WO2013060257A1 - 一种基于负刚度原理的永磁低频单自由度隔振机构 - Google Patents

一种基于负刚度原理的永磁低频单自由度隔振机构 Download PDF

Info

Publication number
WO2013060257A1
WO2013060257A1 PCT/CN2012/083359 CN2012083359W WO2013060257A1 WO 2013060257 A1 WO2013060257 A1 WO 2013060257A1 CN 2012083359 W CN2012083359 W CN 2012083359W WO 2013060257 A1 WO2013060257 A1 WO 2013060257A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rubber sheet
annular permanent
vibration isolation
ring
Prior art date
Application number
PCT/CN2012/083359
Other languages
English (en)
French (fr)
Inventor
朱煜
徐登峰
李强
张鸣
尹文生
杨开明
李玉洁
许岩
田丽
雷忠心
张利
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2013060257A1 publication Critical patent/WO2013060257A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • F16F6/005Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid using permanent magnets only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/063Negative stiffness

Definitions

  • the invention relates to a low-frequency vibration isolation mechanism, in particular to a low-frequency vibration isolation mechanism of a ring-shaped permanent magnet based on a negative stiffness principle, which is mainly used for ultra-low frequency of small and medium-sized instruments in the fields of optics, acoustics, semiconductor manufacturing, precision measurement and ultra-precision. Vibration isolation. Background technique
  • Vibration interference inside and outside the machine is one of the important factors to reduce the machining accuracy and surface quality.
  • the quality of the ultra-precision machining is not only related to the amplitude of the vibration disturbance, but also related to the frequency of the vibration interference.
  • the vibration frequency which adversely affects the ultra-precision machining is a micro-vibration in the range of 0.5-70 Hz, and the vibration is controlled.
  • the method is commonly used for vibration isolation, vibration isolation and vibration absorption. It is widely used in the field of ultra-precision.
  • the vibration isolation mechanism mainly has the following forms: rubber, three-line pendulum, inverted pendulum, X pendulum and swing ball.
  • the rubber structure is simple and it is difficult to reach a low natural frequency.
  • the inverted pendulum and the opposite can only be isolated in one direction horizontally.
  • the best vibration isolation effect is the air spring, which requires an external air source and cannot be used in a vacuum.
  • the traditional passive vibration isolation system has a frequency of external disturbance greater than twice the natural frequency of the vibration isolation system, and acts as a vibration reduction mechanism to better isolate medium and high frequency vibrations, but isolates low frequency vibrations, especially ultra low frequency vibrations. The ability is poor.
  • the object of the present invention is to provide a low-frequency vibration isolation mechanism based on the principle of negative stiffness, which has high bearing capacity and low natural frequency, and can realize ultra-low frequency vibration isolation of single degree of freedom in the vertical direction. It can also be realized or combined to achieve low-frequency vibration isolation with three degrees of freedom, and the vibration isolation performance is good.
  • a ring-shaped permanent magnet low-frequency single-degree-of-freedom vibration isolation mechanism based on a negative stiffness principle characterized in that: the ultra-low frequency vibration isolation mechanism comprises an inner annular permanent magnet, an outer annular permanent magnet, an upper rubber piece, a lower rubber piece, and an upper Rubber sheet inner pressure ring, upper rubber sheet outer pressure ring, lower rubber sheet inner pressing piece, lower rubber piece outer pressing ring, inner annular permanent magnet fixing mandrel and outer annular permanent magnet fixing sleeve; inner annular permanent magnet axial magnetization, The outer annular permanent magnet is radially magnetized, the inner ring and the outer annular permanent magnet are arranged concentrically; the inner annular permanent magnet is sleeved on the mandrel; the outer annular permanent magnet is bonded to the fixing sleeve; The outer edge of the upper rubber sheet is fixed to the top surface of the outer annular permanent magnet by the upper outer ring of the rubber sheet, and the middle portion of the upper rubber sheet is fixed to the top surface of the inner
  • Both the upper rubber sheet and the lower rubber sheet may be made of industrial rubber or natural rubber.
