WO2013061533A1 - Gear transmission device - Google Patents

Gear transmission device Download PDF

Info

Publication number
WO2013061533A1
WO2013061533A1 PCT/JP2012/006577 JP2012006577W WO2013061533A1 WO 2013061533 A1 WO2013061533 A1 WO 2013061533A1 JP 2012006577 W JP2012006577 W JP 2012006577W WO 2013061533 A1 WO2013061533 A1 WO 2013061533A1
Authority
WO
WIPO (PCT)
Prior art keywords
external
tooth
processed
axial direction
pin
Prior art date
Application number
PCT/JP2012/006577
Other languages
French (fr)
Japanese (ja)
Inventor
義昭 牧添
隆 成瀬
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to DE112012004442.8T priority Critical patent/DE112012004442B4/en
Priority to KR1020147013672A priority patent/KR101947216B1/en
Priority to CN201280051928.1A priority patent/CN103890452B/en
Publication of WO2013061533A1 publication Critical patent/WO2013061533A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/323Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising eccentric crankshafts driving or driven by a gearing

Definitions

  • the present invention relates to a gear transmission.
  • the gear transmission described in Patent Document 1 is provided with a plurality of internal teeth pins that mesh with two external gears.
  • Each internal tooth pin has the 1st meshing part, the 2nd meshing part, and the connection part which connects these. Both ends in the axial direction of each meshing portion are subjected to crowning processing (FIGS. 3 and 6 of Patent Document 1). Thereby, the edge stress which arises between the tooth surface of each external gear and the outer peripheral surface of the axial direction both ends in each meshing part of an internal tooth pin is reduced.
  • FIG. 7 of patent document 1 not only an internal tooth pin but the tooth surface of the both ends of each external gear is also crowned. Thereby, the edge stress which arises between the tooth surface of the both ends of each external gear and the outer peripheral surface of the axial direction both ends of each meshing part of an internal tooth pin is further reduced.
  • both ends of the first meshing portion of each internal tooth pin are crowned, and both ends of the second meshing portion are crowned. Since a process in which the meshing portion is connected by the connecting portion is necessary, there is a problem that the cost is increased. In addition to this, when both ends of each external gear are subjected to crowning as shown in FIG. 7 of Patent Document 1, the number of man-hours required for crowning is further increased and the cost is increased.
  • the gear transmission according to the present invention is An outer cylinder having an inner peripheral surface in which a plurality of pin grooves extending in the axial direction are provided at predetermined intervals in the circumferential direction; A plurality of internal teeth pins arranged in each of the plurality of pin grooves; A crankshaft having a first eccentric portion and a second eccentric portion arranged side by side in the axial direction with a predetermined phase difference from each other, and provided to be rotatable around the axis in the outer cylinder; It has an outer peripheral surface provided with first external teeth, is attached to the first eccentric portion, and swings in conjunction with the eccentric rotation of the first eccentric portion while the first external teeth mesh with the internal tooth pin.
  • a rotating first external gear It has an outer peripheral surface provided with second external teeth, is attached to the second eccentric portion, and swings in conjunction with the eccentric rotation of the second eccentric portion while the second external teeth mesh with the internal tooth pin.
  • a rotating second external gear A carrier that rotates relative to the outer cylinder by transmitting the swinging rotation of the first external gear and the second external gear.
  • the first external tooth has a first processed portion at one end in the axial direction.
  • the tooth surface of the first processed portion is processed so as to be located radially inward as it goes toward the axial end of the tooth surface.
  • the second external tooth has a second processed portion at one end portion in the axial direction.
  • the tooth surface of the second processed portion is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface.
  • Each internal tooth pin has a first reduced diameter portion and a second reduced diameter portion.
  • the first reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the first external tooth on the side where the first processed portion is not provided decreases in the axial direction.
  • the second reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the second external tooth on the side where the second processed portion is not provided decreases in the axial direction. ing.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is an expanded sectional view which shows the structure of the meshing part vicinity of the internal gear pin and external gear in the gear transmission shown in FIG. It is the expansion perspective view for demonstrating the structure of the meshing part vicinity of the internal gear pin and external gear in the gear transmission shown in FIG. 1, and is the figure which fractured
  • the gear transmission which concerns on 2nd Embodiment of this invention is shown, It is an expanded sectional view which shows the structure of the meshing part vicinity of an internal gear pin and an external gear.
  • the gear transmission 1 is applied as a speed reducer to, for example, a turning unit such as a turning drum or arm joint of a robot, or a turning unit of various machine tools.
  • the first external gear 14 swings and rotates in conjunction with the first eccentric portion 10a of the crankshaft 10, and in conjunction with the second eccentric portion 10b of the crankshaft 10.
  • the second external gear 16 By rotating the second external gear 16 in an oscillating manner, an output rotation decelerated from the input rotational speed is obtained.
  • the gear transmission 1 includes an outer cylinder 2, a large number of internal tooth pins 3, a carrier 4, an input shaft 8, a plurality of (for example, three) crankshafts 10, and a first outer shaft.
  • the tooth gear 14, the second external gear 16, and a plurality of (for example, three) transmission gears 20 are provided.
  • the outer cylinder 2 constitutes the outer surface of the gear transmission 1 and has a substantially cylindrical shape.
  • a large number of pin grooves 2 b are formed on the inner peripheral surface of the outer cylinder 2.
  • Each pin groove 2b extends in the axial direction of the outer cylinder 2, and has a semicircular cross-sectional shape in a cross section orthogonal to the axial direction.
  • These pin grooves 2 b are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the outer cylinder 2.
  • Each internal tooth pin 3 is attached to a corresponding pin groove 2b. Specifically, each internal tooth pin 3 is fitted in the corresponding pin groove 2b. The axial direction of each internal tooth pin 3 extends along the axial direction of the outer cylinder 2. Thereby, the many internal tooth pins 3 are arranged at equal intervals along the circumferential direction of the outer cylinder 2. In the pin groove 2b, each internal tooth pin 3 can rotate around its axis. The first external gear 14 and the second external gear 16 mesh with these internal teeth pins 3. The detailed structure of the internal tooth pin 3 will be described later.
  • the carrier 4 is accommodated in the outer cylinder 2 in a state of being arranged coaxially with the outer cylinder 2.
  • the carrier 4 rotates relative to the outer cylinder 2 around the same axis.
  • the carrier 4 is supported so as to be rotatable relative to the outer cylinder 2 by a pair of carrier bearings 6 that are provided apart from each other in the axial direction.
  • the carrier 4 includes a base portion 4a, an end plate portion 4b, and a plurality of (for example, three) shaft portions 4c.
  • the configuration is not limited to this.
  • the base portion 4 a is disposed on the one end side in the axial direction of the outer cylinder 2 in the outer cylinder 2.
  • a circular through hole 4d is provided in the central portion of the base portion 4a in the radial direction.
  • a plurality of (for example, three) crankshaft mounting holes 4e (hereinafter simply referred to as mounting holes 4e) are provided at equal intervals in the circumferential direction.
  • the three shaft portions 4c are integrally provided on the base portion 4a and linearly extend from the base portion 4a to the end plate portion 4b side.
  • the three shaft portions 4c are arranged at equal intervals in the circumferential direction (see FIG. 2).
  • Each shaft portion 4c is fastened to the end plate portion 4b by a bolt 4h (see FIG. 1). Thereby, the base part 4a, the shaft part 4c, and the end plate part 4b are integrated.
  • the input shaft 8 functions as an input unit to which rotation is input by a drive motor (not shown).
  • the input shaft 8 is inserted into the through hole 4f of the end plate portion 4b and the through hole 4d of the base portion 4a.
  • the input shaft 8 is arranged such that its axis coincides with the axes of the outer cylinder 2 and the carrier 4.
  • the input shaft 8 rotates around that axis.
  • An input gear 8 a is provided on the outer peripheral surface of the distal end portion of the input shaft 8.
  • the three crankshafts 10 are arranged at equal intervals around the input shaft 8 in the outer cylinder 2 (see FIG. 2). Each crankshaft 10 is attached to the corresponding attachment hole 4e of the base portion 4a and the attachment hole 4g of the end plate portion 4b (see FIG. 1). Specifically, the axially inner portion of each crankshaft 10 by a predetermined length from one axial end is mounted in the mounting hole 4e of the base portion 4a via the first crank bearing 12a. On the other hand, the other axial end portion of each crankshaft 10 is mounted in the mounting hole 4g of the end plate portion 4b via the second crank bearing 12b. Each crankshaft 10 is supported by both crank bearings 12a and 12b so as to be rotatable about the axis with respect to the carrier 4.
  • Each crankshaft 10 has a first eccentric portion 10a and a second eccentric portion 10b arranged in the axial direction between portions supported by both crank bearings 12a and 12b.
  • Each of the first eccentric portion 10a and the second eccentric portion 10b has a cylindrical shape.
  • the first eccentric portion 10a and the second eccentric portion 10b are each eccentric from the axis of the crankshaft 10 by a predetermined amount of eccentricity, and are arranged so as to have a phase difference of a predetermined angle.
  • a fitted portion 10c to which the transmission gear 20 is attached is provided at one end of the crankshaft 10, that is, a portion on the outer side in the axial direction from a portion attached in the attachment hole 4e of the base 4a.
  • the first external gear 14 is disposed in the closed space in the outer cylinder 2.
  • the first external gear 14 is attached to the first eccentric portion 10a of each crankshaft 10 via a first roller bearing 18a.
  • first roller bearing 18a When each crankshaft 10 rotates and the first eccentric portion 10a rotates eccentrically, the first external gear 14 swings and rotates while meshing with the internal pin 3 in conjunction with the eccentric rotation.
  • the first external gear 14 has a size slightly smaller than the inner diameter of the outer cylinder 2.
  • the first external gear 14 includes first external teeth 14a, a central through hole 14b, a plurality of (for example, three) first eccentric portion insertion holes 14c, and a plurality of (for example, three). It has a shaft portion insertion hole 14d.
  • the configuration is not limited to this.
  • the central through hole 14 b is provided in the radial center of the first external gear 14.
  • the input shaft 8 is inserted into the central through hole 14b with play.
  • the three first eccentric portion insertion holes 14c are provided at equal intervals in the circumferential direction around the central through hole 14b in the first external gear 14.
  • the first eccentric portion 10a of the corresponding crankshaft 10 is inserted into each first eccentric portion insertion hole 14c with the first roller bearing 18a interposed.
  • the three shaft part insertion holes 14d are provided at equal intervals in the circumferential direction around the central part through hole 14b in the first external gear 14.
  • Each shaft portion insertion hole 14d is disposed at a position between the three first eccentric portion insertion holes 14c in the circumferential direction.
  • the corresponding shaft portion 4c is inserted into each shaft portion insertion hole 14d with play.
  • the detailed structure of the first external teeth 14a will be described later.
  • the second external gear 16 is disposed in the closed space in the outer cylinder 2.
  • the second external gear 16 is attached to the second eccentric portion 10b of each crankshaft 10 via a second roller bearing 18b.
  • the first external gear 14 and the second external gear 16 are provided side by side in the axial direction corresponding to the arrangement of the first eccentric portion 10a and the second eccentric portion 10b.
  • the second external gear 16 rotates and rotates while meshing with the internal tooth pin 3 in conjunction with the eccentric rotation.
  • the second external gear 16 has a size slightly smaller than the inner diameter of the outer cylinder 2.
  • the second external gear 16 includes the second external teeth 16a, the central through hole 16b, a plurality of (for example, three) second eccentric portion insertion holes 16c, and a plurality of (for example, three) shaft portion insertions. It has a hole 16d.
  • the configuration is not limited to this. These have the same structure as the first external teeth 14a, the central through hole 14b, the plurality of first eccentric portion insertion holes 14c, and the plurality of shaft portion insertion holes 14d of the first external gear 14.
  • the second eccentric portion 10b of the corresponding crankshaft 10 is inserted in each second eccentric portion insertion hole 16c with the second roller bearing 18b interposed. The detailed structure of the second external teeth 16a will be described later.
  • Each transmission gear 20 transmits the rotation of the input gear 8a to the corresponding crankshaft 10.
  • Each transmission gear 20 is externally fitted to a fitted portion 10 c provided at one end of the corresponding crankshaft 10.
  • Each transmission gear 20 rotates integrally with the crankshaft 10 about the same axis as the rotation axis of the crankshaft 10.
  • Each transmission gear 20 has external teeth 20a that mesh with the input gear 8a.
  • each internal tooth pin 3 has a substantially cylindrical shape.
  • Each internal tooth pin 3 is formed by cutting and / or polishing a single bar-shaped metal material.
  • the outer peripheral surface of each internal tooth pin 3 is subjected to crowning by cutting and / or polishing.
  • the outer diameter of the axial direction both ends of each internal tooth pin 3 is small compared with the outer diameter of the site
  • Each internal tooth pin 3 has a first reduced diameter portion 31 located at one end in the axial direction, a second reduced diameter portion 32 located at the other end in the axial direction, and these reduced diameter portions 31. , 32 and a columnar part (intermediate part) 33.
  • the first reduced diameter portion 31, the columnar portion 33, and the second reduced diameter portion 32 are integrally formed side by side in this order in the axial direction.
  • the first reduced diameter portion 31, the second reduced diameter portion 32, and the columnar portion 33 have a circular cross section orthogonal to the axial direction.
  • the columnar portion 33 has a cylindrical shape, and the outer diameter thereof is constant in the axial direction.
  • the first reduced diameter portion 31 has a tapered shape.
  • the outer diameter of the first reduced diameter portion 31 is gradually reduced toward one end edge in the axial direction.
  • the second reduced diameter portion 32 has a tapered shape.
  • the outer diameter of the second reduced diameter portion 32 is gradually reduced toward the other end edge in the axial direction. Therefore, in each internal tooth pin 3, the outer diameter of the columnar part 33 is the largest.
  • the outer peripheral surface of the first reduced diameter portion 31 and the outer peripheral surface of the second reduced diameter portion 32 are curved surfaces that are convex outward.
  • the outer peripheral surface of the first reduced diameter portion 31 and the outer peripheral surface of the second reduced diameter portion 32 are smoothly curved toward the respective end edges.
  • the columnar portion 33 is a portion where the first external gear 14 and the second external gear 16 mesh. Specifically, as shown in FIGS. 3 and 4, the portion of the columnar portion 33 on the first reduced diameter portion 31 side from the vicinity of the center in the axial direction is in relation to the first external teeth 14 a of the first external gear 14. The first external teeth 14a mesh with this portion. On the other hand, the portion of the columnar portion 33 on the second reduced diameter portion 32 side from the vicinity of the center in the axial direction is provided at a position facing the second external teeth 16a of the second external gear 16 in the radial direction. The second external teeth 16a mesh with this part.
  • the first reduced diameter portion 31 is provided at a position facing the axially outer end portion of the first external tooth 14a in the radial direction.
  • the second reduced diameter portion 32 is provided at a position facing the axially outer end portion of the second external tooth 16a in the radial direction.
  • the first external teeth 14 a are provided on the outer peripheral surface of the first external gear 14.
  • the tooth surface of the first external tooth 14a has a wave shape that is smoothly continuous over the entire circumferential direction in a cross section orthogonal to the axial direction (cross section shown in FIG. 2).
  • the tooth surface of the first external tooth 14a has a crest located on the radially outer side and a trough located on the radially inner side alternately arranged along the circumferential direction.
  • Each mountain and each valley have a substantially arc shape in a cross section perpendicular to the axial direction.
  • the plurality of peaks and the plurality of valleys form a smooth curved surface as a whole.
  • the boundary between the ridges and valleys adjacent to each other is the tip (peak) of the ridge located on the outermost side and the bottom of the valley located on the innermost side in the radial direction of the first external gear 14. It is the site
  • the number of teeth of the first external teeth 14a is set slightly smaller than the number of internal tooth pins 3. In the present embodiment, the number of teeth of the first external teeth 14 a is set to be one less than the number of internal tooth pins 3. However, the configuration is not limited to this.
  • the second external teeth 16a have the same structure as the first external teeth 14a described above.
  • the first external teeth 14 a mesh with a portion of the internal teeth pin 3 on the first reduced diameter portion 31 side of the columnar portion 33.
  • the second external teeth 16 a mesh with the portion of the columnar portion 33 of the internal tooth pin 3 on the second reduced diameter portion 32 side.
  • the first external teeth 14 a include a first external tooth main body portion 141 and a first processing portion 142.
  • the second external teeth 16 a include a second external tooth main body portion 161 and a second processing portion 162.
  • the first external tooth main body 141 is a part whose tooth surface is parallel to the axial direction.
  • the first external tooth main body portion 141 extends from the boundary portion with the first processing portion 142 to the edge of the tooth surface opposite to the first processing portion 142 in the axial direction.
  • the first external tooth main body 141 opposes the first reduced diameter portion 31 of the internal tooth pin 3 in the radial direction and opposes a part of the columnar portion 33 of the internal tooth pin 3 in the radial direction.
  • a part of the first external tooth main body 141 is located on the second external tooth 16 a side with respect to the first reduced diameter portion 31 of the internal tooth pin 3.
  • the axial length of the first external tooth main body 141 is larger than the axial length of the first processed portion 142.
  • the second external tooth main body 161 is a part whose tooth surface is parallel to the axial direction.
  • the second external tooth main body 161 extends from the boundary portion with the second processed portion 162 to the edge of the tooth surface opposite to the second processed portion 162 in the axial direction.
  • the second external tooth main body 161 is opposed to the second reduced diameter portion 32 of the internal tooth pin 3 in the radial direction, and is opposed to a part of the columnar portion 33 of the internal tooth pin 3 in the radial direction.
  • a part of the second external tooth main body 161 is located closer to the first external tooth 14 a than the second reduced diameter portion 32 of the internal tooth pin 3.
  • the axial length of the second external tooth main body 161 is larger than the axial length of the second processed portion 162.
  • the 2nd process part 162 is a site
  • the 2nd process part 162 is provided over the whole circumferential direction of the 2nd external tooth 16a. That is, the 2nd process part 162 is provided in all the crests and troughs located in a line with the circumferential direction.
  • the second processed portion 162 faces the part of the columnar portion 33 of the internal tooth pin 3 in the radial direction of the internal tooth pin 3.
  • the processing depth in the peak portion and the processing depth in the trough portion may be similar, but are not limited thereto.
  • the processing depth in the peak portion may be larger than the processing depth in the valley portion.
  • tip (peak) of the peak part in the 1st external tooth 14a protrudes to a radial direction outer side so that the contact to the internal tooth pin 3 may be suppressed at the time of the rocking
  • the amount is preferably adjusted. The same applies to the tip of the peak portion of the second external tooth 16a.
  • the first eccentric portion 10a and the second eccentric portion 10b of each crankshaft 10 rotate eccentrically.
  • the first external gear 14 oscillates and rotates while meshing with the portion of the columnar portion 33 of the internal tooth pin 3 on the first reduced diameter portion 31 side.
  • the second external gear 16 swings and rotates while meshing with the portion of the columnar portion 33 of the internal tooth pin 3 on the second reduced diameter portion 32 side.
  • the swing rotation of the first external gear 14 and the second external gear 16 is transmitted to the carrier 4 through each crankshaft 10, and the entire carrier 4 is rotated with respect to the outer cylinder 2 at a speed reduced from the input rotation. Relative rotation.
  • FIG. 5 shows the gear transmission 1 according to the second embodiment of the present invention, and is an enlarged cross-sectional view showing the structure in the vicinity of the meshing portion between the internal tooth pin 3 and the external gears 14 and 16.
  • components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
  • each internal tooth pin 3 includes a first reduced diameter portion 34 and a second reduced diameter portion 35 that are located near the center in the axial direction, and a first reduced diameter portion 34.
  • the first columnar portion 36 is positioned at one outer end portion in the axial direction
  • the second columnar portion 37 is positioned at the other outer end portion in the axial direction than the second reduced diameter portion 35.
  • the first columnar portion 36 has a cylindrical shape, and its outer diameter is constant in the axial direction.
  • the second columnar portion 37 has a cylindrical shape, and the outer diameter thereof is constant in the axial direction.
  • the first reduced diameter portion 34 is processed so as to decrease in diameter from the boundary with the first columnar portion 36 toward the second reduced diameter portion 35 in the axial direction.
  • the second reduced diameter portion 35 is processed so as to reduce the diameter from the boundary with the second columnar portion 37 toward the first reduced diameter portion 34 in the axial direction.
  • the outer peripheral surface of the first reduced diameter portion 34 and the outer peripheral surface of the second reduced diameter portion 35 are curved surfaces that are convex outward.
  • the outer peripheral surface of the first reduced diameter portion 34 and the outer peripheral surface of the second reduced diameter portion 35 are smoothly curved toward each other boundary portion.
  • the outer diameter of each internal tooth pin 3 is the smallest at the boundary between the first reduced diameter portion 34 and the second reduced diameter portion 35.
  • the first processed portion 142 of the first external tooth 14a is provided at an outer end portion located on one outer side in the axial direction of the first external tooth 14a.
  • the 1st process part 142 is a site
  • the second processed portion 162 of the second external tooth 16a is provided at the outer end located on the other outer side in the axial direction of the second external tooth 16a.
  • the 2nd process part 162 is a site
  • the first reduced diameter portion 34, the first processed portion 142, and the second processed portion 162 are not opposed to the radial direction of the internal tooth pin 3.
  • the second reduced diameter portion 35, the first processed portion 142, and the second processed portion 162 are not opposed to the radial direction of the internal tooth pin 3.
  • the first reduced diameter portion 34 is opposed to the end portion (the inner end portion in the axial direction) of the first outer teeth 14a where the first processed portion 142 is not provided in the radial direction of the inner tooth pin 3.
  • the second reduced diameter portion 35 is opposed to the end portion (the inner end portion in the axial direction) of the second outer teeth 16a where the second processed portion 162 is not provided in the radial direction of the inner tooth pin 3. .
  • the first external tooth 14a is provided with the first processed portion 142 at one end, and the second external tooth 16a has either one.
  • the 2nd process part 162 is provided in the edge part.
  • Each internal tooth pin 3 has a first reduced diameter portion at a portion that is radially opposed to an end portion where the first processed portion 142 is not provided and an end portion where the second processed portion 162 is not provided. 31 (34) and a second reduced diameter portion 32 (35) are provided. That is, in order to suppress the occurrence of edge stress between the first external teeth 14a and the second external teeth 16a and the internal tooth pins 3, the first external teeth 14a, the second external teeth 16a and the internal tooth pins In 3, the minimum necessary part is processed.
  • the first embodiment will be specifically described as an example.
  • each internal tooth pin 3 only both end portions 31 and 32 thereof are crowned and the intermediate portion 33 is not crowned.
  • the first external teeth 14a and the second external teeth 14b only the end portions adjacent to each other in the axial direction (the inner end portion of the first outer teeth 14a and the inner end portion of the second external teeth 16a) are crowned. Yes. Thereby, the increase in processing cost can be suppressed, suppressing that the edge stress arises between the 1st external tooth 14a and the 2nd external tooth 16a, and each internal tooth pin 3.
  • the amount of correction (the amount of swelling or the amount of relief in the direction of the tooth trace) needs to be within the tolerance.
  • the crowning position of the inner tooth pin and the crowning position of the outer tooth are opposed to each other in the radial direction.
  • the processing tolerance of 1/2 of the tolerance of the said modification amount is calculated
  • the crowning position of the inner tooth pin and the crowning position of the outer tooth are not opposed in the radial direction. Therefore, the processing tolerances of the first reduced diameter portion 31 (34) and the second reduced diameter portion 32 (35) in the internal tooth pin may be the above-described adjustment amount tolerance. Further, since the processing tolerance is wide, it is not necessary to widen the tolerance range of the crowning amount. Thus, in 1st and 2nd embodiment, there exists an advantage that process management of a process becomes easy compared with the gear transmission described in FIG.
  • the 1st process part 142 is provided in the edge part by the side of the 2nd external tooth 16a among the axial direction both ends in the 1st external tooth 14a, and the 2nd process part 162 is a 2nd external tooth.
  • the first reduced-diameter portion 31 is provided at one end portion in the axial direction of each internal tooth pin 3 and is provided at the end portion on the first outer tooth 14a side of both axial ends of 16a.
  • 32 is provided at the other axial end of each internal tooth pin 3.
  • the diameter-reduced portions 31 and 32 are provided at both axial ends of each internal tooth pin 3, and compared with the case where the diameter-reduced portions 34 and 35 are provided at the axially intermediate portion as in the second embodiment. Processing becomes easier. Thereby, processing cost can be reduced more effectively.
  • part processed into the curved shape so that the tooth surface of the 1st process part 142 and the 2nd process part 162 may be located inside radial direction as it goes to an axial direction edge part was illustrated.
  • the tooth surfaces of the first processing unit 142 and the second processing unit 162 are, for example, inclined surfaces that are inclined at, for example, an acute angle with respect to the axial direction in the cross section shown in FIG. 3 (a cross section parallel to the axial direction). Also good.
  • the input shaft 8 is provided at the center in the radial direction, but the present invention is not limited to this.
  • the input shaft 8 may be provided at a position shifted in the radial direction from the center.
  • crankshafts for example, three crankshafts are provided.
  • one crankshaft may be provided at a radial center.
  • a cable or the like is disposed in the cylinder.
  • the carrier rotates relative to the outer cylinder.
  • the carrier may be fixed and the outer cylinder may be rotated relative to the carrier, or the outer cylinder may be fixed and the carrier may be rotated relative to the outer cylinder. .
  • the gear transmission is An outer cylinder having an inner peripheral surface in which a plurality of pin grooves extending in the axial direction are provided at predetermined intervals in the circumferential direction; A plurality of internal teeth pins arranged in each of the plurality of pin grooves; A crankshaft having a first eccentric portion and a second eccentric portion arranged side by side in the axial direction with a predetermined phase difference from each other, and provided to be rotatable around the axis in the outer cylinder; It has an outer peripheral surface provided with first external teeth, is attached to the first eccentric portion, and swings in conjunction with the eccentric rotation of the first eccentric portion while the first external teeth mesh with the internal tooth pin.
  • a rotating first external gear It has an outer peripheral surface provided with second external teeth, is attached to the second eccentric portion, and swings in conjunction with the eccentric rotation of the second eccentric portion while the second external teeth mesh with the internal tooth pin.
  • a rotating second external gear A carrier that rotates relative to the outer cylinder by transmitting the swinging rotation of the first external gear and the second external gear.
  • the first external tooth has a first processed portion at one end in the axial direction.
  • the tooth surface of the first processed portion is processed so as to be located radially inward as it goes toward the axial end of the tooth surface.
  • the second external tooth has a second processed portion at one end portion in the axial direction.
  • the tooth surface of the second processed portion is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface.
  • the first processed portion is provided at any one end of the first external teeth
  • the second processed portion is provided at any one end of the second external teeth.
  • Each internal tooth pin has a first reduced diameter portion and a second reduced diameter portion at a portion that is radially opposed to an end portion where the first processed portion is not provided and an end portion where the second processed portion is not provided.
  • Each of the reduced diameter portions is provided. That is, in order to suppress the occurrence of edge stress between the first external tooth and the second external tooth and each internal tooth pin, the minimum necessary amount in each of the first external tooth, the second external tooth, and each internal tooth pin. Processing is applied to the limited part. Thereby, increase in processing cost can be suppressed, suppressing that an edge stress arises between the 1st external tooth and the 2nd external tooth, and each internal tooth pin.
  • a reduced diameter portion is provided at each axial end of each internal tooth pin.
  • the machining becomes easier as compared with the case where the reduced diameter portion is provided in the axially intermediate portion of the internal tooth pin, so that the machining cost can be reduced more effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

