WO2013061844A1 - Electrolyte solution for non-aqueous secondary battery, and secondary battery - Google Patents

Electrolyte solution for non-aqueous secondary battery, and secondary battery Download PDF

Info

Publication number
WO2013061844A1
WO2013061844A1 PCT/JP2012/076845 JP2012076845W WO2013061844A1 WO 2013061844 A1 WO2013061844 A1 WO 2013061844A1 JP 2012076845 W JP2012076845 W JP 2012076845W WO 2013061844 A1 WO2013061844 A1 WO 2013061844A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
secondary battery
iii
electrolyte
Prior art date
Application number
PCT/JP2012/076845
Other languages
French (fr)
Japanese (ja)
Inventor
吉憲 金澤
五十嵐 達也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280052601.6A priority Critical patent/CN103891035B/en
Priority to KR1020147014306A priority patent/KR101960126B1/en
Publication of WO2013061844A1 publication Critical patent/WO2013061844A1/en
Priority to US14/262,347 priority patent/US9595734B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous secondary battery containing an organic solvent, and a secondary battery using the same.
  • lithium ion batteries secondary batteries
  • lithium metal secondary batteries secondary batteries
  • These can obtain a large energy density as compared with lead batteries and nickel cadmium batteries.
  • VTR video tape recorder
  • a mobile phone or a notebook computer.
  • development of lithium ion secondary batteries that are particularly lightweight and capable of obtaining a high energy density has been underway. Further, there is a strong demand for miniaturization, weight reduction, long life, and high safety.
  • lithium ion secondary battery As an electrolytic solution of a lithium ion secondary battery or a lithium metal secondary battery (hereinafter collectively referred to simply as a lithium ion secondary battery), the conductivity is high and the potential is stable.
  • a combination of a carbonate ester solvent such as propylene carbonate or diethyl carbonate and an electrolyte salt such as lithium hexafluorophosphate is widely used.
  • Patent Document 1 As an example of improving the components of the electrolytic solution, there is one in which a specific cyclic compound is applied in order to suppress an increase in internal resistance at a high temperature (80 ° C.) (see Patent Document 1). In addition, in a special cell in which a film of polyvinylidene fluoride is formed on an electrode, there is one that can suppress gas generation at the time of discharge by adding an acid anhydride to an electrolytic solution (see Patent Document 2). ).
  • JP 2007-265858 A Japanese Patent Laid-Open No. 2001-155572
  • the present invention has been made in view of such problems, and exhibits high performance in terms of cycle characteristics and low-temperature discharge rate, and is also excellent in high-temperature storage properties related to the positive electrode characteristics (and, if necessary, high-speed charge / discharge characteristics). It aims at provision of the electrolyte solution for secondary batteries, and a secondary battery.
  • R 21 to R 24 each independently represents a hydrogen atom or a substituent.
  • L 21 represents an atomic group forming a ring structure together with the carbon atom of the carbonyl group and cyclopropyl group in the formula Represents.
  • R 31 to R 34 each independently represents a hydrogen atom or a substituent.
  • L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group.
  • L 32 represents an alkylene group. Represents an oxygen atom, a sulfur atom, —SO 2 —, or —NR 35 —, R 35 represents an alkyl group or an aryl group, and n and m each independently represent 1 or 2.)
  • the substituent X in the formula (I-1) represents a cyano group, an alkoxycarbonyl group, or a carbamoyl group.
  • R 16 is, a carbonyl group (-CO-), an ether group (-O-), a or an imino group (-NR 17 - .R 17 representing a) alkyl groups of 1-6 carbon atoms which may be interposed in Represents a hydrogen atom or an alkyl group.
  • the ring formed by L 21 in formula (II-1) contains —CONR 25 — (wherein R 25 represents an alkyl group or an aryl group) or —COO—.
  • Secondary battery electrolyte [7] The electrolyte solution for a non-aqueous secondary battery according to [1] or [6], wherein the compound represented by the formula (II-1) is a compound represented by the following formula (II-2).
  • L 22 represents an atomic group forming a ring structure together with the carbon atoms of two carbonyl groups and a cyclopropyl group in the formula.
  • the ring formed by L 21 in formula (II-1) or the ring formed by L 22 in formula (II-2) is a 5-membered or 6-membered ring [1], [6], and [7 ]
  • the linking group formed by (L 31 ) n in formula (III-1) is a carbonyloxy group, an amide group, or —COR 36 — (R 36 represents an alkylene group having 1 to 3 carbon atoms).
  • R 36 represents an alkylene group having 1 to 3 carbon atoms.
  • the electrolyte solution for a non-aqueous secondary battery [10] The electrolyte solution for a non-aqueous secondary battery according to [1] or [9], wherein L 32 in formula (III-1) is an alkylene group, an oxygen atom, a sulfur atom, or —NR 35 —.
  • Electrolytic solution kit (In the formula (I-1), R 11 to R 14 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group.
  • R 15 has 1 carbon atom.
  • R 21 to R 24 each independently represents a hydrogen atom or a substituent.
  • L 21 represents an atomic group forming a ring structure together with the carbon atom of the carbonyl group and cyclopropyl group in the formula Represents.
  • R 31 to R 34 each independently represents a hydrogen atom or a substituent.
  • L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group.
  • L 32 represents an alkylene group. Represents an oxygen atom, a sulfur atom, —SO 2 —, or —NR 35 —, R 35 represents an alkyl group or an aryl group, and n and m each independently represent 1 or 2.
  • the electrolyte solution for non-aqueous secondary battery and the secondary battery using the same of the present invention exhibit high performance in cycle characteristics and low-temperature discharge rate, and also have high-temperature storage characteristics related to the positive electrode characteristics (including rechargeability if necessary). Also excellent.
  • This group has the property of attracting electrons, and by its action, it is considered that the cyclopropane ring is moderately easily opened, and the production of a polymer having a good action at or near the electrode surface is promoted. Furthermore, it is presumed that a specific substituent (—L 11 —R 15 ) substituted with the same carbon atom as these groups also functions favorably and improves the electrode characteristics of the positive electrode as well as the negative electrode. The That is, when the cyclopropane ring of the specific cyclopropane compound is opened, a polymer having a more desirable form for the positive electrode and the negative electrode is formed to form SEI (Solid Electrolyte Interface), which has led to the improvement of the above performances in the secondary battery. Conceivable.
  • SEI Solid Electrolyte Interface
  • the electrolyte solution for a non-aqueous secondary battery of this embodiment contains a specific cyclopropane compound represented by the following formula (I-1).
  • R 11 to R 14 each independently represent a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group.
  • Specific examples of the alkyl group, aryl group, and alkoxy group include the examples of the substituent T described below.
  • R 11 to R 14 may be bonded to each other or condensed to form a ring structure.
  • R 11 to R 14 may further have a substituent, and examples of the substituent include the substituent T described later. Among these, it is particularly preferable that R 11 to R 14 are hydrogen atoms.
  • R 15 represents a substituent having 1 to 7 carbon atoms, preferably a substituent having 1 to 5 carbon atoms.
  • R 15 may be a hydrocarbon substituent consisting only of carbon atoms and hydrogen atoms, but may be a substituent containing O, N, or S.
  • R 15 may be linear or branched, and may be cyclic or linear.
  • R 15 may be composed only of a saturated bond or may have an unsaturated bond. When it is cyclic, it may be an aromatic ring, an aliphatic ring, an aromatic heterocyclic ring, or an aliphatic heterocyclic ring.
  • examples of the atomic group containing O include an ether group (—O—), a carbonyl group (—CO—), and a carbonyloxy group (—COO—).
  • examples of the atomic group containing N include an imino group (—NR 17 —: R 17 is a hydrogen atom or an alkyl group, and a preferred range will be described later), an amide group (—CONR 17 —), and the like.
  • examples of the atomic group containing S include a thioether group (—S—), a thiocarbonyl group (—CS—), —CSO—, and —CSS—.
  • ⁇ L 11 L 11 represents an alkylene group (preferably having 1 to 3 carbon atoms) or a carbonyl group.
  • the alkylene group may have a substituent, and the substituent T described below is preferable.
  • ⁇ X X represents an electron withdrawing group.
  • An electron-withdrawing group is a substituent having an electron-withdrawing property due to an electronic effect. If the substituent constant ⁇ p of the Hammett rule, which is a measure of the electron-withdrawing property and electron-donating property of a substituent, is used. , ⁇ p value is a substituent of 0 or more.
  • Hammett's rule was established in 1935 by L.L. in order to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives. P. A rule of thumb proposed by Hammett, which is widely accepted today.
  • Substituent constants determined by Hammett's rule include ⁇ p value and ⁇ m value, and these values can be found in many general books. A. Dean ed., “Lange's Handbook of Chemistry”, 12th edition, 1979 (Mc Graw-Hill) and “Areas of Chemistry”, No. 122, 96-103, 1979 (Nankodo), Corwin Hansch, A . LEO and R.M. W. TAFT “A Survey of Hammett Substitute Students and Resonance and Field Parameters” Chem. Rev. 1991, 91, 165-195.
  • each substituent is limited or explained by Hammett's substituent constant ⁇ p, but this is limited only to a substituent having a known value that can be found in the above-mentioned book. Needless to say, it also includes a substituent that would be included in the range when the value was unknown based on the Hammett rule even if the value was unknown.
  • 0.1 to 1.0 substituent constant sigma p value, and more preferably 0.2-1.0, most preferably 0.3 to 1.0.
  • R 16 represents a C 1-6 alkyl group that may intervene with a carbonyl group (—CO—), an ether group (—O—), or an imino group (—NR 17 —).
  • R 16 is preferably an alkyl group having no hetero atom, more preferably a methyl group, an ethyl group, an i-propyl group, or a t-butyl group.
  • R 16 may have a substituent, and examples of the substituent include the substituent T described below.
  • R 17 represents a hydrogen atom or an alkyl group.
  • R 17 is an alkyl group, it preferably has 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, an i-propyl group, or a t-butyl group.
  • R 17 may have a substituent, and examples of the substituent include the substituent T described later.
  • R 18 represents a group having the same meaning as R 17 .
  • X is preferably a cyano group (—CN) or an alkoxycarbonyl group (—COOR 16 ), and more preferably a cyano group (—CN).
  • each substituent or linking group is not definitive, but is estimated as follows.
  • the linking group L 11, alkylene group, by a carbonyl group, work potential adjustment action is considered to be able to effectively coat formed in the range of operating potential in the secondary battery.
  • L 11 is a carbonyl group, it is considered that the electron withdrawing property further acts to improve the film forming property.
  • the terminal substituent of R 15 contributes to the stabilization of lithium ions in the formed film.
  • the compound represented by the above formula (I-1) can be synthesized by a conventional method. Specifically, the procedures of the synthesis examples described later can be referred to.
  • the content of the specific cyclopropane compound represented by the formula (I-1) is not particularly limited, but is 0.005 to 20% by mass with respect to the total mass of the electrolytic solution, and 0.01% by mass or more. It is more preferable that the content is 0.05% by mass or more. By setting it as more than said lower limit, the effect of this embodiment fully expresses and decomposition
  • the upper limit is more preferably 15% by mass or less, and particularly preferably 10% by mass or less. By setting it to the upper limit value or less, it is preferable because excessive addition can be avoided and adverse effects on battery performance can be prevented.
  • the specific cyclopropane compound represented by the formula (I-1) may be used alone or in combination.
  • a specific cyclopropane compound is contained in the electrolytic solution.
  • various performance can be improved and also the load characteristic in a positive electrode can be improved.
  • the reason for this is not clear, but is estimated as follows.
  • the cyclopropane compound having a spiro ring structure used in this embodiment has a carbonyl group next to the cyclopropyl group ( ⁇ position). It is considered that the carbonyl group has the property of attracting electrons, and its action facilitates the appropriate opening of the cyclopropane ring and promotes the formation of an ideal polymer at or near the electrode surface.
  • the above-mentioned cyclic structure containing a carbonyl group also works favorably and improves not only the negative electrode but also the positive electrode characteristics. That is, the cyclopropane ring of a specific cyclopropane compound having a spiro ring structure is opened, a polymer having a more desirable form for the positive electrode and the negative electrode is formed to form SEI (Solid Electrolyte Interface), and the above performance in the secondary battery It is thought that it led to improvement.
  • SEI Solid Electrolyte Interface
  • the electrolyte solution for a non-aqueous secondary battery of this embodiment contains a specific cyclopropane compound represented by the following formula (II-1).
  • R 21 to R 24 each represents a hydrogen atom or a substituent, and preferably each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group.
  • Specific examples of the alkyl group, aryl group, and alkoxy group include the examples of the substituent T described below.
  • R 21 to R 24 may be bonded to each other or condensed to form a ring structure.
  • R 21 to R 24 may further have a substituent, and examples of the substituent include the substituent T described later.
  • R 21 to R 24 are preferably a hydrogen atom, an alkyl group, a fluorine atom, a carbonyl group-containing group, or a cyano group, and particularly preferably a hydrogen atom or an alkyl group.
  • the alkyl group include the substituent T described later, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 7 carbon atoms, a methyl group, an ethyl group, an isopropyl group, A tertiary butyl group or a benzyl group is particularly preferred.
  • the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, a methoxy group, an ethoxy group, A propoxy group or a tertiary butoxy group is particularly preferred.
  • an alkylcarbonyl group, an amide group, or an alkoxycarbonyl group is preferable, and a methylcarbonyl group, an ethylcarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, or a tertiary butoxycarbonyl group is particularly preferable. preferable.
  • L 21 represents an atomic group forming a ring structure together with the carbon atom of the cyclopropyl group and the carbonyl group.
  • the ring formed by L 21 may be any of an aromatic hydrocarbon ring, an aliphatic hydrocarbon ring, an aromatic heterocyclic ring, and an aliphatic heterocyclic ring, but preferably a heterocyclic ring (aromatic heterocyclic ring and aliphatic heterocyclic ring).
  • An aliphatic heterocyclic ring is more preferable.
  • the hetero atom which comprises a heterocyclic ring is not specifically limited, An oxygen atom, a nitrogen atom, and a sulfur atom are mentioned, It is preferable that it is an oxygen atom or a nitrogen atom.
  • the ring formed by L 21 may have a substituent, and examples of the substituent include a substituent T described later. Note that the aliphatic hydrocarbon ring and the aliphatic heterocyclic ring may contain an unsaturated bond.
  • the ring formed together with the carbon atom of the cyclopropyl group and the carbonyl group (C ⁇ O) in the formula preferably contains —CONR 25 — or —COO—.
  • R 25 represents an alkyl group (preferably having 1 to 5 carbon atoms) or an aryl group (preferably having 6 to 24 carbon atoms). Specific examples of the alkyl group or aryl group herein include the examples of the substituent T described later. R 25 may further have a substituent, and examples of the substituent include examples of the substituent T described later.
  • the compound represented by the formula (II-1) is preferably a compound represented by the following formula (II-2).
  • L 22 represents an atomic group that forms a ring structure with the carbon atoms of the two carbonyl groups and the cyclopropyl group in the formula.
  • a preferable range of the ring formed by L 22 is the same as L 21 , and any of an aromatic hydrocarbon ring, an aliphatic hydrocarbon ring, an aromatic heterocyclic ring, and an aliphatic heterocyclic ring may be used. Ring and aliphatic heterocycle) are preferred, and aliphatic heterocycles are more preferred.
  • the hetero atom which comprises a heterocyclic ring is not specifically limited, An oxygen atom, a nitrogen atom, and a sulfur atom are mentioned, It is preferable that it is an oxygen atom or a nitrogen atom.
  • the ring formed by L 21 may have a substituent, and examples of the substituent include a substituent T described later. Note that the aliphatic hydrocarbon ring and the aliphatic heterocyclic ring may contain an unsaturated bond.
  • the ring formed by L 21 or L 22 is preferably a 5-membered ring or a 6-membered ring, and particularly preferably a 6-membered ring.
  • the ring formed by L 21 or L 22 is preferably the following formula (IIa) or (IIb). * Represents the position of the carbon atom relative to the cyclopropyl stem.
  • X 1 and X 3 each represents an oxygen atom, CR 25 2 or NR 25 .
  • R 25 has the same meaning as described above.
  • X 2 is CR 25 2 , CS or CO.
  • Y 1 and Y 2 are an oxygen atom, NR 25 , or CR 25 2 .
  • the compound represented by the above formula (II-1) can be synthesized by a conventional method. Specifically, the procedures of the synthesis examples described later can be referred to.
  • the content of the specific cyclopropane compound represented by the formula (II-1) is not particularly limited, but is 0.005 to 20% by mass and 0.01% by mass or more with respect to the total mass of the electrolytic solution. It is more preferable that the content is 0.05% by mass or more. By setting it as more than said lower limit, the effect of this embodiment fully expresses and decomposition
  • the upper limit is more preferably 15% by mass or less, and particularly preferably 10% by mass or less. By setting it to the upper limit value or less, it is preferable because excessive addition can be avoided and adverse effects on battery performance can be prevented.
  • the specific cyclopropane compound represented by the formula (II-1) may be used alone or in combination of two or more.
  • a specific cyclopropane compound is contained in the electrolytic solution.
  • various performance can be improved and also the load characteristic in a positive electrode can be improved.
  • the reason for this is not clear, but is estimated as follows.
  • the compound having a vinyl group disclosed in Patent Document 1 forms a film on the negative electrode, thereby improving the stability at high temperatures.
  • the resistance due to the negative electrode coating increases, which may cause a reduction in load characteristics and cycle characteristics.
  • the specific cyclopropane compound having no vinyl group as described above acts favorably and improves not only the negative electrode but also the positive electrode characteristics.
  • the cyclopropane ring of the specific cyclopropane compound is opened, and a polymer having a desirable form for the positive electrode and the negative electrode is formed to form SEI (Solid Electrolyte Interface), which has led to the improvement of the above-mentioned various performances in the secondary battery. It is done.
  • SEI Solid Electrolyte Interface
  • the electrolyte solution for a non-aqueous secondary battery of this embodiment contains a specific cyclopropane compound represented by the following formula (III-1).
  • each of R 31 to R 34 independently represents a hydrogen atom or a substituent, and preferably represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group.
  • Specific examples of the alkyl group, aryl group, and alkoxy group include the examples of the substituent T described below.
  • R 31 to R 34 may be bonded to each other or condensed to form a ring structure.
  • R 31 to R 34 may further have a substituent, and examples of the substituent include the substituent T described later.
  • R 31 to R 34 are each independently preferably a hydrogen atom, an alkyl group, a fluorine atom, a carbonyl group-containing group, or a cyano group, and particularly preferably a hydrogen atom, an alkyl group, a carbonyl group-containing group, or a cyano group.
  • the alkyl group include the substituent T described later, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 7 carbon atoms, a methyl group, an ethyl group, an isopropyl group, A tertiary butyl group or a benzyl group is particularly preferred.
  • the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, a methoxy group, an ethoxy group, A propoxy group or a tertiary butoxy group is particularly preferred.
  • an alkylcarbonyl group, an amide group, or an alkoxycarbonyl group is preferable, and a methylcarbonyl group, an ethylcarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, or a tertiary butoxycarbonyl group is particularly preferable. preferable.
  • L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group. Preferably, it is an oxygen atom or a carbonyl group.
  • R 35 has the same meaning as defined in L 32 described later.
  • the linking group formed by this is preferably a carbonyloxy group, an amide group, or —COR 36 — (R 36 represents an alkylene group having 1 to 3 carbon atoms).
  • R 36 may further have a substituent, and examples of the substituent include the substituent T described later.
  • L 32 represents an alkylene group (preferably having 1 to 4 carbon atoms), O, S, SO 2 , or —NR 35 —, and R 35 is an alkyl group (preferably having 1 to 5 carbon atoms) or an aryl group (preferably Represents a carbon number of 6 to 24).
  • R 35 may further have a substituent, and examples of the substituent include the substituent T described later.
  • the substituents of L 31 to L 32 may be bonded to each other or condensed to form a ring structure. When there are a plurality of L 31 and L 32 , they may be different from each other.
  • n + m is preferably 3 or 4, and more preferably 3. Note that a structure formed by-(L 31 ) n- (L 32 ) m- in the formula is never -CO-O-CO-. When n and m are 2, the plurality of structural parts defined there may be different from each other.
  • the compound represented by the formula (III-1) is preferably a compound represented by the following formula (III-2) or (III-3).
  • R 31 to R 34 and L 32 have the same meaning as in formula (III-1).
  • the compound represented by the above formula (III-1) can be synthesized by a conventional method. Specifically, the procedures of the synthesis examples described later can be referred to.
  • the content of the specific cyclopropane compound represented by the formula (III-1) is not particularly limited, but is 0.005 to 20% by mass with respect to the total mass of the electrolytic solution, and 0.01% by mass or more. It is more preferable that the content is 0.05% by mass or more. By setting it as more than said lower limit, the effect of this embodiment fully expresses and decomposition
  • the upper limit is more preferably 15% by mass or less, and particularly preferably 10% by mass or less. By setting it to the upper limit value or less, it is preferable because excessive addition can be avoided and adverse effects on battery performance can be prevented.
  • the specific cyclopropane compound represented by the formula (III-1) may be used alone or in combination of two or more.
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T. When a plurality of substituents and ligands are close to each other, they may be connected to each other or condensed to form a ring without particular notice.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the organic solvent used in the present invention is preferably a cyclic carbonate, a chain carbonate, or a cyclic ester.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable.
  • a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, ratio A combination of a dielectric constant ⁇ ⁇ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate (for example, viscosity ⁇ 1 mPa ⁇ s) is more preferable. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the solvent may contain a cyclic carbonate having an unsaturated bond. This is because the chemical stability of the electrolytic solution is further improved.
  • the cyclic carbonate having an unsaturated bond include at least one selected from the group consisting of vinylene carbonate compounds, vinyl ethylene carbonate compounds, and methylene ethylene carbonate compounds.
  • vinylene carbonate compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethyl vinylene carbonate (4-ethyl- 1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1,3 And -dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
  • Examples of the vinyl ethylene carbonate compound include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, and 4-ethyl.
  • Examples of the methylene ethylene carbonate compound include 4-methylene-1,3-dioxolan-2-one, 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, and 4,4-diethyl-5-one. And methylene-1,3-dioxolan-2-one.
  • vinylene carbonate is preferable. This is because a high effect can be obtained.
  • the electrolyte is preferably a metal ion belonging to Group 1 or Group 2 of the periodic table or a salt thereof, and is appropriately selected depending on the intended use of the electrolytic solution.
  • a lithium salt may be selected as a metal ion salt.
  • the lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBRO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 Lithium bis (oxalato) borate salts are preferred, LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) ( More preferred are lithium imide salts such as Rf 2 SO 2 ) 2 and lithium bis (oxalato) borate salts.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the lithium salt used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the electrolyte content is added in such an amount that a preferable salt concentration described below in the method for preparing the electrolytic solution is obtained.
  • the concentration is appropriately selected according to the purpose of use of the electrolytic solution, but is generally 10% by mass to 50% by mass, more preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution.
  • concentration when evaluating as an ion density
  • the electrolytic solution of the present embodiment is prepared by dissolving a lithium salt and various additives that are optionally added in the nonaqueous electrolytic solution solvent.
  • non-water means substantially not containing water, and may contain a small amount of water as long as the effect of the invention is not hindered.
  • the water content is preferably 200 ppm or less, and more preferably 100 ppm or less. Although there is no particular lower limit, it is practical that it is 10 ppm or more considering inevitable mixing.
  • the metal salt concentration in the prepared electrolytic solution has an appropriate concentration range for exhibiting high ionic conductivity because the viscosity of the electrolytic solution increases as the concentration increases.
  • a preferred concentration range is 10% by mass to 50% by mass, and more preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution.
  • the viscosity of the electrolytic solution is not particularly limited, but is preferably 5 to 0.5 mPa ⁇ s, and more preferably 5 to 0.1 mPa ⁇ s.
  • the electrolytic solution of the present invention may be a kit composed of a plurality of liquids or powders.
  • the first agent (first liquid) is composed of an electrolyte and an organic solvent
  • the second agent (second liquid) is composed of the specific cyclopropane compound and an organic solvent
  • the two liquids are mixed before use. It may be in the form of liquid preparation.
  • the content of each component at this time is preferably in the above range after mixing.
  • the lithium ion secondary battery 10 of the present embodiment includes an electrolyte solution 5 for a non-aqueous secondary battery, a positive electrode C (positive electrode current collector 1, positive electrode active material layer 2) capable of inserting and releasing lithium ions, and lithium ions.
  • Negative electrode A negative electrode current collector 3, negative electrode active material layer 4.
  • a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown).
  • a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • the battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one relatively flat and large surface is preferable.
  • FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 stacked with a separator 12 interposed therebetween are wound and stored in an outer can 18.
  • 20 is an insulating plate
  • 22 is a sealing plate
  • 24 is a positive current collector
  • 26 is a gasket
  • 28 is a pressure sensitive valve element
  • 30 is a current interrupting element.
  • each member corresponds to the whole drawing by reference numerals.
  • the lithium secondary battery of the present invention includes at least the electrolyte solution for a non-aqueous battery of the present invention as an electrolytic solution.
  • the electrolytic solution used in the lithium secondary battery of this embodiment preferably contains an organic solvent, the specific cyclopropane compound described above, and an electrolyte salt (electrolytic solution 5 (FIG. 1)).
  • the electrolyte salt used in the electrolyte for a non-aqueous secondary battery is a salt of a metal ion belonging to Group 1 or Group 2 of the aforementioned periodic table, and the embodiment of the electrolyte for a non-aqueous secondary battery Those described in detail in (1) can be used.
  • the organic solvent (nonaqueous electrolyte solvent) used in the lithium secondary battery can be the same as described in the embodiment of the electrolyte for nonaqueous secondary battery.
  • other additives can be added to further improve the performance.
  • additives can be used in the electrolytic solution depending on the purpose as long as the effects of the present invention are not impaired.
  • a functional additive such as an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent may be used.
  • the combined use of a negative electrode film forming agent and a positive electrode protective agent, and the combined use of an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent are particularly preferable.
  • the content ratio of these functional additives in the non-aqueous electrolyte solution is not particularly limited, but is preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, respectively, with respect to the entire non-aqueous electrolyte solution. More preferably, it is 0.2% by mass or more, and the upper limit is preferably 5% by mass or less, particularly preferably 3% by mass or less, and further preferably 2% by mass or less.
  • Electrode mixture is a composite in which a dispersion such as an active material and a conductive agent, a binder, and a filler is applied on a current collector (electrode substrate).
  • the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which a certain positive electrode mixture and an active material are negative electrode active materials.
  • the positive electrode active material a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but a lithium-containing transition metal oxide is preferably used.
  • Preferred examples of the lithium-containing transition metal oxide preferably used as the positive electrode active material include oxides containing lithium-containing Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W.
  • Alkali metals other than lithium (elements of Group 1 (Ia) and Group 2 (IIa) of the periodic table) and / or Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P , B, etc. may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
  • lithium-containing transition metal oxides preferably used as the positive electrode active material
  • a lithium compound / transition metal compound (wherein the transition metal is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W) And a mixture synthesized so that the total molar ratio is 0.3 to 2.2 is more preferable.
  • Li g M3O 2 (M3 represents one or more elements selected from Co, Ni, Fe, and Mn. G represents 0 to 1.2. ) Or a material having a spinel structure represented by Li h M4 2 O (M4 represents Mn, h represents 0 to 2).
  • M3 and M4 Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be mixed in addition to the transition metal.
  • the mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
  • the Li g M3O material containing is particularly preferable.
  • Li g CoO 2 LiMn 2 O 4, LiNi 0.85 Co 0.01 Al 0.05 O 2, and is LiNi 0.33 Co 0.33 Mn 0.33 O 2 .
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • the g value and the h value are values before the start of charge / discharge, and are values that increase / decrease due to charge / discharge.
  • transition metal of the lithium-containing transition metal phosphate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ). 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.
  • a solid solution positive electrode material for example, Li 2 MnO 3 -LiMO 2 (M: metal such as Ni, Co, Mn)
  • M metal such as Ni, Co, Mn
  • the electrolytic solution of the present invention is preferably combined with these solid solution positive electrode materials.
  • the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it contains silicon, titanium and / or lithium (for example, lithium titanate) as a constituent component so as to have a high current. It is preferable from the viewpoint of density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has an interplanar spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • the metal oxide and metal composite oxide which are negative electrode active materials used in lithium secondary batteries, need only contain at least one of them.
  • amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
  • chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table.
  • the term “amorphous” as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • an amorphous oxide of a semi-metal element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Particularly preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
  • amorphous oxides and chalcogenides include metal compounds such as Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , SnSiS 3 and the like are preferable. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the average particle size of the negative electrode active material used is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
  • lithium titanate more specifically, lithium-titanium oxide (Li [Li 1/3 Ti 5/3 ] O 4 )
  • the active material of the negative electrode it is preferable to use lithium titanate, more specifically, lithium-titanium oxide (Li [Li 1/3 Ti 5/3 ] O 4 ) as the active material of the negative electrode.
  • the electrolyte solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium / titanium oxide, potential 1.55 V) or a combination with a low potential negative electrode (preferably a carbon material, potential 0.1 V). Also exhibits excellent properties.
  • metal or metal oxide negative electrode preferably Si, Si oxide, Si / silicon oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which is being developed for higher capacity
  • metal or metal oxide negative electrode preferably Si, Si oxide, Si / silicon oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which is being developed for higher capacity
  • Any conductive material may be used as long as it is an electron conductive material that does not cause a chemical change in the constructed secondary battery, and any known conductive material can be used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 10148,554), etc.
  • metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be contained as one kind or a mixture thereof.
  • the addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
  • binder examples include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate, Polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, water-soluble polymers such as styrene-maleic acid copolymer, polyvinyl chloride , Polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride Ride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene
  • Binders can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • filler As the material for forming the filler, any fibrous material that does not cause a chemical change in the secondary battery can be used. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used. The amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
  • the positive / negative current collector an electron conductor that does not cause a chemical change in a non-aqueous electrolyte secondary battery is used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector is preferably copper, stainless steel, nickel, or titanium, and more preferably copper or a copper alloy.
  • a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the lithium secondary battery is particularly limited as long as it is a material that mechanically insulates the positive electrode and the negative electrode, has ion permeability, and has oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode. There is no.
  • a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shutdown function for ensuring safety, that is, a function of closing the gap at 80 ° C. or higher to increase resistance and interrupting current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower.
  • a separator reinforced with an inorganic material or glass fiber Preferably there is.
  • the shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
  • the polymer material may be a single material such as polyethylene or polypropylene, or two or more composite materials. What laminated
  • the inorganic material examples include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate, and those having a particle shape or fiber shape are used.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate
  • those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • Lithium secondary batteries can be used for various applications because secondary batteries with good cycleability can be manufactured.
  • the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • the metal ion used for charge transport in the secondary battery is not particularly limited, but is preferably a metal ion belonging to Group 1 or Group 2 of the periodic table. Among these, it is preferable to use lithium ions, sodium ions, magnesium ions, calcium ions, aluminum ions, and the like.
  • lithium ions sodium ions, magnesium ions, calcium ions, aluminum ions, and the like.
  • Journal of Electrochemical Society; Electrochemical Science and Technology, USA, 1980, Vol. 127, pages 2097-2099, and the like can be referred to.
  • magnesium ions see Nature 407, p. 724-727 (2000) and the like can be referred to.
  • For calcium ions see J.H. Electrochem.
  • Example> 2 Preparation of Electrolyte To 1M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) in a volume ratio of 1 to 2, and a volume ratio of 1 to 3 in an electrolyte, the cyclopropane obtained in Synthesis Example I-1 Compound (SI-1) was added in an amount of 0.05% by mass, and test no. An electrolyte solution of I-101 was prepared. The electrolyte solution was prepared in the same manner by changing the type and amount of cyclopropane compound used as shown in the table (Test Nos. I-102 to I-113).
  • Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 13 mm ⁇ ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm2: Cu foil base, 14.5 mm ⁇ ) on the negative electrode, Using a PP porous film (thickness 25 ⁇ m, 16 mm ⁇ ) as a separator, a lithium secondary battery for evaluation using an electrolytic solution shown in Table 1-1 below was produced.
  • Discharge capacity maintenance rate (%) (Discharge capacity at the 300th cycle / discharge capacity at the first cycle) ⁇ 100
  • the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-101 to I-114) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. It was confirmed that the capacity retention ratio at the 300th cycle was superior to that of .Ic11 to Ic16).
  • the cyclopropane compound added to the electrolytic solution receives electrons at the negative electrode, undergoes ring-opening polymerization, and forms a good SEI (Solid Electrolyte Interface) film on the negative electrode surface. This is considered to be due to the suppression of the decomposition of the electrolytic solution.
  • LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good.
  • the discharge capacity retention rate was shown.
  • the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-201 to I-208) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. .. Ic21 to Ic24) were confirmed to be superior in low-temperature discharge rate.
  • lithium ions were stabilized in the SEI film formed on the negative electrode surface according to the battery of the example, the lithium ion conductivity in the film (SEI) was improved, and the interface migration resistance was reduced. Presumed to be due.
  • Capacity remaining rate (%) (discharge capacity after standing for 14 days / initial discharge capacity) ⁇ 100
  • the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-301 to I-308) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. .. I-c31 to I-c34) were confirmed to have better self-discharge characteristics. This result is presumed to be attributable to the fact that the positive electrode was stabilized by the formed coating on the positive electrode surface of the battery of the example, and the self-decomposition of the positive electrode was suppressed.
  • Discharge capacity maintenance rate (%) (Discharge capacity at 500th cycle / discharge capacity at the first cycle) ⁇ 100
  • the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-401 and I-402) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. It was confirmed that the capacity retention rate at the 500th cycle was superior to that of. This result shows that the reduction proceeds at a potential higher than the insertion potential of lithium ions as in the case of the graphite negative electrode, a good SEI (Solid Electrolyte Interface) film is formed on the lithium titanate negative electrode, the electrolytic solution is decomposed, and This is considered to be due to suppression of electrode deterioration.
  • SEI Solid Electrolyte Interface
  • LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good.
  • the discharge capacity retention rate was shown.
  • Synthesis Example II-2 Synthesis of Spirocyclopropane (SII-2)) Using cyclohexanone as a raw material, spirocyclopropane (SII-2) was obtained in the same manner as in Synthesis Example II-1.
  • Example> 2 Preparation of Electrolytic Solution To 1M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) electrolytic solution having a volume ratio of 1: 2 and volume ratio of 1: 3 to the electrolytic solution obtained in Synthesis Example II-1. Propane compound (SII-1) was added in an amount of 0.05% by weight to prepare an electrolytic solution (Test No. II-101). The electrolyte solution was prepared in the same manner by changing the type and amount of cyclopropane compound used as shown in the table (Test Nos. II-102 to II-111).
  • Lithium secondary battery Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 13 mm ⁇ ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm 2 : Cu foil base, 14.5 mm ⁇ ) on the negative electrode Using a PP porous film (thickness 25 ⁇ m, 16 mm ⁇ ) as a separator, a lithium secondary battery for evaluation using an electrolytic solution shown in Table 2-1 below was produced.
  • Discharge capacity maintenance rate (%) (Discharge capacity at the 300th cycle / discharge capacity at the first cycle) ⁇ 100
  • LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good.
  • the discharge capacity retention rate was shown.
  • the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-201 to II-209) of the examples are 2032 type non-aqueous electrolyte secondary batteries (Test No. .. II-c21 to II-c24) were confirmed to be superior in low-temperature discharge rate.
  • lithium ions were stabilized in the SEI film formed on the negative electrode surface according to the battery of the example, the lithium ion conductivity in the film (SEI) was improved, and the interface migration resistance was reduced. Presumed to be due.
  • Load capacity maintenance ratio (LCCMR: Load-Carrying Capacity Maintaining Ratio)
  • Capacity remaining rate (%) (discharge capacity after leaving for 14 days / initial discharge capacity) ⁇ 100
  • the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-401 to II-409) of the examples are 2032 type non-aqueous electrolyte secondary batteries (Test No. II-c41 to II-c44) were confirmed to have better self-discharge characteristics. This result is presumed to be attributable to the fact that the positive electrode was stabilized by the formed coating on the positive electrode surface of the battery of the example, and the self-decomposition of the positive electrode was suppressed.
  • Discharge capacity maintenance rate (%) (Discharge capacity at 500th cycle / discharge capacity at the first cycle) ⁇ 100
  • the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-501 and II-502) of the examples are 2032 type non-aqueous electrolyte secondary batteries (Test No. II-c51), it was confirmed that the capacity retention rate at the 500th cycle was superior.
  • This result shows that the reduction proceeds at a potential higher than the insertion potential of lithium ions as in the case of the graphite negative electrode, a good SEI (Solid Electrolyte Interface) film is formed on the lithium titanate negative electrode, the electrolytic solution is decomposed, and This is considered to be due to suppression of electrode deterioration.
  • LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good.
  • the discharge capacity retention rate was shown.
  • reaction mixture was quenched with a saturated aqueous solution of ammonium chloride, extracted with ethyl acetate, concentrated and purified by silica gel column chromatography to obtain 6.5 g of a lactone-fused cyclopropane compound (SIII-10).
  • Example> 2 Preparation of electrolyte solution Lactone contraction obtained in Synthesis Example III-1 was added to 1M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) volume ratio 1 to 2 electrolyte solution and volume ratio 1 to 3 electrolyte solution.
  • An electrolytic solution was prepared by adding 0.05% by mass of a cyclic cyclopropane compound (SIII-1) (Test No. III-101). Test No. For III-102 and below, electrolytes were similarly prepared (Test Nos. III-102 to III-114) by changing the types and addition amounts of the specific cyclopropane compounds used as shown in the table.
  • An electrolyte solution of 1M LiPF 6 in ethylene carbonate / ethyl methyl carbonate was used as a comparative example. At this time, test no.
  • a comparative example was prepared by adding vinylene carbonate (VC), the following (RIII-1), the following (RIII-2), and the following cyclic acid anhydride (RIII-3) under the same conditions as in III-101.
  • Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 13 mm ⁇ ) on the positive electrode
  • natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm 2 : Cu foil base, 14.5 mm ⁇ ) on the negative electrode
  • a PP porous film (thickness 25 ⁇ m, 16 mm ⁇ ) as a separator
  • Discharge capacity maintenance rate (%) (Discharge capacity at the 300th cycle / discharge capacity at the first cycle) ⁇ 100
  • LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good.
  • the discharge capacity retention rate was shown.
  • Load capacity maintenance ratio (LCCMR: Load-Carrying Capacity Maintaining Ratio)
  • Capacity remaining rate (%) (discharge capacity after leaving for 14 days / initial discharge capacity) ⁇ 100
  • Discharge capacity maintenance rate (%) (Discharge capacity at 500th cycle / discharge capacity at the first cycle) ⁇ 100
  • LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good.
  • the discharge capacity retention rate was shown.
  • the lithium electrolyte of the present invention was used as a negative electrode, and a lithium / titanium oxide negative electrode or a carbon material negative electrode was developed. Excellent characteristics were exhibited in a battery using a combination of lithium manganese cobaltate, lithium cobaltate, and lithium manganate as a positive electrode.
  • the electrolyte of the present invention is a metal or metal oxide negative electrode (preferably Si, Si oxide, Si / Si oxide, Sn capable of forming an alloy with lithium, which is being developed for higher capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrolyte solution for a non-aqueous secondary battery, the electrolyte solution containing in an organic solvent an electrolyte and at least one cyclopropane compound selected from among a compound represented by formula (I-1), a compound represented by formula (II-1), and a compound represented by formula (III-1). (In the formulae, R11 to R15, R21 to R24, and R31 to R34 represent a hydrogen atom or a specific substituent. L11, L21, L31, and L32 represent a specific linking group. X represents an electron-attractive group, and n and m each independently represent 1 or 2.)