  • the invention provides a ring-shaped permanent magnet low-frequency three-degree-of-freedom vibration isolation mechanism based on a negative stiffness principle, characterized in that: the mechanism is composed of three or four low-frequency single-degree-of-freedom vibration isolation mechanisms, The three low-frequency single-degree-of-freedom vibration isolation mechanisms are evenly distributed on the same circumference; the four low-frequency single-degree-of-freedom vibration isolation mechanisms form a square structure; the three degrees of freedom are rotated about the X-axis direction and the y-axis direction and Three degrees of freedom moving in the z direction.
  • the low-frequency vibration isolation mechanism proposed by the invention does not require external energy input, and therefore has a good use prospect in vacuum. 2 When the magnetic field force between the permanent magnets is the largest, the stiffness is close to zero, so low-frequency vibration isolation can be achieved. Compared with the existing vibration isolator of the negative stiffness system, it has higher bearing capacity and more Low natural frequency and good vibration isolation. 3.
  • the low-frequency vibration isolation mechanism of the present invention is composed of inner and outer annular permanent magnets, rubber and accessories thereof, and has a simple structure, a relatively low cost, and is easy to manufacture.
  • Figure 1 is a front cross-sectional view of a low frequency single degree of freedom vibration isolation mechanism of a toroidal permanent magnet based on a negative stiffness principle provided by the present invention.
  • Figure 2 is a plan view of Figure 1.
  • FIG. 3 is a schematic diagram of a ring-shaped permanent magnet low-frequency single-degree-of-freedom vibration isolation mechanism based on the principle of negative stiffness.
  • FIG. 4 is an external view of a ring-shaped permanent magnet low-frequency three-degree-of-freedom vibration isolation mechanism based on the principle of negative stiffness provided by the present invention (four square low-frequency single-degree-of-freedom vibration isolators form a square distribution).
  • FIG. 5 is an external view of a ring-shaped permanent magnet low-frequency three-degree-of-freedom vibration isolation mechanism based on the negative stiffness principle provided by the present invention (three circular low-frequency single-degree-of-freedom vibration isolators form a circular uniform distribution).
  • the ring-shaped permanent magnet low-frequency single-degree-of-freedom vibration isolation mechanism includes an inner annular permanent magnet 10 and an outer annular permanent Magnet 5, upper rubber sheet 1, lower rubber sheet 6, inner annular permanent magnet fixing mandrel 2, upper rubber sheet upper pressing ring 3, upper rubber sheet outer pressing ring 4, lower rubber sheet inner pressing piece 7, lower rubber sheet external pressing Ring 8 and outer annular permanent magnet fixing sleeve 9; inner annular permanent magnet 10 is axially magnetized, outer annular permanent magnet 5 is radially magnetized, inner annular permanent magnet and outer annular permanent magnet are arranged concentrically; said inner annular permanent magnet is sleeved On the inner annular permanent magnet fixing mandrel 2; the outer annular permanent magnet 5 is bonded to the outer annular permanent magnet fixing sleeve 9; the outer edge of the upper rubber sheet 1 passes through the upper rubber sheet
  • the bottom surface of the permanent magnet is fixed, and the middle portion of the lower rubber sheet 6 Through the inner bottom surface of the lower rubber sheet 7 and the inner pressure of the annular permanent magnet fixed mandrel 2 is fixed.
  • the upper rubber sheet and the lower rubber sheet are made of industrial rubber or natural rubber.
  • the upper annular permanent magnet fixing mandrel 2 is provided with an upper shoulder and a lower shoulder, the upper shoulder is flush with the top surface of the inner annular permanent magnet, and the lower shoulder is flush with the bottom surface of the inner annular permanent magnet;
  • the upper rubber sheet is fixed to the inner annular permanent magnet 10 by the upper rubber sheet upper pressing ring 3 and the bolt;
  • the lower rubber sheet is fixed to the inner annular permanent magnet fixing mandrel 2 by the lower rubber sheet inner pressing piece and the bolt.
  • FIG. 3 is a schematic diagram of vibration isolation of a structure of a ring-shaped permanent magnet low-frequency single-degree-of-freedom vibration isolation mechanism based on a negative stiffness principle in a vertical direction according to the present invention.
  • the inner and outer annular permanent magnets in the ring-shaped permanent magnet low-frequency single-degree-of-freedom vibration isolation mechanism based on the negative stiffness principle are equivalent to a magnetic spring, and the rigidity thereof is ⁇ , wherein the rubber also generates rigidity under the action of the repulsive force, and is set as £ component in the vertical direction is sin ⁇ , but in the opposite direction thereof, generating a positive magnetic spring stiffness, the stiffness of the rubber negative, the low-frequency vibration isolating mechanism in the vertical direction of the stiffness may be expressed as:
  • is the total stiffness of the low-frequency single-degree-of-freedom vibration isolation mechanism in the vertical direction
  • 3 ⁇ 43 ⁇ is the stiffness of the inner and outer annular permanent magnets in the vertical direction, the stiffness of the rubber in the vertical direction, and the angle between the rubber and the horizontal line
  • c is the displacement in the vertical direction
  • is the cosine of the angle ⁇ between the rubber and the horizontal line (0 ⁇ ⁇ 1).
  • the stiffness of the rubber can partially offset the stiffness generated by the permanent magnet, and the rigidity of the vibration isolation mechanism can be reduced, even reaching zero.
  • the natural frequency f approaches zero, so low-frequency vibration isolation can be achieved, and M is the mass of the load.
  • FIG. 4 is an external view of four ring-of-freedom low-frequency single-degree-of-freedom vibration isolation mechanisms based on the principle of negative stiffness, which can realize a three-degree-of-freedom vibration isolation mechanism, that is, four low-frequency single-degree-of-freedom vibration isolation mechanisms form a square structure, each The low-frequency single-degree-of-freedom vibration isolation mechanism can be equivalent to a spring damping system; the three degrees of freedom are rotated about the X-axis direction and around the y-axis direction and moved in the z-direction.
  • the vibration isolation principle of the rotation around the X direction is that when the external disturbance acts on the load counterclockwise around the X axis, the axial relative displacement of the inner and outer rings of the two vibration isolation units of the AB decreases, and the magnetic force increases; The axial relative displacement of the inner and outer rings in the two vibration isolation units increases, the magnetic force decreases, and the load returns to the original equilibrium position under the action of the magnetic force to achieve vibration isolation. Conversely, when the external disturbance is clockwise around the X axis When acting on the load, the same vibration isolation can be achieved.
  • the vibration isolation around the y-axis direction is the same as the vibration isolation principle around the X-axis direction, and will not be described herein.
  • the vibration isolation principle in the Z-axis direction is that when there is external interference in the z-negative direction acting on the load, the axial displacement between the inner and outer annular permanent magnets is reduced, the magnetic field force is increased, and the tensile force of the rubber is reduced.
  • the load will return to the equilibrium position under the action of the magnetic force and the rubber to achieve vibration isolation; on the contrary, if there is an upward external disturbance acting on the load, the axial displacement of the inner and outer ring permanent magnets increases, and the axial magnetic force decreases.
  • the rubber is stretched and the rigidity is increased, and the load is returned to the equilibrium position under the action of the magnetic force and the rubber to achieve vibration isolation.
  • Figure 5 is an external view of a ring-shaped permanent magnet low-frequency three-degree-of-freedom vibration isolation mechanism based on the principle of negative stiffness, that is, three low-frequency single-degree-of-freedom vibration isolation mechanisms are uniformly distributed on the same circumference, and each low-frequency single-degree-of-freedom vibration isolation unit is Equivalent to a spring damping
  • the three ring-shaped low-frequency single-degree-of-freedom vibration isolation mechanisms are used in parallel to realize movement in the z direction, and the vibration isolation in the X direction and the y direction.
  • the principle is the same as that shown in FIG. 4, and the vibration isolation effect is the same. , but the carrying capacity is different.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种基于负刚度原理的环形永磁低频隔振机构,包括上橡胶片(1)、内环形永磁体固定心轴(2)、上橡胶片上压环(3)、上橡胶片外压环(4)、外环形永磁体(5)、下橡胶片(6)、下橡胶片内压片(7)、下橡胶片外压环(8)、外环形永磁体固定套(9)和内环形永磁体(10),其中内环形永磁体(10)轴向磁化,外环形永磁体(5)径向磁化,内、外环形永磁体构成正刚度系统,上、下橡胶片构成负刚度系统,正、负刚度系统并联使用构成低频隔振机构。三个或四个单自由度隔振机构并联使用可实现三自由度的低频隔振。本发明可用于光学、声学、生物学、半导体制造和精密测量等领域;本发明结构简单,成本低廉,易于加工,且不需要外界气源,可在真空中使用。

Description

一种基于负刚度原理的永磁低频单自由度隔振机构
技术领域
本发明涉及一种低频隔振机构,特别涉及一种基于负刚度原理的环形永磁体低频隔振机 构,主要用于光学、声学、半导体制造,精密测量和超精密领域中小型仪器设备的超低频隔振。 背景技术
在超精密领域, 精密和超精密加工对环境的要求越来越严格, 由于机械设备内部和外部 的振动干扰是降低加工精度和表面质量的重要因素之一。 超精密加工的质量不仅与振动干扰 的振幅有关,而且与振动干扰的频率有关,对超精密加工产生不良影响的振动频率是在 0. 5-70 Hz范围内的微幅振动, 对振动的控制方法常用消振、 隔振和吸振, 在超精密领域中应用最广 泛的当属隔振。 目前, 隔振机构主要有以下几种形式: 橡胶、三线摆、倒摆、 X摆和摇摆球等。 其中橡胶结构简单, 不易达到较低的固有频率。倒摆和对罢只能在水平一个方向隔振。在垂直 方向, 目前隔振效果最好的是空气弹簧, 需要外界气源, 不能在真空中使用。 由减振理论可 知, 传统被动隔振系统对外界干扰频率大于隔振系统固有频率的^倍, 起减振作用, 可较好 地隔离中、 高频振动, 但隔离低频振动尤其是超低频振动的能力较差。 为了提高系统隔离低 频振动的能力, 通常有两种方法: 一是减小隔振系统的刚度; 二是增加承载质量。 对于线性 隔振器在相同负载下变形较大及降低隔振系统的稳定性, 但承载能力也受到限制。 因此, 传 统被动隔振系统已无法满足超精密加工及测量等领域对隔离超低频宽频带振动的需要, 需要 开展新型非线性隔振器的研究。 若采用主动控制, 可降低固有频率, 提高隔振性能, 但成本 太高。 自 Platus提出了负刚度原理后, 近年来, 国内外应用了负刚度原理研究出各种隔振器, 虽然隔振性能有所提高, 但其承载能力较小, 使用时还需要根据负载进行刚度调谐。
发明内容
本发明的目的是提出一种基于负刚度原理的低频隔振机构, 既有较高的承载能力, 又有 较低的固有频率, 既可实现在垂直方向的单自由度的超低频隔振, 也可实现也可组合使用实 现三自由度的低频隔振, 隔振性能良好。
本发明的目的是通过如下技术方案实现的:
一种基于负刚度原理的环形永磁低频单自由度隔振机构, 其特征在于: 所述的超低频隔 振机构包括内环形永磁体、 外环形永磁体、 上橡胶片、 下橡胶片、 上橡胶片内压环、 上橡胶 片外压环、 下橡胶片内压片、 下橡胶片外压环、 内环形永磁体固定心轴和外环形永磁体固定 套; 内环形永磁体轴向磁化, 外环形永磁体径向磁化, 内环和外环形永磁体同心布置; 所述 的内环形永磁体套固在其心轴上; 所述的外环形永磁体粘接在其固定套上; 所述的上橡胶片 的外缘通过上橡胶片外压环与外环形永磁体的顶面固定, 上橡胶片的中间部分通过上橡胶片 上压环与内环形永磁体的顶面固定; 所述的下橡胶片的外缘通过下橡胶片外压环与外环形永 磁体的底面固定, 下橡胶片的中间部分通过下橡胶片内压片与内环形永磁体固定心轴的底面 固定。 所述的内环形永磁体固定心轴设有上轴肩和下轴肩, 上轴肩与内环形永磁体的顶面齐 平, 下轴肩与内环形永磁体的底面齐平。
所述的上橡胶片和下橡胶片均可采用工业橡胶或天然橡胶。
本发明提供的一种基于负刚度原理的环形永磁低频三自由度隔振机构, 其特征在于: 该 机构是由三个或四个所述的低频单自由度隔振机构组成, 所述的三个低频单自由度隔振机构 均匀分布在同一圆周上; 所述的四个低频单自由度隔振机构组成方形结构; 所述的三自由度 是绕 X轴方向和绕 y轴方向转动以及沿 z方向移动的三自由度。
本发明与现有技术相比, 具有以下优点和突出性的效果: ①本发明提出的低频隔振机构, 不需要外界能量输入, 因此在真空中具有较好的使用前景。②在永磁体之间的磁场力最大时, 其刚度接近于零, 故可实现低频隔振, 与现有的负刚度系统的隔振器相比, 既有较高的承载 能力, 又有较低的固有频率, 且具有良好的隔振性能。 ③本发明的低频隔振机构由内外环形 永磁体、 橡胶及其附件构成, 其结构简单, 成本相当低廉, 且易于加工制造。
附图说明
图 1为本发明提供的基于负刚度原理的环形永磁体低频单自由度隔振机构的主剖面图。 图 2为图 1的俯视图。
图 3为本发明提供基于负刚度原理的环形永磁低频单自由度隔振机构的原理图。
图 4为本发明提供的基于负刚度原理的环形永磁低频三自由度隔振机构的外观图 (由四 个低频单自由度隔振机构成方形分布)。
图 5为本发明提供的基于负刚度原理的环形永磁低频三自由度隔振机构的外观图 (由三 个低频单自由度隔振机构成圆形均匀分布)。
图中: 1-上橡胶片; 2-内环形永磁体固定心轴; 3-上橡胶片上压环; 4-上橡胶片外压环; 5-外环形永磁体; 6-下橡胶片; 7-下橡胶片内压片; 8-下橡胶片外压环; 9-外环形永磁体固 定套; 10-内环形永磁体; 图中: 11-下支撑板; 12-上支撑板; 13-负载; 14-低频单自由度隔 振机构。
具体实施方式
图 1、 如 2为本发明提供的基于负刚度原理的环形永磁低频单自由度隔振机构的结构示 意图, 该环形永磁体低频单自由度隔振机构包括内环形永磁体 10、 外环形永磁体 5、 上橡胶 片 1、 下橡胶片 6、 内环形永磁体固定心轴 2、 上橡胶片上压环 3、 上橡胶片外压环 4、 下橡 胶片内压片 7、 下橡胶片外压环 8以及外环形永磁体固定套 9; 内环形永磁 10轴向磁化, 外 环形永磁体 5径向磁化, 内环形永磁和外环形永磁体同心布置; 所述的内环形永磁体套固在 内环形永磁体固定心轴 2上; 所述的外环形永磁体 5粘接在外环形永磁体固定套 9上; 上橡 胶片 1的外缘通过上橡胶片外压环 4与外环形永磁体 5的顶面固定, 上橡胶片 1的中间部分 通过上橡胶片上压环 3与内环永磁体的顶面固定; 所述的下橡胶片 6的外缘通过下橡胶片压 环 8与外环形永磁体的底面固定, 下橡胶片 6的中间部分通过下橡胶内压片 7与内环形永磁 体固定心轴 2的底面固定。 所述的上橡胶片和下橡胶片采用工业橡胶或天然橡胶。 在内环形永磁体固定心轴 2上设有上轴肩和下轴肩,上轴肩与内环形永磁体的顶面齐平, 下轴肩与内环形永磁体的底面齐平; 上橡胶片通过上橡胶片上压环 3和螺栓与内环形永磁体 10固定在一起; 下橡胶片通过下橡胶片内压片 Ί和螺栓与内环形永磁体固定心轴 2固定在一 起。
图 3为本发明提供的基于负刚度原理的环形永磁低频单自由度隔振机构的结构在垂直方 向上的隔振原理图。 所述的基于负刚度原理的环形永磁低频单自由度隔振机构中的内外环形 永磁体相当于一个磁弹簧,设其刚度为 ν,其中橡胶在斥力的作用下也产生刚度,设其为 £ 在垂直方向的分量为 sin ^, 但其方向相反, 磁弹簧产生正刚度, 橡胶产生负刚度, 所述的 低频单自由度隔振机构在垂直方向的刚度对可表示为:
Τζ— Τζ Τζ
= K - KL sin /9
Figure imgf000005_0001
其中 κ是低频单自由度隔振机构在垂直方向的总刚度, ¾3 ^是内外环形永磁体在垂直 方向的刚度, 是橡胶在垂直方向的刚度, Θ橡胶是与水平线之间的夹角, ; c为垂直方向 的位移, Υ是橡胶与水平线之间夹角 Θ的余弦值 (0〈γ <1 )。
从上式可知, 橡胶的刚度可部分抵消永磁体产生的刚度, 使隔振机构的刚度降低, 甚至 可达到零,
Figure imgf000005_0002
固有频率 f趋近于零, 故可实现低频隔振, M为负载 的质量。
图 4是四个基于负刚度原理的环形永磁低频单自由度隔振机构并联使用可实现三自由度 隔振机构的外观图, 即四个低频单自由度隔振机构组成方形结构, 每个低频单自由度的隔振 机构均可等效为一个弹簧阻尼系统; 所述的三自由度是绕 X轴方向和绕 y轴方向转动以及沿 z方向移动。
所述的绕 X方向转动的隔振原理是当有外界干扰绕 X轴逆时针作用在负载上时, A B两 个隔振单元的内外环轴向的相对位移减小, 磁力增加; 同时, (:、 D两个隔振单元中内外环轴 向相对位移增加, 磁力减小, 负载就会在磁力的作用下恢复到原来的平衡位置, 实现隔振。 反之, 当外界干扰绕 X轴顺时针作用在负载上时, 同理可实现隔振。
所述的绕 y轴方向的隔振与绕 X轴方向的隔振原理相同, 在此不赘述。
所述的沿 Z轴方向的隔振原理是当有沿 z负方向的外界干扰作用在负载上时, 内外环形 永磁体之间的轴向位移减小, 其磁场力增加, 橡胶的拉力减小, 负载会在磁力和橡胶的作用 下恢复到平衡位置, 实现隔振; 反之, 若当有向上的外界干扰作用在负载上时, 内外环永磁 体的轴向位移增加, 轴向磁力减小, 橡胶被拉伸且刚度增加, 负载也会在磁力和橡胶的作用 下, 回复到平衡位置, 实现隔振。
图 5是基于负刚度原理的环形永磁低频三自由度隔振机构的外观图, 即三个低频单自由 度隔振机构均匀分布在同一圆周上, 每个低频单自由度的隔振单元均可等效为一个弹簧阻尼 系统; 所述的三个环形低频单自由度隔振机构并联使用可实现沿 z方向移动, X方向和 y方 向的转动隔振, 其原理与图 4所示的原理相同, 隔振效果也相同, 只是承载能力不同。

Claims

1.一种基于负刚度原理的环形永磁低频单自由度隔振机构, 其特征在于: 该隔振机构包 括上橡胶片 (1 )、 内环形永磁体固定心轴 (2)、 上橡胶片上压环 (3)、 上橡胶片外压环 (4)、 外环形永磁体 (5)、 下橡胶片 (6)、 下橡胶片内压片 (7)、 下橡胶片外压环 (8)、 外环形永 磁体固定套 (9) 和内环形永磁体 (10); 所述的内环形永磁体 (10) 轴向磁化, 外环形永磁 体(5)径向磁化, 内环形永磁体和外环形永磁体同心布置; 所述的内环形永磁体套固在内环 形永磁体固定心轴 (2) 上; 所述的外环形永磁体 (5) 粘接在外环形永磁体固定套 (9) 上; 所述的上橡胶片 (1 ) 的外缘通过上橡胶片外压环 (4) 与外环形永磁体(5) 的顶面固定, 上 橡胶片 (1 ) 的中间部分通过上橡胶片上压环 (3) 与内环形永磁体 (10) 的顶面固定; 所述 的下橡胶片 (6) 的外缘通过下橡胶片外压环 (8) 与外环形永磁体(5) 的底面固定, 下橡胶 片 (6) 的中间部分通过下橡胶片内压片 (7) 与内环形永磁体固定心轴 (2) 的底面固定。
2.按照权利要求 1所述的一种基于负刚度原理的环形永磁低频单自由度隔振机构, 其特 征在于: 所述的内环形永磁体固定心轴设有上轴肩和下轴肩, 上轴肩与内环形永磁体的顶面 齐平, 下轴肩与内环形永磁体的底面齐平。
3.按照权利要求 1所述的一种基于负刚度原理的环形永磁低频单自由度隔振机构, 其特 征在于: 所述的上橡胶片和下橡胶片采用工业橡胶或天然橡胶。
4.一种基于负刚度原理的环形永磁低频三自由度隔振机构, 其特征在于: 该机构是由三 个或四个如权利要求 1所述的低频单自由度隔振机构组成, 所述的三个低频单自由度隔振机 构均匀分布在同一圆周上, 或将所述的四个低频单自由度隔振机构组成方形结构; 所述的三 自由度是指绕 X轴方向和绕 y轴方向转动以及沿 z轴方向移动的三自由度。
1
PCT/CN2012/083359 2011-10-25 2012-10-23 一种基于负刚度原理的永磁低频单自由度隔振机构 WO2013060257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110326616 CN102506110B (zh) 2011-10-25 2011-10-25 一种基于负刚度原理的永磁低频单自由度隔振机构
CN201110326616.4 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013060257A1 true WO2013060257A1 (zh) 2013-05-02

Family

ID=46218230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083359 WO2013060257A1 (zh) 2011-10-25 2012-10-23 一种基于负刚度原理的永磁低频单自由度隔振机构

Country Status (2)

Country Link
CN (1) CN102506110B (zh)
WO (1) WO2013060257A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033869B2 (ja) 2011-09-15 2016-11-30 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフィシステムのための支持モジュール
CN102506110B (zh) * 2011-10-25 2013-10-30 清华大学 一种基于负刚度原理的永磁低频单自由度隔振机构
CN102853018B (zh) * 2012-08-21 2014-05-07 华中科技大学 一种包含磁悬浮单元的隔振器
CN103116249A (zh) * 2012-12-12 2013-05-22 清华大学 一种用于微动台重力补偿的负刚度系统
NL2010418C2 (en) * 2013-03-11 2014-09-15 Mapper Lithography Ip Bv Support module for lithography system.
CN103775550B (zh) 2014-02-14 2015-09-23 华中科技大学 单自由度磁力隔振装置
CN105546026B (zh) * 2015-12-24 2017-10-10 吉林大学 基于磁力负刚度弹簧设计的低频三维隔振矿用自卸车座椅
CN106151340A (zh) * 2016-07-08 2016-11-23 哈尔滨工程大学 一种基于永磁体阵列的线性负刚度机构
CN108662055B (zh) * 2018-07-30 2019-09-27 上海大学 一种正负刚度并联的准零刚度隔振器
CN109505904A (zh) * 2018-12-27 2019-03-22 长沙理工大学 一种低频减振超材料
CN111734776B (zh) * 2020-06-29 2021-11-16 哈尔滨工业大学 基于水平预压弹簧与磁弹簧并联的三自由度低频隔振器
CN113091587B (zh) * 2021-04-06 2022-04-29 重庆大学 一种基于电磁正刚度的准零刚度绝对位移传感器
CN113211460B (zh) * 2021-05-01 2022-03-15 吉林大学 两台单臂工业机器人非接触式协同提升加工刚度的装置
CN113757285B (zh) * 2021-09-08 2022-06-21 重庆大学 负刚度生成机构及准零刚度隔振器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300306A (ja) * 2005-03-22 2006-11-02 Toyo Tire & Rubber Co Ltd 防振装置、防振装置ユニット及びその防振装置の製造方法
WO2007076565A1 (en) * 2006-01-03 2007-07-12 Continuum Audio Labs Pty Ltd Vibration isolation assembly
KR20100115190A (ko) * 2009-04-17 2010-10-27 현대모비스 주식회사 진동 저감 장치
CN102168738A (zh) * 2011-05-11 2011-08-31 北京航空航天大学 一种六自由度主被动动力吸振装置
CN102506110A (zh) * 2011-10-25 2012-06-20 清华大学 一种基于负刚度原理的永磁低频单自由度隔振机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169212A (en) * 1981-04-13 1982-10-18 Kokka Kogyo Kk Vibration suppressing device
JPH09329185A (ja) * 1996-06-06 1997-12-22 Bridgestone Corp 制振装置
JP2003335164A (ja) * 2002-05-16 2003-11-25 Toyo Tire & Rubber Co Ltd 車両用シートサスペンション
KR100843333B1 (ko) * 2008-01-09 2008-07-03 주식회사 예일엠앤씨 공중부양 방식의 지지유닛
CN101398052B (zh) * 2008-09-17 2010-12-01 华中科技大学 一种重载精密减振器及其构成的减振系统
CN101871505B (zh) * 2010-06-12 2012-07-04 江苏大学 一种正负刚度并联三平移振动与冲击隔离平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300306A (ja) * 2005-03-22 2006-11-02 Toyo Tire & Rubber Co Ltd 防振装置、防振装置ユニット及びその防振装置の製造方法
WO2007076565A1 (en) * 2006-01-03 2007-07-12 Continuum Audio Labs Pty Ltd Vibration isolation assembly
KR20100115190A (ko) * 2009-04-17 2010-10-27 현대모비스 주식회사 진동 저감 장치
CN102168738A (zh) * 2011-05-11 2011-08-31 北京航空航天大学 一种六自由度主被动动力吸振装置
CN102506110A (zh) * 2011-10-25 2012-06-20 清华大学 一种基于负刚度原理的永磁低频单自由度隔振机构

Also Published As

Publication number Publication date
CN102506110B (zh) 2013-10-30
CN102506110A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013060257A1 (zh) 一种基于负刚度原理的永磁低频单自由度隔振机构
CN105041961B (zh) 一种基于Stewart平台的六自由度准零刚度隔振系统
CN109120185B (zh) 基于特性相消原理的低刚度磁悬浮重力补偿器
CN102410337A (zh) 一种基于负刚度原理的永磁低频多自由度隔振度机构
CN103453062B (zh) 零刚度磁悬浮主动隔振器及其构成的六自由度隔振系统
Li et al. A negative stiffness vibration isolator using magnetic spring combined with rubber membrane
CN104033535B (zh) 一种适用于低频振动的三维隔振装置
CN103256332B (zh) 一种正负刚度并联减振器
WO2015018236A1 (zh) 一种六自由度主动隔振装置
CN106286692A (zh) 一种六自由度微振动抑制平台及其控制方法
CN202065410U (zh) 一种降低管道振动的调谐质量阻尼器结构
CN203892446U (zh) 一种适用于低频振动的三维隔振装置
WO2015120683A1 (zh) 单自由度磁力隔振装置
WO2014023057A1 (zh) 一种磁负刚度机构
CN104455181A (zh) 一种采用环形永磁铁产生负刚度的准零刚度隔振器
CN106997155B (zh) 一种低刚度的磁悬浮重力补偿器及微动台结构
CN110805645B (zh) 一种柔性支撑电磁式准零刚度隔振装置
CN108167362A (zh) 一种采用多层挤压式磁弹簧和摆杆的准零刚度隔振器
Zhu et al. Modeling of axial magnetic force and stiffness of ring-shaped permanent-magnet passive vibration isolator and its vibration isolating experiment
CN107654551B (zh) 一种基于振动模态和摆模态耦合的多自由度低频隔振器
WO2022001905A1 (zh) 基于磁引力正负刚度并联的水平二自由度电磁隔振装置
CN108953473A (zh) 一种可实现水平解耦的隔振器
CN104315068A (zh) 一种具有运动转换器的低频空气弹簧隔振器
CN108111057B (zh) 一种多功能三方向压电-电磁耦合式换能器
US20230074188A1 (en) Negative stiffness generating mechanism and quasi-zero stiffness vibration isolator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843970

Country of ref document: EP

Kind code of ref document: A1