First outer teeth (14a) each have a first machined section (142) at one of the ends thereof, and the tooth surface of the first machined section (142) is machined so that the tooth surface extends inward in the radial direction as the tooth surface extends toward an end thereof in the axial direction. Second teeth (16a) each have a machined section (162) at one of the ends thereof, and the tooth surface of the second machined section (162) is machined so that the tooth surface extends inward in the radial direction as the tooth surface extends toward an end thereof in the axial direction. Inner tooth pins (3) are each provided with: a first reduced diameter section (31) provided at the portion of the inner tooth pin (3) which corresponds in the radial direction to an end of each of the first outer teeth (14a), the end being on the side on which the first machined section (142) is not provided; and a second reduced diameter section (32) provided at the portion of the inner tooth pin (3) which corresponds in the radial direction to an end of each of the second outer teeth (16a), the end being on the side on which the second machined section (162) is not provided.

Description

歯車伝動装置Gear transmission
 本発明は、歯車伝動装置に関する。 The present invention relates to a gear transmission.
 従来、内歯歯車の内歯ピンに噛み合う外歯歯車をクランク軸の偏心部の偏心回転に連動させて揺動回転させることにより入力回転数に対して減速した出力回転を得る偏心揺動型の歯車伝動装置が知られている(例えば、特許文献1参照)。 Conventionally, an eccentric oscillating type that obtains an output rotation that is decelerated with respect to the input rotational speed by oscillating and rotating an external gear that meshes with an internal tooth pin of an internal gear in conjunction with the eccentric rotation of the eccentric part of the crankshaft. A gear transmission is known (see, for example, Patent Document 1).
 特許文献1に記載の歯車伝動装置では、2枚の外歯歯車に噛み合う複数の内歯ピンが設けられている。各内歯ピンは、第1噛合部と、第2噛合部と、これらを連結する連結部とを有している。各噛合部の軸方向両端部は、クラウニング加工されている(特許文献1の図3、図6)。これにより、各外歯歯車の歯面と、内歯ピンの各噛合部における軸方向両端部の外周面との間で生じるエッジ応力が低減される。また、特許文献1の図7では、内歯ピンだけでなく、各外歯歯車の両端部の歯面もクラウニング加工されている。これにより、各外歯歯車の両端部の歯面と、内歯ピンの各噛合部の軸方向両端部の外周面との間で生じるエッジ応力がさらに低減される。 The gear transmission described in Patent Document 1 is provided with a plurality of internal teeth pins that mesh with two external gears. Each internal tooth pin has the 1st meshing part, the 2nd meshing part, and the connection part which connects these. Both ends in the axial direction of each meshing portion are subjected to crowning processing (FIGS. 3 and 6 of Patent Document 1). Thereby, the edge stress which arises between the tooth surface of each external gear and the outer peripheral surface of the axial direction both ends in each meshing part of an internal tooth pin is reduced. Moreover, in FIG. 7 of patent document 1, not only an internal tooth pin but the tooth surface of the both ends of each external gear is also crowned. Thereby, the edge stress which arises between the tooth surface of the both ends of each external gear and the outer peripheral surface of the axial direction both ends of each meshing part of an internal tooth pin is further reduced.
 しかしながら、特許文献1の図3及び図6に記載の歯車伝動装置では、各内歯ピンにおける第1噛合部の両端部がクラウニング加工され、第2噛合部の両端部がクラウニング加工され、これらの噛合部が連結部によって連結される工程が必要であるので、コストアップにつながるという問題がある。これに加えて、特許文献1の図7に示されているように、各外歯歯車の両端部がクラウニング加工される場合には、クラウニング加工に要する工数がさらに増加してコストアップする。 However, in the gear transmission shown in FIG. 3 and FIG. 6 of Patent Document 1, both ends of the first meshing portion of each internal tooth pin are crowned, and both ends of the second meshing portion are crowned. Since a process in which the meshing portion is connected by the connecting portion is necessary, there is a problem that the cost is increased. In addition to this, when both ends of each external gear are subjected to crowning as shown in FIG. 7 of Patent Document 1, the number of man-hours required for crowning is further increased and the cost is increased.
特開2009-293650号公報JP 2009-293650 A
 本発明の目的は、外歯歯車及び内歯ピンの間でエッジ応力が生じるのを抑制しつつ、コストアップを抑制できる歯車伝動装置を提供することである。 An object of the present invention is to provide a gear transmission that can suppress an increase in cost while suppressing generation of edge stress between an external gear and an internal tooth pin.
 本発明に係る歯車伝動装置は、
 軸方向に延びる複数のピン溝が周方向に所定間隔で設けられた内周面を有する外筒と、
 前記複数のピン溝のそれぞれに配置された複数の内歯ピンと、
 互いに所定の位相差をもって前記軸方向に並んで配置された第1偏心部と第2偏心部を有し、前記外筒内において軸回りに回転可能に設けられたクランク軸と、
 第1外歯が設けられた外周面を有し、前記第1偏心部に取り付けられ、前記内歯ピンに前記第1外歯が噛み合いながら前記第1偏心部の偏心回転に連動して揺動回転する第1外歯歯車と、
 第2外歯が設けられた外周面を有し、前記第2偏心部に取り付けられ、前記内歯ピンに前記第2外歯が噛み合いながら前記第2偏心部の偏心回転に連動して揺動回転する第2外歯歯車と、
 前記第1外歯歯車及び前記第2外歯歯車の揺動回転が伝達されることにより前記外筒に対して相対回転するキャリアと、を備えている。
The gear transmission according to the present invention is
An outer cylinder having an inner peripheral surface in which a plurality of pin grooves extending in the axial direction are provided at predetermined intervals in the circumferential direction;
A plurality of internal teeth pins arranged in each of the plurality of pin grooves;
A crankshaft having a first eccentric portion and a second eccentric portion arranged side by side in the axial direction with a predetermined phase difference from each other, and provided to be rotatable around the axis in the outer cylinder;
It has an outer peripheral surface provided with first external teeth, is attached to the first eccentric portion, and swings in conjunction with the eccentric rotation of the first eccentric portion while the first external teeth mesh with the internal tooth pin. A rotating first external gear;
It has an outer peripheral surface provided with second external teeth, is attached to the second eccentric portion, and swings in conjunction with the eccentric rotation of the second eccentric portion while the second external teeth mesh with the internal tooth pin. A rotating second external gear,
A carrier that rotates relative to the outer cylinder by transmitting the swinging rotation of the first external gear and the second external gear.
 前記第1外歯は、前記軸方向のいずれか一方の端部に第1加工部を有する。前記第1加工部の歯面は、その歯面の軸方向の端部に向かうにつれて径方向内側に位置するように加工されている。前記第2外歯は、前記軸方向のいずれか一方の端部に第2加工部を有する。前記第2加工部の歯面は、その歯面の軸方向の端部に向かうにつれて径方向内側に位置するように加工されている。 The first external tooth has a first processed portion at one end in the axial direction. The tooth surface of the first processed portion is processed so as to be located radially inward as it goes toward the axial end of the tooth surface. The second external tooth has a second processed portion at one end portion in the axial direction. The tooth surface of the second processed portion is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface.
 各内歯ピンは、第1縮径部と、第2縮径部とを有する。前記第1縮径部は、前記第1加工部が設けられていない側の前記第1外歯の端部に対して径方向に対向する部位が軸方向に向かうにつれて縮径するように加工されている。前記第2縮径部は、前記第2加工部が設けられていない側の前記第2外歯の端部に対して径方向に対向する部位が軸方向に向かうにつれて縮径するように加工されている。 Each internal tooth pin has a first reduced diameter portion and a second reduced diameter portion. The first reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the first external tooth on the side where the first processed portion is not provided decreases in the axial direction. ing. The second reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the second external tooth on the side where the second processed portion is not provided decreases in the axial direction. ing.
本発明の第1実施形態に係る歯車伝動装置を示す断面図である。It is sectional drawing which shows the gear transmission which concerns on 1st Embodiment of this invention. 図1におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図1に示す歯車伝動装置における内歯ピンと外歯歯車との噛み合い部分近傍の構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the meshing part vicinity of the internal gear pin and external gear in the gear transmission shown in FIG. 図1に示す歯車伝動装置における内歯ピンと外歯歯車との噛み合い部分近傍の構造を説明するための拡大斜視図であり、前記構造の一部を破断させた図である。It is the expansion perspective view for demonstrating the structure of the meshing part vicinity of the internal gear pin and external gear in the gear transmission shown in FIG. 1, and is the figure which fractured | ruptured a part of the said structure. 本発明の第2実施形態に係る歯車伝動装置を示しており、内歯ピンと外歯歯車との噛み合い部分近傍の構造を示す拡大断面図である。The gear transmission which concerns on 2nd Embodiment of this invention is shown, It is an expanded sectional view which shows the structure of the meshing part vicinity of an internal gear pin and an external gear.
 以下、本発明の実施形態に係る歯車伝動装置1について図面を参照して詳細に説明する。歯車伝動装置1は、例えばロボットの旋回胴や腕関節等の旋回部、各種工作機械の旋回部等に減速機として適用される。 Hereinafter, the gear transmission 1 according to the embodiment of the present invention will be described in detail with reference to the drawings. The gear transmission 1 is applied as a speed reducer to, for example, a turning unit such as a turning drum or arm joint of a robot, or a turning unit of various machine tools.
 <第1実施形態>
 (歯車伝動装置の全体構造)
 第1実施形態に係る歯車伝動装置1では、クランク軸10の第1偏心部10aに連動して第1外歯歯車14が揺動回転するとともにクランク軸10の第2偏心部10bに連動して第2外歯歯車16が揺動回転することにより、入力された回転数よりも減速した出力回転が得られる。
<First Embodiment>
(Whole structure of gear transmission)
In the gear transmission 1 according to the first embodiment, the first external gear 14 swings and rotates in conjunction with the first eccentric portion 10a of the crankshaft 10, and in conjunction with the second eccentric portion 10b of the crankshaft 10. By rotating the second external gear 16 in an oscillating manner, an output rotation decelerated from the input rotational speed is obtained.
 図1に示すように、歯車伝動装置1は、外筒2と、多数の内歯ピン3と、キャリア4と、入力軸8と、複数(例えば3つ)のクランク軸10と、第1外歯歯車14と、第2外歯歯車16と、複数(例えば3つ)の伝達歯車20とを備えている。 As shown in FIG. 1, the gear transmission 1 includes an outer cylinder 2, a large number of internal tooth pins 3, a carrier 4, an input shaft 8, a plurality of (for example, three) crankshafts 10, and a first outer shaft. The tooth gear 14, the second external gear 16, and a plurality of (for example, three) transmission gears 20 are provided.
 図2に示すように、外筒2は、歯車伝動装置1の外面を構成するものであり、略円筒形状を有している。外筒2の内周面には、多数のピン溝2bが形成されている。各ピン溝2bは、外筒2の軸方向に延びているとともに、軸方向に直交する断面において半円形の断面形状を有している。これらのピン溝2bは、外筒2の内周面において周方向に等間隔で並んでいる。 As shown in FIG. 2, the outer cylinder 2 constitutes the outer surface of the gear transmission 1 and has a substantially cylindrical shape. A large number of pin grooves 2 b are formed on the inner peripheral surface of the outer cylinder 2. Each pin groove 2b extends in the axial direction of the outer cylinder 2, and has a semicircular cross-sectional shape in a cross section orthogonal to the axial direction. These pin grooves 2 b are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the outer cylinder 2.
 各内歯ピン3は、対応するピン溝2bに取り付けられている。具体的に、各内歯ピン3は、対応するピン溝2bにそれぞれ嵌め込まれている。各内歯ピン3の軸方向は、外筒2の軸方向に沿って延びている。これにより、多数の内歯ピン3は、外筒2の周方向に沿って等間隔で並んでいる。ピン溝2bにおいて、各内歯ピン3はその軸回りに回転可能である。これらの内歯ピン3には、第1外歯歯車14及び第2外歯歯車16が噛み合う。内歯ピン3の詳細な構造については後述する。 Each internal tooth pin 3 is attached to a corresponding pin groove 2b. Specifically, each internal tooth pin 3 is fitted in the corresponding pin groove 2b. The axial direction of each internal tooth pin 3 extends along the axial direction of the outer cylinder 2. Thereby, the many internal tooth pins 3 are arranged at equal intervals along the circumferential direction of the outer cylinder 2. In the pin groove 2b, each internal tooth pin 3 can rotate around its axis. The first external gear 14 and the second external gear 16 mesh with these internal teeth pins 3. The detailed structure of the internal tooth pin 3 will be described later.
 図1に示すように、キャリア4は、外筒2と同軸上に配置された状態でその外筒2内に収容されている。キャリア4は、外筒2に対して同じ軸回りに相対回転する。具体的に、キャリア4は、軸方向に互いに離間して設けられた一対のキャリア軸受6によって外筒2に対して相対回転可能に支持されている。本実施形態では、キャリア4は、基部4aと、端板部4bと、複数(例えば3つ)のシャフト部4cとを備えている。しかしながら、この構成に限られない。 As shown in FIG. 1, the carrier 4 is accommodated in the outer cylinder 2 in a state of being arranged coaxially with the outer cylinder 2. The carrier 4 rotates relative to the outer cylinder 2 around the same axis. Specifically, the carrier 4 is supported so as to be rotatable relative to the outer cylinder 2 by a pair of carrier bearings 6 that are provided apart from each other in the axial direction. In the present embodiment, the carrier 4 includes a base portion 4a, an end plate portion 4b, and a plurality of (for example, three) shaft portions 4c. However, the configuration is not limited to this.
 基部4aは、外筒2内において外筒2の軸方向の一端部側に配置されている。この基部4aの径方向中央部には円形の貫通孔4dが設けられている。貫通孔4dの周囲には、複数(例えば3つ)のクランク軸取付孔4e(以下、単に取付孔4eという)が周方向に等間隔で設けられている。 The base portion 4 a is disposed on the one end side in the axial direction of the outer cylinder 2 in the outer cylinder 2. A circular through hole 4d is provided in the central portion of the base portion 4a in the radial direction. Around the through hole 4d, a plurality of (for example, three) crankshaft mounting holes 4e (hereinafter simply referred to as mounting holes 4e) are provided at equal intervals in the circumferential direction.
 端板部4bは、基部4aに対して軸方向に離間して設けられており、外筒2内において外筒2の軸方向の他端部側に配置されている。端板部4bの径方向中央部には貫通孔4fが設けられている。貫通孔4fの周囲には、複数(例えば3つ)のクランク軸取付孔4g(以下、単に取付孔4gという)が基部4aの複数の取付孔4eと対応する位置に設けられている。外筒2内には、端板部4bと基部4aの互いに対向する双方の内面と、外筒2の内周面とによって囲まれた閉空間が形成されている。 The end plate portion 4 b is provided to be spaced apart from the base portion 4 a in the axial direction, and is disposed inside the outer cylinder 2 on the other end side in the axial direction of the outer cylinder 2. A through hole 4f is provided at the radial center of the end plate portion 4b. Around the through hole 4f, a plurality of (for example, three) crankshaft mounting holes 4g (hereinafter simply referred to as mounting holes 4g) are provided at positions corresponding to the plurality of mounting holes 4e of the base portion 4a. In the outer cylinder 2, a closed space surrounded by both inner surfaces of the end plate portion 4 b and the base portion 4 a facing each other and the inner peripheral surface of the outer cylinder 2 is formed.
 3つのシャフト部4cは、基部4aに一体的に設けられており、基部4aから端板部4b側へ直線的に延びている。この3つのシャフト部4cは、周方向に等間隔で配設されている(図2参照)。各シャフト部4cは、端板部4bにボルト4hによって締結されている(図1参照)。これにより、基部4a、シャフト部4c及び端板部4bが一体化されている。 The three shaft portions 4c are integrally provided on the base portion 4a and linearly extend from the base portion 4a to the end plate portion 4b side. The three shaft portions 4c are arranged at equal intervals in the circumferential direction (see FIG. 2). Each shaft portion 4c is fastened to the end plate portion 4b by a bolt 4h (see FIG. 1). Thereby, the base part 4a, the shaft part 4c, and the end plate part 4b are integrated.
 入力軸8は、図略の駆動モータによって回転が入力される入力部として機能する。入力軸8は、端板部4bの貫通孔4f及び前記基部4aの貫通孔4dに挿入されている。入力軸8は、その軸心が外筒2及びキャリア4の軸心と一致するように配置されている。入力軸8は、その軸回りに回転する。入力軸8の先端部の外周面には入力ギア8aが設けられている。 The input shaft 8 functions as an input unit to which rotation is input by a drive motor (not shown). The input shaft 8 is inserted into the through hole 4f of the end plate portion 4b and the through hole 4d of the base portion 4a. The input shaft 8 is arranged such that its axis coincides with the axes of the outer cylinder 2 and the carrier 4. The input shaft 8 rotates around that axis. An input gear 8 a is provided on the outer peripheral surface of the distal end portion of the input shaft 8.
 3つのクランク軸10は、外筒2内において入力軸8の周囲に等間隔で配置されている(図2参照)。各クランク軸10は、対応する基部4aの取付孔4eと端板部4bの取付孔4gにそれぞれ取り付けられている(図1参照)。具体的に、各クランク軸10の軸方向の一端から所定長さだけ軸方向内側の部分は、基部4aの取付孔4e内に第1クランク軸受12aを介して取り付けられている。一方、各クランク軸10の軸方向の他端部は、端板部4bの取付孔4g内に第2クランク軸受12bを介して取り付けられている。各クランク軸10は、両クランク軸受12a,12bによりキャリア4に対して軸回りに回転可能に支持されている。 The three crankshafts 10 are arranged at equal intervals around the input shaft 8 in the outer cylinder 2 (see FIG. 2). Each crankshaft 10 is attached to the corresponding attachment hole 4e of the base portion 4a and the attachment hole 4g of the end plate portion 4b (see FIG. 1). Specifically, the axially inner portion of each crankshaft 10 by a predetermined length from one axial end is mounted in the mounting hole 4e of the base portion 4a via the first crank bearing 12a. On the other hand, the other axial end portion of each crankshaft 10 is mounted in the mounting hole 4g of the end plate portion 4b via the second crank bearing 12b. Each crankshaft 10 is supported by both crank bearings 12a and 12b so as to be rotatable about the axis with respect to the carrier 4.
 各クランク軸10は、両クランク軸受12a,12bによって支持された部分の間に軸方向に並んで配置された第1偏心部10aと第2偏心部10bとを有する。第1偏心部10aと第2偏心部10bは、それぞれ円柱形状を有している。第1偏心部10aと第2偏心部10bは、それぞれクランク軸10の軸心から所定の偏心量で偏心しており、互いに所定角度の位相差を有するように配置されている。また、クランク軸10の一端部、すなわち、基部4aの取付孔4e内に取り付けられる部分よりも軸方向外側の部位には、伝達歯車20が取り付けられる被嵌合部10cが設けられている。 Each crankshaft 10 has a first eccentric portion 10a and a second eccentric portion 10b arranged in the axial direction between portions supported by both crank bearings 12a and 12b. Each of the first eccentric portion 10a and the second eccentric portion 10b has a cylindrical shape. The first eccentric portion 10a and the second eccentric portion 10b are each eccentric from the axis of the crankshaft 10 by a predetermined amount of eccentricity, and are arranged so as to have a phase difference of a predetermined angle. In addition, a fitted portion 10c to which the transmission gear 20 is attached is provided at one end of the crankshaft 10, that is, a portion on the outer side in the axial direction from a portion attached in the attachment hole 4e of the base 4a.
 図1及び図2に示すように、第1外歯歯車14は、外筒2内の前記閉空間に配設されている。第1外歯歯車14は、各クランク軸10の第1偏心部10aに第1ころ軸受18aを介して取り付けられている。第1外歯歯車14は、各クランク軸10が回転して第1偏心部10aが偏心回転すると、この偏心回転に連動して内歯ピン3に噛み合いながら揺動回転する。 As shown in FIGS. 1 and 2, the first external gear 14 is disposed in the closed space in the outer cylinder 2. The first external gear 14 is attached to the first eccentric portion 10a of each crankshaft 10 via a first roller bearing 18a. When each crankshaft 10 rotates and the first eccentric portion 10a rotates eccentrically, the first external gear 14 swings and rotates while meshing with the internal pin 3 in conjunction with the eccentric rotation.
 第1外歯歯車14は、外筒2の内径よりも少し小さい大きさを有している。本実施形態では、第1外歯歯車14は、第1外歯14aと、中央部貫通孔14bと、複数(例えば3つ)の第1偏心部挿通孔14cと、複数(例えば3つ)のシャフト部挿通孔14dとを有している。しかしながら、この構成に限られない。 The first external gear 14 has a size slightly smaller than the inner diameter of the outer cylinder 2. In the present embodiment, the first external gear 14 includes first external teeth 14a, a central through hole 14b, a plurality of (for example, three) first eccentric portion insertion holes 14c, and a plurality of (for example, three). It has a shaft portion insertion hole 14d. However, the configuration is not limited to this.
 図2に示すように、中央部貫通孔14bは、第1外歯歯車14の径方向中央部に設けられている。中央部貫通孔14bには、入力軸8が遊びを持った状態で挿通されている。 As shown in FIG. 2, the central through hole 14 b is provided in the radial center of the first external gear 14. The input shaft 8 is inserted into the central through hole 14b with play.
 3つの第1偏心部挿通孔14cは、第1外歯歯車14において中央部貫通孔14bの周囲に周方向に等間隔で設けられている。各第1偏心部挿通孔14cには、第1ころ軸受18aが介装された状態で対応するクランク軸10の第1偏心部10aが挿通されている。 The three first eccentric portion insertion holes 14c are provided at equal intervals in the circumferential direction around the central through hole 14b in the first external gear 14. The first eccentric portion 10a of the corresponding crankshaft 10 is inserted into each first eccentric portion insertion hole 14c with the first roller bearing 18a interposed.
 3つのシャフト部挿通孔14dは、第1外歯歯車14において中央部貫通孔14bの周りに周方向に等間隔で設けられている。各シャフト部挿通孔14dは、周方向において、3つの第1偏心部挿通孔14c間の位置にそれぞれ配設されている。各シャフト部挿通孔14dには、対応するシャフト部4cが遊びを持った状態で挿通されている。第1外歯14aの詳細な構造については後述する。 The three shaft part insertion holes 14d are provided at equal intervals in the circumferential direction around the central part through hole 14b in the first external gear 14. Each shaft portion insertion hole 14d is disposed at a position between the three first eccentric portion insertion holes 14c in the circumferential direction. The corresponding shaft portion 4c is inserted into each shaft portion insertion hole 14d with play. The detailed structure of the first external teeth 14a will be described later.
 第2外歯歯車16は、外筒2内の前記閉空間に配設されている。第2外歯歯車16は、各クランク軸10の第2偏心部10bに第2ころ軸受18bを介して取り付けられている。第1外歯歯車14とこの第2外歯歯車16は、第1偏心部10aと第2偏心部10bの配置に対応して軸方向に並んで設けられている。第2外歯歯車16は、各クランク軸10が回転して第2偏心部10bが偏心回転すると、この偏心回転に連動して内歯ピン3に噛み合いながら揺動回転する。 The second external gear 16 is disposed in the closed space in the outer cylinder 2. The second external gear 16 is attached to the second eccentric portion 10b of each crankshaft 10 via a second roller bearing 18b. The first external gear 14 and the second external gear 16 are provided side by side in the axial direction corresponding to the arrangement of the first eccentric portion 10a and the second eccentric portion 10b. When each crankshaft 10 rotates and the second eccentric portion 10b rotates eccentrically, the second external gear 16 rotates and rotates while meshing with the internal tooth pin 3 in conjunction with the eccentric rotation.
 第2外歯歯車16は、外筒2の内径よりも少し小さい大きさを有している。本実施形態では、第2外歯歯車16は、第2外歯16a、中央部貫通孔16b、複数(例えば3つ)の第2偏心部挿通孔16c及び複数(例えば3つ)のシャフト部挿通孔16dを有している。しかしながら、この構成に限られない。これらは、第1外歯歯車14の第1外歯14a、中央部貫通孔14b、複数の第1偏心部挿通孔14c及び複数のシャフト部挿通孔14dと同様の構造を有している。各第2偏心部挿通孔16cには、第2ころ軸受18bが介装された状態で対応するクランク軸10の第2偏心部10bが挿通されている。第2外歯16aの詳細な構造については後述する。 The second external gear 16 has a size slightly smaller than the inner diameter of the outer cylinder 2. In the present embodiment, the second external gear 16 includes the second external teeth 16a, the central through hole 16b, a plurality of (for example, three) second eccentric portion insertion holes 16c, and a plurality of (for example, three) shaft portion insertions. It has a hole 16d. However, the configuration is not limited to this. These have the same structure as the first external teeth 14a, the central through hole 14b, the plurality of first eccentric portion insertion holes 14c, and the plurality of shaft portion insertion holes 14d of the first external gear 14. The second eccentric portion 10b of the corresponding crankshaft 10 is inserted in each second eccentric portion insertion hole 16c with the second roller bearing 18b interposed. The detailed structure of the second external teeth 16a will be described later.
 各伝達歯車20は、入力ギア8aの回転を対応するクランク軸10に伝達する。各伝達歯車20は、対応するクランク軸10の一端部に設けられた被嵌合部10cに外嵌されている。各伝達歯車20は、クランク軸10の回転軸と同じ軸回りにこのクランク軸10と一体的に回転する。各伝達歯車20は、入力ギア8aと噛み合う外歯20aを有している。 Each transmission gear 20 transmits the rotation of the input gear 8a to the corresponding crankshaft 10. Each transmission gear 20 is externally fitted to a fitted portion 10 c provided at one end of the corresponding crankshaft 10. Each transmission gear 20 rotates integrally with the crankshaft 10 about the same axis as the rotation axis of the crankshaft 10. Each transmission gear 20 has external teeth 20a that mesh with the input gear 8a.
 (内歯ピンの構造)
 図2~図4に示すように、各内歯ピン3は、略円柱形状を有している。各内歯ピン3は、単一の棒状の金属材を切削及び/又は研磨することによって形成されている。本実施形態では、各内歯ピン3の外周面に切削及び/又は研磨によるクラウニング加工が施されている。これにより、各内歯ピン3の軸方向両端部の外径は、これらの間の部位の外径に比べて小さい。具体的には次の通りである。
(Internal tooth pin structure)
As shown in FIGS. 2 to 4, each internal tooth pin 3 has a substantially cylindrical shape. Each internal tooth pin 3 is formed by cutting and / or polishing a single bar-shaped metal material. In the present embodiment, the outer peripheral surface of each internal tooth pin 3 is subjected to crowning by cutting and / or polishing. Thereby, the outer diameter of the axial direction both ends of each internal tooth pin 3 is small compared with the outer diameter of the site | part between these. Specifically, it is as follows.
 各内歯ピン3は、その軸方向の一方の端部に位置する第1縮径部31と、軸方向の他方の端部に位置する第2縮径部32と、これらの縮径部31,32の間に位置する柱状部(中間部)33とを有する。各内歯ピン3において、第1縮径部31、柱状部33及び第2縮径部32は、この順番で軸方向に並んで一体的に形成されている。第1縮径部31、第2縮径部32及び柱状部33は、軸方向に直交する断面が円形である。 Each internal tooth pin 3 has a first reduced diameter portion 31 located at one end in the axial direction, a second reduced diameter portion 32 located at the other end in the axial direction, and these reduced diameter portions 31. , 32 and a columnar part (intermediate part) 33. In each internal tooth pin 3, the first reduced diameter portion 31, the columnar portion 33, and the second reduced diameter portion 32 are integrally formed side by side in this order in the axial direction. The first reduced diameter portion 31, the second reduced diameter portion 32, and the columnar portion 33 have a circular cross section orthogonal to the axial direction.
 柱状部33は、円柱形状を有しており、その外径は、軸方向において一定である。第1縮径部31は、テーパー形状を有している。第1縮径部31の外径は、軸方向の一方の端縁に向かうにつれて次第に小さくなっている。第2縮径部32は、テーパー形状を有している。第2縮径部32の外径は、軸方向の他方の端縁に向かうにつれて次第に小さくなっている。したがって、各内歯ピン3では、柱状部33の外径が最も大きい。第1縮径部31の外周面及び第2縮径部32の外周面は、外側に凸の湾曲面である。第1縮径部31の外周面及び第2縮径部32の外周面は、それぞれの端縁に向かって滑らかに湾曲している。 The columnar portion 33 has a cylindrical shape, and the outer diameter thereof is constant in the axial direction. The first reduced diameter portion 31 has a tapered shape. The outer diameter of the first reduced diameter portion 31 is gradually reduced toward one end edge in the axial direction. The second reduced diameter portion 32 has a tapered shape. The outer diameter of the second reduced diameter portion 32 is gradually reduced toward the other end edge in the axial direction. Therefore, in each internal tooth pin 3, the outer diameter of the columnar part 33 is the largest. The outer peripheral surface of the first reduced diameter portion 31 and the outer peripheral surface of the second reduced diameter portion 32 are curved surfaces that are convex outward. The outer peripheral surface of the first reduced diameter portion 31 and the outer peripheral surface of the second reduced diameter portion 32 are smoothly curved toward the respective end edges.
 柱状部33は、第1外歯歯車14及び第2外歯歯車16が噛み合う部分である。具体的に、図3及び図4に示すように、柱状部33における軸方向の中央付近から第1縮径部31側の部位は、第1外歯歯車14の第1外歯14aに対して径方向に対向する位置に設けられており、この部位には第1外歯14aが噛み合う。一方、柱状部33における軸方向の中央付近から第2縮径部32側の部位は、第2外歯歯車16の第2外歯16aに対して径方向に対向する位置に設けられており、この部位には第2外歯16aが噛み合う。 The columnar portion 33 is a portion where the first external gear 14 and the second external gear 16 mesh. Specifically, as shown in FIGS. 3 and 4, the portion of the columnar portion 33 on the first reduced diameter portion 31 side from the vicinity of the center in the axial direction is in relation to the first external teeth 14 a of the first external gear 14. The first external teeth 14a mesh with this portion. On the other hand, the portion of the columnar portion 33 on the second reduced diameter portion 32 side from the vicinity of the center in the axial direction is provided at a position facing the second external teeth 16a of the second external gear 16 in the radial direction. The second external teeth 16a mesh with this part.
 第1縮径部31は、第1外歯14aの軸方向外側端部に対して径方向に対向する位置に設けられている。第2縮径部32は、第2外歯16aの軸方向外側端部に対して径方向に対向する位置に設けられている。 The first reduced diameter portion 31 is provided at a position facing the axially outer end portion of the first external tooth 14a in the radial direction. The second reduced diameter portion 32 is provided at a position facing the axially outer end portion of the second external tooth 16a in the radial direction.
 (外歯の構造)
 図2に示すように、第1外歯14aは、第1外歯歯車14の外周面に設けられている。第1外歯14aの歯面は、軸方向に直交する断面(図2に示す断面)において、周方向全体にわたって滑らかに連続する波形状を有している。すなわち、第1外歯14aの歯面は、径方向外側に位置する山部と、径方向内側に位置する谷部とが周方向に沿って交互に並んでいる。
(External tooth structure)
As shown in FIG. 2, the first external teeth 14 a are provided on the outer peripheral surface of the first external gear 14. The tooth surface of the first external tooth 14a has a wave shape that is smoothly continuous over the entire circumferential direction in a cross section orthogonal to the axial direction (cross section shown in FIG. 2). In other words, the tooth surface of the first external tooth 14a has a crest located on the radially outer side and a trough located on the radially inner side alternately arranged along the circumferential direction.
 各山部及び各谷部は、軸方向に直交する断面において略円弧形状を有している。複数の山部と複数の谷部とは、全体として滑らかな曲面を形成している。ここで、互いに隣り合う山部と谷部の境界は、第1外歯歯車14の径方向において、最も外側に位置する山部の先端(峰)と、最も内側に位置する谷部の底との真ん中に位置する歯面上の部位である。 Each mountain and each valley have a substantially arc shape in a cross section perpendicular to the axial direction. The plurality of peaks and the plurality of valleys form a smooth curved surface as a whole. Here, the boundary between the ridges and valleys adjacent to each other is the tip (peak) of the ridge located on the outermost side and the bottom of the valley located on the innermost side in the radial direction of the first external gear 14. It is the site | part on the tooth surface located in the middle of this.
 第1外歯14aの歯数は、内歯ピン3の数よりも若干少なく設定されている。本実施形態では、第1外歯14aの歯数は、内歯ピン3の数よりも1つ少なく設定されている。しかしながら、この構成に限られない。第2外歯16aは、上述した第1外歯14aと同様の構造を有している。 The number of teeth of the first external teeth 14a is set slightly smaller than the number of internal tooth pins 3. In the present embodiment, the number of teeth of the first external teeth 14 a is set to be one less than the number of internal tooth pins 3. However, the configuration is not limited to this. The second external teeth 16a have the same structure as the first external teeth 14a described above.
 図3及び図4に示すように、第1外歯14aは、内歯ピン3における柱状部33の第1縮径部31側の部位に噛み合う。第2外歯16aは、内歯ピン3における柱状部33の第2縮径部32側の部位に噛み合う。第1外歯14aは、第1外歯本体部141と、第1加工部142とを有している。第2外歯16aは、第2外歯本体部161と、第2加工部162とを有している。 As shown in FIGS. 3 and 4, the first external teeth 14 a mesh with a portion of the internal teeth pin 3 on the first reduced diameter portion 31 side of the columnar portion 33. The second external teeth 16 a mesh with the portion of the columnar portion 33 of the internal tooth pin 3 on the second reduced diameter portion 32 side. The first external teeth 14 a include a first external tooth main body portion 141 and a first processing portion 142. The second external teeth 16 a include a second external tooth main body portion 161 and a second processing portion 162.
 第1外歯本体部141は、その歯面が軸方向に対して平行な部位である。第1外歯本体部141は、軸方向において、第1加工部142との境界部分から第1加工部142とは反対側の歯面の端縁まで延びている。第1外歯本体部141は、内歯ピン3の第1縮径部31と径方向に対向しているとともに、内歯ピン3の柱状部33の一部と径方向に対向している。軸方向において、第1外歯本体部141の一部は、内歯ピン3の第1縮径部31よりも第2外歯16a側に位置している。第1外歯本体部141の軸方向の長さは、第1加工部142の軸方向の長さよりも大きい。 The first external tooth main body 141 is a part whose tooth surface is parallel to the axial direction. The first external tooth main body portion 141 extends from the boundary portion with the first processing portion 142 to the edge of the tooth surface opposite to the first processing portion 142 in the axial direction. The first external tooth main body 141 opposes the first reduced diameter portion 31 of the internal tooth pin 3 in the radial direction and opposes a part of the columnar portion 33 of the internal tooth pin 3 in the radial direction. In the axial direction, a part of the first external tooth main body 141 is located on the second external tooth 16 a side with respect to the first reduced diameter portion 31 of the internal tooth pin 3. The axial length of the first external tooth main body 141 is larger than the axial length of the first processed portion 142.
 第2外歯本体部161は、その歯面が軸方向に対して平行な部位である。第2外歯本体部161は、軸方向において、第2加工部162との境界部分から第2加工部162とは反対側の歯面の端縁まで延びている。第2外歯本体部161は、内歯ピン3の第2縮径部32と径方向に対向しているとともに、内歯ピン3の柱状部33の一部と径方向に対向している。軸方向において、第2外歯本体部161の一部は、内歯ピン3の第2縮径部32よりも第1外歯14a側に位置している。第2外歯本体部161の軸方向の長さは、第2加工部162の軸方向の長さよりも大きい。 The second external tooth main body 161 is a part whose tooth surface is parallel to the axial direction. The second external tooth main body 161 extends from the boundary portion with the second processed portion 162 to the edge of the tooth surface opposite to the second processed portion 162 in the axial direction. The second external tooth main body 161 is opposed to the second reduced diameter portion 32 of the internal tooth pin 3 in the radial direction, and is opposed to a part of the columnar portion 33 of the internal tooth pin 3 in the radial direction. In the axial direction, a part of the second external tooth main body 161 is located closer to the first external tooth 14 a than the second reduced diameter portion 32 of the internal tooth pin 3. The axial length of the second external tooth main body 161 is larger than the axial length of the second processed portion 162.
 第1加工部142と第2加工部162は、軸方向において互いに隣り合う位置に設けられている。第1加工部142と第2加工部162は、第1外歯14aの内側端部と第2外歯16aの内側端部にそれぞれ設けられている。すなわち、第1加工部142は、第1外歯14aにおける軸方向の両端部のうちの第2外歯16a側の端部に設けられている。第2加工部162は、第2外歯16aにおける軸方向の両端部のうちの第1外歯14a側の端部に設けられている。 The first processing unit 142 and the second processing unit 162 are provided at positions adjacent to each other in the axial direction. The 1st process part 142 and the 2nd process part 162 are each provided in the inner side edge part of the 1st external tooth 14a, and the inner side edge part of the 2nd external tooth 16a. That is, the 1st process part 142 is provided in the edge part by the side of the 2nd external tooth 16a among the both ends of the axial direction in the 1st external tooth 14a. The 2nd process part 162 is provided in the edge part by the side of the 1st external tooth 14a among the axial direction both ends of the 2nd external tooth 16a.
 第1加工部142は、その歯面が軸方向の第2外歯16a側に向かうにつれて径方向内側に位置するように湾曲形状に加工された部位である。すなわち、第1加工部142の歯面は、その歯面の軸方向の端部(歯面の端縁)に向かうにつれて径方向内側に位置するように加工されている。本実施形態では、第1加工部142は、第1外歯14aの周方向の全体にわたって設けられている。すなわち、第1加工部142は、周方向に並ぶ全ての山部と谷部に設けられている。第1加工部142は、内歯ピン3の柱状部33の一部に対して内歯ピン3の径方向に対向している。 The 1st process part 142 is a site | part processed into the curved shape so that the tooth surface may be located inside radial direction as it goes to the 2nd external tooth 16a side of an axial direction. That is, the tooth surface of the first processed portion 142 is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface (the edge of the tooth surface). In this embodiment, the 1st process part 142 is provided over the whole circumferential direction of the 1st external tooth 14a. That is, the 1st process part 142 is provided in all the peak parts and trough parts located in a line with the circumferential direction. The first processed portion 142 faces the part of the columnar portion 33 of the internal tooth pin 3 in the radial direction of the internal tooth pin 3.
 第2加工部162は、その歯面が軸方向の第1外歯14a側に向かうにつれて径方向内側に位置するように湾曲形状に加工された部位である。すなわち、第2加工部162の歯面は、その歯面の軸方向の端部(歯面の端縁)に向かうにつれて径方向内側に位置するように加工されている。本実施形態では、第2加工部162は、第2外歯16aの周方向の全体にわたって設けられている。すなわち、第2加工部162は、周方向に並ぶ全ての山部と谷部に設けられている。第2加工部162は、内歯ピン3の柱状部33の一部に対して内歯ピン3の径方向に対向している。 The 2nd process part 162 is a site | part processed into the curved shape so that the tooth surface may be located in a radial inside as it goes to the 1st external tooth 14a side of an axial direction. That is, the tooth surface of the second processed portion 162 is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface (the edge of the tooth surface). In this embodiment, the 2nd process part 162 is provided over the whole circumferential direction of the 2nd external tooth 16a. That is, the 2nd process part 162 is provided in all the crests and troughs located in a line with the circumferential direction. The second processed portion 162 faces the part of the columnar portion 33 of the internal tooth pin 3 in the radial direction of the internal tooth pin 3.
 第1縮径部31と第1加工部142及び第2加工部162とは、内歯ピン3の径方向に対向していない。第2縮径部32と第1加工部142及び第2加工部162とは、内歯ピン3の径方向に対向していない。 The first reduced diameter portion 31, the first processed portion 142, and the second processed portion 162 are not opposed to the radial direction of the internal tooth pin 3. The second reduced diameter portion 32, the first processed portion 142, and the second processed portion 162 are not opposed to the radial direction of the internal tooth pin 3.
 第1加工部142及び第2加工部162において、山部における加工深さと谷部における加工深さは、同程度であってもよいが、これに限定されない。例えば、山部における加工深さが谷部における加工深さよりも大きくてもよい。 In the first processing portion 142 and the second processing portion 162, the processing depth in the peak portion and the processing depth in the trough portion may be similar, but are not limited thereto. For example, the processing depth in the peak portion may be larger than the processing depth in the valley portion.
 なお、第1外歯14aにおける山部の先端(峰)は、第1外歯歯車14の揺動回転時において、内歯ピン3への接触が抑制されるように、径方向外側への突出量が調整されるのが好ましい。第2外歯16aにおける山部の先端についても同様である。 In addition, the front-end | tip (peak) of the peak part in the 1st external tooth 14a protrudes to a radial direction outer side so that the contact to the internal tooth pin 3 may be suppressed at the time of the rocking | fluctuation rotation of the 1st external gear 14. The amount is preferably adjusted. The same applies to the tip of the peak portion of the second external tooth 16a.
 (動作)
 次に、歯車伝動装置1の動作について説明する。まず、例えば図略のモータの駆動によって歯車伝動装置1の入力軸8に回転が入力される。これにより、入力軸8とともに入力ギア8aが回転する。この入力ギア8aの回転は、各伝達歯車20を介して各クランク軸10に伝達される。
(Operation)
Next, the operation of the gear transmission 1 will be described. First, rotation is input to the input shaft 8 of the gear transmission 1 by driving a motor (not shown), for example. As a result, the input gear 8 a rotates together with the input shaft 8. The rotation of the input gear 8 a is transmitted to each crankshaft 10 via each transmission gear 20.
 そして、各クランク軸10が回転するのに伴って各クランク軸10の第1偏心部10a及び第2偏心部10bが偏心回転する。これにより、第1偏心部10aの偏心回転に連動して第1外歯歯車14が内歯ピン3の柱状部33における第1縮径部31側の部位に噛み合いながら揺動回転するとともに、第2偏心部10bの偏心回転に連動して第2外歯歯車16が内歯ピン3の柱状部33における第2縮径部32側の部位に噛み合いながら揺動回転する。第1外歯歯車14及び第2外歯歯車16の揺動回転は、各クランク軸10を通じてキャリア4に伝達され、キャリア4全体が前記入力回転から減速された回転数で外筒2に対して相対回転する。 Then, as each crankshaft 10 rotates, the first eccentric portion 10a and the second eccentric portion 10b of each crankshaft 10 rotate eccentrically. Thus, in conjunction with the eccentric rotation of the first eccentric portion 10a, the first external gear 14 oscillates and rotates while meshing with the portion of the columnar portion 33 of the internal tooth pin 3 on the first reduced diameter portion 31 side. In synchronization with the eccentric rotation of the two eccentric portion 10b, the second external gear 16 swings and rotates while meshing with the portion of the columnar portion 33 of the internal tooth pin 3 on the second reduced diameter portion 32 side. The swing rotation of the first external gear 14 and the second external gear 16 is transmitted to the carrier 4 through each crankshaft 10, and the entire carrier 4 is rotated with respect to the outer cylinder 2 at a speed reduced from the input rotation. Relative rotation.
 <第2実施形態>
 図5は、本発明の第2実施形態に係る歯車伝動装置1を示しており、内歯ピン3と外歯歯車14,16との噛み合い部分近傍の構造を示す拡大断面図である。なお、以下の説明では、第1実施形態と同様の構成については、第1実施形態と同じ符号を付してその説明を省略する。
<Second Embodiment>
FIG. 5 shows the gear transmission 1 according to the second embodiment of the present invention, and is an enlarged cross-sectional view showing the structure in the vicinity of the meshing portion between the internal tooth pin 3 and the external gears 14 and 16. In the following description, components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
 図5に示すように、第2実施形態では、各内歯ピン3は、その軸方向の中央付近に位置する第1縮径部34及び第2縮径部35と、第1縮径部34よりも軸方向の一方の外側端部に位置する第1柱状部36と、第2縮径部35よりも軸方向の他方の外側端部に位置する第2柱状部37とを有する。 As shown in FIG. 5, in the second embodiment, each internal tooth pin 3 includes a first reduced diameter portion 34 and a second reduced diameter portion 35 that are located near the center in the axial direction, and a first reduced diameter portion 34. The first columnar portion 36 is positioned at one outer end portion in the axial direction, and the second columnar portion 37 is positioned at the other outer end portion in the axial direction than the second reduced diameter portion 35.
 第1柱状部36は、円柱形状を有しており、その外径は、軸方向において一定である。第2柱状部37は、円柱形状を有しており、その外径は、軸方向において一定である。第1縮径部34は、第1柱状部36との境界から軸方向の第2縮径部35側に向かうにつれて縮径するように加工されている。第2縮径部35は、第2柱状部37との境界から軸方向の第1縮径部34側に向かうにつれて縮径するように加工されている。第1縮径部34の外周面及び第2縮径部35の外周面は、外側に凸の湾曲面である。第1縮径部34の外周面及び第2縮径部35の外周面は、互いの境界部分に向かって滑らかに湾曲している。各内歯ピン3の外径は、第1縮径部34と第2縮径部35との境界部分が最も小さい。 The first columnar portion 36 has a cylindrical shape, and its outer diameter is constant in the axial direction. The second columnar portion 37 has a cylindrical shape, and the outer diameter thereof is constant in the axial direction. The first reduced diameter portion 34 is processed so as to decrease in diameter from the boundary with the first columnar portion 36 toward the second reduced diameter portion 35 in the axial direction. The second reduced diameter portion 35 is processed so as to reduce the diameter from the boundary with the second columnar portion 37 toward the first reduced diameter portion 34 in the axial direction. The outer peripheral surface of the first reduced diameter portion 34 and the outer peripheral surface of the second reduced diameter portion 35 are curved surfaces that are convex outward. The outer peripheral surface of the first reduced diameter portion 34 and the outer peripheral surface of the second reduced diameter portion 35 are smoothly curved toward each other boundary portion. The outer diameter of each internal tooth pin 3 is the smallest at the boundary between the first reduced diameter portion 34 and the second reduced diameter portion 35.
 第1外歯14aの第1加工部142は、第1外歯14aにおける軸方向の一方の外側に位置する外側端部に設けられている。第1加工部142は、その歯面が軸方向の一方の外側に向かうにつれて径方向内側に位置するように加工された部位である。すなわち、第1加工部142の歯面は、その歯面の軸方向の端部(歯面の端縁)に向かうにつれて径方向内側に位置するように加工されている。 The first processed portion 142 of the first external tooth 14a is provided at an outer end portion located on one outer side in the axial direction of the first external tooth 14a. The 1st process part 142 is a site | part processed so that the tooth surface may be located in a radial inside as it goes to one outer side of an axial direction. That is, the tooth surface of the first processed portion 142 is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface (the edge of the tooth surface).
 第2外歯16aの第2加工部162は、第2外歯16aにおける軸方向の他方の外側に位置する外側端部に設けられている。第2加工部162は、その歯面が軸方向の他方の外側に向かうにつれて径方向内側に位置するように加工された部位である。すなわち、第2加工部162の歯面は、その歯面の軸方向の端部(歯面の端縁)に向かうにつれて径方向内側に位置するように加工されている。 The second processed portion 162 of the second external tooth 16a is provided at the outer end located on the other outer side in the axial direction of the second external tooth 16a. The 2nd process part 162 is a site | part processed so that the tooth surface may be located in a radial inside as it goes to the other outer side of an axial direction. That is, the tooth surface of the second processed portion 162 is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface (the edge of the tooth surface).
 第1縮径部34と第1加工部142及び第2加工部162とは、内歯ピン3の径方向に対向していない。第2縮径部35と第1加工部142及び第2加工部162とは、内歯ピン3の径方向に対向していない。第1縮径部34は、第1外歯14aのうち第1加工部142が設けられていない端部(軸方向の内側端部)に対して内歯ピン3の径方向に対向している。第2縮径部35は、第2外歯16aのうち第2加工部162が設けられていない端部(軸方向の内側端部)に対して内歯ピン3の径方向に対向している。 The first reduced diameter portion 34, the first processed portion 142, and the second processed portion 162 are not opposed to the radial direction of the internal tooth pin 3. The second reduced diameter portion 35, the first processed portion 142, and the second processed portion 162 are not opposed to the radial direction of the internal tooth pin 3. The first reduced diameter portion 34 is opposed to the end portion (the inner end portion in the axial direction) of the first outer teeth 14a where the first processed portion 142 is not provided in the radial direction of the inner tooth pin 3. . The second reduced diameter portion 35 is opposed to the end portion (the inner end portion in the axial direction) of the second outer teeth 16a where the second processed portion 162 is not provided in the radial direction of the inner tooth pin 3. .
 以上説明したように、第1及び第2本実施形態では、第1外歯14aにはいずれか一方の端部に第1加工部142が設けられ、第2外歯16aにはいずれか一方の端部に第2加工部162が設けられている。そして、各内歯ピン3には、第1加工部142が設けられていない端部及び第2加工部162が設けられていない端部に対して径方向に対向する部位に第1縮径部31(34)及び第2縮径部32(35)がそれぞれ設けられている。すなわち、第1外歯14a及び第2外歯16aと各内歯ピン3との間にエッジ応力が生じるのを抑制するために、第1外歯14a、第2外歯16a及び各内歯ピン3において、必要最小限の部位に加工が施されている。例えば第1実施形態を例に挙げて具体的に説明すると、各内歯ピン3では、その両端部31,32のみがクラウニング加工されており、中間部33はクラウニング加工されていない。また、第1外歯14a及び第2外歯14bでは、互いに軸方向に隣り合う端部(第1外歯14aの内側端部と第2外歯16aの内側端部)のみがクラウニング加工されている。これにより、第1外歯14a及び第2外歯16aと各内歯ピン3との間にエッジ応力が生じるのを抑制しつつ、加工コストの増大を抑制することができる。 As described above, in the first and second embodiments, the first external tooth 14a is provided with the first processed portion 142 at one end, and the second external tooth 16a has either one. The 2nd process part 162 is provided in the edge part. Each internal tooth pin 3 has a first reduced diameter portion at a portion that is radially opposed to an end portion where the first processed portion 142 is not provided and an end portion where the second processed portion 162 is not provided. 31 (34) and a second reduced diameter portion 32 (35) are provided. That is, in order to suppress the occurrence of edge stress between the first external teeth 14a and the second external teeth 16a and the internal tooth pins 3, the first external teeth 14a, the second external teeth 16a and the internal tooth pins In 3, the minimum necessary part is processed. For example, the first embodiment will be specifically described as an example. In each internal tooth pin 3, only both end portions 31 and 32 thereof are crowned and the intermediate portion 33 is not crowned. Further, in the first external teeth 14a and the second external teeth 14b, only the end portions adjacent to each other in the axial direction (the inner end portion of the first outer teeth 14a and the inner end portion of the second external teeth 16a) are crowned. Yes. Thereby, the increase in processing cost can be suppressed, suppressing that the edge stress arises between the 1st external tooth 14a and the 2nd external tooth 16a, and each internal tooth pin 3. FIG.
 また、第1及び第2実施形態では、特許文献1の図7に記載されている歯車伝動装置と比較して、加工箇所が半減するという利点の他、加工寸法管理が簡易になるという利点がある。具体的には次の通りである。 Moreover, in 1st and 2nd embodiment, compared with the gear transmission described in FIG. 7 of patent document 1, in addition to the advantage that a processing location is reduced by half, there is an advantage that processing dimension management is simplified. is there. Specifically, it is as follows.
 クラウニング加工の効果を得るためには歯すじ方向(内歯ピン3の軸方向)の修整量(歯すじ方向の膨らみ量あるいは逃がし量)が公差内に入っている必要がある。特許文献1の図7に記載されている歯車伝動装置では、内歯ピンのクラウニング加工位置と外歯のクラウニング加工位置とは、径方向に対向している。このように径方向に互いに対向する加工部位を有する場合には、各加工部位には、上記修整量の公差の1/2の加工公差が求められる。すなわち、径方向に互いに対向する加工部位を有する場合には、各加工部位には、本実施形態におけるクラウニング加工部位に求められる加工公差の1/2の加工公差が求められる。このような修整量の公差の1/2の加工公差での加工が不可能な場合、クラウニング量の公差域を広げる必要があり、クラウニングの効果を減少させてしまう場合がある。 In order to obtain the effect of the crowning process, the amount of correction (the amount of swelling or the amount of relief in the direction of the tooth trace) needs to be within the tolerance. In the gear transmission described in FIG. 7 of Patent Document 1, the crowning position of the inner tooth pin and the crowning position of the outer tooth are opposed to each other in the radial direction. Thus, when it has the processing part which mutually opposes to radial direction, the processing tolerance of 1/2 of the tolerance of the said modification amount is calculated | required at each processing part. That is, in the case of having machining portions that are opposed to each other in the radial direction, each machining portion is required to have a machining tolerance that is 1/2 of the machining tolerance that is required for the crowning machining portion in the present embodiment. If machining with a machining tolerance of 1/2 of the correction amount tolerance is impossible, it is necessary to widen the tolerance range of the crowning amount, which may reduce the effect of crowning.
 一方、第1及び第2実施形態では、内歯ピンのクラウニング加工位置と外歯のクラウニング加工位置とは、径方向に対向していない。そのため、内歯ピンにおける第1縮径部31(34)や第2縮径部32(35)の加工公差は、上記修整量の公差でよい。また、加工公差が広くなるため、クラウニング量の公差域を広げる必要もない。このように、第1及び第2実施形態では、特許文献1の図7に記載されている歯車伝動装置に比べて加工の工程管理が簡易になるという利点がある。 On the other hand, in the first and second embodiments, the crowning position of the inner tooth pin and the crowning position of the outer tooth are not opposed in the radial direction. Therefore, the processing tolerances of the first reduced diameter portion 31 (34) and the second reduced diameter portion 32 (35) in the internal tooth pin may be the above-described adjustment amount tolerance. Further, since the processing tolerance is wide, it is not necessary to widen the tolerance range of the crowning amount. Thus, in 1st and 2nd embodiment, there exists an advantage that process management of a process becomes easy compared with the gear transmission described in FIG.
 第1実施形態では、第1加工部142は、第1外歯14aにおける軸方向両端部のうちの第2外歯16a側の端部に設けられ、第2加工部162は、第2外歯16aにおける軸方向両端部のうちの第1外歯14a側の端部に設けられ、第1縮径部31は、各内歯ピン3における軸方向の一端部に設けられ、第2縮径部32は、各内歯ピン3における軸方向の他端部に設けられている。  In 1st Embodiment, the 1st process part 142 is provided in the edge part by the side of the 2nd external tooth 16a among the axial direction both ends in the 1st external tooth 14a, and the 2nd process part 162 is a 2nd external tooth. The first reduced-diameter portion 31 is provided at one end portion in the axial direction of each internal tooth pin 3 and is provided at the end portion on the first outer tooth 14a side of both axial ends of 16a. 32 is provided at the other axial end of each internal tooth pin 3.
 この構成では、各内歯ピン3の軸方向の両端部に縮径部31,32を設けており、第2実施形態のように軸方向中間部に縮径部34,35を設ける場合に比べて加工がより簡単になる。これにより、加工コストをより効果的に低減することができる。 In this configuration, the diameter-reduced portions 31 and 32 are provided at both axial ends of each internal tooth pin 3, and compared with the case where the diameter-reduced portions 34 and 35 are provided at the axially intermediate portion as in the second embodiment. Processing becomes easier. Thereby, processing cost can be reduced more effectively.
 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, A various change, improvement, etc. are possible in the range which does not deviate from the meaning.
 例えば、前記実施形態では、第1縮径部及び第2縮径部の外周面(歯面)が外側に凸の湾曲形状である場合を例示したが、これに限定されない。第1縮径部及び第2縮径部の外周面は、例えば円錐台形状などであってもよい。 For example, in the above embodiment, the case where the outer peripheral surfaces (tooth surfaces) of the first reduced diameter portion and the second reduced diameter portion are curved outwardly convex is illustrated, but the present invention is not limited thereto. The outer peripheral surfaces of the first reduced diameter portion and the second reduced diameter portion may have a truncated cone shape, for example.
 また、前記実施形態では、第1加工部142及び第2加工部162の歯面が軸方向端部に向かうにつれて径方向内側に位置するように湾曲形状に加工された部位である場合を例示したが、これに限定されない。第1加工部142及び第2加工部162の歯面は、例えば図3に示す断面(軸方向に平行な断面)において、軸方向に対して例えば鋭角をなす角度で傾斜した傾斜面であってもよい。 Moreover, in the said embodiment, the case where it was the site | part processed into the curved shape so that the tooth surface of the 1st process part 142 and the 2nd process part 162 may be located inside radial direction as it goes to an axial direction edge part was illustrated. However, it is not limited to this. The tooth surfaces of the first processing unit 142 and the second processing unit 162 are, for example, inclined surfaces that are inclined at, for example, an acute angle with respect to the axial direction in the cross section shown in FIG. 3 (a cross section parallel to the axial direction). Also good.
 また、前記実施形態では、入力軸8が径方向のセンターに設けられている場合を例示したが、これに限定されない。入力軸8は、センターから径方向にずれた位置に設けられていてもよい。 In the above embodiment, the case where the input shaft 8 is provided at the center in the radial direction is illustrated, but the present invention is not limited to this. The input shaft 8 may be provided at a position shifted in the radial direction from the center.
 また、前記実施形態では、複数(例えば3つ)のクランク軸が設けられている場合を例示したが、例えば1つのクランク軸が径方向のセンターに設けられた形態であってもよい。この場合、貫通孔4d、貫通孔4f、貫通孔14b、貫通孔16bに筒体が嵌め込まれた構成を採用することもできる。この筒体内には例えばケーブルなどが配置される。 In the above-described embodiment, a case where a plurality of (for example, three) crankshafts are provided is illustrated. However, for example, one crankshaft may be provided at a radial center. In this case, it is also possible to adopt a configuration in which a cylinder is fitted into the through hole 4d, the through hole 4f, the through hole 14b, and the through hole 16b. For example, a cable or the like is disposed in the cylinder.
 前記実施形態においては、キャリアは外筒に対して相対回転する。すなわち、キャリアを固定して外筒がキャリアに対して相対的に回転する形態であってもよく、外筒を固定してキャリアが外筒に対して相対的に回転する形態であってもよい。 In the above embodiment, the carrier rotates relative to the outer cylinder. In other words, the carrier may be fixed and the outer cylinder may be rotated relative to the carrier, or the outer cylinder may be fixed and the carrier may be rotated relative to the outer cylinder. .
 なお、上述した具体的実施形態について概説する。 The specific embodiment described above will be outlined.
 前記歯車伝動装置は、
 軸方向に延びる複数のピン溝が周方向に所定間隔で設けられた内周面を有する外筒と、
 前記複数のピン溝のそれぞれに配置された複数の内歯ピンと、
 互いに所定の位相差をもって前記軸方向に並んで配置された第1偏心部と第2偏心部を有し、前記外筒内において軸回りに回転可能に設けられたクランク軸と、
 第1外歯が設けられた外周面を有し、前記第1偏心部に取り付けられ、前記内歯ピンに前記第1外歯が噛み合いながら前記第1偏心部の偏心回転に連動して揺動回転する第1外歯歯車と、
 第2外歯が設けられた外周面を有し、前記第2偏心部に取り付けられ、前記内歯ピンに前記第2外歯が噛み合いながら前記第2偏心部の偏心回転に連動して揺動回転する第2外歯歯車と、
 前記第1外歯歯車及び前記第2外歯歯車の揺動回転が伝達されることにより前記外筒に対して相対回転するキャリアと、を備えている。
The gear transmission is
An outer cylinder having an inner peripheral surface in which a plurality of pin grooves extending in the axial direction are provided at predetermined intervals in the circumferential direction;
A plurality of internal teeth pins arranged in each of the plurality of pin grooves;
A crankshaft having a first eccentric portion and a second eccentric portion arranged side by side in the axial direction with a predetermined phase difference from each other, and provided to be rotatable around the axis in the outer cylinder;
It has an outer peripheral surface provided with first external teeth, is attached to the first eccentric portion, and swings in conjunction with the eccentric rotation of the first eccentric portion while the first external teeth mesh with the internal tooth pin. A rotating first external gear;
It has an outer peripheral surface provided with second external teeth, is attached to the second eccentric portion, and swings in conjunction with the eccentric rotation of the second eccentric portion while the second external teeth mesh with the internal tooth pin. A rotating second external gear,
A carrier that rotates relative to the outer cylinder by transmitting the swinging rotation of the first external gear and the second external gear.
 前記第1外歯は、前記軸方向のいずれか一方の端部に第1加工部を有する。前記第1加工部の歯面は、その歯面の軸方向の端部に向かうにつれて径方向内側に位置するように加工されている。前記第2外歯は、前記軸方向のいずれか一方の端部に第2加工部を有する。前記第2加工部の歯面は、その歯面の軸方向の端部に向かうにつれて径方向内側に位置するように加工されている。 The first external tooth has a first processed portion at one end in the axial direction. The tooth surface of the first processed portion is processed so as to be located radially inward as it goes toward the axial end of the tooth surface. The second external tooth has a second processed portion at one end portion in the axial direction. The tooth surface of the second processed portion is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface.
 各内歯ピンは、第1縮径部と、第2縮径部とを有する。前記第1縮径部は、前記第1加工部が設けられていない側の前記第1外歯の端部に対して径方向に対向する部位が軸方向に向かうにつれて縮径するように加工されている。前記第2縮径部は、前記第2加工部が設けられていない側の前記第2外歯の端部に対して径方向に対向する部位が軸方向に向かうにつれて縮径するように加工されている。 Each internal tooth pin has a first reduced diameter portion and a second reduced diameter portion. The first reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the first external tooth on the side where the first processed portion is not provided decreases in the axial direction. ing. The second reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the second external tooth on the side where the second processed portion is not provided decreases in the axial direction. ing.
 この構成では、第1外歯のいずれか一方の端部に第1加工部が設けられ、第2外歯のいずれか一方の端部に第2加工部が設けられている。そして、各内歯ピンには、第1加工部が設けられていない端部及び第2加工部が設けられていない端部に対して径方向に対向する部位に第1縮径部及び第2縮径部がそれぞれ設けられている。すなわち、第1外歯及び第2外歯と各内歯ピンとの間にエッジ応力が生じるのを抑制するために、第1外歯、第2外歯及び各内歯ピンのそれぞれにおいて、必要最小限の部位に加工が施されている。これにより、第1外歯及び第2外歯と各内歯ピンとの間にエッジ応力が生じるのを抑制しつつ、加工コストの増大を抑制することができる。 In this configuration, the first processed portion is provided at any one end of the first external teeth, and the second processed portion is provided at any one end of the second external teeth. Each internal tooth pin has a first reduced diameter portion and a second reduced diameter portion at a portion that is radially opposed to an end portion where the first processed portion is not provided and an end portion where the second processed portion is not provided. Each of the reduced diameter portions is provided. That is, in order to suppress the occurrence of edge stress between the first external tooth and the second external tooth and each internal tooth pin, the minimum necessary amount in each of the first external tooth, the second external tooth, and each internal tooth pin. Processing is applied to the limited part. Thereby, increase in processing cost can be suppressed, suppressing that an edge stress arises between the 1st external tooth and the 2nd external tooth, and each internal tooth pin.
 前記歯車伝動装置において、前記第1加工部は、前記第1外歯における前記第2外歯側の端部に設けられ、前記第2加工部は、前記第2外歯における前記第1外歯側の端部に設けられ、前記第1縮径部は、各内歯ピンにおける前記軸方向の一端部に設けられ、前記第2縮径部は、各内歯ピンにおける前記軸方向の他端部に設けられているのが好ましい。  In the gear transmission, the first processed portion is provided at an end of the first external tooth on the second external tooth side, and the second processed portion is the first external tooth of the second external tooth. The first reduced diameter portion is provided at one end portion in the axial direction of each internal tooth pin, and the second reduced diameter portion is the other end portion in the axial direction of each internal tooth pin. It is preferable to be provided in the part.
 この構成では、各内歯ピンの軸方向の両端部に縮径部が設けられている。この構成では、内歯ピンの軸方向中間部に縮径部を設ける場合に比べて加工がより簡単になるので、加工コストをより効果的に低減することができる。 In this configuration, a reduced diameter portion is provided at each axial end of each internal tooth pin. In this configuration, the machining becomes easier as compared with the case where the reduced diameter portion is provided in the axially intermediate portion of the internal tooth pin, so that the machining cost can be reduced more effectively.
1 歯車伝動装置
2 外筒
2b ピン溝
3 内歯ピン
31,34 第1縮径部
32,35 第2縮径部
33 柱状部
36 第1柱状部
37 第2柱状部
4 キャリア
10 クランク軸
10a 第1偏心部
10b 第2偏心部
14 第1外歯歯車
14a 第1外歯
141 第1外歯本体部
142 第1加工部
16 第2外歯歯車
16a 第2外歯
161 第2外歯本体部
162 第2加工部
20 伝達歯車
 
DESCRIPTION OF SYMBOLS 1 Gear transmission 2 Outer cylinder 2b Pin groove 3 Inner tooth pin 31,34 1st diameter reduction part 32,35 2nd diameter reduction part 33 Columnar part 36 1st columnar part 37 2nd columnar part 4 Carrier 10 Crankshaft 10a 1st 1 eccentric part 10b 2nd eccentric part 14 1st external gear 14a 1st external tooth 141 1st external tooth main-body part 142 1st process part 16 2nd external gear 16a 2nd external tooth 161 2nd external tooth main part 162 Second processing unit 20 Transmission gear

Claims (2)

  1.  軸方向に延びる複数のピン溝が周方向に所定間隔で設けられた内周面を有する外筒と、
     前記複数のピン溝のそれぞれに配置された内歯ピンと、
     互いに所定の位相差をもって前記軸方向に並んで配置された第1偏心部と第2偏心部を有し、前記外筒内において軸回りに回転可能に設けられたクランク軸と、
     第1外歯が設けられた外周面を有し、前記第1偏心部に取り付けられ、前記内歯ピンに前記第1外歯が噛み合いながら前記第1偏心部の偏心回転に連動して揺動回転する第1外歯歯車と、
     第2外歯が設けられた外周面を有し、前記第2偏心部に取り付けられ、前記内歯ピンに前記第2外歯が噛み合いながら前記第2偏心部の偏心回転に連動して揺動回転する第2外歯歯車と、
     前記第1外歯歯車及び前記第2外歯歯車の揺動回転が伝達されることにより前記外筒に対して相対回転するキャリアと、を備え、
     前記第1外歯は、前記軸方向のいずれか一方の端部に第1加工部を有し、
     前記第1加工部の歯面は、その歯面の軸方向の端部に向かうにつれて径方向内側に位置するように加工されており、
     前記第2外歯は、前記軸方向のいずれか一方の端部に第2加工部を有し、
     前記第2加工部の歯面は、その歯面の軸方向の端部に向かうにつれて径方向内側に位置するように加工されており、
     各内歯ピンは、第1縮径部と、第2縮径部とを有し、
     前記第1縮径部は、前記第1加工部が設けられていない側の前記第1外歯の端部に対して径方向に対向する部位が軸方向に向かうにつれて縮径するように加工されており、
     前記第2縮径部は、前記第2加工部が設けられていない側の前記第2外歯の端部に対して径方向に対向する部位が軸方向に向かうにつれて縮径するように加工されている、歯車伝動装置。
    An outer cylinder having an inner peripheral surface in which a plurality of pin grooves extending in the axial direction are provided at predetermined intervals in the circumferential direction;
    An internal tooth pin disposed in each of the plurality of pin grooves;
    A crankshaft having a first eccentric portion and a second eccentric portion arranged side by side in the axial direction with a predetermined phase difference from each other, and provided to be rotatable around the axis in the outer cylinder;
    It has an outer peripheral surface provided with first external teeth, is attached to the first eccentric portion, and swings in conjunction with the eccentric rotation of the first eccentric portion while the first external teeth mesh with the internal tooth pin. A rotating first external gear;
    It has an outer peripheral surface provided with second external teeth, is attached to the second eccentric portion, and swings in conjunction with the eccentric rotation of the second eccentric portion while the second external teeth mesh with the internal tooth pin. A rotating second external gear,
    A carrier that rotates relative to the outer cylinder by transmitting the swing rotation of the first external gear and the second external gear;
    The first external tooth has a first processed portion at one end in the axial direction,
    The tooth surface of the first processed portion is processed so as to be positioned radially inward as it goes toward the axial end of the tooth surface,
    The second external tooth has a second processed portion at one end in the axial direction,
    The tooth surface of the second processed portion is processed so as to be located radially inward as it goes toward the axial end of the tooth surface,
    Each internal tooth pin has a first reduced diameter portion and a second reduced diameter portion,
    The first reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the first external tooth on the side where the first processed portion is not provided decreases in the axial direction. And
    The second reduced diameter portion is processed so that the diameter of the portion opposed to the end portion of the second external tooth on the side where the second processed portion is not provided decreases in the axial direction. The gear transmission.
  2.  前記第1加工部は、前記第1外歯における前記第2外歯側の端部に設けられ、
     前記第2加工部は、前記第2外歯における前記第1外歯側の端部に設けられ、
     前記第1縮径部は、各内歯ピンにおける前記軸方向の一端部に設けられ、
     前記第2縮径部は、各内歯ピンにおける前記軸方向の他端部に設けられている、請求項1に記載の歯車伝動装置。
    The first processed portion is provided at an end of the first external tooth on the second external tooth side,
    The second processed portion is provided at an end of the second external tooth on the first external tooth side,
    The first reduced diameter portion is provided at one end in the axial direction of each internal tooth pin,
    The gear transmission according to claim 1, wherein the second reduced diameter portion is provided at the other end portion in the axial direction of each internal tooth pin.
PCT/JP2012/006577 2011-10-25 2012-10-15 Gear transmission device WO2013061533A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012004442.8T DE112012004442B4 (en) 2011-10-25 2012-10-15 gear transmission device
KR1020147013672A KR101947216B1 (en) 2011-10-25 2012-10-15 Gear transmission device
CN201280051928.1A CN103890452B (en) 2011-10-25 2012-10-15 Gear drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011233700A JP5798882B2 (en) 2011-10-25 2011-10-25 Gear transmission
JP2011-233700 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013061533A1 true WO2013061533A1 (en) 2013-05-02

Family

ID=48167389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006577 WO2013061533A1 (en) 2011-10-25 2012-10-15 Gear transmission device

Country Status (6)

Country Link
JP (1) JP5798882B2 (en)
KR (1) KR101947216B1 (en)
CN (1) CN103890452B (en)
DE (1) DE112012004442B4 (en)
TW (1) TW201335512A (en)
WO (1) WO2013061533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695665A (en) * 2017-10-24 2019-04-30 住友重机械工业株式会社 Eccentric oscillating-type deceleration device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112749A1 (en) * 2014-09-04 2016-03-10 Huf Hülsbeck & Fürst Gmbh & Co. Kg Locking collar locking
JP6898876B2 (en) * 2018-02-28 2021-07-07 住友重機械工業株式会社 Eccentric swing type speed reducer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223142A (en) * 1991-01-31 1993-08-31 Sumitomo Heavy Ind Ltd Double row type inscribing engagement epicyclic gear structure
JP2000249199A (en) * 1999-03-03 2000-09-12 Sumitomo Heavy Ind Ltd Inner roller and outer roller of internal engagement planetary gear structure and its manufacture
JP2009293650A (en) * 2008-06-03 2009-12-17 Nabtesco Corp Eccentric oscillation type gear device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0807778D0 (en) * 2008-04-29 2008-06-04 Romax Technology Ltd Apparatus and method for improving radial stresses in a gear transmission mounting
DE102009017014A1 (en) * 2009-04-14 2010-10-28 Ims Gear Gmbh Transmission, in particular planetary gear with a flange and a ring gear
JP5103444B2 (en) * 2009-06-26 2012-12-19 住友重機械工業株式会社 Planetary gear reducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223142A (en) * 1991-01-31 1993-08-31 Sumitomo Heavy Ind Ltd Double row type inscribing engagement epicyclic gear structure
JP2000249199A (en) * 1999-03-03 2000-09-12 Sumitomo Heavy Ind Ltd Inner roller and outer roller of internal engagement planetary gear structure and its manufacture
JP2009293650A (en) * 2008-06-03 2009-12-17 Nabtesco Corp Eccentric oscillation type gear device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695665A (en) * 2017-10-24 2019-04-30 住友重机械工业株式会社 Eccentric oscillating-type deceleration device

Also Published As

Publication number Publication date
JP2013092179A (en) 2013-05-16
TW201335512A (en) 2013-09-01
TWI560380B (en) 2016-12-01
DE112012004442T5 (en) 2014-07-10
JP5798882B2 (en) 2015-10-21
KR101947216B1 (en) 2019-02-12
KR20140084239A (en) 2014-07-04
DE112012004442B4 (en) 2023-06-07
CN103890452A (en) 2014-06-25
CN103890452B (en) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2010119631A1 (en) Eccecntric oscillating gear assembly
WO2013065261A1 (en) Gear transmission device
WO2010047189A1 (en) Gear transmitting device
KR20150038700A (en) Eccentrically rocking-type gear device
JP5988424B2 (en) Eccentric oscillating gear unit
JP2023184669A (en) gear unit
JP5069612B2 (en) Eccentric oscillating gear unit
WO2013061533A1 (en) Gear transmission device
JP2005517139A (en) Transmission device with groove for lubricant
JP4820310B2 (en) Reduction gear
JP6184546B2 (en) Eccentric oscillating gear unit
JP6970784B2 (en) Eccentric swing type gear device
WO2018142909A1 (en) Ball reduction gear
JP6563778B2 (en) Planetary gear set
JP2009191946A (en) Eccentric oscillation type gear device
JP6446101B2 (en) Eccentric oscillating gear unit
JP2005121106A (en) Bevel gear
KR20200077231A (en) Precision reducer
JP5290787B2 (en) Oscillating gear unit
JP2016153696A (en) Process of manufacture of gear transmission
JP7506967B2 (en) Gear Unit
JP6710742B2 (en) Eccentric oscillating gear device
JP2005325865A (en) Eccentric swing type planetary gear device
JP2017203550A (en) Gear transmission device
JP2017202565A (en) Process of manufacture of gear transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012004442

Country of ref document: DE

Ref document number: 1120120044428

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147013672

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12842857

Country of ref document: EP

Kind code of ref document: A1