WO2013060033A1 - 液晶显示装置及其驱动方法 - Google Patents

液晶显示装置及其驱动方法 Download PDF

Info

Publication number
WO2013060033A1
WO2013060033A1 PCT/CN2011/081640 CN2011081640W WO2013060033A1 WO 2013060033 A1 WO2013060033 A1 WO 2013060033A1 CN 2011081640 W CN2011081640 W CN 2011081640W WO 2013060033 A1 WO2013060033 A1 WO 2013060033A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel unit
pixel
liquid crystal
unit group
display mode
Prior art date
Application number
PCT/CN2011/081640
Other languages
English (en)
French (fr)
Inventor
侯鸿龙
贺成明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/379,796 priority Critical patent/US20130100172A1/en
Publication of WO2013060033A1 publication Critical patent/WO2013060033A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed

Definitions

  • the present invention relates to a liquid crystal display device and a method of driving the same.
  • Advanced display has become an important feature of today's consumer electronics products, and LCD devices have become increasingly popular for a variety of electronic devices such as televisions, mobile phones, personal digital assistants, digital cameras, computer screens or notebook screens.
  • a resolution color screen display is a popular feature of today's consumer electronics products.
  • FIG. 1 is a schematic circuit diagram of a prior art liquid crystal display device 10.
  • the liquid crystal display device 10 includes a timing controller 14 and a data driver (source) Driver) 16, scan driver (gate Driver) 18 and liquid crystal display panel 20.
  • the liquid crystal display panel 20 includes a plurality of pixel units, and each of the pixel units includes at least three sub-pixel units 22 respectively representing three primary colors of red, green, and blue (R, G, B). Take a 1024 ⁇ For the 768-resolution liquid crystal display panel 20, a total of 1024 ⁇ 768 ⁇ 3 sub-pixel units 22 are required to be combined.
  • the scan driver 18 When the frequency signal pulse generated by the timing controller 14 is transmitted to the scan driver 18, the scan driver 18 generates a scan pulse to the liquid crystal display panel 20, and at the same time, the timing controller 14 issues a frequency signal pulse to the data driver 16, and the data The driver 16 outputs a gray scale voltage signal to the sub-pixel unit 22 of the liquid crystal display panel 20.
  • the scan driver 18 outputs scan pulses to the liquid crystal display panel 20 at regular intervals.
  • the data driver 16 charges and discharges the pixel cells to the required voltage for the time of 21.7 ⁇ s to display the corresponding gray scale.
  • the grayscale value is converted from 0th order to 160th order.
  • the grayscale value is converted from 255 to 160.
  • the maximum brightness also decreases when the liquid crystal rotation time becomes small. Therefore, when the grayscale transformation of the displayed image is changed from black to gray, the actual grayscale value is converted from 0th order to 144th order.
  • the grayscale transformation of the displayed image is changed from white to gray, the actual grayscale value is converted from 255 to 163. If the gray scale transformation of two adjacent pixel units is changed from black to gray and white to gray, respectively, the actual gray scale values of the two adjacent pixel units may have a luminance difference of about 19%, thereby causing display. defect.
  • black frame insertion Black frame
  • Insertion which inserts a black frame during grayscale conversion.
  • the grayscale transformation of the displayed image is changed from black to gray
  • the transformation of the grayscale of the displayed image is black->insert black-screen->grey->inserted black image
  • the grayscale value transformation is performed by 0th order -> 0th order -> 160th order -> 0th order.
  • the grayscale transformation of the displayed image is changed from white to gray
  • the transformation of the grayscale of the displayed image is sequentially white->inserted black->yellow->inserted black image, and the grayscale value transformation is performed by 255 steps -> 0 orders -> 160 orders -> 0 orders.
  • the actual gray levels of the two adjacent pixel units 22 will have a luminance difference of about 9%.
  • the refresh time of each frame is 1/60 second.
  • each frame must be refreshed twice in 1/60 seconds, that is, the refresh rate will become 120Hz.
  • the first refresh is the grayscale display of the normal image
  • the second refresh is the blackscale display.
  • the luminance difference is reduced by the black picture insertion method, the scanning frequency must also be increased by two times. This means that the charging time of the pixel unit is also shortened, and the brightness is also lowered.
  • a liquid crystal display device comprising: a liquid crystal display panel comprising: a plurality of scan lines; a plurality of data lines interlaced with the plurality of scan lines; a plurality of pixel units arranged in a matrix, each pixel unit comprising a plurality of a sub-pixel unit, each sub-pixel unit is disposed in an area where the plurality of scan lines are interlaced with the plurality of data lines; a scan driver for supplying scan pulses to the plurality of scan lines; and a data driver for Providing a gray scale voltage signal to the plurality of data lines; the plurality of pixel units being divided into a first pixel unit group and a second pixel unit group, the first pixel unit group and the second pixel unit group The pixel units are alternately arranged, and two adjacent pixel units in the matrix of pixel units belong to different pixel unit groups, and each of the pixel units has a first display mode and a second display mode, and the first display mode is The data driver provides a gray scale voltage signal for
  • all pixel units of the first pixel unit group and one of the second pixel unit groups are in the first display mode, and another pixel unit group All of the pixel units are in the second display mode; when the i+1th frame is scanned, the pixel unit in the first display mode is converted to the second display mode when the ith frame is The pixel unit in the second display mode at the ith frame is converted to the first display mode, where i is a positive integer.
  • each pixel unit includes at least three sub-pixel units of red, green, and blue.
  • a liquid crystal display device comprising: a liquid crystal display panel comprising: a plurality of scan lines; a plurality of data lines interlaced with the plurality of scan lines; a plurality of pixel units arranged in a matrix, each pixel unit comprising a plurality of a sub-pixel unit, each sub-pixel unit is disposed in an area where the plurality of scan lines are interlaced with the plurality of data lines; a scan driver for supplying scan pulses to the plurality of scan lines; and a data driver for Providing a gray scale voltage signal to the plurality of data lines; wherein the plurality of pixel units are divided into a first pixel unit group and a second pixel unit group, the first pixel unit group and the second pixel unit The pixel units in the group are alternately arranged, each of the pixel units having a first display mode and a second display mode, wherein the first display mode refers to the data driver providing a gray scale voltage signal for displaying a normal image through a data line Up to the pixel
  • the specific gray scale voltage signal is a black voltage signal.
  • all pixel units of the first pixel unit group and one of the second pixel unit groups are in the first display mode, and another pixel unit group All of the pixel units are in the second display mode; when the i+1th frame is scanned, the pixel unit in the first display mode is converted to the second display mode when the ith frame is The pixel unit in the second display mode at the ith frame is converted to the first display mode, where i is a positive integer.
  • the pixel units of each row in the matrix formed by the pixel units belong to the same pixel unit group, and the pixel units of adjacent rows belong to different pixel unit groups.
  • the pixel units of each column in the matrix formed by the pixel units belong to the same pixel unit group, and the pixel units of adjacent columns belong to different pixel unit groups.
  • each pixel unit includes at least three sub-pixel units of red, green, and blue.
  • a driving method of a liquid crystal display device comprising: a plurality of pixel units arranged in a matrix, each pixel unit comprising a plurality of sub-pixel units, the pixel unit being divided into a first pixel unit group and a a two-pixel unit group, the first pixel unit group and the pixel unit in the second pixel unit group are alternately arranged, and the driving method of the liquid crystal display device includes the following steps:
  • Step 1 When scanning the ith frame picture, the data driver provides a gray scale voltage signal for displaying a normal image to the pixel unit in the first pixel unit group through the data line, and the data driver provides a specific gray scale voltage signal through the data line To the pixel unit in the second group of pixel units;
  • Step 2 Scan the i +
  • the data driver supplies a specific gray scale voltage signal to the pixel unit in the first pixel unit group through the data line, and the data driver provides a gray scale voltage signal for displaying the normal image to the second pixel through the data line.
  • Step 3 The step 1 and the second step are sequentially cycled, wherein i is a positive integer.
  • the liquid crystal display device and the driving method thereof according to the present invention when the refresh rate of the liquid crystal display device is constant, the actual display image is displayed when the image displayed by the liquid crystal display device is switched from different gray scales to the same gray scale by the above setting.
