first flow path 1 and flowing the low temperature fluid C through the second flow path 2.
 そして、固定フレーム11の四隅には、流体H,Cの出入口となる通路孔11a~11dが設けられ、移動フレーム12には通路孔が設けられていない。また、固定フレーム11と移動フレーム12とには、それぞれ、専用のプレート(以下、「Dプレート」,「Eプレート」という。)31,32が重ねあわされている。Dプレート31の四隅には、通路孔(採番せず)が設けられ、この通路孔を囲むガスケット(以下、「Dガスケット」という。)140がDプレート31と固定フレーム11との間に介装されている。なお、Eプレート32には、通路孔が設けられていない。 And, at the four corners of the fixed frame 11, passage holes 11a to 11d serving as the entrances and exits of the fluids H and C are provided, and the moving frame 12 is not provided with a passage hole. In addition, dedicated plates (hereinafter referred to as “D plates” and “E plates”) 31 and 32 are superimposed on the fixed frame 11 and the movable frame 12, respectively. Passage holes (not numbered) are provided at the four corners of the D plate 31, and gaskets (hereinafter referred to as “D gaskets”) 140 surrounding the passage holes are interposed between the D plate 31 and the fixed frame 11. It is disguised. The E plate 32 is not provided with a passage hole.
 また、伝熱プレート20には、四隅に流体H,Cの出入口となる通路孔21~24が設けられ、中間部に伝熱部(採番せず)が設けられ、各伝熱プレート20,20間にガスケット130を介装することで、例えば左側上、下の通路孔21,22と伝熱部とが連通し、かつ、右側上、下の通路孔23,24が伝熱部に開口しないように、あるいは、その逆になるようにされている。 Further, the heat transfer plate 20 is provided with passage holes 21 to 24 serving as inlets and outlets of the fluids H and C at the four corners, and a heat transfer portion (not numbered) is provided at the intermediate portion. For example, the upper and lower passage holes 21 and 22 communicate with the heat transfer section, and the upper right and lower passage holes 23 and 24 open to the heat transfer section. Do not do it, or vice versa.
 ガスケット130は、各伝熱プレート20の外周部(外周縁に沿った内側)を囲む流路形成用ガスケット131と通路孔21~24の周囲を囲む連通路形成用ガスケット132とを別体又は図示しない一体に形成したものとされている。 The gasket 130 is a separate or illustrated flow path forming gasket 131 that surrounds the outer peripheral portion (inner side along the outer peripheral edge) of each heat transfer plate 20 and a communication path forming gasket 132 that surrounds the passage holes 21 to 24. It is said that it was formed integrally.
 そして、プレート式熱交換器は、右側上下の連通路形成用ガスケット132,132が右側上下の通路孔23,24を囲むことで、左側上下の通路孔21,22及び第1流路1から遮断された連通路3,3を設け、そして、流路形成用ガスケット131が左側上下の通路孔21,22と伝熱部とを囲むことで高温流体Hが流通する第1流路1を設けている。 In the plate heat exchanger, the upper and lower communication passage forming gaskets 132, 132 surround the right upper and lower passage holes 23, 24, thereby blocking the left upper and lower passage holes 21, 22 and the first flow path 1. And the first flow path 1 through which the high-temperature fluid H flows is provided by the flow path forming gasket 131 surrounding the left and upper passage holes 21 and 22 and the heat transfer section. Yes.
 また、プレート式熱交換器は、左側上下の連通路形成用ガスケット132,132が左側上下の通路孔21,22を囲むことで、右側上下の通路孔23,24及び第2流路2から遮断された連通路3,3を設け、そして、流路形成用ガスケット131が右側上下の連通路形成用ガスケット132,132と伝熱部とを囲むことで低温流体Cが流通する第2の流路2を設けている。 In the plate heat exchanger, the upper and lower communication passage forming gaskets 132 and 132 surround the left and upper passage holes 21 and 22, thereby blocking the right and upper passage holes 23 and 24 and the second flow path 2. And the second flow path through which the low-temperature fluid C circulates because the flow path forming gasket 131 surrounds the upper and lower communication path forming gaskets 132 and 132 and the heat transfer section. 2 is provided.
 したがって、図9において、高温流体Hが左上の通路孔21から第1流路1内を下向きに流通して左下の通路孔22から排出され、低温流体Cが右下の通路孔24から第2流路2内を上向きに流れて右上の通路孔23から排出されることで、両流体H,Cが熱交換される。 Accordingly, in FIG. 9, the high temperature fluid H flows downward from the upper left passage hole 21 through the first flow path 1 and is discharged from the lower left passage hole 22, and the low temperature fluid C is discharged from the lower right passage hole 24 to the second. The fluids H and C are heat-exchanged by flowing upward in the flow path 2 and being discharged from the upper right passage hole 23.
 また、図示しないが、2枚の伝熱プレートの外周部などをレーザ溶接やロウ付けなどで永久接合したカセットプレートを鉛直姿勢で複数枚積層し、カセットプレートの外周部にガスケットを介装することで、カセットプレート内に第1流路又は第2流路が形成され、カセットプレートとカセットプレートとの間に第2流路又は第1流路が形成された接合型プレート式熱交換器が特許文献1などに記載されている。 In addition, although not shown in the figure, a plurality of cassette plates in which the outer peripheral portions of the two heat transfer plates are permanently joined by laser welding or brazing are stacked in a vertical posture, and a gasket is interposed on the outer peripheral portion of the cassette plate. Thus, there is a patent on a junction type plate heat exchanger in which a first flow path or a second flow path is formed in a cassette plate, and a second flow path or a first flow path is formed between the cassette plate and the cassette plate. It is described in Document 1 and the like.
 なお、流路形成用ガスケットと連通路形成用ガスケットとを一体化したガスケットが伝熱プレート間に介装されたプレート式熱交換器において、伝熱部と通路孔との境界部分に流路形成用ガスケットの一部分と連通路形成用ガスケットの一部分とを並列させて介装した二重(2本)ガスケットを有するプレート式熱交換器が特許文献2に記載されている。このプレート式熱交換器は、二重ガスケットが接着剤を使用しないで伝熱プレートに固着され、他の部分のガスケットが接着剤を使用して伝熱プレートに接着されることを特徴としている。 In a plate heat exchanger in which a gasket that integrates a flow path forming gasket and a communication path forming gasket is interposed between heat transfer plates, a flow path is formed at the boundary between the heat transfer section and the passage hole. Patent Document 2 discloses a plate heat exchanger having a double (two) gasket in which a part of a gasket for use and a part of a communication passage forming gasket are arranged in parallel. This plate heat exchanger is characterized in that the double gasket is fixed to the heat transfer plate without using an adhesive, and the other portion of the gasket is bonded to the heat transfer plate using an adhesive.
 そして、二重ガスケットは、積層される伝熱プレート間に1枚おき(交互)に介装されることで、二重ガスケットがなく伝熱部と通路孔とを連通させる流路が形成されている。この二重ガスケットが介装されていない部分の伝熱プレートは、内圧によって変形しやすくなっているが、二重ガスケットが接着剤によって伝熱プレートに接着されていないことにより、プレート式熱交換器の耐圧性を向上させている。 The double gasket is interposed between the heat transfer plates that are stacked (alternately), so that there is no double gasket and a flow path that connects the heat transfer portion and the passage hole is formed. Yes. The portion of the heat transfer plate where the double gasket is not interposed is easily deformed by the internal pressure, but the double gasket is not bonded to the heat transfer plate by an adhesive. The pressure resistance is improved.
日本国特開2005-106412号公報Japanese Laid-Open Patent Publication No. 2005-106412 日本国特開平9-72686号公報Japanese Unexamined Patent Publication No. 9-72686
 しかしながら、上記図8及び図9に示した従来のプレート式熱交換器においては、下記のような問題があった。 However, the conventional plate heat exchanger shown in FIGS. 8 and 9 has the following problems.
 プレート式熱交換器において、第1流路1に流入する高温流体Hは、図9に示すように、通路孔21を囲む連通路形成用ガスケット132によって形成される連通路3内を流通している。この高温流体Hが流通する連通路3を形成している連通路形成用ガスケット132は、図10に示すように、高温流体Hと触れている内側(接液側)が湿熱環境下にあることから、長期間の使用によって硬化あるいは軟化するなど熱劣化が進行する。 In the plate heat exchanger, the high-temperature fluid H flowing into the first flow path 1 flows through the communication passage 3 formed by the communication passage forming gasket 132 surrounding the passage hole 21 as shown in FIG. Yes. As shown in FIG. 10, the communication path forming gasket 132 forming the communication path 3 through which the high temperature fluid H circulates has an inside (wet contact side) in contact with the high temperature fluid H in a wet heat environment. Therefore, thermal degradation proceeds such as hardening or softening due to long-term use.
 また、この連通路形成用ガスケット132は、主成分が高分子(RH)であることから、高温流体Hに加熱されることで酸素(O)と反応し、アルキルラジカル(R・)を生成する。そして、流路形成用ガスケット131の外側(非接液側)が大気に触れることから、アルキルラジカル(R・)が酸素と反応することで、ペルオキシラジカル(ROO・)を生成する。このペルオキシラジカル(ROO・)は、高分子(RH)と反応することで、過酸化物(ROOH)を生成する。この過酸化物(ROOH)は、不安定であり、アルコキシラジカル(RO・)とヒドロキシルラジカル(OH・)とに容易に分解する。 In addition, since the main component of the gasket 132 for forming the communication path is a polymer (RH), it reacts with oxygen (O 2 ) when heated by the high temperature fluid H to generate an alkyl radical (R ·). To do. Since the outside (non-wetted side) of the flow path forming gasket 131 is in contact with the atmosphere, the alkyl radical (R ·) reacts with oxygen to generate peroxy radical (ROO ·). The peroxy radical (ROO.) Reacts with the polymer (RH) to generate peroxide (ROOH). This peroxide (ROOH) is unstable and easily decomposes into alkoxy radicals (RO.) And hydroxyl radicals (OH.).
 要するに、高温流体Hが流通する連通路3を形成している連通路形成用ガスケット132は、接液側が高温流体Hに触れ、非接液側が大気に触れている。そのため、酸化劣化反応によって主成分である高分子が崩壊し、ラジカル数が増加し、分子鎖の切断や架橋反応が進行する。そして、これにより、ゴム本来の弾性が失われるとともに、構造上、連通路形成用ガスケット132が圧縮環境化にあることから、圧縮永久歪みの進行による面圧不足や罅(ひび)割れの進展による破断が生じる。そして、この破断により、高温流体Hが連通路3から第2流路内に漏洩し、低温流体Cと混合することがある。 In short, in the communication path forming gasket 132 forming the communication path 3 through which the high temperature fluid H flows, the liquid contact side is in contact with the high temperature fluid H and the non-liquid contact side is in contact with the atmosphere. For this reason, the main component polymer collapses due to the oxidative degradation reaction, the number of radicals increases, and molecular chain scission and cross-linking reactions proceed. As a result, the inherent elasticity of the rubber is lost, and the structure of the communication path forming gasket 132 is in a compression environment. This is due to insufficient surface pressure due to the progress of compression set and the development of cracks. Break occurs. Due to this breakage, the high temperature fluid H may leak from the communication path 3 into the second flow path and mix with the low temperature fluid C.
 また、特許文献2に記載されたプレート式熱交換器は、二重ガスケットを内部に介装している。しかし、高温流体Hが流通する連通路3を形成している連通路形成用ガスケット132は、二重にされていないため、酸化劣化が生じ、高温流体Hが外部に漏洩することがある。 In addition, the plate heat exchanger described in Patent Document 2 has a double gasket inside. However, since the communication path forming gasket 132 forming the communication path 3 through which the high temperature fluid H flows is not doubled, oxidation deterioration may occur and the high temperature fluid H may leak to the outside.
 そして、高温流体Hが危険な薬液である場合には、プレート式熱交換器から漏洩した高温流体Hが外部に流出すると、二次災害を起こすことがある。二次災害が起きないようにするため、ガスケットを早めに交換すると、ランニングコストがアップする。また、プレート式熱交換器全体を気密性の高いシートなどで覆ったり、積層された伝熱プレート間の外周縁部の隙間にゴムなどを挿し込んだりすることにより、酸化劣化を抑制し、高温流体Hが外部に流出しないようにする方法も考えられるが、このような方法は、コスト面や品質面に問題があることから採用されていない。 And, when the high temperature fluid H is a dangerous chemical, if the high temperature fluid H leaked from the plate heat exchanger flows out, a secondary disaster may occur. Replacing gaskets early to prevent secondary disasters will increase running costs. In addition, by covering the entire plate heat exchanger with a highly airtight sheet or by inserting rubber into the gap between the outer peripheral edges of the laminated heat transfer plates, oxidation deterioration is suppressed and high temperature Although a method for preventing the fluid H from flowing out can be considered, such a method has not been adopted because of problems in cost and quality.
 そこで、本発明は、高温流体が流通する連通路を形成している連通路形成用ガスケットが劣化しないようにしたプレート式熱交換器を提供することを課題とする。 Therefore, an object of the present invention is to provide a plate heat exchanger in which a communication path forming gasket that forms a communication path through which a high-temperature fluid flows is prevented from deteriorating.
 本発明に係るプレート式熱交換器は、複数の通路孔を形成した伝熱プレートが複数枚積層され、隣り合う各伝熱プレートの外周部間に流路形成用ガスケットが介装されることで、伝熱プレートを境にして高温流体を流通させる第1流路と、低温流体を流通させる第2流体とが交互に形成され、前記通路孔を囲む連通路形成用ガスケットが隣り合っている伝熱プレート間に介装されることで、流体を第1流路に流入出させる連通路と第2流路に流入出させる連通路とが形成され、前記連通路形成用ガスケットは、前記通路孔を囲む内側ガスケット部材と該内側ガスケットを囲む外側ガスケット部材とを有して二重にされている。 In the plate heat exchanger according to the present invention, a plurality of heat transfer plates in which a plurality of passage holes are formed are stacked, and a flow path forming gasket is interposed between the outer peripheral portions of adjacent heat transfer plates. The first flow path through which the high-temperature fluid flows and the second fluid through which the low-temperature fluid flows are alternately formed with the heat transfer plate as a boundary, and the communication passage forming gaskets surrounding the passage holes are adjacent to each other. By interposing between the heat plates, a communication path for allowing fluid to flow into and out of the first flow path and a communication path for allowing fluid to flow into and out of the second flow path are formed, and the communication path forming gasket includes the passage hole An inner gasket member surrounding the inner gasket and an outer gasket member surrounding the inner gasket.
 ここで、本発明に係るプレート式熱交換器の一態様として、前記連通路形成用ガスケットは、前記高温流体が流通する連通路を形成する伝熱プレート間にのみ二重に並列されていてもよい。 Here, as one aspect of the plate heat exchanger according to the present invention, the communication path forming gasket may be doubled only between the heat transfer plates forming the communication path through which the high-temperature fluid flows. Good.