Description

非水二次電池用電解液及び二次電池Non-aqueous secondary battery electrolyte and secondary battery
 本発明は、有機溶媒を含む非水二次電池用電解液、およびそれを用いた二次電池に関する。 The present invention relates to an electrolyte for a non-aqueous secondary battery containing an organic solvent, and a secondary battery using the same.
 昨今、注目を集めているリチウムイオン電池と呼ばれる二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池(いわゆるリチウムイオン二次電池)と、リチウムの析出および溶解を利用する二次電池(いわゆるリチウム金属二次電池)とに大別される。これらは、鉛電池やニッケルカドミウム電池と比較して大きなエネルギー密度が得られる。この特性を利用して、近年、カメラ一体型VTR(video tape recorder)、携帯電話あるいはノートパソコンなどのポータブル電子機器用の電源として広く普及している。これに伴い、特に軽量で高エネルギー密度が得られるリチウムイオン二次電池の開発が進められている。さらには、その小型化、軽量化および長寿命化、高安全化が強く求められている。 Recently, secondary batteries called lithium ion batteries, which are attracting attention, use secondary batteries (so-called lithium ion secondary batteries) that use insertion and extraction of lithium in charge and discharge reactions, and precipitation and dissolution of lithium. They are roughly classified into secondary batteries (so-called lithium metal secondary batteries). These can obtain a large energy density as compared with lead batteries and nickel cadmium batteries. In recent years, using this characteristic, it has become widespread as a power source for portable electronic devices such as a camera-integrated VTR (video tape recorder), a mobile phone, or a notebook computer. Along with this, development of lithium ion secondary batteries that are particularly lightweight and capable of obtaining a high energy density has been underway. Further, there is a strong demand for miniaturization, weight reduction, long life, and high safety.
 リチウムイオン二次電池やリチウム金属二次電池(以下、これらを総称して単にリチウムイオン二次電池ということがある。)の電解液としては、導電率が高く電位的にも安定であるため、炭酸プロピレンあるいは炭酸ジエチルなどの炭酸エステル系の溶媒と、六フッ化リン酸リチウムなどの電解質塩との組み合わせが広く用いられている。 As an electrolytic solution of a lithium ion secondary battery or a lithium metal secondary battery (hereinafter collectively referred to simply as a lithium ion secondary battery), the conductivity is high and the potential is stable. A combination of a carbonate ester solvent such as propylene carbonate or diethyl carbonate and an electrolyte salt such as lithium hexafluorophosphate is widely used.
 電解液の成分に関して改良を行った例として、高温(80℃)時の内部抵抗増加を抑えるために特定の環状化合物を適用したものがある(特許文献1参照)。また、電極にポリフッ化ビニリデンの膜を形成した特殊なセルにおいて、酸無水物を電解液に添加することで、放電時のガス発生を抑制することができるとしたものがある(特許文献2参照)。 As an example of improving the components of the electrolytic solution, there is one in which a specific cyclic compound is applied in order to suppress an increase in internal resistance at a high temperature (80 ° C.) (see Patent Document 1). In addition, in a special cell in which a film of polyvinylidene fluoride is formed on an electrode, there is one that can suppress gas generation at the time of discharge by adding an acid anhydride to an electrolytic solution (see Patent Document 2). ).
特開2007-265858号公報JP 2007-265858 A 特開2001-155772号公報Japanese Patent Laid-Open No. 2001-155572
 本発明者らの確認によると、昨今益々高まる二次電池の性能の向上を考慮するとき、前記特許文献の技術では未だ十分とは言えず(後記比較例参照)、複数の評価項目における総合的な高性能化が望まれた。
 本発明はかかる課題に鑑みてなされたものであり、サイクル特性及び低温放電率において高い性能を示し、しかも正極特性に関わる高温保存性(必要によりさらに高速での放充電性)にも優れる非水二次電池用電解液および二次電池の提供を目的とする。
According to the confirmation of the present inventors, when considering the improvement in the performance of secondary batteries, which has been increasing more and more recently, the technology of the above-mentioned patent document is still not sufficient (see the comparative example described later), and comprehensive evaluations in a plurality of evaluation items. High performance was desired.
The present invention has been made in view of such problems, and exhibits high performance in terms of cycle characteristics and low-temperature discharge rate, and is also excellent in high-temperature storage properties related to the positive electrode characteristics (and, if necessary, high-speed charge / discharge characteristics). It aims at provision of the electrolyte solution for secondary batteries, and a secondary battery.
 上記の課題は以下の手段により解決された。
〔1〕電解質と、下記式(I-1)で表される化合物、下記式(II-1)で表される化合物、および下記式(III-1)で表される化合物からなる群より選択される少なくとも1種以上のシクロプロパン化合物とを、有機溶媒中に含有する非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000005
(式(I-1)中、R11~R14は各々独立に水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。R15は炭素数1~7の酸素原子、窒素原子、又は硫黄原子を含むことがある置換基を示す。L11はアルキレン基またはカルボニル基を示す。Xは、ハメット則のσp値において0以上の値を示す電子求引性基を示す。)
(式(II-1)中、R21~R24は各々独立に水素原子または置換基を示す。L21は、式中のカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。)
(式(III-1)中、R31~R34は各々独立に水素原子または置換基を示す。L31は、酸素原子、-NR35-、またはカルボニル基を表す。L32は、アルキレン基、酸素原子、硫黄原子、-SO-、または-NR35-を表す。R35はアルキル基またはアリール基を示す。n、mは各々独立に1または2を示す。)
〔2〕式(I-1)の置換基Xが、シアノ基、アルコキシカルボニル基、またはカルバモイル基を示す〔1〕に記載の非水二次電池用電解液。
〔3〕式(I-1)中、R11~R14が水素原子である〔1〕または〔2〕に記載の非水二次電池用電解液。
〔4〕式(I-1)のXがシアノ基である〔1〕~〔3〕のいずれか1項に記載の非水二次電池用電解液。
〔5〕式(I-1)の-L11-R15が、-COOR16で表される〔1〕~〔4〕のいずれか1項に記載の非水二次電池用電解液。
(R16は、カルボニル基(-CO-)、エーテル基(-O-)、又はイミノ基(-NR17-)を介在してもよい炭素数1~6のアルキル基を表す。R17は水素原子もしくはアルキル基を表す。)
〔6〕式(II-1)におけるL21が形成する環が-CONR25-(ここでR25はアルキル基またはアリール基を示す)または-COO-を含む〔1〕に記載の非水二次電池用電解液。
〔7〕式(II-1)で表される化合物が、下記式(II-2)で表される化合物である〔1〕または〔6〕に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000006
(式中、R21~R24は式(II-1)と同義である。L22は、式中の2つのカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。)
〔8〕式(II-1)におけるL21がなす環または式(II-2)におけるL22がなす環が、5員環または6員環である〔1〕、〔6〕、および〔7〕のいずれか1項に記載の非水二次電池用電解液。
〔9〕式(III-1)における(L31)nがなす連結基がカルボニルオキシ基、アミド基、または-COR36-(R36は炭素数1~3のアルキレン基を表す。)である〔1〕に記載の非水二次電池用電解液。
〔10〕式(III-1)におけるL32が、アルキレン基、酸素原子、硫黄原子、または-NR35-である〔1〕または〔9〕に記載の非水二次電池用電解液。
〔11〕式(III-1)で表される化合物が下記式(III-2)または(III-3)で表される化合物である〔1〕、〔9〕、および〔10〕のいずれか1項に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000007
(式中、R31~R34及びL32は、式(III-1)と同義である。)
〔12〕式(III-1)におけるL32が、炭素数1~3のアルキレン基である〔1〕および〔9〕~〔11〕のいずれか1項に記載の非水二次電池用電解液。
〔13〕式(III-1)におけるL32が、メチレン基である〔1〕および〔9〕~〔12〕のいずれか1項に記載の非水二次電池用電解液。
〔14〕電解質がリチウム塩である〔1〕~〔13〕のいずれか1項に記載の非水二次電池用電解液。
〔15〕シクロプロパン化合物を電解液の総量に対して0.005~20質量%の範囲で適用する〔1〕~〔14〕のいずれか1項に記載の非水二次電池用電解液。
〔16〕有機溶媒として、環状カーボネート、鎖状カーボネート、または環状エステルを採用した〔1〕~〔15〕のいずれか1項に記載の非水二次電池用電解液。
〔17〕〔1〕~〔16〕に記載の非水二次電池用電解液と、正極と、負極とを備えるリチウム二次電池。
〔18〕負極の活物質としてチタン酸リチウムを適用した〔17〕に記載の二次電池。
〔19〕第1剤と第2剤とを混合して用いる非水二次電池用電解液のキットであって、
 第1剤が電解質を含有し、第2剤が下記式(I-1)、式(II-1)、または式(III-1)で表されるシクロプロパン化合物を含有する非水二次電池用電解液キット。
Figure JPOXMLDOC01-appb-C000008
(式(I-1)中、R11~R14は各々独立に水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。R15は炭素数1~7の酸素原子、窒素原子、又は硫黄原子を含むことがある置換基を示す。L11はアルキレン基またはカルボニル基を示す。Xは、ハメット則のσp値において0以上の値を示す電子求引性基を示す。)
(式(II-1)中、R21~R24は各々独立に水素原子または置換基を示す。L21は、式中のカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。)
(式(III-1)中、R31~R34は各々独立に水素原子または置換基を示す。L31は、酸素原子、-NR35-、またはカルボニル基を表す。L32は、アルキレン基、酸素原子、硫黄原子、-SO-、または-NR35-を表す。R35はアルキル基またはアリール基を示す。n、mは各々独立に1または2を示す。)
The above problem has been solved by the following means.
[1] Selected from the group consisting of an electrolyte, a compound represented by the following formula (I-1), a compound represented by the following formula (II-1), and a compound represented by the following formula (III-1) The electrolyte solution for non-aqueous secondary batteries which contains the at least 1 sort (s) or more of cyclopropane compound in an organic solvent.
Figure JPOXMLDOC01-appb-C000005
(In the formula (I-1), R 11 to R 14 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. R 15 has 1 carbon atom. Represents a substituent that may contain an oxygen atom, a nitrogen atom, or a sulfur atom of ˜7, L 11 represents an alkylene group or a carbonyl group, and X represents an electron demand that indicates a value of 0 or more in the σp value of Hammett's rule. Represents an attractive group.)
(In the formula (II-1), R 21 to R 24 each independently represents a hydrogen atom or a substituent. L 21 represents an atomic group forming a ring structure together with the carbon atom of the carbonyl group and cyclopropyl group in the formula Represents.)
(In the formula (III-1), R 31 to R 34 each independently represents a hydrogen atom or a substituent. L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group. L 32 represents an alkylene group. Represents an oxygen atom, a sulfur atom, —SO 2 —, or —NR 35 —, R 35 represents an alkyl group or an aryl group, and n and m each independently represent 1 or 2.)
[2] The electrolyte solution for a nonaqueous secondary battery according to [1], wherein the substituent X in the formula (I-1) represents a cyano group, an alkoxycarbonyl group, or a carbamoyl group.
[3] The electrolyte solution for a nonaqueous secondary battery according to [1] or [2], wherein R 11 to R 14 in formula (I-1) are hydrogen atoms.
[4] The electrolyte solution for a non-aqueous secondary battery according to any one of [1] to [3], wherein X in the formula (I-1) is a cyano group.
[5] The electrolyte solution for a non-aqueous secondary battery according to any one of [1] to [4], wherein -L 11 -R 15 in the formula (I-1) is represented by -COOR 16 .
(R 16 is, a carbonyl group (-CO-), an ether group (-O-), a or an imino group (-NR 17 - .R 17 representing a) alkyl groups of 1-6 carbon atoms which may be interposed in Represents a hydrogen atom or an alkyl group.)
[6] The ring formed by L 21 in formula (II-1) contains —CONR 25 — (wherein R 25 represents an alkyl group or an aryl group) or —COO—. Secondary battery electrolyte.
[7] The electrolyte solution for a non-aqueous secondary battery according to [1] or [6], wherein the compound represented by the formula (II-1) is a compound represented by the following formula (II-2).
Figure JPOXMLDOC01-appb-C000006
(Wherein R 21 to R 24 have the same meaning as in formula (II-1). L 22 represents an atomic group forming a ring structure together with the carbon atoms of two carbonyl groups and a cyclopropyl group in the formula. )
[8] The ring formed by L 21 in formula (II-1) or the ring formed by L 22 in formula (II-2) is a 5-membered or 6-membered ring [1], [6], and [7 ] The electrolyte solution for non-aqueous secondary batteries of any one of.
[9] The linking group formed by (L 31 ) n in formula (III-1) is a carbonyloxy group, an amide group, or —COR 36 — (R 36 represents an alkylene group having 1 to 3 carbon atoms). [1] The electrolyte solution for a non-aqueous secondary battery.
[10] The electrolyte solution for a non-aqueous secondary battery according to [1] or [9], wherein L 32 in formula (III-1) is an alkylene group, an oxygen atom, a sulfur atom, or —NR 35 —.
[11] Any one of [1], [9], and [10], wherein the compound represented by the formula (III-1) is a compound represented by the following formula (III-2) or (III-3) The electrolyte solution for non-aqueous secondary batteries of 1 item | term.
Figure JPOXMLDOC01-appb-C000007
(Wherein R 31 to R 34 and L 32 have the same meaning as in formula (III-1).)
[12] The electrolysis for nonaqueous secondary battery according to any one of [1] and [9] to [11], wherein L 32 in the formula (III-1) is an alkylene group having 1 to 3 carbon atoms. liquid.
[13] The electrolyte for a nonaqueous secondary battery according to any one of [1] and [9] to [12], wherein L 32 in formula (III-1) is a methylene group.
[14] The electrolyte solution for a non-aqueous secondary battery according to any one of [1] to [13], wherein the electrolyte is a lithium salt.
[15] The electrolyte solution for a non-aqueous secondary battery according to any one of [1] to [14], wherein the cyclopropane compound is applied in the range of 0.005 to 20% by mass with respect to the total amount of the electrolyte solution.
[16] The electrolyte solution for a non-aqueous secondary battery according to any one of [1] to [15], wherein a cyclic carbonate, a chain carbonate, or a cyclic ester is employed as the organic solvent.
[17] A lithium secondary battery comprising the nonaqueous secondary battery electrolyte solution according to [1] to [16], a positive electrode, and a negative electrode.
[18] The secondary battery according to [17], wherein lithium titanate is applied as an active material for the negative electrode.
[19] A kit for an electrolyte solution for a non-aqueous secondary battery using a mixture of a first agent and a second agent,
Nonaqueous secondary battery in which the first agent contains an electrolyte and the second agent contains a cyclopropane compound represented by the following formula (I-1), formula (II-1), or formula (III-1) Electrolytic solution kit.
Figure JPOXMLDOC01-appb-C000008
(In the formula (I-1), R 11 to R 14 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. R 15 has 1 carbon atom. Represents a substituent that may contain an oxygen atom, a nitrogen atom, or a sulfur atom of ˜7, L 11 represents an alkylene group or a carbonyl group, and X represents an electron demand that indicates a value of 0 or more in the σp value of Hammett's rule. Represents an attractive group.)
(In the formula (II-1), R 21 to R 24 each independently represents a hydrogen atom or a substituent. L 21 represents an atomic group forming a ring structure together with the carbon atom of the carbonyl group and cyclopropyl group in the formula Represents.)
(In the formula (III-1), R 31 to R 34 each independently represents a hydrogen atom or a substituent. L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group. L 32 represents an alkylene group. Represents an oxygen atom, a sulfur atom, —SO 2 —, or —NR 35 —, R 35 represents an alkyl group or an aryl group, and n and m each independently represent 1 or 2.)
 本発明の非水二次電池用電解液及びこれを用いた二次電池は、サイクル特性及び低温放電率において高い性能を示し、しかも正極特性に関わる高温保存性(必要により放充電性を含む)にも優れる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
The electrolyte solution for non-aqueous secondary battery and the secondary battery using the same of the present invention exhibit high performance in cycle characteristics and low-temperature discharge rate, and also have high-temperature storage characteristics related to the positive electrode characteristics (including rechargeability if necessary). Also excellent.
The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
本発明の実施形態に係るリチウムイオン二次電池の機構をモデル化して示す断面図である。It is sectional drawing which models and shows the mechanism of the lithium ion secondary battery which concerns on embodiment of this invention. 本発明の好ましい実施形態に係るリチウムイオン二次電池の具体的な構成を模式的に示す断面図である。It is sectional drawing which shows typically the specific structure of the lithium ion secondary battery which concerns on preferable embodiment of this invention. 実施例の試験No.II-301とII-c32の放電曲線を示すグラフである。Test No. of Example It is a graph which shows the discharge curve of II-301 and II-c32. 実施例の試験No.III-301とIII-c32の放電曲線を示すグラフである。Test No. of Example It is a graph which shows the discharge curve of III-301 and III-c32.
 以下、本発明の好ましい実施形態I~IIIについてそれぞれ説明する。なお、本実施形態I~IIIは同一または対応する特別な技術的特徴を共有し、単一の一般的発明概念を構成している。
<実施形態I>
 本実施形態の非水電解液においては、特定のシクロプロパン化合物を電解液中に含有させる。これにより、二次電池に適用したときに、諸性能を向上させ、しかも正極における負荷特性をも向上させることができる。この理由は定かではないが、以下のように推定される。本実施形態で用いるシクロプロパン化合物は特定の置換基Xを有する。この基は電子を求引する性質を有し、その作用によりシクロプロパン環を適度に開環させやすくし、電極表面もしくはその近傍において良好な作用をもたらす重合体の生成を促したと考えられる。さらに、これらの基と同じ炭素原子に置換している特定の置換基(-L11-R15)も好適に機能し、負極のみならず正極の電極特性をも良化させたものと推定される。すなわち、特定シクロプロパン化合物のシクロプロパン環が開環し、正極・負極にとってより望ましい形態の重合体が生成されSEI(Solid Electrolyte Interface)を形成し、二次電池における上記諸性能の向上につながったと考えられる。
Hereinafter, preferred embodiments I to III of the present invention will be described respectively. The embodiments I to III share the same or corresponding special technical features and constitute a single general inventive concept.
<Embodiment I>
In the nonaqueous electrolytic solution of the present embodiment, a specific cyclopropane compound is contained in the electrolytic solution. Thereby, when it applies to a secondary battery, various performance can be improved and also the load characteristic in a positive electrode can be improved. The reason for this is not clear, but is estimated as follows. The cyclopropane compound used in this embodiment has a specific substituent X. This group has the property of attracting electrons, and by its action, it is considered that the cyclopropane ring is moderately easily opened, and the production of a polymer having a good action at or near the electrode surface is promoted. Furthermore, it is presumed that a specific substituent (—L 11 —R 15 ) substituted with the same carbon atom as these groups also functions favorably and improves the electrode characteristics of the positive electrode as well as the negative electrode. The That is, when the cyclopropane ring of the specific cyclopropane compound is opened, a polymer having a more desirable form for the positive electrode and the negative electrode is formed to form SEI (Solid Electrolyte Interface), which has led to the improvement of the above performances in the secondary battery. Conceivable.
[式(I-1)で表される化合物]
 本実施形態の非水二次電池用電解液は、下記式(I-1)で表される特定シクロプロパン化合物を含有する。
[Compound represented by Formula (I-1)]
The electrolyte solution for a non-aqueous secondary battery of this embodiment contains a specific cyclopropane compound represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
・R11~R14
 式中、R11~R14は各々独立に水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。アルキル基、アリール基、アルコキシ基の具体例としては、後記置換基Tの例が挙げられる。なお、R11~R14は互いに結合して、あるいは縮環して、環構造を形成していてもよい。また、R11~R14はさらに置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。
 なかでも、R11~R14が水素原子であることが特に好ましい。
・ R 11 to R 14
In the formula, R 11 to R 14 each independently represent a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. Specific examples of the alkyl group, aryl group, and alkoxy group include the examples of the substituent T described below. R 11 to R 14 may be bonded to each other or condensed to form a ring structure. R 11 to R 14 may further have a substituent, and examples of the substituent include the substituent T described later.
Among these, it is particularly preferable that R 11 to R 14 are hydrogen atoms.
・R15
 R15は炭素数1~7の置換基を表し、好ましくは炭素数1~5の置換基である。R15は炭素原子及び水素原子のみからなる炭化水素置換基でもよいが、O、N、又はSを含む置換基であってもよい。R15は直鎖であっても分岐を有していてもよく、環状であっても鎖状であってもよい。また、R15は、飽和結合のみで構成されていても、不飽和結合を有していてもよい。環状である場合には、芳香族環であっても、脂肪族環であっても、芳香族複素環であっても、脂肪族複素環であってもよい。R15がO、N、又はSを含む場合、Oを含む原子群は、エーテル基(-O-)、カルボニル基(-CO-)、カルボニルオキシ基(-COO-)などが挙げられる。Nを含む原子群は、イミノ基(-NR17-:R17は水素原子もしくはアルキル基であり、好ましい範囲は後述する。)、アミド基(-CONR17-)などが挙げられる。Sを含む原子群は、チオエーテル基(-S-)、チオカルボニル基(-CS-)、-CSO-、-CSS-などが挙げられる。
・ R 15
R 15 represents a substituent having 1 to 7 carbon atoms, preferably a substituent having 1 to 5 carbon atoms. R 15 may be a hydrocarbon substituent consisting only of carbon atoms and hydrogen atoms, but may be a substituent containing O, N, or S. R 15 may be linear or branched, and may be cyclic or linear. R 15 may be composed only of a saturated bond or may have an unsaturated bond. When it is cyclic, it may be an aromatic ring, an aliphatic ring, an aromatic heterocyclic ring, or an aliphatic heterocyclic ring. When R 15 contains O, N, or S, examples of the atomic group containing O include an ether group (—O—), a carbonyl group (—CO—), and a carbonyloxy group (—COO—). Examples of the atomic group containing N include an imino group (—NR 17 —: R 17 is a hydrogen atom or an alkyl group, and a preferred range will be described later), an amide group (—CONR 17 —), and the like. Examples of the atomic group containing S include a thioether group (—S—), a thiocarbonyl group (—CS—), —CSO—, and —CSS—.
・L11
 L11は、アルキレン基(好ましくは炭素数1~3)またはカルボニル基を表す。アルキレン基は置換基を有していてもよく、好ましくは後記の置換基Tが挙げられる。
・ L 11
L 11 represents an alkylene group (preferably having 1 to 3 carbon atoms) or a carbonyl group. The alkylene group may have a substituent, and the substituent T described below is preferable.
・X
 Xは電子求引性基を示す。電子求引性基とは、電子効果で電子求引的な性質を有する置換基であり、置換基の電子求引性、電子供与性の尺度であるHammett則の置換基定数σを用いれば、σ値が0以上の置換基である。Hammett則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年にL.P.Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。Hammett則に求められた置換基定数にはσ値とσ値があり、これらの値は多くの一般的な成書に見出すことができるが、例えば、J.A.Dean編,「Lange’s Handbook of Chemistry」第12版,1979年(Mc Graw-Hill)や「化学の領域」増刊,122号,96~103頁,1979年(南光堂)、Corwin Hansch, A. LEO and R. W. TAFT“A Survey of Hammett Substituent Cosntants and Resonance and Field Parameters”Chem.Rev.1991,91,165-195に詳しい。なお、本実施の形態において、各置換基をHammettの置換基定数σにより限定したり、説明したりするが、これは上記の成書で見出せる、文献既知の値がある置換基にのみ限定されるという意味ではなく、その値が文献未知であってもHammett則に基づいて測定した場合にその範囲内に含まれるであろう置換基をも含むことはいうまでもない。
・ X
X represents an electron withdrawing group. An electron-withdrawing group is a substituent having an electron-withdrawing property due to an electronic effect. If the substituent constant σ p of the Hammett rule, which is a measure of the electron-withdrawing property and electron-donating property of a substituent, is used. , Σ p value is a substituent of 0 or more. Hammett's rule was established in 1935 by L.L. in order to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives. P. A rule of thumb proposed by Hammett, which is widely accepted today. Substituent constants determined by Hammett's rule include σ p value and σ m value, and these values can be found in many general books. A. Dean ed., “Lange's Handbook of Chemistry”, 12th edition, 1979 (Mc Graw-Hill) and “Areas of Chemistry”, No. 122, 96-103, 1979 (Nankodo), Corwin Hansch, A . LEO and R.M. W. TAFT “A Survey of Hammett Substitute Students and Resonance and Field Parameters” Chem. Rev. 1991, 91, 165-195. In the present embodiment, each substituent is limited or explained by Hammett's substituent constant σ p, but this is limited only to a substituent having a known value that can be found in the above-mentioned book. Needless to say, it also includes a substituent that would be included in the range when the value was unknown based on the Hammett rule even if the value was unknown.
 置換基定数σ値として好ましくは0.1~1.0、より好ましくは0.2~1.0、最も好ましくは0.3~1.0である。 Preferably 0.1 to 1.0 substituent constant sigma p value, and more preferably 0.2-1.0, most preferably 0.3 to 1.0.
 Xの具体的な置換基の例としては、シアノ基(-CN)、アルコキシカルボニル基(-COOR16)、カルバモイル基(-CON(R18)を示す。
 R16は、カルボニル基(-CO-)、エーテル基(-O-)、又はイミノ基(-NR17-)を介在してもよい炭素数1~6のアルキル基を表す。R16は、なかでもヘテロ原子のないアルキル基であることが好ましく、メチル基、エチル基、i-プロピル基、t-ブチル基がより好ましい。R16は置換基を有していてもよく、その置換基の例としては、後記置換基Tが挙げられる。
 R17は水素原子もしくはアルキル基を表す。R17がアルキル基であるとき、炭素数1~4が好ましく、メチル基、エチル基、i-プロピル基、t-ブチル基がより好ましい。R17は置換基を有していてもよく、その置換基の例としては、後記置換基Tが挙げられる。
 R18はR17と同義の基を表す。
 Xは、シアノ基(-CN)またはアルコキシカルボニル基(-COOR16)であることが好ましく、シアノ基(-CN)がより好ましい。
Specific examples of the substituent for X include a cyano group (—CN), an alkoxycarbonyl group (—COOR 16 ), and a carbamoyl group (—CON (R 18 ) 2 ).
R 16 represents a C 1-6 alkyl group that may intervene with a carbonyl group (—CO—), an ether group (—O—), or an imino group (—NR 17 —). R 16 is preferably an alkyl group having no hetero atom, more preferably a methyl group, an ethyl group, an i-propyl group, or a t-butyl group. R 16 may have a substituent, and examples of the substituent include the substituent T described below.
R 17 represents a hydrogen atom or an alkyl group. When R 17 is an alkyl group, it preferably has 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, an i-propyl group, or a t-butyl group. R 17 may have a substituent, and examples of the substituent include the substituent T described later.
R 18 represents a group having the same meaning as R 17 .
X is preferably a cyano group (—CN) or an alkoxycarbonyl group (—COOR 16 ), and more preferably a cyano group (—CN).
 以下に、上記例示置換基の一部についてσp値を示しておく。 Hereinafter, σp values are shown for some of the exemplified substituents.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 なお上記各置換基ないし連結基の機能は断定的ではないが、下記のように推定される。連結基L11を、アルキレン基、カルボニル基にすることにより、電位調整作用がはたらき、二次電池における動作電位の範囲で効果的に被膜形成ができるようになると考えられる。なかでも、L11がカルボニル基であれば、更にその電子求引性が作用し、被膜形成性が向上すると考えられる。また、R15の末端置換基は、形成された被膜中でのリチウムイオンの安定化に寄与していると推定される。 The function of each substituent or linking group is not definitive, but is estimated as follows. The linking group L 11, alkylene group, by a carbonyl group, work potential adjustment action is considered to be able to effectively coat formed in the range of operating potential in the secondary battery. Among these, if L 11 is a carbonyl group, it is considered that the electron withdrawing property further acts to improve the film forming property. Further, it is presumed that the terminal substituent of R 15 contributes to the stabilization of lithium ions in the formed film.
 以下に、式(I-1)で表される化合物の具体例を示すが、これにより本実施形態が限定して解釈されるものではない。 Specific examples of the compound represented by the formula (I-1) are shown below, but the present embodiment is not construed as being limited thereby.
Figure JPOXMLDOC01-appb-C000011
Me:メチル基
tBu:t-ブチル基
Figure JPOXMLDOC01-appb-C000011
Me: methyl group tBu: t-butyl group
 上記式(I-1)で表される化合物は定法によって合成できるが、具体的には、後記合成例の手順等を参照することができる。 The compound represented by the above formula (I-1) can be synthesized by a conventional method. Specifically, the procedures of the synthesis examples described later can be referred to.
 前記式(I-1)で表される特定シクロプロパン化合物の含有量は特に限定されないが、電解液の総質量に対して0.005~20質量%であり、0.01質量%以上であることがより好ましく、0.05質量%以上であることが特に好ましい。上記の下限値以上とすることで、本実施形態の効果が十分に発現し、電解液の分解を抑制することができ好ましい。上限値は、15質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。上記の上限値以下とすることで、過剰な添加を避け、電池性能に悪影響を及ぼすことを防ぐことができ好ましい。
 前記式(I-1)で表される特定シクロプロパン化合物は、1種のみで用いても、複数のものを組み合わせて用いてもよい。
The content of the specific cyclopropane compound represented by the formula (I-1) is not particularly limited, but is 0.005 to 20% by mass with respect to the total mass of the electrolytic solution, and 0.01% by mass or more. It is more preferable that the content is 0.05% by mass or more. By setting it as more than said lower limit, the effect of this embodiment fully expresses and decomposition | disassembly of electrolyte solution can be suppressed and it is preferable. The upper limit is more preferably 15% by mass or less, and particularly preferably 10% by mass or less. By setting it to the upper limit value or less, it is preferable because excessive addition can be avoided and adverse effects on battery performance can be prevented.
The specific cyclopropane compound represented by the formula (I-1) may be used alone or in combination.
<実施形態II>
 本実施形態の非水電解液においては、特定のシクロプロパン化合物を電解液中に含有させる。これにより、二次電池に適用したときに、諸性能を向上させ、しかも正極における負荷特性をも向上させることができる。この理由は定かではないが、以下のように推定される。本実施形態で用いるスピロ環構造をもつシクロプロパン化合物はシクロプロピル基の隣(α位)にカルボニル基を有する。カルボニル基は電子を求引する性質を有し、その作用によりシクロプロパン環を適度に開環させやすくし、電極表面もしくはその近傍において理想的な重合体の生成を促したと考えられる。さらに、上記カルボニル基を含む環状構造部も好適に作用し、負極のみならず正極の電極特性をも良化させたものと推定される。すなわち、スピロ環構造を有する特定シクロプロパン化合物のシクロプロパン環が開環し、正極・負極にとってより望ましい形態の重合体が生成されSEI(Solid Electrolyte Interface)を形成し、二次電池における上記諸性能の向上につながったと考えられる。
<Embodiment II>
In the nonaqueous electrolytic solution of the present embodiment, a specific cyclopropane compound is contained in the electrolytic solution. Thereby, when it applies to a secondary battery, various performance can be improved and also the load characteristic in a positive electrode can be improved. The reason for this is not clear, but is estimated as follows. The cyclopropane compound having a spiro ring structure used in this embodiment has a carbonyl group next to the cyclopropyl group (α position). It is considered that the carbonyl group has the property of attracting electrons, and its action facilitates the appropriate opening of the cyclopropane ring and promotes the formation of an ideal polymer at or near the electrode surface. Furthermore, it is presumed that the above-mentioned cyclic structure containing a carbonyl group also works favorably and improves not only the negative electrode but also the positive electrode characteristics. That is, the cyclopropane ring of a specific cyclopropane compound having a spiro ring structure is opened, a polymer having a more desirable form for the positive electrode and the negative electrode is formed to form SEI (Solid Electrolyte Interface), and the above performance in the secondary battery It is thought that it led to improvement.
[式(II-1)で表される化合物]
 本実施形態の非水二次電池用電解液は、下記式(II-1)で表される特定シクロプロパン化合物を含有する。
[Compound represented by Formula (II-1)]
The electrolyte solution for a non-aqueous secondary battery of this embodiment contains a specific cyclopropane compound represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
・R21~R24
 式中、R21~R24は水素原子もしくは置換基を表し、なかでも好ましくは各々独立に水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。アルキル基、アリール基、アルコキシ基の具体例としては、後記置換基Tの例が挙げられる。なお、R21~R24は互いに結合して、あるいは縮環して、環構造を形成していてもよい。また、R21~R24はさらに置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。
 R21~R24はなかでも、水素原子、アルキル基、フッ素原子、カルボニル基含有基、またはシアノ基が好ましく、水素原子またはアルキル基が特に好ましい。
 アルキル基としては、後記置換基Tの例が挙げられるが、炭素原子数1~10のアルキル基が好ましく、炭素原子数1~7のアルキル基が更に好ましく、メチル基、エチル基、イソプロピル基、ターシャリーブチル基、またはベンジル基が特に好ましい。
 アリール基としては、炭素原子数6~26のアリール基が好ましく、特にフェニル基が好ましい。
 アルコキシ基としては、炭素原子数1~20のアルコキシ基が好ましく、炭素原子数1~10のアルコキシ基が更に好ましく、炭素原子数1~6のアルコキシ基がより好ましく、メトキシ基、エトキシ基、イソプロポキシ基、またはターシャリーブトキシ基が特に好ましい。
 カルボニル基含有基としては、アルキルカルボニル基、アミド基、またはアルコキシカルボニル基が好ましく、メチルカルボニル基、エチルカルボニル基、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、またはターシャリーブトキシカルボニル基が特に好ましい。
・ R 21 to R 24
In the formula, R 21 to R 24 each represents a hydrogen atom or a substituent, and preferably each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. Specific examples of the alkyl group, aryl group, and alkoxy group include the examples of the substituent T described below. R 21 to R 24 may be bonded to each other or condensed to form a ring structure. R 21 to R 24 may further have a substituent, and examples of the substituent include the substituent T described later.
Among these, R 21 to R 24 are preferably a hydrogen atom, an alkyl group, a fluorine atom, a carbonyl group-containing group, or a cyano group, and particularly preferably a hydrogen atom or an alkyl group.
Examples of the alkyl group include the substituent T described later, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 7 carbon atoms, a methyl group, an ethyl group, an isopropyl group, A tertiary butyl group or a benzyl group is particularly preferred.
As the aryl group, an aryl group having 6 to 26 carbon atoms is preferable, and a phenyl group is particularly preferable.
The alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, a methoxy group, an ethoxy group, A propoxy group or a tertiary butoxy group is particularly preferred.
As the carbonyl group-containing group, an alkylcarbonyl group, an amide group, or an alkoxycarbonyl group is preferable, and a methylcarbonyl group, an ethylcarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, or a tertiary butoxycarbonyl group is particularly preferable. preferable.
・L21
 L21は、シクロプロピル基の炭素原子及びカルボニル基とともに環構造を形成する原子群を表す。L21がなす環は、芳香族炭化水素環、脂肪族炭化水素環、芳香族複素環、及び脂肪族複素環のいずれでもよいが、複素環(芳香族複素環及び脂肪族複素環)が好ましく、脂肪族複素環がより好ましい。複素環を構成するヘテロ原子は特に限定されないが、酸素原子、窒素原子、硫黄原子が挙げられ、酸素原子または窒素原子であることが好ましい。L21がなす環は置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。なお、脂肪族炭化水素環および脂肪族複素環は、不飽和結合を含んでいてもよい。
・ L 21
L 21 represents an atomic group forming a ring structure together with the carbon atom of the cyclopropyl group and the carbonyl group. The ring formed by L 21 may be any of an aromatic hydrocarbon ring, an aliphatic hydrocarbon ring, an aromatic heterocyclic ring, and an aliphatic heterocyclic ring, but preferably a heterocyclic ring (aromatic heterocyclic ring and aliphatic heterocyclic ring). An aliphatic heterocyclic ring is more preferable. Although the hetero atom which comprises a heterocyclic ring is not specifically limited, An oxygen atom, a nitrogen atom, and a sulfur atom are mentioned, It is preferable that it is an oxygen atom or a nitrogen atom. The ring formed by L 21 may have a substituent, and examples of the substituent include a substituent T described later. Note that the aliphatic hydrocarbon ring and the aliphatic heterocyclic ring may contain an unsaturated bond.
 L21においては、シクロプロピル基の炭素原子及び式中のカルボニル基(C=O)とともに形成する環が、-CONR25-または-COO-を含んでいることが好ましい。ここでR25はアルキル基(好ましくは炭素数1~5)またはアリール基(好ましくは炭素数6~24)を示す。ここでのアルキル基またはアリール基の具体例としては、後記置換基Tの例が挙げられる。前記R25はさらに置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。 In L 21 , the ring formed together with the carbon atom of the cyclopropyl group and the carbonyl group (C═O) in the formula preferably contains —CONR 25 — or —COO—. Here, R 25 represents an alkyl group (preferably having 1 to 5 carbon atoms) or an aryl group (preferably having 6 to 24 carbon atoms). Specific examples of the alkyl group or aryl group herein include the examples of the substituent T described later. R 25 may further have a substituent, and examples of the substituent include examples of the substituent T described later.
 前記式(II-1)で表される化合物は、下記式(II-2)で表される化合物であることが好ましい。 The compound represented by the formula (II-1) is preferably a compound represented by the following formula (II-2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
・R21~R24
 R21~R24は式(II-1)と同義である。
・ R 21 to R 24
R 21 to R 24 have the same meaning as in formula (II-1).
・L22
 式中、L22は、式中の2つのカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。L22がなす環の好ましい範囲はL21と同義であり、芳香族炭化水素環、脂肪族炭化水素環、芳香族複素環、及び脂肪族複素環のいずれでもよいが、複素環(芳香族複素環及び脂肪族複素環)が好ましく、脂肪族複素環がより好ましい。複素環を構成するヘテロ原子は特に限定されないが、酸素原子、窒素原子、硫黄原子が挙げられ、酸素原子または窒素原子であることが好ましい。L21がなす環は置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。なお、脂肪族炭化水素環および脂肪族複素環は、不飽和結合を含んでいてもよい。
・ L 22
In the formula, L 22 represents an atomic group that forms a ring structure with the carbon atoms of the two carbonyl groups and the cyclopropyl group in the formula. A preferable range of the ring formed by L 22 is the same as L 21 , and any of an aromatic hydrocarbon ring, an aliphatic hydrocarbon ring, an aromatic heterocyclic ring, and an aliphatic heterocyclic ring may be used. Ring and aliphatic heterocycle) are preferred, and aliphatic heterocycles are more preferred. Although the hetero atom which comprises a heterocyclic ring is not specifically limited, An oxygen atom, a nitrogen atom, and a sulfur atom are mentioned, It is preferable that it is an oxygen atom or a nitrogen atom. The ring formed by L 21 may have a substituent, and examples of the substituent include a substituent T described later. Note that the aliphatic hydrocarbon ring and the aliphatic heterocyclic ring may contain an unsaturated bond.
 L21またはL22がなす環は、5員環または6員環であることが好ましく、6員環であることが特に好ましい。L21またはL22がなす環は下記式(IIa)または(IIb)であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 *はシクロプロピル茎との炭素原子の位置を表す。X及びXはそれぞれ酸素原子、CR25 もしくはNR25を表す。R25は前記と同義である。XはCR25 、CSもしくはCOである。Y及びYは酸素原子、NR25、またはCR25 である。
The ring formed by L 21 or L 22 is preferably a 5-membered ring or a 6-membered ring, and particularly preferably a 6-membered ring. The ring formed by L 21 or L 22 is preferably the following formula (IIa) or (IIb).
Figure JPOXMLDOC01-appb-C000014
* Represents the position of the carbon atom relative to the cyclopropyl stem. X 1 and X 3 each represents an oxygen atom, CR 25 2 or NR 25 . R 25 has the same meaning as described above. X 2 is CR 25 2 , CS or CO. Y 1 and Y 2 are an oxygen atom, NR 25 , or CR 25 2 .
 以下に、式(II-1)で表される化合物の具体例を示すが、これにより本実施形態が限定して解釈されるものではない。 Specific examples of the compound represented by the formula (II-1) are shown below, but the present embodiment is not construed as being limited thereby.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(II-1)で表される化合物は定法によって合成できるが、具体的には、後記合成例の手順等を参照することができる。 The compound represented by the above formula (II-1) can be synthesized by a conventional method. Specifically, the procedures of the synthesis examples described later can be referred to.
 前記式(II-1)で表される特定シクロプロパン化合物の含有量は特に限定されないが、電解液の総質量に対して0.005~20質量%であり、0.01質量%以上であることがより好ましく、0.05質量%以上であることが特に好ましい。上記の下限値以上とすることで、本実施形態の効果が十分に発現し、電解液の分解を抑制することができ好ましい。上限値は、15質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。上記の上限値以下とすることで、過剰な添加を避け、電池性能に悪影響を及ぼすことを防ぐことができ好ましい。
 前記式(II-1)で表される特定シクロプロパン化合物は、1種のみで用いても、複数のものを組み合わせて用いてもよい。
The content of the specific cyclopropane compound represented by the formula (II-1) is not particularly limited, but is 0.005 to 20% by mass and 0.01% by mass or more with respect to the total mass of the electrolytic solution. It is more preferable that the content is 0.05% by mass or more. By setting it as more than said lower limit, the effect of this embodiment fully expresses and decomposition | disassembly of electrolyte solution can be suppressed and it is preferable. The upper limit is more preferably 15% by mass or less, and particularly preferably 10% by mass or less. By setting it to the upper limit value or less, it is preferable because excessive addition can be avoided and adverse effects on battery performance can be prevented.
The specific cyclopropane compound represented by the formula (II-1) may be used alone or in combination of two or more.
<実施形態III>
 本実施形態の非水電解液においては、特定のシクロプロパン化合物を電解液中に含有させる。これにより、二次電池に適用したときに、諸性能を向上させ、しかも正極における負荷特性をも向上させることができる。この理由は定かではないが、以下のように推定される。前記特許文献1のビニル基を有する化合物は、負極に被膜を形成し、それにより高温時の安定性を高めている。しかし、かえって負極の被膜による抵抗が大きくなり、負荷特性やサイクル性を低下させる原因となりうる。これに対し、本実施形態においては、上記のようなビニル基を持たない、特定シクロプロパン化合物が好適に作用し、負極のみならず正極の電極特性をも良化させたものと推定される。すなわち、特定シクロプロパン化合物のシクロプロパン環が開環し、正極・負極にとって望ましい形態の重合体が生成されSEI(Solid Electrolyte Interface)を形成し、二次電池における上記諸性能の向上につながったと考えられる。
<Embodiment III>
In the nonaqueous electrolytic solution of the present embodiment, a specific cyclopropane compound is contained in the electrolytic solution. Thereby, when it applies to a secondary battery, various performance can be improved and also the load characteristic in a positive electrode can be improved. The reason for this is not clear, but is estimated as follows. The compound having a vinyl group disclosed in Patent Document 1 forms a film on the negative electrode, thereby improving the stability at high temperatures. However, the resistance due to the negative electrode coating increases, which may cause a reduction in load characteristics and cycle characteristics. On the other hand, in the present embodiment, it is presumed that the specific cyclopropane compound having no vinyl group as described above acts favorably and improves not only the negative electrode but also the positive electrode characteristics. That is, the cyclopropane ring of the specific cyclopropane compound is opened, and a polymer having a desirable form for the positive electrode and the negative electrode is formed to form SEI (Solid Electrolyte Interface), which has led to the improvement of the above-mentioned various performances in the secondary battery. It is done.
[式(III-1)で表される化合物]
 本実施形態の非水二次電池用電解液は、下記式(III-1)で表される特定シクロプロパン化合物を含有する。
[Compound represented by Formula (III-1)]
The electrolyte solution for a non-aqueous secondary battery of this embodiment contains a specific cyclopropane compound represented by the following formula (III-1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
・R31~R34
 式中、R31~R34は各々独立に水素原子もしくは置換基を表し、なかでも好ましくは水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。アルキル基、アリール基、アルコキシ基の具体例としては、後記置換基Tの例が挙げられる。なお、R31~R34は互いに結合して、あるいは縮環して、環構造を形成していてもよい。また、R31~R34はさらに置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。
 R31~R34は各々独立に水素原子、アルキル基、フッ素原子、カルボニル基含有基、またはシアノ基が好ましく、水素原子、アルキル基、カルボニル基含有基、またはシアノ基が特に好ましい。
 アルキル基としては、後記置換基Tの例が挙げられるが、炭素原子数1~10のアルキル基が好ましく、炭素原子数1~7のアルキル基が更に好ましく、メチル基、エチル基、イソプロピル基、ターシャリーブチル基、またはベンジル基が特に好ましい。
 アリール基としては、炭素原子数6~26のアリール基が好ましく、特にフェニル基が好ましい。
 アルコキシ基としては、炭素原子数1~20のアルコキシ基が好ましく、炭素原子数1~10のアルコキシ基が更に好ましく、炭素原子数1~6のアルコキシ基がより好ましく、メトキシ基、エトキシ基、イソプロポキシ基、またはターシャリーブトキシ基が特に好ましい。
 カルボニル基含有基としては、アルキルカルボニル基、アミド基、またはアルコキシカルボニル基が好ましく、メチルカルボニル基、エチルカルボニル基、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、またはターシャリーブトキシカルボニル基が特に好ましい。
・ R 31 to R 34
In the formula, each of R 31 to R 34 independently represents a hydrogen atom or a substituent, and preferably represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. Specific examples of the alkyl group, aryl group, and alkoxy group include the examples of the substituent T described below. R 31 to R 34 may be bonded to each other or condensed to form a ring structure. R 31 to R 34 may further have a substituent, and examples of the substituent include the substituent T described later.
R 31 to R 34 are each independently preferably a hydrogen atom, an alkyl group, a fluorine atom, a carbonyl group-containing group, or a cyano group, and particularly preferably a hydrogen atom, an alkyl group, a carbonyl group-containing group, or a cyano group.
Examples of the alkyl group include the substituent T described later, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 7 carbon atoms, a methyl group, an ethyl group, an isopropyl group, A tertiary butyl group or a benzyl group is particularly preferred.
As the aryl group, an aryl group having 6 to 26 carbon atoms is preferable, and a phenyl group is particularly preferable.
The alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, a methoxy group, an ethoxy group, A propoxy group or a tertiary butoxy group is particularly preferred.
As the carbonyl group-containing group, an alkylcarbonyl group, an amide group, or an alkoxycarbonyl group is preferable, and a methylcarbonyl group, an ethylcarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, or a tertiary butoxycarbonyl group is particularly preferable. preferable.
・L31
 L31は、酸素原子、-NR35-、またはカルボニル基を表す。好ましくは、酸素原子またはカルボニル基である。R35は後記L32で定義するのと同義である。式中の(L31)nとして言うと、これがなす連結基がカルボニルオキシ基、アミド基、-COR36-(R36は炭素数1~3のアルキレン基を表す。)であることが好ましい。R36はさらに置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。
・ L 31
L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group. Preferably, it is an oxygen atom or a carbonyl group. R 35 has the same meaning as defined in L 32 described later. When expressed as (L 31 ) n in the formula, the linking group formed by this is preferably a carbonyloxy group, an amide group, or —COR 36 — (R 36 represents an alkylene group having 1 to 3 carbon atoms). R 36 may further have a substituent, and examples of the substituent include the substituent T described later.
・L32
 L32は、アルキレン基(好ましくは炭素数1~4)、O、S、SO、または-NR35-を表し、R35はアルキル基(好ましくは炭素数1~5)またはアリール基(好ましくは炭素数6~24)を示す。ここでのアルキル基またはアリール基の具体例としては、後記置換基Tの例が挙げられる。前記R35はさらに置換基を有していてもよく、その置換基としては後記置換基Tの例が挙げられる。なお、L31ないしL32が持つ置換基は互いに結合して、あるいは縮環して、環構造を形成していてもよい。L31及びL32が複数あるとき、それらは互いに異なっていてもよい。
・ L 32
L 32 represents an alkylene group (preferably having 1 to 4 carbon atoms), O, S, SO 2 , or —NR 35 —, and R 35 is an alkyl group (preferably having 1 to 5 carbon atoms) or an aryl group (preferably Represents a carbon number of 6 to 24). Specific examples of the alkyl group or aryl group herein include the examples of the substituent T described later. The R 35 may further have a substituent, and examples of the substituent include the substituent T described later. The substituents of L 31 to L 32 may be bonded to each other or condensed to form a ring structure. When there are a plurality of L 31 and L 32 , they may be different from each other.
・n、m
 n、mは各々独立に1または2を示す。n+mは3または4であることが好ましく、3であることがより好ましい。なお、式中-(L31)n-(L32)m-がなす構造が、-CO-O-CO-であることはない。n、mが2のとき、そこで規定される複数の構造部はそれぞれ異なっていてもよい。
・ N, m
n and m each independently represent 1 or 2. n + m is preferably 3 or 4, and more preferably 3. Note that a structure formed by-(L 31 ) n- (L 32 ) m- in the formula is never -CO-O-CO-. When n and m are 2, the plurality of structural parts defined there may be different from each other.
[式(III-2)で表される化合物]
 前記式(III-1)で表される化合物は下記式(III-2)または(III-3)で表される化合物であることが好ましい。
[Compound represented by Formula (III-2)]
The compound represented by the formula (III-1) is preferably a compound represented by the following formula (III-2) or (III-3).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記式中、R31~R34、L32は、式(III-1)と同義である。 In the above formula, R 31 to R 34 and L 32 have the same meaning as in formula (III-1).
 以下に、式(III-1)で表される化合物の具体例を示すが、これにより本実施形態が限定して解釈されるものではない。 Specific examples of the compound represented by the formula (III-1) are shown below, but the present embodiment is not construed as being limited thereby.
Figure JPOXMLDOC01-appb-C000018
Me:メチル基
Et:エチル基
Figure JPOXMLDOC01-appb-C000018
Me: methyl group Et: ethyl group
 上記式(III-1)で表される化合物は定法によって合成できるが、具体的には、後記合成例の手順等を参照することができる。 The compound represented by the above formula (III-1) can be synthesized by a conventional method. Specifically, the procedures of the synthesis examples described later can be referred to.
 前記式(III-1)で表される特定シクロプロパン化合物の含有量は特に限定されないが、電解液の総質量に対して0.005~20質量%であり、0.01質量%以上であることがより好ましく、0.05質量%以上であることが特に好ましい。上記の下限値以上とすることで、本実施形態の効果が十分に発現し、電解液の分解を抑制することができ好ましい。上限値は、15質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。上記の上限値以下とすることで、過剰な添加を避け、電池性能に悪影響を及ぼすことを防ぐことができ好ましい。
 前記式(III-1)で表される特定シクロプロパン化合物は、1種のみで用いても、複数のものを組み合わせて用いてもよい。
The content of the specific cyclopropane compound represented by the formula (III-1) is not particularly limited, but is 0.005 to 20% by mass with respect to the total mass of the electrolytic solution, and 0.01% by mass or more. It is more preferable that the content is 0.05% by mass or more. By setting it as more than said lower limit, the effect of this embodiment fully expresses and decomposition | disassembly of electrolyte solution can be suppressed and it is preferable. The upper limit is more preferably 15% by mass or less, and particularly preferably 10% by mass or less. By setting it to the upper limit value or less, it is preferable because excessive addition can be avoided and adverse effects on battery performance can be prevented.
The specific cyclopropane compound represented by the formula (III-1) may be used alone or in combination of two or more.
 なお、本明細書において化合物の表示については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の一部を変化させた誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。複数の置換基や配位子が近接するときには、特に断らなくても、それらが互いに連結したり縮環したりして環を形成していてもよい。 In addition, in this specification, it uses for the meaning containing the salt and its ion other than the said compound itself about the display of a compound. Moreover, it is the meaning including the derivative | guide_body which changed the predetermined part in the range with the desired effect. In addition, in the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T. When a plurality of substituents and ligands are close to each other, they may be connected to each other or condensed to form a ring without particular notice.
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基又はハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基又はシアノ基が挙げられる。
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl, -Chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, such as 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2 -Oxazolyl etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy etc.), an aryloxy group (preferably an aryloxy group having 6 to 26 carbon atoms) For example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably alkoxycarbonyl groups having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.) ), Amino group (preferably carbon Amino groups having 0 to 20 atoms, such as amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc., sulfonamido groups (preferably sulfonamido having 0 to 20 carbon atoms) A group such as N, N-dimethylsulfonamide, N-phenylsulfonamide, etc., an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms such as acetyloxy, benzoyloxy, etc.), a carbamoyl group (preferably A carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.) , Cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, An iodine atom, etc.), more preferably an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an amino group, an acylamino group, a cyano group or a halogen atom, particularly preferably Is an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group, or a cyano group.
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。 When a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
[有機溶媒]
 本発明に用いられる有機溶媒としては、環状カーボネート、鎖状カーボネート、または環状エステルが好ましく、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシド燐酸などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルからなる群のうちの少なくとも1種が好ましく、特に、炭酸エチレンあるいは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
[Organic solvent]
The organic solvent used in the present invention is preferably a cyclic carbonate, a chain carbonate, or a cyclic ester. For example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, γ- Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4- Dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methyl Toxipropionitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N'-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethyl sulfoxide or dimethyl sulfoxide phosphate It is done. These may be used alone or in combination of two or more. Among them, at least one member selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable. Particularly, a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, ratio A combination of a dielectric constant ε ≧ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate (for example, viscosity ≦ 1 mPa · s) is more preferable. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
 また、溶媒は、不飽和結合を有する環状炭酸エステルを含有していてもよい。電解液の化学的安定性がより向上するからである。この不飽和結合を有する環状炭酸エステルとしては、例えば、炭酸ビニレン系化合物、炭酸ビニルエチレン系化合物および炭酸メチレンエチレン系化合物からなる群のうちの少なくとも1種などが挙げられる。 Further, the solvent may contain a cyclic carbonate having an unsaturated bond. This is because the chemical stability of the electrolytic solution is further improved. Examples of the cyclic carbonate having an unsaturated bond include at least one selected from the group consisting of vinylene carbonate compounds, vinyl ethylene carbonate compounds, and methylene ethylene carbonate compounds.
 炭酸ビニレン系化合物としては、例えば、炭酸ビニレン(1,3-ジオキソール-2-オン)、炭酸メチルビニレン(4-メチル-1,3-ジオキソール-2-オン)、炭酸エチルビニレン(4-エチル-1,3-ジオキソール-2-オン)、4,5-ジメチル-1,3-ジオキソール-2-オン、4,5-ジエチル-1,3-ジオキソール-2-オン、4-フルオロ-1,3-ジオキソール-2-オンあるいは4-トリフルオロメチル-1,3-ジオキソール-2-オンなどが挙げられる。 Examples of vinylene carbonate compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethyl vinylene carbonate (4-ethyl- 1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1,3 And -dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
 炭酸ビニルエチレン系化合物としては、例えば、炭酸ビニルエチレン(4-ビニル-1,3-ジオキソラン-2-オン)、4-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4-エチル-4-ビニル-1,3-ジオキソラン-2-オン、4-n-プロピル-4-ビニル-1,3-ジオキソラン-2-オン、5-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4,4-ジビニル-1,3-ジオキソラン-2-オンあるいは4,5-ジビニル-1,3-ジオキソラン-2-オンなどが挙げられる。 Examples of the vinyl ethylene carbonate compound include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, and 4-ethyl. -4-vinyl-1,3-dioxolane-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolane-2 -One, 4,4-divinyl-1,3-dioxolan-2-one, 4,5-divinyl-1,3-dioxolan-2-one and the like.
 炭酸メチレンエチレン系化合物としては、4-メチレン-1,3-ジオキソラン-2-オン、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オンあるいは4,4-ジエチル-5-メチレン-1,3-ジオキソラン-2-オンなどが挙げられる。 Examples of the methylene ethylene carbonate compound include 4-methylene-1,3-dioxolan-2-one, 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, and 4,4-diethyl-5-one. And methylene-1,3-dioxolan-2-one.
 これらは単独で用いられてもよいし、複数種が混合されて用いられてもよい。中でも、炭酸ビニレンが好ましい。高い効果が得られるからである。 These may be used alone, or a plurality of types may be mixed and used. Among these, vinylene carbonate is preferable. This is because a high effect can be obtained.
[電解質]
 電解質は周期律表第一族又は第二族に属する金属イオンもしくはその塩であることが好ましく、電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。電解液をリチウム二次電池用非水系電解液の電解質として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩であれば特に制限はないが、例えば、以下に述べるものが好ましい。
[Electrolytes]
The electrolyte is preferably a metal ion belonging to Group 1 or Group 2 of the periodic table or a salt thereof, and is appropriately selected depending on the intended use of the electrolytic solution. For example, lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned. When used in a secondary battery or the like, lithium salt is preferable from the viewpoint of output. When the electrolytic solution is used as an electrolyte of a non-aqueous electrolytic solution for a lithium secondary battery, a lithium salt may be selected as a metal ion salt. The lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBRO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。 (L-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBRO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。 (L-2) Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salts, and the like.
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。 (L-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOリチウムビス(オキサラト)ボレート塩が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOなどのリチウムイミド塩、リチウムビス(オキサラト)ボレート塩がさらに好ましい。ここで、Rf1、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いるリチウム塩は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 電解質の含有量は、以下に電解液の調製法で述べる好ましい塩濃度となるよう量で添加される。その濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定されればよい。