  • the difference in brightness of the gray scale is small. Therefore, it is possible to improve the technical problem of the prior art due to the slow rotation of the liquid crystal.
  • FIG. 1 is a circuit diagram of a prior art liquid crystal display device.
  • FIG. 2 is a circuit diagram of a preferred embodiment of a liquid crystal display device of the present invention.
  • FIG 3 is a schematic view of a first embodiment of a liquid crystal display panel of the present invention.
  • Figure 4 is a schematic view showing a second embodiment of the liquid crystal display panel of the present invention.
  • Figure 5 is a schematic view showing a third embodiment of the liquid crystal display panel of the present invention.
  • FIG. 2 is a schematic circuit diagram of a liquid crystal display device 100 according to a preferred embodiment of the present invention.
  • the liquid crystal display device 100 can be a screen of a personal computer or a screen of a notebook computer.
  • the liquid crystal display device 100 includes a timing controller 104, a data driver 106, a scan driver 108, and a liquid crystal display panel 110.
  • the liquid crystal display panel 110 includes a plurality of scanning lines G1-G2n, a plurality of data lines D1-D3m, and a plurality of pixel units 130.
  • the plurality of pixel units 130 are arranged in a matrix, and each of the pixel units 130 includes at least three sub-pixel units 120 of red, green, and blue.
  • the sub-pixel unit 120 is disposed between regions in which the plurality of scan lines G1-G2n are interlaced with the plurality of data lines D1-D3m.
  • the scan driver 108 sequentially generates scan pulses to be transmitted to the liquid crystal display panel 110 via the scan lines G1-G2n, while the timing controller 104 emits a level.
  • the sync signal is sent to the data driver 106, and the data driver 106 outputs the gray scale voltage signal to the sub-pixel unit 120 of the liquid crystal display panel 110 in parallel via the data lines D1-D3m.
  • Each sub-pixel unit 120 includes a pixel electrode 124 and a thin film transistor 122.
  • the gate, the source and the drain of the thin film transistor 122 are electrically connected to the scan line, the data line and the pixel electrode 124 in the corresponding sub-pixel unit 120, respectively.
  • Scan driver 108 is used to transmit scan pulses through scan lines G1-G2n
  • data driver 106 is used to transmit data voltage signals through data lines D1-D3m.
  • the plurality of pixel units 130 are divided into a first pixel unit group and a second pixel unit group. The first pixel unit group and the pixel unit 130 in the second pixel unit group are alternately arranged. Each pixel unit 130 has a first display mode and a second display mode.
  • the first display mode refers to the data driver 106 providing a gray scale voltage signal for displaying a normal image to the pixel unit 130 through the data line.
  • the second display mode means that the data driver 106 provides a specific gray scale voltage signal to the pixel unit 130 through the data line.
  • the specific gray scale voltage signal is a black voltage signal.
  • all the pixel units 130 of the first pixel unit group and the one pixel unit group in the second pixel unit group are in the first display mode, and all the pixel units in the other pixel unit group 130 is in the second display mode;
  • the pixel unit 130 in the first display mode is converted into the second display mode in the ith frame, and is in the second display in the ith frame
  • the pixel unit 130 of the mode is converted to the first display mode, where i is a positive integer.
  • the liquid crystal display device of the present invention displays the brightness difference of the gray scale of the actual display image when the image displayed by the liquid crystal display device is switched from different gray scales to the same gray scale by the above setting without changing the refresh frequency. It is smaller, thereby improving the prior art problem of displaying defects due to slower liquid crystal rotation.
  • FIG. 3 is a schematic diagram of a first embodiment of a liquid crystal display panel of the present invention.
  • each sub-pixel unit 120 no longer draws the thin film transistor 122 and the pixel electrode 124, and each sub-pixel unit 120 illustrated in the figure is connected to the corresponding scan line.
  • G1-G2n and data lines D1-D3m are gates and sources of the thin film transistor 122 representing the sub-pixel unit 120 connected to the corresponding scan lines G1-G2n and data lines D1-D3m.
  • the plurality of pixel units of the liquid crystal display panel 110 are divided into a first pixel unit group 141 and a second pixel unit group 142.
  • the first pixel unit group 141 includes a plurality of pixel units 130a and 130c.
  • the gates of the thin film transistors 122 in the pixel units 130a and 130c are electrically connected to the odd-numbered row scan lines G1, G3, . . . , G2n-1, respectively.
  • the second pixel unit group 142 includes a plurality of pixel units 130b and 130d.
  • the gates of the thin film transistors 122 in the pixel units 130b and 130d are electrically connected to the even-numbered row scanning lines G2, G4, . . . , G2n.
  • the pixel units of each row in the matrix formed by the plurality of pixel units belong to the same pixel unit group, and the pixel units of the adjacent rows belong to different pixel unit groups.
  • the refresh frequency of the liquid crystal display device 100 is 60 Hz.
  • the scan driver 108 When the scan driver 108 outputs a scan pulse to scan the first scan line G1 of the i-th frame picture (where i is a positive integer), the data driver 106 pairs the pixel unit 130a of the first pixel unit group 141 through the data lines D1-D3m.
  • the gray scale voltage signal indicating the normal image is input, at this time, the pixel unit 130a in the first pixel unit group 141 is in the first display mode; when the scan driver 108 outputs the scan pulse to scan the second scan line G2, the data driver 106 passes The data lines D1-D3m input a black state voltage signal to the pixel unit 130b of the second pixel unit group 142, at which time the pixel unit 130b in the second pixel unit group 142 is in the second display mode; when the scan driver 108 outputs the scan pulse scan When three scanning lines G3 are present, the data driver 106 inputs a gray scale voltage signal indicating a normal image to the pixel unit 130c of the first pixel unit group 141 through the data lines D1-D3m, at this time, the pixel unit 130c in the first pixel unit group 141.
  • the scan driver 108 In the first display mode; when the scan driver 108 outputs a scan pulse to scan the fourth scan line G4, the data driver 106 passes the data lines D1-D3m to the second image.
  • the pixel unit 130d of the prime cell group 142 inputs a black state voltage signal, at which time the pixel cell 130d in the second pixel cell group 142 is in the second display mode... until the scanning of the scan line G2n in the i-th frame ends.
  • the data driver 106 When the scan driver 108 outputs a scan pulse to scan the first scan line G1 of the i+1st frame picture, the data driver 106 inputs a black state voltage signal to the pixel unit 130a of the first pixel unit group 141 through the data lines D1-D3m, At this time, the pixel unit 130a in the first pixel unit group 141 is in the second display mode; when the scan driver 108 outputs the scan pulse to scan the second scan line G2, the data driver 106 passes the data lines D1-D3m to the second pixel unit.
  • the pixel unit 130b of the group 142 inputs a gray scale voltage signal indicating a normal image, at which time the pixel unit 130b in the second pixel unit group 142 is in the first display mode; when the scan driver 108 outputs the scan pulse to scan the third scan line G3
  • the data driver 106 inputs a black state voltage signal to the pixel unit 130c of the first pixel unit group 141 through the data lines D1-D3m, at which time the pixel unit 130c in the first pixel unit group 141 is in the second display mode; when the scan driver 108 When the output scan pulse scans the fourth scan line G4, the data driver 106 inputs and displays the pixel unit 130d of the second pixel unit group 142 through the data lines D1-D3m.
  • Gray-scale voltage signal often graphics, the pixel unit of the second pixel cell group 142 in a first display mode ... 130d until the i + G2n scan line in a scanning end. Since the human eye is sensitive to brightness, the human eye perceives the gray scale of the image of the normal display image rather than the gray level of the image corresponding to the black state voltage.
  • the grayscale value corresponding to the image is set to B, and two adjacent pixel units 130a, 130b belong to the first pixel unit group 141 and The second pixel unit group 142.
  • the pixel unit 130a displays that the grayscale value of the normal image is A, in the first display mode, and the grayscale value of the image of the pixel unit 130b is 0 (ie, the input black state voltage, display The grayscale of the image is black), in the second display mode, visually, the two adjacent pixel units 130a, 130b appear to be the luminance corresponding to the grayscale value A.
  • the grayscale value of the image displayed by the pixel unit 130a is changed from A when the ith frame picture is displayed to 0, that is, the first display mode (displaying the gray level of the normal image) is converted to The second display mode (displaying black), and the grayscale value of the image displayed by the pixel unit 130b is changed from 0 at the time of displaying the ith frame picture to B (ie, the grayscale value required), that is, converted by the second display mode. Is the first display mode.
  • the grayscale value of the current image when it is required to convert the grayscale value of the current image from 255 to 160, two adjacent pixel units 130a, 130b belong to the first pixel unit group 141 and the second pixel unit group 142.
  • the grayscale value of the image presented by the pixel unit 130a is 255
  • the grayscale value of the image presented by the pixel unit 130b is 0th order, visually, two adjacent pixel units 130a, 130b
  • the grayscale of the displayed image appears to be white (the grayscale value is 255 steps).
  • the grayscale value of the image displayed by the pixel unit 130a, 130b is visually converted from 255 to 160
  • the gray scale of the image displayed by the pixel unit 130a is changed from white to black when the i+1th frame is scanned.
  • the grayscale value is 0th order
  • the grayscale of the image displayed by the pixel unit 130b is converted from black to the grayscale of the image corresponding to the grayscale value 160, that is, from 0 to 160.
  • two adjacent pixel units 130c, 130d adjacent to the pixel units 130a, 130b are also classified into the first pixel unit group 141 and the second pixel unit group 142.
  • the gray scales of the images displayed by the pixel units 130c and 130d are all black (the grayscale value is 0th order), at this time, the images of the two adjacent pixel units 130c, 130d are visually displayed.
  • the grayscale looks black. If the grayscale value of the image displayed by the pixel unit 130c, 130d is visually converted from 0 to 160, the gray level of the pixel unit 130c is maintained black when the i+1th frame is scanned (the grayscale value is 0) Step), and the grayscale value of the image of the pixel unit 130d is converted from 0 to 160.
  • the gray scales of the images displayed by the two adjacent pixel units 130a, 130b are turned from gray to gray, and the gray scales of the images displayed by the two adjacent pixel units 130c, 130d are also turned from black to gray, and the actual display is performed.
  • the grayscale of the image has only about 4% difference in brightness. That is to say, the refresh rate of the liquid crystal display device of the present embodiment is constant, and the difference in luminance of the actual display image gray scale is also small when the different gray scales of the image are converted to the same gray scale.
  • FIG. 4 is a schematic diagram of a liquid crystal display panel 210 according to a second embodiment of the present invention.
  • each sub-pixel unit 220 no longer draws a thin film transistor and a pixel electrode, and each sub-pixel unit 220 illustrated in the figure is connected to a corresponding scan line G1- G2n and data lines D1-D3m are gates and sources of the thin film transistors representing sub-pixel cells 220 connected to corresponding scan lines G1-G2n and data lines D1-D3m.
  • the plurality of data lines D1-D3m include first sets of data lines D1-D3, ..., D3m-5-D3m-3 and second sets of data lines D4-D6, ..., D3m-2-D3m which are alternately arranged, that is, The first set of data lines are adjacent to the second set of data lines, and the first set of data lines and the second set of data lines are alternately arranged.
  • Each pixel unit 230 includes a sub-pixel unit 220 that displays three colors of red, green, and blue.
  • the plurality of pixel units 230 of the liquid crystal display panel 210 are divided into a first pixel unit group 241 and a second pixel unit group 242.
  • the source of the thin film transistor of the pixel unit 230a, 230c of the first pixel unit group 241 is electrically connected to the data line D1-D3 of the first group of data lines, and the pixel unit 230b of the second pixel unit group 242.
  • the source of 230d is a data line D4-D6 electrically connected to the second set of data lines. That is to say, the pixel units of each column in the matrix formed by the pixel units belong to the same pixel unit group, and the pixel units of the adjacent columns belong to different pixel unit groups.
  • a gray scale voltage signal indicating a normal image is input to the pixel unit of the first pixel unit group 241, and a black state voltage signal is input to the pixel unit of the second pixel unit group 242.
  • a black state voltage signal is input to the pixel unit of the first pixel unit group 241
  • a gray scale voltage signal indicating a normal image is input to the second pixel unit group 242 pixel unit.
  • two adjacent pixel units 230a, 230b or 230c, 230d always have one of the pixel units presenting black and the other exhibiting a gray level of a normal image. Since the human eye is sensitive to brightness, the human eye perceives the gray level of the normal image instead of the gray level of the image corresponding to the black state voltage.
  • the refresh rate of the liquid crystal display device of the second embodiment of the present invention is constant, and the image is actually displayed when different gray scales of the image are converted to the same gray scale.
  • the difference in brightness of the gray scale is also small.
  • FIG. 5 is a schematic diagram of a liquid crystal display panel 310 according to a third embodiment of the present invention.
  • each sub-pixel unit 320 no longer draws a thin film transistor and a pixel electrode, and each sub-pixel unit 320 illustrated in the drawing is connected to a corresponding scan line G1-G2n and a data line D1.
  • -D3m is that the gate and source of the thin film transistor of the sub-pixel unit 320 are connected to the corresponding scan lines G1-G2n and data lines D1-D3m.
  • Each pixel unit 330 includes a sub-pixel unit 320 that displays three colors of red, green, and blue.
  • the plurality of data lines D1-D3m include a first set of data lines D1-D3, ..., D3m-5-D3m-3 and a second set of data lines D4-D6, ..., D3m-2-D3m which are alternately arranged, that is, The first set of data lines are adjacent to the second set of data lines, and the first set of data lines and the second set of data lines are alternately arranged.
  • the plurality of pixel units 330 of the liquid crystal display panel 310 are divided into a first pixel unit group 341 and a second pixel unit group 342.
  • the source of the pixel unit 330a of the first pixel unit group 341 is electrically connected to the data lines D1-D3 of the first group of data lines and the gate thereof is electrically connected to the scan line G1 in the odd-line scan lines.
  • the source of the pixel unit 330c of the first pixel unit group 341 is electrically connected to the data lines D4-D6 of the second group of data lines and the gate is the scan line G2 electrically connected to the even-numbered line scan lines.
  • the source of the pixel unit 330b of the second pixel unit group 342 is electrically connected to the data lines D1-D3 in the first group of data lines and the gate is the scan line G2 electrically connected to the even-numbered line scan lines
  • the second The source of the pixel unit 330d of the pixel unit group 342 is electrically connected to the data lines D4-D6 of the second group of data lines and the gate is electrically connected to the scan line G1 of the odd-numbered scan lines. That is, adjacent two pixel units 320 in the matrix of pixel units belong to the first pixel unit group 341 and the second pixel unit group 342, respectively.
  • a gray scale voltage signal indicating a normal image is input to the pixel unit of the first pixel unit group 341, and a black state voltage signal is input to the pixel unit of the second pixel unit group 342.
  • a black state voltage signal is input to the pixel unit of the first pixel unit group 341
  • a gray scale voltage signal indicating a normal image is input to the second pixel unit group 342 pixel unit. Since the human eye is sensitive to brightness, the human eye perceives the gray level of the normal image instead of the gray level of the image corresponding to the black state voltage.
  • the pixel units 330a, 330b of FIG. 5 display the gray scale of the image from white to gray
  • the pixel units 330c, 330d display the gray scale of the image.
  • the gray scale of the actual displayed image will only have a brightness difference of about 4%. That is to say, the refresh rate of the liquid crystal display device of the present embodiment is constant, and the difference in luminance of the actual display image gray scale is also small when the different gray scales of the image are converted to the same gray scale.
  • the present invention also provides a driving method based on the above liquid crystal display device.
  • the driving method of the liquid crystal display device includes the following steps:
  • Step 1 When scanning the ith frame picture, the data driver provides a gray scale voltage signal for displaying a normal image to the pixel unit in the first pixel unit group through the data line, and the data driver provides a specific gray scale voltage signal through the data line to the first a pixel unit in a group of two pixel units;
  • Step 2 Scan the i +
  • the data driver supplies a specific gray scale voltage signal to the pixel unit in the first pixel unit group through the data line, and the data driver provides the gray scale voltage signal for displaying the normal image to the second pixel unit group through the data line.
  • Step 3 sequentially repeat step 1 and step 2 above, where i is a positive integer.
  • the above-mentioned driving method of the liquid crystal display device of the present invention actually displays the brightness of the gray scale of the image when the image displayed by the liquid crystal display device is switched from different gray scales to the same gray scale without changing the refresh frequency.
  • the difference is small, thereby improving the prior art problem of displaying defects due to slower liquid crystal rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示装置(100)及其驱动方法。液晶显示装置(100)包括多条扫描线(G1...G2n)、多条数据线(D1...D3m)、数据驱动器(106)、扫描驱动器(108)和多个像素单元(130)。像素单元(130)包括第一像素单元组和第二像素单元组,第一像素单元组与第二像素单元组中的像素单元(130)交替排列。每一像素单元(130)均具有第一显示模式和第二显示模式。第一像素单元组和第二像素单元组随着每一帧画面的切换交替处于第一显示模式和第二显示模式。该液晶显示装置(100)及其驱动方法能够改善因液晶转动较慢而导致的显示瑕疵。

