WO2013060112A1 - 二冲程空气动力发动机总成 - Google Patents

二冲程空气动力发动机总成 Download PDF

Info

Publication number
WO2013060112A1
WO2013060112A1 PCT/CN2012/073001 CN2012073001W WO2013060112A1 WO 2013060112 A1 WO2013060112 A1 WO 2013060112A1 CN 2012073001 W CN2012073001 W CN 2012073001W WO 2013060112 A1 WO2013060112 A1 WO 2013060112A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
valve
intake
gear
engine
Prior art date
Application number
PCT/CN2012/073001
Other languages
English (en)
French (fr)
Inventor
周登荣
周剑
Original Assignee
北京祥天华创空气动力科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京祥天华创空气动力科技研究院有限公司 filed Critical 北京祥天华创空气动力科技研究院有限公司
Priority to US13/574,989 priority Critical patent/US20140224234A1/en
Priority to KR1020127031303A priority patent/KR20140077806A/ko
Priority to JP2013542366A priority patent/JP5557964B2/ja
Priority to AU2012216236A priority patent/AU2012216236A1/en
Priority to EP12758981.0A priority patent/EP2772611B1/en
Priority to RU2012153923/06A priority patent/RU2565471C2/ru
Publication of WO2013060112A1 publication Critical patent/WO2013060112A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • F01B17/025Engines using liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/04Machines or engines with pertinent characteristics other than those provided for in preceding main groups characterised by means for converting from one type to a different one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • the present invention relates to a two-stroke engine, and more particularly to a two-stroke air-powered engine assembly using compressed air as a power source.
  • Engines are widely used in various industries. In modern transportation vehicles such as automobiles and ships, piston-type internal combustion engines using fuel as a power source are generally used. On the one hand, the engine using fuel as a power source is not fully burned by the fuel, so that the exhausted gas contains a large amount of harmful substances and pollutes the environment. On the other hand, since the used fuel is extracted from petroleum, the petroleum resources are increasingly The shortage has made the development and utilization of fuel engines more and more limited. Therefore, the development of new, clean, pollution-free alternative energy sources, or the reduction of fuel consumption and emission reduction as much as possible, is an urgent problem in the development of engines. The aerodynamic engine with compressed air as the power source meets this requirement.
  • FR 2 273 472 A1 discloses an engine that can operate in both fuel supply and compressed air supply modes, using conventional fuels such as gasoline or diesel on highways, and compressed air (or any other non-lower speeds at low speeds, especially in urban and suburban areas).
  • the contaminated compressed gas is injected into the combustion chamber.
  • this type of engine partially reduces fuel consumption, the emissions problem remains unresolved due to the fuel operating mode.
  • US Pat. No. 6,311,486 B1 discloses a purely aerodynamic engine which employs three separate chambers: a suction-compression chamber, an expansion and exhaust chamber, and a constant volume combustion chamber, and an aspiration-compression chamber. Connected to the constant volume combustion chamber by a valve, the constant volume combustion chamber is connected to the expansion discharge chamber by a valve.
  • the compressed gas takes a long time from the suction-compression chamber to the expansion and exhaust chamber, and the power source gas for driving the piston is made longer, and at the same time, the high-pressure gas discharged from the expansion exhaust chamber Failure to use, which limits the efficiency of this type of engine and the continuous working time of a single charge.
  • the applicant of the present application discloses an aerodynamic engine assembly that can be used in a transportation vehicle, which includes a gas storage tank, an air distributor, an engine body, and a patent document CN101413403 A (the same international application is W02010051668 A1). Actuators, clutches, automatic transmissions, differentials, and impeller generators placed in the exhaust chamber.
  • This kind The engine uses compressed air to work without using any fuel, so there is no exhaust emission, achieving zero emissions, and reusing exhaust gas for power generation, saving energy and reducing costs.
  • this engine is based on a conventional four-stroke engine. The piston works once every 720 degrees of crankshaft rotation.
  • the high-pressure air as a power source can push the piston to work when entering the cylinder, and then discharge, that is, the stroke of the compressed air engine is actually the intake-expansion stroke and the discharge stroke.
  • the four-stroke compressed air engine disclosed in the patent document CN101413403 A wastes an effective power stroke and limits the efficiency of the engine. And the exhaust of this engine is not well recycled, and a large enough gas tank is needed to store high-pressure air to work for a long enough time.
  • the present invention provides a two-stroke aerodynamic engine which aims to solve the problem of effective work of a compression engine, thereby realizing an economical, efficient, zero-emission new aerodynamic engine.
  • an aerodynamic engine assembly comprising: an engine body including a cylinder, a cylinder head system, an intake line, an exhaust line, a piston, a connecting rod, a crankshaft, an exhaust camshaft, an intake camshaft, a front gearbox system, and a rear gearbox; the piston is coupled to a crankshaft via a connecting rod; the front gearbox system is for driving a crankshaft and a camshaft; the cylinder head system a gas throat hole for compressing air intake and a vent hole for exhaust gas discharge; a high pressure gas tank group connected to an external gas filling device through a pipeline; a constant pressure tank passing through the pipeline and the high pressure gas tank
  • the air-powered engine assembly further includes: an intake control speed control valve connected to the constant pressure tank through the pipeline; a controller system; and an electronic control unit ECU that controls the intake air according to the signal detected by the sensor Controling the speed control valve; the front gearbox system includes a polygonal cover
  • the engine assembly further includes a multi-cylinder power splitter.
  • the multi-cylinder power distributor comprises five stages, one, two, three, four, and five, each of which includes an inner ring gear, a planetary gear and a sun gear.
  • the presence of a multi-column distributor can effectively achieve multiple levels of demand distribution of engine output power.
  • the intake control speed control valve is a combination of an electromagnetic proportional valve or an electromagnetic proportional valve and a pressure reducing valve, so that the demand for compressed air intake at high speed, medium speed, and low speed of the engine can be conveniently achieved.
  • the controller system includes a high pressure common rail constant pressure tube, a controller upper cover, a controller middle seat and a controller lower seat, and the controller upper cover, the controller middle seat and the controller lower seat pass through The bolts are detachably sealed.
  • the sensor is an engine speed sensor or a door oil potentiometer, or a combination of the two.
  • an intake line is disposed in the upper cover of the controller, and the intake line is screwed to the high pressure common rail constant pressure tube.
  • a controller intake valve, a controller valve spring and a controller valve seat cover are installed in the seat of the controller, and the controller valve is abutted by the pre-action force of the controller valve spring when the engine does not need intake air.
  • the controller valve seat cover On the controller valve seat cover.
  • a controller tappet for controlling a valve opening and closing of the controller is disposed in the lower seat of the controller, and the controller tappet is actuated by the intake camshaft.
  • the engine assembly has six cylinders and the crankshaft includes six unit cranks.
  • the six unit cranks are a first unit crank, a second unit crank, a third unit crank, a fourth unit crank, a fifth unit crank, and a sixth unit crank, and
  • the phase of each unit crank is set as follows: the first unit crank and the second unit crank are 120 degrees apart, the second unit crank and the third unit are 120 degrees apart, and the third unit is turned and the fourth unit
  • the difference between the turns is 180 degrees, the fourth unit turns and the fifth unit turns are -120 degrees, and the fifth unit turns and the sixth unit turns are -120 degrees.
  • a controller system for an aerodynamic engine includes: a high pressure common rail constant pressure tube, a controller upper cover, a controller middle seat, and a controller lower seat.
  • the controller upper cover, the controller middle seat and the controller lower seat are detachably sealed and connected by bolts, and wherein the controller upper cover is provided with an intake pipe, and the intake pipe is screwed to the high pressure common rail Constant pressure tube.
  • the intake line communicates with a cavity in the high pressure common rail constant pressure tube to receive compressed air from the high pressure common rail constant pressure tube.
  • a controller intake valve, a controller valve spring, an oil seal bushing, a controller valve spring lower seat, and a controller valve seat cover are installed in the seat of the controller, and the controller valve The pre-energized by the controller valve spring abuts against the controller valve seat cover when the engine does not need to be inflated.
  • a controller tappet for controlling a valve opening and closing of the controller is disposed in the lower seat of the controller, and the controller tappet is actuated by the intake camshaft.
  • the intake camshaft is driven by the crankshaft through the crank gear and the bridge gear of the front gearbox to drive the controller tappet movement when the engine is working, thereby turning off the controller valve of the controller system.
  • both ends of the high pressure common rail constant pressure pipe are equipped with a high pressure common rail constant pressure pipe end cover 100.
  • the high pressure common rail constant pressure pipe end cover has an outwardly extending flange which extends into a pipe between the high pressure intake control speed control valve and the high pressure common rail constant pressure pipe. And detachably fixedly connected to the high pressure line by a threaded connection.
  • the controller of the controller system has a hole having a different diameter at the center thereof, and from top to bottom, the controller valve seat hole, the controller valve hole, the oil seal bushing hole, Controller valve spring hole, and wherein,
  • the diameter of the controller valve seat sleeve hole is larger than the diameter of the controller valve hole and larger than the diameter of the hole oil seal bushing hole.
  • the diameter of the controller valve bore is larger than the diameter of the oil seal bushing bore.
  • the controller valve hole communicates with the air throat hole connecting hole to input compressed air from the high pressure common rail constant pressure pipe into the air throat hole through the intake air pipe when the controller valve is opened. Connection hole.
  • controller system of the present invention further includes an oil seal bushing mounted in the oil seal bushing bore and supported above the controller valve spring, the valve stem passing through the controller valve.
  • controller valve spring of the controller system of the present invention is installed in the valve spring hole of the controller, and the lower end supports the controller valve spring lower seat, and is fastened to the controller valve spring lower seat by the controller valve lock clip.
  • high-pressure compressed air from the high-pressure gas cylinder group can be efficiently distributed to the respective cylinders of the engine, thereby achieving continuous and reliable operation of the engine.
  • Figure 1 is a general schematic view of a two-stroke air engine assembly in accordance with the present invention
  • Figure 2 is a front elevational view of the engine body of the two-stroke air engine assembly of Figure 1;
  • Figure 3 is a right side elevational view of the engine body of the two-stroke air engine assembly of Figure 1;
  • Figure 4 is a left side elevational view of the engine body of the two-stroke air engine assembly of Figure 1;
  • Figure 5 is a plan view of the engine body of the two-stroke air engine assembly of Figure 1;
  • Figure 6 is a crankshaft-link-piston system assembly of the engine body of the two-stroke air engine assembly of Figure 1, wherein one of the piston-link units is coupled to the cylinder;
  • Figure 7 is a schematic view showing the structure of a crankshaft unit of the crankshaft-link-piston system assembly of Figure 6;
  • Figure 8 is a schematic view showing the structure of a cam shaft of the engine body of Figure 2;
  • Figure 9A is a perspective perspective view of the controller system of the two-stroke engine assembly of Figure 1;
  • Figure 9B is a longitudinal cross-sectional view of the controller system
  • Figure 9C is a transverse cross-sectional side view of the controller system
  • Figure 10A is a perspective perspective view of the front gearbox system of the two-stroke engine assembly of Figure 1;
  • Figure 10B is a left side view of Figure 10A;
  • Figure 10C is a side elevational view, partly in section, of Figure 10A;
  • Figure 11A is a perspective perspective view of the multi-cylinder power splitter of the two-stroke engine assembly of Figure 1;
  • Figure 11B is a cross-sectional view of Figure 11A taken along the longitudinal axis;
  • Figure 11C is a left side view of Figure 11A;
  • Figure 11D is a plan view of Figure 11A.
  • FIG. 1 is a general schematic view of a two-stroke aerodynamic engine assembly in accordance with the present invention, with arrows indicating the direction of flow of the air stream.
  • the aerodynamic engine assembly includes an engine body 1, a multi-column power splitter 2, a power plant 4, a controller system 6, a high pressure gas tank group 13, a constant pressure tank 16, and an intake control speed control valve 23.
  • Electronic control unit ECU 29 and impeller generator 22 As shown in Fig. 1, the high pressure gas cylinder group 13 is connected to an external gas station or an external gas supply device through a compressed air inlet line 14 to obtain a desired high pressure compressed air from the outside.
  • a flow meter A, a pressure gauge P and a manual switch (not shown) are provided on the compressed air inlet line 14.
  • the flow meter A is used to measure and monitor the flow of compressed air entering the high pressure gas cylinder group 13
  • the pressure gauge P is used to measure and monitor the pressure of the compressed air entering the high pressure gas cylinder group 13.
  • the manual switch When the high-pressure gas tank group 13 needs to be refilled by an external gas filling device or a gas filling station, the manual switch is turned on, and the high-pressure compressed air enters the high-pressure gas tank group 13, when the flow meter A on the compressed air inlet line 14 When the pressure gauge P reaches the specified value, the manual switch is turned off to complete the inflation process of the high pressure gas cylinder group 13, so that compressed air of a rated pressure of, for example, 30 MPa can be obtained. In order to ensure the safety performance of the gas tank, one, two or more safety valves (not shown) may be provided on the high pressure gas cylinder group 13.
  • the high-pressure gas tank group 13 may be one, two, three, four or more high-pressure gas tanks having sufficient capacity to be combined in series or in parallel, and the high-pressure gas tank group is determined according to the actual needs of the application.
  • the high pressure gas tank group 13 is connected to the constant pressure tank 16 via a line 15, and the line 15 is also provided with a flow meter A and a pressure gauge P for separately monitoring and controlling the flow and pressure of the compressed air.
  • the constant pressure tank 16 serves to stabilize the pressure of the high pressure air from the high pressure gas cylinder group 13 at a pressure slightly lower than the pressure in the high pressure gas cylinder group 13, for example, between 21 and 28 MPa, preferably about 21 MPa.
  • a line 17 is provided between the constant pressure tank 16 and the intake control speed control valve 23.
  • the line 17 is also provided with a flow meter A and a pressure gauge P for separately monitoring and controlling the compressed air flow and pressure.
  • the high pressure air from the constant pressure tank 16 is controlled and regulated by the intake control speed regulating valve 23 and then enters the controller system 6 through the pipeline.
  • the intake control speed control valve 23 will now be described in detail.
  • the function of the intake control speed regulating valve 23 is to control the opening time of the electromagnetic valve in accordance with the command signal of the electronic control unit ECU 29 to determine the amount of compressed air intake. Since the solenoid valve has a decompression action, it is combined with a pressure reducing pressure regulating valve to form a speed regulating valve, so that the engine speed can be adjusted within a suitable range.
  • the intake control speed control valve 23 is controlled by a control signal 26 from the ECU 29.
  • a plurality of sensors are selectively provided on the engine body 1, such as a speed sensor for measuring the engine speed, a position sensor for determining the position of the top dead center of the cylinder, and a judgment door.
  • the door oil potentiometer at the oil pedal position can also be a temperature sensor that measures the temperature of the engine body.
  • Speed sensor 24 and/or door oil potentiometer 242 are shown in accordance with an exemplary embodiment of the present invention.
  • Speed sensor 24 may be various speed sensors of the prior art that measure engine speed and is typically disposed on crankshaft 56.
  • the door oil potentiometer 242 can be various position sensors of the prior art that measure the position of the accelerator pedal, which is typically disposed at the door oil pedal position.
  • the door oil potentiometer similar to the pedal position may be an engine load sensor such as a torque sensor that monitors the engine output torque, a position sensor that controls the magnitude of the generated current in the power generation occasion, and the like.
  • the ECU 29 outputs a control signal 26 according to a signal of various sensors, such as a speed signal of the speed sensor 24 and a position signal of the gate oil potentiometer 242, and the control signal 26 controls the intake control speed control.
  • the valve can thus achieve the high speed, medium speed and low speed requirements of the intake control speed control valve, thereby corresponding to the high speed, medium speed and low speed rotation of the engine.
  • the high-pressure compressed air passing through the intake control speed regulating valve flows into the controller system 6 through the high-pressure pipeline, and the controller system 6 supplies high-pressure compressed air to each cylinder of the engine body 1, for example, a pressure of about 7-18 MPa, preferably It is 9-15 MPa, more preferably l l_13 MPa, to drive the engine piston 51 to reciprocate in the cylinder system 40 (refer to Figs. 2-6), and convert the reciprocating motion of the piston 51 into a reciprocating motion via the connecting rod 54.
  • the rotational motion of the crankshaft 56 is such that it meets the requirements of various operating conditions of the engine.
  • the specific structure of the controller system 6 will be described in detail later.
  • the rotational motion output from the engine body 1 is distributed via a multi-cylinder power splitter 2 to a power plant such as the generator 4.
  • the multi-cylinder power splitter 2 can be fixedly coupled to the flywheel on the crankshaft 56 or can be coupled to the crankshaft via a coupling such as a coupling to transmit power to the power unit 4.
  • the high-pressure air drives the piston 51 to move during the rotation of the crankshaft at 0-180 degrees.
  • the piston reaches the bottom dead center and moves upward due to inertia, the crankshaft continues to rotate 180 degrees - 360 degrees, the engine performs the exhaust stroke.
  • the exhaust gas still has a high pressure, for example, about 3 MPa.
  • the exhaust gas with higher pressure is directly discharged into the atmosphere, and on the one hand, a high-pressure tail gas flow is easily formed, causing exhaust noise.
  • the energy contained in the compressed air is lost.
  • the present invention provides an impeller generator 22 in an attempt to utilize the pressure energy of the exhaust gas. As shown in FIG.
  • the exhaust gas collected from the exhaust gas collector 28 enters the impeller generator 22 via the line 27, and the pressure exhaust gas entering the impeller generator 22 drives the impeller generator 22 to generate electricity, and the impeller generator 22 sends electricity through the wires. 18 is passed to battery 19 for continued use by the engine.
  • FIG. 2 is a front view of the engine body
  • FIG. 3 is a right side view of the engine body 1
  • FIG. 4 is a left side view of the engine body 1
  • FIG. 5 is a plan view of the engine body.
  • the engine body 1 includes a cylinder 40, a cylinder head system 36, an intake line 42 (valve throat), an exhaust line 27, a piston 51, a connecting rod 54, a crankshaft 56, and an exhaust camshaft 800 ( See Figure 8), intake camshaft 200 (mounted in intake camshaft mounting hole 113 in Figure 9), front teeth Wheelbox system 43 and rear gearbox 33.
  • Front gearbox system 43 is used to drive crankshaft 56 and camshaft.
  • the rear gear case 33 is provided with a ring gear 31 and a flywheel 32 which are connectable to the multi-column power splitter 2.
  • an intake camshaft 200 and an exhaust camshaft 800 respectively, which are each coupled to the crankshaft 56 by the front gearbox system 43 and are suitably rotated with the rotation of the crankshaft 56.
  • the intake valve is eliminated above the engine cylinder head system 36, and only the exhaust valve 62 is provided.
  • the exhaust valve is each There are 4 cylinders, which can be set to 1, 2, 4 or 6 as needed.
  • the compressed air from the controller system 6 directly enters the expansion venting chamber 63 (see Fig. 6) via the valve throat 42.
  • the compressed air pushes the piston 51 downwardly, and the piston 51 passes the piston 51 through the connecting rod 54.
  • the linear motion is converted into a rotational motion of the crankshaft 56, and the crankshaft rotation effects the output of the engine.
  • the crankshaft 56 continues to move due to inertia, causing the piston 51 to move from the bottom dead center position to the top dead center position, at which time the exhaust camshaft 800 is opened by the cam thereon and the corresponding rocker arm.
  • the exhaust valve 62 performs an exhaust stroke.
  • the exhausted exhaust gas preferably enters the exhaust gas recovery circuit.
  • the engine body 1 is further provided with an actuator 39 for starting the engine, a generator 391 connected to the crankshaft via a connecting member such as a pulley, a cylinder block oil pan 44 for lubricating oil return, and an oil for filtering the oil.
  • Filter 2 The generator 391 can be, for example, a monolithic alternator, a brushless alternator, a pumped alternator or a permanent magnet generator, etc., which supplies power to the engine assembly and supplies the battery or battery while the engine is operating (in the figure) Not shown) charging.
  • Figure 6 is a crankshaft-link-piston system assembly of the engine body 1 of the two-stroke engine assembly of Figure 1, wherein one of the piston-link units is coupled to the cylinder 40.
  • the crankshaft 56 is adaptively designed to accommodate the number of piston-link units.
  • the crankshaft 56 preferably has six unit cranks that correspond to preferred embodiments of the present invention.
  • the high pressure compressed air from the controller system 6 passes directly through the intake line 42 through the throat hole 402 on the cylinder head 36. Entering the expansion exhaust chamber 63.
  • the high pressure gas expands in the expansion exhaust chamber 63 to perform work, and pushes the piston 51 downward, which is a power stroke.
  • crankshaft 56 of the engine of the present invention performs work once per revolution (360 degrees), unlike a conventional four-stroke engine, which completes a complete intake during the two revolutions (720 degrees) of the crankshaft. Compression, expansion and exhaust strokes. This is like a two-stroke engine, but not with a traditional two-stroke engine. Also, because the conventional two-stroke engine usually has an air inlet at the bottom of the cylinder, and a scavenging port and an exhaust port are provided at appropriate positions of the cylinder.
  • the two-stroke engine of the present invention is provided with a throat hole 402 for high-pressure compressed air intake at the top of the cylinder and a vent hole 272 for exhaust gas discharge, and the communication and closing of the throat hole 402 is an intake camshaft.
  • 200 is implemented by the controller system 6, and the communication and closing of the vent holes are caused by the crankshaft driving the exhaust camshaft 800 to rotate, and the opening and closing of the exhaust valve 62 is controlled by the rocker arm.
  • the two-stroke engine of the present invention is completely different from the conventional two-stroke engine, which effectively utilizes high-pressure air that can directly expand work, and the crankshaft 56 performs work once every revolution of the crankshaft 51, and thus the same amount of exhaust gas In this case, the power can be doubled compared to a conventional four-stroke engine.
  • the crankshaft 56 includes a gear coupling bolt 79, a crankshaft front end 80, a helical gear 61, a main journal 78, a unit crank 71, a counterweight 77, a crank pin 76, a crankshaft rear end 75, and a flywheel coupling bolt 72. .
  • One or more oil lubrication holes are provided in the main journal 78 and the crank pin 76 on the crankshaft 56 to provide lubricating oil to the crankshaft.
  • a gear connecting bolt 79 is provided adjacent to the right side of the crankshaft front end 80 (in the direction shown in the figure) for connection with a corresponding gear in the front gearbox system 43, the left side of the crankshaft front end 80 (as shown in the figure)
  • a bevel gear 61 is disposed adjacent to the cam shaft to rotate.
  • a flywheel attachment bolt 72 is provided adjacent the outer end of the rear end 75 of the crankshaft to form a fixed connection with the flywheel 32.
  • Counterweight 77 The upper ring is provided with one, two or more balance weight holes to adjust the balance weight.
  • the unit crank 71 of the crankshaft includes six unit cranks, which are a first unit crank 71a, a second unit crank 71b, a third unit crank 71c, and a fourth unit crank. 71d, the fifth unit turn 71e, and the sixth unit turn 71f. It corresponds to the first to sixth links 54 or the pistons 51, respectively.
  • unit crank 71 may include a different number of unit cranks, such as 1, 2, 4, 6, 8, or more, which are readily contemplated by those skilled in the art. . In the preferred embodiment of FIG. 6 or FIG.
  • the phase of each unit crank is set as follows: the first unit crank 71a differs from the second unit crank 71b by 120 degrees, the second unit crank 71b and the third unit
  • the crank 71c is 120 degrees apart
  • the third unit crank 71c is different from the fourth unit crank 71c by 180 degrees
  • the fourth unit crank 71d is different from the fifth unit crank 71e by -120 degrees
  • the fifth unit is turning 71e and
  • the six-unit turn 71f differs by -120 degrees.
  • piston 51 is coupled to crankshaft 56 via link 54.
  • the link 54 includes a connecting rod small head, a link body, and a connecting rod head.
  • the large end of the connecting rod includes a connecting rod cover 58, and the inside of the connecting rod cover 58 forms a circular space to be connected to the crank pin 76 of the crankshaft through a connecting rod bearing 57 placed in the space.
  • the outer circumferential surface of the piston 51 is provided with a tetrafluoroethylene oil repellent ring 53 and a tetrafluoroethylene piston ring 52.
  • each of the pistons 51 is provided with four tetrafluoroethylene piston rings. 52 and 2 tetrafluoroethylene oil repellent rings 53.
  • the number of tetrafluoroethylene oil dams 53 and tetrafluoroethylene piston rings 52 may vary, for example, may be two, three, four or more.
  • the tetrafluoroethylene oil repellent ring 53 acts as an oil barrier, and the tetrafluoroethylene piston ring 52 acts as a scraping oil, which together act to ensure that the lubricating oil is reliably lubricated and sealed.
  • FIG 8 is a schematic view of the structure of the exhaust camshaft 800 of the engine body 1 of Figure 2 .
  • the exhaust cam shaft 800 includes a unit cam 81 and a sprocket 83.
  • the unit cam 81 includes six unit cams, which are a first unit cam 81a, a second unit cam 81b, a third unit cam 81c, a fourth unit cam 81d, a fifth unit cam 81e, and Six-unit cam 81f.
  • the number of unit cams 81 may be 1, 2, 4, 6, 8, 12 or more depending on the number of cylinders of the engine and the exhaust valve of each cylinder Number.
  • each unit cam 81 includes two cams 82, each of which controls the opening of its corresponding exhaust valve 62.
  • the phase of each unit cam 81 is set as follows: the first unit cam 81a is different from the second unit cam 81b by 120 degrees, and the second unit cam 81b is separated from the third unit cam 81c by 120 degrees.
  • the third unit cam 81c is different from the fourth unit cam 81c by 180 degrees, the fourth unit cam 81d is different from the fifth unit cam 81e by -120 degrees, and the fifth unit cam 81e is different from the sixth unit cam 81f by -120 degrees.
  • the order of operation of the unit cams can be realized: the first and fifth unit cams operate simultaneously, and the third and sixth unit cams work together, and finally the second and fourth unit cams work together.
  • the corresponding engine cylinders work in the following order: 1-5 cylinders, 3-6 cylinders and 2-4 cylinders.
  • Figures 9A-9B are collectively referred to as Figure 9, which is a view of the controller system 6 of the two-stroke aerodynamic engine assembly of Figure 1.
  • the controller system 6 includes a high pressure common rail constant pressure pipe 91, a controller lower seat 97, a controller inner seat 98, a controller valve 92, a controller spring 94, and a controller upper cover 108.
  • the high pressure common rail constant pressure pipe 91 has a cylindrical outer shape, which may also have a rectangular shape, a triangular shape, or the like.
  • the inside of the high pressure common rail constant pressure pipe 91 is, for example, a cylindrical passage to receive the high pressure intake air from the intake control speed regulating valve 23, and substantially maintains the pressure of the compressed air in the passage to be equalized so as to initially enter each cylinder.
  • the high pressure air in the expansion exhaust chamber 63 of 40 has the same pressure, thereby making the engine work smoothly.
  • the high pressure common rail constant pressure pipe 91 is fixedly equipped with a high pressure common rail constant pressure pipe end cover 100, and the end cover 100 connected to the intake control speed regulating valve 23 has an outwardly extending flange (not shown in the drawing) The flange extends into the line between the high pressure intake control speed control valve 23 and the high pressure common rail constant pressure line 91, and is detachably fixedly coupled to the high pressure line by, for example, a threaded connection.
  • the high pressure common rail constant pressure pipe end cover 100 is connected to the high pressure common rail constant pressure pipe 91 through the end cover connecting bolts.
  • the high pressure common rail constant pressure pipe 91 is provided with an upper cover connecting hole 111 corresponding to the number of the cylinders 40.
  • the number of the upper cover connecting holes 111 is six.
  • the controller upper cover 108 has an inverted T shape on a section along its center line, and has a cylindrical intake air line 112 and a circular lower surface (not shown) through which the intake line 112 passes. Threaded to The upper cover connecting hole 111 is fixedly and detachably connected to the high pressure common rail constant pressure pipe 91.
  • the controller upper cover 108 forms a sealed, detachably fixed connection with the controller midseat 98 via upper and middle seat attachment bolts or other fasteners.
  • the controller mid-seat 98 forms a sealed detachable fixed connection with the lower seat 97 of the controller via the middle and lower seat attachment bolts 110 or other fasteners.
  • the controller base 98 is provided with holes of different diameters at the center thereof, from top to bottom, the controller valve seat cover hole 120, the controller valve hole 117, the oil seal bushing hole 116, and the controller.
  • Valve spring hole 119 In the exemplary embodiment, the diameter of the aperture 120 is greater than the diameter of the aperture 117 and greater than the diameter of the aperture 116. The diameter of the hole 117 is larger than the diameter of the hole 116. The diameter of the hole 119 may be the same as or different from the diameter of the hole 117, but is required to be larger than the diameter of the hole 116. In the preferred embodiment, the diameter of the aperture 119 is equal to the diameter of the aperture 117, but slightly smaller than the diameter of the aperture 120.
  • the controller valve seat sleeve 93 is mounted within the controller valve seat bore 120 and is supported above the controller valve bore 117.
  • the controller valve hole 117 is a cavity that communicates with the throat hole connection hole 118 to allow compressed air from the high pressure common rail constant pressure pipe 91 to enter the air throat hole through the intake air line 112 when the controller valve 92 is opened.
  • One end of the air throat connection hole 118 communicates with the controller valve hole 117, and the other end communicates with the air throat hole 402 of the cylinder head system 36, which remains normally open, so that the compressed air can be sent into the expansion when the controller valve 92 is opened.
  • the exhaust chamber 63 thereby driving the engine to operate.
  • the oil seal bushing 99 is mounted within the oil seal bushing bore 116 and is supported above the controller valve spring 94, which passes through the valve stem of the controller valve 92 (not labeled). In addition to sealing the valve 92 of the controller, the oil seal bushing 99 also guides the valve stem.
  • the controller valve spring 94 is mounted in the controller valve spring bore 119, and the lower end supports the controller valve spring lower seat 95 and is fastened to the controller valve spring lower seat 95 by the controller valve lock clip. When the engine is not operating, the controller valve spring 94 is preloaded with a predetermined pretension that urges the controller valve 92 against the controller valve seat 93 and the controller valve 92 is closed.
  • the controller lower seat 97 is internally provided with an exemplary six controller tappet mounting holes 114, which may be provided with different numbers of controller tappet mounting holes 114 depending on the number of engine cylinders, for example, one or two. , 4, 6, 8, 10 or more.
  • the controller tappet 115 is mounted in the controller tappet mounting hole 114 and reciprocates up and down with the intake camshaft 200 mounted in the intake camshaft mounting hole 113.
  • Figures 10A-10C are collectively referred to as Figure 10, which is a different view of the front gearbox system 43 of the two-stroke aerodynamic engine assembly of Figure 1.
  • the front gearbox system includes a polygonal cover 313, a transmission gear 308, a crank gear 307, a bridge gear 303, an intake camshaft gear 302, and an exhaust camshaft gear 306.
  • the crank gear 307 is fixedly coupled to the end of the crankshaft 56 passing through the polygonal cover 313 to transmit rotation from the crankshaft.
  • a transmission gear 308 such as an oil pump gear, is provided to drive the rotation of a member such as an oil pump through the transmission gear 308.
  • An intake camshaft gear 302, a bridge gear 303, and an exhaust camshaft gear 306 are disposed in order from left to right (the orientation shown in FIG. 10B) above the crank gear 307.
  • the crank gear 307 is directly engaged with the bridge gear 303 to drive the bridge gear 303 to rotate.
  • the bridge gear 303 is simultaneously engaged with the intake camshaft gear 302 and the exhaust camshaft gear 306 on the left and right sides to drive the intake camshaft gear 302 and the row through the crank gear 307 and the bridge gear 303 as the crankshaft 56 rotates.
  • the rotation of the air camshaft gear 306 causes the intake camshaft 200 and the exhaust camshaft 800 to rotate, ultimately enabling the opening and closing of the exhaust valve 62 and the controller valve 92.
  • the exhaust camshaft gear 306 is directly fixedly coupled to the exhaust camshaft 800 such that rotation of the exhaust camshaft gear 306 directly drives rotation of the exhaust camshaft 800.
  • a pulley (not shown) is fixed at a suitable position of the central axis of the intake camshaft gear 302, and the pulley is connected to the pulley provided on the intake camshaft 200 through the camshaft transmission belt 35, thereby driving the intake camshaft 200 rotation, the controller valve 92 is opened and closed.
  • a sprocket (not shown) may also be fixed at a suitable position of the central axis of the intake camshaft gear 302, the sprocket being coupled to the sprocket disposed on the intake camshaft 200 by a chain Thereby, the intake camshaft 200 is rotated to realize the opening and closing of the controller valve 92.
  • the polygonal cover 313 is provided with a plurality of holes for different functions, such as a screw connection hole 309, a screw hole 310, and a bolt connection hole 311.
  • the polygonal cover 313 is coupled to the engine casing through a screw connection hole 309, and the bridge gear 303 is coupled to the polygonal cover 313 through a screw hole 310 for connecting the polygonal cover 311 to the engine casing.
  • the bolt connection hole 311 may be disposed in the welding post 5 welded to the polygonal cover 311.
  • the polygonal cover 311 is also provided with an oil hole 304 for lubricating oil flow and a ring seat 12 for mounting the lifting ring.
  • Figures 11A-11C are collectively referred to as Figure 11, which is a different view of the multi-cylinder power splitter 2 of the two-stroke aerodynamic engine assembly of Figure 1.
  • the multi-cylinder power splitter 2 is a multi-stage power splitter, which is composed of a first stage 601, a second stage 602, a third stage 603, a fourth stage 604, and a fifth stage 605 ( The direction shown in Fig. 10B is composed of left to right.
  • the multi-cylinder power splitter may be comprised of other stages not used in the five stages of the present invention, such as three, four, six or seven stages, and the like.
  • each stage is substantially the same and includes a planetary gear 401, an inner ring gear 407 and a sun gear 405.
  • the number of planet wheels of each stage can be set evenly as needed, for example, 3, 5, 7 or more.
  • each stage includes five evenly distributed planet gears 401.
  • the advantage of this is that the uniform distribution of the planetary gears makes the force of the main shaft uniform, the transmission is smooth and the transmission power is large.
  • the planetary gears 401 of the first stage 601 and the second stage 602 are connected by the planetary gear pin 403 to synchronously rotate the first stage 601 and the second stage 602.
  • the planet pin 403 is coupled to the planet gear 401 by a smooth flat key 4021 or spline.
  • the planetary gear pin 403 may be a thin cylindrical pin, and its outer shape may also be a rectangular shape, a trapezoidal shape, or a semicircular shape, and the number may be two, three, or four for each stage. Five or more.
  • the sun gear 405 of the second stage 602 and the third stage 603 are connected by the sun gear pin 406 to achieve the linkage of the second stage 602 and the third stage 603.
  • the connection relationship between the third level 603 and the fourth level 604 is similar to the connection relationship between the level 601 and the level 604, and the connection relationship between the level 604 and the level 605 is similar to the relationship between the level 602 and the level 603. Connection relationship.
  • the first stage 602 to the fifth stage 603 of the multi-cylinder power splitter 4 realizes the transmission of power, and the power input from the first stage 601 can be output from the five stages 605.
  • each stage of the planetary gear 401 is only self-propelled about its own axis, and does not revolve around the corresponding sun gear 405.
  • Such an arrangement makes the internal structure of the multi-column power splitter relatively simple and easy to smoothly Passing power.
  • a flywheel 32 is disposed on the crankshaft 51 of the engine body 1.
  • a ring gear 31 is fixedly coupled to the periphery of the flywheel 32.
  • the ring gear 31 has an outer ring gear and has internal teeth on the first stage 601 of the multi-column power splitter 2
  • the ring gear 407 is engaged to transmit the motion of the crankshaft 56 to the ring gear 407 of the stage 601.
  • the planetary gear 401 of the primary 601 is coupled to the planetary gear of the secondary 602, the power is transmitted from the primary 601 to the secondary 602, and the planetary gear 401 of the secondary 602 drives the secondary sun gear 405 to rotate.
  • the secondary sun gear 405 is coupled to the third stage sun gear by a sun gear pin 406 to drive the third stage sun gear 405 to rotate, and the power is transmitted from the second stage 602 to the third stage 603.
  • the tertiary 603 transmits power to the fourth stage 604 through the planetary gears 401 in a manner similar to the primary 601.
  • the four stages 604 pass the power of the fourth stage 604 through the sun gear 405 to the fifth stage 605 in a manner similar to the secondary.
  • the rotating shaft of the planetary gear 401 of the fifth stage 605 is a power output end, and the power is divided into multiple paths by the planetary gear 401 (the present invention exemplarily shows two paths) to be transmitted to the multi-column
  • the component to which the power splitter 2 is connected is a power unit 4 such as a generator.
  • a power unit 4 such as a generator.
  • power is output from the crankshaft 56 of the engine, and multiple cylinder power splitters 2 are used to achieve multiple outputs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种二冲程空气动力发动机总成包括发动机本体(1)、多柱体动力分配器(2)、动力设备(4)、控制器系统(6)、进气控制调速阀(23)、高压气罐组(13)、恒压罐(16)和电子控制单元ECU(29)。发动机本体(1)包括气缸(40)、缸盖系统(36)、进气管路(42)、排气管路(27)、活塞(51)、连杆(54)、曲轴(56)、排气凸轮轴(800)、进气凸轮轴(200)、前齿轮箱系统(43)和后齿轮箱(33)。恒压罐通过管路(15)与高压气罐组连通,进气控制调速阀(23)通过管路(17)与恒压罐连通,电子控制单元ECU根据传感器(23、242)检测的信号来控制进气控制调速阀(23),前齿轮箱系统包括多边形盖(313)、传动齿轮(308)、曲轴齿轮(307)、过桥齿轮(303)、进气凸轮轴齿轮(302)和排气凸轮轴齿轮(306)。

Description

二冲程空气动力发动机总成
技术领域
本发明涉及一种二冲程发动机, 具体而言, 涉及一种以压缩空气作为动力源的二冲程空 气动力发动机总成。
背景技术
发动机被广泛应用于各行各业中, 在现代交通运输工具比如汽车、轮船等中, 一般采用 以燃油作为动力源的活塞式内燃发动机。 这种采用燃油作为动力源的发动机一方面因燃油燃 烧不充分, 使得排出的气体中含有大量的有害物质而污染环境, 另一方面因使用的燃油是从 石油中提炼而获得,石油资源的日益紧缺使得燃油发动机的发展和利用受到越来越多的限制。 因此开发新的、 洁净的、 无污染的替代能源, 或者尽可能地减少燃油消耗、 降低排放成为发 动机发展中急需解决的问题,以压缩空气作为动力源的空气动力发动机正好满足了这种要求。
较早研究压缩空气动力发动机的为法国 MDI公司的设计师 Guy Negre , 他于 2002年推 出了第一款纯空气动力的经济型家用桥车。 关于压缩空气发动机的研究可见 FR2731472A1、 US6311486BU US20070101712A1等。
FR2731472A1公开了一种可在燃料供应和压缩空气供应两种模式下工作的发动机, 在高 速公路上采用普通燃料如汽油或柴油, 在低速特别是市区和市郊, 将压缩空气 (或其他任何非 污染的压缩气体)注入燃烧室。这种发动机虽然部分地降低了燃料消耗, 由于仍然采用了燃油 工作模式, 排放问题依然未能解决。
为了进一步减轻污染, US6311486B1公开了一种纯空气动力发动机, 这种类型的发动机 采用了三个独立的室: 吸气-压缩室、 膨胀排气室和恒定容积燃烧室, 并且吸气 -压缩室通过 阀连接到恒定容积燃烧室, 恒定容积燃烧室通过阀连接到膨胀排气室。 这种发动机的问题之 一是压缩气体从吸气 -压缩室到膨胀排气室经历的时间较长,获得驱动活塞做功的动力源气体 时间较长, 同时, 从膨胀排气室排出的高压气体未能得到使用, 这就限制了这类发动机的工 作效率及单次充气持续工作时间。
国内对压缩空气发动机的研究起步较晚, 目前的研究多属于理论探讨和概念设计阶段, 均未能解决压缩空气的排放以及高压压缩空气的控制和分配问题, 离压缩空气发动机的产品 化过程还有很长的路要走。
本申请的申请人在其专利文献 CN101413403 A (其同族国际申请为 W02010051668 A1)中 公开一种可用于交通运输工具的空气动力发动机总成, 该发动机包括储气罐、 空气分配器、 发动机本体、 联动器、 离合器、 自动变速器、 差速器以及置于排气室内的叶轮发电机。 这种 发动机利用压缩空气做功而不使用任何燃料, 因此没有废气排放, 实现了 "零排放", 并且重 复利用废气进行发电, 节省了能源, 降低了成本。但这种发动机是基于传统的四冲程发动机, 曲轴每旋转 720度, 活塞做功一次。 而作为动力源的高压空气可以在进入气缸内时即可推动 活塞做功, 而后排放, 即压缩空气发动机的冲程实际为进气-膨胀冲程和排放冲程。 显然,专 利文献 CN101413403 A所公开的这种四冲程压缩空气发动机大大浪费了有效的做功冲程, 限 制了发动机的效率。 并且这种发动机的尾气未能很好地循环利用起来, 需要足够大的储气罐 储备高压空气才能工作足够长的时间。
基于上述问题, 本发明提供一种二冲程空气动力发动机, 旨在解决压缩发动机的有效做 功问题, 从而实现经济、 高效、 零排放的新型空气动力发动机。
发明内容
相当于本发明原始要求范围内的某些实施例作如下概括。这些实施例并非限制所请求保 护的发明范围, 而是试图提供本发明的多种可能形式的简要概括。 实际上, 本发明可包括类 似于或不同于下面提出的实施例的不同形式。
根据本发明的第一个方面, 提供一种空气动力发动机总成, 这种发动机总成包括: 发动 机本体, 其包括气缸、 缸盖系统、 进气管路、 排气管路、 活塞、 连杆、 曲轴、 排气凸轮轴、 进气凸轮轴、 前齿轮箱系统和后齿轮箱; 所述活塞经由连杆连接到曲轴; 所述前齿轮箱系统 用来传动曲轴和凸轮轴; 所述缸盖系统上设有用于压缩空气进气的气喉孔和用于尾气排放的 排气孔; 高压气罐组, 其通过管路与外接加气装置连通; 恒压罐, 其通过管路与高压气罐组 连通; 其中, 空气动力发动机总成还包括: 进气控制调速阀, 其通过管路与恒压罐连通; 控 制器系统; 以及电子控制单元 ECU, 其根据传感器所检测的信号控制进气控制调速阀; 所述 前齿轮箱系统包括多边形盖、 传动齿轮、 曲轴齿轮、 过桥齿轮、 进气凸轮轴齿轮、 排气凸轮 轴齿轮; 曲轴齿轮通过过桥齿轮将来自曲轴的运动传递给驱动进气凸轮轴的进气凸轮轴齿轮 (和驱动排气凸轮轴的排气凸轮轴齿轮。
在示例性实施例中, 所述发动机总成进一步包括多柱体动力分配器。所述多柱体动力分 配器包括五级, 分别是一级、 二级、 三级、 四级、 五级, 每一级均包括内齿圈、 行星齿轮和 太阳轮。 多柱体分配器的存在可以有效地实现发动机输出动力的多级按需求分配。 或者, 所 述进气控制调速阀是电磁比例阀或者电磁比例阀和减压阀的组合, 这样就可方便地实现发动 机高速、 中速和低速时对压缩空气进气的需求。
优选的是, 所述控制器系统包括高压共轨恒压管、控制器上盖、控制器中座和控制器下 座, 所述控制器上盖、 控制器中座和控制器下座依次通过螺栓可拆卸地密封连接。 在另一个示例性实施例中, 所述传感器是发动机转速传感器或者是门油电位计, 或者是 两者的组合。
在另一个示例性实施例中, 所述控制器上盖内设有进气管路, 所述进气管路螺纹连接到 高压共轨恒压管。
此外, 所述控制器中座内安装有控制器进气门、 控制器气门弹簧和控制器气门座套,所 述控制器气门受控制器气门弹簧的预作用力在发动机无需进气时抵靠在控制器气门座套上。
优选的是, 所述控制器下座内设有控制控制器气门开闭的控制器挺柱, 该控制器挺柱由 进气凸轮轴致动。
在另一个实施例中, 所述发动机总成的气缸为 6个气缸, 其曲轴包括 6个单元曲拐。 优选的是, 所述 6个单元曲拐分别为第一单元曲拐、 第二单元曲拐、 第三单元曲拐、第 四单元曲拐、 第五单元曲拐、 第六单元曲拐, 并且各单元曲拐的相位作如下设置: 第一单元 曲拐与第二单元曲拐相差 120度、 第二单元曲拐与第三单元曲拐相差 120度、 第三单元曲拐 与第四单元曲拐相差 180度、 第四单元曲拐与第五单元曲拐相差 -120度、 第五单元曲拐与第 六单元曲拐相差 -120度。
根据本发明的另一个方面, 提供一种用于空气动力发动机的控制器系统。该控制器系统 包括: 高压共轨恒压管、 控制器上盖、 控制器中座和控制器下座。 其中, 控制器上盖、 控制 器中座和控制器下座依次通过螺栓可拆卸地密封连接, 并且其中, 控制器上盖内设有进气管 路, 所述进气管路螺纹连接到高压共轨恒压管。 该进气管路与高压共轨恒压管内的腔连通, 以接收来自高压共轨恒压管内的压缩空气。
在本发明的实施例中, 所述控制器中座内安装有控制器进气门、控制器气门弹簧、 油封 衬套、 控制器气门弹簧下座和控制器气门座套, 所述控制器气门受控制器气门弹簧的预作用 力在发动机无需进气时抵靠在控制器气门座套上。
进一步地, 所述控制器下座内设有控制控制器气门开闭的控制器挺柱, 所述控制器挺柱 由进气凸轮轴致动。 进气凸轮轴由曲轴通过前齿轮箱的曲轴齿轮和过桥齿轮带动, 以在发动 机工作时, 带动控制器挺柱运动, 进而实现控制器系统的控制器气门的关闭。
优选的是,所述高压共轨恒压管的两端装配有高压共轨恒压管端盖 100。更加优选的是, 所述高压共轨恒压管端盖具有向外延伸的凸缘, 该凸缘伸入到高压进气控制调速阀和高压共 轨恒压管之间的管路内, 并通过螺纹连接与高压管路可拆卸地固定连接。
在本发明的另一个方面, 控制器系统的控制器中座在其中心处设有直径不同的孔, 从上 到下依次为控制器气门座套孔、 控制器气门孔、 油封衬套孔、 控制器气门弹簧孔, 并且其中, 控制器气门座套孔的直径大于控制器气门孔的直径并且大于孔油封衬套孔的直径。 控制器气 门孔的直径大于油封衬套孔的直径。
根据本发明的再一个方面, 所述控制器气门孔与气喉孔连接孔连通, 以在控制器气门打 开时, 将来自高压共轨恒压管的压缩空气经由支进气管路进入气喉孔连接孔。
此外, 本发明的控制器系统还包括油封衬套, 所述油封衬套安装在油封衬套孔内, 并支 撑在控制器气门弹簧之上, 其内通过控制器气门的气门杆。
此外, 本发明的控制器系统的控制器气门弹簧安装在控制器气门弹簧孔内, 其下端支撑 有控制器气门弹簧下座, 并通过控制器气门锁夹片紧固在控制器气门弹簧下座之上。
通过本发明的控制器系统,可以有效地将来自高压气罐组的高压压缩空气分配到发动机 的各个气缸, 从而实现发动机的连续、 可靠地操作。
附图说明
现在将描述根据本发明的优选但非限制性的实施例, 本发明的这些和其他特征、方面和 优点在参考附图阅读如下详细描述时将变得显而易见, 其中:
图 1是根据本发明的二冲程空气发动机总成的总体示意图;
图 2是图 1中的二冲程空气发动机总成的发动机本体的正视图;
图 3是图 1中的二冲程空气发动机总成的发动机本体的右侧侧视图;
图 4是图 1中的二冲程空气发动机总成的发动机本体的左侧侧视图;
图 5是图 1中的二冲程空气发动机总成的发动机本体的俯视图;
图 6是图 1中的二冲程空气发动机总成的发动机本体的曲轴-连杆-活塞系统总成,其中, 示出了其中一个活塞 -连杆单元与缸体的连接;
图 7是图 6中的曲轴 -连杆 -活塞系统总成的曲轴单元结构示意图;
图 8是图 2中的发动机本体的凸轮轴结构示意图;
图 9A为图 1中的二冲程发动机总成的控制器系统的立体透视图;
图 9B为控制器系统的纵向横截面视图;
图 9C为控制器系统的横向横截面侧视图;
图 10A为图 1中的二冲程发动机总成的前齿轮箱系统的立体透视图;
图 10B为图 10A的左侧侧视图;
图 10C为图 10A的右侧局部剖视的侧视图;
图 11A为图 1中的二冲程发动机总成的多柱体动力分配器的立体透视图;
图 11B为图 11A的沿纵向轴线剖视的横截面视图; 图 11C为图 11A的左侧侧视图;
图 11D为图 11A的俯视图。
具体实施方式
以下的说明本质上仅仅是示例性的而并不是为了限制本公开、应用或用途。应当理解的 是, 在全部附图中, 对应的附图标记表示相同或对应的部件和特征。
现在参考图 1, 图 1是根据本发明的二冲程空气动力发动机总成的总体示意图, 图中 的箭头表示空气气流的流动方向。 在图 1中, 空气动力发动机总成包括发动机本体 1、 多柱 体动力分配器 2、 动力设备 4、 控制器系统 6、 高压气罐组 13、 恒压罐 16、 进气控制调速阀 23、 电子控制单元 ECU 29和叶轮发电机 22。 如图 1所示, 高压气罐组 13通过压缩空气入口 管路 14与外接加气站或外接加气装置连接, 以从外界获得所需的高压压缩空气。压缩空气入 口管路 14上设有流量计 A、 压力计 P和手控开关(未示出)。 流量计 A用于测量和监控进入高 压气罐组 13的压缩空气的流量, 而压力计 P用于测量和监控进入高压气罐组 13的压缩空气 的压力。 在需要通过外接加气装置或加气站对高压气罐组 13进行加气时, 打开手控开关,高 压压缩空气进入高压气罐组 13, 当压缩空气入口管路 14上的流量计 A和压力计 P达到规定 数值时,关闭手控开关,完成高压气罐组 13的充气过程,这样就可获得额定压力下比如 30MPa 的压缩空气。 为了保证储气罐的安全性能, 在高压气罐组 13上可设置一个、 二个或多个安全 阀(未示出)。
高压气罐组 13可以是具有足够容量的一个、 二个、 三个、 四个或更多个高压气罐以串 联或并联的形式组合而成, 根据应用场合的实际需要, 确定高压气罐组 13的组成气罐数。高 压气罐组 13通过管路 15连接到恒压罐 16, 管路 15上同样设置有分别监测和控制压缩空气 流量和压力的流量计 A和压力计 P。 恒压罐 16用来稳定来自高压气罐组 13的高压空气的压 力, 其压力略低于高压气罐组 13内的压力, 比如在 21-28MPa之间, 优选的是在 21MPa左右。 在恒压罐 16和进气控制调速阀 23之间设有管路 17, 管路 17上也设置有分别监测和控制压 缩空气流量和压力的流量计 A和压力计 P。来自恒压罐 16的高压空气经过进气控制调速阀 23 的控制和调节后经管路进入控制器系统 6。
现在详细地描述进气控制调速阀 23。进气控制调速阀 23的作用是根据电子控制单元 ECU 29的指令信号控制电磁阀的开启时间来决定压缩空气进气量。 由于电磁阀具有减压作用, 其 与减压调压阀组合就形成了调速阀, 从而可以将发动机的转速调整在一个合适的范围内。 进 气控制调速阀 23由 ECU 29发出的控制信号 26控制。 在发动机本体 1上可选择性地设有多种 传感器, 比如测量发动机转速的速度传感器、 判断气缸上止点位置的位置传感器以及判断门 油踏板位置的门油电位计, 还可以是测量发动机机体温度的温度传感器。 根据本发明的示例 性实施例, 示出了速度传感器 24和 /或门油电位计 242。 速度传感器 24可以是现有技术中测 量发动机转速的各种速度传感器, 并通常设置在曲轴 56上。 门油电位计 242可以是现有技术 中测量油门踏板位置的各种位置传感器, 其通常设置在门油踏板位置处。 在非车辆应用的场 合中, 类似于踏板位置的门油电位计可以是发动机负荷传感器, 例如监测发动机输出力矩的 转矩传感器、 发电场合中控制发电电流大小的电流选择旋钮的位置传感器等。 ECU 29根据各 种传感器的信号,比如速度传感器 24的速度信号和门油电位计 242的位置信号中的任何一个 或两个, 经过运算处理发出控制信号 26, 控制信号 26控制进气控制调速阀, 从而可以实现 进气控制调速阀的高速、 中速、 低速需要, 由此相应于发动机的高速、 中速和低速转动。
经过进气控制调速阀的高压压缩空气经高压管路流入控制器系统 6, 并由控制器系统 6 向发动机本体 1的各个气缸提供高压压缩空气, 比如大约 7-18MPa之间的压力, 优选的是为 9-15MPa, 更优选的是为 l l_13MPa, 以驱动发动机活塞 51在缸体系统 40内作往复运动(参考 图 2-6), 并经由连杆 54将活塞 51的往复运动转变成的曲轴 56的旋转运动, 从而满足发动 机的各种工况下的要求。 控制器系统 6的具体结构将在后文进行详细地描述。
继续参考图 1, 从发动机本体 1输出的转动运动经过多柱体动力分配器 2分配到例如是 发电机 4的动力设备。多柱体动力分配器 2可与曲轴 56上的飞轮固定连接, 也可通过比如是 联轴器的连接件与曲轴连接, 以将动力传递给动力设备 4。
由于本发明的空气动力发动机由高压空气直接驱动, 在曲轴旋转 0-180度的过程中,高 压空气驱动活塞 51运动, 在活塞到达下止点后因惯性向上运动时, 曲轴继续转动 180度 -360 度, 发动机进行排气冲程, 此时排气的气体依然具有较高的压力, 例如为 3MPa左右, 具有较 高压力的排出气体直接排到大气中一方面容易形成高压尾气流, 引起尾气噪声, 另一方面损 耗了压缩空气所蕴涵的能量。 因此, 本发明设置了叶轮发电机 22, 试图利用尾气的蕴含压力 能。 如图 1所示, 从排气集气 28收集的尾气经由管路 27进入叶轮发电机 22, 进入叶轮发电 机 22的压力尾气驱动叶轮发电机 22发电, 叶轮发电机 22将发出的电经由导线 18传递给蓄 电池 19, 以供发动机继续使用。
现在回到图 2至图 5, 图 2至图 5从不同的角度描述了图 1中的发动机本体 1的视图。 其中, 图 2为发动机本体的正视图, 图 3为发动机本体 1的右侧侧视图, 图 4为发动机本体 1的左侧侧视图, 图 5为发动机本体的俯视图。 进一步参见图 6可知, 发动机本体 1包括气 缸 40、 缸盖系统 36、 进气管路 42 (气门喉管)、 排气管路 27、 活塞 51、 连杆 54、 曲轴 56、 排气凸轮轴 800 (见图 8)、 进气凸轮轴 200 (安装在图 9中的进气凸轮轴安装孔 113内)、 前齿 轮箱系统 43和后齿轮箱 33。 前齿轮箱系统 43用来传动曲轴 56和凸轮轴。 后齿轮箱 33设置 有齿圈 31和飞轮 32,其可连接到多柱体动力分配器 2。在此发动机本体 1的示例性实施例中, 分别设置有进气凸轮轴 200和排气凸轮轴 800, 它们均通过前齿轮箱系统 43与曲轴 56相连, 并随曲轴 56的转动做适当的转动。 由于压缩空气进气直接受控制器系统 6的控制和分配,因 而在发动机汽缸盖系统 36之上取消了进气阀, 而仅设置排气阀 62, 在示例性实施中, 排气 阀为每个气缸 4个, 根据需要也可设置为 1个、 2个、 4个或 6个。 来自控制器系统 6的压缩 空气经气门喉管 42直接进入膨胀排气室 63 (见图 6), 在发动机工作时, 该压缩空气推动活塞 51向下运动, 活塞 51通过连杆 54将活塞 51的直线运动转化为曲轴 56的旋转运动, 曲轴转 动实现发动机的输出。 在活塞 51运动到下止点之后, 曲轴 56因惯性继续运动, 带动活塞 51 从下止点位置向上止点位置运动, 此时排气凸轮轴 800通过其上的凸轮和相应的摇臂, 打开 排气阀 62, 进行排气冲程。 在示例性实施例中, 排出的尾气优选的是进入尾气回收回路。
发动机本体 1上还设有用来启动发动机的启动器 39和通过例如是皮带轮的连接部件与 曲轴相连的发电机 391、 用于润滑油回油的气缸体油底壳 44以及对机油进行过滤的机油过滤 器 2。 该发电机 391可以例如整体式交流发电机、 无刷式交流发电机、 带泵式交流发电机或 永磁发电机等, 其在发动机工作时给发动机总成供电并给电瓶或蓄电池(图中未示出)充电。
现在参考图 6, 图 6为图 1中的二冲程发动机总成的发动机本体 1的曲轴-连杆-活塞系 统总成, 其中, 示出了其中一个活塞-连杆单元与气缸 40的连接。 在示出的实施例中, 优选 的是具有 6个气缸 40, 相应地具有 6个活塞 51和 6个连杆 54。 在备选方案中, 活塞 51、 气 缸 40和连杆 54的数目可以分别是本领域技术人员可以想得到的 1个、 2个、 4个、 6个、 8 个、 12个或其他数目个数。相应地, 曲轴 56作适应地匹配性设计, 以适应活塞-连杆单元数。 在示例性实施例中, 如图 6和图 7中所见, 曲轴 56优选的是具有 6个单元曲拐, 其对应本发 明的优选实施方案。 继续参考图 6, 在所示出的其中一个活塞-连杆单元与气缸 40的连接中, 从控制器系统 6来的高压压缩空气经由进气管路 42通过气缸盖 36上的气喉孔 402直接进入 膨胀排气室 63。 高压气体在膨胀排气室 63内膨胀做功, 推动活塞 51向下运动, 此为做功冲 程。 做功冲程输出的功通过曲轴连杆系统向外输出动力。 活塞 51在气缸 44内由下止点位置 向上止点位置运动时, 排气阀 62打开, 具有一定压力的空气自膨胀排气室 63中经由排气管 27排出, 此为排气冲程。 在活塞 51快到上止点时, 排气阀 62关闭, 控制器系统 6又开始为 膨胀排气室 63供气,进入下一个循环。显然,本发明的发动机的曲轴 56每转动一圈(360度), 就做功一次, 而不像传统的四冲程发动机, 在曲轴转动两圈(720度)的过程中完成一次完整 的进气、 压缩、 膨胀和排气冲程。 这就如二冲程发动机一样, 但又与传统的二冲程发动机不 同, 因为传统的二冲程发动机通常在气缸底部设有进气口, 并在气缸适当位置设有扫气口和 排气口。 而本发明的二冲程发动机是在气缸的顶部设有用于高压压缩空气进气的气喉孔 402 和用于尾气排放的排气孔 272, 并且气喉孔 402的连通和闭合是进气凸轮轴 200通过控制器 系统 6实现的, 而排气孔的连通和闭合是由曲轴带动排气凸轮轴 800转动, 并通过摇臂控制 排气阀 62的打开和关闭而实现的。因此本发明的二冲程发动机是完全不同于传统的二冲程发 动机的, 其有效地利用了可直接膨胀做功的高压空气, 曲轴 56每转动一圈活塞 51就做功一 次, 因而在相同的排气量情况下, 相比较传统的四冲程发动机而言, 功率可提高一倍。
现在参考图 5和图 6, 曲轴 56包括齿轮连接螺栓 79、 曲轴前端 80、 斜齿轮 61、 主轴颈 78、 单元曲拐 71、 平衡重 77、 曲柄销 76、 曲轴后端 75和飞轮连接螺栓 72。 曲轴 56上的主 轴颈 78和曲柄销 76上分别设有一个或多个机油润滑油孔, 以便为曲轴提供润滑机油。 曲轴 前端 80的右侧(如图中所示方向)相邻处设有齿轮连接螺栓 79, 以与前齿轮箱系统 43中的相 应齿轮连接, 曲轴前端 80的左侧(如图中所示方向)相邻处设有斜齿轮 61, 以带动凸轮轴转 动。 曲轴后端 75的外侧相邻位置设有飞轮连接螺栓 72, 以与飞轮 32形成固定连接。 平衡重 77上环设有一个、 二个或多个平衡配重孔, 以调节平衡重重量。 在本发明的优选实施例中, 曲轴的单元曲拐 71包括六个单元曲拐, 分别是第一单元曲拐 71a、 第二单元曲拐 71b、 第三 单元曲拐 71c、 第四单元曲拐 71d、 第五单元曲拐 71e、 第六单元曲拐 71f。 其分别对应于第 一至第六连杆 54或活塞 51。 在备选实施例中, 单元曲拐 71可包括不同数目的单元曲拐, 比 如 1个、 2个、 4个、 6个、 8个或更多个, 这些均是本领域技术人员容易想到的。 在图 6或 图 7中的优选实施例中, 各单元曲拐的相位作如下设置: 第一单元曲拐 71a与第二单元曲拐 71b相差 120度、 第二单元曲拐 71b与第三单元曲拐 71c相差 120度、 第三单元曲拐 71c与 第四单元曲拐 71c相差 180度、 第四单元曲拐 71d与第五单元曲拐 71e相差 -120度、 第五单 元曲拐 71e与第六单元曲拐 71f相差 -120度。 如此设置下的曲拐单元, 可以实现曲拐单元的 工作顺序为: 第一和第五单元曲拐同时工作, 而后第三和第六单元曲拐一起工作, 最后第二 和第四单元曲拐一起工作。 如此一来, 相应的发动机气缸的工作顺序为: 1-5缸, 3-6缸和 2-4缸。 根据本发明的教导, 本领域技术人员可设置不同于本发明的单元曲拐及其工作相位 和工作顺序, 但其均落在本发明的范围内。
继续参考图 6, 活塞 51通过连杆 54与曲轴 56连接。 连杆 54包括连杆小头、 连杆体和 连杆大头。 连杆大头包括连杆盖 58, 连杆盖 58的内侧形成圆形的空间, 以通过置于空间内 的连杆轴瓦 57与曲轴的曲柄销 76连接。 活塞 51的外圆周表面设置有四氟乙烯阻油环 53和 四氟乙烯活塞环 52。 在图示的示例性实施例中, 每个活塞 51上设置有 4道四氟乙烯活塞环 52和 2道四氟乙烯阻油环 53。在备选实施例中, 四氟乙烯阻油环 53和四氟乙烯活塞环 52的 数目可以变化, 例如均可以是 2道、 3道、 4道或更多道。 四氟乙烯阻油环 53起阻油作用, 四氟乙烯活塞环 52起刮油作用, 它们共同作用, 保证润滑油可靠地润滑和密封。
现在参考图 8, 图 8为图 2中的发动机本体 1的排气凸轮轴 800结构示意图。 排气凸轮 轴 800包括单元凸轮 81和链轮 83。 在示例性实施例中, 单元凸轮 81包括 6个单元凸轮, 其 分别为第一单元凸轮 81a、 第二单元凸轮 81b、 第三单元凸轮 81c、 第四单元凸轮 81d、 第五 单元凸轮 81e、 第六单元凸轮 81f。 在备选实施例中, 单元凸轮 81的数目可以是 1个、 2个、 4个、 6个、 8个、 12个或更多个, 这取决于发动机气缸数和每一个气缸的排气阀个数。 在本 发明的示例性实施例中, 每个单元凸轮 81包括两个凸轮 82, 每个凸轮 82控制其对应的排气 阀 62的开启。 在图 8中的优选实施例中, 各个单元凸轮 81的相位作如下设置: 第一单元凸 轮 81a与第二单元凸轮 81b相差 120度、第二单元凸轮 81b与第三单元凸轮 81c相差 120度、 第三单元凸轮 81c与第四单元凸轮 81c相差 180度、 第四单元凸轮 81d与第五单元凸轮 81e 相差 -120度、 第五单元凸轮 81e与第六单元凸轮 81f相差 -120度。 如此设置下的单元凸轮, 可以实现单元凸轮的工作顺序为: 第一和第五单元凸轮同时工作, 而后第三和第六单元凸轮 一起工作, 最后第二和第四单元凸轮一起工作。 如此一来, 相应的发动机气缸的工作顺序为: 1-5缸, 3-6缸和 2-4缸。根据本发明的教导, 本领域技术人员可设置不同于本发明的单元凸 轮及其工作相位和工作顺序, 但其均落在本发明的范围内。
现在参考图 9, 图 9A-图 9B统称为图 9, 其为图 1中的二冲程空气动力发动机总成的控 制器系统 6的视图。 如图 9所示, 控制器系统 6包括高压共轨恒压管 91、 控制器下座 97、控 制器中座 98、 控制器气门 92、 控制器弹簧 94以及控制器上盖 108。 高压共轨恒压管 91具有 圆柱形外形,其也可为矩形、三角形等外形。高压共轨恒压管 91内部为例如是圆柱形的腔道, 以接受来自进气控制调速阀 23的高压进气, 并大体上保持腔道内的压缩空气压力均衡, 以便 使初始进入各个气缸 40的膨胀排气室 63内的高压空气具有相同的压力, 从而使发动机工作 平稳。 高压共轨恒压管 91的两端固定装配有高压共轨恒压管端盖 100, 在其与进气控制调速 阀 23连接的端盖 100具有向外延伸的凸缘(图中未标记),该凸缘伸入到高压进气控制调速阀 23和高压共轨恒压管 91之间的管路内, 并通过例如是螺纹的连接方式与高压管路可拆卸地 固定连接。高压共轨恒压管端盖 100通过端盖连接螺栓与高压共轨恒压管 91连接。高压共轨 恒压管 91上设有对应于气缸 40的数目的上盖连接孔 111, 在图示的优选实施例中, 上盖连 接孔 111的数目为 6。 控制器上盖 108在沿其中心线的剖面上具有倒 T形, 其具有圆柱形的 支进气管路 112和圆形下表面(图中未标记), 支进气管路 112通过其上端外围的螺纹连接到 上盖连接孔 111内, 以与高压共轨恒压管 91形成固定可拆卸地连接。控制器上盖 108通过上 盖与中座连接螺栓或其他紧固件与控制器中座 98形成密封的、可拆卸固定连接。控制器中座 98通过中座与下座连接螺栓 110或其他紧固件与控制器下座 97形成密封的可拆卸固定连接。
如图 9所示, 控制器中座 98在其中心处设有直径不同的孔, 从上到下依次为控制器气 门座套孔 120、 控制器气门孔 117、 油封衬套孔 116、 控制器气门弹簧孔 119。 在示例性实施 例中, 孔 120的直径大于孔 117的直径并且大于孔 116的直径。 孔 117的直径大于孔 116的 直径。 孔 119的直径可以和与孔 117的直径相同或不同, 但要求大于孔 116的直径。 在优选 实施例中, 孔 119的直径等于孔 117的直径, 但略小于孔 120的直径。控制器气门座套 93安 装在控制器气门座套孔 120内, 并支撑在控制器气门孔 117之上。控制器气门孔 117为空腔, 其与气喉孔连接孔 118连通, 以在控制器气门 92打开时, 将来自高压共轨恒压管 91的压缩 空气经由支进气管路 112进入气喉孔连接孔 118。 气喉孔连接孔 118的一端与控制器气门孔 117连通, 另一端联通缸盖系统 36的气喉孔 402, 其保持常通, 因而可在控制器气门 92打开 时, 将压缩空气送入膨胀排气室 63, 从而驱动发动机工作。 油封衬套 99安装在油封衬套孔 116内, 并支撑在控制器气门弹簧 94之上, 其内通过控制器气门 92的气门杆(图中未标记)。 该油封衬套 99除了对控制器气门 92进行密封外还对气门杆起导向作用。 控制器气门弹簧 94 安装在控制器气门弹簧孔 119内, 其下端支撑有控制器气门弹簧下座 95, 并通过控制器气门 锁夹片紧固在控制器气门弹簧下座 95之上。 在发动机不工作时, 控制器气门弹簧 94预加载 一定的预张力, 其将控制器气门 92抵靠在控制器气门套座 93上, 控制器气门 92关闭。
控制器下座 97内部设有示例性的 6个控制器挺柱安装孔 114, 其根据发动机气缸数的 不同, 可以设置不同数目的控制器挺柱安装孔 114, 例如可以是 1个、 2个、 4个、 6个、 8 个、 10个或更多。 控制器挺柱 115安装在控制器挺柱安装孔 114内, 并随安装在进气凸轮轴 安装孔 113内的进气凸轮轴 200转动而上下往复运动。当需要给发动机气缸 40提供高压压缩 空气时, 进气凸轮轴 200的凸轮向上顶起控制器挺柱 115, 控制器挺柱 115继而顶起控制器 气门 92的气门杆, 使得气门杆克服控制器气门弹簧 94的拉力, 离开控制器气门套座 93, 从 而控制器气门打开, 高压压缩空气得以从高压共轨恒压管 91进入膨胀排气室 63, 以满足发 动机的供气需求。 在进气凸轮轴 200随曲轴 56转过一定角度后, 控制器气门 92的气门杆在 控制器气门弹簧 94的恢复力作用下重新坐落在控制器气门套座 93上, 控制器气门 92关闭, 供气结束。 由于本发明的空气动力发动机为二冲程发动机, 曲轴 56每转动一周, 控制器气门
92和排气阀 62各开闭一次, 因此, 很容易设置进气凸轮轴 200和排气凸轮轴 800的凸轮相 位以及它们与曲轴的连接关系, 其详细的结构和运动传递见图 10的示例性说明。 现在参考图 10, 图 10A-图 10C统称为图 10, 其为图 1中的二冲程空气动力发动机总成 的前齿轮箱系统 43的不同视图。 如图 10所示, 前齿轮箱系统包括多边形盖 313、 传动齿轮 308、 曲轴齿轮 307、 过桥齿轮 303、 进气凸轮轴齿轮 302、 排气凸轮轴齿轮 306。 曲轴齿轮 307与穿过多边形盖 313的曲轴 56—端固定连接, 以传递来自曲轴的转动。 曲轴齿轮 307的 下方(图 10B中所示方位)设有例如是机油泵齿轮的传动齿轮 308, 以通过传动齿轮 308带动 例如是机油泵的构件转动。 在曲轴齿轮 307的上方从左至右(图 10B中所示方位)依次设置有 进气凸轮轴齿轮 302、 过桥齿轮 303、 排气凸轮轴齿轮 306。 曲轴齿轮 307与过桥齿轮 303直 接接合以带动过桥齿轮 303转动。 过桥齿轮 303同时与左右两侧的进气凸轮轴齿轮 302和排 气凸轮轴齿轮 306接合, 以在曲轴 56转动时, 通过曲轴齿轮 307、 过桥齿轮 303带动进气凸 轮轴齿轮 302和排气凸轮轴齿轮 306的转动,从而使进气凸轮轴 200和排气凸轮轴 800转动, 最终实现排气阀 62和控制器气门 92的开启和关闭。在示例性实施例中,排气凸轮轴齿轮 306 直接固定连接在排气凸轮轴 800上,从而排气凸轮轴齿轮 306的转动直接带动排气凸轮轴 800 的转动。 而进气凸轮轴齿轮 302的中心轴的适当位置上固定有皮带轮(未示出), 该皮带轮通 过凸轮轴传动皮带 35与设置在进气凸轮轴 200上的皮带轮连接,从而带动进气凸轮轴 200转 动, 实现控制器气门 92的开启和关闭。在备选实施例中, 进气凸轮轴齿轮 302的中心轴的适 当位置上也可固定有链轮 (未示出),该链轮通过链条与设置在进气凸轮轴 200上的链轮连接, 从而带动进气凸轮轴 200转动, 实现控制器气门 92的开启和关闭。
多边形盖 313上设有多个不同作用的孔, 例如螺钉连接孔 309、 螺钉孔 310和螺栓连接 孔 311。 多边形盖 313通过螺钉连接孔 309连接到发动机箱体上, 过桥齿轮 303通过螺钉孔 310连接到多边形盖 313上, 螺栓连接孔 311用来将多边形盖 311与发动机箱体连接。 螺栓 连接孔 311可以设置在焊接在多边形盖 311上的焊接柱 5内。 多边形盖 311上还设有供润滑 油流动的油孔 304和用于安装吊环的吊环座 12。
现在参考图 11, 图 11A-图 11C统称为图 11, 其为图 1中的二冲程空气动力发动机总成 的多柱体动力分配器 2的不同视图。如图 11所示的本发明的示例性实施例, 多柱体动力分配 器 2是多级动力分配器, 其由一级 601、 二级 602、 三级 603、 四级 604、 五级 605 (图 10B所 示的方向由左至右)组成。在备选实施例中, 多柱体动力分配器可由不用于本发明的五级的其 他级组成, 例如三级、 四级、 六级或七级等。 每一级的结构大体相同, 均包括行星齿轮 401、 内齿圈 407和太阳轮 405。 可根据需要均匀设定每一级的行星轮的个数, 例如 3个、 5个、 7 个或更多个。 在示例性实施例中, 每一级均包括 5个均匀分布的行星齿轮 401。 这样做的好 处在于, 行星齿轮的均匀分布可使主轴的 力均匀, 传动平稳而且传动功率大。 如图 11B所 示, 一级 601和二级 602的行星齿轮 401之间通过行星齿轮销 403连接, 以使一级 601、 二 级 602同步转动。行星齿轮销 403通过光滑的平键 4021或花键与行星齿轮 401连接。在示例 性实施例中, 行星齿轮销 403可以是细圆柱形的销, 其外形也可以是矩形、 梯形、 半圆形, 其个数可以是每一级采用二个、 三个、 四个、 五个或更多个。 二级 602和三级 603的太阳轮 405通过太阳齿轮销 406连接, 以实现二级 602和三级 603的联动。 三级 603和四级 604之 间的连接关系类似于一级 601和二级 604之间的连接关系, 四级 604和五级 605之间的连接 关系类似于二级 602和三级 603之间的连接关系。如此一来,多柱体动力分配器 4的一级 602 到五级 603实现了动力的传递, 可以将来自一级 601的动力输入从五级 605中输出。 尤其注 意的是, 每一级的行星齿轮 401只绕自身轴线作自传运动, 而不绕相应太阳轮 405作公转运 动, 这样的布置使多柱体动力分配器的内部结构相对简单, 易于平稳地传递动力。
现在描述多柱体动力分配器 2的工作原理。 发动机本体 1的曲轴 51上设有飞轮 32, 飞 轮 32的外围固定连接有齿圈 31,该齿圈 31具有外齿圈,其与多柱体动力分配器 2的一级 601 上的具有内齿的内齿圈 407啮合,以将曲轴 56的运动传递到一级 601的内齿圈 407。一级 601 的行星齿轮 401与二级 602的行星齿轮连接, 动力自一级 601传递到二级 602, 二级 602的 行星齿轮 401带动二级的太阳轮 405转动。 二级的太阳轮 405通过太阳齿轮销 406与三级的 太阳轮连接, 带动三级的太阳轮 405转动, 动力自二级 602传递到三级 603。 三级 603以类 似于一级 601的方式, 将三级 603的动力通过行星齿轮 401将动力传递到四级 604。 四级 604 以类似于二级的方式将四级 604的动力通过太阳轮 405传递到五级 605。 在本发明的实施例 中, 五级 605的行星齿轮 401的转动轴为动力输出端, 动力通过行星齿轮 401分为多路 (本发 明示例性地示出了两路)传递到与多柱体动力分配器 2连接的元件,例如在本发明的示例性实 施例中, 该元件是比如是发电机的动力装置 4。 这样一来, 动力从发动机的曲轴 56输出, 通 过多柱体动力分配器 2实现多路输出。 相比较传统发动机的变速箱有利地是, 采用五级行星 齿轮的传递进行动力再分配, 即实现了省力又减少了传递中的扭矩振动。
本说明书详细地公开了本发明, 包括最佳模式, 并且也能使本领域的任何人员实践本发 明, 包括制造和使用任何设备或系统以及执行任何引入的方法。 本发明的保护范围由附加权 利要求限定,并可包括在不脱离本发明保护范围和精神的情况下针对本发明所作的各种变型、 改型及等效方案。

