WO2014023057A1 - 一种磁负刚度机构 - Google Patents

一种磁负刚度机构 Download PDF

Info

Publication number
WO2014023057A1
WO2014023057A1 PCT/CN2012/081141 CN2012081141W WO2014023057A1 WO 2014023057 A1 WO2014023057 A1 WO 2014023057A1 CN 2012081141 W CN2012081141 W CN 2012081141W WO 2014023057 A1 WO2014023057 A1 WO 2014023057A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
negative stiffness
guide
magnet
external
Prior art date
Application number
PCT/CN2012/081141
Other languages
English (en)
French (fr)
Inventor
陈学东
吴文江
李小清
徐振高
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2014023057A1 publication Critical patent/WO2014023057A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • F16F6/005Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid using permanent magnets only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/063Negative stiffness

Definitions

  • the invention belongs to the field of ultra-precision vibration reduction, and particularly relates to a magnetic negative stiffness mechanism.
  • the magnetic negative stiffness mechanism of the present invention has a compact structure and a negative stiffness characteristic, and an ultra-precision damper is formed in parallel with the positive stiffness spring to achieve ultra-low frequency vibration reduction.
  • the positive and negative stiffness parallel damper not only has good vibration isolation effect on high frequency vibration interference, but also effectively isolates ultra low frequency vibration, and is suitable for ultra-precision machining and measuring equipment sensitive to low frequency vibration.
  • the air-floating bearing damping technology can make the damper have a very low natural frequency, but the processing accuracy of the air-floating element is very high, and the installation requirements are also very strict, which increases the cost and restricts the vibration reduction of the air bearing. Wide range of applications in precision damping.
  • Maglev damping is a new type of vibration damping technology. It has not been applied on a large scale at present, mainly due to the difficulty of maglev control technology, small bearing capacity and difficulty in miniaturization.
  • the negative stiffness technique is a type of mechanism that uses a special configuration to achieve negative stiffness characteristics, including mechanical negative stiffness and magnetic negative stiffness. The negative stiffness mechanism cannot be used alone due to its instability and must be used in parallel with the positive stiffness spring for ultra-precision vibration reduction.
  • the damper composed of a negative stiffness spring and a positive stiffness spring can ensure that the damper has a large bearing capacity and effectively isolates the ultra-low frequency vibration.
  • the ultra-low frequency damper provided by the patent document WO95/20113 published by the World Intellectual Property Organization comprises a mechanical negative stiffness mechanism which is a mechanism formed by the principle of a pressure bar, the preload force of which can be adjusted by screws.
  • Permanent magnets have broad application prospects in the field of ultra-precision damping. By special configuration of permanent magnets, magnetic negative stiffness can be achieved.
  • U.S. Patent No. 7,290,642 B2 provides a negative stiffness magnetic spring that utilizes the attraction created by the co-directional arrangement of magnet poles to create a negative stiffness.
  • the magnetic negative stiffness mechanism can be used in the field of ultra-precision vibration reduction, and is connected in parallel with a positive stiffness spring to form a positive and negative stiffness.
  • the ultra-precision damper can greatly reduce the natural frequency of the ultra-precision damper, making the ultra-precision damper not only have good vibration isolation effect on high-frequency vibration interference, but also effectively isolate the ultra-low frequency vibration of the foundation and the environment. , providing a smooth working environment for ultra-precision machining and measuring equipment.
  • the present invention provides a magnetic negative stiffness mechanism characterized in that it utilizes a repulsive force generated by a reverse arrangement of magnet poles to form a negative stiffness characteristic.
  • the magnetic negative stiffness mechanism specifically includes a frame, a negative stiffness adjusting component, a flexible guiding component and a moving component;
  • the frame is a mounting frame of the entire negative stiffness mechanism for mounting the negative stiffness adjusting component and the flexible guiding component And a moving component;
  • a negative stiffness adjusting component for adjusting the stiffness of the magnetic negative stiffness mechanism, a flexible guiding component for providing guidance of the moving component, and a moving component for connecting to the external load platform.
  • the magnetic negative stiffness mechanism provided by the invention is applied to the field of ultra-precision vibration reduction, overcomes the shortcomings that the general damper cannot be realized or is difficult to achieve ultra-low frequency vibration reduction, and is suitable for ultra-precision machining and measuring equipment sensitive to low-frequency vibration.
  • the present invention has the following technical features:
  • the rigidity of the magnetic negative stiffness mechanism is adjustable, and the rigidity of the magnetic negative stiffness mechanism can be adjusted by adjusting the spacing of the external magnets;
  • the flexible hinge guiding mechanism is used to guide the middle magnet and restrain its movement in other directions, so that the degree of freedom is 1;
  • the damper composed of the magnetic negative stiffness mechanism and the positive stiffness spring can achieve ultra-low frequency vibration reduction.
  • the positive and negative stiffness parallel damper not only has good suppression effect on high frequency vibration interference, but also effectively isolates ultra low frequency vibration. ;
  • Figure 1 is a diagram showing the force of two interacting magnets in the direction shown in the present invention
  • Figure 2 is a force-displacement curve of the two interacting magnets of Figure 1;
  • FIG. 3 is a schematic diagram of a magnetic negative stiffness mechanism provided by the present invention.
  • Figure 4 is a stiffness curve of the magnetic negative stiffness mechanism of Figure 3;
  • Figure 5 is a three-dimensional schematic view of the magnetic pole portion of the magnetic negative stiffness mechanism of the present invention.
  • Figure 6 is a cross-sectional view of the magnetic negative stiffness mechanism provided by the present invention.
  • FIG. 7 is a three-dimensional structural view of a magnetic negative stiffness mechanism provided by the present invention.
  • Figure 8 is a three-dimensional structural view of a magnetic negative stiffness mechanism provided by the present invention.
  • FIG. 9 is a three-dimensional structural view of a magnetic negative stiffness mechanism (removing a partial component) provided by the present invention.
  • FIG. 10 is a schematic diagram of a magnetic negative stiffness mechanism and a positive stiffness spring in parallel according to the present invention.
  • the magnetic pole portion of the magnetic negative stiffness mechanism provided by the invention is arranged in parallel by a plurality of sets of magnets, and the magnetization directions of two adjacent magnets are opposite.
  • Such a magnetic circuit is arranged by the magnetic yoke to constrain the magnetic lines of force, thereby reducing magnetic leakage and improving magnetic negative stiffness.
  • the rigidity of the mechanism is arranged by the magnetic yoke to constrain the magnetic lines of force, thereby reducing magnetic leakage and improving magnetic negative stiffness.
  • the magnetic negative stiffness mechanism provided by the present invention has a negative stiffness which can be adjusted by a negative stiffness adjusting member for matching the stiffness of the positive stiffness spring connected in parallel with it, thereby adjusting the stiffness of the damper.
  • the adjustment of the negative stiffness is achieved by adjusting the spacing of the external magnets.
  • Figure 1 is a diagram showing the force of the interacting magnet in the X direction shown in the present invention.
  • the X direction is the moving direction of the moving part.
  • the magnetization directions of the two magnets are parallel to each other and opposite in direction, and have mutually exclusive functions.
  • the negative stiffness principle of the magnetic negative stiffness mechanism of the present invention mainly utilizes a magnet to be subjected to The repulsive force of the other magnet of the interaction in the X direction is achieved.
  • Figure 2 is a force-displacement curve of the interacting magnet of Figure 1 of the present invention. It can be seen from the figure that the repulsion force of the two magnets in the X direction first increases and then decreases as the relative displacement increases. When the relative displacement X is zero, the repulsion force is zero due to symmetry; when the relative displacement X is infinite, the two magnets are far apart and their repulsive force is almost zero. Since the magnetic negative stiffness mechanism of the present invention is mainly used in the field of ultra-precision vibration reduction, the vibration of the load platform is usually on the order of micrometers, so the force-displacement relationship of the relative displacement in the micrometer order is mainly considered.
  • Figure 3 shows the principle of formation of the negative stiffness of the magnetic negative stiffness mechanism of the present invention.
  • the geometric center of the intermediate magnet 9 and the first and second outer magnets 10a, 10b are on the same straight line and have the same shape projection in any plane, between the intermediate magnet 9 and the first and second outer magnets 10a, 10b.
  • the interaction force is repulsion.
  • the first and second outer magnets 10a, 10b are attached to the first and second yokes 11a, 11b, respectively, and are fixed to the bases 20a, 20b.
  • the first and second yokes 11a, 11b are made of a magnetically permeable material.
  • the resultant force of the intermediate magnet 9 in the X direction is zero; when the displacement in the X direction is not zero, since the symmetrical intermediate magnet 9 is only subjected to X
  • the direction repels the effect of the magnetic force. This indicates that the intermediate magnet 9 is in an unstable equilibrium state at the initial position, and once the intermediate magnet 9 is disturbed by the outside, it will deviate from the equilibrium position and cannot return to the initial equilibrium position, thereby forming a negative stiffness characteristic.
  • Figure 4 is the stiffness curve of the magnetic negative stiffness structure of Figure 3 at different magnet spacings.
  • the intermediate magnet and the first and second external magnets have a three-dimensional length, an X width, a height of 25 mm ⁇ 10 mm ⁇ 5 mm, and a residual magnetic induction intensity Br of the magnet of 1.25 T.
  • the stiffness of the magnetic negative stiffness mechanism is nonlinear.
  • the magnet spacing h it is necessary to comprehensively consider the stiffness and nonlinearity, and to ensure that the negative stiffness meets the requirements while minimizing the stiffness nonlinearity.
  • the magnet spacing h is selected to be 10 mm.
  • Figure 5 is a three-dimensional view of the magnetic pole portion of the magnetic negative stiffness mechanism of the present invention.
  • the negative stiffness principle, the intermediate magnet 9 and the first and second outer magnets 10a, 10b form a set of magnetic negative stiffness structures, and the plurality of sets of magnetic negative stiffness structures are arranged in parallel in the y direction, and the magnetization directions of the adjacent magnets of the two groups are opposite.
  • Such a magnetic circuit is arranged by the yoke to restrain the magnetic lines of force and reduce the magnetic flux leakage, thereby improving the rigidity of the magnetic negative stiffness mechanism.
  • a parallel positive stiffness spring must be used for ultra-precision vibration reduction.
  • the rigidity of the magnetic negative stiffness mechanism can be matched with the stiffness of the parallel positive stiffness spring. Reduce the natural frequency of the damping system and achieve ultra-low frequency vibration reduction.
  • a plurality of intermediate magnets 9 are arranged in parallel in the intermediate magnet case 8 to form a moving member of the magnetic negative stiffness mechanism.
  • the intermediate magnet case 8 is made of a non-magnetic material such as an aluminum alloy, a ceramic, a high-strength plastic or the like.
  • the first and second flexible hinge guiding mechanisms 30a, 30b are fixed to the base 20c for providing a magnetic negative stiffness mechanism moving member intermediate magnet case 8 guiding action, so that the intermediate magnet case 8 can only be translated in the X direction, and Movement in other directions is constrained.
  • Figure 6 is a cross-sectional view of the magnetic negative stiffness mechanism provided by the present invention.
  • 7 and 8 are three-dimensional structural views of the magnetic negative stiffness mechanism provided by the present invention.
  • Figure 9 is a three-dimensional structural view of the magnetic negative stiffness mechanism of the present invention after removing a part of the assembly.
  • the magnetic negative stiffness mechanism provided by the present invention comprises a frame, a negative stiffness adjusting member, a flexible guiding member and a moving member.
  • Rack 1 is a unitary frame structure for mounting negative stiffness adjustment components, flexible guides, and moving parts.
  • the frame 1 is mounted on the external base by screws.
  • the negative stiffness adjustment component is used to adjust the stiffness of the magnetic negative stiffness.
  • the negative stiffness adjusting member includes first and second screws 2a, 2b, first and second outer magnets 10a, 10b, first and second yokes 11a, lib, first, second, third, and fourth guiding blocks 3a, 3b, 3c, 3d, first, second, third, fourth bearings 12a, 12b, 12c, 12d, first and second bearing blocks 13a, 13b, and third and fourth bearing blocks 14a, 14b .
  • the threads of the first and second screws 2a, 2b have different directions of rotation.
  • the first and second screws 2a, 2b are mounted on the first bearing housing 13a, the third bearing housing 14a, and the second housing through the first and third bearings 12a, 12c and the second and fourth bearings 12b, 12d, respectively. 13b, the fourth bearing seat 14b.
  • the first and second bearing housings 13a, 13b and the third and fourth bearing housings 14a, 14b are mounted to the frame 1 by screws.
  • the first and second outer magnets 10a, 10b are mounted on the first and second yokes 11a, 11b, respectively, to form first and second outer magnetic pole portions of the magnetic negative stiffness mechanism.
  • the first yokes 11a are respectively connected to the third and fourth guide blocks 3c, 3d by two screws
  • the second yokes lib are connected to the first and second guide blocks 3a, 3b by two screws, respectively.
  • the first and third guide blocks 3a, 3c are attached to both ends of the first screw 2a by screwing.
  • the second and fourth guide blocks 3b, 3d are attached to both ends of the second screw 2b by screwing.
  • the connecting threads of the first and second guiding blocks 3a, 3b and the first and second screws 2a, 2b are left-handed
  • the connecting threads of the third and fourth guiding blocks 3c, 3d and the first and second screws 2a, 2b are Right-handed.
  • the first and second outer magnetic pole portions can be synchronously moved or oppositely moved, thereby adjusting the distance between the outer magnetic pole and the intermediate magnetic pole, thereby realizing the rigidity of the magnetic negative stiffness mechanism. Adjustment.
  • it can be realized by a synchronous belt transmission or a gear transmission of the same gear ratio.
  • the moving parts include a load connection base 6, a load connecting rod 7, an intermediate magnet case 8, an intermediate magnet 9, and first and second clamping blocks 15a, 15b and third and fourth clamping blocks 16a, 16b.
  • the intermediate magnet 9 is placed in the intermediate magnet case 8 to form an intermediate magnetic pole portion of the magnetic negative stiffness mechanism.
  • the first clamping block 15a and the third clamping block 16a are clamped to the intermediate magnet case 8 and then connected by screws.
  • the second clamping block 15b and the fourth clamping block 16b clamp the intermediate magnet case 8 and are connected by screws.
  • the load connection base 6 is connected to the first clamping block 15a and the third clamping block 16a by screws, respectively.
  • the load connecting rod 7 is connected to the load connection base 6 via a set screw.
  • the load connecting rod 7 is a flexible thin rod which acts as a flexible connection, and the magnetic negative rigidity mechanism is connected to the load platform through the load connecting rod 7.
  • the flexible guiding member functions as a guiding member of the moving member, and is composed of first and second flexible hinge guiding mechanisms 30a, 30b, including first and second guiding piece mounting seats 4a, 4b, first, second, third, and Four guiding pieces 5a, 5b, 5c, 5do
  • first and second guiding pieces 5a, 5c are respectively connected to the first guiding piece mounting seat 4a by screws, and the other ends of the first and third guiding pieces 5a, 5c are respectively
  • the third clamping block 16a and the first clamping block 15a are connected by screws; the second and fourth guiding pieces One ends of the 5b, 5d are respectively connected to the second guide piece mounting seat 4b by screws, and the other ends of the second and fourth guiding pieces 5b, 5d are respectively connected to the fourth clamping block 16b and the second clamping block 15b by screws.
  • the materials of each structure of the magnetic negative stiffness mechanism are non-magnetic materials such as aluminum and stainless steel except for special instructions.
  • Figure 10 is a schematic diagram of the magnetic negative stiffness mechanism in parallel with the positive stiffness spring of the present invention.
  • the magnetic negative stiffness mechanism is unstable at the equilibrium position and therefore cannot be used alone.
  • a damper composed of a magnetic negative stiffness mechanism and a positive stiffness spring can be used to reduce the natural frequency of the damper and achieve ultra-low frequency vibration reduction.
  • the positive stiffness spring 40 is mounted on the base 20d, and the magnetic negative stiffness mechanism is coupled in parallel with the positive stiffness spring 40 to support the load 50, achieving ultra-low frequency damping of the load 50 while supporting the large load 50.
  • the positive stiffness spring 40 may be a vibration spring such as a spiral steel spring, a rubber spring, or an air spring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种结构紧凑的磁负刚度机构,属于超精密减振领域,包括机架(1)、负刚度调整部件、柔性导向部件和运动部件。磁负刚度机构利用磁铁反向布置的排斥作用形成负的刚度特性,且负刚度大小可通过负刚度调整部件调节。磁负刚度机构与正刚度弹簧(40)并联组成的超低频减振器具有极低的动态刚度,大幅度地降低了其固有频率,使得减振器不仅对高频振动干扰具有良好的隔振效果,还能有效地隔离超低频振动,适用于对振动敏感的超精密加工与测量设备。

Description

一种磁负刚度机构
【技术领域】
本发明属于超精密减振领域, 具体涉及一种磁负刚度机构。 本发明所 涉及的磁负刚度机构结构紧凑, 具有负的刚度特性, 与正刚度弹簧并联组 成超精密减振器可实现超低频减振。 该正负刚度并联减振器不仅对高频振 动干扰具有良好的隔振效果, 还能有效地隔离超低频振动, 适用于对低频 振动敏感的超精密加工与测量设备。
【背景技术】
当前, 在高端 IC芯片制造领域与超精密检测领域, 对环境微振动隔离 的要求越来越严格。 而一般的超精密减振器, 由于其体型的限制, 往往很 难隔离超低频的振动, 因此迫切需要一些新技术、 新方法来改善这一现状。 气浮轴承减振、 磁浮减振、 负刚度技术等一些手段可极大地提高这类精密 减振器的超低频减振能力。
气浮轴承减振技术能使得减振器具有极低的固有频率, 但是气浮元件 的加工精度要求非常高, 对安装的要求也非常严格, 提高了成本, 制约了 气浮轴承减振在超精密减振中的广泛应用。 磁浮减振是一种新型的减振技 术, 目前还未大规模应用, 主要是由于磁浮控制技术难, 承载力小, 难以 小型化。 负刚度技术是一种利用某一类机构在特殊配置下来实现负的刚度 特性, 包括机械式负刚度和磁负刚度。 负刚度机构由于其不稳定性, 不能 单独使用, 须与正刚度弹簧并联用于超精密减振领域。 负刚度弹簧与正刚 度弹簧并联组成的减振器, 能保证减振器具有大的承载力的同时, 有效地 隔离超低频振动。
世界知识产权组织出版的专利文献 WO95/20113 提供的超低频减振器 包含机械式负刚度机构, 该负刚度机构是利用压杆原理形成的一种机构, 其预紧力可通过螺钉调节。 永磁体在超精密减振领域具有广泛的应用前景, 通过对永磁体进行特 殊的配置, 可实现磁负刚度。 美国专利文献 US7290642B2提供了一种负刚 度磁弹簧, 该磁弹簧利用磁铁磁极同向布置产生的吸引作用形成负刚度。 【发明内容】
本发明的目的在于提供一种磁负刚度机构, 该磁负刚度机构结构紧凑, 具有负的刚度特性, 该磁负刚度机构可用于超精密减振领域, 与正刚度弹 簧并联组成正负刚度并联超精密减振器, 可极大地降低超精密减振器的固 有频率, 使得超精密减振器不仅对高频振动干扰具有良好的隔振效果, 还 能够有效地隔离地基和环境的超低频振动, 为超精密加工与测量设备提供 平稳的工作环境。
本发明提供的一种磁负刚度机构, 其特征在于, 它利用磁铁磁极反向 布置产生的排斥力作用而形成负的刚度特性。
作为上述技术方案的改进, 磁负刚度机构具体包括机架、 负刚度调整 部件、 柔性导向部件和运动部件; 机架为整个负刚度机构的安装框架, 用 于安装负刚度调整部件、 柔性导向部件和运动部件; 负刚度调整部件用于 调节磁负刚度机构的刚度大小, 柔性导向部件用于提供运动部件的导向, 运动部件用于与外部负载平台的连接。
本发明提供的磁负刚度机构应用于超精密减振领域, 克服了一般减振 器无法实现或难以实现超低频减振的缺点 , 适用于对低频振动敏感的超精 密加工与测量设备。 具体而言, 本发明具有如下技术特点:
( 1 )利用磁铁反向布置的排斥作用, 构成特殊的结构形式实现磁负刚 度特性;
(2)磁负刚度机构刚度大小可调, 通过调整外部磁铁间距可实现磁负 刚度机构刚度大小的调整;
(3 )采用柔性铰链导向机构实现中间磁铁的导向, 约束其在其他方向 上的运动, 使得其自由度数为 1 ; (4) 磁负刚度机构与正刚度弹簧并联组成的减振器可实现超低频减 振, 正负刚度并联减振器不仅对高频振动干扰具有良好的抑制效果, 还能 有效隔离超低频振动;
【附图说明】
图 1为本发明中两相互作用磁铁在所示方向的作用力图;
图 2为图 1中两相互作用磁铁的力 -位移曲线;
图 3为本发明所提供磁负刚度机构的原理图;
图 4为图 3中磁负刚度机构的刚度曲线;
图 5为本发明磁负刚度机构磁极部分的三维示意图;
图 6为本发明所提供磁负刚度机构的剖视图;
图 7为本发明所提供磁负刚度机构的三维结构图;
图 8为本发明所提供磁负刚度机构的三维结构图;
图 9为本发明所提供磁负刚度机构 (移除部分组件) 的三维结构图; 图 10为本发明磁负刚度机构与正刚度弹簧并联的原理图。
【具体实鮮式】
本发明所提供磁负刚度机构的磁极部分采用多组磁铁并行布置, 两组 相邻磁铁磁化方向相反, 这样一种磁路的布置通过磁轭约束磁力线, 减小 漏磁, 可提高磁负刚度机构的刚度。
本发明所提供的磁负刚度机构, 其负刚度大小可通过负刚度调整部件 调节, 用于匹配与之并联的正刚度弹簧的刚度, 从而调整减振器的刚度大 小。 负刚度的调整通过调节外部磁铁间距来实现。
以下结合说明书附图对本发明具体实施例的结构和工作原理作进一步 详细的说明。
图 1为本发明中相互作用的磁铁在所示 X方向的作用力图。 X方向为运 动部件的运动方向, 图中两磁铁磁化方向相互平行且方向相反, 具有相互 排斥的作用。 本发明磁负刚度机构的负刚度原理主要利用磁铁受到与之相 互作用的另一块磁铁的在 X方向的排斥作用力来实现的。
图 2为本发明图 1中相互作用磁铁的力 -位移曲线。 从图中可以看出, 两磁铁在 X方向的排斥作用力随着相对位移的增大先增大后减小。 当相对 位移 X为零时, 由于对称性, 排斥作用力为零; 当相对位移 X为无穷大的 时候, 两磁铁相距很远, 其排斥作用力几乎为零。 由于本发明磁负刚度机 构主要用于超精密减振领域, 负载平台的振动通常在微米级, 因此主要考 虑相对位移在微米级的力 -位移关系。
图 3表明本发明磁负刚度机构负刚度的形成原理。 图中中间磁铁 9和 第一、 第二外部磁铁 10a、 10b的几何中心在同一直线上且在任何平面内具 有相同形状的投影, 中间磁铁 9与第一、 第二外部磁铁 10a、 10b之间的相 互作用力为斥力。 第一、 第二外部磁铁 10a、 10b分别安装在第一、 第二磁 轭 lla、 lib上, 并与基座 20a、 20b固连。 第一、 第二磁轭 lla、 lib用导 磁材料制成。
当中间磁铁 9在 X方向位移为零(即图示初始平衡位置)时中间磁铁 9 在 X方向所受合力为零; 当在 X方向位移不为零时, 由于对称性中间磁铁 9 仅受 X方向排斥磁力的作用。 这表明中间磁铁 9在初始位置处于不稳定的 平衡状态, 一旦中间磁铁 9受到外界扰动, 就会偏离平衡位置而无法回到 初始平衡位置, 从而形成负刚度特性。
图 4为图 3中磁负刚度结构在不同磁铁间距下的刚度曲线。 其中, 中 间磁铁和第一、第二外部磁铁三维尺寸长 X宽 X高为 25mmX 10mmX 5mm, 磁铁剩余磁感应强度 Br为 1.25T。 从图中可以看出, 磁负刚度机构的刚度 呈现非线性, 随着中间磁铁和外部磁铁间距的增加, 磁负刚度机构的刚度 减小, 但线性特性增强。 因此在磁铁间距 h 的选择上需要综合考虑刚度大 小和非线性, 在保证负刚度大小满足要求的同时尽可能减小刚度非线性特 性。 本发明实施例中选取磁铁间距 h为 10mm。
图 5为本发明磁负刚度机构磁极部分的三维示意图。 根据图 3中的磁 负刚度原理, 中间磁铁 9和第一、 第二外部磁铁 10a、 10b组成一组磁负刚 度结构, 将多组磁负刚度结构在 y方向并行阵列布置, 且两组相邻磁铁磁 化方向相反, 这样一种磁路的布置通过磁轭来约束磁力线, 减小漏磁, 可 提高磁负刚度机构的刚度。 另一方面, 由于磁负刚度机构不稳定, 须并联 正刚度弹簧用于超精密减振, 因此通过合适选择磁铁数量, 使得磁负刚度 机构的刚度大小与所并联正刚度弹簧刚度匹配, 可以进一步降低减振系统 固有频率, 实现超低频减振。 如图 5所示, 多个中间磁铁 9并行阵列安置 在中间磁铁盒 8中, 形成磁负刚度机构的运动部件。 中间磁铁盒 8用非导 磁材料制成, 如铝合金、 陶瓷、 高强度塑料等。 第一、 第二柔性铰链导向 机构 30a、 30b固连在基座 20c上, 用于提供磁负刚度机构运动部件中间磁 铁盒 8导向作用, 使得中间磁铁盒 8仅能在 X方向平动, 而在其他方向的 运动被约束。
图 6为本发明所提供磁负刚度机构的剖视图。 图 7和图 8为本发明所 提供磁负刚度机构的三维结构图。 图 9为本发明所提供磁负刚度机构移除 部分组件后的三维结构图。
如图 5、 图 6、 图 7、 图 8、 图 9所示, 本发明所提供磁负刚度机构包 括机架、 负刚度调整部件、 柔性导向部件和运动部件。
机架 1 是一种整体框架结构, 用于安装负刚度调整部件、 柔性导向部 件和运动部件。 机架 1通过螺钉安装在外部基座上。
负刚度调整部件用于调整磁负刚度的刚度大小。 负刚度调整部件包括 第一、 第二螺杆 2a、 2b, 第一、 第二外部磁铁 10a、 10b, 第一、 第二磁轭 lla、 lib, 第一、 第二、 第三、 第四导向块 3a、 3b、 3c、 3d, 第一、 第二、 第三、 第四轴承 12a、 12b、 12c, 12d, 第一、 第二轴承座 13a、 13b, 以及 第三、 第四轴承座 14a、 14b。 第一、 第二螺杆 2a、 2b两端螺纹具有不同的 旋向。 第一、 第二螺杆 2a、 2b分别通过第一、 第三轴承 12a、 12c和第二、 第四轴承 12b、 12d安装在第一轴承座 13a、 第三轴承座 14a和第二轴承座 13b、 第四轴承座 14b上。 第一、 第二轴承座 13a、 13b和第三、 第四轴承 座 14a、 14b通过螺钉安装在机架 1上。第一、 第二外部磁铁 10a、 10b分别 安装在第一、 第二磁轭 lla、 lib上, 形成磁负刚度机构第一、 第二外部磁 极部分。第一磁轭 11a分别通过两个螺钉与第三、第四导向块 3c、 3d相连, 第二磁轭 lib分别通过两个螺钉与第一、 第二导向块 3a、 3b相连。 第一、 第三导向块 3a、 3c通过螺纹连接安装在第一螺杆 2a的两端。第二、第四导 向块 3b、 3d通过螺纹连接安装在第二螺杆 2b的两端。 第一、 第二导向块 3a、 3b与第一、第二螺杆 2a、 2b的连接螺纹为左旋, 第三、第四导向块 3c、 3d与第一、 第二螺杆 2a、 2b的连接螺纹为右旋。 通过同步同向旋转第一、 第二螺杆 2a、 2b, 可以使得第一、 第二外部磁极部分同步相对或者相向运 动, 从而实现外部磁极与中间磁极间距的调整, 进而实现磁负刚度机构刚 度的调节。 为实现第一、 第二螺杆 2a、 2b的同步同向运动, 可通过同步带 传动或者等传动比同向的齿轮传动实现。
运动部件包括负载连接底座 6、 负载连接杆 7、 中间磁铁盒 8、 中间磁 铁 9, 以及第一、 第二夹紧块 15a、 15b和第三、 第四夹紧块 16a、 16b。 中 间磁铁 9安置在中间磁铁盒 8中, 形成磁负刚度机构的中间磁极部分。 第 一夹紧块 15a和第三夹紧块 16a夹紧中间磁铁盒 8后通过螺钉相连,第二夹 紧块 15b和第四夹紧块 16b夹紧中间磁铁盒 8后通过螺钉相连。 负载连接 底座 6通过螺钉分别与第一夹紧块 15a和第三夹紧块 16a相连。负载连接杆 7通过紧定螺钉与负载连接底座 6相连。负载连接杆 7为柔性细杆, 起柔性 连接作用, 磁负刚度机构通过负载连接杆 7与负载平台相连。
柔性导向部件起到运动部件的导向作用, 由第一、 第二柔性铰链导向 机构 30a、 30b组成, 包括第一、 第二导向片安装座 4a、 4b, 第一、 第二、 第三、 第四导向片 5a、 5b、 5c、 5do 第一、 第三导向片 5a、 5c的一端分别 通过螺钉与第一导向片安装座 4a相连, 第一、第三导向片 5a、 5c的另一端 分别与第三夹紧块 16a、 第一夹紧块 15a通过螺钉相连; 第二、 第四导向片 5b、 5d的一端分别通过螺钉与第二导向片安装座 4b相连, 第二、 第四导向 片 5b、 5d的另一端分别与第四夹紧块 16b、第二夹紧块 15b通过螺钉相连。 第一导向片安装座 4a, 第一、 第三导向片 5a、 5c组成第一柔性铰链导向机 构 30a; 第二导向片安装座 4b, 第二、 第四导向片 5b、 5d组成第二柔性铰 链导向机构 30b。
为了减小对磁负刚度机构磁场的影响, 磁负刚度机构各结构的材质除 了特殊说明的之外均为铝、 不锈钢等非导磁材料。
图 10为本发明磁负刚度机构与正刚度弹簧并联的原理图。磁负刚度机 构在平衡位置具有不稳定性, 因此不能单独使用。 磁负刚度机构与正刚度 弹簧并联组成的减振器可用于降低减振器的固有频率, 实现超低频减振。 如图 10所示, 正刚度弹簧 40安装在基座 20d上, 磁负刚度机构与正刚度 弹簧 40并联, 支承负载 50, 在实现对大的负载 50支承的同时实现负载 50 的超低频减振。 正刚度弹簧 40可以是螺旋钢弹簧、 橡胶弹簧、 空气弹簧等 减振弹簧。
以上所述为本发明的较佳实施例而已, 但本发明不应该局限于该实施 例和附图所公开的内容。 所以, 凡是不脱离本发明所公开的精神下完成的 等效或修改, 都落入本发明保护的范围。

Claims

权 利 要 求 书
1、 一种磁负刚度机构, 其特征在于, 它利用磁铁磁极反向布置产生的 排斥力作用而形成负的刚度特性。
2、 根据权利要求 1所述的磁负刚度机构, 其特征在于, 该机构包括机 架、 负刚度调整部件、 柔性导向部件和运动部件; 机架为整个负刚度机构 的安装框架, 用于安装负刚度调整部件、 柔性导向部件和运动部件; 负刚 度调整部件用于调节磁负刚度机构的刚度大小, 柔性导向部件用于提供运 动部件的导向, 运动部件用于与外部负载平台的连接。
3、 根据权利要求 2所述的磁负刚度机构, 其特征在于, 所述负刚度调 整部件包括第一、 第二螺杆 (2a、 2b), 第一、 第二磁轭 (lla、 lib), 第一、 第二轴承座 (13a、 13b), 第三、 第四轴承座 (14a、 14b), 第一、 第二、 第三、 第四导向块 (3a、 3b、 3c、 3d), 以及一个外部磁铁组, 外部磁铁组包括第 一、 第二外部磁铁 (10a、 10b);
第一螺杆 (2a)的两端分别通过轴承安装在第一轴承座 (13a)、第三轴承座 (14a)上; 第二螺杆 (2b)的两端分别通过轴承安装在第二轴承座 (13b)、 第四 轴承座 (14b)上; 第一、第二轴承座 (13a、 13b)和第三、第四轴承座 (14a、 14b) 安装在机架 (1)上;
第一外部磁铁 (10a)安装在第一磁轭 (11a)上, 形成磁负刚度机构第一外 部磁极部分, 第二外部磁铁 (10b)安装在第二磁轭 (lib)上, 形成磁负刚度机 构第二外部磁极部分;
第一磁轭 (11a)的两端分别与第三、 第四导向块 (3c、 3d)相连, 第二磁轭 (lib)分别与第一、 第二导向块 (3a、 3b)相连; 第三导向块 (3a、 3c)通过螺纹 连接安装在第一螺杆 (2a)的两端, 第二、 第四导向块 (3b、 3d)通过螺纹连接 安装在第二螺杆 (2b)的两端, 第一、 第二螺杆 (2a、 2b)两端螺纹具有不同的 旋向。
4、根据权利要求)所述的磁负刚度机构, 其特征在于, 所述负刚度调整 部件包括第一、 第二螺杆 (2a、 2b), 第一、 第二磁轭 (lla、 lib), 第一、 第 二轴承座 (13a、 13b), 第三、 第四轴承座 (14a、 14b), 第一、 第二、 第三、 第四导向块 (3a、 3b、 3c、 3d), 以及至少二个外部磁铁组, 各外部磁铁组 均包括第一、 第二外部磁铁 (10a、 10b);
第一螺杆 (2a)的两端分别通过轴承安装在第一轴承座 (13a)、第三轴承座 (14a)上; 第二螺杆 (2b)的两端分别通过轴承安装在第二轴承座 (13b)、 第四 轴承座 (14b)上; 第一、第二轴承座 (13a、 13b)和第三、第四轴承座 (14a、 14b) 安装在机架 (1)上;
各第一外部磁铁 (10a)并行安装在第一磁轭 (11a)上, 形成磁负刚度机构 第一外部磁极部分, 各第二外部磁铁 (10b)并行安装在第二磁轭 (lib)上, 形 成磁负刚度机构第二外部磁极部分;
第一磁轭 (11a)的两端分别与第三、 第四导向块 (3c、 3d)相连, 第二磁轭 (lib)分别与第一、 第二导向块 (3a、 3b)相连; 第三导向块 (3a、 3c)通过螺纹 连接安装在第一螺杆 (2a)的两端, 第二、 第四导向块 (3b、 3d)通过螺纹连接 安装在第二螺杆 (2b)的两端, 第一、 第二螺杆 (2a、 2b)两端螺纹具有不同的 旋向。
5、 根据权利要求 3或 4所述的磁负刚度机构, 其特征在于, 所述运动 部件包括负载连接底座 (6)、 负载连接杆 (7)、 中间磁铁盒 (8), 以及中间磁铁 (9), 中间磁铁 (9)的数量与外部磁铁组的数量相等, 任意相邻磁铁的磁化方 向相反;
中间磁铁 (9)安置在中间磁铁盒 (8)中, 形成磁负刚度机构的中间磁极部 分, 第一夹紧块 (15a)和第三夹紧块 (16a)夹紧中间磁铁盒 (8)并相连, 第二夹 紧块 (15b)和第四夹紧块 (16b)夹紧中间磁铁盒 (8)并相连, 负载连接底座 (6) 分别与第一夹紧块 (15a)和第三夹紧块 (16a)相连, 负载连接杆 (7)与负载连接 底座 (6)固定连接, 负载连接杆 (7)为柔性杆, 用于与外部的负载平台相连; 中间磁铁 (9)和第一、第二外部磁铁 (10a、 10b)的几何中心在同一直线上, 且在任何平面内具有相同形状的投影。
6、 根据权利要求 5所述的磁负刚度机构, 其特征在于, 所述柔性导向 部件包括第一、 第二柔性铰链导向机构 (30a、 30b), 第一、 第二柔性铰链导 向机构 (30a、 30b)与夹紧块连接, 提供运动部件的导向作用。
7、 根据权利要求 6所述的磁负刚度机构, 其特征在于, 第一柔性铰链 导向机构 (30a)包括第一导向片安装座 (4a), 第一、 第三导向片 (5a、 5c), 第 二柔性铰链导向机构 (30b)包括第二导向片安装座 (4b), 第二、 第四导向片 (5b、 5d);
第一、 第三导向片 (5a、 5c)的一端分别与第一导向片安装座 (4a)相连, 第一、第三导向片 (5a、 5c)的另一端分别与第三夹紧块 (16a)、第一夹紧块 (15a) 相连; 第二、第四导向片 (5b、 5d)的一端分别与第二导向片安装座 (4b)相连, 第二、第四导向片 (5b、5d)的另一端分别与第四夹紧块 (16b)、第二夹紧块 (15b) 相连。
PCT/CN2012/081141 2012-08-10 2012-09-07 一种磁负刚度机构 WO2014023057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210284870.7 2012-08-10
CN201210284870.7A CN102808883B (zh) 2012-08-10 2012-08-10 一种磁负刚度机构

Publications (1)

Publication Number Publication Date
WO2014023057A1 true WO2014023057A1 (zh) 2014-02-13

Family

ID=47232698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081141 WO2014023057A1 (zh) 2012-08-10 2012-09-07 一种磁负刚度机构

Country Status (2)

Country Link
CN (1) CN102808883B (zh)
WO (1) WO2014023057A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256332B (zh) * 2013-04-23 2015-05-20 华中科技大学 一种正负刚度并联减振器
CN103453062B (zh) * 2013-08-15 2015-06-17 华中科技大学 零刚度磁悬浮主动隔振器及其构成的六自由度隔振系统
CN104373493B (zh) * 2014-11-14 2016-05-04 西安交通大学 一种并联磁性低刚度隔振器
CN107905399A (zh) * 2017-09-27 2018-04-13 同济大学 一种电磁阻尼负刚度支座
CN108918913B (zh) * 2018-05-16 2019-08-13 华中科技大学 一种固有频率可调的垂向超导磁力弹簧振子
CN109356962B (zh) 2018-11-27 2019-11-12 华中科技大学 一种多维磁负刚度机构及其构成的多维磁负刚度减振系统
CN110565936B (zh) * 2019-08-30 2021-07-06 广东博智林机器人有限公司 调谐质量阻尼器装置和具有其的悬吊建筑机器人
CN113700788A (zh) * 2021-08-26 2021-11-26 华中科技大学 一种包含组合型磁负刚度机构的近零刚度隔振系统
CN113915282B (zh) * 2021-09-27 2022-10-28 华中科技大学 一种紧凑型宽域高线性度磁负刚度机构
CN114151488B (zh) * 2021-11-15 2022-11-22 华中科技大学 一种刚度可调的紧凑型宽域高线性度磁负刚度装置
CN114754095B (zh) * 2022-04-22 2024-04-19 合肥工业大学 一种负刚度非线性弱的磁致负刚度结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402118B1 (en) * 1997-09-26 2002-06-11 Technische Universiteit Delft Magnetic support system
EP1359341A2 (de) * 2002-05-03 2003-11-05 Integrated Dynamics Engineering GmbH Magnetische Federeinrichtung mit negativer Steifheit
JP2004108404A (ja) * 2002-09-13 2004-04-08 Delta Tooling Co Ltd 振動絶縁装置
CN2885799Y (zh) * 2005-12-07 2007-04-04 贵刚 滚轮导靴减振装置
CN202133856U (zh) * 2011-05-31 2012-02-01 上海微电子装备有限公司 减振平台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998658U (zh) * 1972-12-15 1974-08-26
US5896961A (en) * 1995-10-02 1999-04-27 Kabushiki Kaisha Toshiba Dynamic vibration absorber
CN101709763B (zh) * 2009-12-10 2012-07-04 华中科技大学 一种水平二自由度隔振机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402118B1 (en) * 1997-09-26 2002-06-11 Technische Universiteit Delft Magnetic support system
EP1359341A2 (de) * 2002-05-03 2003-11-05 Integrated Dynamics Engineering GmbH Magnetische Federeinrichtung mit negativer Steifheit
JP2004108404A (ja) * 2002-09-13 2004-04-08 Delta Tooling Co Ltd 振動絶縁装置
CN2885799Y (zh) * 2005-12-07 2007-04-04 贵刚 滚轮导靴减振装置
CN202133856U (zh) * 2011-05-31 2012-02-01 上海微电子装备有限公司 减振平台

Also Published As

Publication number Publication date
CN102808883B (zh) 2014-06-04
CN102808883A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2014023057A1 (zh) 一种磁负刚度机构
Li et al. A negative stiffness vibration isolator using magnetic spring combined with rubber membrane
JP6317822B2 (ja) 一自由度磁力防振装置
US11255406B2 (en) Multi-dimensional magnetic negative-stiffness mechanism and multi-dimensional magnetic negative-stiffness vibration isolation system composed thereof
US8084897B2 (en) Micro stage with 6 degrees of freedom
KR100455793B1 (ko) 자기회로를 이용한 제진기구
CN103453062B (zh) 零刚度磁悬浮主动隔振器及其构成的六自由度隔振系统
CN103226295A (zh) 一种光刻机硅片台微动工作台
KR101900955B1 (ko) 중력을 보상하는 수직 액츄에이터 구동장치
WO2022001905A1 (zh) 基于磁引力正负刚度并联的水平二自由度电磁隔振装置
WO2005026573A1 (ja) 除振方法およびその装置
CN106997155B (zh) 一种低刚度的磁悬浮重力补偿器及微动台结构
Shan et al. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges
CN102880009A (zh) 一种六自由度微动工作台
CN112696449B (zh) 一种适用于低频减隔振的负刚度电磁执行机构
WO2022088717A1 (zh) 基于主动电磁负刚度结构的六自由度隔微振器
CN111677799B (zh) 基于水平预压弹簧的三自由度电磁隔振器
CN102710179B (zh) 主动控制型磁悬浮隔振平台
JP4157393B2 (ja) 除振装置
JP4727151B2 (ja) 除振方法およびその装置
JP4421130B2 (ja) 除振方法およびその装置
CN203275876U (zh) 一种光刻机硅片台微动工作台
CN103047338B (zh) 双层气浮正交解耦与二维柔性铰链角度解耦的电磁阻尼隔振器
CN103047345B (zh) 双层气浮正交解耦与气浮球轴承角度解耦的电磁阻尼隔振器
CN111734776B (zh) 基于水平预压弹簧与磁弹簧并联的三自由度低频隔振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882549

Country of ref document: EP

Kind code of ref document: A1