 また、前記と異なる本発明に係るプレート式熱交換器は、複数の通路孔を形成した2枚の伝熱プレートの外周部を永久接続したカセットプレートが複数枚積層され、隣り合う各カセットプレートの外周部間に流路形成用ガスケットが介装され、前記通路孔を囲む連通路形成用ガスケットが隣り合っている伝熱プレート間に介装されることで、カセットプレート内とカセットプレート間とに高温流体を流通させる第1流路又は低温流体を流通させる第2流路が交互に形成され、前記連通路形成用ガスケットは、前記通路孔を囲む内側ガスケット部材と該内側ガスケットを囲む外側ガスケット部材とを有して二重にされている。 Further, the plate heat exchanger according to the present invention, which is different from the above, is formed by laminating a plurality of cassette plates in which the outer peripheral portions of two heat transfer plates having a plurality of passage holes are permanently connected, and for each adjacent cassette plate. A flow path forming gasket is interposed between the outer peripheral portions, and a communication path forming gasket surrounding the passage hole is interposed between adjacent heat transfer plates, so that the inside of the cassette plate and the interval between the cassette plates can be reduced. The first flow path through which the high temperature fluid flows or the second flow path through which the low temperature fluid flows are alternately formed, and the communication path forming gasket includes an inner gasket member surrounding the passage hole and an outer gasket member surrounding the inner gasket. And is doubled.
 また、前記各本発明に係るプレート式熱交換器の一態様として、前記連通路形成用ガスケットの内側ガスケット部材と外側ガスケット部材との間の伝熱プレートには、排液孔が形成されている構成を採用することができる。 Further, as one aspect of the plate heat exchanger according to each of the present invention, a drainage hole is formed in the heat transfer plate between the inner gasket member and the outer gasket member of the communication path forming gasket. A configuration can be employed.
 また、前記各本発明に係るプレート式熱交換器の他の態様として、前記連通路形成用ガスケット間の内側ガスケット部材と外側ガスケット部材との間の伝熱プレートには、給気孔が形成され、内外ガスケット部材と伝熱プレートとによって囲まれた密閉空間内に不活性ガスが充填されている構成を採用することができる。 Further, as another aspect of the plate heat exchanger according to each of the present invention, an air supply hole is formed in the heat transfer plate between the inner gasket member and the outer gasket member between the communication path forming gaskets, A configuration in which an inert gas is filled in a sealed space surrounded by the inner and outer gasket members and the heat transfer plate can be employed.
本発明に係るプレート式熱交換器の第1及び第2の実施形態を示す概略分解斜視図である。It is a general | schematic disassembled perspective view which shows 1st and 2nd embodiment of the plate-type heat exchanger which concerns on this invention. 本発明に係るプレート式熱交換器の第1及び第2の実施形態の要部を示す概略分解斜視図である。It is a schematic exploded perspective view which shows the principal part of 1st and 2nd embodiment of the plate-type heat exchanger which concerns on this invention. 本発明に係るプレート式熱交換器の第1及び第2の実施形態の変形例の要部を示す概略分解斜視図である。It is a schematic exploded perspective view which shows the principal part of the modification of 1st and 2nd embodiment of the plate-type heat exchanger which concerns on this invention. 本発明に係るプレート式熱交換器の第2の実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the plate-type heat exchanger which concerns on this invention. 本発明に係るプレート式熱交換器の第2の実施形態を示す要部拡大分解斜視図である。It is a principal part expansion disassembled perspective view which shows 2nd Embodiment of the plate-type heat exchanger which concerns on this invention. 本発明に係るプレート式熱交換器の第2の実施形態を示し、図5のV-V線での要部拡大断面図である。FIG. 6 shows a second embodiment of the plate heat exchanger according to the present invention, and is an enlarged cross-sectional view of an essential part taken along line VV of FIG. 本発明に係るプレート式熱交換器の第3の実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 3rd Embodiment of the plate-type heat exchanger which concerns on this invention. 従来のプレート式熱交換器を示す概略斜視図である。It is a schematic perspective view which shows the conventional plate type heat exchanger. 従来のプレート式熱交換器を示す概略分解斜視図である。It is a general | schematic disassembled perspective view which shows the conventional plate type heat exchanger. 従来のプレート式熱交換器の要部を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the principal part of the conventional plate type heat exchanger.
 本発明に係るプレート式熱交換器の第1の実施形態について図1ないし図3を参照しながら説明する。ただし、従来と同一部分は、同一符号を付して説明する。なお、以下の説明において、上下左右などの記述は各実施形態の一例であって、実際の使用態様において、異なる位置となる場合があることはいうまでもない。 A first embodiment of a plate heat exchanger according to the present invention will be described with reference to FIGS. However, the same parts as in the prior art will be described with the same reference numerals. In the following description, descriptions such as up, down, left, and right are examples of each embodiment, and it is needless to say that actual positions may be different.
 第1の実施形態のプレート式熱交換器は、図1ないし図3に示すように、従来と同様、伝熱プレート20と伝熱プレート20との間に第1流路1と第2流路2とを交互に形成し、第1流路1に高温流体Hを流通させ、第2流路2に低温流体Cを流通させる装置である。伝熱プレート20と伝熱プレート20との間に介装されるガスケット30によって第1流路1及び第2流路2が設けられる。 As shown in FIGS. 1 to 3, the plate heat exchanger according to the first embodiment includes a first flow path 1 and a second flow path between a heat transfer plate 20 and a heat transfer plate 20 as in the prior art. 2, the high-temperature fluid H is circulated through the first flow path 1, and the low-temperature fluid C is circulated through the second flow path 2. The first flow path 1 and the second flow path 2 are provided by a gasket 30 interposed between the heat transfer plate 20 and the heat transfer plate 20.
 ガスケット30は、伝熱プレート20の外周部を囲む流路形成用ガスケット31と、通路孔21~24の周囲を囲む連通路形成用ガスケット32とが一体(図1及び図2に示す。)、又は別体(図3に示す。)となるように形成される。流路形成用ガスケット31と連通路形成用ガスケット32とを一体に形成したガスケット30は、図2に示すように、伝熱部と通路孔21~24との境界部分が共用される。 In the gasket 30, a flow path forming gasket 31 surrounding the outer peripheral portion of the heat transfer plate 20 and a communication path forming gasket 32 surrounding the passage holes 21 to 24 are integrally formed (shown in FIGS. 1 and 2). Or it forms so that it may become another body (shown in FIG. 3). In the gasket 30 in which the flow path forming gasket 31 and the communication path forming gasket 32 are integrally formed, as shown in FIG. 2, the boundary portion between the heat transfer portion and the passage holes 21 to 24 is shared.
 そして、第1の実施形態におけるプレート式熱交換器では、図2に示すように、高温流体Hが流通する連通路3を設ける連通路形成用ガスケット(以下、「ダブルラインガスケット」という。)32が内側ガスケット部材32aと外側ガスケット部材32bとの二重になっている。したがって、伝熱プレート20には、ダブルラインガスケット32の内側ガスケット部材32aと外側ガスケット部材32bに対応して二重に溝が形成されている。 In the plate heat exchanger according to the first embodiment, as shown in FIG. 2, a communication path forming gasket (hereinafter referred to as “double line gasket”) 32 provided with a communication path 3 through which the high-temperature fluid H flows. Is a double of the inner gasket member 32a and the outer gasket member 32b. Accordingly, double grooves are formed in the heat transfer plate 20 corresponding to the inner gasket member 32a and the outer gasket member 32b of the double line gasket 32.
 また、内側ガスケット部材32aは、通路孔21,22を囲むように円環状に形成されている。そして、外側ガスケット部材32bは、変形台形状に形成され、第2流路2との境界部分が流路形成用ガスケット31と共用されている。 The inner gasket member 32a is formed in an annular shape so as to surround the passage holes 21 and 22. The outer gasket member 32 b is formed in a deformed trapezoidal shape, and a boundary portion with the second flow path 2 is shared with the flow path forming gasket 31.
 また、流路形成用ガスケット31と連通路形成用ガスケット32とを別体に形成したダブルラインガスケット32は、図3に示すように、通路孔21,22を囲む円環状の内側ガスケット部材32aと、この内側ガスケット部材32aを囲む円環状の外側ガスケット部材32bとを同心に二重に並列したものとされている。したがって、外側ガスケット部材32bは、流路形成用ガスケット31と共用される部分がない。 Further, as shown in FIG. 3, the double line gasket 32 in which the flow path forming gasket 31 and the communication path forming gasket 32 are formed separately from each other includes an annular inner gasket member 32a surrounding the passage holes 21 and 22, respectively. The annular outer gasket member 32b surrounding the inner gasket member 32a is concentrically arranged in parallel. Therefore, the outer gasket member 32 b does not have a portion shared with the flow path forming gasket 31.
 そして、ダブルラインガスケット32が左側上下の通路孔21,22を囲むことによって、高温流体Hが流れる連通路3が設けられている。また、低温流体Cが流れる連通路3は、従来から使用されている一般的なガスケット(以下、「シングルラインガスケット」という。)130の連通路形成用ガスケット132が右側上下の通路孔23,24を囲むことによって設けられるが、ダブルラインガスケット32が右側上下の通路孔23,24を囲むことによって設けられてもよい。 The communication path 3 through which the high-temperature fluid H flows is provided by the double line gasket 32 surrounding the left and upper passage holes 21 and 22. In addition, the communication passage 3 through which the low-temperature fluid C flows is formed in the upper and lower passage holes 23, 24 by the communication passage forming gasket 132 of a general gasket (hereinafter referred to as “single line gasket”) 130 used conventionally. However, the double line gasket 32 may be provided by surrounding the upper and lower passage holes 23, 24.
 そして、シングルラインガスケット130の連通路形成用ガスケット132が右側上下の通路孔23,24を遮断し、流路形成用ガスケット131が左側上下の通路孔21,22と伝熱部とを囲むように2枚の伝熱プレート20,20の間に介装されることによって、高温流体Hが流通する第1流路1が設けられている。 Then, the communication path forming gasket 132 of the single line gasket 130 blocks the right and left upper and lower passage holes 23 and 24, and the flow path forming gasket 131 surrounds the left and upper left and right passage holes 21 and 22 and the heat transfer section. By being interposed between the two heat transfer plates 20, 20, the first flow path 1 through which the high-temperature fluid H flows is provided.
 なお、図示しないが第1流路1を設ける流路形成用ガスケット131も、内側ガスケット部材と外側ガスケット部材とを二重に並列させるものとしてもよい。こうすることによって、第1流路1を設けるガスケットが酸化劣化しないようにすることができる。さらに、第2流路2を設ける流路形成用ガスケット131も、内側ガスケット部材と外側ガスケット部材とを二重に並列させるものとしてもよい。こうすることによって、第1流路1と第2流路2とを区別することなく、組み立てることができる。 Although not shown in the drawings, the flow path forming gasket 131 provided with the first flow path 1 may also be configured such that the inner gasket member and the outer gasket member are doubled in parallel. By doing so, the gasket provided with the first flow path 1 can be prevented from being oxidized and deteriorated. Furthermore, the flow path forming gasket 131 provided with the second flow path 2 may also be configured such that the inner gasket member and the outer gasket member are doubled in parallel. By doing so, the first flow path 1 and the second flow path 2 can be assembled without being distinguished.
 そして、ガスケット30、シングルラインガスケット130が隣り合っている伝熱プレート20,20間に交互に介装されることにより、高温流体Hが左側上の通路孔21から第1流路1内を流通し、左側下の通路孔22から排出される一方、低温流体Cが右側下の通路孔24から第2流路2内を流通し、右側上の通路孔23から排出されることで、高温流体Hと低温流体Cとが熱交換される。 And the gasket 30 and the single line gasket 130 are alternately interposed between the adjacent heat transfer plates 20 and 20, whereby the high temperature fluid H flows through the first flow path 1 from the passage hole 21 on the left side. The low temperature fluid C is discharged from the lower left passage hole 22, while the low temperature fluid C flows through the second flow path 2 from the lower right passage hole 24 and is discharged from the upper right passage hole 23. Heat is exchanged between H and the low-temperature fluid C.
 このとき、高温流体Hは、左側上の連通路3内を流通することによって第1流路1内に流入する。この連通路3内の高温流体Hは、ダブルラインガスケット32の内側ガスケット部材32aと触れるが、この内側ガスケット部材32aの周囲が外側ガスケット部材32bに囲まれていることから、大気に触れず、したがって、酸化劣化反応しにくくされている。 At this time, the high-temperature fluid H flows into the first flow path 1 by flowing through the communication path 3 on the left side. The high-temperature fluid H in the communication path 3 touches the inner gasket member 32a of the double line gasket 32. However, since the periphery of the inner gasket member 32a is surrounded by the outer gasket member 32b, the high-temperature fluid H does not touch the atmosphere. The oxidation degradation reaction is difficult.
 なお、左側下の連通路3内を流通する高温流体Hは、低温流体Cと熱交換され、降温していることから、左側下の流通路3を形成するガスケット32は、二重でなく一重であってもよい。また、右側上下の通路孔23,24を連通させるための連通路3がシングルラインガスケット130の連通路形成用ガスケット132によって設けられても、この連通路3内には低温流体Cが流通し、連通路形成用ガスケット132が酸化劣化するほど高温にならない。 Note that the high temperature fluid H flowing through the lower left communication passage 3 is heat-exchanged with the low temperature fluid C and is cooled, so the gasket 32 forming the lower left flow passage 3 is not double but single. It may be. Even if the communication passage 3 for communicating the upper and lower passage holes 23, 24 is provided by the communication passage forming gasket 132 of the single line gasket 130, the low temperature fluid C flows in the communication passage 3, The communication path forming gasket 132 does not become so hot that it is oxidized and deteriorated.
 したがって、このプレート式熱交換器は、ダブルラインガスケット32が罅割れすることなく、高温流体Hが連通路3内から漏洩しないものとなっている。 Therefore, in this plate type heat exchanger, the double line gasket 32 does not crack, and the high temperature fluid H does not leak from the communication path 3.
 次に、本発明に係るプレート式熱交換器の第2の実施形態について図2ないし図6を参照しながら説明する。第2の実施形態では、ダブルラインガスケット32の内側ガスケット部材32aと外側ガスケット部材32bとに挟まれる部分の伝熱プレート20に排液孔25と給気孔26との両方又はいずれか一方のみが設けられたことを特徴としている。 Next, a second embodiment of the plate heat exchanger according to the present invention will be described with reference to FIGS. In the second embodiment, a portion of the heat transfer plate 20 sandwiched between the inner gasket member 32a and the outer gasket member 32b of the double line gasket 32 is provided with both or both of the drainage holes 25 and the air supply holes 26. It is characterized by that.
 排液孔25は、ダブルラインガスケット32の内側ガスケット部材32aから漏洩した高温流体Hを排出させるため、第1流路1を設ける伝熱プレート20,20間に環状のガスケット33を介装することで、このガスケット33によって排液孔25が連続するようにされている。 In order to discharge the high temperature fluid H leaked from the inner gasket member 32a of the double line gasket 32, the drainage hole 25 is provided with an annular gasket 33 between the heat transfer plates 20 and 20 provided with the first flow path 1. The drainage hole 25 is made continuous by the gasket 33.
 そして、図4に示すように、排液孔25と連続するノズル13が固定フレーム11に取り付けられ、図6に示すように、このノズル13から高温流体Hが漏洩していると、内側ガスケット部材32aが罅割れなどで漏洩していると検知することができる。 Then, as shown in FIG. 4, the nozzle 13 continuing to the drainage hole 25 is attached to the fixed frame 11, and when the high temperature fluid H leaks from the nozzle 13 as shown in FIG. 6, the inner gasket member It can be detected that 32a is leaking due to cracks or the like.
 なお、図5及び図6は、図2に示したダブルラインガスケット32が伝熱プレート20の間に介装され、固定フレーム11とDプレート20dとの間に介装された二重のDガスケット41,42が連通孔21を囲んだ状態をも示しているが、第2の実施形態のプレート式熱交換器は、図3に示したダブルラインガスケット32であっても実施することができる。 5 and 6 are double D gaskets in which the double line gasket 32 shown in FIG. 2 is interposed between the heat transfer plates 20 and between the fixed frame 11 and the D plate 20d. Although the state where 41 and 42 enclose the communication hole 21 is also shown, the plate type heat exchanger of the second embodiment can be implemented even with the double line gasket 32 shown in FIG.
 いずれにしても、給気孔26は、内側ガスケット部材32aがさらに酸化劣化反応しにくいようにするために形成される。すなわち、ダブルラインガスケット32の内側ガスケット部材32aと外側ガスケット部材32bと2枚の伝熱プレート20によって囲まれた密閉空間内に、給気孔26から窒素などの不活性ガスを供給し、内側ガスケット部材32aが酸素に全く触れないようにする。 In any case, the air supply holes 26 are formed so that the inner gasket member 32a is more resistant to oxidative degradation. That is, an inert gas such as nitrogen is supplied from the air supply hole 26 into a sealed space surrounded by the inner gasket member 32a and the outer gasket member 32b of the double line gasket 32 and the two heat transfer plates 20, and the inner gasket member. Prevent 32a from contacting oxygen at all.
 そして、この密閉空間は、伝熱プレート20を介して第1流路1が隣り合っているため、第1流路1を設けている伝熱プレート20,20間に、給気孔26と連続する環状のガスケット33を介装することで、このガスケット33に連通してフレーム11に取り付けられているノズル14から密閉空間内に不活性ガスを供給する。図4に示すように、この不活性ガスを供給するためのノズル14が固定フレーム11に取り付けられている。 And since this 1st flow path 1 is adjacent to this sealed space via the heat-transfer plate 20, between the heat- transfer plates 20 and 20 which have provided the 1st flow path 1, it continues with the air supply hole 26. FIG. By interposing the annular gasket 33, the inert gas is supplied into the sealed space from the nozzle 14 that is connected to the gasket 33 and attached to the frame 11. As shown in FIG. 4, a nozzle 14 for supplying this inert gas is attached to the fixed frame 11.
 なお、高温流体Hが高温で流通する左側上の連通路3にのみ排液孔25と給気孔26を設けてもよいが、降温した高温流体Hが流通する左側下の連通路3を設けるダブルラインガスケット32にも排液孔25と給気孔26を設けることにより、上下反転して組み立てることができる。したがって、この場合の排液孔25と給気孔26とは、上下が逆になると、排液孔25が給気孔26となり、給気孔26が排液孔25となる位置に形成される。 The drainage hole 25 and the air supply hole 26 may be provided only in the upper left communication passage 3 through which the high temperature fluid H flows at a high temperature, but the double lower side in which the lower left communication passage 3 through which the cooled high temperature fluid H flows is provided. By providing the drain gasket 25 and the air supply hole 26 in the line gasket 32, it can be assembled upside down. Accordingly, in this case, when the liquid discharge hole 25 and the air supply hole 26 are turned upside down, the liquid discharge hole 25 becomes the air supply hole 26 and the air supply hole 26 becomes the liquid discharge hole 25.
 次に、本発明に係るプレート式熱交換器の第3の実施形態について図7を参照しながら説明する。第3の実施形態は、鉛直姿勢で複数枚積層されたカセットプレート200とカセットプレート200との間にダブルラインガスケット32が介装されたことを特徴としている。 Next, a third embodiment of the plate heat exchanger according to the present invention will be described with reference to FIG. The third embodiment is characterized in that a double line gasket 32 is interposed between a cassette plate 200 and a plurality of cassette plates 200 stacked in a vertical posture.
 カセットプレート200は、2枚の伝熱プレート20,20の外周部をレーザ溶接やロウ付けなどによって永久接続(図7において黒丸で示す。)したもので、内部に高温流体Hを流通させる第1流路1又は低温流体Cを流通させる第2流路2が設けられる。 The cassette plate 200 is obtained by permanently connecting the outer peripheral portions of the two heat transfer plates 20 and 20 by laser welding or brazing (indicated by black circles in FIG. 7). A second flow path 2 through which the flow path 1 or the low temperature fluid C flows is provided.
 そして、カセットプレート200が複数枚積層され、カセットプレート200とカセットプレート200との間に低温流体Cを流通させる第2流路2又は高温流体Hを流通させる第1流路1が設けられる。この積層されたカセットプレート200とカセットプレート200との外周部にガスケット30が介装される。 A plurality of cassette plates 200 are stacked, and a second flow path 2 for circulating the low temperature fluid C or a first flow path 1 for circulating the high temperature fluid H is provided between the cassette plates 200 and 200. A gasket 30 is interposed on the outer peripheral portion of the stacked cassette plate 200 and cassette plate 200.
 ガスケット30は、カセットプレート200の永久接続された外周部において介装する流路形成用ガスケット(図示せず)と、連通路3を設けるダブルラインガスケット32とを組み合わせたものとされている。ダブルラインガスケット32は、通路孔21,22を囲む円環状の内側ガスケット部材32aと、この内側ガスケット部材32aを囲む外側ガスケット部材32bとを同心に二重に並列したものである。外側ガスケット部材31bは、図示したように永久接続した内側に介装される。 The gasket 30 is a combination of a flow path forming gasket (not shown) interposed at the permanently connected outer peripheral portion of the cassette plate 200 and a double line gasket 32 provided with the communication path 3. In the double line gasket 32, an annular inner gasket member 32a surrounding the passage holes 21 and 22 and an outer gasket member 32b surrounding the inner gasket member 32a are concentrically arranged in parallel. The outer gasket member 31b is interposed inside the permanent connection as shown in the figure.
 あるいは、図示しないが、外側ガスケット部材32bは、永久接続した部分の間201に介装され、内側ガスケット部材31aは、永久接続した内側(図7において外側ガスケット部材31bに介装したライン)に介装される。 Alternatively, although not shown, the outer gasket member 32b is interposed between the permanently connected portions 201, and the inner gasket member 31a is interposed between the permanently connected inner sides (lines interposed in the outer gasket member 31b in FIG. 7). Be dressed.
 カセットプレート200内の第1流路1内に高温流体Hを流通させるため、連通路3内にも高温流体Hが流通する。連通路3は、通路孔21,22を囲むダブルラインガスケット32によって形成されている。ダブルラインガスケット32の内側ガスケット部材32aは、高温流体Hと触れるが、大気中の酸素との反応が抑制され、酸化劣化が抑制される。 Since the high temperature fluid H is circulated in the first flow path 1 in the cassette plate 200, the high temperature fluid H is also circulated in the communication path 3. The communication passage 3 is formed by a double line gasket 32 surrounding the passage holes 21 and 22. The inner gasket member 32a of the double line gasket 32 is in contact with the high-temperature fluid H, but the reaction with oxygen in the atmosphere is suppressed and oxidative degradation is suppressed.
 したがって、カセットプレート200を組み立てたプレート式熱交換器もダブルラインガスケット32が罅割れや経年劣化によるヘタリが抑制され、高温流体Hが早期に漏洩しないものとなっている。なお、このプレート式熱交換器は、カセットプレート200内に低温流体Cを流通させ、カセットプレート200とカセットプレート200との間に高温流体Hを流通させても、高温流体Hが漏洩しないものとすることができる。 Therefore, in the plate heat exchanger assembled with the cassette plate 200, the double line gasket 32 is prevented from cracking and settling due to aging, and the high temperature fluid H does not leak early. In this plate type heat exchanger, even if the low temperature fluid C is circulated in the cassette plate 200 and the high temperature fluid H is circulated between the cassette plate 200 and the cassette plate 200, the high temperature fluid H does not leak. can do.
 以上、本実施形態に係るプレート式熱交換器は、複数の通路孔21,22,23,24を形成した伝熱プレート20が複数枚積層され、隣り合う各伝熱プレート20の外周部間に流路形成用ガスケット31が介装されることで、伝熱プレート20を境にして高温流体Hを流通させる第1流路1と、低温流体Cを流通させる第2流体2とが交互に形成され、前記通路孔21,22,23,24を囲む連通路形成用ガスケット32,32が隣り合っている伝熱プレート20間に介装されることで、流体H,Cを第1流路1に流入出させる連通路3と第2流路2に流入出させる連通路3とが形成され、前記連通路形成用ガスケット32は、前記通路孔21,22,23,24を囲む内側ガスケット部材32aと該内側ガスケット32aを囲む外側ガスケット部材32bとを有して二重にされている。そのため、連通路形成用ガスケット32が内側ガスケット部材32aと外側ガスケット部材32bの二重で通路孔21,22,23,24を囲って連通路3を形成していることにより、内側ガスケット部材32aが高温流体Hに触れるものの大気中の酸素との反応が抑制され、したがって、シールを維持する内側ガスケット部材32aで酸化劣化反応による分子鎖の切断、架橋反応が進行せず、圧縮永久歪みの進行や罅割れが抑えられ、連通路形成用ガスケット32によって形成されている連通路3内を流通している高温流体Hを漏洩しにくいようにすることができる。 As described above, in the plate heat exchanger according to the present embodiment, a plurality of heat transfer plates 20 in which a plurality of passage holes 21, 22, 23, and 24 are formed are stacked, and between the outer peripheral portions of the adjacent heat transfer plates 20. By interposing the gasket 31 for channel formation, the first channel 1 for circulating the high-temperature fluid H and the second fluid 2 for circulating the low-temperature fluid C are alternately formed with the heat transfer plate 20 as a boundary. The communication passage forming gaskets 32 and 32 surrounding the passage holes 21, 22, 23 and 24 are interposed between the adjacent heat transfer plates 20, thereby allowing the fluids H and C to flow through the first flow path 1. The communication path 3 that flows into and out of the second flow path 2 and the communication path 3 that flows into and out of the second flow path 2 are formed, and the communication path forming gasket 32 is an inner gasket member 32a that surrounds the passage holes 21, 22, 23, and 24. And the outer side surrounding the inner gasket 32a And a gasket member 32b are doubly. For this reason, the communication passage forming gasket 32 is formed by double the inner gasket member 32a and the outer gasket member 32b so as to surround the passage holes 21, 22, 23, 24, thereby forming the communication passage 3. Although the reaction with the oxygen in the atmosphere is suppressed even though it is in contact with the high temperature fluid H, the molecular chain scission and the crosslinking reaction due to the oxidative degradation reaction do not proceed in the inner gasket member 32a that maintains the seal, and the compression set progresses. Cracking is suppressed and the high temperature fluid H flowing through the communication path 3 formed by the communication path forming gasket 32 can be prevented from leaking.
 また、本実施形態に係るプレート式熱交換器によれば、前記連通路形成用ガスケット32は、前記高温流体Hが流通する連通路3を形成する伝熱プレート20間にのみ二重に並列されている。これにより、高温流体Hが流通する連通路3を形成する連通路形成用ガスケット32が酸化劣化反応によってガスケット劣化が進行しやすいことに鑑み、この連通路形成用ガスケット32のみ二重とされ、低温流体Cが流通する流路を形成する連通路形成用ガスケット32が一重とされる。 Further, according to the plate heat exchanger according to the present embodiment, the communication path forming gasket 32 is doubly arranged in parallel only between the heat transfer plates 20 forming the communication path 3 through which the high-temperature fluid H flows. ing. Accordingly, in view of the fact that the gasket deterioration for the communication passage forming gasket 32 that forms the communication passage 3 through which the high-temperature fluid H circulates easily proceeds due to the oxidation deterioration reaction, only the gasket 32 for communication passage formation is doubled. The communication path forming gasket 32 that forms a flow path through which the fluid C flows is made a single layer.
 また、本実施形態に係るプレート式熱交換器は、複数の通路孔21,22,23,24を形成した2枚の伝熱プレート20,20の外周部を永久接続したカセットプレート200が複数枚積層され、隣り合う各カセットプレート200,200の外周部間に流路形成用ガスケット31が介装され、前記通路孔21,22,23,24を囲む連通路形成用ガスケット32が隣り合っている伝熱プレート200間に介装されることで、カセットプレート200内とカセットプレート200間とに高温流体Hを流通させる第1流路1又は低温流体Cを流通させる第2流路2が交互に形成され、前記連通路形成用ガスケット32は、前記通路孔を囲む内側ガスケット部材32aと該内側ガスケット32aを囲む外側ガスケット部材32bとを有して二重にされている。そのため、カセットプレート200とカセットプレート200との間に介装される連通路形成用ガスケット32が内側ガスケット部材32aと外側ガスケット部材32bの二重とされていることにより、カセットプレート200内に高温流体Hが流通する第1流路1が設けられる場合において、連通路形成用ガスケット32が酸化劣化反応しにくく、ガスケット劣化の進行を抑え、高温流体Hを連通路3から漏洩しにくいようにすることができる。 In addition, the plate heat exchanger according to the present embodiment includes a plurality of cassette plates 200 in which the outer peripheral portions of the two heat transfer plates 20, 20 having a plurality of passage holes 21, 22, 23, 24 are permanently connected. The flow path forming gaskets 31 are interposed between the outer peripheral portions of the adjacent cassette plates 200 and 200 which are stacked, and the communication path forming gaskets 32 surrounding the passage holes 21, 22, 23 and 24 are adjacent to each other. By interposing between the heat transfer plates 200, the first flow path 1 for circulating the high-temperature fluid H or the second flow path 2 for circulating the low-temperature fluid C alternately in the cassette plate 200 and between the cassette plates 200. The communication path forming gasket 32 is formed and has an inner gasket member 32a surrounding the passage hole and an outer gasket member 32b surrounding the inner gasket 32a. It is heavy. For this reason, the communication path forming gasket 32 interposed between the cassette plate 200 and the cassette plate 200 is doubled by the inner gasket member 32a and the outer gasket member 32b. In the case where the first flow path 1 through which H flows is provided, the communication path forming gasket 32 is less likely to undergo oxidative deterioration reaction, suppresses the progress of gasket deterioration, and prevents the high temperature fluid H from leaking from the communication path 3. Can do.
 また、本実施形態に係るプレート式熱交換器によれば、前記連通路形成用ガスケット32の内側ガスケット部材32aと外側ガスケット部材32bとの間の伝熱プレート20には、排液孔25が形成されている。そのため、内側ガスケット部材32aと外側ガスケット部材32bとの間の伝熱プレート20に排液孔25が形成されていることにより、内側ガスケットが熱劣化や経年劣化に伴うヘタリにより、内側ガスケット部材32aから漏洩した高温流体Hを外側ガスケット部材32b内の排液孔25から排出することができる。 Further, according to the plate heat exchanger according to the present embodiment, the drainage holes 25 are formed in the heat transfer plate 20 between the inner gasket member 32a and the outer gasket member 32b of the communication path forming gasket 32. Has been. Therefore, the drainage holes 25 are formed in the heat transfer plate 20 between the inner gasket member 32a and the outer gasket member 32b, so that the inner gasket is removed from the inner gasket member 32a due to the settling due to thermal deterioration and aging deterioration. The leaked high temperature fluid H can be discharged from the drain hole 25 in the outer gasket member 32b.
 また、本実施形態に係るプレート式熱交換器によれば、前記連通路形成用ガスケット32間の内側ガスケット部材32aと外側ガスケット部材32bとの間の伝熱プレート20には、給気孔26が形成され、内外ガスケット部材と伝熱プレート20とによって囲まれた密閉空間内に不活性ガスが充填されている。これにより、内側ガスケット部材32aと外側ガスケット部材32bと伝熱プレート20とによって囲まれた密閉空間内に不活性ガスが充填されていることにより、この密閉空間内に存在する空気をなくすことで、内側ガスケット部材32aの酸化劣化反応を極力抑えることができる。 Further, according to the plate heat exchanger according to the present embodiment, the air supply holes 26 are formed in the heat transfer plate 20 between the inner gasket member 32a and the outer gasket member 32b between the communication path forming gaskets 32. The sealed space surrounded by the inner and outer gasket members and the heat transfer plate 20 is filled with an inert gas. Thereby, the inert gas is filled in the sealed space surrounded by the inner gasket member 32a, the outer gasket member 32b, and the heat transfer plate 20, thereby eliminating the air present in the sealed space. The oxidation deterioration reaction of the inner gasket member 32a can be suppressed as much as possible.
 本発明は、前記第1ないし第3の実施形態に限定することなく種々変更することができる。例えば、前記第3の実施形態において説明したカセットプレート200を積層するプレート式熱交換器においても、第2の実施形態で説明した排気孔や給気孔26を備え、また、第1の実施形態で説明したように、第1流路1の上流側のみ連通路形成用ガスケット32を二重としてもよい。また、排液孔25と連続するノズル13及び給気孔26と連続するノズル14は、固定フレーム11でなく移動フレーム12に設けられてもよい。 The present invention can be variously modified without being limited to the first to third embodiments. For example, the plate type heat exchanger for stacking the cassette plates 200 described in the third embodiment also includes the exhaust holes and the air supply holes 26 described in the second embodiment, and in the first embodiment. As described, the communication path forming gasket 32 may be doubled only on the upstream side of the first flow path 1. Further, the nozzle 13 continuing to the drainage hole 25 and the nozzle 14 continuing to the air supply hole 26 may be provided in the moving frame 12 instead of the fixed frame 11.
1………第1流路
2………第2流路
3………連通路
20……伝熱プレート
21,22,23,24…通路孔
25……排液孔
26……給気孔
30……ガスケット
31……流路形成用ガスケット
32……連通路形成用ガスケット(ダブルラインガスケット)
32a…内側ガスケット部材
32b…外側ガスケット部材
200…カセットプレート
C………低温流体
H………高温流体
DESCRIPTION OF SYMBOLS 1 ......... First flow path 2 ......... Second flow path 3 ......... Communication path 20 ... Heat transfer plates 21, 22, 23, 24 ... Passage hole 25 ... Drainage hole 26 ... Air supply hole 30 ...... Gasket 31 ...... Flow path forming gasket 32 ...... Communication path forming gasket (double line gasket)
32a ... Inner gasket member 32b ... Outer gasket member 200 ... Cassette plate C ......... Low temperature fluid H ......... High temperature fluid

Claims (5)

  1.  複数の通路孔を形成した伝熱プレートが複数枚積層され、
     隣り合う各伝熱プレートの外周部間に流路形成用ガスケットが介装されることで、伝熱プレートを境にして高温流体を流通させる第1流路と、低温流体を流通させる第2流体とが交互に形成され、
     前記通路孔を囲む連通路形成用ガスケットが隣り合っている伝熱プレート間に介装されることで、流体を第1流路に流入出させる連通路と第2流路に流入出させる連通路とが形成され、
     前記連通路形成用ガスケットは、前記通路孔を囲む内側ガスケット部材と該内側ガスケットを囲む外側ガスケット部材とを有して二重にされている
     プレート式熱交換器。
    A plurality of heat transfer plates having a plurality of passage holes are laminated,
    A flow path forming gasket is interposed between the outer peripheral portions of adjacent heat transfer plates, so that a first flow path for circulating a high-temperature fluid across the heat transfer plate and a second fluid for circulating a low-temperature fluid And are formed alternately,
    A communication passage for allowing fluid to flow into and out of the first flow path and a communication path for flowing into and out of the second flow path by interposing between the adjacent heat transfer plates with the communication path forming gasket surrounding the passage hole. And formed,
    The plate-type heat exchanger, wherein the communication path forming gasket is doubled by having an inner gasket member surrounding the passage hole and an outer gasket member surrounding the inner gasket.
  2.  前記連通路形成用ガスケットは、前記高温流体が流通する連通路を形成する伝熱プレート間にのみ二重に並列されている請求項1に記載のプレート式熱交換器。 The plate-type heat exchanger according to claim 1, wherein the communication path forming gasket is doubly arranged in parallel only between heat transfer plates forming a communication path through which the high-temperature fluid flows.
  3.  複数の通路孔を形成した2枚の伝熱プレートの外周部を永久接続したカセットプレートが複数枚積層され、
     隣り合う各カセットプレートの外周部間に流路形成用ガスケットが介装され、
     前記通路孔を囲む連通路形成用ガスケットが隣り合っている伝熱プレート間に介装されることで、
     カセットプレート内とカセットプレート間とに高温流体を流通させる第1流路又は低温流体を流通させる第2流路が交互に形成され、
     前記連通路形成用ガスケットは、前記通路孔を囲む内側ガスケット部材と該内側ガスケットを囲む外側ガスケット部材とを有して二重にされている
     プレート式熱交換器。
    A plurality of cassette plates in which the outer peripheral portions of two heat transfer plates having a plurality of passage holes are permanently connected are laminated,
    A gasket for forming a flow path is interposed between the outer peripheral portions of the adjacent cassette plates,
    By interposing the gasket for communication passage formation surrounding the passage hole between adjacent heat transfer plates,
    A first flow path for flowing a high-temperature fluid or a second flow path for flowing a low-temperature fluid are alternately formed in the cassette plate and between the cassette plates,
    The plate-type heat exchanger, wherein the communication path forming gasket is doubled by having an inner gasket member surrounding the passage hole and an outer gasket member surrounding the inner gasket.
  4.  前記連通路形成用ガスケットの内側ガスケット部材と外側ガスケット部材との間の伝熱プレートには、排液孔が形成されている請求項1ないし3のいずれか一項に記載のプレート式熱交換器。 The plate-type heat exchanger according to any one of claims 1 to 3, wherein a drainage hole is formed in a heat transfer plate between the inner gasket member and the outer gasket member of the communication path forming gasket. .
  5.  前記連通路形成用ガスケット間の内側ガスケット部材と外側ガスケット部材との間の伝熱プレートには、給気孔が形成され、内外ガスケット部材と伝熱プレートとによって囲まれた密閉空間内に不活性ガスが充填されている請求項1ないし4のいずれか一項に記載のプレート式熱交換器。 An air supply hole is formed in a heat transfer plate between the inner gasket member and the outer gasket member between the communication path forming gaskets, and an inert gas is enclosed in a sealed space surrounded by the inner and outer gasket members and the heat transfer plate. The plate heat exchanger according to any one of claims 1 to 4, wherein
PCT/JP2012/077362 2011-10-24 2012-10-23 Plate heat exchanger WO2013061966A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013540787A JP6097696B2 (en) 2011-10-24 2012-10-23 Plate heat exchanger
US14/354,120 US20140338870A1 (en) 2011-10-24 2012-10-23 Plate heat exchanger
CN201280048896.XA CN103946663B (en) 2011-10-24 2012-10-23 Heat-exchangers of the plate type
EP12843569.0A EP2772718B1 (en) 2011-10-24 2012-10-23 Plate heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011233098 2011-10-24
JP2011-233098 2011-10-24

Publications (1)

Publication Number Publication Date
WO2013061966A1 true WO2013061966A1 (en) 2013-05-02

Family

ID=48167796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077362 WO2013061966A1 (en) 2011-10-24 2012-10-23 Plate heat exchanger

Country Status (5)

Country Link
US (1) US20140338870A1 (en)
EP (1) EP2772718B1 (en)
JP (1) JP6097696B2 (en)
CN (1) CN103946663B (en)
WO (1) WO2013061966A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101237A (en) * 2014-06-25 2014-10-15 无锡溥汇机械科技有限公司 Plate heat exchanger
CN104121791A (en) * 2014-07-18 2014-10-29 无锡溥汇机械科技有限公司 Plate heat exchanger
US9772146B2 (en) 2011-11-11 2017-09-26 Hisaka Works, Ltd. Plate heat exchanger
CN114636331A (en) * 2020-12-16 2022-06-17 丹佛斯有限公司 Gasket unit insert for heat exchanger

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222130A1 (en) * 2013-10-30 2015-04-30 MAHLE Behr GmbH & Co. KG Heat exchanger
CN104359337A (en) * 2014-12-04 2015-02-18 胡甜甜 Multi-medium plate heat exchanger
US20170089644A1 (en) * 2015-09-30 2017-03-30 Spx Flow, Inc. Port Connection for a Heat Exchanger
CN107478078A (en) * 2017-08-17 2017-12-15 佛山禅能换热器有限公司 Mix application method and plate type heat exchanger of the sealing gasket in plate type heat exchanger
US10458718B2 (en) * 2017-11-29 2019-10-29 Asia Vital Components Co., Ltd. Airtight penetration structure for heat dissipation device
DE102022112039A1 (en) 2022-05-13 2023-11-16 Akg Verwaltungsgesellschaft Mbh Safety heat exchanger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145873A (en) * 1979-04-26 1980-11-13 Power Reactor & Nuclear Fuel Dev Corp Bellows seal valve
JPH02192598A (en) * 1989-01-18 1990-07-30 Hisaka Works Ltd Fluid leakage detecting device for plate type heat exchanger
JPH0579786A (en) * 1991-09-25 1993-03-30 Hisaka Works Ltd Plate type heat exchanger
JPH05264192A (en) * 1992-03-21 1993-10-12 Hisaka Works Ltd Plate type heat exchanger
JPH0972686A (en) 1995-09-05 1997-03-18 Hisaka Works Ltd Gasket mounting structure for plate type heat exchanger
JPH11503819A (en) * 1996-02-09 1999-03-30 スウェプ・インターナショナル・アクチボラゲット Endless rubber gasket for plate heat exchanger
JP2000283687A (en) * 1999-03-31 2000-10-13 Hisaka Works Ltd Plate type heat exchanger
JP2005106412A (en) 2003-09-30 2005-04-21 Hisaka Works Ltd Junction-type plate heat exchanger
JP2006520883A (en) * 2003-03-21 2006-09-14 ベール ゲーエムベーハー ウント コー カーゲー Exhaust heat exchanger and sealing machine groove for exhaust heat exchanger
JP2006303262A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Cooling device of semiconductor module
JP2008051390A (en) * 2006-08-24 2008-03-06 Fuiisa Kk Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099520A (en) * 1960-02-10 1963-07-30 Separator Ab Method and apparatus for preventing infection of heat exchange chambers
AT395354B (en) * 1991-03-12 1992-12-10 Widschwendter Arnulf PLATE HEAT EXCHANGER
SE524751C2 (en) * 2002-07-29 2004-09-28 Alfa Laval Corp Ab Heat exchanger plate, plate heat exchanger and method of manufacturing a heat exchanger plate
CN2575590Y (en) * 2002-10-28 2003-09-24 刘雲生 Archery type stable tail discarding armor-piercing projectile
SE524783C2 (en) * 2003-02-11 2004-10-05 Alfa Laval Corp Ab Plate package, plate heat exchanger and plate module
US20100300651A1 (en) * 2009-05-28 2010-12-02 Spx Apv Danmark A/S Double-walled plate heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145873A (en) * 1979-04-26 1980-11-13 Power Reactor & Nuclear Fuel Dev Corp Bellows seal valve
JPH02192598A (en) * 1989-01-18 1990-07-30 Hisaka Works Ltd Fluid leakage detecting device for plate type heat exchanger
JPH0579786A (en) * 1991-09-25 1993-03-30 Hisaka Works Ltd Plate type heat exchanger
JPH05264192A (en) * 1992-03-21 1993-10-12 Hisaka Works Ltd Plate type heat exchanger
JPH0972686A (en) 1995-09-05 1997-03-18 Hisaka Works Ltd Gasket mounting structure for plate type heat exchanger
JPH11503819A (en) * 1996-02-09 1999-03-30 スウェプ・インターナショナル・アクチボラゲット Endless rubber gasket for plate heat exchanger
JP2000283687A (en) * 1999-03-31 2000-10-13 Hisaka Works Ltd Plate type heat exchanger
JP2006520883A (en) * 2003-03-21 2006-09-14 ベール ゲーエムベーハー ウント コー カーゲー Exhaust heat exchanger and sealing machine groove for exhaust heat exchanger
JP2005106412A (en) 2003-09-30 2005-04-21 Hisaka Works Ltd Junction-type plate heat exchanger
JP2006303262A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Cooling device of semiconductor module
JP2008051390A (en) * 2006-08-24 2008-03-06 Fuiisa Kk Heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9772146B2 (en) 2011-11-11 2017-09-26 Hisaka Works, Ltd. Plate heat exchanger
CN104101237A (en) * 2014-06-25 2014-10-15 无锡溥汇机械科技有限公司 Plate heat exchanger
CN104121791A (en) * 2014-07-18 2014-10-29 无锡溥汇机械科技有限公司 Plate heat exchanger
CN104121791B (en) * 2014-07-18 2015-12-16 无锡溥汇机械科技有限公司 A kind of plate type heat exchanger
CN114636331A (en) * 2020-12-16 2022-06-17 丹佛斯有限公司 Gasket unit insert for heat exchanger

Also Published As

Publication number Publication date
EP2772718A1 (en) 2014-09-03
US20140338870A1 (en) 2014-11-20
JP6097696B2 (en) 2017-03-15
JPWO2013061966A1 (en) 2015-04-02
CN103946663A (en) 2014-07-23
EP2772718A4 (en) 2015-07-29
CN103946663B (en) 2016-06-29
EP2772718B1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6097696B2 (en) Plate heat exchanger
JP6163426B2 (en) Plate heat exchanger
WO2013069706A1 (en) Plate type heat exchanger
DK1842022T3 (en) Seal design for plate heat exchanger
JP2007532852A (en) Plate heat exchanger
US9933211B2 (en) Plate heat exchanger
FI124230B (en) METHOD AND ORGANIZATION FOR REPAIRING THE HEAT EXCHANGER DISK PACK AND THE HEAT EXCHANGER
KR20170104396A (en) Plate heat exchanger and method for manufacturing a plate heat exchanger
JP6647889B2 (en) Channel structure
JP2017045637A (en) Membrane electrode assembly
JP2012512378A (en) High pressure port on the peninsula
JP5618400B2 (en) Plate heat exchanger
US20200152953A1 (en) Bipolar plate for an electrochemical device
JP2020029900A (en) Seal structure and fuel battery component having the same
WO2022244404A1 (en) Fuel cell separator manufacturing method and fuel cell separator
JP4703831B2 (en) Plate heat exchanger
CN113108630A (en) Circumferentially extending type sealed cooling device
JP2022121018A (en) Plate-type heat exchanger
JP5333727B2 (en) Fuel cell separator
JP2000274989A (en) Plate heat exchanger
JP2003106781A (en) Welded plate type heat exchanger
JP2000234889A (en) Plate heat exchanger
JP2000283688A (en) Plate type heat exchanger
JP2004028357A (en) Heat exchanger
JPH0798194A (en) Plate type heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14354120

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012843569

Country of ref document: EP