Claims

WO 2013/060112 权 利 要 求 书 PCT/CN2012/073001
1. 二冲程空气动力发动机总成, 其包括: 发动机本体(1), 其包括气缸 (40)、 缸盖系统 (36)、 进气管路 (42)、 排气管路 (27)、 活塞 (51)、 连杆 (54)、 曲轴 (56)、 排气凸轮轴 (800)、 进气凸 轮轴 (200)、前齿轮箱系统 (43)和后齿轮箱 (33);所述活塞 (51)经由连杆 (54)连接到曲轴 (56); 所述前齿轮箱系统 (43)用来传动曲轴 (56)和凸轮轴 (800, 200),所述缸盖系统 (36)上设有用于 压缩空气进气的气喉孔 (402)和用于尾气排放的排气孔 (272) ; 高压气罐组(13), 其通过管路 (14)与外接加气装置连通;其特征在于,所述二冲程空气动力发动机总成还包括:恒压罐(16), 其通过管路(15)与高压气罐组(13)连通;进气控制调速阀(23),其通过管路(17)与恒压罐(16) 连通; 控制器系统 (6) ; 以及电子控制单元 ECU (29), 其根据传感器 (24, 242)所检测的信号控 制进气控制调速阀(23) ; 所述前齿轮箱系统包括多边形盖(313)、 传动齿轮 (308)、 曲轴齿轮 (307)、 过桥齿轮 (303)、 进气凸轮轴齿轮 (302)、 排气凸轮轴齿轮 (306); 曲轴齿轮 (307)通过 过桥齿轮 (303)将来自曲轴(56)的运动传递给驱动进气凸轮轴(200)的进气凸轮轴齿轮 (302) 和驱动排气凸轮轴 (800)的排气凸轮轴齿轮 (306)。
2. 根据权利要求 1所述的发动机总成, 进一步包括多柱体动力分配器(2), 所述多柱体动力 分配器(2)包括五级, 分别是一级(601)、 二级(602)、 三级(603)、 四级(604)、 五级(604), 每一级均包括内齿圈(407)、 行星齿轮 (401)和太阳轮 (405)。
3. 根据权利要求 1或 2所述的发动机总成, 其特征在于, 所述控制器系统(6)包括高压共轨 恒压管 (91)、 控制器上盖(108)、控制器中座 (98)和控制器下座 (97), 所述控制器上盖(108)、 控制器中座 (98)和控制器下座依次通过螺栓可拆卸地密封连接。
4. 根据权利要求 4所述的发动机总成, 其特征在于, 所述控制器上盖(108)内设有进气管路 (112), 所述进气管路(112)螺纹连接到高压共轨恒压管(91) ; 所述控制器中座(98)内安装有 控制器进气门(92)、 控制器气门弹簧(94)、 油封衬套 (99)、 控制器气门弹簧下座(97)和控制 器气门座套 (93), 所述控制器气门(92)受控制器气门弹簧 (94)的预作用力在发动机无需进气 时抵靠在控制器气门座套(93)上; 所述控制器下座(97)内设有控制控制器气门(92)开闭的控 制器挺柱(115), 所述控制器挺柱(115)由进气凸轮轴(200)致动。
5. 根据权利要求 1或 2所述的发动机总成, 其特征在于, 所述气缸 (40)为 6个气缸, 所述曲 轴(56)包括 6个单元曲拐(71)。
6. 根据权利要求 5所述的发动机总成, 其特征在于, 所述 6个单元曲拐分别为第一单元曲拐
(71a)、第二单元曲拐 (71b)、第三单元曲拐 (71c)、第四单元曲拐 (71d)、第五单元曲拐 (71e)、 第六单元曲拐(71f), 并且各单元曲拐的相位作如下设置: 第一单元曲拐(71a)与第二单元曲 拐 (71b)相差 120度、第二单元曲拐 (71b)与^三单元曲拐 (71c)相差 120度、第三单元曲拐 (71c) 与第四单元曲拐(71c)相差 180度、 第四单元曲拐 (71d)与第五单元曲拐 (71e)相差 -120度、 第五单元曲拐 (71e)与第六单元曲拐 (71f)相差 -120度。
7. 一种用于空气动力发动机的控制器系统, 所述控制器系统包括:
高压共轨恒压管 (91)、 控制器上盖(108)、 控制器中座 (98)和控制器下座 (97) ;
其特征在于, 所述控制器上盖(108)、 控制器中座 (98)和控制器下座依次通过螺栓可拆卸 地密封连接, 并且其中, 所述控制器上盖(108)内设有进气管路(112), 所述进气管路(112) 螺纹连接到高压共轨恒压管 (91), 所述进气管路(112)与高压共轨恒压管内的腔连通, 以接收 来自高压共轨恒压管内的压缩空气。
8. 根据权利要求 7所述的控制器系统, 其特征在于, 所述控制器中座 (98)内安装有控制器进 气门(92)、 控制器气门弹簧 (94) 、 油封衬套 (99)、控制器气门弹簧下座 (97)和控制器气门座 套 (93), 所述控制器气门(92)受控制器气门弹簧 (94)的预作用力在发动机无需进气时抵靠在 控制器气门座套 (93)上。
9. 根据权利要求 7或 8所述的控制器系统, 其特征在于, 所述控制器下座 (97)内设有控制控 制器气门(92)开闭的控制器挺柱(115), 所述控制器挺柱(115)由进气凸轮轴(200)致动, 以接 收来自进气凸轮轴(200)的运动。
10. 根据权利要求 7所述的控制器系统, 其特征在于, 所述控制器中座(98)在其中心处设有 直径不同的孔, 从上到下依次为控制器气门座套孔(120)、 控制器气门孔(117)、 油封衬套孔 (116)、 控制器气门弹簧孔(119), 并且其中, 控制器气门座套孔(120)的直径大于控制器气门 孔(117)的直径并且大于油封衬套孔(116)的直径,控制器气门孔(117)的直径大于油封衬套孔 (116)的直径。
11 . 根据权利要求 10所述的控制器系统, 其特征在于, 所述控制器气门孔(117)与气喉孔连 接孔(118)连通, 以在控制器气门(92)打开时, 将来自高压共轨恒压管 (91)的压缩空气经由支 进气管路(112)进入气喉孔连接孔(118)。
12. 根据权利要求 7或 8所述的控制器系统, 其特征在于, 所述控制器系统还包括油封衬套 (99), 所述油封衬套 (99)安装在油封衬套孔(116)内, 并支撑在控制器气门弹簧 (94)之上,其 内通过控制器气门(92)的气门杆。
13. 根据权利要求 7或 8所述的控制器系统, 其特征在于, 所述控制器气门弹簧(94)安装在 控制器气门弹簧孔(119)内, 其下端支撑有控制器气门弹簧下座 (95), 并通过控制器气门锁夹 片(96)紧固在控制器气门弹簧下座 (95)之上。
PCT/CN2012/073001 2011-10-28 2012-03-26 二冲程空气动力发动机总成 WO2013060112A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/574,989 US20140224234A1 (en) 2011-10-28 2012-03-26 Two-stroke air-powered engine assembly
KR1020127031303A KR20140077806A (ko) 2011-10-28 2012-03-26 2 행정 에어 동력 엔진
JP2013542366A JP5557964B2 (ja) 2011-10-28 2012-03-26 2ストローク空気動力エンジンセンブリ
AU2012216236A AU2012216236A1 (en) 2011-10-28 2012-03-26 Two-stroke air-powered engine assembly
EP12758981.0A EP2772611B1 (en) 2011-10-28 2012-03-26 Two-stroke air-powered engine assembly
RU2012153923/06A RU2565471C2 (ru) 2011-10-28 2012-03-26 Блок двухтактного пневматического двигателя