Description

液晶显示装置及其驱动方法 技术领域
本发明是有关于一种液晶显示装置及其驱动方法。
背景技术
功能先进的显示器渐成为现今消费电子产品的重要特色,其中液晶显示装置已经逐渐成为各种电子设备如电视、移动电话、个人数字助理、数字相机、计算机屏幕或笔记型计算机屏幕所广泛应用具有高分辨率彩色屏幕的显示器。
请参阅图1,图1是一种现有技术液晶显示装置10的电路示意图。液晶显示装置10包含时序控制器14、数据驱动器(source driver)16、扫描驱动器(gate driver)18以及液晶显示面板20。液晶显示面板20包含数个像素单元,而每一个像素单元至少包含三个分别代表红、绿、蓝(R、G、B)三原色的子像素单元22。以一个1024 × 768分辨率的液晶显示面板20来说,共需要1024×768×3个子像素单元22组合而成。时序控制器14产生的频率信号脉冲传送至扫描驱动器18时,扫描驱动器18会产生扫描脉冲至液晶显示面板20,与此同时,时序控制器14则会发出频率信号脉冲至数据驱动器16,而数据驱动器16就会输出灰阶电压信号至液晶显示面板20的子像素单元22。
在目前的液晶显示面板设计中,扫描驱动器18每隔一固定间隔输出扫描脉冲至液晶显示面板20。以一个1024×768分辨率的液晶显示面板20以及60Hz的更新频率为例,每一个画面的显示时间约为1/60=16.67ms。所以每一个扫描脉冲的脉波宽度约为16.67ms/768=21.7μs。数据驱动器16则在这21.7μs的时间内,将像素单元充放电到所需的电压,以显示出相对应的灰阶。
以255阶的灰阶为例,当显示的图像灰阶变换是由黑变灰时,理想上,其灰阶值是由0阶转换成160阶。另一方面,当显示的图像灰阶变换是由白转灰时,理想上,其灰阶值是由255阶转换成160阶。然而,实际上,由于液晶的转动速度有限,所以在液晶转动时间变少情况下,最大亮度也下降。因此,当显示的图像灰阶变换是由黑变灰时,其实际灰阶值是由0阶转换成144阶。另一方面,当显示的图像灰阶变换是由白转灰时,其实际灰阶值是由255阶转换成163阶。如果两个相邻的像素单元的灰阶变换是分别由黑变灰以及由白变灰,那么该两相邻的像素单元的实际灰阶值会有大约19%的亮度差,从而造成显示的瑕疵。
为了改善此问题,目前常用的解决方案是黑画面插入法(Black frame insertion),该方法是在灰阶转换期间插入黑画面。举例来说,当显示的图像灰阶变换是由黑变灰时,显示的图像灰阶的变换依序是黑->插入黑画面->灰->插入黑画面,其灰阶值变换是由0阶->0阶->160阶->0阶。另一方面,当显示的图像灰阶变换是由白转灰时,显示的图像灰阶的变换依序是白->插入黑画面->灰->插入黑画面,其灰阶值变换是由255阶->0阶->160阶->0阶。这么一来,该两相邻的像素单元22的实际灰阶会有大约9%的亮度差。对传统的60Hz的刷新频率(frame rate)来说,每一帧的刷新时间是1/60秒。但采用黑画面插入法,则每一帧必须在是1/60秒内刷新两次,也就是说,刷新频率会变成120Hz。第一次刷新是正常图像的灰阶显示,第二次刷新就是显示黑色灰阶了。采用黑画面插入法虽然亮度差降低了,但是扫描频率也必须增加为两倍。这样表示像素单元的充电时间也变短,亮度也会降低。
技术问题
为了解决现有技术液晶显示装置因液晶转动较慢导致不同灰阶转换至相同灰阶出现亮度差异,而影响显示效果的技术问题,有必要提供一种改进驱动方式的液晶显示装置及其驱动方法。
技术解决方案
一种液晶显示装置,包括:液晶显示面板,包括:多条扫描线;多条数据线,与所述多条扫描线交错设置;多个呈矩阵式排列的像素单元,每一像素单元包括多个子像素单元,每一子像素单元均设置于所述多条扫描线与所述多条数据线交错的区域;扫描驱动器,用于提供扫描脉冲至所述多条扫描线;数据驱动器,用于提供灰阶电压信号至所述多条数据线;所述多个像素单元被分为第一像素单元组和第二像素单元组,所述第一像素单元组与所述第二像素单元组中的像素单元交替排列,所述像素单元矩阵中相邻的两个像素单元属于不同像素单元组,所述每一像素单元均具有第一显示模式和第二显示模式,所述第一显示模式是指所述数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述像素单元,所述第二显示模式是指所述数据驱动器通过数据线提供一黑态电压信号至所述像素单元,其中,所述第一像素单元组与所述第二像素单元组中的像素单元随着每一帧画面的切换交替处于所述第一显示模式和所述第二显示模式。
进一步地,当扫描第i帧画面时,所述第一像素单元组与所述第二像素单元组中的一个像素单元组的所有像素单元均处于所述第一显示模式,另一像素单元组中的所有像素单元均处于所述第二显示模式;当扫描第i+1帧画面时,在所述第i帧时处于所述第一显示模式的像素单元转换为所述第二显示模式,在第i帧时处于所述第二显示模式的像素单元转换为所述第一显示模式,其中i为正整数。
进一步地,每一像素单元至少包括红、绿、蓝三个子像素单元。
一种液晶显示装置,包括:液晶显示面板,包括:多条扫描线;多条数据线,与所述多条扫描线交错设置;多个呈矩阵式排列的像素单元,每一像素单元包括多个子像素单元,每一子像素单元均设置于所述多条扫描线与所述多条数据线交错的区域;扫描驱动器,用于提供扫描脉冲至所述多条扫描线;数据驱动器,用于提供灰阶电压信号至所述多条数据线;其中,所述多个像素单元被分为第一像素单元组和第二像素单元组,所述第一像素单元组与所述第二像素单元组中的像素单元交替排列,所述每一像素单元均具有第一显示模式和第二显示模式,所述第一显示模式是指所述数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述像素单元,所述第二显示模式是指所述数据驱动器通过数据线提供一特定的灰阶电压信号至所述像素单元,其中,所述第一像素单元组与所述第二像素单元组中的像素单元随着每一帧画面的切换交替处于所述第一显示模式和所述第二显示模式。
进一步地,所述特定的灰阶电压信号为黑态电压信号。
进一步地,当扫描第i帧画面时,所述第一像素单元组与所述第二像素单元组中的一个像素单元组的所有像素单元均处于所述第一显示模式,另一像素单元组中的所有像素单元均处于所述第二显示模式;当扫描第i+1帧画面时,在所述第i帧时处于所述第一显示模式的像素单元转换为所述第二显示模式,在第i帧时处于所述第二显示模式的像素单元转换为所述第一显示模式,其中i为正整数。
进一步地,所述像素单元构成的矩阵中每一行的像素单元属于同一像素单元组,相邻行的像素单元属于不同像素单元组。
进一步地,所述像素单元构成的矩阵中每一列的像素单元属于同一像素单元组,相邻列的像素单元属于不同像素单元组。
进一步地,每一像素单元至少包括红、绿、蓝三个子像素单元。一种液晶显示装置的驱动方法,所述液晶显示装置包括:多个呈矩阵式排列的像素单元,每一像素单元包括多个子像素单元,所述像素单元被分为第一像素单元组和第二像素单元组,所述第一像素单元组与所述第二像素单元组中的像素单元交替排列,所述液晶显示装置的驱动方法包括以下步骤:
步骤一:在扫描第i帧画面时,数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述第一像素单元组中的像素单元,数据驱动器通过数据线提供特定的灰阶电压信号至所述第二像素单元组中的像素单元;
步骤二:在扫描第i + 1帧画面时,数据驱动器通过数据线提供特定的灰阶电压信号至所述第一像素单元组中的像素单元,数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述第二像素单元组中的像素单元;
步骤三:依次循环所述步骤一和所述步骤二,其中i为正整数。
有益效果
相较于现有技术,本发明液晶显示装置及其驱动方法在液晶显示装置的刷新频率不变下,通过上述设置使液晶显示装置显示的图像由不同灰阶转换至同一灰阶时实际显示图像灰阶的亮度差较小。因此得以改善现有技术因液晶转动较慢而导致显示瑕疵的技术问题。
附图说明
图1是一种现有技术液晶显示装置的电路示意图。
图2是本发明液晶显示装置一较佳实施方式的电路示意图。
图3是本发明液晶显示面板的第一实施例的示意图。
图4是本发明液晶显示面板的第二实施例的示意图。
图5是本发明液晶显示面板的第三实施例的示意图。
本发明的最佳实施方式
请参阅图2,图2是本发明液晶显示装置100一较佳实施方式的电路示意图。液晶显示装置100可为个人计算机的屏幕或是笔记本电脑的屏幕。液晶显示装置100包含时序控制器104、数据驱动器106、扫描驱动器108以及液晶显示面板110。液晶显示面板110包含多条扫描线G1-G2n、多条数据线D1-D3m和多个像素单元130。多个像素单元130呈矩阵排列,每一像素单元130至少包括红、绿、蓝三个子像素单元120。所述子像素单元120设置于多条扫描线G1-G2n与多条数据线D1-D3m交错的区域之间。时序控制器104产生的垂直同步信号传送至扫描驱动器108时,扫描驱动器108会依序产生扫描脉冲经由扫描线G1-G2n传送至液晶显示面板110,在此同时,时序控制器104则会发出水平同步信号至数据驱动器106,而数据驱动器106就会经由数据线D1-D3m并行输出灰阶电压信号至液晶显示面板110的子像素单元120。每一子像素单元120包含像素电极124和薄膜晶体管122,薄膜晶体管122的栅极、源极和漏极分别电性连接相应子像素单元120中的扫描线、数据线和像素电极124。扫描驱动器108用来通过扫描线G1-G2n传输扫描脉冲,数据驱动器106用来通过数据线D1-D3m传输数据电压信号。多个像素单元130被分为第一像素单元组和第二像素单元组。第一像素单元组与第二像素单元组中的像素单元130交替排列。每一像素单元130具有第一显示模式和第二显示模式。第一显示模式是指数据驱动器106通过数据线提供显示正常图像的灰阶电压信号至像素单元130。第二显示模式是指数据驱动器106通过数据线提供一特定的灰阶电压信号至像素单元130。其中,该特定灰阶电压信号为黑态电压信号。第一像素单元组与第二像素单元组中的像素单元130随着每一帧画面的切换交替处于第一显示模式和第二显示模式。
具体地,当扫描第i帧画面时,第一像素单元组与第二像素单元组中的一个像素单元组的所有像素单元130均处于第一显示模式,另一像素单元组中的所有像素单元130均处于第二显示模式;当扫描第i+1帧画面时,在上述第i帧时处于第一显示模式的像素单元130转换为第二显示模式,在上述第i帧时处于第二显示模式的像素单元130转换为第一显示模式,其中i为正整数。
与现有技术相比,本发明的液晶显示装置在不改变刷新频率的情况下,通过上述设置使液晶显示装置显示的图像由不同灰阶转换至同一灰阶时实际显示图像灰阶的亮度差较小,从而改善现有技术因液晶转动较慢而导致显示瑕疵的问题。
请参阅图3,图3是本发明液晶显示面板的第一实施例的示意图。为简化图式,以下实施例的图式中,每一子像素单元120不再画出薄膜晶体管122和像素电极124,而图中所绘示的每一子像素单元120连接到对应的扫描线G1-G2n和数据线D1-D3m是表示子像素单元120的薄膜晶体管122的栅极和源极连接到对应的扫描线G1-G2n和数据线D1-D3m。如图3所示,液晶显示面板110的多个像素单元分为一第一像素单元组141和一第二像素单元组142。第一像素单元组141包括多个像素单元130a、130c,像素单元130a、130c中的薄膜晶体管122的栅极是分别电性连接于奇数行扫描线G1、G3、...、G2n-1,而第二像素单元组142包括多个像素单元130b、130d,像素单元130b、130d中的薄膜晶体管122的栅极是电性连接于偶数行扫描线G2、G4、...、G2n。也就是说,多个像素单元构成的矩阵中每一行的像素单元属于同一像素单元组,相邻行的像素单元属于不同像素单元组。在本实施例中,液晶显示装置100的刷新频率是60Hz。
当扫描驱动器108输出扫描脉冲以扫描第i帧画面的第一条扫描线G1时(其中,i为正整数),数据驱动器106通过数据线D1-D3m对第一像素单元组141的像素单元130a输入显示正常图像的灰阶电压信号,此时,第一像素单元组141中的像素单元130a处于第一显示模式;当扫描驱动器108输出扫描脉冲扫描第二条扫描线G2时,数据驱动器106通过数据线D1-D3m对第二像素单元组142的像素单元130b输入黑态电压信号,此时第二像素单元组142中的像素单元130b处于第二显示模式;当扫描驱动器108输出扫描脉冲扫描第三条扫描线G3时,数据驱动器106通过数据线D1-D3m对第一像素单元组141的像素单元130c输入显示正常图像的灰阶电压信号,此时第一像素单元组141中的像素单元130c处于第一显示模式;当扫描驱动器108输出扫描脉冲扫描第四条扫描线G4时,数据驱动器106通过数据线D1-D3m对第二像素单元组142的像素单元130d输入黑态电压信号,此时第二像素单元组142中的像素单元130d处于第二显示模式...直至第i帧中的扫描线G2n扫描结束。当扫描驱动器108输出扫描脉冲以扫描第i+1帧画面的第一条扫描线G1时,数据驱动器106通过数据线D1-D3m对第一像素单元组141的像素单元130a输入黑态电压信号,此时,第一像素单元组141中的像素单元130a处于第二显示模式;当扫描驱动器108输出扫描脉冲扫描第二条扫描线G2时,数据驱动器106通过数据线D1-D3m对第二像素单元组142的像素单元130b输入显示正常图像的灰阶电压信号,此时第二像素单元组142中的像素单元130b处于第一显示模式;当扫描驱动器108输出扫描脉冲扫描第三条扫描线G3时,数据驱动器106通过数据线D1-D3m对第一像素单元组141的像素单元130c输入黑态电压信号,此时第一像素单元组141中的像素单元130c处于第二显示模式;当扫描驱动器108输出扫描脉冲扫描第四条扫描线G4时,数据驱动器106通过数据线D1-D3m对第二像素单元组142的像素单元130d输入显示正常图像的灰阶电压信号,此时第二像素单元组142中的像素单元130d处于第一显示模式...直至第i+1帧中的扫描线G2n扫描结束。由于人眼对于亮度较敏感,所以在视觉上人眼感知到正常显示图像的灰阶而非黑态电压对应的图像的灰阶。
在一个具体的实施例中,当需要得到图像的某一灰阶时,设定该图像对应的灰阶值为B,两个相邻的像素单元130a、130b分属于第一像素单元组141和第二像素单元组142。此时,在扫描第i帧画面时,像素单元130a显示正常图像的灰阶值是A,处于第一显示模式,而像素单元130b的图像的灰阶值是0(即输入黑态电压,显示的图像的灰阶是黑色),处于第二显示模式,在视觉上,两个相邻的像素单元130a、130b看起来是灰阶值A对应的亮度。在扫描第i+1帧画面时,将像素单元130a显示的图像的灰阶值由显示第i帧画面时的A转变为0,即由第一显示模式(显示正常图像的灰阶)转换为第二显示模式(显示黑色),而像素单元130b显示的图像的灰阶值由显示第i帧画面时的0转变为B(即所需要得到的灰阶值),即由第二显示模式转换为第一显示模式。
例如,当需要将当前图像的灰阶值由255转换至160时,两个相邻的像素单元130a、130b分属于第一像素单元组141和第二像素单元组142。在扫描第i帧画面时,像素单元130a呈现的图像的灰阶值是255,而像素单元130b呈现的图像的灰阶值是0阶,在视觉上,两个相邻的像素单元130a、130b显示的图像的灰阶看起来是白色(灰阶值是255阶)。如果要在视觉上让像素单元130a、130b显示的图像的灰阶值由255转换至160,则在扫描第i+1帧画面时,将像素单元130a显示的图像的灰阶由白色转变为黑色(灰阶值是0阶),而像素单元130b显示的图像的灰阶由黑色转换为灰阶值160对应的图像的灰阶,即由0转换至160。另外,与像素单元130a、130b紧邻的两个相邻的像素单元130c、130d也分属于第一像素单元组141和第二像素单元组142。在扫描第i帧画面时,如果像素单元130c和130d显示的图像的灰阶皆是黑色(灰阶值是0阶),此时视觉上两个相邻的像素单元130c、130d显示的图像的灰阶看起来是黑色。如果要在视觉上让像素单元130c、130d显示的图像的灰阶值由0转换至160,则在扫描第i+1帧画面时,将像素单元130c灰阶维持为黑色(灰阶值是0阶),而像素单元130d的图像的灰阶值由0转换至160。
这么一来,该两相邻的像素单元130a、130b显示的图像的灰阶由白转灰,同时两相邻的像素单元130c、130d显示的图像的灰阶也是由黑转灰,实际显示的图像的灰阶仅有大约4%的亮度差。也就是说,本实施例的液晶显示装置的刷新频率不变,而且在图像的不同灰阶转换至同一灰阶时实际显示图像灰阶的亮度差也较小。
请参阅图4,图4是本发明第二实施例的液晶显示面板210的示意图。为简化图式,以下实施例的图式中,每一子像素单元220不再画出薄膜晶体管和像素电极,而图中所绘示的每一子像素单元220连接到对应的扫描线G1-G2n和数据线D1-D3m是表示子像素单元220的薄膜晶体管的栅极和源极连接到对应的扫描线G1-G2n和数据线D1-D3m。数条数据线D1-D3m包括交替设置的第一组数据线D1-D3、…、D3m-5-D3m-3以及第二组数据线D4-D6、…、D3m-2-D3m,也就是说,第一组数据线是相邻于第二组数据线,且第一组数据线与第二组数据线交替排列。每一像素单元230包含显示红、绿、蓝三色的子像素单元220。液晶显示面板210的多个像素单元230分为第一像素单元组241和第二像素单元组242。举例来说,第一像素单元组241的像素单元230a、230c的薄膜晶体管的源极是电性连接于第一组数据线的数据线D1-D3,而第二像素单元组242的像素单元230b、230d的源极是电性连接于第二组数据线的数据线D4-D6。也就是说,像素单元构成的矩阵中每一列的像素单元属于同一像素单元组,相邻列的像素单元属于不同像素单元组。
当输出扫描脉冲以扫描第i帧画面时,对第一像素单元组241的像素单元输入显示正常图像的灰阶电压信号,对所述第二像素单元组242的像素单元输入黑态电压信号。当输出扫描脉冲以扫描第i+1帧画面时,对第一像素单元组241的像素单元输入黑态电压信号,对第二像素单元组242像素单元输入显示正常图像的灰阶电压信号。请注意,两个相邻的像素单元230a、230b或是230c、230d一直都是其中一个像素单元呈现黑色,另一个呈现正常图像的灰阶。由于人眼对于亮度较敏感,所以在视觉上人眼感知到正常图像的灰阶而非黑态电压对应的图像的灰阶。
类似于图3的像素单元130a、130b、130c、130d的运作原理,本发明第二实施例的液晶显示装置的刷新频率不变,而且在图像的不同灰阶转换至同一灰阶时实际显示图像灰阶的亮度差也较小。
请参阅图5,图5是本发明第三实施例的液晶显示面板310的示意图。以下实施例的图式中,每一子像素单元320不再画出薄膜晶体管和像素电极,而图中所绘示的每一子像素单元320连接到对应的扫描线G1-G2n和数据线D1-D3m是表示该子像素单元320的薄膜晶体管的栅极和源极连接到对应的扫描线G1-G2n和数据线D1-D3m。每一像素单元330包含显示红、绿、蓝三色的子像素单元320。多条数据线D1-D3m包括交替设置的第一组数据线D1-D3、…、D3m-5-D3m-3以及第二组数据线D4-D6、…、D3m-2-D3m,也就是说,第一组数据线是相邻于第二组数据线,第一组数据线与第二组数据线是交替排列。液晶显示面板310的多个像素单元330分为一第一像素单元组341和一第二像素单元组342。第一像素单元组341的像素单元330a的源极是电性连接于第一组数据线的数据线D1-D3且其栅极是电性连接于奇数行扫描线中的扫描线G1。第一像素单元组341的像素单元330c的源极是电性连接于第二组数据线的数据线D4-D6且栅极是电性连接于偶数行扫描线的扫描线G2。第二像素单元组342的像素单元330b的源极是电性连接于第一组数据线中的数据线D1-D3且栅极是电性连接于偶数行扫描线的扫描线G2,以及第二像素单元组342的像素单元330d的源极是电性连接于第二组数据线的数据线D4-D6且栅极是电性连接于奇数行扫描线中的扫描线G1。也就是说,像素单元矩阵中相邻的两个像素单元320分别属于第一像素单元组341和第二像素单元组342。
当输出扫描脉冲以扫描第i帧画面时,会对第一像素单元组341的像素单元输入显示正常图像的灰阶电压信号,对第二像素单元组342的像素单元输入黑态电压信号。当输出扫描脉冲以扫描第i+1帧画面时,对第一像素单元组341的像素单元输入黑态电压信号,对第二像素单元组342像素单元输入显示正常图像的灰阶电压信号。由于人眼对于亮度较敏感,所以在视觉上人眼感知到正常图像的灰阶而非黑态电压对应的图像的灰阶。
类似于第3图的像素单元130a、130b、130c、130d的运作原理,当图5的像素单元330a、330b显示图像的灰阶由白转灰,同时像素单元330c、330d显示图像的灰阶是由黑转灰时,此时实际显示图像的灰阶只会有大约4%的亮度差。也就是说,本实施例的液晶显示装置的刷新频率不变,而且在图像的不同灰阶转换至同一灰阶时实际显示图像灰阶的亮度差也较小。
本发明同时还提供一种基于上述液晶显示装置的驱动方法。该液晶显示装置的驱动方法包括以下步骤:
步骤一:在扫描第i帧画面时,数据驱动器通过数据线提供显示正常图像的灰阶电压信号至第一像素单元组中的像素单元,数据驱动器通过数据线提供特定的灰阶电压信号至第二像素单元组中的像素单元;
步骤二:在扫描第i + 1帧画面时,数据驱动器通过数据线提供特定的灰阶电压信号至第一像素单元组中的像素单元,数据驱动器通过数据线提供显示正常图像的灰阶电压信号至第二像素单元组中的像素单元;
步骤三:依次循环上述步骤一和上述步骤二,其中i为正整数。
相较于现有技术,本发明的液晶显示装置的上述驱动方法在不改变刷新频率的情况下,使液晶显示装置显示的图像由不同灰阶转换至同一灰阶时实际显示图像灰阶的亮度差较小,从而改善现有技术因液晶转动较慢而导致显示瑕疵的问题。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (15)

  1. 一种液晶显示装置,包括:
    液晶显示面板,包括:多条扫描线;多条数据线,与所述多条扫描线交错设置;多个呈矩阵式排列的像素单元,每一像素单元包括多个子像素单元,每一子像素单元均设置于所述多条扫描线与所述多条数据线交错的区域;
    扫描驱动器,用于提供扫描脉冲至所述多条扫描线;
    数据驱动器,用于提供灰阶电压信号至所述多条数据线;其特征在于,
    所述多个像素单元被分为第一像素单元组和第二像素单元组,所述第一像素单元组与所述第二像素单元组中的像素单元交替排列,所述像素单元矩阵中相邻的两个像素单元属于不同像素单元组,所述每一像素单元均具有第一显示模式和第二显示模式,所述第一显示模式是指所述数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述像素单元,所述第二显示模式是指所述数据驱动器通过数据线提供一黑态电压信号至所述像素单元,其中,所述第一像素单元组与所述第二像素单元组中的像素单元随着每一帧画面的切换交替处于所述第一显示模式和所述第二显示模式。
  2. 根据权利要求1所述的液晶显示装置,其特征在于:当扫描第i帧画面时,所述第一像素单元组与所述第二像素单元组中的一个像素单元组的所有像素单元均处于所述第一显示模式,另一像素单元组中的所有像素单元均处于所述第二显示模式;当扫描第i+1帧画面时,在所述第i帧时处于所述第一显示模式的像素单元转换为所述第二显示模式,在第i帧时处于所述第二显示模式的像素单元转换为所述第一显示模式,其中i为正整数。
  3. 根据权利要求1所述的液晶显示装置,其特征在于:每一像素单元至少包括红、绿、蓝三个子像素单元。
  4. 一种液晶显示装置,包括:
    液晶显示面板,包括:多条扫描线;多条数据线,与所述多条扫描线交错设置;多个呈矩阵式排列的像素单元,每一像素单元包括多个子像素单元,每一子像素单元均设置于所述多条扫描线与所述多条数据线交错的区域;
    扫描驱动器,用于提供扫描脉冲至所述多条扫描线;
    数据驱动器,用于提供灰阶电压信号至所述多条数据线;其特征在于,
    所述多个像素单元被分为第一像素单元组和第二像素单元组,所述第一像素单元组与所述第二像素单元组中的像素单元交替排列,所述每一像素单元均具有第一显示模式和第二显示模式,所述第一显示模式是指所述数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述像素单元,所述第二显示模式是指所述数据驱动器通过数据线提供一特定的灰阶电压信号至所述像素单元,其中,所述第一像素单元组与所述第二像素单元组中的像素单元随着每一帧画面的切换交替处于所述第一显示模式和所述第二显示模式。
  5. 根据权利要求4所述的液晶显示装置,其特征在于:所述特定的灰阶电压信号为黑态电压信号。
  6. 根据权利要求4所述的液晶显示装置,其特征在于:当扫描第i帧画面时,所述第一像素单元组与所述第二像素单元组中的一个像素单元组的所有像素单元均处于所述第一显示模式,另一像素单元组中的所有像素单元均处于所述第二显示模式;当扫描第i+1帧画面时,在所述第i帧时处于所述第一显示模式的像素单元转换为所述第二显示模式,在第i帧时处于所述第二显示模式的像素单元转换为所述第一显示模式,其中i为正整数。
  7. 根据权利要求4中所述的液晶显示装置,其特征在于:所述像素单元构成的矩阵中每一行的像素单元属于同一像素单元组,相邻行的像素单元属于不同像素单元组。
  8. 根据权利要求4中所述的液晶显示装置,其特征在于:所述像素单元构成的矩阵中每一列的像素单元属于同一像素单元组,相邻列的像素单元属于不同像素单元组。
  9. 根据权利要求4所述的液晶显示装置,其特征在于:每一像素单元至少包括红、绿、蓝三个子像素单元。
  10. 一种液晶显示装置的驱动方法,所述液晶显示装置包括:多个呈矩阵式排列的像素单元,每一像素单元包括多个子像素单元,所述像素单元被分为第一像素单元组和第二像素单元组,所述第一像素单元组与所述第二像素单元组中的像素单元交替排列,其特征在于:所述液晶显示装置的驱动方法包括以下步骤:
    步骤一:在扫描第i帧画面时,数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述第一像素单元组中的像素单元,数据驱动器通过数据线提供特定的灰阶电压信号至所述第二像素单元组中的像素单元;
    步骤二:在扫描第i + 1帧画面时,数据驱动器通过数据线提供特定的灰阶电压信号至所述第一像素单元组中的像素单元,数据驱动器通过数据线提供显示正常图像的灰阶电压信号至所述第二像素单元组中的像素单元;
    步骤三:依次循环所述步骤一和所述步骤二,其中i为正整数。
  11. 根据权利要求10所述的液晶显示装置的驱动方法,其特征在于:所述像素单元构成的矩阵中每一行的像素单元属于同一像素单元组,相邻行的像素单元属于不同像素单元组。
  12. 根据权利要求10所述的液晶显示装置的驱动方法,其特征在于:所述像素单元构成的矩阵中每一列的像素单元属于同一像素单元组,相邻列的像素单元属于不同像素单元组。
  13. 根据权利要求10所述的液晶显示装置的驱动方法,其特征在于:所述像素单元矩阵中相邻的两个像素单元属于不同像素单元组。
  14. 根据权利要求10所述的液晶显示装置的驱动方法,其特征在于:所述特定的灰阶电压信号为黑态电压信号。
  15. 根据权利要求10所述的液晶显示装置的驱动方法,其特征在于:每一像素单元至少包括红、绿、蓝三个子像素单元。
PCT/CN2011/081640 2011-10-25 2011-11-01 液晶显示装置及其驱动方法 WO2013060033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/379,796 US20130100172A1 (en) 2011-10-25 2011-11-01 Liquid crystal display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110327771 CN102385847B (zh) 2011-10-25 2011-10-25 液晶显示装置及其驱动方法
CN201110327771.8 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013060033A1 true WO2013060033A1 (zh) 2013-05-02

Family

ID=45825218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081640 WO2013060033A1 (zh) 2011-10-25 2011-11-01 液晶显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN102385847B (zh)
WO (1) WO2013060033A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077955B (zh) 2013-01-25 2016-03-30 京东方科技集团股份有限公司 一种有机发光二极管像素结构、显示装置
CN103985354B (zh) * 2014-05-15 2016-08-17 深圳市华星光电技术有限公司 一种阵列基板及显示面板
CN109360532B (zh) * 2018-11-20 2020-08-14 惠科股份有限公司 像素驱动方法、像素驱动装置和计算机设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650226A (zh) * 2002-07-05 2005-08-03 三星电子株式会社 液晶显示器及其驱动方法
KR20070068181A (ko) * 2005-12-26 2007-06-29 엘지.필립스 엘시디 주식회사 액정표시장치
CN101046944A (zh) * 2006-03-31 2007-10-03 Nec液晶技术株式会社 液晶显示装置、该液晶显示装置所使用的驱动控制电路以及驱动方法
CN101276115A (zh) * 2007-03-27 2008-10-01 精工爱普生株式会社 液晶装置、其驱动方法及电子设备
CN102207645A (zh) * 2006-08-30 2011-10-05 奇美电子股份有限公司 液晶显示面板的驱动方法与系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256291B (zh) * 2007-02-28 2011-06-29 群康科技(深圳)有限公司 液晶显示装置及其驱动方法
CN101285949B (zh) * 2007-04-13 2010-07-14 群康科技(深圳)有限公司 液晶显示装置驱动方法
CN101369408B (zh) * 2008-10-15 2010-08-11 上海广电光电子有限公司 液晶显示面板及其驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650226A (zh) * 2002-07-05 2005-08-03 三星电子株式会社 液晶显示器及其驱动方法
KR20070068181A (ko) * 2005-12-26 2007-06-29 엘지.필립스 엘시디 주식회사 액정표시장치
CN101046944A (zh) * 2006-03-31 2007-10-03 Nec液晶技术株式会社 液晶显示装置、该液晶显示装置所使用的驱动控制电路以及驱动方法
CN102207645A (zh) * 2006-08-30 2011-10-05 奇美电子股份有限公司 液晶显示面板的驱动方法与系统
CN101276115A (zh) * 2007-03-27 2008-10-01 精工爱普生株式会社 液晶装置、其驱动方法及电子设备

Also Published As

Publication number Publication date
CN102385847A (zh) 2012-03-21
CN102385847B (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
CN106531096B (zh) Rgbw四基色显示面板的驱动方法
TWI276038B (en) Display device and driving method thereof
CN107993629B (zh) 液晶显示装置的驱动方法
US20100253668A1 (en) Liquid crystal display, liquid crystal display driving method, and television receiver
US8164563B2 (en) Data multiplexer architecture for realizing dot inversion mode for use in a liquid crystal display device and associated driving method
TWI489437B (zh) 驅動模組、驅動方法及液晶顯示裝置
US8963912B2 (en) Display device and display device driving method
WO2010038535A1 (ja) 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
WO2020107578A1 (zh) 显示面板的驱动方法
WO2013053116A1 (zh) 液晶显示装置及其信号驱动方法
WO2021238868A1 (zh) 阵列基板及其驱动方法和显示装置
WO2017173869A1 (zh) 液晶显示面板驱动方法、时序控制器及液晶显示装置
US6310592B1 (en) Liquid crystal display having a dual bank data structure and a driving method thereof
KR20040085495A (ko) 액정표시장치의 도트반전구동방법
WO2013060033A1 (zh) 液晶显示装置及其驱动方法
KR20080002568A (ko) 액정 표시장치의 구동장치와 그의 구동방법
KR101570142B1 (ko) 액정표시장치 및 액정표시장치의 구동방법
CN113270076A (zh) 显示面板的驱动方法和显示装置
KR20140079089A (ko) 액정표시장치 및 그 구동방법
US20050078075A1 (en) Display apparatus, method and device of driving the same
US8334829B2 (en) LCD device with an improvement of MURA in pixel matrix and driving method for the same
US20190108804A1 (en) Liquid crystal display device and method of controlling the same
WO2023284006A1 (zh) 显示面板的驱动方法、显示面板及显示装置
KR101217511B1 (ko) 액정표시장치 및 이의 화상구현방법
US20130100172A1 (en) Liquid crystal display device and driving method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13379796

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874543

Country of ref document: EP

Kind code of ref document: A1