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 Lithium bis (oxalato) borate salts are preferred, LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) ( More preferred are lithium imide salts such as Rf 2 SO 2 ) 2 and lithium bis (oxalato) borate salts. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
In addition, the lithium salt used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
The electrolyte content is added in such an amount that a preferable salt concentration described below in the method for preparing the electrolytic solution is obtained. The concentration is appropriately selected according to the purpose of use of the electrolytic solution, but is generally 10% by mass to 50% by mass, more preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution. In addition, when evaluating as an ion density | concentration, what is necessary is just to calculate by salt conversion with the metal applied suitably.
[電解液の調製方法]
 次に、本発明の電解液の代表的な調整方法を、金属イオンの塩としてリチウム塩を用いた場合を例に挙げて説明する。本実施形態の電解液は、前記非水電解液溶媒に、リチウム塩、及び、所望により添加される種々の添加剤を溶解して、調製される。
[Method for preparing electrolytic solution]
Next, a typical method for adjusting the electrolytic solution of the present invention will be described by taking as an example a case where a lithium salt is used as a metal ion salt. The electrolytic solution of the present embodiment is prepared by dissolving a lithium salt and various additives that are optionally added in the nonaqueous electrolytic solution solvent.
 本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲で微量の水を含んでいてもよい。良好な特性を得ることを考慮して言うと、水の含有量が200ppm以下であることが好ましく、100ppm以下であることがより好ましい。下限値は特にないが、不可避的な混入を考慮すると、10ppm以上であることが実際的である。 In the present invention, “non-water” means substantially not containing water, and may contain a small amount of water as long as the effect of the invention is not hindered. In view of obtaining good characteristics, the water content is preferably 200 ppm or less, and more preferably 100 ppm or less. Although there is no particular lower limit, it is practical that it is 10 ppm or more considering inevitable mixing.
(電解液の組成)
 調製された電解液中の金属塩濃度は、濃度が高くなるにつれて電解液の粘度が高くなるため、高いイオン伝導度を示すための適正な濃度範囲が存在する。好ましい濃度範囲は、電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。電解液の粘度は特に限定されないが、5~0.5mPa・sであることが好ましく、5~0.1mPa・sであることがより好ましい。
(Composition of electrolyte)
The metal salt concentration in the prepared electrolytic solution has an appropriate concentration range for exhibiting high ionic conductivity because the viscosity of the electrolytic solution increases as the concentration increases. A preferred concentration range is 10% by mass to 50% by mass, and more preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution. The viscosity of the electrolytic solution is not particularly limited, but is preferably 5 to 0.5 mPa · s, and more preferably 5 to 0.1 mPa · s.
(キット)
 本発明の電解液は複数の液体ないし粉末等から構成されたキットとされていてもよい。例えば、第1剤(第1液)を電解質と有機溶媒とで構成し、第2剤(第2液)を前記特定シクロプロパン化合物と有機溶媒とで構成し、使用前に2液を混合して調液する形態などであってもよい。このときの、各成分の含有量は、混合後に前記の範囲となることが好ましい。
(kit)
The electrolytic solution of the present invention may be a kit composed of a plurality of liquids or powders. For example, the first agent (first liquid) is composed of an electrolyte and an organic solvent, the second agent (second liquid) is composed of the specific cyclopropane compound and an organic solvent, and the two liquids are mixed before use. It may be in the form of liquid preparation. The content of each component at this time is preferably in the above range after mixing.
[二次電池]
 本発明の二次電池の実施形態についてその断面図を大幅に模式化して示した図1を参照して説明する。本実施形態のリチウムイオン二次電池10は、非水二次電池用電解液5と、リチウムイオンの挿入放出が可能な正極C(正極集電体1,正極活物質層2)と、リチウムイオンの挿入放出又は溶解析出が可能な負極A(負極集電体3,負極活物質層4)とを備える。これら必須の部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ9、集電端子(図示せず)、及び外装ケース等(図示せず)を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液5内でリチウムイオンの授受a,bが生じ、充電・放電α・βを行うことができ、回路配線7を介して動作手段6を介して運転あるいは蓄電を行うことができる。以下、本発明の好ましい実施形態であるリチウム二次電池の構成について詳細に説明する。
[Secondary battery]
An embodiment of a secondary battery according to the present invention will be described with reference to FIG. The lithium ion secondary battery 10 of the present embodiment includes an electrolyte solution 5 for a non-aqueous secondary battery, a positive electrode C (positive electrode current collector 1, positive electrode active material layer 2) capable of inserting and releasing lithium ions, and lithium ions. Negative electrode A (negative electrode current collector 3, negative electrode active material layer 4). In addition to these essential members, considering the purpose of use of the battery, the shape of the potential, etc., a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown). If necessary, a protective element may be attached to at least one of the inside of the battery and the outside of the battery. By adopting such a structure, lithium ion exchanges a and b are generated in the electrolytic solution 5, and charging / discharging α / β can be performed. Electric power can be stored. Hereinafter, the configuration of a lithium secondary battery which is a preferred embodiment of the present invention will be described in detail.
(電池形状)
 本実施形態のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状、及び、ペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型のものであってもよい。なかもで、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型形状が好ましい。
(Battery shape)
The battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one relatively flat and large surface is preferable.
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100を例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を捲回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。その他、図中の20が絶縁板、22が封口板、24が正極集電、26がガスケット、28が圧力感応弁体、30が電流遮断素子である。なお、拡大した円内の図示は視認性を考慮しハッチングを変えているが、各部材は符号により全体図と対応している。 In the case of a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging or discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 stacked with a separator 12 interposed therebetween are wound and stored in an outer can 18. In addition, in the figure, 20 is an insulating plate, 22 is a sealing plate, 24 is a positive current collector, 26 is a gasket, 28 is a pressure sensitive valve element, and 30 is a current interrupting element. In addition, although the illustration in the enlarged circle has changed hatching in consideration of visibility, each member corresponds to the whole drawing by reference numerals.
(電池を構成する部材)
 次に、本実施形態のリチウム二次電池の各部材について述べる。本発明のリチウム二次電池は、電解液として、少なくとも前記本発明の非水電池用電解液を含む。
(電解液)
 本実施形態のリチウム二次電池に用いられる電解液は、有機溶媒と、前述した特定シクロプロパン化合物と、電解質塩とを含有することが好ましい(電解液5(図1))。非水二次電池用電解液に用いられる電解質塩としては、前述の周期律表第一族又は第二族に属する金属イオンの塩であり、前記非水二次電池用電解液の実施の態様で詳細に記載したものを用いることができる。また、リチウム二次電池に用いられる有機溶媒(非水電解液溶媒)も同様に、前記非水二次電池用電解液の実施の態様で詳細に記載したものを用いることができる。さらには他の添加剤を加えて、より一層性能を向上させることができる。
(Members constituting the battery)
Next, each member of the lithium secondary battery of this embodiment will be described. The lithium secondary battery of the present invention includes at least the electrolyte solution for a non-aqueous battery of the present invention as an electrolytic solution.
(Electrolyte)
The electrolytic solution used in the lithium secondary battery of this embodiment preferably contains an organic solvent, the specific cyclopropane compound described above, and an electrolyte salt (electrolytic solution 5 (FIG. 1)). The electrolyte salt used in the electrolyte for a non-aqueous secondary battery is a salt of a metal ion belonging to Group 1 or Group 2 of the aforementioned periodic table, and the embodiment of the electrolyte for a non-aqueous secondary battery Those described in detail in (1) can be used. Similarly, the organic solvent (nonaqueous electrolyte solvent) used in the lithium secondary battery can be the same as described in the embodiment of the electrolyte for nonaqueous secondary battery. Furthermore, other additives can be added to further improve the performance.
 電解液には、電池の性能を向上させるため、本発明の効果を損なわない限りにおいて、目的に応じて各種の添加剤を用いることができる。このような添加剤として、過充電防止剤、負極被膜形成剤、正極保護剤等のこのような機能性添加剤を用いてもよい。 In order to improve the performance of the battery, various additives can be used in the electrolytic solution depending on the purpose as long as the effects of the present invention are not impaired. As such an additive, such a functional additive such as an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent may be used.
 また、負極皮膜形成剤と正極保護剤との併用や、過充電防止剤と負極皮膜形成剤と正極保護剤との併用が特に好ましい。 Also, the combined use of a negative electrode film forming agent and a positive electrode protective agent, and the combined use of an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent are particularly preferable.
 非水系電解液中におけるこれら機能性添加剤の含有割合は特に限定はないが、非水系電解液全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 The content ratio of these functional additives in the non-aqueous electrolyte solution is not particularly limited, but is preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, respectively, with respect to the entire non-aqueous electrolyte solution. More preferably, it is 0.2% by mass or more, and the upper limit is preferably 5% by mass or less, particularly preferably 3% by mass or less, and further preferably 2% by mass or less. By adding these compounds, it is possible to suppress rupture / ignition of the battery at the time of abnormality due to overcharge, and to improve the capacity maintenance characteristic and cycle characteristic after high-temperature storage.
(電極合材)
 電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布した複合体であり、リチウム電池においては、活物質が正極活物質である正極合剤と活物質が負極活物質である負極合剤が使用されることが好ましい。次に、電極合材を構成する、正極活物質、負極活物質、導電剤、結着剤、フィラー及び集電体について説明する。
(Electrode mixture)
An electrode mixture is a composite in which a dispersion such as an active material and a conductive agent, a binder, and a filler is applied on a current collector (electrode substrate). In a lithium battery, the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which a certain positive electrode mixture and an active material are negative electrode active materials. Next, the positive electrode active material, the negative electrode active material, the conductive agent, the binder, the filler, and the current collector that constitute the electrode mixture will be described.
(正極活物質)
 正極活物質としては、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、リチウム含有遷移金属酸化物を用いるのが好ましい。正極活物質として好ましく用いられるリチウム含有遷移金属酸化物としては、リチウム含有Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Wを含む酸化物等が好適に挙げられる。またリチウム以外のアルカリ金属(周期律表の第1(Ia)族、第2(IIa)族の元素)、及び/又はAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量としては、遷移金属に対して0~30mol%が好ましい。
(Positive electrode active material)
As the positive electrode active material, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but a lithium-containing transition metal oxide is preferably used. Preferred examples of the lithium-containing transition metal oxide preferably used as the positive electrode active material include oxides containing lithium-containing Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W. Alkali metals other than lithium (elements of Group 1 (Ia) and Group 2 (IIa) of the periodic table) and / or Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P , B, etc. may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
 前記正極活物質として好ましく用いられるリチウム含有遷移金属酸化物の中でも、リチウム化合物/遷移金属化合物(ここで遷移金属とは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種のことをいう。)の合計のモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。 Among the lithium-containing transition metal oxides preferably used as the positive electrode active material, a lithium compound / transition metal compound (wherein the transition metal is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W) And a mixture synthesized so that the total molar ratio is 0.3 to 2.2 is more preferable.
 さらに、前記リチウム化合物/遷移金属化合物の中でも、LiM3O(M3はCo、Ni、Fe、及びMnから選択される1種以上の元素を表す。gは、0~1.2を表す。)を含む材料、又はLiM4O(M4はMnを表す。hは、0~2を表す。)で表されるスピネル構造を有する材料が特に好ましい。前記M3、M4としては、遷移金属以外にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0~30mol%が好ましい。 Further, among the lithium compounds / transition metal compounds, Li g M3O 2 (M3 represents one or more elements selected from Co, Ni, Fe, and Mn. G represents 0 to 1.2. ) Or a material having a spinel structure represented by Li h M4 2 O (M4 represents Mn, h represents 0 to 2). As M3 and M4, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be mixed in addition to the transition metal. The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
 前記LiM3Oを含む材料、LiM4Oで表されるスピネル構造を有する材料の中でも、LiCoO、LiNiO、LiMnO、LiCoNi1-j、LiMn、 LiNiMn1-j、LiCoNiAl1-j-h、LiCoNiMn1-j-h、LiMnAl2-h、LiMnNi2-h(ここでgは0.02~1.2を表す。jは0.1~0.9を表す。hは0~2を表す。)が特に好ましく、もっと好ましくはLiCoO2、LiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33である。高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。ここで、前記g値及びh値は、充放電開始前の値であり、充放電により増減する値である。具体的には、
 LiNi0.5Mn0.5、LiNi0.85Co0.01Al0.05
 LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2
 LiMn1.5Ni0.5等が挙げられる。
The Li g M3O material containing 2, among the materials having the spinel structure represented by Li h M4 2 O, Li g CoO 2, Li g NiO 2, Li g MnO 2, Li g Co j Ni 1-j O 2, Li h Mn 2 O 4 , LiNi j Mn 1-j O 2, LiCo j Ni h Al 1-j-h O 2, LiCo j Ni h Mn 1-j-h O 2, LiMn h Al 2-h O 4 , LiMn h Ni 2-h O 4 (where g represents 0.02 to 1.2, j represents 0.1 to 0.9, h represents 0 to 2) is particularly preferable. , More preferably Li g CoO 2, LiMn 2 O 4, LiNi 0.85 Co 0.01 Al 0.05 O 2, and is LiNi 0.33 Co 0.33 Mn 0.33 O 2 . Of these, an electrode containing Ni is more preferable from the viewpoint of high capacity and high output. Here, the g value and the h value are values before the start of charge / discharge, and are values that increase / decrease due to charge / discharge. In particular,
LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.01 Al 0.05 O 2 ,
LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 ,
LiMn 1.5 Ni 0.5 O 4 and the like.
 リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
 更に、5V近い高電位と250mAh/gを超える非常に高い比容量を示す固溶体系正極材料(例えばLiMnO‐LiMO(M:Ni,Co,Mnなどの金属)が,次世代のリチウムイオン電池の正極材料として大きな注目を集めている。本発明の電解液はこれら固溶体系正極材料と組合せることも好ましい。
As the transition metal of the lithium-containing transition metal phosphate compound, V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ). 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.
Furthermore, a solid solution positive electrode material (for example, Li 2 MnO 3 -LiMO 2 (M: metal such as Ni, Co, Mn)) having a high potential close to 5 V and a very high specific capacity exceeding 250 mAh / g is the next generation lithium. It has attracted much attention as a positive electrode material for ion batteries, and the electrolytic solution of the present invention is preferably combined with these solid solution positive electrode materials.
 非水電解質二次電池において、用いられる前記正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。 In the nonaqueous electrolyte secondary battery, the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 μm to 50 μm. The specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method. Further, the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
 前記正極活性物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。前記焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 A well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size. For example, a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
(負極活物質)
 負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
 また、金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてケイ素、チタン及び/又はリチウム(例えばチタン酸リチウム)を含有していることが、高電流密度充放電特性の観点で好ましい。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions. Carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, simple lithium and lithium Examples thereof include lithium alloys such as aluminum alloys and metals that can form alloys with lithium such as Sn and Si. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
In addition, the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it contains silicon, titanium and / or lithium (for example, lithium titanate) as a constituent component so as to have a high current. It is preferable from the viewpoint of density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro Examples thereof include spheres, graphite whiskers, and flat graphite.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料としては、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has an interplanar spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 リチウム二次電池において用いられる負極活物質である金属酸化物及び金属複合酸化物は、これらの少なくとも1種を含んでいればよい。金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 The metal oxide and metal composite oxide, which are negative electrode active materials used in lithium secondary batteries, need only contain at least one of them. As the metal oxide and metal complex oxide, amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 前記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、金属化合物としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the compound group consisting of the amorphous oxide and the chalcogenide, an amorphous oxide of a semi-metal element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Particularly preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof. Specific examples of preferred amorphous oxides and chalcogenides include metal compounds such as Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , SnSiS 3 and the like are preferable. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 非水電解質二次電池において、用いられる前記負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。 In the nonaqueous electrolyte secondary battery, the average particle size of the negative electrode active material used is preferably 0.1 μm to 60 μm. To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
 前記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。 Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
 本発明においては、チタン酸リチウム、より具体的にはリチウム・チタン酸化物(Li[Li1/3Ti5/3]O)を負極の活物質として用いることが好ましい。これを負極活物質として用いることにより、前記特定シクロプロパン化合物によるSEIの形成効果が一段と高まり、一層優れた電池性能を発揮させることができる。
 本発明の電解液は好ましい様態として高電位負極(好ましくはリチウム・チタン酸化物、電位1.55V)との組合せ、及び低電位負極(好ましくは炭素材料、電位0.1V)との組合せのいずれにおいても優れた特性を発現する。更に高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属または金属酸化物負極(好ましくはSi、酸化Si、Si/酸化シリコン、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、及びこれらの金属または金属酸化物と炭素材料の複合体を負極とする電池においても好ましく用いることができる。
In the present invention, it is preferable to use lithium titanate, more specifically, lithium-titanium oxide (Li [Li 1/3 Ti 5/3 ] O 4 ) as the active material of the negative electrode. By using this as the negative electrode active material, the SEI formation effect by the specific cyclopropane compound is further enhanced, and more excellent battery performance can be exhibited.
The electrolyte solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium / titanium oxide, potential 1.55 V) or a combination with a low potential negative electrode (preferably a carbon material, potential 0.1 V). Also exhibits excellent properties. Further, metal or metal oxide negative electrode (preferably Si, Si oxide, Si / silicon oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which is being developed for higher capacity) / Sn and a plurality of these composites), and a battery using a composite of these metals or metal oxides and a carbon material as a negative electrode.
(導電材)
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-10148,554号に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20,971号に記載)などの導電性材料を1種又はこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用がとくに好ましい。前記導電剤の添加量としては、1~50質量%が好ましく、2~30質量%がより好ましい。カーボンや黒鉛の場合は、2~15質量%が特に好ましい。
(Conductive material)
Any conductive material may be used as long as it is an electron conductive material that does not cause a chemical change in the constructed secondary battery, and any known conductive material can be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 10148,554), etc.), metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be contained as one kind or a mixture thereof. Among these, the combined use of graphite and acetylene black is particularly preferable. The addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
(結着剤)
 結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンが、より好ましい。
(Binder)
Examples of the binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate, Polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, water-soluble polymers such as styrene-maleic acid copolymer, polyvinyl chloride , Polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride Ride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, and other (meth) acrylic (Meth) acrylic acid ester copolymer containing acid ester, (meth) acrylic acid ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer, acrylonitrile -Butadiene copolymer, polybutadiene, neoprene rubber, fluoro rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane Tan resins, polyester resins, phenolic resins, emulsion (latex) or a suspension such as an epoxy resin is preferable, a latex of polyacrylate, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride is more preferable.
 結着剤は、一種単独又は二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。 Binders can be used alone or in combination of two or more. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
(フィラー)
 フィラーを形成する材料は、二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、0~30質量%が好ましい。
(Filler)
As the material for forming the filler, any fibrous material that does not cause a chemical change in the secondary battery can be used. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used. The amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
(集電体)
 正・負極の集電体としては、非水電解質二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
(Current collector)
As the positive / negative current collector, an electron conductor that does not cause a chemical change in a non-aqueous electrolyte secondary battery is used. As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
 負極の集電体としては、銅、ステンレス鋼、ニッケル、チタンが好ましく、銅あるいは銅合金がより好ましい。 The negative electrode current collector is preferably copper, stainless steel, nickel, or titanium, and more preferably copper or a copper alloy.
 前記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
As the shape of the current collector, a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 μm to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
(セパレータ)
 リチウム二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料であれば特に限定されることはない。このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは安全性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能、を持つことが好ましく、閉塞温度は90℃以上、180℃以下であることが好ましい。セパレータの強度の観点から、無機材料、ガラス繊維で補強されたセパレータを用いることが特に好ましい。
(Separator)
The separator used in the lithium secondary battery is particularly limited as long as it is a material that mechanically insulates the positive electrode and the negative electrode, has ion permeability, and has oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode. There is no. As such a material, a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used. These separators preferably have a shutdown function for ensuring safety, that is, a function of closing the gap at 80 ° C. or higher to increase resistance and interrupting current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower. Preferably there is. From the viewpoint of the strength of the separator, it is particularly preferable to use a separator reinforced with an inorganic material or glass fiber.
 前記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmであり、0.1μm~20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%であり、35%~80%が好ましい。 The shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 μm to 30 μm, preferably 0.1 μm to 20 μm. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method. The ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
 前記ポリマー材料としては、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。 The polymer material may be a single material such as polyethylene or polypropylene, or two or more composite materials. What laminated | stacked the 2 or more types of microporous film which changed the hole diameter, the porosity, the obstruction | occlusion temperature of a hole, etc. is preferable.
 前記無機材料としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、前記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。 Examples of the inorganic material include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate, and those having a particle shape or fiber shape are used. . As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. As the thin film shape, those having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm are preferably used. In addition to the independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, alumina particles having a 90% particle diameter of less than 1 μm are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
[リチウム二次電池の用途]
 リチウム二次電池は、サイクル性良好な二次電池を作製することができるため、種々の用途に適用される。
 適用態様には特に限定なはいが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Applications of lithium secondary batteries]
Lithium secondary batteries can be used for various applications because secondary batteries with good cycleability can be manufactured.
Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 二次電池において電荷の輸送に用いられる金属イオンは特に限定されないが、周期律表第一族又は第二族に属する金属イオンを利用したものであることが好ましい。中でも、リチウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン等を用いることが好ましい。リチウムイオンを用いた二次電池についての一般的な技術事項は冒頭に挙げた特許文献等、多くの文献や書籍があり参考になる。その他、ナトリウムイオンを用いた二次電池については、Journal of Electrochemical Society;Electrochemical Science and Technology、米国、1980年、第127巻、第2097~2099頁等を参照することができる。マグネシウムイオンについては、Nature 407, p.724-727(2000)等を参照することができる。カルシウムイオンについては、J.Electrochem. Soc., Vol.138, 3536 (1991)等を参照することができる。本発明においてはその普及の程度からリチウムイオン二次電池に適用することが好ましいが、それ以外のものにおいても所望の効果を奏するものであり、これに限定して解釈されるものではない。 The metal ion used for charge transport in the secondary battery is not particularly limited, but is preferably a metal ion belonging to Group 1 or Group 2 of the periodic table. Among these, it is preferable to use lithium ions, sodium ions, magnesium ions, calcium ions, aluminum ions, and the like. There are many documents and books such as the patent documents listed at the beginning for general technical matters regarding secondary batteries using lithium ions, which are helpful. For other secondary batteries using sodium ions, Journal of Electrochemical Society; Electrochemical Science and Technology, USA, 1980, Vol. 127, pages 2097-2099, and the like can be referred to. For magnesium ions, see Nature 407, p. 724-727 (2000) and the like can be referred to. For calcium ions, see J.H. Electrochem. Soc. , Vol. 138, 3536 (1991), etc. can be referred to. In the present invention, it is preferable to apply to a lithium ion secondary battery because of its widespread use, but the other effects also have a desired effect and should not be construed as being limited thereto.
 以下、本発明の実施例を説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。
<実施例I>
1.シクロプロパン化合物の合成
Examples of the present invention will be described below, but the present invention is not limited to these examples.
<Example I>
1. Synthesis of cyclopropane compounds
(合成例I-1:シクロプロパン(SI-1)の合成)
 1-シアノ-1-シクロプロパンカルボン酸2.22g、塩化メチレン84ml、メタノール12mlの溶液に、2Mのトリメチルシリルジアゾメタンのジエチルエーテル溶液12mlと滴下した。発泡終了後、酢酸1mlを加えた。塩化メチレンで抽出、飽和炭酸水素ナトリウム水溶液で洗浄後、硫酸ナトリウムで乾燥、濃縮をした。得られた有機物を蒸留にて精製し、シクロプロパン化合物(SI-1)を1.9g得た。
(Synthesis Example I-1: Synthesis of cyclopropane (SI-1))
To a solution of 2.22 g of 1-cyano-1-cyclopropanecarboxylic acid, 84 ml of methylene chloride and 12 ml of methanol was added dropwise with 12 ml of a 2M trimethylsilyldiazomethane solution in diethyl ether. After completion of foaming, 1 ml of acetic acid was added. The mixture was extracted with methylene chloride, washed with a saturated aqueous sodium hydrogen carbonate solution, dried over sodium sulfate, and concentrated. The obtained organic substance was purified by distillation to obtain 1.9 g of cyclopropane compound (SI-1).
(合成例I-2:シクロプロパン(SI-2)の合成)
 グリセロールカーボネート5.31g、ジシクロヘキシルカルボジイミド9.28g、4-ジメチルアミノピリジン55mgを塩化メチレン60mlに溶解させた。0℃にて1-シアノ-1-シクロプロパンカルボン酸5gを塩化メチレン50mlにて溶かした溶液を滴下し、室温で3時間反応させた。セライトろ過により、固体を取り除いた後、塩化メチレンにて抽出、飽和食塩水にて洗浄、硫酸ナトリウムで乾燥、濃縮をした。得られた有機物をシリカゲルクロマトグラフィーにて精製し、シクロプロパン化合物(SI-2)を6.5g得た。
(Synthesis Example I-2: Synthesis of cyclopropane (SI-2))
Glycerol carbonate (5.31 g), dicyclohexylcarbodiimide (9.28 g) and 4-dimethylaminopyridine (55 mg) were dissolved in methylene chloride (60 ml). A solution prepared by dissolving 5 g of 1-cyano-1-cyclopropanecarboxylic acid in 50 ml of methylene chloride was added dropwise at 0 ° C. and reacted at room temperature for 3 hours. The solid was removed by Celite filtration, and then extracted with methylene chloride, washed with saturated brine, dried over sodium sulfate, and concentrated. The obtained organic substance was purified by silica gel chromatography to obtain 6.5 g of cyclopropane compound (SI-2).
(合成例I-3:シクロプロパン(SI-5)の合成)
 原料にメトキシエトキシエタノールを用い、合成例I-2と同様の方法でシクロプロパン(SI-5)を得た。
(Synthesis Example I-3: Synthesis of cyclopropane (SI-5))
Cyclopropane (SI-5) was obtained in the same manner as in Synthesis Example I-2 using methoxyethoxyethanol as a raw material.
(合成例I-4:シクロプロパン(SI-8)の合成)
 7.6gのNaBHをエタノール50mlに加え、4-ブロモ-2-シアノ-4-メチル-2-ペンテン酸メチル23.1gのエタノール10ml溶液を室温にて滴下した。4時間反応させた後、蒸留水100mlを加え、塩化メチレンで抽出、濃縮した後、減圧蒸留にて精製し、シクロプロパン化合物(SI-8)を7.2g得た。
(Synthesis Example I-4: Synthesis of cyclopropane (SI-8))
7.6 g of NaBH 4 was added to 50 ml of ethanol, and a solution of 23.1 g of methyl 4-bromo-2-cyano-4-methyl-2-pentenoate in 10 ml of ethanol was added dropwise at room temperature. After reacting for 4 hours, 100 ml of distilled water was added, extracted with methylene chloride, concentrated, and purified by distillation under reduced pressure to obtain 7.2 g of cyclopropane compound (SI-8).
(合成例I-5:シクロプロパン(SI-11)の合成)
 2MのLDAのTHF溶液6mlに脱水THF20mlを加え、-78℃に冷却した。シクロプロパンカルボン酸ターシャリーブチルエステル1.5mlを滴下し、-78℃のまま3時間攪拌した。1-ブロモ-2-(2-メトキシエトキシ)エタン2.9mlを加え、-78℃で2時間反応させた後、室温にして1時間攪拌した。飽和塩化アンモニウム水溶液を滴下し、酢酸エチルにて抽出、飽和食塩水にて洗浄後、乾燥、濃縮した。得られた有機物を蒸留にて精製し、シクロプロパン化合物(SI-11)を0.82g得た。
(Synthesis Example I-5: Synthesis of cyclopropane (SI-11))
20 ml of dehydrated THF was added to 6 ml of 2M LDA in THF and cooled to -78 ° C. Cyclopropanecarboxylic acid tertiary butyl ester (1.5 ml) was added dropwise, and the mixture was stirred at -78 ° C. for 3 hours. After adding 2.9 ml of 1-bromo-2- (2-methoxyethoxy) ethane and reacting at -78 ° C. for 2 hours, the mixture was stirred at room temperature for 1 hour. A saturated aqueous ammonium chloride solution was added dropwise, the mixture was extracted with ethyl acetate, washed with saturated brine, dried and concentrated. The obtained organic substance was purified by distillation to obtain 0.82 g of a cyclopropane compound (SI-11).
(合成例I-6:シクロプロパン(SI-12)の合成)
 シクロプロパン化合物(SI-11)を塩化メチレン25mlで溶かし、0℃にてトリフルオロ酢酸25ml、トリエチルヒドロシラン0.5mlを加え、室温にて4時間反応させた。1M水酸化ナトリウム水溶液を加えアルカリ性にし、酢酸エチルにて抽出、飽和食塩水にて洗浄後、水溶液に1M塩酸水溶液を加え酸性にし、酢酸エチルにて抽出、飽和食塩水にて洗浄後、有機層を乾燥、濃縮した。得られたシクロプロパンカルボン酸誘導体を合成例I-1と同様の方法で、エステル化を行い、シクロプロパン化合物(SI-12)を得た。
(Synthesis Example I-6: Synthesis of cyclopropane (SI-12))
The cyclopropane compound (SI-11) was dissolved in 25 ml of methylene chloride, 25 ml of trifluoroacetic acid and 0.5 ml of triethylhydrosilane were added at 0 ° C. and reacted at room temperature for 4 hours. 1M aqueous sodium hydroxide solution is added to make alkaline, extracted with ethyl acetate, washed with saturated brine, acidified with 1M aqueous hydrochloric acid solution, extracted with ethyl acetate, washed with saturated brine, organic layer Was dried and concentrated. The obtained cyclopropanecarboxylic acid derivative was esterified in the same manner as in Synthesis Example I-1 to obtain a cyclopropane compound (SI-12).
(合成例I-7:シクロプロパン(SI-13)の合成)
 原料に1-シアノ-1-シクロプロパンカルボン酸を用い、合成例I-5と同様の方法でシクロプロパン(SI-13)を得た。
(Synthesis Example I-7: Synthesis of cyclopropane (SI-13))
Using 1-cyano-1-cyclopropanecarboxylic acid as a raw material, cyclopropane (SI-13) was obtained in the same manner as in Synthesis Example I-5.
(合成例I-8:シクロプロパン(SI-14)の合成)
 原料にベンジルブロミドを用いて、合成例I-5と同様の方法でシクロプロパン(SI-14)を得た。
(Synthesis Example I-8: Synthesis of cyclopropane (SI-14))
Cyclopropane (SI-14) was obtained in the same manner as in Synthesis Example I-5 using benzyl bromide as a raw material.
(合成例I-9:シクロプロパン(SI-15)の合成)
 原料にシクロプロパン(SI-14)を用いて、合成例I-6と同様の方法でシクロプロパン(SI-15)を得た。
(Synthesis Example I-9: Synthesis of cyclopropane (SI-15))
Cyclopropane (SI-15) was obtained in the same manner as in Synthesis Example I-6 using cyclopropane (SI-14) as a raw material.
<実施例>
2.電解液の調製
 1M LiPFの炭酸エチレン(EC)/炭酸エチルメチル(EMC)の体積比1対2の電解液、及び体積比1対3電解液に、合成例I-1で得たシクロプロパン化合物(SI-1)を0.05質量%加え、試験No.I-101の電解液を調製した。用いるシクロプロパン化合物の種類と添加量を表のとおりに変えて、同様に電解液を調製した(試験No.I-102~I-113)。
<Example>
2. Preparation of Electrolyte To 1M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) in a volume ratio of 1 to 2, and a volume ratio of 1 to 3 in an electrolyte, the cyclopropane obtained in Synthesis Example I-1 Compound (SI-1) was added in an amount of 0.05% by mass, and test no. An electrolyte solution of I-101 was prepared. The electrolyte solution was prepared in the same manner by changing the type and amount of cyclopropane compound used as shown in the table (Test Nos. I-102 to I-113).
<比較例>
 1M LiPFの炭酸エチレン/炭酸エチルメチルの電解液を比較例とした。
 また、同様に炭酸ビニレン(VC)、下記(RI-1)、下記(RI-2)、下記(RI-3)を表のとおりの添加量で添加したものを比較例とした。
<Comparative example>
An electrolyte solution of 1M LiPF 6 in ethylene carbonate / ethyl methyl carbonate was used as a comparative example.
Similarly, a comparative example was prepared by adding vinylene carbonate (VC), the following (RI-1), the following (RI-2), and the following (RI-3) in the addition amounts shown in the table.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[リチウム二次電池] [Lithium secondary battery]
 正極にコバルト酸リチウム合剤シート(電極容量1.5mAh/cm:アルミ箔ベース、13mmφ)、負極に天然球状グラファイト電極シート(電極容量1.6mAh/cm2:Cu箔ベース、14.5mmφ)、セパレータにPP製多孔質フィルム(厚さ25μm、16mmφ)を用い、下記表1-1に示す電解液を用いた評価用のリチウム二次電池を作製した。 Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 13 mmφ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm2: Cu foil base, 14.5 mmφ) on the negative electrode, Using a PP porous film (thickness 25 μm, 16 mmφ) as a separator, a lithium secondary battery for evaluation using an electrolytic solution shown in Table 1-1 below was produced.
<サイクル性評価(放電容量維持率)>
 上記の方法で作製した2032形電池を用いて30℃の恒温槽中、電池電圧が4.2Vになるまで0.7C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が2.75Vになるまで0.5C定電流放電を行い、1サイクルとした。これを300サイクルに達するまで繰り返した。
<Evaluation of cycle performance (discharge capacity retention rate)>
Using a 2032 type battery produced by the above method, in a thermostatic chamber at 30 ° C., after charging at a constant current of 0.7 C until the battery voltage becomes 4.2 V, the current value is set to 0.06 mA at a constant voltage of 4.2 V. Or charging for 2 hours, and then 0.5C constant current discharge was performed until the battery voltage reached 2.75 V, resulting in one cycle. This was repeated until 300 cycles were reached.
<低温放電率評価(低温放電率)>
 上記の方法で作製した2032形電池を用いて30℃に対する-20℃での放電容量率を測定した。30℃の恒温槽中、電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に-20℃の恒温槽中、0電池電圧が2.75Vになるまで0.1C定電流放電を行い、放電容量を測定した。
<Low-temperature discharge rate evaluation (low-temperature discharge rate)>
Using the 2032 type battery produced by the above method, the discharge capacity ratio at −20 ° C. with respect to 30 ° C. was measured. In a constant temperature bath at 30 ° C, charge at a constant current of 0.1C until the battery voltage reaches 4.2V, then at 4.2V constant voltage, the current value becomes 0.06mA, or charge for 2 hours, then- In a constant temperature bath at 20 ° C., 0.1 C constant current discharge was performed until the 0 battery voltage became 2.75 V, and the discharge capacity was measured.
<自己放電特性評価(容量残存率)>
 上記の方法で作製した2032形電池を用いて、30℃の環境下、0.4mAで電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、電池電圧が2.75Vになるまで0.1C定電流放電を行い、初期放電容量を測定した。さらに、電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行った後、電池を45℃の環境下で14日間放置した。その後、30℃の環境に取り出した後、同様の放電条件にて放電を行ったときの放電容量を測定した。
<Self-discharge characteristic evaluation (capacity remaining rate)>
Using the 2032 type battery produced by the above method, after charging at a constant current of 0.1 C until the battery voltage becomes 4.2 V at 0.4 mA in an environment of 30 ° C., the current value is 4.2 V constant voltage. The battery was charged at 0.06 mA or 2 hours, and 0.1 C constant current discharge was performed until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Furthermore, after charging at a constant current of 0.1 C until the battery voltage reaches 4.2 V, the current value becomes 0.06 mA at a constant voltage of 4.2 V, or after charging for 2 hours, Left under for 14 days. Then, after taking out to 30 degreeC environment, the discharge capacity when discharging on the same discharge conditions was measured.
 <LiTi12負極でのサイクル性評価(放電容量維持率)>
 負極をチタン酸リチウム合剤シート(電極容量1.6mAh/cm:アルミ箔ベース、14.5mmφ)に変えて、作製した2032形電池を用いて30℃の恒温槽中、電池電圧が2.8Vになるまで0.7C定電流充電した後、2.8V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が1.8Vになるまで0.5C定電流放電を行い、1サイクルとした。これを500サイクルに達するまで繰り返した。
<Evaluation of cycleability in Li 4 Ti 5 O 12 negative electrode (discharge capacity retention rate)>
The negative electrode was changed to a lithium titanate mixture sheet (electrode capacity 1.6 mAh / cm 2 : aluminum foil base, 14.5 mmφ), and the battery voltage was 2. After charging with a constant current of 0.7 C until 8 V, the current value becomes 0.06 mA at a constant voltage of 2.8 V, or charging is performed for 2 hours, and then a constant current of 0.5 C is maintained until the battery voltage reaches 1.8 V. Current discharge was performed to make one cycle. This was repeated until 500 cycles were reached.
<試験結果>
1.300サイクル目における放電容量維持率
 (DCMR300:Discharge Capacity Maintaining Ratio)
<Test results>
1. Discharge capacity maintenance ratio in the 300th cycle (DCMR 300 : Discharge Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000020
(注1)放電容量維持率(%)=
       (300サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000020
(Note 1) Discharge capacity maintenance rate (%) =
(Discharge capacity at the 300th cycle / discharge capacity at the first cycle) × 100
 表1-1に示すように、実施例の2032形非水電解液二次電池(試験No.I-101~I-114)では、比較例の2032形非水電解液二次電池(試験No.I-c11~I-c16)よりも、300サイクル目の容量維持率が優れていることが確認された。この結果は、実施例の電池に係る負極において、電解液に添加したシクロプロパン化合物が、負極で電子を受け取り開環重合し、負極表面に良好なSEI(Solid Electrolyte Interface)被膜を形成して、電解液の分解が抑制されたことに起因しているものと考えられる。
 また、正極活物質にLiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33を用いても、同様に良好な放電容量維持率を示した。
As shown in Table 1-1, the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-101 to I-114) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. It was confirmed that the capacity retention ratio at the 300th cycle was superior to that of .Ic11 to Ic16). As a result, in the negative electrode according to the battery of the example, the cyclopropane compound added to the electrolytic solution receives electrons at the negative electrode, undergoes ring-opening polymerization, and forms a good SEI (Solid Electrolyte Interface) film on the negative electrode surface. This is considered to be due to the suppression of the decomposition of the electrolytic solution.
Further, even when LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good. The discharge capacity retention rate was shown.
2.低温放電率(LTDR:Low Temperature Discharging Rate) 2. Low temperature discharge rate (LTDR: Low Temperature Discharging Rate)
Figure JPOXMLDOC01-appb-T000021
(注2)低温放電率(%)=(-20℃での放電容量/30℃での放電容量)×100
Figure JPOXMLDOC01-appb-T000021
(Note 2) Low temperature discharge rate (%) = (discharge capacity at −20 ° C./discharge capacity at 30 ° C.) × 100
 表1-2に示すように、実施例の2032形非水電解液二次電池(試験No.I-201~I-208)では、比較例の2032形非水電解液二次電池(試験No.I-c21~I-c24)よりも、低温放電率が優れていることが確認された。この結果は、実施例の電池に係る負極表面において形成されたSEI被膜中で、リチウムイオンが安定化され、被膜(SEI)中のリチウムイオン伝導性が向上し、界面移動抵抗が減少したことに起因すると推定される。 As shown in Table 1-2, the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-201 to I-208) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. .. Ic21 to Ic24) were confirmed to be superior in low-temperature discharge rate. As a result, lithium ions were stabilized in the SEI film formed on the negative electrode surface according to the battery of the example, the lithium ion conductivity in the film (SEI) was improved, and the interface migration resistance was reduced. Presumed to be due.
3.容量残存率(RCR:Remaining Capacity Ratio) 3. Capacity remaining rate (RCR: Remaining Capacity Ratio)
Figure JPOXMLDOC01-appb-T000022
(注3)容量残存率(%)=(14日放置後放電容量/初期放電容量)×100
Figure JPOXMLDOC01-appb-T000022
(Note 3) Capacity remaining rate (%) = (discharge capacity after standing for 14 days / initial discharge capacity) × 100
 表1-3に示すように、実施例の2032形非水電解液二次電池(試験No.I-301~I-308)では、比較例の2032形非水電解液二次電池(試験No.I-c31~I-c34)よりも、自己放電特性が優れていることが確認された。この結果は、実施例の電池にかかる正極表面において、形成された被膜により正極が安定化し、正極の自己分解を抑制したことに起因すると推定している。 As shown in Table 1-3, the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-301 to I-308) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. .. I-c31 to I-c34) were confirmed to have better self-discharge characteristics. This result is presumed to be attributable to the fact that the positive electrode was stabilized by the formed coating on the positive electrode surface of the battery of the example, and the self-decomposition of the positive electrode was suppressed.
4.500サイクル目における放電容量維持率
 (DCMR500:Discharge Capacity Maintaining Ratio)
Discharge capacity maintenance ratio in the 4.500th cycle (DCMR 500 : Discharge Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000023
(注4)放電容量維持率(%)=
        (500サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000023
(Note 4) Discharge capacity maintenance rate (%) =
(Discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100
 表1-4に示すように、実施例の2032形非水電解液二次電池(試験No.I-401、I-402)では、比較例の2032形非水電解液二次電池(試験No.I-c41)よりも、500サイクル目の容量維持率が優れていることが確認された。この結果は、グラファイト負極のとき同様リチウムイオンの挿入電位よりも高い電位で還元が進行し、チタン酸リチウム負極上に良好なSEI(Solid Electrolyte Interface)被膜を形成して、電解液の分解、および電極の劣化が抑制されたことに起因しているものと考えられる。
 また、正極活物質にLiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33を用いても、同様に良好な放電容量維持率を示した。
As shown in Table 1-4, the 2032 type non-aqueous electrolyte secondary batteries (test Nos. I-401 and I-402) of the examples are 2032 type non-aqueous electrolyte secondary batteries (test No. It was confirmed that the capacity retention rate at the 500th cycle was superior to that of. This result shows that the reduction proceeds at a potential higher than the insertion potential of lithium ions as in the case of the graphite negative electrode, a good SEI (Solid Electrolyte Interface) film is formed on the lithium titanate negative electrode, the electrolytic solution is decomposed, and This is considered to be due to suppression of electrode deterioration.
Further, even when LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good. The discharge capacity retention rate was shown.
<実施例II>
1.特定シクロプロパン化合物の合成
(合成例II-1:スピロシクロプロパン(SII-1)の合成)
 1,1-シクロプロパンジカルボン酸2.6g、無水酢酸2.4ml、硫酸0.08mlの溶液へ、0℃にてアセトン2mlを滴下した。0℃にて5時間反応させた後、水を30ml加えた。飽和炭酸水素ナトリウム水溶液をpH5になるまで加えた後、析出した固体をろ過により単離し、スピロシクロプロパン(SII-1)を2.1g得た。
<Example II>
1. Synthesis of specific cyclopropane compound (Synthesis Example II-1: Synthesis of spirocyclopropane (SII-1))
To a solution of 2.6 g of 1,1-cyclopropanedicarboxylic acid, 2.4 ml of acetic anhydride, and 0.08 ml of sulfuric acid, 2 ml of acetone was added dropwise at 0 ° C. After reacting at 0 ° C. for 5 hours, 30 ml of water was added. A saturated aqueous sodium hydrogen carbonate solution was added until the pH reached 5, and then the precipitated solid was isolated by filtration to obtain 2.1 g of spirocyclopropane (SII-1).
(合成例II-2:スピロシクロプロパン(SII-2)の合成)
 原料にシクロヘキサノンを用い、合成例II-1と同様の方法でスピロシクロプロパン(SII-2)を得た。
(Synthesis Example II-2: Synthesis of Spirocyclopropane (SII-2))
Using cyclohexanone as a raw material, spirocyclopropane (SII-2) was obtained in the same manner as in Synthesis Example II-1.
(合成例II-3:スピロシクロプロパン(SII-7)の合成)
 N,N-ジメチルバルビツール酸7.81g、1,2-ジブロモエタン11.27g、炭酸カリウム13.82g、テトラブチルアンモニウム硫酸水素塩0.17g、ジメチルホルムアミド70mlを加え、加熱還流した。4時間反応させた後、室温に冷やした反応液をろ過し、ろ液を濃縮後、シリカゲルカラムクロマトグラフィーにて精製し、スピロシクロプロパン(SII-7)を6.5g得た。
(Synthesis Example II-3: Synthesis of Spirocyclopropane (SII-7))
7.81 g of N, N-dimethylbarbituric acid, 11.27 g of 1,2-dibromoethane, 13.82 g of potassium carbonate, 0.17 g of tetrabutylammonium hydrogen sulfate, and 70 ml of dimethylformamide were added and heated to reflux. After reacting for 4 hours, the reaction solution cooled to room temperature was filtered, and the filtrate was concentrated and purified by silica gel column chromatography to obtain 6.5 g of spirocyclopropane (SII-7).
(合成例II-4:スピロシクロプロパン(SII-11)の合成)
 原料にN,N-ジエチルチオバルビツール酸を用い、合成例II-3と同様の方法でスピロシクロプロパン(SII-11)を得た。
(Synthesis Example II-4: Synthesis of Spirocyclopropane (SII-11))
Spirocyclopropane (SII-11) was obtained in the same manner as in Synthesis Example II-3 using N, N-diethylthiobarbituric acid as a raw material.
(合成例II-5:スピロシクロプロパン(SII-14)の合成)
 原料に1,2-ジメチルピラゾリジン-3,5-ジオンを用い、合成例II-3と同様の方法でスピロシクロプロパン(SII-14)を得た。
(Synthesis Example II-5: Synthesis of Spirocyclopropane (SII-14))
Spirocyclopropane (SII-14) was obtained in the same manner as in Synthesis Example II-3 using 1,2-dimethylpyrazolidine-3,5-dione as a raw material.
<実施例>
2.電解液の調製
 1M LiPFの炭酸エチレン(EC)/炭酸エチルメチル(EMC)の体積比1対2の電解液、及び体積比1対3電解液に、合成例II-1で得たスピロシクロプロパン化合物(SII-1)を0.05重量%加え、電解液を調製した(試験No.II-101)。
 用いるシクロプロパン化合物の種類と添加量を表のとおりに変えて、同様に電解液を調製した(試験No.II-102~II-111)。
<Example>
2. Preparation of Electrolytic Solution To 1M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) electrolytic solution having a volume ratio of 1: 2 and volume ratio of 1: 3 to the electrolytic solution obtained in Synthesis Example II-1. Propane compound (SII-1) was added in an amount of 0.05% by weight to prepare an electrolytic solution (Test No. II-101).
The electrolyte solution was prepared in the same manner by changing the type and amount of cyclopropane compound used as shown in the table (Test Nos. II-102 to II-111).
 1M LiPFの炭酸エチレン/炭酸エチルメチルの電解液を比較例とした。このとき、実施例と同様の条件で炭酸ビニレン(VC)、下記(RII-1)、下記(RII-2)、下記環状酸無水物(RII-3)を添加したものを比較例とした。 An electrolyte solution of 1M LiPF 6 in ethylene carbonate / ethyl methyl carbonate was used as a comparative example. At this time, a comparative example was prepared by adding vinylene carbonate (VC), the following (RII-1), the following (RII-2), and the following cyclic acid anhydride (RII-3) under the same conditions as in the examples.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[リチウム二次電池]
 正極にコバルト酸リチウム合剤シート(電極容量1.5mAh/cm:アルミ箔ベース、13mmφ)、負極に天然球状グラファイト電極シート(電極容量1.6mAh/cm:Cu箔ベース、14.5mmφ)、セパレータにPP製多孔質フィルム(厚さ25μm、16mmφ)を用い、下記表2-1に示す電解液を用いた評価用のリチウム二次電池を作製した。
[Lithium secondary battery]
Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 13 mmφ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm 2 : Cu foil base, 14.5 mmφ) on the negative electrode Using a PP porous film (thickness 25 μm, 16 mmφ) as a separator, a lithium secondary battery for evaluation using an electrolytic solution shown in Table 2-1 below was produced.
<サイクル性評価(放電容量維持率)>
 上記の方法で作製した2032形電池を用いて30℃の恒温槽中、電池電圧が4.2Vになるまで0.7C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が2.75Vになるまで0.5C定電流放電を行い、1サイクルとした。これを300サイクルに達するまで繰り返した。
<Evaluation of cycle performance (discharge capacity retention rate)>
Using a 2032 type battery produced by the above method, in a thermostatic chamber at 30 ° C., after charging at a constant current of 0.7 C until the battery voltage becomes 4.2 V, the current value is set to 0.06 mA at a constant voltage of 4.2 V. Or charging for 2 hours, and then 0.5C constant current discharge was performed until the battery voltage reached 2.75 V, resulting in one cycle. This was repeated until 300 cycles were reached.
<低温放電率評価(低温放電率)>
 上記の方法で作製した2032形電池を用いて30℃に対する-20℃での放電容量率を測定した。30℃の恒温槽中、電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に-20℃の恒温槽中、0電池電圧が2.75Vになるまで0.1C定電流放電を行い、放電容量を測定した。
<Low-temperature discharge rate evaluation (low-temperature discharge rate)>
Using the 2032 type battery produced by the above method, the discharge capacity ratio at −20 ° C. with respect to 30 ° C. was measured. In a constant temperature bath at 30 ° C, charge at a constant current of 0.1C until the battery voltage reaches 4.2V, then at 4.2V constant voltage, the current value becomes 0.06mA, or charge for 2 hours, then- In a constant temperature bath at 20 ° C., 0.1 C constant current discharge was performed until the 0 battery voltage became 2.75 V, and the discharge capacity was measured.
<正極負荷特性(負荷容量維持率)>
 前記サイクル性試験にて10サイクル充放電を行った正極を取り出し、負極をリチウム、電解液に1M LiPFの炭酸エチレン/炭酸エチルメチルの体積比1対2を用いて2032形電池を作製した。30℃の恒温槽中、電池電圧が4.2Vになるまで0.7C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が2.75Vになるまで2C定電流放電を行い、放電容量、放電曲線を比較した。
<Positive electrode load characteristics (load capacity retention ratio)>
The positive electrode that had been charged and discharged for 10 cycles in the cycle test was taken out, and the negative electrode was lithium, and a 2032 type battery was prepared using 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate volume ratio of 1 to 2 as the electrolyte. In a constant temperature bath at 30 ° C., after charging with a constant current of 0.7 C until the battery voltage becomes 4.2 V, the current value becomes 0.06 mA at a constant voltage of 4.2 V, or charging is performed for 2 hours, and then the battery is charged. 2C constant current discharge was performed until the voltage reached 2.75 V, and the discharge capacity and discharge curves were compared.
<自己放電特性評価(容量残存率)>
 上記の方法で作製した2032形電池を用いて、30℃の環境下、0.4mAで電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、電池電圧が2.75Vになるまで0.1C定電流放電を行い、初期放電容量を測定した。さらに、電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行った後、電池を45℃の環境下で14日間放置した。その後、30℃の環境に取り出した後、同様の放電条件にて放電を行ったときの放電容量を測定した。
<Self-discharge characteristic evaluation (capacity remaining rate)>
Using the 2032 type battery produced by the above method, after charging at a constant current of 0.1 C until the battery voltage becomes 4.2 V at 0.4 mA in an environment of 30 ° C., the current value is 4.2 V constant voltage. The battery was charged at 0.06 mA or 2 hours, and 0.1 C constant current discharge was performed until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Furthermore, after charging at a constant current of 0.1 C until the battery voltage reaches 4.2 V, the current value becomes 0.06 mA at a constant voltage of 4.2 V, or after charging for 2 hours, Left under for 14 days. Then, after taking out to 30 degreeC environment, the discharge capacity when discharging on the same discharge conditions was measured.
 <LiTi12負極でのサイクル性評価(放電容量維持率)>
 負極をチタン酸リチウム合剤シート(電極容量1.6mAh/cm:アルミ箔ベース、14.5mmφ)に変えて、作製した2032形電池を用いて30℃の恒温槽中、電池電圧が2.8Vになるまで0.7C定電流充電した後、2.8V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が1.8Vになるまで0.5C定電流放電を行い、1サイクルとした。これを500サイクルに達するまで繰り返した。
<Evaluation of Cycleability at Li 4 Ti 5 O 12 Negative Electrode (Discharge Capacity Maintenance Rate)>
The negative electrode was changed to a lithium titanate mixture sheet (electrode capacity 1.6 mAh / cm 2 : aluminum foil base, 14.5 mmφ), and the battery voltage was 2. After charging at a constant current of 0.7 C until 8 V, the current value becomes 0.06 mA at a constant voltage of 2.8 V, or charging is performed for 2 hours, and then a constant current of 0.5 C is maintained until the battery voltage reaches 1.8 V. Current discharge was performed to make one cycle. This was repeated until 500 cycles were reached.
<試験結果>
1.300サイクル目における放電容量維持率
 (DCMR300:Discharge Capacity Maintaining Ratio)
<Test results>
1. Discharge capacity maintenance ratio in the 300th cycle (DCMR 300 : Discharge Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000025
(注1)放電容量維持率(%)=
       (300サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000025
(Note 1) Discharge capacity maintenance rate (%) =
(Discharge capacity at the 300th cycle / discharge capacity at the first cycle) × 100
 表2-1に示すように、実施例の2032形非水電解液二次電池(試験No.II-101~II-113)では、比較例の2032形非水電解液二次電池(試験No.II-c11~II-c16)よりも、300サイクル目の容量維持率が優れていることが確認された。この結果は、実施例の電池に係る負極において、電解液に添加したスピロシクロプロパン化合物が、負極で電子を受け取り開環重合し、負極表面に良好なSEI(Solid Electrolyte Interface)被膜を形成して、電解液の分解が抑制されたことに起因しているものと考えられる。
 また、正極活物質にLiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33を用いても、同様に良好な放電容量維持率を示した。
As shown in Table 2-1, in the 2032 type non-aqueous electrolyte secondary batteries (test Nos. II-101 to II-113) of the examples, the 2032 type non-aqueous electrolyte secondary battery (test No. .. II-c11 to II-c16), it was confirmed that the capacity retention rate at the 300th cycle was superior. As a result, in the negative electrode according to the battery of the example, the spirocyclopropane compound added to the electrolyte receives electrons at the negative electrode and undergoes ring-opening polymerization to form a good SEI (Solid Electrolyte Interface) film on the negative electrode surface. This is considered to be due to the fact that the decomposition of the electrolytic solution was suppressed.
Further, even when LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good. The discharge capacity retention rate was shown.
2.低温放電率(LTDR:Low Temperature Discharging Rate) 2. Low temperature discharge rate (LTDR: Low Temperature Discharging Rate)
Figure JPOXMLDOC01-appb-T000026
(注2)低温放電率(%)=(-20℃での放電容量/30℃での放電容量)×100
Figure JPOXMLDOC01-appb-T000026
(Note 2) Low temperature discharge rate (%) = (discharge capacity at −20 ° C./discharge capacity at 30 ° C.) × 100
 表2-2に示すように、実施例の2032形非水電解液二次電池(試験No.II-201~II-209)では、比較例の2032形非水電解液二次電池(試験No.II-c21~II-c24)よりも、低温放電率が優れていることが確認された。この結果は、実施例の電池に係る負極表面において形成されたSEI被膜中で、リチウムイオンが安定化され、被膜(SEI)中のリチウムイオン伝導性が向上し、界面移動抵抗が減少したことに起因すると推定される。 As shown in Table 2-2, the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-201 to II-209) of the examples are 2032 type non-aqueous electrolyte secondary batteries (Test No. .. II-c21 to II-c24) were confirmed to be superior in low-temperature discharge rate. As a result, lithium ions were stabilized in the SEI film formed on the negative electrode surface according to the battery of the example, the lithium ion conductivity in the film (SEI) was improved, and the interface migration resistance was reduced. Presumed to be due.
3.負荷容量維持率
 (LCCMR:Load-Carrying Capacity Maintaining Ratio)・・・正極負荷特性
3. Load capacity maintenance ratio (LCCMR: Load-Carrying Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000027
(注3)負荷容量維持率(%)=(2C放電容量/初期放電容量)×100
Figure JPOXMLDOC01-appb-T000027
(Note 3) Load capacity retention rate (%) = (2C discharge capacity / initial discharge capacity) × 100
 表2-3に示すように、実施例の2032形非水電解液二次電池(試験No.II-301~II-303)では、比較例(試験No.II-c31~II-c36)の2032形非水電解液二次電池よりも、負荷特性が優れていることが確認された。この結果は、実施例の電池にかかる正極表面において、添加したスピロシクロプロパン化合物による被膜が形成され、形成された被膜により正極が安定化し、正極界面の抵抗を抑制したことに起因すると推定している。
 また、図3に示したように、実施例(No.II-301)の二次電池における放電曲線は、比較例(No.II-c32)に比べ、高電流領域まで高電圧を維持する、より理想に近いものであった。
As shown in Table 2-3, in the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-301 to II-303) of Examples, the comparative examples (Test Nos. II-c31 to II-c36) were used. It was confirmed that the load characteristics were superior to the 2032 type nonaqueous electrolyte secondary battery. This result is presumed to be caused by the fact that a coating of the added spirocyclopropane compound was formed on the positive electrode surface of the battery of the example, the positive electrode was stabilized by the formed coating, and the resistance at the positive electrode interface was suppressed. Yes.
In addition, as shown in FIG. 3, the discharge curve in the secondary battery of Example (No. II-301) maintains a high voltage up to a high current region as compared with Comparative Example (No. II-c32). It was closer to the ideal.
4.容量残存率(RCR:Remaining Capacity Ratio) 4). Capacity remaining rate (RCR: Remaining Capacity Ratio)
Figure JPOXMLDOC01-appb-T000028
(注4)容量残存率(%)=(14日放置後放電容量/初期放電容量)×100
Figure JPOXMLDOC01-appb-T000028
(Note 4) Capacity remaining rate (%) = (discharge capacity after leaving for 14 days / initial discharge capacity) × 100
 表2-4に示すように、実施例の2032形非水電解液二次電池(試験No.II-401~II-409)では、比較例の2032形非水電解液二次電池(試験No.II-c41~II-c44)よりも、自己放電特性が優れていることが確認された。この結果は、実施例の電池にかかる正極表面において、形成された被膜により正極が安定化し、正極の自己分解を抑制したことに起因すると推定している。 As shown in Table 2-4, the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-401 to II-409) of the examples are 2032 type non-aqueous electrolyte secondary batteries (Test No. II-c41 to II-c44) were confirmed to have better self-discharge characteristics. This result is presumed to be attributable to the fact that the positive electrode was stabilized by the formed coating on the positive electrode surface of the battery of the example, and the self-decomposition of the positive electrode was suppressed.
5.500サイクル目における放電容量維持率
 (DCMR500:Discharge Capacity Maintaining Ratio)
5. Discharge capacity maintenance ratio at 500th cycle (DCMR 500 : Discharge Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000029
(注5)放電容量維持率(%)=
        (500サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000029
(Note 5) Discharge capacity maintenance rate (%) =
(Discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100
 表2-5に示すように、実施例の2032形非水電解液二次電池(試験No.II-501、II-502)では、比較例の2032形非水電解液二次電池(試験No.II-c51)よりも、500サイクル目の容量維持率が優れていることが確認された。この結果は、グラファイト負極のとき同様リチウムイオンの挿入電位よりも高い電位で還元が進行し、チタン酸リチウム負極上に良好なSEI(Solid Electrolyte Interface)被膜を形成して、電解液の分解、および電極の劣化が抑制されたことに起因しているものと考えられる。
 また、正極活物質にLiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33を用いても、同様に良好な放電容量維持率を示した。
As shown in Table 2-5, the 2032 type non-aqueous electrolyte secondary batteries (Test Nos. II-501 and II-502) of the examples are 2032 type non-aqueous electrolyte secondary batteries (Test No. II-c51), it was confirmed that the capacity retention rate at the 500th cycle was superior. This result shows that the reduction proceeds at a potential higher than the insertion potential of lithium ions as in the case of the graphite negative electrode, a good SEI (Solid Electrolyte Interface) film is formed on the lithium titanate negative electrode, the electrolytic solution is decomposed, and This is considered to be due to suppression of electrode deterioration.
Further, even when LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good. The discharge capacity retention rate was shown.
<実施例III>
(合成例III-1:ラクトン縮環シクロプロパン(SIII-1)の合成)
 NaBH1.89gのテトラヒドロフラン(THF)70ml溶液を0℃に冷やし、3-オキサビシクロ(3.1.0)ヘキサン-2,4-ジオン5.6gのTHF80ml溶液を滴下し、3時間反応させた。反応終了後、6N HClをpH2になるまで加え、t-ブチルメチルエーテルにて抽出、濃縮した。得られた有機物にトルエン100ml、p-トルエンスルホン酸0.2gを加え、1時間加熱還流した。水で洗浄、t-ブチルメチルエーテルで抽出、濃縮後、シリカゲルカラムクロマトグラフィーにて精製し、ラクトン縮環シクロプロパン化合物(SIII-1)を3.1g得た。
<Example III>
(Synthesis Example III-1: Synthesis of lactone-fused cyclopropane (SIII-1))
A solution of 1.89 g of NaBH 4 in 70 ml of tetrahydrofuran (THF) is cooled to 0 ° C., and a solution of 3-oxabicyclo (3.1.0) hexane-2,4-dione in 5.6 g of THF in 80 ml is added dropwise and reacted for 3 hours. It was. After completion of the reaction, 6N HCl was added until the pH reached 2, followed by extraction with t-butyl methyl ether and concentration. To the obtained organic substance, 100 ml of toluene and 0.2 g of p-toluenesulfonic acid were added and heated under reflux for 1 hour. After washing with water, extraction with t-butyl methyl ether, concentration, and purification by silica gel column chromatography, 3.1 g of a lactone-fused cyclopropane compound (SIII-1) was obtained.
(合成例III-2:ラクトン縮環シクロプロパン(SIII-3)の合成)
 原料に1-メチル-3-オキサビシクロ(3.1.0)ヘキサン-2,4-ジオンを用い、合成例III-1と同様の方法でラクトン縮環シクロプロパン化合物(SIII-3)を得た。
(Synthesis Example III-2: Synthesis of Lactone-fused Cyclopropane (SIII-3))
A lactone-fused cyclopropane compound (SIII-3) is obtained in the same manner as in Synthesis Example III-1, using 1-methyl-3-oxabicyclo (3.1.0) hexane-2,4-dione as a raw material. It was.
(合成例III-3:ラクトン縮環シクロプロパン(SIII-5)の合成)
 シクロプロパン5gにトルエン100ml、p-トルエンスルホン酸0.2gを加え、1時間加熱還流した。水で洗浄、t-ブチルメチルエーテルで抽出、濃縮後、シリカゲルカラムクロマトグラフィーにて精製し、ラクトン縮環シクロプロパン化合物(SIII-5)を3.8g得た。
(Synthesis Example III-3: Synthesis of lactone-fused cyclopropane (SIII-5))
To 5 g of cyclopropane, 100 ml of toluene and 0.2 g of p-toluenesulfonic acid were added and heated to reflux for 1 hour. After washing with water, extraction with t-butyl methyl ether, concentration, and purification by silica gel column chromatography, 3.8 g of a lactone-fused cyclopropane compound (SIII-5) was obtained.
(合成例III-4:ラクトン縮環シクロプロパン(SIII-6)の合成)
 アリルアセトアセテート6.63gに酢酸マンガン(III)25g、酢酸銅(II)8.47g、酢酸カリウム9.15g、酢酸115ml加え、75℃にて1時間反応させた。反応終了後、重曹水にて中和し、酢酸エチルにて抽出、濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し、ラクトン縮環シクロプロパン化合物(SIII-6)を2.8g得た。
(Synthesis Example III-4: Synthesis of Lactone-fused Cyclopropane (SIII-6))
To 6.63 g of allyl acetoacetate, 25 g of manganese (III) acetate, 8.47 g of copper (II) acetate, 9.15 g of potassium acetate, and 115 ml of acetic acid were added and reacted at 75 ° C. for 1 hour. After completion of the reaction, the reaction mixture was neutralized with aqueous sodium bicarbonate, extracted with ethyl acetate, concentrated and purified by silica gel column chromatography to obtain 2.8 g of a lactone-fused cyclopropane compound (SIII-6).
(合成例III-5:ラクトン縮環シクロプロパン(SIII-7)の合成)
 原料にアリルメチルマロン酸エステルを用い、合成例III-4と同様の方法でラクトン縮環シクロプロパン化合物(SIII-7)を得た。
(Synthesis Example III-5: Synthesis of lactone-fused cyclopropane (SIII-7))
A lactone-fused cyclopropane compound (SIII-7) was obtained in the same manner as in Synthesis Example III-4, using allylmethylmalonate as a raw material.
(合成例III-6:ラクトン縮環シクロプロパン(SIII-8)の合成)
 原料にシアノ酢酸アリルを用い、合成例III-5と同様の方法でラクトン縮環シクロプロパン化合物(SIII-8)を得た。
(Synthesis Example III-6: Synthesis of Lactone-fused Cyclopropane (SIII-8))
Using allyl cyanoacetate as a raw material, a lactone-fused cyclopropane compound (SIII-8) was obtained in the same manner as in Synthesis Example III-5.
(合成例III-7:ラクトン縮環シクロプロパン(SIII-10)の合成)
 THF50mlに水素化ナトリウム1.25gを加え、氷浴で冷却した。反応容器に
マロン酸ジエチル8.8gにTHF10ml加えた溶液を滴下し、15分攪拌した。その後、α―ブロモブテノライド8.15gを加え室温に戻した後、5時間攪拌した。反応終了後、塩化アンモニウム飽和水溶液でクエンチし、酢酸エチルにて抽出、濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し、ラクトン縮環シクロプロパン化合物(SIII-10)6.5gを得た。
(Synthesis Example III-7: Synthesis of Lactone-fused Cyclopropane (SIII-10))
1.25 g of sodium hydride was added to 50 ml of THF and cooled in an ice bath. A solution obtained by adding 10 ml of THF to 8.8 g of diethyl malonate was added dropwise to the reaction vessel and stirred for 15 minutes. Thereafter, 8.15 g of α-bromobutenolide was added and the temperature was returned to room temperature, followed by stirring for 5 hours. After completion of the reaction, the reaction mixture was quenched with a saturated aqueous solution of ammonium chloride, extracted with ethyl acetate, concentrated and purified by silica gel column chromatography to obtain 6.5 g of a lactone-fused cyclopropane compound (SIII-10).
<実施例>
2.電解液の調製
 1M LiPFの炭酸エチレン(EC)/炭酸エチルメチル(EMC)の体積比1対2の電解液、及び体積比1対3電解液に、合成例III-1で得たラクトン縮環シクロプロパン化合物(SIII-1)を0.05質量%加え、電解液を調製した(試験No.III-101)。試験No.III-102以下についても、用いる特定シクロプロパン化合物の種類と添加量を表のとおりに変えて、同様に電解液を調製した(試験No.III-102~III-114)。
<Example>
2. Preparation of electrolyte solution Lactone contraction obtained in Synthesis Example III-1 was added to 1M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) volume ratio 1 to 2 electrolyte solution and volume ratio 1 to 3 electrolyte solution. An electrolytic solution was prepared by adding 0.05% by mass of a cyclic cyclopropane compound (SIII-1) (Test No. III-101). Test No. For III-102 and below, electrolytes were similarly prepared (Test Nos. III-102 to III-114) by changing the types and addition amounts of the specific cyclopropane compounds used as shown in the table.
 1M LiPFの炭酸エチレン/炭酸エチルメチルの電解液を比較例とした。このとき、試験No.III-101と同様の条件で炭酸ビニレン(VC)、下記(RIII-1)、下記(RIII-2)、下記環状酸無水物(RIII-3)を添加したものを比較例とした。 An electrolyte solution of 1M LiPF 6 in ethylene carbonate / ethyl methyl carbonate was used as a comparative example. At this time, test no. A comparative example was prepared by adding vinylene carbonate (VC), the following (RIII-1), the following (RIII-2), and the following cyclic acid anhydride (RIII-3) under the same conditions as in III-101.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 [リチウム二次電池] [Lithium secondary battery]
 正極にコバルト酸リチウム合剤シート(電極容量1.5mAh/cm:アルミ箔ベース、13mmφ)、負極に天然球状グラファイト電極シート(電極容量1.6mAh/cm:Cu箔ベース、14.5mmφ)、セパレータにPP製多孔質フィルム(厚さ25μm、16mmφ)を用い、下記表に示す電解液を用いた評価用のリチウム二次電池を作製した。 Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 13 mmφ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm 2 : Cu foil base, 14.5 mmφ) on the negative electrode Using a PP porous film (thickness 25 μm, 16 mmφ) as a separator, a lithium secondary battery for evaluation using an electrolytic solution shown in the following table was produced.
<サイクル性評価(放電容量維持率)>
 上記の方法で作製した2032形電池を用いて30℃の恒温槽中、電池電圧が4.2Vになるまで0.7C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が2.75Vになるまで0.5C定電流放電を行い、1サイクルとした。これを300サイクルに達するまで繰り返した。
<Evaluation of cycle performance (discharge capacity retention rate)>
Using a 2032 type battery produced by the above method, in a thermostatic chamber at 30 ° C., after charging at a constant current of 0.7 C until the battery voltage becomes 4.2 V, the current value is set to 0.06 mA at a constant voltage of 4.2 V. Or charging for 2 hours, and then 0.5C constant current discharge was performed until the battery voltage reached 2.75 V, resulting in one cycle. This was repeated until 300 cycles were reached.
<低温放電率評価(低温放電率)>
 上記の方法で作製した2032形電池を用いて30℃に対する-20℃での放電容量率を測定した。30℃の恒温槽中、電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に-20℃の恒温槽中、0電池電圧が2.75Vになるまで0.1C定電流放電を行い、放電容量を測定した。
<Low-temperature discharge rate evaluation (low-temperature discharge rate)>
Using the 2032 type battery produced by the above method, the discharge capacity ratio at −20 ° C. with respect to 30 ° C. was measured. In a constant temperature bath at 30 ° C, charge at a constant current of 0.1C until the battery voltage reaches 4.2V, then at 4.2V constant voltage, the current value becomes 0.06mA, or charge for 2 hours, then- In a constant temperature bath at 20 ° C., 0.1 C constant current discharge was performed until the 0 battery voltage became 2.75 V, and the discharge capacity was measured.
<正極負荷特性(負荷容量維持率)>
 前記サイクル性試験にて10サイクル充放電を行った正極を取り出し、負極をリチウム金属、電解液に1M LiPFの炭酸エチレン/炭酸エチルメチルの体積比1対2を用いて2032形電池を作製した。30℃の恒温槽中、電池電圧が4.2Vになるまで0.7C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が2.75Vになるまで2C定電流放電を行い、放電容量、放電曲線を比較した。
<Positive electrode load characteristics (load capacity retention ratio)>
The positive electrode that had been charged and discharged for 10 cycles in the cycle test was taken out, and the negative electrode was made of lithium metal, and a 2032 type battery was prepared using 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate volume ratio of 1 to 2 as the electrolyte. . In a constant temperature bath at 30 ° C., after charging with a constant current of 0.7 C until the battery voltage becomes 4.2 V, the current value becomes 0.06 mA at a constant voltage of 4.2 V, or charging is performed for 2 hours, and then the battery is charged. 2C constant current discharge was performed until the voltage reached 2.75 V, and the discharge capacity and discharge curves were compared.
<自己放電特性評価(容量残存率)>
 上記の方法で作製した2032形電池を用いて、30℃の環境下、0.4mAで電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行い、電池電圧が2.75Vになるまで0.1C定電流放電を行い、初期放電容量を測定した。さらに、電池電圧が4.2Vになるまで0.1C定電流充電した後、4.2V定電圧において電流値が0.06mAになる、または2時間充電を行った後、電池を45℃の環境下で14日間放置した。その後、30℃の環境に取り出した後、同様の放電条件にて放電を行ったときの放電容量を測定した。
<Self-discharge characteristic evaluation (capacity remaining rate)>
Using the 2032 type battery produced by the above method, after charging at a constant current of 0.1 C until the battery voltage becomes 4.2 V at 0.4 mA in an environment of 30 ° C., the current value is 4.2 V constant voltage. The battery was charged at 0.06 mA or 2 hours, and 0.1 C constant current discharge was performed until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Furthermore, after charging at a constant current of 0.1 C until the battery voltage reaches 4.2 V, the current value becomes 0.06 mA at a constant voltage of 4.2 V, or after charging for 2 hours, Left under for 14 days. Then, after taking out to 30 degreeC environment, the discharge capacity when discharging on the same discharge conditions was measured.
 <LiTi12負極でのサイクル性評価(放電容量維持率)>
 負極をチタン酸リチウム合剤シート(電極容量1.6mAh/cm:アルミ箔ベース、14.5mmφ)に変えて、作製した2032形電池を用いて30℃の恒温槽中、電池電圧が2.8Vになるまで0.7C定電流充電した後、2.8V定電圧において電流値が0.06mAになる、または2時間充電を行い、次に電池電圧が1.8Vになるまで0.5C定電流放電を行い、1サイクルとした。これを500サイクルに達するまで繰り返した。
<Evaluation of cycleability in Li 4 Ti 5 O 12 negative electrode (discharge capacity retention rate)>
The negative electrode was changed to a lithium titanate mixture sheet (electrode capacity 1.6 mAh / cm 2 : aluminum foil base, 14.5 mmφ), and the battery voltage was 2. After charging with a constant current of 0.7 C until 8 V, the current value becomes 0.06 mA at a constant voltage of 2.8 V, or charging is performed for 2 hours, and then a constant current of 0.5 C is maintained until the battery voltage reaches 1.8 V. Current discharge was performed to make one cycle. This was repeated until 500 cycles were reached.
<試験結果>
1.300サイクル目における放電容量維持率
 (DCMR300:Discharge Capacity Maintaining Ratio)
<Test results>
1. Discharge capacity maintenance ratio in the 300th cycle (DCMR 300 : Discharge Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000031
(注1)放電容量維持率(%)=
     (300サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000031
(Note 1) Discharge capacity maintenance rate (%) =
(Discharge capacity at the 300th cycle / discharge capacity at the first cycle) × 100
 表3-1に示すように、実施例の2032形非水電解液二次電池(試験No.III-101~III-119)では、比較例(試験No.III-c11~III-c16)の2032形非水電解液二次電池よりも、300サイクル目の容量維持率が優れていることが確認された。この結果は、実施例の電池に係る負極において、電解液に添加したラクトン縮環シクロプロパン化合物が、負極で電子を受け取り開環重合し、負極表面に良好なSEI(Solid Electrolyte Interface)被膜を形成して、電解液の分解が抑制されたことに起因しているものと考えられる。
 また、正極活物質にLiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33を用いても、同様に良好な放電容量維持率を示した。
As shown in Table 3-1, in the 2032 type nonaqueous electrolyte secondary batteries (test Nos. III-101 to III-119) of the examples, the comparative examples (test Nos. III-c11 to III-c16) were used. It was confirmed that the capacity retention rate at the 300th cycle was superior to the 2032 type non-aqueous electrolyte secondary battery. As a result, in the negative electrode according to the battery of the example, the lactone-fused cyclopropane compound added to the electrolytic solution receives electrons at the negative electrode and undergoes ring-opening polymerization to form a good SEI (Solid Electrolyte Interface) film on the negative electrode surface. Thus, it is considered that the decomposition of the electrolytic solution is suppressed.
Further, even when LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good. The discharge capacity retention rate was shown.
2.低温放電率(LTDR:Low Temperature Discharging Rate) 2. Low temperature discharge rate (LTDR: Low Temperature Discharging Rate)
Figure JPOXMLDOC01-appb-T000032
(注2)低温放電率(%)=
      (-20℃での放電容量/30℃での放電容量)×100
Figure JPOXMLDOC01-appb-T000032
(Note 2) Low temperature discharge rate (%) =
(Discharge capacity at −20 ° C./Discharge capacity at 30 ° C.) × 100
 表3-2に示すように、実施例(試験No.III-201~III-210)の2032形非水電解液二次電池では、比較例(試験No.III-c21~III-c24)の2032形非水電解液二次電池よりも、低温放電率が優れていることが確認された。この結果は、実施例の電池に係る負極表面において形成されたSEI被膜中で、ラクトン環によりリチウムイオンが安定化され、被膜(SEI)中のリチウムイオン伝導性が向上し、界面移動抵抗が減少したことに起因すると推定される。 As shown in Table 3-2, in the 2032 type non-aqueous electrolyte secondary batteries of Examples (Test Nos. III-201 to III-210), the comparative examples (Test Nos. III-c21 to III-c24) were used. It was confirmed that the low-temperature discharge rate was superior to the 2032 type non-aqueous electrolyte secondary battery. As a result, lithium ions are stabilized by the lactone ring in the SEI film formed on the negative electrode surface according to the battery of the example, the lithium ion conductivity in the film (SEI) is improved, and the interface movement resistance is reduced. It is presumed to be caused by this.
3.負荷容量維持率
 (LCCMR:Load-Carrying Capacity Maintaining Ratio)・・・正極負荷特性
3. Load capacity maintenance ratio (LCCMR: Load-Carrying Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000033
(注3)負荷容量維持率(%)=
        (2C放電容量/初期放電容量)×100
Figure JPOXMLDOC01-appb-T000033
(Note 3) Load capacity maintenance rate (%) =
(2C discharge capacity / initial discharge capacity) × 100
 表3-3に示すように、実施例(試験No.III-301~III-303)の2032形非水電解液二次電池では、比較例(試験No.III-c31~III-c36)の2032形非水電解液二次電池よりも、負荷特性が優れていることが確認された。この結果は、実施例の電池にかかる正極表面において、ラクトン縮環シクロプロパンによる被膜が形成され、形成された被膜により正極が安定化し、正極界面の抵抗を抑制したことに起因すると推定している。
 また、図4に示したように、実施例(No.III-301)の二次電池における放電曲線は、比較例(No.III-c32)に比べ、高電流領域まで高電圧を維持する、より理想に近いものであった。
As shown in Table 3-3, in the 2032 type non-aqueous electrolyte secondary batteries of the examples (Test Nos. III-301 to III-303), the comparative examples (Test Nos. III-c31 to III-c36) were used. It was confirmed that the load characteristics were superior to the 2032 type nonaqueous electrolyte secondary battery. This result is presumed to be due to the fact that a coating of lactone-fused cyclopropane was formed on the positive electrode surface of the battery of the example, the positive electrode was stabilized by the formed coating, and the resistance at the positive electrode interface was suppressed. .
Further, as shown in FIG. 4, the discharge curve in the secondary battery of Example (No. III-301) maintains a high voltage up to a high current region as compared with Comparative Example (No. III-c32). It was closer to the ideal.
4.容量残存率(RCR:Remaining Capacity Ratio) 4). Capacity remaining rate (RCR: Remaining Capacity Ratio)
Figure JPOXMLDOC01-appb-T000034
(注4)容量残存率(%)=(14日放置後放電容量/初期放電容量)×100
Figure JPOXMLDOC01-appb-T000034
(Note 4) Capacity remaining rate (%) = (discharge capacity after leaving for 14 days / initial discharge capacity) × 100
 表3-4に示すように、実施例(試験No.III-401~III-410)の2032形非水電解液二次電池では、比較例(試験No.III-c41~III-c44)の2032形非水電解液二次電池よりも、自己放電特性が優れていることが確認された。この結果は、実施例の電池にかかる正極表面において、形成された被膜により正極が安定化し、正極の自己分解を抑制したことに起因すると推定している。 As shown in Table 3-4, in the 2032 type nonaqueous electrolyte secondary batteries of the examples (Test Nos. III-401 to III-410), the comparative examples (Test Nos. III-c41 to III-c44) were used. It was confirmed that the self-discharge characteristics were superior to the 2032 type nonaqueous electrolyte secondary battery. This result is presumed to be attributable to the fact that the positive electrode was stabilized by the formed coating on the positive electrode surface of the battery of the example, and the self-decomposition of the positive electrode was suppressed.
5.500サイクル目における放電容量維持率
 (DCMR500:Discharge Capacity Maintaining Ratio)
5. Discharge capacity maintenance ratio at 500th cycle (DCMR 500 : Discharge Capacity Maintaining Ratio)
Figure JPOXMLDOC01-appb-T000035
(注5)放電容量維持率(%)=
     (500サイクル目の放電容量/1サイクル目の放電容量)×100
Figure JPOXMLDOC01-appb-T000035
(Note 5) Discharge capacity maintenance rate (%) =
(Discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100
 表3-5に示すように、実施例(試験No.III-501~III-504)の2032形非水電解液二次電池では、比較例(試験No.III-c51)の2032形非水電解液二次電池よりも、500サイクル目の容量維持率が優れていることが確認された。この結果は、グラファイト負極のとき同様リチウムイオンの挿入電位よりも高い電位で還元が進行し、チタン酸リチウム負極上に良好なSEI(Solid Electrolyte Interface)被膜を形成して、電解液の分解、および電極の劣化が抑制されたことに起因しているものと考えられる。
 また、正極活物質にLiMn、LiNi0.85Co0.01Al0.05、及びLiNi0.33Co0.33Mn0.33を用いても、同様に良好な放電容量維持率を示した。
As shown in Table 3-5, in the 2032 type non-aqueous electrolyte secondary battery of the examples (Test Nos. III-501 to III-504), the 2032 type non-aqueous electrolyte of the comparative example (Test No. III-c51) was used. It was confirmed that the capacity retention rate at the 500th cycle was superior to that of the electrolyte secondary battery. This result shows that the reduction proceeds at a potential higher than the insertion potential of lithium ions as in the case of the graphite negative electrode, a good SEI (Solid Electrolyte Interface) film is formed on the lithium titanate negative electrode, the electrolytic solution is decomposed, and This is considered to be due to suppression of electrode deterioration.
Further, even when LiMn 2 O 4 , LiNi 0.85 Co 0.01 Al 0.05 O 2 , and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are used as the positive electrode active material, they are similarly good. The discharge capacity retention rate was shown.
 上記実施例において本発明の電解液を負極としてリチウム・チタン酸化物負極あるいは炭素材料負極、正極としてニッケルマンガンコバルト酸リチウム、コバルト酸リチウム、マンガン酸リチウムと組み合わせて用いた電池において優れた特性を発現することを示したが、本発明の電解液は高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属または金属酸化物負極(好ましくはSi、酸化Si、Si/酸化Si、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、及びこれらの金属または金属酸化物と炭素材料の複合体を負極とする電池、及び/又は4.5V~5V級正極を用いた電池においても同様の優れた効果を発現するものと推測できる。 In the above examples, the lithium electrolyte of the present invention was used as a negative electrode, and a lithium / titanium oxide negative electrode or a carbon material negative electrode was developed. Excellent characteristics were exhibited in a battery using a combination of lithium manganese cobaltate, lithium cobaltate, and lithium manganate as a positive electrode. However, the electrolyte of the present invention is a metal or metal oxide negative electrode (preferably Si, Si oxide, Si / Si oxide, Sn capable of forming an alloy with lithium, which is being developed for higher capacity. , Sn oxide, SnB x P y O z , Cu / Sn, and a plurality of these composites), and a battery using a composite of these metal or metal oxide and carbon material as a negative electrode, and / or 4.5V It can be presumed that the same excellent effect is exhibited even in a battery using a -5V class positive electrode.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2011年10月28日に日本国で特許出願された特願2011-237989および2011年10月28日に日本国で特許出願された特願2011-237990および2011年10月28日に日本国で特許出願された特願2011-237991に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
The present application is filed on Japanese Patent Application No. 2011-237789 filed in Japan on October 28, 2011, and Japanese Patent Application Nos. 2011-237990 and October 28, 2011 filed on October 28, 2011 in Japan. Claims priority based on Japanese Patent Application No. 2011-237991 filed in Japan, the contents of which are hereby incorporated herein by reference.
1 正極集電体
2 正極活物質層
3 負極集電体
4 負極活物質層
5 電解液
6 動作手段
7 配線
9 セパレータ
10 リチウムイオン二次電池
12 セパレータ
14 正極シート
16 負極シート
18 負極を兼ねる外装缶
20 絶縁板
22 封口板
24 正極集電
26 ガスケット
28 圧力感応弁体
30 電流遮断素子
100 有底筒型形状リチウム二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material layer 3 Negative electrode collector 4 Negative electrode active material layer 5 Electrolyte 6 Operating means 7 Wiring 9 Separator 10 Lithium ion secondary battery 12 Separator 14 Positive electrode sheet 16 Negative electrode sheet 18 20 Insulating plate 22 Sealing plate 24 Positive electrode current collector 26 Gasket 28 Pressure sensitive valve element 30 Current interrupting element 100 Bottomed cylindrical lithium secondary battery

Claims (19)

  1.  電解質と、下記式(I-1)で表される化合物、下記式(II-1)で表される化合物、および下記式(III-1)で表される化合物からなる群より選択される少なくとも1種以上のシクロプロパン化合物とを、有機溶媒中に含有する非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(I-1)中、R11~R14は各々独立に水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。R15は炭素数1~7の酸素原子、窒素原子、又は硫黄原子を含むことがある置換基を示す。L11はアルキレン基またはカルボニル基を示す。Xは、ハメット則のσp値において0以上の値を示す電子求引性基を示す。)
    (前記式(II-1)中、R21~R24は各々独立に水素原子または置換基を示す。L21は、式中のカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。)
    (前記式(III-1)中、R31~R34は各々独立に水素原子または置換基を示す。L31は、酸素原子、-NR35-、またはカルボニル基を表す。L32は、アルキレン基、酸素原子、硫黄原子、-SO-、または-NR35-を表す。R35はアルキル基またはアリール基を示す。n、mは各々独立に1または2を示す。)
    At least selected from the group consisting of an electrolyte, a compound represented by the following formula (I-1), a compound represented by the following formula (II-1), and a compound represented by the following formula (III-1) An electrolyte solution for a non-aqueous secondary battery containing at least one cyclopropane compound in an organic solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I-1), R 11 to R 14 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. R 15 represents the number of carbon atoms. A substituent that may contain 1 to 7 oxygen atoms, nitrogen atoms, or sulfur atoms, L 11 represents an alkylene group or a carbonyl group, and X represents an electron having a value of 0 or more in the σp value of Hammett's rule Indicates an attractive group.)
    (In the formula (II-1), R 21 to R 24 each independently represents a hydrogen atom or a substituent. L 21 represents an atom that forms a ring structure together with the carbon atom of the carbonyl group and cyclopropyl group in the formula. Represents a group.)
    (In the formula (III-1), R 31 to R 34 each independently represents a hydrogen atom or a substituent. L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group. L 32 represents an alkylene. A group, an oxygen atom, a sulfur atom, —SO 2 —, or —NR 35 —, wherein R 35 represents an alkyl group or an aryl group, and n and m each independently represent 1 or 2.)
  2.  前記式(I-1)の置換基Xが、シアノ基、アルコキシカルボニル基、またはカルバモイル基を示す請求項1に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to claim 1, wherein the substituent X of the formula (I-1) represents a cyano group, an alkoxycarbonyl group, or a carbamoyl group.
  3.  前記式(I-1)中、R11~R14が水素原子である請求項1または2に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to claim 1 or 2, wherein in the formula (I-1), R 11 to R 14 are hydrogen atoms.
  4.  前記式(I-1)のXがシアノ基である請求項1~3のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein X in the formula (I-1) is a cyano group.
  5.  前記式(I-1)の-L11-R15が、-COOR16で表される請求項1~4のいずれか1項に記載の非水二次電池用電解液。
    (R16は、カルボニル基(-CO-)、エーテル基(-O-)、又はイミノ基(-NR17-)を介在してもよい炭素数1~6のアルキル基を表す。R17は水素原子もしくはアルキル基を表す。)
    The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein -L 11 -R 15 in the formula (I-1) is represented by -COOR 16 .
    (R 16 is, a carbonyl group (-CO-), an ether group (-O-), a or an imino group (-NR 17 - .R 17 representing a) alkyl groups of 1-6 carbon atoms which may be interposed in Represents a hydrogen atom or an alkyl group.)
  6.  前記式(II-1)におけるL21が形成する環が-CONR25-(ここでR25はアルキル基またはアリール基を示す)または-COO-を含む請求項1に記載の非水二次電池用電解液。 Formula (II-1) ring L 21 is formed at the -CONR 25 - (wherein R 25 represents an alkyl group or an aryl group) non-aqueous secondary battery according to claim 1 comprising or -COO- Electrolyte.
  7.  前記式(II-1)で表される化合物が、下記式(II-2)で表される化合物である請求項1または6に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R21~R24は式(II-1)と同義である。L22は、式中の2つのカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。)
    The electrolyte solution for a non-aqueous secondary battery according to claim 1 or 6, wherein the compound represented by the formula (II-1) is a compound represented by the following formula (II-2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 21 to R 24 have the same meaning as in formula (II-1). L 22 represents an atomic group forming a ring structure together with the carbon atoms of two carbonyl groups and a cyclopropyl group in the formula. )
  8.  前記式(II-1)におけるL21がなす環または前記式(II-2)におけるL22がなす環が、5員環または6員環である請求項1、6、および7のいずれか1項に記載の非水二次電池用電解液。 The ring formed by L 21 in the formula (II-1) or the ring formed by L 22 in the formula (II-2) is a 5-membered ring or a 6-membered ring, The electrolyte solution for non-aqueous secondary batteries as described in the item.
  9.  前記式(III-1)における(L31)nがなす連結基がカルボニルオキシ基、アミド基、または-COR36-(R36は炭素数1~3のアルキレン基を表す。)である請求項1に記載の非水二次電池用電解液。 The linking group formed by (L 31 ) n in the formula (III-1) is a carbonyloxy group, an amide group, or —COR 36 — (R 36 represents an alkylene group having 1 to 3 carbon atoms). The electrolyte solution for nonaqueous secondary batteries of 1.
  10.  前記式(III-1)におけるL32が、アルキレン基、酸素原子、硫黄原子、または-NR35-である請求項1または9に記載の非水二次電池用電解液。 10. The electrolyte solution for a non-aqueous secondary battery according to claim 1, wherein L 32 in the formula (III-1) is an alkylene group, an oxygen atom, a sulfur atom, or —NR 35 —.
  11.  前記式(III-1)で表される化合物が下記式(III-2)または(III-3)で表される化合物である請求項1、9、および10のいずれか1項に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000003
    (前記式中、R31~R34及びL32は、式(III-1)と同義である。)
    The non-reactive compound according to any one of claims 1, 9, and 10, wherein the compound represented by the formula (III-1) is a compound represented by the following formula (III-2) or (III-3): Electrolyte for water secondary battery.
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula, R 31 to R 34 and L 32 have the same meaning as in formula (III-1).)
  12.  前記式(III-1)におけるL32が、炭素数1~3のアルキレン基である請求項1および9~11のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 and 9 to 11, wherein L 32 in the formula (III-1) is an alkylene group having 1 to 3 carbon atoms.
  13.  前記式(III-1)におけるL32が、メチレン基である請求項1および9~12のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 and 9 to 12, wherein L 32 in the formula (III-1) is a methylene group.
  14.  前記電解質がリチウム塩である請求項1~13のいずれか1項に記載の非水二次電池用電解液。 The electrolyte for a non-aqueous secondary battery according to any one of claims 1 to 13, wherein the electrolyte is a lithium salt.
  15.  前記シクロプロパン化合物を電解液の総量に対して0.005~20質量%の範囲で適用する請求項1~14のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 14, wherein the cyclopropane compound is applied in a range of 0.005 to 20 mass% with respect to a total amount of the electrolyte solution.
  16.  前記有機溶媒として、環状カーボネート、鎖状カーボネート、または環状エステルを採用した請求項1~15のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 15, wherein a cyclic carbonate, a chain carbonate, or a cyclic ester is employed as the organic solvent.
  17.  請求項1~16に記載の非水二次電池用電解液と、正極と、負極とを備えるリチウム二次電池。 A lithium secondary battery comprising the non-aqueous secondary battery electrolyte according to any one of claims 1 to 16, a positive electrode, and a negative electrode.
  18.  前記負極の活物質としてチタン酸リチウムを適用した請求項17に記載の二次電池。 The secondary battery according to claim 17, wherein lithium titanate is applied as an active material of the negative electrode.
  19.  第1剤と第2剤とを混合して用いる非水二次電池用電解液のキットであって、
     前記第1剤が電解質を含有し、前記第2剤が下記式(I-1)、式(II-1)、または式(III-1)で表されるシクロプロパン化合物を含有する非水二次電池用電解液キット。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(I-1)中、R11~R14は各々独立に水素原子、アルキル基、アリール基、アルコキシ基、フッ素原子、カルボニル基含有基、またはシアノ基を示す。R15は炭素数1~7の酸素原子、窒素原子、又は硫黄原子を含むことがある置換基を示す。L11はアルキレン基またはカルボニル基を示す。Xは、ハメット則のσp値において0以上の値を示す電子求引性基を示す。)
    (前記式(II-1)中、R21~R24は各々独立に水素原子または置換基を示す。L21は、式中のカルボニル基及びシクロプロピル基の炭素原子とともに環構造を形成する原子群を表す。)
    (前記式(III-1)中、R31~R34は各々独立に水素原子または置換基を示す。L31は、酸素原子、-NR35-、またはカルボニル基を表す。L32は、アルキレン基、酸素原子、硫黄原子、-SO-、または-NR35-を表す。R35はアルキル基またはアリール基を示す。n、mは各々独立に1または2を示す。)
    An electrolyte solution kit for a non-aqueous secondary battery using a mixture of a first agent and a second agent,
    The first agent contains an electrolyte, and the second agent contains a cyclopropane compound represented by the following formula (I-1), formula (II-1), or formula (III-1). Secondary battery electrolyte kit.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (I-1), R 11 to R 14 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a fluorine atom, a carbonyl group-containing group, or a cyano group. R 15 represents the number of carbon atoms. A substituent that may contain 1 to 7 oxygen atoms, nitrogen atoms, or sulfur atoms, L 11 represents an alkylene group or a carbonyl group, and X represents an electron having a value of 0 or more in the σp value of Hammett's rule Indicates an attractive group.)
    (In the formula (II-1), R 21 to R 24 each independently represents a hydrogen atom or a substituent. L 21 represents an atom that forms a ring structure together with the carbon atom of the carbonyl group and cyclopropyl group in the formula. Represents a group.)
    (In the formula (III-1), R 31 to R 34 each independently represents a hydrogen atom or a substituent. L 31 represents an oxygen atom, —NR 35 —, or a carbonyl group. L 32 represents an alkylene. A group, an oxygen atom, a sulfur atom, —SO 2 —, or —NR 35 —, wherein R 35 represents an alkyl group or an aryl group, and n and m each independently represent 1 or 2.)
PCT/JP2012/076845 2011-10-28 2012-10-17 Electrolyte solution for non-aqueous secondary battery, and secondary battery WO2013061844A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280052601.6A CN103891035B (en) 2011-10-28 2012-10-17 Non-aqueous secondary batteries electrolyte and secondary cell
KR1020147014306A KR101960126B1 (en) 2011-10-28 2012-10-17 Electrolyte solution for non-aqueous secondary battery, and secondary battery
US14/262,347 US9595734B2 (en) 2011-10-28 2014-04-25 Non-aqueous liquid electrolyte for secondary battery and secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-237991 2011-10-28
JP2011-237989 2011-10-28
JP2011237990 2011-10-28
JP2011-237990 2011-10-28
JP2011237989 2011-10-28
JP2011237991 2011-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/262,347 Continuation US9595734B2 (en) 2011-10-28 2014-04-25 Non-aqueous liquid electrolyte for secondary battery and secondary battery

Publications (1)

Publication Number Publication Date
WO2013061844A1 true WO2013061844A1 (en) 2013-05-02

Family

ID=48167677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076845 WO2013061844A1 (en) 2011-10-28 2012-10-17 Electrolyte solution for non-aqueous secondary battery, and secondary battery

Country Status (5)

Country Link
US (1) US9595734B2 (en)
JP (1) JP5897444B2 (en)
KR (1) KR101960126B1 (en)
CN (1) CN103891035B (en)
WO (1) WO2013061844A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046011A1 (en) * 2012-09-20 2014-03-27 富士フイルム株式会社 Electrolytic solution for non-aqueous secondary battery, and secondary battery
WO2018116652A1 (en) * 2016-12-22 2018-06-28 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US11043698B2 (en) 2016-12-26 2021-06-22 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207261B (en) * 2015-05-25 2021-01-15 松下知识产权经营株式会社 Electrolyte and battery
JP6554645B2 (en) * 2015-07-13 2019-08-07 本田技研工業株式会社 Electrolyte and magnesium secondary battery
KR102396617B1 (en) * 2016-11-08 2022-05-10 삼성에스디아이 주식회사 Electrolyte of rechargeable lithium battery and rechargeable lithium battery including same
JP6593305B2 (en) 2016-11-09 2019-10-23 株式会社村田製作所 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US11171362B2 (en) * 2017-09-12 2021-11-09 Sila Nanotechnologies, Inc. Electrolyte for a metal-ion battery cell with high-capacity, micron-scale, volume-changing anode particles
DE102018105613A1 (en) * 2018-03-12 2019-09-12 Westfälische Wilhelms-Universität Münster Electrolyte additive for lithium-ion batteries
CN111304959B (en) * 2020-02-26 2021-11-19 常州大学 Preparation method of pulp-coated paper for leak-proof mercury-free battery
WO2024043043A1 (en) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 Electrolytic solution and power storage element using same
WO2024150252A1 (en) * 2023-01-11 2024-07-18 Council Of Scientific And Industrial Research Pyrazolidine-3, 5-dione based compounds and a process for preparation thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279647A (en) * 1993-03-25 1994-10-04 Nippon Zeon Co Ltd Polymer solid electrolyte
WO2005091422A1 (en) * 2004-03-22 2005-09-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2008532248A (en) * 2005-03-02 2008-08-14 ウチカゴ アルゴン、エルエルシー A novel redox transfer material to prevent overcharge of lithium batteries
JP2008262901A (en) * 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP2008269982A (en) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2485004A1 (en) * 1980-06-20 1981-12-24 Roussel Uclaf CYCLOPROPANE-1-CARBOXYLIC DERIVATIVES AND THEIR SALTS, THEIR PREPARATION AND THEIR APPLICATION TO THE SYNTHESIS OF INTERMEDIATES OF PYRETHRINOID COMPOUNDS OF CIS CONFIGURATION
JP4026288B2 (en) 1999-11-30 2007-12-26 三菱化学株式会社 Lithium secondary battery
JP4524543B2 (en) * 2003-03-25 2010-08-18 三洋電機株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
US7160647B2 (en) * 2003-12-22 2007-01-09 The Gillette Company Battery cathode
CN1934743A (en) * 2004-03-22 2007-03-21 宇部兴产株式会社 Nonaqueous electrolyte solution and lithium secondary battery using same
US7695863B2 (en) * 2004-12-27 2010-04-13 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP5084164B2 (en) 2006-03-29 2012-11-28 株式会社デンソー Non-aqueous electrolyte and secondary battery using the electrolyte
JP5412705B2 (en) * 2006-04-27 2014-02-12 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US7879493B2 (en) * 2006-06-05 2011-02-01 A123 Systems, Inc. Alkali metal titanates and methods for their synthesis
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
JP5401765B2 (en) * 2007-04-20 2014-01-29 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
KR20120101042A (en) * 2009-12-07 2012-09-12 소니 주식회사 Secondary cell, electrolyte, cell pack, electronic device, electric vehicle
US8697291B2 (en) * 2010-10-07 2014-04-15 Uchicago Argonne, Llc Non-aqueous electrolyte for lithium-ion battery
WO2013025939A2 (en) * 2011-08-16 2013-02-21 Indiana University Research And Technology Corporation Compounds and methods for treating cancer by inhibiting the urokinase receptor
JP2013084428A (en) * 2011-10-07 2013-05-09 Sony Corp Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
JP6130637B2 (en) * 2012-09-20 2017-05-17 富士フイルム株式会社 Non-aqueous secondary battery electrolyte and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279647A (en) * 1993-03-25 1994-10-04 Nippon Zeon Co Ltd Polymer solid electrolyte
WO2005091422A1 (en) * 2004-03-22 2005-09-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2008532248A (en) * 2005-03-02 2008-08-14 ウチカゴ アルゴン、エルエルシー A novel redox transfer material to prevent overcharge of lithium batteries
JP2008262901A (en) * 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP2008269982A (en) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046011A1 (en) * 2012-09-20 2014-03-27 富士フイルム株式会社 Electrolytic solution for non-aqueous secondary battery, and secondary battery
WO2018116652A1 (en) * 2016-12-22 2018-06-28 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US11043698B2 (en) 2016-12-26 2021-06-22 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module

Also Published As

Publication number Publication date
US20140234729A1 (en) 2014-08-21
CN103891035A (en) 2014-06-25
KR20140096324A (en) 2014-08-05
CN103891035B (en) 2016-03-16
JP5897444B2 (en) 2016-03-30
JP2013110102A (en) 2013-06-06
KR101960126B1 (en) 2019-03-19
US9595734B2 (en) 2017-03-14

Similar Documents

Publication Publication Date Title
JP5897444B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP5798954B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP5693538B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP5921982B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP2014127354A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, and additive for electrolyte
JP6130637B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP5902034B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP5764526B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JPWO2014046283A1 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
WO2013183673A1 (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution
WO2015016188A1 (en) Nonaqueous electrolyte solution and nonaqueous secondary battery
WO2013137331A1 (en) Electrolyte solution for nonaqueous secondary cell and secondary cell
JP2016162523A (en) Electrolytic solution for nonaqueous secondary battery and nonaqueous secondary battery
JP5886160B2 (en) Non-aqueous secondary battery electrolyte, non-aqueous secondary battery electrolyte kit, and non-aqueous secondary battery
JP2013161538A (en) Composition for secondary battery electrode, electrode mixture using the same and secondary battery
JP2014099321A (en) Nonaqueous electrolyte secondary battery
JP2014013719A (en) Electrolytic solution for nonaqueous secondary battery, and secondary battery
JP2014063668A (en) Electrolyte for nonaqueous secondary battery and secondary battery
JPWO2018135395A1 (en) Non-aqueous secondary battery electrolyte, non-aqueous secondary battery and metal complex
JP5756771B2 (en) Non-aqueous secondary battery electrolyte, secondary battery and functional additive
JP6150987B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JPWO2018016444A1 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JPWO2016084704A1 (en) Electrolyte, lithium ion battery and lithium ion capacitor
JP2013243024A (en) Nonaqueous secondary battery and electrolyte for nonaqueous secondary battery
CN111066191A (en) Additive for nonaqueous electrolyte solution, and electricity storage device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280052601.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147014306

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12843364

Country of ref document: EP

Kind code of ref document: A1