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110331831.3 2011-10-28
CN201110331831.3A CN103061817B (zh) 2011-10-18 2011-10-28 二冲程空气动力发动机总成

Publications (1)

Publication Number Publication Date
WO2013060112A1 true WO2013060112A1 (zh) 2013-05-02

Family

ID=48169387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073001 WO2013060112A1 (zh) 2011-10-28 2012-03-26 二冲程空气动力发动机总成

Country Status (8)

Country Link
US (1) US20140224234A1 (zh)
EP (1) EP2772611B1 (zh)
JP (1) JP5557964B2 (zh)
KR (1) KR20140077806A (zh)
CN (1) CN103061817B (zh)
AU (2) AU2012101940A4 (zh)
RU (1) RU2565471C2 (zh)
WO (1) WO2013060112A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948234B (zh) * 2015-05-29 2017-07-21 王力丰 经济利用压缩空气为汽车动力源的系统及其方法
DE102017003390A1 (de) * 2016-04-26 2017-10-26 Ford Global Technologies, Llc Per Zahnrad angetriebene Dieselkraftstoff-Einspritzpumpe eines Motors
US10422253B2 (en) 2016-04-26 2019-09-24 Ford Global Technologies, Llc Cam drive system for an engine
DE202017000511U1 (de) * 2017-01-31 2017-03-06 Eckhard Staude Mittels Druckluft antreibbare Maschine
CN108386232B (zh) * 2018-03-19 2023-07-21 冯帆 一种空气动力运输车
EP3628816A1 (de) * 2018-09-25 2020-04-01 Fuelsave GmbH Verbrennungsmotor mit verstellbarer verknüpfung von dessen motoreinheiten
CN110005786B (zh) * 2019-05-06 2024-03-26 广西玉柴机器股份有限公司 一种叠层螺栓装配式曲轴动力输出组件
CN110486185A (zh) * 2019-09-18 2019-11-22 朱国钧 无油空气动力发动机
WO2021191893A1 (en) * 2020-03-23 2021-09-30 Squall E.M.T Ltd. Multi-channel valve for aqueous liquids, vapor or gas
CN111691925B (zh) * 2020-06-24 2021-11-09 张谭伟 一种空气发动机
CN113041141B (zh) * 2021-02-25 2022-08-19 深圳智林机器人科技有限公司 一种调节艾火垂直距离的送艾器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124978A (en) * 1974-05-28 1978-11-14 Wagner William C Compressed air engine
FR2731472A1 (fr) 1995-03-06 1996-09-13 Guy Negre Procede et dispositifs de depollution de moteur a combustion interne cyclique a chambre de combustion independante
US6311486B1 (en) 1996-06-17 2001-11-06 Guy Negre Method for operating a pollution-reducing engine
US20070101712A1 (en) 2003-11-17 2007-05-10 Guy Negre Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof
CN101289946A (zh) * 2008-06-11 2008-10-22 徐敏胜 两行程高压空气发动机
CN101413403A (zh) 2008-11-05 2009-04-22 周登荣 空气动力发动机总成
CN101775998A (zh) * 2009-01-09 2010-07-14 孙红社 空气发动机
CN201802452U (zh) * 2010-09-07 2011-04-20 赵国樑 高压压缩空气动力发动装置的配气工作系统
CN202280478U (zh) * 2011-11-01 2012-06-20 周登荣 用于二冲程空气动力发动机的齿轮箱系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422672A1 (de) * 1974-05-10 1975-11-20 Georg Ehses Pressdruckluftmotor
JPS6287634A (ja) * 1985-10-14 1987-04-22 Sanshin Ind Co Ltd 舶用2サイクル燃料噴射エンジン
JPS63219803A (ja) * 1987-03-06 1988-09-13 Honda Motor Co Ltd エンジンの調時伝動装置
US4920825A (en) * 1987-03-06 1990-05-01 Honda Giken Kabushiki Kaisha Vehicle engine
JPS63272901A (ja) * 1987-04-30 1988-11-10 Kawasaki Heavy Ind Ltd 空気圧エンジン
US6133716A (en) * 1998-10-23 2000-10-17 Statordyne, Inc. High-efficiency high-power uninterrupted power system
US6749533B2 (en) * 2002-05-24 2004-06-15 Macdonald Dettwiler, Space And Advanced Robotics Ltd. Gearbox
CN1908422A (zh) * 2006-08-16 2007-02-07 丛洋 风气发动机即采用风力气压取代燃料能源的发动机
RU67184U1 (ru) * 2007-06-26 2007-10-10 Степан Иванович ВАСИЛЕВСКИЙ Поршневой двигатель (варианты)
JP2009215982A (ja) * 2008-03-11 2009-09-24 Yamatake Corp 省エネ送風機
CN201262098Y (zh) * 2008-11-05 2009-06-24 周登荣 空气动力发动机
US20100296949A1 (en) * 2009-08-10 2010-11-25 Advanced Air Innovations Llc High-efficiency pneumatic drive motor system
CN202325694U (zh) * 2011-10-18 2012-07-11 周登荣 二冲程空气动力发动机总成

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124978A (en) * 1974-05-28 1978-11-14 Wagner William C Compressed air engine
FR2731472A1 (fr) 1995-03-06 1996-09-13 Guy Negre Procede et dispositifs de depollution de moteur a combustion interne cyclique a chambre de combustion independante
US6311486B1 (en) 1996-06-17 2001-11-06 Guy Negre Method for operating a pollution-reducing engine
US20070101712A1 (en) 2003-11-17 2007-05-10 Guy Negre Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof
CN101289946A (zh) * 2008-06-11 2008-10-22 徐敏胜 两行程高压空气发动机
CN101413403A (zh) 2008-11-05 2009-04-22 周登荣 空气动力发动机总成
WO2010051668A1 (zh) 2008-11-05 2010-05-14 Zhou Dengrong 空气动力发动机总成
CN101775998A (zh) * 2009-01-09 2010-07-14 孙红社 空气发动机
CN201802452U (zh) * 2010-09-07 2011-04-20 赵国樑 高压压缩空气动力发动装置的配气工作系统
CN202280478U (zh) * 2011-11-01 2012-06-20 周登荣 用于二冲程空气动力发动机的齿轮箱系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772611A4

Also Published As

Publication number Publication date
EP2772611B1 (en) 2017-11-29
AU2012101940A4 (en) 2015-11-05
US20140224234A1 (en) 2014-08-14
RU2012153923A (ru) 2014-11-20
CN103061817A (zh) 2013-04-24
JP5557964B2 (ja) 2014-07-23
CN103061817B (zh) 2014-12-03
JP2014500434A (ja) 2014-01-09
EP2772611A1 (en) 2014-09-03
RU2565471C2 (ru) 2015-10-20
KR20140077806A (ko) 2014-06-24
EP2772611A4 (en) 2015-12-02
AU2012216236A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2013060113A1 (zh) 具有补充压缩空气回路的压缩空气发动机总成
WO2013060112A1 (zh) 二冲程空气动力发动机总成
WO2013075438A1 (zh) 电磁助力空气动力发电机系统及电磁助力器
CN202334248U (zh) 用于空气动力发动机总成的电磁助力器
CN202325692U (zh) 用于空气动力发动机的控制器系统
CN103061816A (zh) 具有尾气回收回路的压缩空气发动机总成
CN103306766A (zh) 空气动力v型多缸发动机的缸盖排气结构
CN202325693U (zh) 具有尾气回收回路的压缩空气发动机总成
CN202325691U (zh) 具有补充压缩空气回路的压缩空气发动机总成
CN202280478U (zh) 用于二冲程空气动力发动机的齿轮箱系统
CN202325695U (zh) 电磁助力二冲程空气动力发动机总成
CN103133038A (zh) 电磁助力二冲程空气动力发动机总成
CN202483655U (zh) 用于v型多缸空气动力发动机的齿轮箱
CN202467933U (zh) 用于二冲程空气动力v型八缸发动机的配气机构
CN202483659U (zh) 空气动力v型多缸发动机的缸盖排气结构
CN202327071U (zh) 用于空气动力发动机的活塞组件
CN202325694U (zh) 二冲程空气动力发动机总成
CN202326945U (zh) 用于空气动力发动机的多柱体动力分配器
CN103089312A (zh) 用于空气动力发动机的控制器系统
CN102619614B (zh) 泵压四冲程四缸分层旋涡燃烧节能汽油机
CN103089936B (zh) 用于空气动力发动机的多柱体动力分配器
CN103306727A (zh) 用于v型多缸空气动力发动机的齿轮箱
CN103089996B (zh) 用于空气动力发动机的活塞组件
CN103306732A (zh) 用于二冲程空气动力v型八缸发动机的配气机构
CN1432723A (zh) 发动机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13574989

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012216236

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2012758981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012758981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9539/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127031303

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012153923

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013542366

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE