WO2013061681A1 - Component measurement device and component measurement method - Google Patents

Component measurement device and component measurement method Download PDF

Info

Publication number
WO2013061681A1
WO2013061681A1 PCT/JP2012/071589 JP2012071589W WO2013061681A1 WO 2013061681 A1 WO2013061681 A1 WO 2013061681A1 JP 2012071589 W JP2012071589 W JP 2012071589W WO 2013061681 A1 WO2013061681 A1 WO 2013061681A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
concentration
specimen
test paper
light
Prior art date
Application number
PCT/JP2012/071589
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 桃木
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013061681A1 publication Critical patent/WO2013061681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N2021/5915Processing scan data in densitometry
    • G01N2021/5923Determining zones of density; quantitating spots

Definitions

  • the present invention relates to a component measuring apparatus and a component measuring method.
  • An apparatus for measuring the concentration of a specific component in body fluid, for example, glucose in blood by a colorimetric method is known.
  • the collected body fluid hereinafter referred to as a specimen
  • the spotted specimen is developed on a test paper and reacts with the reagent to cause a color reaction according to the concentration of the specific component.
  • the colorimetric component measuring apparatus calculates the concentration of the specific component contained in the specimen by optically measuring the color generated by the color reaction.
  • specimen development speed the speed at which a specimen is developed on a test paper
  • factors such as specimen quantity, specimen properties, environmental temperature, and variations in test paper production. If the development speed of the specimen on the test paper changes due to such factors, for example, the specimen does not sufficiently develop on the test paper within the measurement time, or the start of the color reaction is delayed. As a result, it is difficult to correctly calculate the concentration of the specific component in the sample.
  • Patent Document 1 discloses that a color reaction on a test paper is measured by dividing it into a plurality of regions, and a measurement value in a region where the specimen is not sufficiently developed is not used for calculating the component concentration.
  • an object of the present invention is to provide a component measuring apparatus and a component measuring method capable of accurately calculating the concentration of the specific component in the sample even when the developing speed of the sample on the test paper changes.
  • the component measurement apparatus of the present invention is a component measurement apparatus that measures the concentration of a component based on the degree of color development of a reagent that reacts with a component contained in a specimen, and includes an irradiation unit, a detection unit, a component concentration calculation unit, Have The irradiation means irradiates light onto the test piece to which the specimen is attached.
  • the detection means detects the reflected light reflected by a plurality of different regions on the test piece.
  • the component concentration calculation means calculates the concentration of the component contained in the sample based on the intensity of the reflected light at the end time after a predetermined time has elapsed from the start time at which the sample has infiltrated and started coloring in a plurality of different regions.
  • the component measurement method of the present invention is a component measurement method for measuring the concentration of a component based on the degree of color development of a reagent that reacts with a component contained in a sample, and starting irradiation of light on a test piece to which the sample is attached. And a step of starting detection of the reflected light respectively reflected in a plurality of different areas on the test piece, and a reflection of an end time after a predetermined time has elapsed from the start time when the specimen invaded and started coloring in the different areas. Calculating the concentration of the component contained in the specimen based on the light intensity.
  • the present invention it is possible to prevent the change in the development speed from affecting the calculation of the component concentration of the specimen by aligning the coloration start times in a plurality of different regions on the test piece. Therefore, the component concentration of the specimen can be calculated with high accuracy. Further, even if a development failure occurs in a part of the area on the test piece, the measurement can be continued and the measurement value can be calculated.
  • FIG. 3A is a schematic diagram for illustrating the development of blood spotted on a test paper
  • FIG. 3B is a diagram for explaining a reflectance curve in a region A68 of FIG. 3A. It is.
  • FIGS. 7A and 7B are diagrams for explaining a method of setting the upper limit value and the lower limit value of the reflectance. It is a flowchart for demonstrating the procedure which calculates the glucose level contained in the blood in the 2nd Embodiment of this invention. It is a figure explaining the processing content in each step of the flowchart shown in FIG. It is a figure for demonstrating the procedure which calculates the glucose level contained in the blood in the 3rd Embodiment of this invention with the processing content in each step.
  • FIG. 1 is a schematic block diagram for explaining a component measuring apparatus according to the first embodiment of the present invention.
  • the component measuring apparatus of this embodiment arranges the coloration start times in a plurality of different regions on the test piece.
  • the principal part of the component measuring apparatus of this embodiment is demonstrated, and description is abbreviate
  • a colorimetric blood glucose measuring device that measures a blood glucose level based on a color change (coloring) of a reagent that reacts with glucose contained in blood
  • the colorimetric blood glucose measurement device the color of the reagent that reacts with blood by irradiating light on the opposite side of the blood adhering surface of the test paper (test strip) to which blood has adhered and receiving the reflected light from the test paper
  • the concentration of glucose contained in the blood is measured.
  • the test paper contains a reagent that develops color by reacting with glucose in the blood, and the color development of the test paper increases as the glucose concentration increases.
  • the glucose concentration is measured by utilizing the change in the amount of light received due to the difference in the color density.
  • light having a wavelength of 620 to 640 nm red light
  • the hematocrit value for correcting the measured glucose concentration is also measured.
  • the hematocrit value is measured based on the concentration of hemoglobin in the blood.
  • light having a wavelength of 510 to 540 nm (green light) is preferably used.
  • red light and green light are alternately and periodically irradiated on the test paper to measure the glucose concentration and the hematocrit value. That is, in this embodiment, the glucose concentration and the hematocrit value are alternately measured in a time division manner using two wavelengths of light. Since the hematocrit value can be measured in the same manner as when measuring the glucose concentration, the following description focuses on the measurement of the glucose concentration. Further, the method for calculating the glucose concentration and the hematocrit value from the reflectance of light of each wavelength is the same as the conventional method, and thus the description thereof is omitted.
  • the component measurement device 100 includes an attachment unit 110, a light source unit 120, a light emission drive unit 130, a detection unit 140, a signal processing unit 150, an operation unit 160, A display unit 170 and a calculation control unit 180 are included.
  • an attachment unit 110 a light source unit 120, a light emission drive unit 130, a detection unit 140, a signal processing unit 150, an operation unit 160, A display unit 170 and a calculation control unit 180 are included.
  • a light source unit 120 includes a light emission drive unit 130, a detection unit 140, a signal processing unit 150, an operation unit 160,
  • a display unit 170 and a calculation control unit 180 are included.
  • each component shown in FIG. 1 is demonstrated in order.
  • the measurement is started by detecting that blood has infiltrated into the test paper 111 and the reflectance of the test paper 111 has changed significantly, and based on the reflectivity after a predetermined time from the start time.
  • To calculate the blood sugar level Since the test paper 111 before blood is attached is a color close to white, the reflectance is large. On the other hand, the test paper 111 after the blood is adhered develops color and the reflectance decreases as the reaction between glucose and the reagent proceeds. For this reason, as the reflectance when calculating the blood sugar level, it is desirable to adopt the reflectance when the reaction rate between the glucose and the reagent approaches the state where the reaction has been completed and the reduction rate of the reflectance is within a predetermined value.
  • the test paper 111 is detachably attached to the attachment unit 110 after being held in an appropriate case.
  • the mounting unit 110 is provided in a housing (not shown) of the component measuring apparatus 100. Thereby, the positional relationship between the test paper 111, the light source unit 120, and the detection unit 140 is determined.
  • the light source unit 120 is a light source that irradiates light onto the test paper 111 as an irradiation means.
  • the light source unit 120 is attached to the housing of the component measuring apparatus 100 so that the light emitting surface thereof faces the direction of the test paper 111. Irradiation light from the light source unit 120 is collected by a lens (not shown) and irradiates the entire test paper 111.
  • the light source unit 120 includes a light emitting diode (LED) that emits light within a wavelength range of light absorbed by the color of the test paper 111, for example, a wavelength of about 500 to 720 nm.
  • LED light emitting diode
  • the light source unit 120 includes a red light emitting diode and a green light emitting diode.
  • the red light-emitting diode emits red light and is used to measure the blood glucose concentration in accordance with the amount of dye produced by the reaction between glucose and the coloring reagent.
  • the green light emitting diode emits green light and is used to measure the hematocrit value based on the amount of hemoglobin in the blood.
  • the red light emitting diode and the green light emitting diode may be arranged close to each other as separate elements, or may be integrally configured as one element.
  • the light emission drive unit 130 is a drive circuit that supplies a drive signal to the light source unit 120. More specifically, the light emission driving unit 130 supplies a pulse signal having a predetermined pulse width, intensity, and cycle to the light source unit 120 based on an instruction from the arithmetic control unit 180. The light source unit 120 repeatedly emits light for the duration of this pulse width in accordance with the supplied pulse signal, and turns off until the next pulse signal rises.
  • the pulse width is generally in the range of 10 to 1000 ⁇ s, preferably about 120 ⁇ s.
  • the period is about 1 ms to 10 ms, preferably about 2 ms for each of red and green. Note that red light and green light are preferably emitted alternately.
  • the pulse width, intensity, and period can be appropriately changed according to the design conditions of other components.
  • the detection unit 140 detects, as detection means, the reflected light that is reflected by a plurality of different regions on the test paper 111 and converts it into an electrical signal.
  • the detection unit 140 is attached to the housing of the component measurement apparatus 100 so that the light receiving surface thereof faces the test paper 111.
  • the detection unit 140 includes a plurality of light detection elements (not shown) that detect reflected light corresponding to a plurality of different regions on the test paper 111, respectively.
  • the light detection elements are sensitive to the wavelength of light absorbed by the color reaction of the test paper 111 and are preferably arranged in a line or matrix on the light receiving surface of the detection unit 140.
  • the arrangement form of the light detection elements is not limited to the form arranged in a line or a matrix, and other arrangement forms may be used.
  • Each light detection element includes at least one pixel which is a minimum unit having a function of detecting light. Therefore, in the light detection element having such a configuration, reflected light from a plurality of different regions on the test paper 111 is detected by at least one pixel of the corresponding light detection element.
  • an image sensor is employed as the plurality of light detection elements.
  • the image sensor is, for example, a CCD sensor or a CMOS sensor in which a plurality of pixels are arranged in a matrix.
  • the irradiation range of the light source unit 120 and the field of view (detection range) of the detection unit 140 do not necessarily need to match.
  • the detection unit 140 may be configured to detect reflected light from a specific area on the test paper 111.
  • the plurality of light detection elements of the detection unit 140 detect reflected light corresponding to a plurality of different regions on the test paper 111, respectively. Therefore, the distance that blood is spread on the test paper 111 in one region is shorter than that of the test paper 111 as a whole, and the apparent development speed in the detection range increases. That is, the blood development time is relatively shortened.
  • the signal processing unit 150 performs signal processing on the electrical signal output from the detection unit 140.
  • the signal processing unit 150 includes a sample and hold circuit, an amplifier circuit, and an A / D converter.
  • the electrical signal output from the detection unit 140 is periodically sampled by a sample and hold circuit, amplified to a predetermined signal level by an amplifier circuit, converted from an analog signal to a digital signal by an A / D converter, and used as image data. It is stored in the memory of the arithmetic control unit 180.
  • the operation unit 160 transmits an instruction from the operator to the calculation control unit 180.
  • the operation unit 160 has, for example, a push button switch, and is attached to the casing of the component measuring apparatus 100.
  • the operator gives instructions to start / stop the component measuring apparatus 100 and display the measurement result via the operation unit 160.
  • the display unit 170 displays the blood sugar level calculated by the calculation control unit 180.
  • the display unit 170 has a liquid crystal display panel, for example, and is attached to the housing of the component measuring apparatus 100.
  • the calculation control unit 180 performs overall control of the component measuring apparatus 100 and calculation of blood glucose level. More specifically, the arithmetic control unit 180 includes peripheral circuits including, for example, a CPU, a memory, a communication circuit, and the like, and includes a light source unit 120, a light emission drive unit 130, a detection unit 140, a signal processing unit 150, and an operation unit 160. And the display unit 170 are electrically connected. The arithmetic control unit 180 executes blood glucose level measurement processing according to a predetermined procedure in response to an instruction from the operator input via the operation unit 160.
  • peripheral circuits including, for example, a CPU, a memory, a communication circuit, and the like, and includes a light source unit 120, a light emission drive unit 130, a detection unit 140, a signal processing unit 150, and an operation unit 160.
  • the display unit 170 are electrically connected.
  • the arithmetic control unit 180 executes blood glucose level measurement processing according to a predetermined procedure in response to an instruction from the operator input
  • the arithmetic control unit 180 uses the image data stored in the memory as the component concentration calculation means to calculate the reflectance of the test paper 111 before and after attaching blood to the test paper 111, and for each of the test papers 111.
  • Time measurement is started by detecting that blood has infiltrated the region. After a predetermined time has elapsed, the glucose concentration is calculated using the correspondence between the reflectance and the glucose concentration.
  • a timer (not shown) is used for measuring the predetermined time.
  • the correspondence between the reflectance and the glucose concentration is stored in advance in a non-volatile memory such as a ROM as a lookup table, or is calculated from a relational expression between the reflectance and the glucose concentration.
  • the calculated glucose concentration is corrected using the hematocrit value and output to the display unit 170 as a blood glucose level.
  • the measurement processing procedure by which the component measuring apparatus 100 measures the glucose concentration is stored in advance as a program in a nonvolatile memory such as a ROM of the arithmetic control unit 180, and the CPU sequentially executes the program.
  • a nonvolatile memory such as a ROM of the arithmetic control unit 180
  • the arithmetic control unit 180 instructs the light emission driving unit 130 to output a predetermined pulse signal
  • the signal processed by the signal processing unit 150 is used as image data in a RAM or the like. Instructs to store in volatile memory.
  • FIG. 2 is a flowchart for explaining the procedure for measuring the glucose concentration by the component measuring apparatus according to the first embodiment of the present invention.
  • 3A is a schematic diagram for illustrating the development of blood spotted on the test paper
  • FIG. 3B is a diagram for explaining the reflectance curve in the region A68 of FIG. 3A.
  • step S101 light irradiation is started on the test paper 111 (step S101). Specifically, the light source unit 120 emits light in pulses, and irradiation of light onto the test paper 111 is started.
  • the light source unit 120 emits pulses in order to reduce the influence of ambient light incident on the component measuring apparatus 100 by using the difference between the signal level during light emission and the signal level during extinction for measurement. is there. In addition, there is an effect of reducing power consumption by causing the light source unit 120 to emit light intermittently.
  • the arithmetic control unit 180 can calculate the distance between the areas based on the size of the test paper 111 and the number of areas separating the test paper 111. Further, the blood development speed on the test paper 111 can be calculated from the distance between the regions and the difference in the coloration speed. Since the deployment speed depends on the hematocrit value, it can be used as information for estimating the hematocrit value.
  • the detection unit 140 When the component measuring apparatus 100 is activated, upon receiving an instruction from the arithmetic control unit 180, the detection unit 140 starts detecting the reflected light reflected by the areas A1 to A100 on the test paper 111 at time t0. At this time, since blood is not spotted on the test paper 111, the reflected light of the test paper 111 whose surface is white is detected.
  • the reflectance of the test paper 111 is 1. In the present embodiment, the reflectance is calculated based on the intensity of the reflected light at the time t0.
  • test paper 111 Thereafter, blood is spotted on the spotting area X on the test paper 111 at time t1.
  • the spotted blood spreads on the test paper 111 and reaches the development area Y at time t2, and reaches the development area Z at time t3.
  • the size of the test paper 111 is about 2 to 6 mm on a side.
  • the time for the blood to reach differs depending on the position on the test paper 111.
  • the blood development speed varies depending on the temperature and viscosity of the blood, the porosity and hole diameter of the test paper 111, the amount of reagent applied, and the like. These causes lead to a measurement error when the reflected light is detected using the test paper as one region.
  • the color reaction is started after blood arrives, and the reaction rate of the color reaction is considered to be constant under the same conditions. Therefore, it is considered that the temporal change in the reflectance of the test paper 111 detected by the detection unit 140 strongly depends on the blood development speed.
  • the color reaction does not occur because the blood has not yet reached from time t0 to t2. Therefore, as shown in FIG. 3B, the reflectance of the test paper 111 is maintained at about 1 until time t2. On the other hand, after the time t2, the color reaction proceeds because blood develops in A68. Accordingly, the reflectance of the region A68 starts to decrease.
  • a curve showing the temporal change in reflectance as shown in FIG. 3B is referred to as a reflectance curve.
  • the arithmetic control unit 180 calculates the reflectance curve in the areas A1 to A100 based on the image data stored in the RAM.
  • the light detection element of the detection unit 140 includes a plurality of pixels, for example, a value obtained by averaging the data of the plurality of pixels can be used as a representative value to calculate the reflectance curve.
  • the time when the color of the reagent starts to change depends on the blood development speed on the test paper 111. Change.
  • the concentration of glucose contained in the blood is calculated (step S103).
  • the glucose concentration contained in the blood is calculated based on the reflectance at the end time t3 after a predetermined time has elapsed from the start time t2 when the color was detected.
  • the arithmetic control unit 180 calculates the blood glucose level based on the measured glucose concentration, the display unit 170 displays the blood glucose level, and the process is terminated.
  • the reflectance detected before the start time t2 (for example, t1) can be used for correcting the baseline.
  • FIG. 4 is a flowchart for explaining step S103 of the flowchart shown in FIG. 2 in more detail
  • FIG. 5 is a diagram for explaining the processing contents in each step of the flowchart of FIG.
  • FIG. 6 is a diagram for explaining that the magnitude of the reflectance varies depending on the region.
  • FIGS. 7A and 7B are diagrams for explaining a method of setting the upper limit value and the lower limit value of the reflectance.
  • the coloration start time is recognized for each region (step S201). Specifically, the color development start time is recognized for the reflectance curves in the regions A1 to A100 (hereinafter referred to as reflectance curves C1 to C100).
  • S1 to S100 indicate the light detection elements of the detection unit 140.
  • the color start times of all areas are aligned (step S202). Specifically, the start time when the coloration of the reflectance curves C1 to C100 is detected is aligned with the reference time.
  • the reference time a predetermined reference time may be set, or the start time of any one of the reflectance curves C1 to C100 may be set.
  • the coloration start times of the reflectance curves C1 to C99 can be aligned with the coloration start time of the reflectance curve C100.
  • coloration in a specific region on the test paper 111 may not be started due to a local abnormality of the test paper 111, a lack of blood volume, or the like.
  • the reflectance curve Cm of the region Am has not started to be colored within the measurement time.
  • the start of coloring may be extremely early or late.
  • the reflectance curve in the region is not used for the subsequent processing. The determination when the start of coloration becomes extremely early or late is made by comparing the start time of coloration with a predetermined first upper limit value and a first lower limit value.
  • the reflectance curve in that area is used for the subsequent processing.
  • the reflectance curve in the region is not used for the subsequent processing.
  • the magnitude of the reflectance after the start of coloring may vary depending on the area on the test paper 111.
  • the reflectance curve Cn ′ is a reflectance curve in the region An ′
  • the reflectance curve Cn ′′ is a reflectance curve in the region An ′′.
  • Factors that cause variations in the magnitude of the reflectance include uneven application of the reagent on the test paper 111, a difference in surface roughness and shape of the test paper 111, and the like.
  • the reflectance increases as in the region An ′, it may be considered that blood has infiltrated only a part of the region An ′.
  • a predetermined second upper limit value and second lower limit value are set for the reflectivity size.
  • the reflectance curve that is set and deviates from the range of the second upper limit value and the second lower limit value is not used for the subsequent processing.
  • the second upper limit value and the second lower limit value are set based on the frequency distribution of the number of pixels with respect to the reflectance at time t3 after the start of coloring.
  • the frequency distribution of the number of pixels with respect to the reflectance usually has a first peak P1 and a second peak P2.
  • the first peak P1 represents the maximum value of the number of pixels in which the reflectance has decreased due to the development of blood on the test paper 111 and the occurrence of coloration.
  • the second peak P2 represents the maximum value of the number of pixels having high reflectivity because blood is not spread on the test paper 111.
  • the reflectance corresponding to a predetermined number of pixels when the number of pixels of the first peak P1 is 100% is set as the second upper limit value and the second lower limit value.
  • the reflectances RU and RL corresponding to 90% of the number of pixels of the first peak P1 are set as the second upper limit value and the second lower limit value, respectively. Can do.
  • the second upper limit value and the second lower limit value are set as described above, only the reflectance curve whose reflectance is within the range between the upper limit value RU and the lower limit value RL is used in the subsequent processing.
  • the second upper limit value (N) is included so that N pixels are included between the reflectances RL ′ and RU ′ around the reflectance corresponding to the first peak P1.
  • RU ′) and the second lower limit (RL ′) may be determined.
  • the reflectance curves of the respective regions are synthesized (step S203).
  • the coloration start time is within the range of the first upper limit value and the first lower limit value
  • the reflectance after the start of coloration is the second upper limit value.
  • the reflectance curves within the range of the second lower limit value are combined at the reference time and synthesized to calculate a synthesized reflectance curve CS. In this way, by combining the results of measuring a plurality of different regions, it becomes difficult to be affected by the amount of reagent applied to the test paper 111 and the variation in the structure of the test paper 111.
  • step S204 the glucose concentration is calculated using the combined reflectance curve CS calculated in step S203.
  • the color change start time of the reflectance curve in a plurality of different regions on the test paper 111 is aligned with the reference time, and then the combined reflectance curve obtained by combining the reflectance curves of the respective regions is used. Based on this, the glucose concentration is calculated.
  • the component measuring apparatus 100 has the following effects.
  • the change in the development speed has an influence on the calculation of the glucose concentration by aligning the start times of coloration in a plurality of different regions on the test paper 111 with the reference time. Can be prevented. Therefore, the glucose concentration can be calculated with high accuracy. Further, even if a development failure occurs in a part of the area on the test paper 111, the measurement can be continued and the measurement value can be calculated.
  • the development speed on the test paper 111 can be calculated from the distance between the areas and the difference in the coloration speed.
  • the glucose concentration can be calculated with high accuracy regardless of the region of the test paper 111 where blood development starts or the blood development range is different.
  • the glucose concentration is based on the combined reflectance curve obtained by synthesizing the reflectance curve of each region.
  • the calculation of the above has been described.
  • calculation of the glucose concentration for each region on the test paper and averaging the glucose concentration in each region to calculate the final glucose concentration will be described. In the following description, the description of the same configuration as in the first embodiment is omitted.
  • FIG. 8 is a flowchart for explaining the procedure for calculating the concentration of glucose contained in blood in the second embodiment of the present invention
  • FIG. 9 is a diagram for explaining the processing contents in each step of the flowchart shown in FIG. is there.
  • the coloration start time is recognized for each region (step S301).
  • the start time of coloration is recognized for the reflectance curves C1 to C100 of a plurality of different areas A1 to A100 on the test paper 111.
  • those having an abnormal reflectance curve are not used for the subsequent processing.
  • the glucose concentration is calculated for each region (step S302). Specifically, in a plurality of different regions on the test paper 111, the glucose concentration contained in the blood is calculated based on the reflectance at the end time after a predetermined time has elapsed from the coloration start time recognized in step S301.
  • step S303 the glucose concentration in each region is averaged. Specifically, the final glucose concentration is calculated by averaging the glucose concentration of each region calculated in step S302.
  • the glucose concentration is calculated in each of a plurality of different regions on the test paper 111, and the final glucose concentration is calculated by averaging the glucose concentration in each region.
  • the glucose concentration in the blood is calculated based on the reflectance at the end time after a predetermined time has elapsed from the coloration start time, so the difference in coloration start time between the regions is the calculation of the glucose concentration. It does not affect.
  • the color start times in each region are substantially aligned.
  • the component measuring apparatus 100 has the following effects.
  • the light source unit 120 emits multicolor light (for example, white light).
  • the light source unit 120 includes, for example, a white light emitting diode.
  • the arithmetic control unit 180 instructs the light emission driving unit 130 to output a predetermined pulse signal.
  • the detection unit 140 separates light of a specific wavelength used for measurement with a bandpass filter. Therefore, the arithmetic control unit 180 does not need to perform timing control for irradiating and detecting light of different wavelengths in a time division manner.
  • FIG. 10 is a diagram for explaining the procedure for calculating the glucose concentration contained in blood in the third embodiment of the present invention together with the processing contents at each step.
  • the detection unit 140 includes light detection elements S1R, S1G to S100R, and S100G that detect reflected light from a plurality of different areas A1 to A100 on the test paper 111.
  • the light detection element S1R includes a red band-pass filter that transmits only red light on the pixel, and detects red light in the region A1.
  • the light detection element S1G includes a green band-pass filter that transmits only green light on the pixel, and detects the green light in the region A1.
  • the light detection elements S1R and S1G are configured so that pixels including a red bandpass filter and pixels including a green bandpass filter are arranged in a grid pattern.
  • the coloration start time is first recognized for each region, and then the glucose concentration and the hematocrit value are calculated for each region. Then, the glucose concentration is corrected with the hematocrit value in each region. Then, the final glucose concentration is calculated by averaging the glucose concentration in each region.
  • the component measuring apparatus 100 of the present embodiment described as described above has the following effects.
  • the glucose concentration was calculated based on the reflectance calculated from the intensity of the reflected light reflected from the test piece.
  • this invention can also be set as the structure which calculates glucose concentration based on the transmitted light which permeate
  • the present invention can be suitably used to calculate a blood glucose level, but it can of course be widely used in the field of measuring the component concentration of a specimen by quantitatively measuring the amount of transmitted light or reflected light. It is.
  • the present invention can also be configured to measure the concentration of specific components in body fluids, such as cholesterol in blood, uric acid, glucose in urine, hemoglobin, and the like.
  • 100 component measuring device 110 wearing part, 111 test paper (test piece), 120 light source part (irradiation means), 130 light emission drive unit, 140 detector (detector), 150 signal processing unit, 160 operation unit, 170 display unit, 180 Calculation control unit (component concentration calculation means).

Abstract

Provided is a component measurement device capable of accurately calculating the concentration of a specific component in a specimen even when the development speed of the specimen on a test paper has changed. This component measurement device (100) is a component measurement device for, on the basis of the color development degree of a reagent that reacts with a component contained in a specimen, measuring the concentration of the component, and comprises an application means (120), a detection means (140), and a component concentration calculation means (180). The application means (120) applies light onto a test paper (111) to which the specimen adheres. The detection means (140) detects reflected light reflected by each of a plurality of different regions on the test paper (111). The component concentration calculation means (180) calculates the concentration of the component contained in the specimen on the basis of the intensity of the reflected light at a termination time after a lapse of a predetermined time from the start time at which the specimen infiltrated and color development started in each of the plurality of different regions.

Description

成分測定装置および成分測定方法Component measuring apparatus and component measuring method
 本発明は、成分測定装置および成分測定方法に関する。 The present invention relates to a component measuring apparatus and a component measuring method.
 体液中の特定成分、たとえば血液中のグルコースの濃度を比色法で測定する装置が知られている。このような比色式成分測定装置では、採取された体液(以下、検体と称する)を試薬が塗布された試験紙に点着する。点着された検体は、試験紙上に展開し、試薬と反応して上記特定成分の濃度に応じた呈色反応を起こす。比色式成分測定装置は、この呈色反応で生じた色を光学的に測定することにより検体に含まれる上記特定成分の濃度を算出する。 An apparatus for measuring the concentration of a specific component in body fluid, for example, glucose in blood by a colorimetric method is known. In such a colorimetric component measuring apparatus, the collected body fluid (hereinafter referred to as a specimen) is spotted on a test paper coated with a reagent. The spotted specimen is developed on a test paper and reacts with the reagent to cause a color reaction according to the concentration of the specific component. The colorimetric component measuring apparatus calculates the concentration of the specific component contained in the specimen by optically measuring the color generated by the color reaction.
 一般に、検体が試験紙上で展開する速度(以下、検体の展開速度という)は、検体量、検体性状、環境温度、試験紙の製造上のバラツキなどの様々な要因により変化しうる。このような要因により試験紙上の検体の展開速度が変化すると、たとえば測定時間内に検体が試験紙上で十分に展開しなかったり、あるいは呈色反応の開始が遅れたりする。その結果、検体中の上記特定成分の濃度を正しく算出することが困難になる。 Generally, the speed at which a specimen is developed on a test paper (hereinafter referred to as specimen development speed) can vary depending on various factors such as specimen quantity, specimen properties, environmental temperature, and variations in test paper production. If the development speed of the specimen on the test paper changes due to such factors, for example, the specimen does not sufficiently develop on the test paper within the measurement time, or the start of the color reaction is delayed. As a result, it is difficult to correctly calculate the concentration of the specific component in the sample.
 検体が試験紙上で十分に展開しない場合に対処するための技術としては、下記の特許文献1の分析物濃度決定用の装置が知られている。特許文献1には、試験紙上の呈色反応を複数の領域に分割して測定し、検体の展開が十分でない領域の測定値を成分濃度の算出に使用しないことが開示されている。 As a technique for coping with a case where the specimen does not sufficiently develop on the test paper, an apparatus for determining the analyte concentration in Patent Document 1 below is known. Patent Document 1 discloses that a color reaction on a test paper is measured by dividing it into a plurality of regions, and a measurement value in a region where the specimen is not sufficiently developed is not used for calculating the component concentration.
特開2004-163393号公報JP 2004-163393 A
 しかしながら、上記の特許文献1の分析物濃度決定用の装置では、検体が試験紙上で十分に展開していない領域の測定値は排除されるものの、各領域における呈色の開始時間の違いについては考慮されていない。したがって、各領域における呈色の開始時間に違いがある場合、領域によっては呈色反応が十分に進んでいない状態で色が測定されて成分濃度が算出されてしまう可能性がある。その結果、成分濃度の算出結果の精度が不十分となるおそれがある。 However, in the above-described apparatus for determining the analyte concentration of Patent Document 1, although the measurement value of the region where the specimen is not sufficiently developed on the test paper is excluded, the difference in the start time of coloration in each region is described. Not considered. Therefore, when there is a difference in the start time of coloration in each region, depending on the region, there is a possibility that the color is measured and the component concentration is calculated in a state where the color reaction does not proceed sufficiently. As a result, the accuracy of the calculation result of the component concentration may be insufficient.
 本発明は、上述した問題を解決するためになされたものである。したがって、本発明の目的は、試験紙上の検体の展開速度が変化した場合でも検体中の上記特定成分の濃度を精度良く算出することができる成分測定装置および成分測定方法を提供することである。 The present invention has been made to solve the above-described problems. Accordingly, an object of the present invention is to provide a component measuring apparatus and a component measuring method capable of accurately calculating the concentration of the specific component in the sample even when the developing speed of the sample on the test paper changes.
 本発明の上記目的は、下記によって達成される。 The above object of the present invention is achieved by the following.
 本発明の成分測定装置は、検体に含まれる成分と反応する試薬の発色度合いに基づいて成分の濃度を測定する成分測定装置であって、照射手段と、検出手段と、成分濃度算出手段と、を有する。照射手段は、検体が付着する試験片上に光を照射する。検出手段は、試験片上の複数の異なる領域で各々反射された反射光を検出する。成分濃度算出手段は、複数の異なる領域において、検体が浸潤し呈色が開始した開始時間から所定時間経過した終了時間の反射光の強度に基づいて検体に含まれる成分の濃度を算出する。 The component measurement apparatus of the present invention is a component measurement apparatus that measures the concentration of a component based on the degree of color development of a reagent that reacts with a component contained in a specimen, and includes an irradiation unit, a detection unit, a component concentration calculation unit, Have The irradiation means irradiates light onto the test piece to which the specimen is attached. The detection means detects the reflected light reflected by a plurality of different regions on the test piece. The component concentration calculation means calculates the concentration of the component contained in the sample based on the intensity of the reflected light at the end time after a predetermined time has elapsed from the start time at which the sample has infiltrated and started coloring in a plurality of different regions.
 本発明の成分測定方法は、検体に含まれる成分と反応する試薬の発色度合いに基づいて成分の濃度を測定する成分測定方法であって、検体が付着する試験片上に光の照射を開始する段階と、試験片上の複数の異なる領域で各々反射された反射光の検出を開始する段階と、複数の異なる領域において、検体が浸潤し呈色が開始した開始時間から所定時間経過した終了時間の反射光の強度に基づいて検体に含まれる成分の濃度を算出する段階と、を有する。 The component measurement method of the present invention is a component measurement method for measuring the concentration of a component based on the degree of color development of a reagent that reacts with a component contained in a sample, and starting irradiation of light on a test piece to which the sample is attached. And a step of starting detection of the reflected light respectively reflected in a plurality of different areas on the test piece, and a reflection of an end time after a predetermined time has elapsed from the start time when the specimen invaded and started coloring in the different areas. Calculating the concentration of the component contained in the specimen based on the light intensity.
 本発明によれば、試験片上の複数の異なる領域における呈色開始時間を揃えることにより、展開速度の変化が検体の成分濃度の算出へ影響を及ぼすことを防止できる。したがって、検体の成分濃度を精度良く算出することができる。また、試験片上の一部の領域で展開不良が生じても測定を継続し、測定値を算出することができる。 According to the present invention, it is possible to prevent the change in the development speed from affecting the calculation of the component concentration of the specimen by aligning the coloration start times in a plurality of different regions on the test piece. Therefore, the component concentration of the specimen can be calculated with high accuracy. Further, even if a development failure occurs in a part of the area on the test piece, the measurement can be continued and the measurement value can be calculated.
本発明の第1の実施形態における血液成分分析装置を説明するための概略ブロック図である。It is a schematic block diagram for demonstrating the blood component analyzer in the 1st Embodiment of this invention. 本発明の第1の実施形態の成分測定装置によるグルコース濃度の測定処理手順を説明するためのフローチャートである。It is a flowchart for demonstrating the measurement processing procedure of the glucose concentration by the component measuring apparatus of the 1st Embodiment of this invention. 図3(A)は試験紙に点着された血液の展開を例示するための模式図であり、図3(B)は図3(A)の領域A68における反射率曲線を説明するための図である。3A is a schematic diagram for illustrating the development of blood spotted on a test paper, and FIG. 3B is a diagram for explaining a reflectance curve in a region A68 of FIG. 3A. It is. 図2に示すフローチャートのステップS103をより詳しく説明するためのフローチャートである。It is a flowchart for demonstrating in more detail step S103 of the flowchart shown in FIG. 図4のフローチャートの各ステップにおける処理内容を説明するための図である。It is a figure for demonstrating the processing content in each step of the flowchart of FIG. 領域によって反射率の大きさがばらつくことを説明するための図である。It is a figure for demonstrating that the magnitude | size of a reflectance varies with an area | region. 図7(A)および図7(B)は、反射率の上限値および下限値を設定する方法を説明するための図である。FIGS. 7A and 7B are diagrams for explaining a method of setting the upper limit value and the lower limit value of the reflectance. 本発明の第2の実施形態において血液に含まれるグルコース濃度を算出する手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure which calculates the glucose level contained in the blood in the 2nd Embodiment of this invention. 図8に示すフローチャートの各ステップにおける処理内容を説明する図である。It is a figure explaining the processing content in each step of the flowchart shown in FIG. 本発明の第3の実施形態において血液に含まれるグルコース濃度を算出する手順を各ステップにおける処理内容とともに説明するための図である。It is a figure for demonstrating the procedure which calculates the glucose level contained in the blood in the 3rd Embodiment of this invention with the processing content in each step.
 以下、添付した図面を参照して本発明の成分測定装置の実施形態を説明する。なお、図中、同一の部材には同一の符号を用いた。 Hereinafter, an embodiment of a component measuring apparatus of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals are used for the same members.
 (第1の実施形態)
 図1は、本発明の第1の実施形態における成分測定装置を説明するための概略ブロック図である。本実施形態の成分測定装置は、試験片上の複数の異なる領域における呈色開始時間を揃えるものである。なお、以下では本実施形態の成分測定装置の主要部について説明し、従来の成分測定装置と同様の部分については説明を省略する。
(First embodiment)
FIG. 1 is a schematic block diagram for explaining a component measuring apparatus according to the first embodiment of the present invention. The component measuring apparatus of this embodiment arranges the coloration start times in a plurality of different regions on the test piece. In addition, below, the principal part of the component measuring apparatus of this embodiment is demonstrated, and description is abbreviate | omitted about the part similar to the conventional component measuring apparatus.
 本実施形態では、血液に含まれるグルコースと反応する試薬の色の変化(発色)に基づいて血糖値を測定する比色式血糖測定装置を例示して説明する。比色式血糖測定装置では、血液が付着した試験紙(試験片)の血液付着面の反対の面に光を照射し、試験紙からの反射光を受光して血液と反応する試薬の発色度合いに基づいて血液に含まれるグルコースの濃度を測定する。試験紙には、血液中のグルコースと反応して発色する試薬が含まれており、グルコース濃度が濃くなるほど試験紙の発色が濃くなる。この発色濃度の違いにより受光量が変化することを利用してグルコース濃度を測定する。グルコース濃度の測定には、620~640nmの波長の光(赤色光)が好適に使用される。 In the present embodiment, a colorimetric blood glucose measuring device that measures a blood glucose level based on a color change (coloring) of a reagent that reacts with glucose contained in blood will be described as an example. In the colorimetric blood glucose measurement device, the color of the reagent that reacts with blood by irradiating light on the opposite side of the blood adhering surface of the test paper (test strip) to which blood has adhered and receiving the reflected light from the test paper Based on the above, the concentration of glucose contained in the blood is measured. The test paper contains a reagent that develops color by reacting with glucose in the blood, and the color development of the test paper increases as the glucose concentration increases. The glucose concentration is measured by utilizing the change in the amount of light received due to the difference in the color density. For measurement of the glucose concentration, light having a wavelength of 620 to 640 nm (red light) is preferably used.
 また、本実施形態では、測定されたグルコース濃度を補正するヘマトクリット値も併せて測定する。ヘマトクリット値は血液中の血色素(ヘモグロビン)の濃度に基づいて測定する。ヘマトクリット値の測定には、510~540nmの波長の光(緑色光)が好適に使用される。 In the present embodiment, the hematocrit value for correcting the measured glucose concentration is also measured. The hematocrit value is measured based on the concentration of hemoglobin in the blood. For measuring the hematocrit value, light having a wavelength of 510 to 540 nm (green light) is preferably used.
 本実施形態では、試験紙上に赤色光および緑色光を交互に周期的に照射して、グルコース濃度およびヘマトクリット値を測定する。すなわち、本実施形態では、2つの波長の光を使用してグルコース濃度およびヘマトクリット値を交互に時分割で測定する。なお、ヘマトクリット値についてもグルコース濃度を測定する場合と同様に測定できるので、以下では、グルコース濃度を測定する場合を中心に説明する。また、各々の波長の光の反射率からグルコース濃度およびヘマトクリット値を算出する方法については従来の方法と同様であるので説明を省略する。 In this embodiment, red light and green light are alternately and periodically irradiated on the test paper to measure the glucose concentration and the hematocrit value. That is, in this embodiment, the glucose concentration and the hematocrit value are alternately measured in a time division manner using two wavelengths of light. Since the hematocrit value can be measured in the same manner as when measuring the glucose concentration, the following description focuses on the measurement of the glucose concentration. Further, the method for calculating the glucose concentration and the hematocrit value from the reflectance of light of each wavelength is the same as the conventional method, and thus the description thereof is omitted.
 図1に示すとおり、本実施形態の成分測定装置(比色式血糖測定装置)100は、装着部110、光源部120、発光駆動部130、検出部140、信号処理部150、操作部160、表示部170、および演算制御部180を有する。以下、図1に示す各構成要素を順に説明する。 As shown in FIG. 1, the component measurement device (colorimetric blood glucose measurement device) 100 according to the present embodiment includes an attachment unit 110, a light source unit 120, a light emission drive unit 130, a detection unit 140, a signal processing unit 150, an operation unit 160, A display unit 170 and a calculation control unit 180 are included. Hereafter, each component shown in FIG. 1 is demonstrated in order.
 本実施形態の成分測定装置100では、試験紙111に血液が浸潤し試験紙111の反射率が大きく変化したことを検出して計時を開始し、その開始時間から所定時間後の反射率に基づいて血糖値を算出する。血液を付着させる前の試験紙111は、白色に近い色であるため反射率は大きい値を示す。一方、血液を付着させた後の試験紙111は、グルコースと試薬との反応が進行するにつれて発色して反射率が減少する。このため、血糖値を算出する際の反射率としては、グルコースと試薬との反応が完結した状態に近づき反射率の減少率が所定値以内となったときの反射率を採用することが望ましい。なお、試験紙111は適当なケースに保持された上で、装着部110に着脱可能に装着される。たとえば、装着部110は、成分測定装置100の筺体(不図示)に設けられている。これにより試験紙111と、光源部120および検出部140との位置関係が定まる。 In the component measuring apparatus 100 of the present embodiment, the measurement is started by detecting that blood has infiltrated into the test paper 111 and the reflectance of the test paper 111 has changed significantly, and based on the reflectivity after a predetermined time from the start time. To calculate the blood sugar level. Since the test paper 111 before blood is attached is a color close to white, the reflectance is large. On the other hand, the test paper 111 after the blood is adhered develops color and the reflectance decreases as the reaction between glucose and the reagent proceeds. For this reason, as the reflectance when calculating the blood sugar level, it is desirable to adopt the reflectance when the reaction rate between the glucose and the reagent approaches the state where the reaction has been completed and the reduction rate of the reflectance is within a predetermined value. The test paper 111 is detachably attached to the attachment unit 110 after being held in an appropriate case. For example, the mounting unit 110 is provided in a housing (not shown) of the component measuring apparatus 100. Thereby, the positional relationship between the test paper 111, the light source unit 120, and the detection unit 140 is determined.
 光源部120は、照射手段として、試験紙111上に光を照射する光源である。光源部120は、その発光面が試験紙111の方向を向くように成分測定装置100の筺体に取り付けられている。光源部120からの照射光は、図示されていないレンズによって集光されて試験紙111全体を照射する。光源部120は、試験紙111の呈色により吸収される光の波長、たとえば、500~720nm程度の波長の範囲内で発光する発光ダイオード(LED)を有する。 The light source unit 120 is a light source that irradiates light onto the test paper 111 as an irradiation means. The light source unit 120 is attached to the housing of the component measuring apparatus 100 so that the light emitting surface thereof faces the direction of the test paper 111. Irradiation light from the light source unit 120 is collected by a lens (not shown) and irradiates the entire test paper 111. The light source unit 120 includes a light emitting diode (LED) that emits light within a wavelength range of light absorbed by the color of the test paper 111, for example, a wavelength of about 500 to 720 nm.
 本実施形態では、光源部120は、赤色発光ダイオードおよび緑色発光ダイオードを有する。赤色発光ダイオードは、赤色光を発光して、グルコースと発色試薬の反応で生じた色素量に応じた血液のグルコース濃度を測定するために使用される。また、緑色発光ダイオードは、緑色発光して血液中の血色素の量に基づいてヘマトクリット値を測定するために使用される。なお、赤色発光ダイオードおよび緑色発光ダイオードは、別々の素子として互いに近接して配置されてもよいし、1つの素子として一体的に構成されてもよい。 In the present embodiment, the light source unit 120 includes a red light emitting diode and a green light emitting diode. The red light-emitting diode emits red light and is used to measure the blood glucose concentration in accordance with the amount of dye produced by the reaction between glucose and the coloring reagent. The green light emitting diode emits green light and is used to measure the hematocrit value based on the amount of hemoglobin in the blood. The red light emitting diode and the green light emitting diode may be arranged close to each other as separate elements, or may be integrally configured as one element.
 発光駆動部130は、光源部120に駆動信号を供給する駆動回路である。より具体的には、発光駆動部130は、演算制御部180の指示に基づいて光源部120に所定のパルス幅、強度、および周期を有するパルス信号を供給する。光源部120は、供給されたパルス信号に応じてこのパルス幅の期間だけ発光し、次のパルス信号の立ち上がりまで消灯することを繰り返す。パルス幅は、概ね10~1000μsの範囲内であり、好適には120μs程度である。また、周期は1ms~10ms程度であり、好適には赤色および緑色の各々について2ms程度である。なお、赤色光と緑色光は交互に発光させるのが好ましい。パルス幅、強度、および周期は、他の構成要素の設計条件に応じて適宜変更されうる。 The light emission drive unit 130 is a drive circuit that supplies a drive signal to the light source unit 120. More specifically, the light emission driving unit 130 supplies a pulse signal having a predetermined pulse width, intensity, and cycle to the light source unit 120 based on an instruction from the arithmetic control unit 180. The light source unit 120 repeatedly emits light for the duration of this pulse width in accordance with the supplied pulse signal, and turns off until the next pulse signal rises. The pulse width is generally in the range of 10 to 1000 μs, preferably about 120 μs. The period is about 1 ms to 10 ms, preferably about 2 ms for each of red and green. Note that red light and green light are preferably emitted alternately. The pulse width, intensity, and period can be appropriately changed according to the design conditions of other components.
 検出部140は、検出手段として、パルス光が試験紙111上の複数の異なる領域で反射された反射光を検出して電気信号に変換する。検出部140は、その受光面が試験紙111の方向に向くように成分測定装置100の筺体内に取り付けられる。 The detection unit 140 detects, as detection means, the reflected light that is reflected by a plurality of different regions on the test paper 111 and converts it into an electrical signal. The detection unit 140 is attached to the housing of the component measurement apparatus 100 so that the light receiving surface thereof faces the test paper 111.
 検出部140は、試験紙111上の複数の異なる領域にそれぞれ対応して反射光を検出する複数の光検出素子(不図示)を備える。光検出素子は、試験紙111の呈色反応により吸収される光の波長に感度を有し、好適には検出部140の受光面上に一列もしくはマトリックス状に配置される。なお、光検出素子の配置形態は、一列もしくはマトリックス状に配置される形態に限定されず他の配置形態でもよい。 The detection unit 140 includes a plurality of light detection elements (not shown) that detect reflected light corresponding to a plurality of different regions on the test paper 111, respectively. The light detection elements are sensitive to the wavelength of light absorbed by the color reaction of the test paper 111 and are preferably arranged in a line or matrix on the light receiving surface of the detection unit 140. In addition, the arrangement form of the light detection elements is not limited to the form arranged in a line or a matrix, and other arrangement forms may be used.
 また、各々の光検出素子は、光を検出する機能を有する最小単位であるピクセルを少なくとも1つ備える。したがって、このような構成の光検出素子では、試験紙111上の複数の異なる領域からの反射光は、対応する光検出素子の少なくとも1つのピクセルによって検出される。本実施形態では、複数の光検出素子としてイメージセンサを採用する。イメージセンサは、たとえば、マトリックス状に複数のピクセルが配置されたCCDセンサ、CMOSセンサなどである。 Each light detection element includes at least one pixel which is a minimum unit having a function of detecting light. Therefore, in the light detection element having such a configuration, reflected light from a plurality of different regions on the test paper 111 is detected by at least one pixel of the corresponding light detection element. In this embodiment, an image sensor is employed as the plurality of light detection elements. The image sensor is, for example, a CCD sensor or a CMOS sensor in which a plurality of pixels are arranged in a matrix.
 また、光源部120の照射範囲と検出部140の視野(検出範囲)は、必ずしも一致する必要はない。たとえば、光源部120が試験紙111の全面を照射している場合でも、検出部140が試験紙111上の特定の領域からの反射光を検出する構成であってもよい。 Also, the irradiation range of the light source unit 120 and the field of view (detection range) of the detection unit 140 do not necessarily need to match. For example, even when the light source unit 120 irradiates the entire surface of the test paper 111, the detection unit 140 may be configured to detect reflected light from a specific area on the test paper 111.
 本実施形態では、検出部140の複数の光検出素子が試験紙111上の複数の異なる領域にそれぞれ対応して反射光を検出する。したがって、1つの領域において試験紙111上を血液が展開する距離は試験紙111全体に比べて短く、検出範囲における見かけ上の展開速度が増大する。すなわち、血液の展開時間が相対的に短くなる。 In the present embodiment, the plurality of light detection elements of the detection unit 140 detect reflected light corresponding to a plurality of different regions on the test paper 111, respectively. Therefore, the distance that blood is spread on the test paper 111 in one region is shorter than that of the test paper 111 as a whole, and the apparent development speed in the detection range increases. That is, the blood development time is relatively shortened.
 信号処理部150は、検出部140から出力された電気信号を信号処理する。信号処理部150は、サンプル・ホールド回路、増幅回路、およびA/Dコンバータを有する。検出部140から出力された電気信号は、サンプル・ホールド回路で周期的にサンプリングされ、増幅回路で所定の信号レベルまで増幅され、A/Dコンバータでアナログ信号からディジタル信号に変換されて画像データとして演算制御部180のメモリに格納される。 The signal processing unit 150 performs signal processing on the electrical signal output from the detection unit 140. The signal processing unit 150 includes a sample and hold circuit, an amplifier circuit, and an A / D converter. The electrical signal output from the detection unit 140 is periodically sampled by a sample and hold circuit, amplified to a predetermined signal level by an amplifier circuit, converted from an analog signal to a digital signal by an A / D converter, and used as image data. It is stored in the memory of the arithmetic control unit 180.
 操作部160は、操作者からの指示を演算制御部180に伝達する。操作部160は、たとえば押しボタンスイッチを有しており、成分測定装置100の筐体に取り付けられる。操作者は、操作部160を介して成分測定装置100の起動・停止、測定結果の表示などの指示をする。 The operation unit 160 transmits an instruction from the operator to the calculation control unit 180. The operation unit 160 has, for example, a push button switch, and is attached to the casing of the component measuring apparatus 100. The operator gives instructions to start / stop the component measuring apparatus 100 and display the measurement result via the operation unit 160.
 表示部170は、演算制御部180で算出された血糖値を表示する。表示部170は、たとえば液晶表示パネルを有し、成分測定装置100の筐体に取り付けられる。 The display unit 170 displays the blood sugar level calculated by the calculation control unit 180. The display unit 170 has a liquid crystal display panel, for example, and is attached to the housing of the component measuring apparatus 100.
 演算制御部180は、成分測定装置100の全体制御および血糖値の算出を実行する。より具体的には、演算制御部180は、たとえばCPU、メモリ、通信回路などを含む周辺回路を備えており、光源部120、発光駆動部130、検出部140、信号処理部150、操作部160、および表示部170と電気的に接続されている。演算制御部180は、操作部160を介して入力される、操作者からの指示に応じて、所定の手順にしたがい血糖値の測定処理を実行する。 The calculation control unit 180 performs overall control of the component measuring apparatus 100 and calculation of blood glucose level. More specifically, the arithmetic control unit 180 includes peripheral circuits including, for example, a CPU, a memory, a communication circuit, and the like, and includes a light source unit 120, a light emission drive unit 130, a detection unit 140, a signal processing unit 150, and an operation unit 160. And the display unit 170 are electrically connected. The arithmetic control unit 180 executes blood glucose level measurement processing according to a predetermined procedure in response to an instruction from the operator input via the operation unit 160.
 演算制御部180は、成分濃度算出手段として、メモリに格納された画像データを利用して、試験紙111に血液を付着させる前後における試験紙111の反射率を算出するとともに、試験紙111の各領域に血液が浸潤したことを検出して計時を開始し、所定時間経過後、反射率とグルコース濃度との対応関係を利用してグルコース濃度を算出する。所定時間の計時には図示しないタイマを用いる。反射率とグルコース濃度との対応関係は、ルックアップテーブルとして予めROMなどの不揮発性メモリに記憶されているか、あるいは反射率とグルコース濃度との関係式から算出される。算出されたグルコース濃度は、ヘマトクリット値を用いて補正されて血糖値として表示部170に出力される。 The arithmetic control unit 180 uses the image data stored in the memory as the component concentration calculation means to calculate the reflectance of the test paper 111 before and after attaching blood to the test paper 111, and for each of the test papers 111. Time measurement is started by detecting that blood has infiltrated the region. After a predetermined time has elapsed, the glucose concentration is calculated using the correspondence between the reflectance and the glucose concentration. A timer (not shown) is used for measuring the predetermined time. The correspondence between the reflectance and the glucose concentration is stored in advance in a non-volatile memory such as a ROM as a lookup table, or is calculated from a relational expression between the reflectance and the glucose concentration. The calculated glucose concentration is corrected using the hematocrit value and output to the display unit 170 as a blood glucose level.
 成分測定装置100がグルコース濃度を測定する測定処理手順は、演算制御部180のROMなどの不揮発性メモリにプログラムとして予め記憶されており、CPUはプログラムを逐次的に実行する。成分測定装置100が起動すると、演算制御部180は、発光駆動部130に対して所定のパルス信号を出力するように指示するとともに、信号処理部150で処理された信号を画像データとしてRAMなどの揮発性メモリに格納するように指示する。以下、図2~図6を参照して、成分測定装置100の測定処理手順を説明する。 The measurement processing procedure by which the component measuring apparatus 100 measures the glucose concentration is stored in advance as a program in a nonvolatile memory such as a ROM of the arithmetic control unit 180, and the CPU sequentially executes the program. When the component measuring apparatus 100 is activated, the arithmetic control unit 180 instructs the light emission driving unit 130 to output a predetermined pulse signal, and the signal processed by the signal processing unit 150 is used as image data in a RAM or the like. Instructs to store in volatile memory. Hereinafter, the measurement processing procedure of the component measuring apparatus 100 will be described with reference to FIGS.
 図2は本発明の第1の実施形態の成分測定装置によるグルコース濃度の測定処理手順を説明するためのフローチャートである。また、図3(A)は試験紙に点着された血液の展開を例示するための模式図であり、図3(B)は図3(A)の領域A68における反射率曲線を説明するための図である。なお、図3(B)において横軸は時間であり、縦軸は反射率である。 FIG. 2 is a flowchart for explaining the procedure for measuring the glucose concentration by the component measuring apparatus according to the first embodiment of the present invention. 3A is a schematic diagram for illustrating the development of blood spotted on the test paper, and FIG. 3B is a diagram for explaining the reflectance curve in the region A68 of FIG. 3A. FIG. Note that in FIG. 3B, the horizontal axis represents time, and the vertical axis represents reflectance.
 図2に示すとおり、まず、試験紙111上に光の照射を開始する(ステップS101)。具体的には、光源部120をパルス発光させて、試験紙111上に光の照射を開始する。なお、光源部120をパルス発光させるのは、発光中の信号レベルと消灯中の信号レベルとの差分を測定に使用することにより、成分測定装置100に入射する外乱光の影響を低減するためである。また、光源部120を間欠的に発光させることにより消費電力を低減させる効果もある。 As shown in FIG. 2, first, light irradiation is started on the test paper 111 (step S101). Specifically, the light source unit 120 emits light in pulses, and irradiation of light onto the test paper 111 is started. The light source unit 120 emits pulses in order to reduce the influence of ambient light incident on the component measuring apparatus 100 by using the difference between the signal level during light emission and the signal level during extinction for measurement. is there. In addition, there is an effect of reducing power consumption by causing the light source unit 120 to emit light intermittently.
 次に、試験紙111からの反射光の検出を開始する(ステップS102)。本実施形態では、検出部140は、試験紙111上の複数の異なる領域で各々反射された反射光を検出する。具体的には、図3(A)に示すとおり、たとえば試験紙111を10×10=100個の領域A1~A100に区切り、各々の領域Anで反射された反射光を検出部140の対応する光検出素子(不図示)で検出する。なお、試験紙111を区切る領域の個数は、グルコース濃度の算出精度、演算処理時間、検出部140が有するピクセル数を考慮して適宜設定することができる。 Next, detection of reflected light from the test paper 111 is started (step S102). In the present embodiment, the detection unit 140 detects the reflected light that is reflected by a plurality of different regions on the test paper 111. Specifically, as shown in FIG. 3A, for example, the test paper 111 is divided into 10 × 10 = 100 regions A1 to A100, and the reflected light reflected in each region An corresponds to the detection unit 140. It detects with a photon detection element (not shown). Note that the number of regions for separating the test paper 111 can be set as appropriate in consideration of the calculation accuracy of the glucose concentration, the calculation processing time, and the number of pixels of the detection unit 140.
 なお、演算制御部180は、試験紙111の大きさと試験紙111を区切る領域の個数とに基づいて領域間の距離を算出できる。また、領域間の距離と呈色速度の違いとから試験紙111上の血液の展開速度を算出できる。展開速度は、ヘマトクリット値に依存するため、ヘマトクリット値を概算するときの情報として使用できる。 Note that the arithmetic control unit 180 can calculate the distance between the areas based on the size of the test paper 111 and the number of areas separating the test paper 111. Further, the blood development speed on the test paper 111 can be calculated from the distance between the regions and the difference in the coloration speed. Since the deployment speed depends on the hematocrit value, it can be used as information for estimating the hematocrit value.
 成分測定装置100が起動されると、演算制御部の180の指示を受けて、検出部140は時間t0において試験紙111上の領域A1~A100で各々反射された反射光の検出を開始する。この時点では、試験紙111上には血液が点着されていないため、表面が白い状態の試験紙111の反射光が検出される。ここで、試験紙111の反射率を1とする。本実施形態では、時間t0の時点の反射光の強度を基準にして反射率を算出する。 When the component measuring apparatus 100 is activated, upon receiving an instruction from the arithmetic control unit 180, the detection unit 140 starts detecting the reflected light reflected by the areas A1 to A100 on the test paper 111 at time t0. At this time, since blood is not spotted on the test paper 111, the reflected light of the test paper 111 whose surface is white is detected. Here, the reflectance of the test paper 111 is 1. In the present embodiment, the reflectance is calculated based on the intensity of the reflected light at the time t0.
 その後、時間t1において試験紙111上の点着領域Xに血液が点着される。点着された血液は、試験紙111上を展開して時間t2には展開領域Yまで到達し、時間t3には展開領域Zまで到達する。なお、本実施形態では、点着された血液が試験紙111の全体に展開するまでに1秒程度かかり、呈色反応が安定するまでにさらに8秒程度かかることを想定している。また試験紙111の大きさは一辺2~6mm程度である。 Thereafter, blood is spotted on the spotting area X on the test paper 111 at time t1. The spotted blood spreads on the test paper 111 and reaches the development area Y at time t2, and reaches the development area Z at time t3. In this embodiment, it is assumed that it takes about 1 second for the spotted blood to spread over the entire test paper 111, and about 8 seconds for the color reaction to stabilize. The size of the test paper 111 is about 2 to 6 mm on a side.
 図3(A)に示す血液の展開の例では、血液が試験紙111上に展開する際、試験紙111上の位置によって血液が到達する時間が異なっている。点着領域Xからの距離が遠ければ、それだけ血液が浸潤して到達するまでに時間がかかる。ここで、血液の展開速度は、血液の温度および粘度、試験紙111の空孔率や空孔径、試薬の塗布量などによって影響を受けて変化する。これらの原因は試験紙を一領域として、その反射光を検出する場合は測定誤差につながる。 In the example of blood development shown in FIG. 3A, when blood spreads on the test paper 111, the time for the blood to reach differs depending on the position on the test paper 111. The longer the distance from the spotting area X, the longer it takes for blood to infiltrate and reach it. Here, the blood development speed varies depending on the temperature and viscosity of the blood, the porosity and hole diameter of the test paper 111, the amount of reagent applied, and the like. These causes lead to a measurement error when the reflected light is detected using the test paper as one region.
 一方、呈色反応は、血液が到達してから開始され、呈色反応の反応速度は同じ条件下では一定と考えられる。したがって、検出部140が検出する試験紙111の反射率の時間的な変化は、血液の展開速度に強く依存すると考えられる。 On the other hand, the color reaction is started after blood arrives, and the reaction rate of the color reaction is considered to be constant under the same conditions. Therefore, it is considered that the temporal change in the reflectance of the test paper 111 detected by the detection unit 140 strongly depends on the blood development speed.
 たとえば、図3(A)の領域A68において、時間t0~t2では血液がまだ到達していないため、呈色反応は起きない。したがって、図3(B)に示すとおり、試験紙111の反射率が時間t2まで約1に維持される。一方、時間t2を過ぎると、A68にも血液が展開するため呈色反応が進行する。したがって、領域A68の反射率は減少し始める。なお、以下では、図3(B)に示すような反射率の時間的な変化を示す曲線を反射率曲線と称する。 For example, in the region A68 of FIG. 3A, the color reaction does not occur because the blood has not yet reached from time t0 to t2. Therefore, as shown in FIG. 3B, the reflectance of the test paper 111 is maintained at about 1 until time t2. On the other hand, after the time t2, the color reaction proceeds because blood develops in A68. Accordingly, the reflectance of the region A68 starts to decrease. In the following, a curve showing the temporal change in reflectance as shown in FIG. 3B is referred to as a reflectance curve.
 本実施形態では、演算制御部180は、RAMに格納された画像データに基づいて、領域A1~A100における反射率曲線を算出する。なお、検出部140の光検出素子が複数のピクセルを備える場合は、たとえば複数のピクセルのデータを平均した値を代表値として反射率曲線の算出に使用することができる。 In the present embodiment, the arithmetic control unit 180 calculates the reflectance curve in the areas A1 to A100 based on the image data stored in the RAM. When the light detection element of the detection unit 140 includes a plurality of pixels, for example, a value obtained by averaging the data of the plurality of pixels can be used as a representative value to calculate the reflectance curve.
 このように、試験紙111上の複数の異なる領域A1~A100において、試薬の色が変化し始める時間、すなわち呈色反応が開始される時間は、試験紙111上の血液の展開速度に依存して変化する。 As described above, in a plurality of different regions A1 to A100 on the test paper 111, the time when the color of the reagent starts to change, that is, the time when the color reaction is started depends on the blood development speed on the test paper 111. Change.
 次に、再び図2に戻り、血液に含まれるグルコース濃度を算出する(ステップS103)。本実施形態では、試験紙111上の領域A1~A100において、呈色を検出した開始時間t2から所定時間経過した終了時間t3の反射率に基づいて血液に含まれるグルコース濃度を算出する。演算制御部180は測定されたグルコース濃度に基づいて血糖値を算出し、表示部170は血糖値を表示し、処理を終了する。なお、開始時間t2以前(例えばt1)に検出した反射率はベースラインの補正に用いることができる。 Next, returning to FIG. 2 again, the concentration of glucose contained in the blood is calculated (step S103). In the present embodiment, in the areas A1 to A100 on the test paper 111, the glucose concentration contained in the blood is calculated based on the reflectance at the end time t3 after a predetermined time has elapsed from the start time t2 when the color was detected. The arithmetic control unit 180 calculates the blood glucose level based on the measured glucose concentration, the display unit 170 displays the blood glucose level, and the process is terminated. The reflectance detected before the start time t2 (for example, t1) can be used for correcting the baseline.
 以下、図4~図7を参照して、血液に含まれるグルコース濃度を算出する手順についてより詳しく説明する。図4は図2に示すフローチャートのステップS103をより詳しく説明するためのフローチャートであり、図5は図4のフローチャートの各ステップにおける処理内容を説明するための図である。また、図6は、領域によって反射率の大きさがばらつくことを説明するための図である。また、図7(A)および図7(B)は、反射率の上限値および下限値を設定する方法を説明するための図である。 Hereinafter, the procedure for calculating the concentration of glucose contained in blood will be described in more detail with reference to FIGS. FIG. 4 is a flowchart for explaining step S103 of the flowchart shown in FIG. 2 in more detail, and FIG. 5 is a diagram for explaining the processing contents in each step of the flowchart of FIG. FIG. 6 is a diagram for explaining that the magnitude of the reflectance varies depending on the region. FIGS. 7A and 7B are diagrams for explaining a method of setting the upper limit value and the lower limit value of the reflectance.
 図4および図5に示すとおり、まず、領域ごとに呈色開始時間を認識する(ステップS201)。具体的には、領域A1~A100の反射率曲線(以下、反射率曲線C1~C100と称する)について呈色の開始時間を認識する。なお、図5においてS1~S100は検出部140の光検出素子を示す。 As shown in FIGS. 4 and 5, first, the coloration start time is recognized for each region (step S201). Specifically, the color development start time is recognized for the reflectance curves in the regions A1 to A100 (hereinafter referred to as reflectance curves C1 to C100). In FIG. 5, S1 to S100 indicate the light detection elements of the detection unit 140.
 次に、全領域の呈色開始時間を揃える(ステップS202)。具体的には、反射率曲線C1~C100の呈色を検出した開始時間を基準時間に揃える。基準時間は、所定の基準となる時間を設定してもよいし、反射率曲線C1~C100のうちのいずれかの呈色の開始時間を設定してもよい。たとえば、図5に示すとおり、反射率曲線C1~C99の呈色開始時間を反射率曲線C100の呈色開始時間に揃えることができる。 Next, the color start times of all areas are aligned (step S202). Specifically, the start time when the coloration of the reflectance curves C1 to C100 is detected is aligned with the reference time. As the reference time, a predetermined reference time may be set, or the start time of any one of the reflectance curves C1 to C100 may be set. For example, as shown in FIG. 5, the coloration start times of the reflectance curves C1 to C99 can be aligned with the coloration start time of the reflectance curve C100.
 このように、反射率曲線C1~C100における呈色開始時間を基準時間に揃えることにより、展開速度によるグルコース濃度算出への影響をキャンセルすることができる。したがって、グルコース濃度の算出精度が向上する。 Thus, by aligning the coloration start times in the reflectance curves C1 to C100 with the reference time, the influence of the development speed on the glucose concentration calculation can be canceled. Therefore, the calculation accuracy of the glucose concentration is improved.
 なお、試験紙111の局所的な異常、血液量の不足などにより試験紙111上の特定の領域における呈色が開始されない場合がある。たとえば、図5において、領域Amの反射率曲線Cmは、測定時間内に呈色が開始されていない。また、呈色の開始が極端に早くなる場合または遅くなる場合がある。このような場合には、グルコース濃度の算出に影響を及ぼすことを防止するため、当該領域における反射率曲線を以後の処理に使用しない。呈色の開始が極端に早くなる場合または遅くなる場合の判定については、呈色の開始時間を所定の第1の上限値および第1の下限値と比較することによりなされる。ある領域において呈色の開始時間が第1の上限値および第1の下限値の範囲内にある場合、当該領域における反射率曲線を以後の処理に使用する。一方、呈色開始時間が第1の上限値および第1の下限値の範囲内にない場合、上記領域における反射率曲線を以後の処理に使用しない。 Note that coloration in a specific region on the test paper 111 may not be started due to a local abnormality of the test paper 111, a lack of blood volume, or the like. For example, in FIG. 5, the reflectance curve Cm of the region Am has not started to be colored within the measurement time. In addition, the start of coloring may be extremely early or late. In such a case, in order to prevent the calculation of the glucose concentration from being affected, the reflectance curve in the region is not used for the subsequent processing. The determination when the start of coloration becomes extremely early or late is made by comparing the start time of coloration with a predetermined first upper limit value and a first lower limit value. When the start time of coloration is within the range between the first upper limit value and the first lower limit value in a certain area, the reflectance curve in that area is used for the subsequent processing. On the other hand, when the coloration start time is not within the range between the first upper limit value and the first lower limit value, the reflectance curve in the region is not used for the subsequent processing.
 また、図6に示すとおり、試験紙111上の領域によって呈色開始後の反射率の大きさが異なる場合もある。反射率曲線Cn’は領域An’における反射率曲線であり、反射率曲線Cn’’は領域An’’における反射率曲線である。反射率の大きさがばらつく要因としては、試験紙111上の試薬の塗布ムラ、試験紙111の表面粗さおよび形状の違いなどがある。あるいは、領域An’のように反射率が大きくなる場合は、血液が領域An’の一部にしか浸潤していないことも考えられる。 In addition, as shown in FIG. 6, the magnitude of the reflectance after the start of coloring may vary depending on the area on the test paper 111. The reflectance curve Cn ′ is a reflectance curve in the region An ′, and the reflectance curve Cn ″ is a reflectance curve in the region An ″. Factors that cause variations in the magnitude of the reflectance include uneven application of the reagent on the test paper 111, a difference in surface roughness and shape of the test paper 111, and the like. Alternatively, when the reflectance increases as in the region An ′, it may be considered that blood has infiltrated only a part of the region An ′.
 このように反射率の大きさがばらつくとグルコース濃度の算出に対して影響を及ぼすため、本実施形態では、反射率の大きさに対して所定の第2の上限値および第2の下限値を設定し、第2の上限値と第2の下限値の範囲から外れる反射率曲線は以後の処理に使用しない。 In this embodiment, since the variation in the reflectivity affects the calculation of the glucose concentration, in the present embodiment, a predetermined second upper limit value and second lower limit value are set for the reflectivity size. The reflectance curve that is set and deviates from the range of the second upper limit value and the second lower limit value is not used for the subsequent processing.
 具体的には、呈色開始後の時間t3における反射率に対するピクセル数の度数分布に基づいて、上記第2の上限値と第2の下限値を設定する。図7(A)に示すとおり、反射率に対するピクセル数の度数分布は、通常、第1のピークP1および第2のピークP2を有する。第1のピークP1は、試験紙111上に血液が展開して呈色が起きたことにより反射率が減少したピクセルの個数の最大値を表す。一方、第2のピークP2は、試験紙111上に血液が展開していないため反射率が高いピクセルの個数の最大値を表す。 Specifically, the second upper limit value and the second lower limit value are set based on the frequency distribution of the number of pixels with respect to the reflectance at time t3 after the start of coloring. As shown in FIG. 7A, the frequency distribution of the number of pixels with respect to the reflectance usually has a first peak P1 and a second peak P2. The first peak P1 represents the maximum value of the number of pixels in which the reflectance has decreased due to the development of blood on the test paper 111 and the occurrence of coloration. On the other hand, the second peak P2 represents the maximum value of the number of pixels having high reflectivity because blood is not spread on the test paper 111.
 本実施形態では、第1のピークP1のピクセル数を100%としたときの所定割合のピクセル数に対応する反射率を第2の上限値および第2の下限値として設定する。たとえば、図7(A)に示すとおり、第1のピークP1のピクセル数の90%のピクセル数に対応する反射率RUおよびRLをそれぞれ第2の上限値および第2の下限値として設定することができる。このように第2の上限値および第2の下限値を設定すると、以後の処理では反射率が上限値RUと下限値RLの範囲内にある反射率曲線のみを使用する。 In the present embodiment, the reflectance corresponding to a predetermined number of pixels when the number of pixels of the first peak P1 is 100% is set as the second upper limit value and the second lower limit value. For example, as shown in FIG. 7A, the reflectances RU and RL corresponding to 90% of the number of pixels of the first peak P1 are set as the second upper limit value and the second lower limit value, respectively. Can do. When the second upper limit value and the second lower limit value are set as described above, only the reflectance curve whose reflectance is within the range between the upper limit value RU and the lower limit value RL is used in the subsequent processing.
 また、図7(B)に示すとおり、第1のピークP1に対応する反射率を中心にして反射率RL’とRU’との間にピクセルがN個含まれるように第2の上限値(RU’)および第2の下限値(RL’)を決定してもよい。 Further, as shown in FIG. 7B, the second upper limit value (N) is included so that N pixels are included between the reflectances RL ′ and RU ′ around the reflectance corresponding to the first peak P1. RU ′) and the second lower limit (RL ′) may be determined.
 次に、再び図4に戻り、各領域の反射率曲線を合成する(ステップS203)。本実施形態では、反射率曲線C1~C100のうち、呈色開始時間が第1の上限値および第1の下限値の範囲内にあり、かつ呈色開始後の反射率が第2の上限値および第2の下限値の範囲内にある反射率曲線を、基準時間で合わせ、合成処理して合成反射率曲線CSを算出する。このように、複数の異なる領域を測定した結果を合成することにより、試験紙111に塗布する試薬量や試験紙111の構造のバラツキの影響を受け難くなる。 Next, returning to FIG. 4 again, the reflectance curves of the respective regions are synthesized (step S203). In the present embodiment, among the reflectance curves C1 to C100, the coloration start time is within the range of the first upper limit value and the first lower limit value, and the reflectance after the start of coloration is the second upper limit value. Then, the reflectance curves within the range of the second lower limit value are combined at the reference time and synthesized to calculate a synthesized reflectance curve CS. In this way, by combining the results of measuring a plurality of different regions, it becomes difficult to be affected by the amount of reagent applied to the test paper 111 and the variation in the structure of the test paper 111.
 次に、グルコース濃度を算出する(ステップS204)。ステップS203で算出した合成反射率曲線CSを使用してグルコース濃度を算出する。 Next, the glucose concentration is calculated (step S204). The glucose concentration is calculated using the combined reflectance curve CS calculated in step S203.
 以上のとおり、本実施形態では、試験紙111上の複数の異なる領域における反射率曲線の呈色の開始時間を基準時間に揃えたのち、各領域の反射率曲線を合成した合成反射率曲線に基づいてグルコース濃度を算出する。 As described above, in the present embodiment, the color change start time of the reflectance curve in a plurality of different regions on the test paper 111 is aligned with the reference time, and then the combined reflectance curve obtained by combining the reflectance curves of the respective regions is used. Based on this, the glucose concentration is calculated.
 以上のとおり説明した本実施形態の成分測定装置100は下記の効果を奏する。 As described above, the component measuring apparatus 100 according to this embodiment has the following effects.
 (a)本実施形態の成分測定装置100によれば、試験紙111上の複数の異なる領域における呈色の開始時間を基準時間に揃えることにより、展開速度の変化がグルコース濃度の算出へ影響を及ぼすことを防止できる。したがって、グルコース濃度を精度良く算出することができる。また、試験紙111上の一部の領域で展開不良が生じても測定を継続し、測定値を算出することができる。 (A) According to the component measuring apparatus 100 of the present embodiment, the change in the development speed has an influence on the calculation of the glucose concentration by aligning the start times of coloration in a plurality of different regions on the test paper 111 with the reference time. Can be prevented. Therefore, the glucose concentration can be calculated with high accuracy. Further, even if a development failure occurs in a part of the area on the test paper 111, the measurement can be continued and the measurement value can be calculated.
 (b)複数の異なる領域を測定した結果を合成することにより、試験紙111に塗布する試薬量や試薬担体の構造のバラツキの影響を受け難くなる。 (B) By synthesizing the results of measuring a plurality of different regions, it becomes difficult to be affected by variations in the amount of reagent applied to the test paper 111 and the structure of the reagent carrier.
 (c)領域間の距離と呈色速度の違いとから試験紙111上の展開速度を算出することができる。 (C) The development speed on the test paper 111 can be calculated from the distance between the areas and the difference in the coloration speed.
 (d)検出部140の検出視野の範囲内であれば、試験紙111のどの領域から血液の展開が開始されても、あるいは血液の展開範囲が異なっていても精度良くグルコース濃度を算出できる。 (D) Within the range of the detection visual field of the detection unit 140, the glucose concentration can be calculated with high accuracy regardless of the region of the test paper 111 where blood development starts or the blood development range is different.
 (第2の実施形態)
 第1の実施形態では、試験紙上の複数の異なる領域における反射率曲線の呈色の開始時間を基準時間に揃えたのち、各領域の反射率曲線を合成した合成反射率曲線に基づいてグルコース濃度を算出することについて説明した。本発明の第2の実施形態では、試験紙上の領域ごとにグルコース濃度を算出し、各領域のグルコース濃度を平均して最終的なグルコース濃度を算出することについて説明する。なお、以下の説明では、第1の実施形態と同様の構成については説明を省略する。
(Second Embodiment)
In the first embodiment, after aligning the start time of coloration of the reflectance curve in a plurality of different regions on the test paper with the reference time, the glucose concentration is based on the combined reflectance curve obtained by synthesizing the reflectance curve of each region. The calculation of the above has been described. In the second embodiment of the present invention, calculation of the glucose concentration for each region on the test paper and averaging the glucose concentration in each region to calculate the final glucose concentration will be described. In the following description, the description of the same configuration as in the first embodiment is omitted.
 以下、図8および図9を参照して、本実施形態の成分測定装置を説明する。図8は本発明の第2の実施形態において血液に含まれるグルコース濃度を算出する手順を説明するためのフローチャートであり、図9は図8に示すフローチャートの各ステップにおける処理内容を説明する図である。 Hereinafter, the component measuring apparatus of this embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is a flowchart for explaining the procedure for calculating the concentration of glucose contained in blood in the second embodiment of the present invention, and FIG. 9 is a diagram for explaining the processing contents in each step of the flowchart shown in FIG. is there.
 図8および図9に示すとおり、まず、領域ごとに呈色開始時間を認識する(ステップS301)。試験紙111上の複数の異なる領域A1~A100の反射率曲線C1~C100について呈色の開始時間を認識する。なお、第1の実施形態と同様に反射率曲線が異常であるものについては以後の処理には使用しない。 As shown in FIGS. 8 and 9, first, the coloration start time is recognized for each region (step S301). The start time of coloration is recognized for the reflectance curves C1 to C100 of a plurality of different areas A1 to A100 on the test paper 111. As in the first embodiment, those having an abnormal reflectance curve are not used for the subsequent processing.
 次に、領域ごとにグルコース濃度を算出する(ステップS302)。具体的には、試験紙111上の複数の異なる領域において、ステップS301で認識した呈色開始時間から所定時間経過した終了時間の反射率に基づいて血液に含まれるグルコース濃度を算出する。 Next, the glucose concentration is calculated for each region (step S302). Specifically, in a plurality of different regions on the test paper 111, the glucose concentration contained in the blood is calculated based on the reflectance at the end time after a predetermined time has elapsed from the coloration start time recognized in step S301.
 次に、各領域のグルコース濃度を平均する(ステップS303)。具体的には、ステップS302で算出した各領域のグルコース濃度を平均して最終的なグルコース濃度を算出する。 Next, the glucose concentration in each region is averaged (step S303). Specifically, the final glucose concentration is calculated by averaging the glucose concentration of each region calculated in step S302.
 以上のとおり、本実施形態では、試験紙111上の複数の異なる領域の各々においてグルコース濃度を算出し、各領域のグルコース濃度を平均して最終的なグルコース濃度を算出する。いずれの領域においても、呈色開始時間から所定時間経過した終了時間の反射率に基づいて血液に含まれるグルコース濃度を算出するので、各領域間の呈色開始時間の違いはグルコース濃度の算出に影響しない。本実施形態では、各領域ごとにグルコース濃度を算出することにより、実質的に各領域における呈色開始時間を揃えている。 As described above, in this embodiment, the glucose concentration is calculated in each of a plurality of different regions on the test paper 111, and the final glucose concentration is calculated by averaging the glucose concentration in each region. In any region, the glucose concentration in the blood is calculated based on the reflectance at the end time after a predetermined time has elapsed from the coloration start time, so the difference in coloration start time between the regions is the calculation of the glucose concentration. It does not affect. In this embodiment, by calculating the glucose concentration for each region, the color start times in each region are substantially aligned.
 以上のとおり説明した本実施形態の成分測定装置100は下記の効果を奏する。 As described above, the component measuring apparatus 100 according to this embodiment has the following effects.
 (e)試験紙111上の複数の異なる領域の各々においてグルコース濃度を算出し、各領域のグルコース濃度を平均して最終的なグルコース濃度を算出するので、グルコース濃度の算出に伴う演算処理の負荷を少なくすることができる。 (E) Since the glucose concentration is calculated in each of a plurality of different regions on the test paper 111 and the glucose concentration in each region is averaged to calculate the final glucose concentration, the processing load accompanying the calculation of the glucose concentration Can be reduced.
 (第3の実施形態)
 第1および第2の実施形態では、時分割で複数波長の測定を実行することを説明した。第3の実施形態では、多色光を光源に採用し、光検出素子が特定波長の光を通過するバンドパスフィルタを備えることにより、複数波長の測定を実行することを説明する。以下の説明では、第2の実施形態と異なる部分について主に説明し、第2の実施形態と同様の構成については説明を省略する。
(Third embodiment)
In the first and second embodiments, it has been described that measurement of a plurality of wavelengths is performed in a time division manner. In the third embodiment, it will be described that multi-color light is used as a light source, and the light detection element includes a band-pass filter that passes light of a specific wavelength, thereby performing measurement of a plurality of wavelengths. In the following description, portions different from those of the second embodiment will be mainly described, and description of the same configuration as that of the second embodiment will be omitted.
 本実施形態では、光源部120は、多色光(たとえば白色光)を照射する。光源部120は、たとえば白色発光ダイオードを有する。演算制御部180は、発光駆動部130に対して所定のパルス信号を出力するように指示する。しかしながら、本実施形態では、検出部140は、測定に使用する特定波長の光をバンドパスフィルタで分離する。したがって、演算制御部180は、異なる波長の光を時分割で照射および検出するためのタイミング制御する必要はない。 In the present embodiment, the light source unit 120 emits multicolor light (for example, white light). The light source unit 120 includes, for example, a white light emitting diode. The arithmetic control unit 180 instructs the light emission driving unit 130 to output a predetermined pulse signal. However, in the present embodiment, the detection unit 140 separates light of a specific wavelength used for measurement with a bandpass filter. Therefore, the arithmetic control unit 180 does not need to perform timing control for irradiating and detecting light of different wavelengths in a time division manner.
 以下、図10を参照して、本実施形態の成分測定装置を説明する。図10は本発明の第3の実施形態において血液に含まれるグルコース濃度を算出する手順を各ステップにおける処理内容とともに説明するための図である。 Hereinafter, the component measuring apparatus according to the present embodiment will be described with reference to FIG. FIG. 10 is a diagram for explaining the procedure for calculating the glucose concentration contained in blood in the third embodiment of the present invention together with the processing contents at each step.
 図10に示すとおり、検出部140は、試験紙111上の複数の異なる領域A1~A100からの反射光を検出する光検出素子S1R,S1G~S100R,S100Gを備える。光検出素子S1Rは、赤色光のみを透過する赤色用バンドパスフィルタをピクセル上に備え、領域A1の赤色光を検出する。また、光検出素子S1Gは、緑色光のみを透過する緑色用バンドパスフィルタをピクセル上に備え、領域A1の緑色光を検出する。なお、光検出素子S1R,S1Gは、赤色用バンドパスフィルタを備えるピクセルと緑色用バンドパスフィルタを備えるピクセルとが格子状に配置されるように構成することが好ましい。 As shown in FIG. 10, the detection unit 140 includes light detection elements S1R, S1G to S100R, and S100G that detect reflected light from a plurality of different areas A1 to A100 on the test paper 111. The light detection element S1R includes a red band-pass filter that transmits only red light on the pixel, and detects red light in the region A1. The light detection element S1G includes a green band-pass filter that transmits only green light on the pixel, and detects the green light in the region A1. In addition, it is preferable that the light detection elements S1R and S1G are configured so that pixels including a red bandpass filter and pixels including a green bandpass filter are arranged in a grid pattern.
 このような構成の成分測定装置100において、まず領域ごとに呈色開始時間を認識し、次に領域ごとにグルコース濃度およびヘマトクリット値を算出する。そして、各領域においてヘマトクリット値でグルコース濃度を補正する。そして、各領域のグルコース濃度を平均して最終的なグルコース濃度を算出する。 In the component measuring apparatus 100 having such a configuration, the coloration start time is first recognized for each region, and then the glucose concentration and the hematocrit value are calculated for each region. Then, the glucose concentration is corrected with the hematocrit value in each region. Then, the final glucose concentration is calculated by averaging the glucose concentration in each region.
 以上のとおり説明した本実施形態の成分測定装置100は、第2の実施形態の効果に加えて下記の効果を奏する。 In addition to the effects of the second embodiment, the component measuring apparatus 100 of the present embodiment described as described above has the following effects.
 (f)検出部140は、測定に使用する特定波長の光をバンドパスフィルタで分離するので、異なる波長の光を時分割で照射および検出するためのタイミング制御を省くことができる。 (F) Since the detection unit 140 separates light of a specific wavelength used for measurement by a bandpass filter, timing control for irradiating and detecting light of different wavelengths in a time division manner can be omitted.
 以上のとおり、実施形態において、本発明の成分測定装置について説明した。しかしながら、本発明は、その技術思想の範囲内において当業者が適宜に追加、変形、および省略することができることはいうまでもない。 As described above, in the embodiment, the component measuring apparatus of the present invention has been described. However, it goes without saying that the present invention can be appropriately added, modified, and omitted by those skilled in the art within the scope of the technical idea.
 たとえば、第1~第3の実施形態では、試験片から反射された反射光の強度から算出された反射率に基づいてグルコース濃度を算出した。しかしながら、本発明は、試験片を透過した透過光に基づいてグルコース濃度を算出する構成とすることもできる。 For example, in the first to third embodiments, the glucose concentration was calculated based on the reflectance calculated from the intensity of the reflected light reflected from the test piece. However, this invention can also be set as the structure which calculates glucose concentration based on the transmitted light which permeate | transmitted the test piece.
 また、本発明は、血糖値を算出するのに好適に用いることができるが、透過光や反射光の受光量を定量的に測定して検体の成分濃度測定を行う分野において広く利用できることはもちろんである。たとえば、本発明は、体液中の特定成分、たとえば血液中のコレステロール、尿酸、尿中のグルコース、ヘモグロビンなどの濃度を測定するように構成することもできる。 In addition, the present invention can be suitably used to calculate a blood glucose level, but it can of course be widely used in the field of measuring the component concentration of a specimen by quantitatively measuring the amount of transmitted light or reflected light. It is. For example, the present invention can also be configured to measure the concentration of specific components in body fluids, such as cholesterol in blood, uric acid, glucose in urine, hemoglobin, and the like.
 さらに、本出願は、2011年10月18日に出願された日本特許出願番号2011-228956号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2011-228956 filed on October 18, 2011, and the disclosures thereof are referred to and incorporated as a whole.
100 成分測定装置、
110 装着部、
111 試験紙(試験片)、
120 光源部(照射手段)、
130 発光駆動部、
140 検出部(検出手段)、
150 信号処理部、
160 操作部、
170 表示部、
180 演算制御部(成分濃度算出手段)。
100 component measuring device,
110 wearing part,
111 test paper (test piece),
120 light source part (irradiation means),
130 light emission drive unit,
140 detector (detector),
150 signal processing unit,
160 operation unit,
170 display unit,
180 Calculation control unit (component concentration calculation means).

Claims (7)

  1.  検体に含まれる成分と反応する試薬の発色度合いに基づいて前記成分の濃度を測定する成分測定装置であって、
     前記検体が付着する試験片上に光を照射する照射手段と、
     前記試験片上の複数の異なる領域で各々反射された反射光を検出する検出手段と、
     前記複数の異なる領域において、前記検体が浸潤し呈色が開始した開始時間から所定時間経過した終了時間の前記反射光の強度に基づいて前記検体に含まれる成分の濃度を算出する成分濃度算出手段と、
     を有することを特徴とする成分測定装置。
    A component measuring device that measures the concentration of the component based on the degree of color development of the reagent that reacts with the component contained in the specimen,
    Irradiating means for irradiating light onto a test piece to which the specimen is attached;
    Detecting means for detecting reflected light respectively reflected by a plurality of different regions on the test piece;
    Component concentration calculation means for calculating the concentration of the component contained in the sample based on the intensity of the reflected light at an end time after a predetermined time has elapsed from the start time when the sample infiltrated and coloration started in the plurality of different regions When,
    A component measuring apparatus comprising:
  2.  前記成分濃度算出手段は、前記複数の異なる領域において前記開始時間から前記終了時間までの前記試験片の反射率の時間的な変化を表す反射率曲線をそれぞれ算出したのち、前記複数の異なる領域について前記開始時間を基準にして前記反射率曲線を合成し、合成された反射率曲線に基づいて前記検体に含まれる成分の濃度を算出することを特徴とする請求項1に記載の成分測定装置。 The component concentration calculation means calculates a reflectance curve representing a temporal change in reflectance of the test piece from the start time to the end time in the plurality of different regions, and then calculates the plurality of different regions. The component measurement apparatus according to claim 1, wherein the reflectance curve is synthesized based on the start time, and the concentration of the component contained in the specimen is calculated based on the synthesized reflectance curve.
  3.  前記成分濃度算出手段は、前記複数の異なる領域において前記開始時間から前記終了時間までの前記試験片の反射率曲線をそれぞれ算出し、前記反射率曲線に基づいて前記複数の異なる領域における成分の濃度をそれぞれ算出したのち、前記複数の異なる領域について当該成分の濃度の平均値を算出して当該平均値に基づいて前記検体に含まれる成分の濃度を算出することを特徴とする請求項1に記載の成分測定装置。 The component concentration calculation unit calculates a reflectance curve of the test piece from the start time to the end time in the plurality of different regions, and the concentration of the component in the plurality of different regions based on the reflectance curve. 2. The method according to claim 1, further comprising: calculating an average value of the concentration of the component for the plurality of different regions and calculating a concentration of the component included in the specimen based on the average value. Component measuring device.
  4.  前記照射手段は、特定波長の光を照射し、
     前記検出手段は、前記特定波長の反射光を検出することを特徴とする請求項1~3のいずれか1項に記載の成分測定装置。
    The irradiation means irradiates light of a specific wavelength,
    The component measuring apparatus according to any one of claims 1 to 3, wherein the detecting means detects reflected light of the specific wavelength.
  5.  前記照射手段は、前記複数の異なる領域に特定波長を含む多色光を照射し、
     前記検出手段は、前記特定波長を透過させるバンドパスフィルタを備え、前記特定波長の反射光を検出することを特徴とする請求項1~3のいずれか1項に記載の成分測定装置。
    The irradiation unit irradiates the plurality of different regions with polychromatic light including a specific wavelength,
    The component measuring apparatus according to any one of claims 1 to 3, wherein the detection unit includes a band-pass filter that transmits the specific wavelength, and detects reflected light of the specific wavelength.
  6.  前記成分濃度算出手段は、前記反射率曲線の前記開始時間後の反射率に対して上限値および下限値を設定し、前記反射率が前記上限値および下限値の範囲内にあるときは前記反射率曲線を前記検体に含まれる成分の濃度の算出に使用する一方で、前記反射率が前記上限値および下限値の範囲内にないときは前記反射率曲線を前記検体に含まれる成分の濃度の算出に使用しないことを特徴とする請求項2~5のいずれか1項に記載の成分測定装置。 The component concentration calculation means sets an upper limit value and a lower limit value for the reflectivity after the start time of the reflectivity curve, and the reflectivity is within the range between the upper limit value and the lower limit value. While the rate curve is used to calculate the concentration of the component contained in the specimen, when the reflectance is not within the range of the upper limit value and the lower limit value, the reflectance curve is used to calculate the concentration of the component contained in the specimen. 6. The component measuring apparatus according to claim 2, wherein the component measuring apparatus is not used for calculation.
  7.  検体に含まれる成分と反応する試薬の発色度合いに基づいて前記成分の濃度を測定する成分測定方法であって、
     前記検体が付着する試験片上に光の照射を開始する段階と、
     前記試験片上の複数の異なる領域で各々反射された反射光の検出を開始する段階と、
     前記複数の異なる領域において、前記検体が浸潤し呈色が開始した開始時間から所定時間経過した終了時間の前記反射光の強度に基づいて前記検体に含まれる成分の濃度を算出する段階と、
     を有することを特徴とする成分測定方法。
    A component measurement method for measuring the concentration of the component based on the degree of color development of the reagent that reacts with the component contained in the specimen,
    Initiating light irradiation on the test specimen to which the specimen adheres;
    Initiating detection of reflected light respectively reflected at a plurality of different regions on the specimen;
    Calculating a concentration of a component contained in the specimen based on an intensity of the reflected light at an end time after a predetermined time has elapsed from a start time at which the specimen has infiltrated and coloration has started in the plurality of different regions;
    The component measuring method characterized by having.
PCT/JP2012/071589 2011-10-18 2012-08-27 Component measurement device and component measurement method WO2013061681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-228956 2011-10-18
JP2011228956A JP2015004510A (en) 2011-10-18 2011-10-18 Component measuring device and component measuring method

Publications (1)

Publication Number Publication Date
WO2013061681A1 true WO2013061681A1 (en) 2013-05-02

Family

ID=48167523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071589 WO2013061681A1 (en) 2011-10-18 2012-08-27 Component measurement device and component measurement method

Country Status (3)

Country Link
JP (1) JP2015004510A (en)
TW (1) TW201319550A (en)
WO (1) WO2013061681A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577982B (en) * 2015-11-19 2017-04-11 光寶電子(廣州)有限公司 Biochemistry measurement device and method thereof
EP3542146A4 (en) * 2016-11-18 2019-10-30 Siemens Healthcare Diagnostics Inc. Multiple sequential wavelength measurement of a liquid assay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254836A (en) * 1985-05-07 1986-11-12 Omron Tateisi Electronics Co Biochemical measurement instrument
JPS6426160A (en) * 1987-04-07 1989-01-27 Kyoto Daiichi Kagaku Kk Method and apparatus for analyzing specific multiple components in liquid
JPH0580048A (en) * 1991-09-20 1993-03-30 Terumo Corp Method and apparatus for measuring blood
JP2004144750A (en) * 2002-10-21 2004-05-20 Lifescan Inc Method for shortening analysis time of endpoint type response profile
JP2009109384A (en) * 2007-10-31 2009-05-21 Arkray Inc Specimen and immunochromatography device
WO2010058472A1 (en) * 2008-11-20 2010-05-27 アークレイ株式会社 Optical measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254836A (en) * 1985-05-07 1986-11-12 Omron Tateisi Electronics Co Biochemical measurement instrument
JPS6426160A (en) * 1987-04-07 1989-01-27 Kyoto Daiichi Kagaku Kk Method and apparatus for analyzing specific multiple components in liquid
JPH0580048A (en) * 1991-09-20 1993-03-30 Terumo Corp Method and apparatus for measuring blood
JP2004144750A (en) * 2002-10-21 2004-05-20 Lifescan Inc Method for shortening analysis time of endpoint type response profile
JP2009109384A (en) * 2007-10-31 2009-05-21 Arkray Inc Specimen and immunochromatography device
WO2010058472A1 (en) * 2008-11-20 2010-05-27 アークレイ株式会社 Optical measurement device

Also Published As

Publication number Publication date
TW201319550A (en) 2013-05-16
JP2015004510A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
US20210109088A1 (en) Method and device for generating a corrected value of an analyte concentration in a sample of a body fluid
JP6906573B2 (en) Test paper and reading method of test paper
US9600878B2 (en) Reading test strip with reaction area, color calibration area, and temperature calibration area
JP4785611B2 (en) Method and apparatus for measuring the concentration of a specific component in a blood sample
US8373851B2 (en) Measuring system and measuring method, in particular for determining blood glucose
KR102603371B1 (en) Methods and devices for performing analytical measurements
CN112334759A (en) Detection method for detecting analyte in sample
WO2013061681A1 (en) Component measurement device and component measurement method
EP2259058A1 (en) Method of measuring hematocrit value or blood component concentration and measurement system
JP2014238263A (en) Blood component analyzer
US8570519B2 (en) Method and device for analyzing a body fluid
JP2007057497A (en) System and method for inspecting phosphor film thickness
EP3647774B1 (en) Devices and method for measuring an analyte concentration in a sample of bodily fluid
KR20210081421A (en) A method for determining the concentration of an analyte in a body fluid
EP4086627A1 (en) Component measurement device, component measurement device set, and information processing method
JP2020500300A5 (en)
RU2792659C2 (en) Methods and devices for carrying out analytical measurements
WO2017031297A1 (en) Optode sensor with integrated reference
WO2013146065A1 (en) Component measuring device
JPH1082736A (en) Method for calibrating analytical curve, device for measuring reflectance, and storage medium
MY187829A (en) Luminescence based water quality sensors system
JP2008268040A (en) Chromatography measuring method
JPH11201898A (en) Water rate measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP