WO2013057835A1 - Thin film forming apparatus - Google Patents

Thin film forming apparatus Download PDF

Info

Publication number
WO2013057835A1
WO2013057835A1 PCT/JP2011/074318 JP2011074318W WO2013057835A1 WO 2013057835 A1 WO2013057835 A1 WO 2013057835A1 JP 2011074318 W JP2011074318 W JP 2011074318W WO 2013057835 A1 WO2013057835 A1 WO 2013057835A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
forming apparatus
film forming
gas
Prior art date
Application number
PCT/JP2011/074318
Other languages
French (fr)
Japanese (ja)
Inventor
健 三科
猿渡 哲也
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2011/074318 priority Critical patent/WO2013057835A1/en
Priority to TW101135387A priority patent/TWI494466B/en
Publication of WO2013057835A1 publication Critical patent/WO2013057835A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • a thin film forming apparatus for forming a thin film on a substrate, comprising: (a) a chamber in which the substrate is stored; (b) a substrate plate that is disposed in the chamber and places the substrate; (C) a high-frequency electrode disposed in the chamber and facing the substrate on the substrate plate; and (d) either a pretreatment gas containing hydrogen or a reactive gas containing a raw material gas for a thin film formed on the substrate.
  • the present invention it is possible to provide a thin film forming apparatus that performs film formation pretreatment for improving the conversion efficiency of a solar cell.
  • step S ⁇ b> 11 the substrate 100, which is a semiconductor silicon substrate targeted for film formation, is stored in the chamber 11.
  • a crystalline silicon substrate is used as a substrate for a crystalline silicon solar cell.
  • a grain boundary of polycrystalline silicon becomes a defect. Carriers are supplemented by this defect, and the conversion efficiency (hereinafter simply referred to as “conversion efficiency”) of the solar cell is lowered.
  • the thin film 110 made of a silicon nitride film on the substrate 100 monosilane, ammonia, or the like is used as a source gas, and nitrogen (N), hydrogen (H), argon (Ar), helium (as a carrier gas) He) and the like are used.
  • the film formation pretreatment conditions of the manufacturing method B are as follows: the pretreatment gas 121 is ammonia gas, the pressure of the pretreatment gas 121 in the chamber 11 is 100 Pa, the treatment time for exposing the substrate 100 to ammonia plasma is 15 seconds, and alternating current is used.
  • the power density of the power source 14 was 83 mW / cm 2 .
  • a groove 132 is formed so as to have an opening on the surface of the tooth portion of the high-frequency electrode 13, and the high-frequency electrode 13 functions as a hollow cathode electrode.
  • the groove 132 is formed through the tooth portion of the high-frequency electrode 13. Electron confinement occurs in the groove 132 due to the hollow cathode effect, and high-density plasma is stably generated in a form supplied from the groove 132.
  • the pretreatment gas 121 and the source gas are efficiently decomposed, and the film formation pretreatment and film formation processing for the plurality of substrates 100 can be performed in a short time.
  • the conversion efficiency is 16.26%, and the carrier lifetime of the substrate is 526 ⁇ sec.
  • the conversion efficiency is 16.44% and the carrier lifetime of the substrate is 6751 ⁇ sec. In other words, the conversion efficiency and the carrier lifetime of the substrate are improved by performing the film formation pretreatment shown in FIG.
  • the plasma can be stably formed by increasing the width of the groove 132.
  • the groove 132 preferably does not exceed 10 mm.
  • the width of the groove 132 is set to 2 mm to 10 mm, for example.
  • the diameter of the opening part of the ejection hole 131 is dependent also on the number of the ejection holes 131 formed in the high frequency electrode 13, it is generally 1 mm or less.
  • the pretreatment gas 121 and the reaction gas 122 are directly introduced into the chamber 11 from the gas supply mechanism 15 without passing the pretreatment gas 121 and the reaction gas 122 through the inside of the high-frequency electrode 13. May be.
  • the high-frequency electrode 13 having a groove 132 formed on the surface functions as a hollow cathode electrode. That is, electrons are confined by the hollow cathode effect in the groove 132 formed on the surface of the high-frequency electrode 13, and high-density plasma is stably generated.
  • the grooves 132 may be formed in a lattice shape or a stripe shape.
  • long cylindrical through holes having openings on the surface of the high-frequency electrode 13 may be arranged in a lattice pattern, and these openings may be connected by grooves 132.
  • the thin film forming apparatus 10 is an apparatus used for a semiconductor process for forming a thin film other than the plasma CVD apparatus, the passivation effect of the substrate 100 is obtained by exposing the substrate 100 to plasma containing the pretreatment gas 121. Can be increased. As a result, the carrier lifetime in the substrate 100 becomes longer and the conversion efficiency can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This thin film forming apparatus forms a thin film on a substrate. The thin film forming apparatus is provided with: a chamber having a substrate stored therein; a substrate plate, which is disposed in the chamber, and has the substrate placed thereon; a high frequency electrode, which is disposed in the chamber, and faces the substrate on the substrate plate; a gas supply mechanism, which supplies to the inside of the chamber, a pretreatment gas containing hydrogen, or a reaction gas containing a raw material gas of the thin film to be formed on the substrate; and an alternating current power supply, which supplies alternating current power to between the substrate plate and the high frequency electrode, and on an upper surface of the substrate in different steps in film forming process, excites plasma containing the pretreatment gas, or plasma containing the raw material gas.

Description

薄膜形成装置Thin film forming equipment
 本発明は、基板上に薄膜を形成する薄膜形成装置に関する。 The present invention relates to a thin film forming apparatus for forming a thin film on a substrate.
 半導体デバイスの製造工程において、高精度のプロセス制御が容易であるという利点から、成膜工程、エッチング工程、アッシング工程などにおいてプラズマ処理装置が用いられている。例えば、薄膜形成工程に使用される装置としてプラズマ化学気相成長(CVD)装置が知られている。プラズマCVD装置では、高周波電力などにより原料ガスがプラズマ化され、化学反応によって基板上に薄膜が形成される。 In the semiconductor device manufacturing process, a plasma processing apparatus is used in a film forming process, an etching process, an ashing process, and the like because of high-precision process control. For example, a plasma chemical vapor deposition (CVD) apparatus is known as an apparatus used in a thin film forming process. In the plasma CVD apparatus, the source gas is turned into plasma by high-frequency power or the like, and a thin film is formed on the substrate by a chemical reaction.
 プラズマCVD装置のチャンバー内の残留ガスを除去するためなどに、成膜工程の前処理(以下において、「成膜前処理」という。)としてプラズマ処理を行う方法が提案されている(例えば、特許文献1参照。)。 In order to remove the residual gas in the chamber of the plasma CVD apparatus, a method of performing a plasma treatment as a pretreatment of the film formation process (hereinafter referred to as “film formation pretreatment”) has been proposed (for example, a patent). Reference 1).
特開平6-45255号公報JP-A-6-45255
 結晶シリコン系太陽電池の反射防止膜及びパッシベーション膜には、一般的に窒化シリコン膜が使用されている。太陽電池の性能を示す変換効率は、窒化シリコン膜の膜質で変動する。 Generally, a silicon nitride film is used as an antireflection film and a passivation film of a crystalline silicon solar cell. The conversion efficiency indicating the performance of the solar cell varies depending on the film quality of the silicon nitride film.
 太陽電池についての高変換効率、低コストの要求は高く、変換効率を更に高くする必要がある。太陽電池の構造を変更し、薄膜形成装置を使用する工程以外に複雑な工程を追加すれば高効率化が図れるが、コストアップに繋がる。このため、薄膜形成装置を使用する成膜工程における対策によって太陽電池の変換効率を向上させることが望まれる。 Demand for high conversion efficiency and low cost for solar cells is high, and it is necessary to further increase the conversion efficiency. If the structure of the solar cell is changed and a complicated process is added in addition to the process of using the thin film forming apparatus, the efficiency can be improved, but the cost is increased. For this reason, it is desired to improve the conversion efficiency of the solar cell by measures in the film forming process using the thin film forming apparatus.
 これまで、太陽電池の反射防止膜やパッシベーション膜の形成における成膜前処理については、高効率化のための十分な検討が行われてこなかった。本発明は、太陽電池の変換効率を向上させる成膜前処理を行う薄膜形成装置を提供することを目的とする。 Until now, sufficient studies have not been made to increase the efficiency of the film formation pretreatment in the formation of the antireflection film and passivation film of the solar cell. An object of this invention is to provide the thin film formation apparatus which performs the film-forming pretreatment which improves the conversion efficiency of a solar cell.
 本発明の一態様によれば、基板上に薄膜を形成する薄膜形成装置であって、(イ)基板が格納されるチャンバーと、(ロ)チャンバー内に配置され、基板を載せる基板プレートと、(ハ)チャンバー内に配置され、基板プレート上の基板と対向する高周波電極と、(ニ)水素を含む前処理ガス、又は基板上に形成する薄膜の原料ガスを含む反応ガスのいずれかをチャンバー内に供給するガス供給機構と、(ホ)基板プレートと高周波電極間に交流電力を供給し、基板の上面において前処理ガスを含むプラズマ、又は原料ガスを含むプラズマのいずれかを成膜工程の異なる段階でそれぞれ励起する交流電源とを備える薄膜形成装置が提供される。 According to one aspect of the present invention, there is provided a thin film forming apparatus for forming a thin film on a substrate, comprising: (a) a chamber in which the substrate is stored; (b) a substrate plate that is disposed in the chamber and places the substrate; (C) a high-frequency electrode disposed in the chamber and facing the substrate on the substrate plate; and (d) either a pretreatment gas containing hydrogen or a reactive gas containing a raw material gas for a thin film formed on the substrate. (E) supplying AC power between the substrate plate and the high-frequency electrode, and forming either the plasma containing the pretreatment gas or the plasma containing the source gas on the upper surface of the substrate in the film forming step There is provided a thin film forming apparatus including an AC power source that is excited at different stages.
 本発明によれば、太陽電池の変換効率を向上させる成膜前処理を行う薄膜形成装置を提供できる。 According to the present invention, it is possible to provide a thin film forming apparatus that performs film formation pretreatment for improving the conversion efficiency of a solar cell.
本発明の第1の実施形態に係る薄膜形成装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thin film forming apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る薄膜形成装置を用いた薄膜形成方法を説明するためのフローチャートである。It is a flowchart for demonstrating the thin film formation method using the thin film forming apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る薄膜形成装置を用いた成膜前処理を説明するための模式図である。It is a schematic diagram for demonstrating the film-forming pretreatment using the thin film forming apparatus which concerns on the 1st Embodiment of this invention. 供給される電力の周波数と基板表面に衝突するイオン数との関係を示すグラフである。It is a graph which shows the relationship between the frequency of the electric power supplied, and the number of ions which collide with the substrate surface. 本発明の第1の実施形態に係る薄膜形成装置により形成される薄膜と、比較例により形成される薄膜との比較を示す表である。It is a table | surface which shows the comparison with the thin film formed by the thin film forming apparatus which concerns on the 1st Embodiment of this invention, and the thin film formed by a comparative example. 変換効率を測定するためのサンプルの構造を示す模式図である。It is a schematic diagram which shows the structure of the sample for measuring conversion efficiency. キャリアライフタイムを測定するためのサンプルの構造を示す模式図である。It is a schematic diagram which shows the structure of the sample for measuring carrier lifetime. 本発明の第2の実施形態に係る薄膜形成装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thin film forming apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る薄膜形成装置により形成される薄膜と、比較例により形成される薄膜との比較を示す表である。It is a table | surface which shows the comparison with the thin film formed by the thin film forming apparatus which concerns on the 2nd Embodiment of this invention, and the thin film formed by a comparative example. 本発明の第3の実施形態に係る薄膜形成装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thin film forming apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る薄膜形成装置の高周波電源の表面に形成される溝の例を示す模式図である。It is a schematic diagram which shows the example of the groove | channel formed in the surface of the high frequency power supply of the thin film forming apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態の変形例に係る薄膜形成装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thin film forming apparatus which concerns on the modification of the 3rd Embodiment of this invention.
 図面を参照して、本発明の第1乃至第3の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す第1乃至第3の実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 The first to third embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Further, the following first to third embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the structure of component parts, The arrangement is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.
 (第1の実施形態)
 本発明の第1の実施形態に係る薄膜形成装置10は、図1に示すように、基板100上に薄膜110を形成する薄膜形成装置である。図1に示した薄膜形成装置10は、基板100が格納されるチャンバー11と、チャンバー11内に配置され、基板100を載せる基板プレート12と、チャンバー11内に配置され、基板プレート12上の基板100と対向する高周波電極13と、水素を含む前処理ガス121、又は基板100上に形成する薄膜110の原料ガスを含む反応ガス122のいずれかをチャンバー11内に供給するガス供給機構15と、基板プレート12と高周波電極13間に交流電力を供給し、基板100の上面において前処理ガス121を含むプラズマ、又は原料ガスを含むプラズマのいずれかを成膜工程の異なる段階でそれぞれ励起する交流電源14とを備える。
(First embodiment)
A thin film forming apparatus 10 according to the first embodiment of the present invention is a thin film forming apparatus that forms a thin film 110 on a substrate 100 as shown in FIG. A thin film forming apparatus 10 illustrated in FIG. 1 includes a chamber 11 in which a substrate 100 is stored, a substrate plate 12 that is disposed in the chamber 11 and on which the substrate 100 is placed, and a substrate on the substrate plate 12 that is disposed in the chamber 11. A gas supply mechanism 15 for supplying one of a high-frequency electrode 13 facing 100, a pretreatment gas 121 containing hydrogen, or a reaction gas 122 containing a raw material gas for a thin film 110 formed on the substrate 100 into the chamber 11; An AC power source that supplies AC power between the substrate plate 12 and the high-frequency electrode 13 and excites either the plasma containing the pretreatment gas 121 or the plasma containing the source gas on the upper surface of the substrate 100 at different stages of the film forming process. 14.
 図1に示したガス供給源18は、前処理ガス121を格納する前処理ガス源181と、反応ガス122を格納する反応ガス源182を有する。ただし、反応ガス源182が複数の原料ガスを含む場合に、それらの原料ガスのいずれかを前処理ガスとして使用できる場合には、ガス供給源18が前処理ガス源181を含まずに、反応ガス源182源のみを有する構造にしてもよい。ガス供給源18から供給された前処理ガス121や反応ガス122が、ガス供給機構15を介してチャンバー11内に供給される。ガス供給機構15には流量調節計が備えられ、一定量の前処理ガス121又は反応ガス122をチャンバー11内に供給する。 The gas supply source 18 shown in FIG. 1 includes a pretreatment gas source 181 that stores the pretreatment gas 121 and a reaction gas source 182 that stores the reaction gas 122. However, when the reaction gas source 182 includes a plurality of source gases, if any of those source gases can be used as the pretreatment gas, the gas supply source 18 does not include the pretreatment gas source 181 and the reaction is performed. A structure having only the gas source 182 may be used. The pretreatment gas 121 and the reaction gas 122 supplied from the gas supply source 18 are supplied into the chamber 11 through the gas supply mechanism 15. The gas supply mechanism 15 is provided with a flow rate controller, and supplies a certain amount of pretreatment gas 121 or reaction gas 122 into the chamber 11.
 薄膜形成装置10は、チャンバー11内のガスを外部に排気するガス排気機構16とを更に備える。ガス排気機構16にはガス調圧弁が備えられ、チャンバー11内の圧力を一定に保つ。 The thin film forming apparatus 10 further includes a gas exhaust mechanism 16 that exhausts the gas in the chamber 11 to the outside. The gas exhaust mechanism 16 is provided with a gas pressure regulating valve to keep the pressure in the chamber 11 constant.
 図2を参照して、図1に示した薄膜形成装置10によって薄膜を形成する方法の例を以下に説明する。 Referring to FIG. 2, an example of a method for forming a thin film by the thin film forming apparatus 10 shown in FIG. 1 will be described below.
 ステップS11において、成膜処理対象の半導体シリコン基板である基板100をチャンバー11内に格納する。 In step S <b> 11, the substrate 100, which is a semiconductor silicon substrate targeted for film formation, is stored in the chamber 11.
 ステップS12において、ガス供給機構15によってチャンバー11内に前処理ガス121を導入する。前処理ガス121は、アンモニア(NH3)ガス、アンモニアと窒素(N2)の混合ガスなどが好適である。 In step S <b> 12, the pretreatment gas 121 is introduced into the chamber 11 by the gas supply mechanism 15. The pretreatment gas 121 is preferably ammonia (NH 3 ) gas, a mixed gas of ammonia and nitrogen (N 2 ), or the like.
 ステップS13において、ガス排気機構16によってチャンバー11内を減圧して、チャンバー11内の前処理ガス121の圧力を所定の値に設定する。 In step S13, the inside of the chamber 11 is depressurized by the gas exhaust mechanism 16, and the pressure of the pretreatment gas 121 in the chamber 11 is set to a predetermined value.
 ステップS14において交流電源14をオンし、マッチングボックス141を介して所定の交流電力を基板プレート12と高周波電極13間に供給する。これにより、チャンバー11内の前処理ガス121がプラズマ化され、成膜前処理が開始される。つまり、成膜前の基板100の表面がアンモニアの高周波プラズマ(以下において、「アンモニアプラズマ」という。)に曝され、図3に示すように、アンモニアプラズマ中の水素ラジカルが基板100の未結合手(ダングリングボンド)と結合する。 In step S 14, the AC power supply 14 is turned on, and predetermined AC power is supplied between the substrate plate 12 and the high-frequency electrode 13 through the matching box 141. Thereby, the pretreatment gas 121 in the chamber 11 is turned into plasma, and the film formation pretreatment is started. That is, the surface of the substrate 100 before film formation is exposed to high frequency plasma of ammonia (hereinafter referred to as “ammonia plasma”), and the hydrogen radicals in the ammonia plasma are not bonded to the substrate 100 as shown in FIG. Bond with (dangling bond).
 所定の期間、成膜前処理を行った後、ステップS15において交流電源14をオフし、成膜前処理を終了する。その後、ステップS16において、ガス排気機構16によって前処理ガス121を排気し、チャンバー11内を高真空にする。 After performing the pre-deposition process for a predetermined period, the AC power supply 14 is turned off in step S15, and the pre-deposition process is terminated. Thereafter, in step S16, the pretreatment gas 121 is exhausted by the gas exhaust mechanism 16, and the chamber 11 is evacuated.
 次いで、ステップS17において、ガス供給機構15によって反応ガス122をチャンバー11内に導入する。そして、ステップS18において、ガス排気機構16によってチャンバー11内が減圧され、チャンバー11内の反応ガス122が所定のガス圧に調整される。 Next, in step S 17, the reaction gas 122 is introduced into the chamber 11 by the gas supply mechanism 15. In step S18, the inside of the chamber 11 is depressurized by the gas exhaust mechanism 16, and the reaction gas 122 in the chamber 11 is adjusted to a predetermined gas pressure.
 その後、ステップS19において交流電源14をオンし、マッチングボックス141を介して、交流電源14によって所定の交流電力が基板プレート12と高周波電極13間に供給される。これにより、チャンバー11内の原料ガスを含む反応ガス122がプラズマ化される。形成されたプラズマに基板100を曝すことにより、プラズマ中の励起種を基板100の表面で反応させ、基板100の表面に薄膜110が形成される。 Thereafter, in step S 19, the AC power supply 14 is turned on, and predetermined AC power is supplied between the substrate plate 12 and the high-frequency electrode 13 by the AC power supply 14 via the matching box 141. Thereby, the reaction gas 122 containing the source gas in the chamber 11 is turned into plasma. By exposing the substrate 100 to the formed plasma, excited species in the plasma are reacted on the surface of the substrate 100, and the thin film 110 is formed on the surface of the substrate 100.
 薄膜110を所定の膜厚まで成長させた後、ステップS20において交流電源14をオフし、成膜処理を終了する。その後、ステップS21において、ガス排気機構16によって反応ガス122を排気し、チャンバー11内を高真空にする。以上により、基板100上に薄膜110が形成される。 After growing the thin film 110 to a predetermined thickness, the AC power supply 14 is turned off in step S20, and the film forming process is terminated. Thereafter, in step S21, the reaction gas 122 is exhausted by the gas exhaust mechanism 16, and the chamber 11 is evacuated. Thus, the thin film 110 is formed on the substrate 100.
 上記では、ステップS16において前処理ガス121をチャンバー11から排気する例を説明した。しかし、反応ガス122に含まれる原料ガスが前処理ガス121を含む場合には、前処理ガス121をチャンバー11から排気するステップS16を省略してもよい。 In the above description, the example in which the pretreatment gas 121 is exhausted from the chamber 11 in step S16 has been described. However, when the source gas contained in the reaction gas 122 includes the pretreatment gas 121, step S16 of exhausting the pretreatment gas 121 from the chamber 11 may be omitted.
 例えば前処理ガス121にアンモニアガスを使用する場合に、原料ガスにアンモニアガスが含まれる場合には、上記のステップS16を省略できる。また、ガス供給源18を反応ガス源182のみで構成できる。 For example, when ammonia gas is used for the pretreatment gas 121, the above step S16 can be omitted if the source gas contains ammonia gas. Further, the gas supply source 18 can be constituted by only the reactive gas source 182.
 一般に、結晶シリコン系太陽電池の基板多として結晶シリコン基板が使用される。多結晶シリコン基板では、多結晶シリコンの粒界が欠陥となる。この欠陥にキャリアが補足され、太陽電池の変換効率(以下において、単に「変換効率」という。)が低下する。 Generally, a crystalline silicon substrate is used as a substrate for a crystalline silicon solar cell. In a polycrystalline silicon substrate, a grain boundary of polycrystalline silicon becomes a defect. Carriers are supplemented by this defect, and the conversion efficiency (hereinafter simply referred to as “conversion efficiency”) of the solar cell is lowered.
 しかし、上記に説明した薄膜形成方法によれば、成膜前処理によってアンモニアプラズマ中の水素ラジカルが基板100の未結合手と結合する。これにより、欠陥によるキャリアの補足が減少し、パッシベーション効果が大きなる。その結果、基板100におけるキャリアライフタイムが長くなる。したがって、上記方法を太陽電池の反射防止膜やパッシベーション膜の形成に適用することにより、変換効率が向上する。 However, according to the thin film formation method described above, the hydrogen radicals in the ammonia plasma are combined with the dangling bonds of the substrate 100 by the film formation pretreatment. This reduces carrier supplementation due to defects and increases the passivation effect. As a result, the carrier lifetime in the substrate 100 is increased. Therefore, conversion efficiency is improved by applying the above method to the formation of an antireflection film or a passivation film of a solar cell.
 図4に、電極間に供給される電力の周波数と基板表面に衝突するイオン数との関係を示す(Akihisa Matsuda他、「Influence of Power-Source Frequency on the Properties of GD a-Si:H」、Japanese Journal of Applied Physics、Vol.23、N0.8、August, 1984、L568-L569)。図4に示されるように、周波数が10kHz~500kHzの場合に基板に衝突するイオン数が多く、周波数が1MHz以上の場合に基板に衝突するイオン数が少ない。 Figure 4 shows the relationship between the frequency of power supplied between the electrodes and the number of ions colliding with the substrate surface (Akihisa Matsuda et al., “Influence of Power-Source Frequency on the Properties of GD a-Si: H”, Japanese Journal of Applied Physics, Vol.23, N0.8, August, 1984, L568-L569). As shown in FIG. 4, when the frequency is 10 kHz to 500 kHz, the number of ions that collide with the substrate is large, and when the frequency is 1 MHz or more, the number of ions that collide with the substrate is small.
 つまり、交流電源14によって基板プレート12と高周波電極13間に供給される交流電力の周波数が1MHzより低い場合に基板100に衝突する水素イオンの数が多く、パッシベーション効果が大きい。したがって、交流電力の周波数を低めに設定することが好ましい。このため、交流電源14によって供給される交流電力の周波数は、例えば40KHz~450KHz程度であることが好ましい。例えば、基板プレート12と高周波電極13間に周波数が250KHzの交流電力が供給される。 That is, when the frequency of the AC power supplied between the substrate plate 12 and the high-frequency electrode 13 by the AC power source 14 is lower than 1 MHz, the number of hydrogen ions that collide with the substrate 100 is large, and the passivation effect is large. Therefore, it is preferable to set the frequency of the AC power to be low. For this reason, the frequency of the AC power supplied from the AC power supply 14 is preferably about 40 KHz to 450 KHz, for example. For example, AC power having a frequency of 250 KHz is supplied between the substrate plate 12 and the high-frequency electrode 13.
 結晶シリコン系太陽電池の製造においては、基板100として、p型シリコン基板上に表面拡散濃度が1×1018~1×1022のn型半導体層を形成した基板、或いは、n型シリコン基板上に表面拡散濃度が1×1018~1×1022のp型半導体層を形成した基板などが採用可能である。また、太陽電池の反射防止膜とする場合には、薄膜110は、屈折率が1.8~3.0、膜厚が50~150nm程度の窒化シリコン(SiN)膜などである。 In the production of a crystalline silicon solar cell, the substrate 100 is a substrate in which an n-type semiconductor layer having a surface diffusion concentration of 1 × 10 18 to 1 × 10 22 is formed on a p-type silicon substrate, or an n-type silicon substrate. Further, a substrate on which a p-type semiconductor layer having a surface diffusion concentration of 1 × 10 18 to 1 × 10 22 is formed can be used. When the antireflection film of the solar cell is used, the thin film 110 is a silicon nitride (SiN) film having a refractive index of 1.8 to 3.0 and a film thickness of about 50 to 150 nm.
 基板100上に窒化シリコン膜からなる薄膜110を形成するためには、原料ガスにはモノシラン、アンモニアなどが使用され、キャリアガスとして窒素(N)、水素(H)、アルゴン(Ar)、ヘリウム(He)などが使用される。 In order to form the thin film 110 made of a silicon nitride film on the substrate 100, monosilane, ammonia, or the like is used as a source gas, and nitrogen (N), hydrogen (H), argon (Ar), helium (as a carrier gas) He) and the like are used.
 なお、チャンバー11内で原料ガスのプラズマが励起された状態において、基板100を250℃~550℃に設定することが、高い変換効率を実現する点で好ましい。上記基板温度において、15.6%~16%以上の高い変換効率が得られている。 Note that it is preferable to set the substrate 100 to 250 ° C. to 550 ° C. in the state where the plasma of the source gas is excited in the chamber 11 in terms of realizing high conversion efficiency. At the substrate temperature, a high conversion efficiency of 15.6% to 16% or more is obtained.
 図1に示した薄膜形成装置10では、基板プレート12に内蔵されたヒータ17によって、基板100の温度を任意に設定することができる。上記のように、基板100の温度を250℃~550℃に設定することにより、高い変換効率が得られる。更に、基板100の温度を400℃~450℃にすることがより好ましい。 In the thin film forming apparatus 10 shown in FIG. 1, the temperature of the substrate 100 can be arbitrarily set by the heater 17 built in the substrate plate 12. As described above, high conversion efficiency can be obtained by setting the temperature of the substrate 100 to 250 ° C. to 550 ° C. Further, it is more preferable that the temperature of the substrate 100 is 400 ° C. to 450 ° C.
 図5に、太陽電池の変換効率と成膜後の基板100のキャリアライフタイムについて、薄膜形成装置10を用いて成膜前処理を行った場合と成膜前処理を行わなかった比較例の場合の比較結果を示す。図5において、比較例の製造方法Aは成膜前処理を行わなかった場合、即ち、図2に示したフローチャートのステップS12~ステップS16を行わなず、ステップS17~ステップS20によって薄膜110を形成する方法である。一方、成膜前処理を行う製造方法Bは、図2に示したフローチャートに従った製造方法である。 FIG. 5 shows the conversion efficiency of the solar cell and the carrier lifetime of the substrate 100 after film formation when the film formation pretreatment is performed using the thin film forming apparatus 10 and when the film formation pretreatment is not performed. The comparison result of is shown. In FIG. 5, in the manufacturing method A of the comparative example, when the pre-deposition process is not performed, that is, steps S12 to S16 of the flowchart shown in FIG. 2 are not performed, the thin film 110 is formed by steps S17 to S20. It is a method to do. On the other hand, the manufacturing method B for performing the pre-deposition treatment is a manufacturing method according to the flowchart shown in FIG.
 図5に示した変換効率を測定するために、結晶シリコン系太陽電池の反射防止膜として窒化シリコン膜を形成したサンプルを作成した。つまり、多結晶シリコン基板である基板100上に、窒化シリコン膜である薄膜110を形成した。図6に、作成したサンプルの具体的な構成例を示す。p型の多結晶シリコン基板51の表面にリン(P)を拡散してn+拡散領域を形成し、n+拡散領域上に窒化シリコン(SiN)膜52が配置されている。窒化シリコン膜52上に銀(Ag)電極53が配置され、多結晶シリコン基板51の裏面にアルミニウム(Al)電極54が配置されている。窒化シリコン膜52の屈折率は2.0~2.15程度であり、膜厚は75~90nm程度である。変換効率は、図6に示したサンプルに光を照射し、電流電圧測定を行って取得した。 In order to measure the conversion efficiency shown in FIG. 5, a sample in which a silicon nitride film was formed as an antireflection film of a crystalline silicon solar cell was prepared. That is, a thin film 110 that is a silicon nitride film is formed over the substrate 100 that is a polycrystalline silicon substrate. FIG. 6 shows a specific configuration example of the created sample. by diffusing phosphorus (P) on the surface of the p-type polycrystalline silicon substrate 51 to form an n + diffusion region, n + diffusion regions on a silicon nitride (SiN) film 52 is disposed. A silver (Ag) electrode 53 is disposed on the silicon nitride film 52, and an aluminum (Al) electrode 54 is disposed on the back surface of the polycrystalline silicon substrate 51. The refractive index of the silicon nitride film 52 is about 2.0 to 2.15, and the film thickness is about 75 to 90 nm. The conversion efficiency was obtained by irradiating the sample shown in FIG. 6 with light and measuring current and voltage.
 また、成膜後の基板100のキャリアライフタイムを測定するサンプルとして、図7に示すようにn型の単結晶シリコン基板61の両面に太陽電池の反射防止膜と同様に窒化シリコン膜62、63を形成したサンプルを用意した。キャリアライフタイムは、レーザが照射されたサンプルに発生するキャリアの量を測定するμ-PCD法により測定した。 Further, as a sample for measuring the carrier lifetime of the substrate 100 after film formation, silicon nitride films 62 and 63 are formed on both surfaces of an n-type single crystal silicon substrate 61 as shown in FIG. The sample which formed was prepared. The carrier lifetime was measured by the μ-PCD method for measuring the amount of carriers generated in the sample irradiated with the laser.
 図5に示すように、成膜前処理を行わない製造方法Aでは、変換効率が15.09%、基板のキャリアライフタイムが2475μ秒である。これに対し、成膜前処理を行った製造方法Bでは、変換効率が15.14%、基板のキャリアライフタイムが2808μ秒である。つまり、図2に示した成膜前処理を行うことによって、変換効率及び基板のキャリアライフタイムが向上することが確認された。 As shown in FIG. 5, in the manufacturing method A in which the film formation pretreatment is not performed, the conversion efficiency is 15.09%, and the carrier lifetime of the substrate is 2475 μsec. On the other hand, in the manufacturing method B in which the film formation pretreatment is performed, the conversion efficiency is 15.14% and the carrier lifetime of the substrate is 2808 μsec. That is, it was confirmed that the conversion efficiency and the carrier lifetime of the substrate are improved by performing the pre-deposition treatment shown in FIG.
 なお、製造方法Bの成膜前処理の条件は、前処理ガス121をアンモニアガスとし、チャンバー11内の前処理ガス121の圧力を100Pa、基板100をアンモニアプラズマに曝す処理時間を15秒、交流電源14の電力密度を83mW/cm2とした。 Note that the film formation pretreatment conditions of the manufacturing method B are as follows: the pretreatment gas 121 is ammonia gas, the pressure of the pretreatment gas 121 in the chamber 11 is 100 Pa, the treatment time for exposing the substrate 100 to ammonia plasma is 15 seconds, and alternating current is used. The power density of the power source 14 was 83 mW / cm 2 .
 以上に説明したように、本発明の第1の実施形態に係る薄膜形成装置10では、成膜処理を行う前に、基板100を水素を含むプラズマに曝すことによって基板100のパッシベーション効果が高まる。その結果、薄膜形成装置10を用いた成膜方法によれば、基板100中のキャリアライフタイムが長くなり、太陽電池の変換効率を向上させることができる。 As described above, in the thin film forming apparatus 10 according to the first embodiment of the present invention, the passivation effect of the substrate 100 is enhanced by exposing the substrate 100 to plasma containing hydrogen before performing the film forming process. As a result, according to the film forming method using the thin film forming apparatus 10, the carrier lifetime in the substrate 100 becomes long, and the conversion efficiency of the solar cell can be improved.
 (第2の実施形態)
 本発明の第2の実施形態に係る薄膜形成装置10では、図8に示すように、基板100が垂直に配置される。図8に示した薄膜形成装置10では、基板プレート12及び高周波電極13は、互いに紙面に向かって上下方向にそれぞれ延伸する複数の歯部分を有する櫛型形状をなし、基板プレート12と高周波電極13の櫛の歯部分が交差指状に配置される。基板100は、基板プレート12の高周波電極13に対向する複数の歯部分にそれぞれ搭載されるため、一度に多数の基板100を処理することができる。
(Second Embodiment)
In the thin film forming apparatus 10 according to the second embodiment of the present invention, the substrate 100 is arranged vertically as shown in FIG. In the thin film forming apparatus 10 shown in FIG. 8, the substrate plate 12 and the high-frequency electrode 13 have a comb shape having a plurality of tooth portions respectively extending in the vertical direction toward the paper surface. The comb teeth are arranged in the shape of cross fingers. Since the substrate 100 is mounted on each of a plurality of tooth portions facing the high-frequency electrode 13 of the substrate plate 12, a large number of substrates 100 can be processed at a time.
 高周波電極13の歯部分の表面に開口部を有するように、溝132が形成されており、高周波電極13はホローカソード電極として機能する。図8に示した例では、溝132が高周波電極13の歯部分を貫通して形成されている。溝132においてホローカソード効果による電子の閉じ込めが起こり、溝132から供給される形態で高密度プラズマが安定に生成される。その結果、前処理ガス121や原料ガスが効率よく分解され、複数の基板100に対する成膜前処理及び成膜処理を短時間で行うことが可能である。 A groove 132 is formed so as to have an opening on the surface of the tooth portion of the high-frequency electrode 13, and the high-frequency electrode 13 functions as a hollow cathode electrode. In the example shown in FIG. 8, the groove 132 is formed through the tooth portion of the high-frequency electrode 13. Electron confinement occurs in the groove 132 due to the hollow cathode effect, and high-density plasma is stably generated in a form supplied from the groove 132. As a result, the pretreatment gas 121 and the source gas are efficiently decomposed, and the film formation pretreatment and film formation processing for the plurality of substrates 100 can be performed in a short time.
 図9に、太陽電池の変換効率と成膜後の基板100のキャリアライフタイムについて、図8に示した薄膜形成装置10を用いて成膜前処理を行った場合と成膜前処理を行わなかった比較例の場合の比較結果を示す。図9において、比較例の製造方法Aは成膜前処理を行わなかった場合、即ち、図2に示したフローチャートのステップS12~ステップS16を行わず、ステップS17~ステップS20によって薄膜110を形成する方法である。一方、成膜前処理を行う製造方法Bは、図2に示したフローチャートに従った製造方法である。 In FIG. 9, regarding the conversion efficiency of the solar cell and the carrier lifetime of the substrate 100 after film formation, when the film formation pretreatment is performed using the thin film forming apparatus 10 illustrated in FIG. 8, the film formation pretreatment is not performed. The comparison result in the case of the comparative example is shown. In FIG. 9, the manufacturing method A of the comparative example does not perform the film formation pretreatment, that is, does not perform steps S12 to S16 of the flowchart shown in FIG. 2, but forms the thin film 110 by steps S17 to S20. Is the method. On the other hand, the manufacturing method B for performing the pre-deposition treatment is a manufacturing method according to the flowchart shown in FIG.
 なお、図5に示した比較の場合と同様に、結晶シリコン系太陽電池の反射防止膜として窒化シリコン膜を形成して、変換効率を測定するサンプルを作成した(図6を参照。)。そして、成膜後の基板100のキャリアライフタイムを測定するサンプルとして、単結晶シリコン基板の両面に太陽電池の反射防止膜と同様に窒化シリコン膜を形成したサンプルを用意した(図7を参照。)。 As in the case of the comparison shown in FIG. 5, a silicon nitride film was formed as an antireflection film of a crystalline silicon solar cell, and a sample for measuring conversion efficiency was created (see FIG. 6). As a sample for measuring the carrier lifetime of the substrate 100 after film formation, a sample was prepared in which a silicon nitride film was formed on both surfaces of a single crystal silicon substrate in the same manner as the antireflection film of the solar cell (see FIG. 7). ).
 成膜前処理の条件は、前処理ガス121をアンモニアガスとし、チャンバー11内の前処理ガス121の圧力を67Pa、基板100をアンモニアプラズマに曝す処理時間を5秒、交流電源14の電力密度を400mW/cm2とした。高周波電極13にホローカソード電極を採用したことによって、図1に示した薄膜形成装置10を使用する場合に比べて、前処理ガス121の圧力を低下させ、電力密度を増大させた。 The conditions for the film formation pretreatment are as follows: the pretreatment gas 121 is ammonia gas, the pressure of the pretreatment gas 121 in the chamber 11 is 67 Pa, the treatment time for exposing the substrate 100 to ammonia plasma is 5 seconds, and the power density of the AC power supply 14 is It was set to 400 mW / cm 2 . By adopting a hollow cathode electrode as the high-frequency electrode 13, the pressure of the pretreatment gas 121 is reduced and the power density is increased as compared with the case where the thin film forming apparatus 10 shown in FIG. 1 is used.
 図9に示すように、成膜前処理を行わない製造方法Aでは、変換効率が16.26%、基板のキャリアライフタイムが526μ秒である。これに対し、成膜前処理を行う製造方法Bでは、変換効率が16.44%、基板のキャリアライフタイムが6751μ秒である。つまり、図2に示した成膜前処理を行うことによって、変換効率及び基板のキャリアライフタイムが向上する。 As shown in FIG. 9, in the manufacturing method A in which the film formation pretreatment is not performed, the conversion efficiency is 16.26%, and the carrier lifetime of the substrate is 526 μsec. On the other hand, in the manufacturing method B in which the film formation pretreatment is performed, the conversion efficiency is 16.44% and the carrier lifetime of the substrate is 6751 μsec. In other words, the conversion efficiency and the carrier lifetime of the substrate are improved by performing the film formation pretreatment shown in FIG.
 図5と図9との比較から、ホローカソード放電を利用した薄膜形成装置の方が、ホローカソード放電を利用しない薄膜形成装置よりも、前処理ガス121を用いた成膜前処理の効果が大きいといえる。他は、第1の実施形態と実質的に同様であり、重複した記載を省略する。 From the comparison between FIG. 5 and FIG. 9, the thin film forming apparatus using the hollow cathode discharge has a greater effect of the film formation pretreatment using the pretreatment gas 121 than the thin film forming apparatus not using the hollow cathode discharge. It can be said. Others are substantially the same as those in the first embodiment, and redundant description is omitted.
 (第3の実施形態)
 本発明の第3の実施形態に係る薄膜形成装置10は、図10に示すように、基板プレート12上の基板100と対向する高周波電極13の表面に、溝132が形成されている。また、高周波電極13に形成された溝132の底部には、複数の噴出孔131の開口部が形成されている。その他の構成については、図1に示す第1の実施形態と同様である。
(Third embodiment)
In the thin film forming apparatus 10 according to the third embodiment of the present invention, as shown in FIG. 10, grooves 132 are formed on the surface of the high-frequency electrode 13 facing the substrate 100 on the substrate plate 12. In addition, openings of a plurality of ejection holes 131 are formed at the bottom of the groove 132 formed in the high-frequency electrode 13. Other configurations are the same as those of the first embodiment shown in FIG.
 図10に示した薄膜形成装置10の高周波電極13は、ホローカソード放電を生じさせるホローカソード電極として機能する。即ち、高周波電極13の表面に形成された溝132においてホローカソード効果による電子の閉じ込めが起こり、溝132から供給される形態で高密度プラズマが安定に生成される。 The high frequency electrode 13 of the thin film forming apparatus 10 shown in FIG. 10 functions as a hollow cathode electrode that generates a hollow cathode discharge. That is, electrons are confined by the hollow cathode effect in the groove 132 formed on the surface of the high-frequency electrode 13, and high-density plasma is stably generated in a form supplied from the groove 132.
 また、高周波電極13の内部から噴出孔131を通過して、前処理ガス121又は反応ガス122が、それぞれチャンバー11内に導入される。つまり、高周波電極13は、反応ガス122などを基板100の表面に導入するシャワーヘッド型導入口と一体型である。例えば、高周波電極13の表面に長円筒状の凹部を格子状に配列し、これらの凹部を溝で連結したものを溝132とする。そして、長円筒状の凹部の底に小径の噴出孔131を形成する。 Also, the pretreatment gas 121 or the reaction gas 122 is introduced into the chamber 11 from the inside of the high frequency electrode 13 through the ejection hole 131. That is, the high-frequency electrode 13 is integrated with a shower head type inlet for introducing the reaction gas 122 and the like into the surface of the substrate 100. For example, long cylindrical recesses are arranged in a lattice pattern on the surface of the high-frequency electrode 13, and these recesses are connected by grooves. A small-diameter ejection hole 131 is formed at the bottom of the long cylindrical recess.
 図11に、高周波電極13の表面130に、一列分の噴出孔131の配列方向に沿って噴出孔131の開口部の周囲に連続的に溝132を形成した例を示す。噴出孔131の開口部の周囲に配置されていれば、溝132のレイアウトに種々の構成を採用できる。例えば、格子の交点に噴出孔131の開口部が配置されるようにして、格子状に溝132を形成してもよい。 FIG. 11 shows an example in which grooves 132 are continuously formed around the openings of the ejection holes 131 along the arrangement direction of the ejection holes 131 for one row on the surface 130 of the high-frequency electrode 13. If it is arranged around the opening of the ejection hole 131, various configurations can be adopted for the layout of the groove 132. For example, the grooves 132 may be formed in a lattice shape so that the openings of the ejection holes 131 are arranged at the intersections of the lattice.
 溝132の幅を広くすることにより、プラズマを安定して形成することができる。ただし、幅が広すぎるとプラズマの状態が不安定になりやすいため、溝132の溝は10mmを超えないことが好ましい。このため、溝132の幅は、例えば2mm~10mmに設定される。なお、噴出孔131の開口部の径は、高周波電極13に形成される噴出孔131の数にも依存するが、一般的に1mm以下である。 The plasma can be stably formed by increasing the width of the groove 132. However, since the plasma state tends to become unstable if the width is too wide, the groove 132 preferably does not exceed 10 mm. For this reason, the width of the groove 132 is set to 2 mm to 10 mm, for example. In addition, although the diameter of the opening part of the ejection hole 131 is dependent also on the number of the ejection holes 131 formed in the high frequency electrode 13, it is generally 1 mm or less.
 <変形例>
 図10では、高周波電極13の内部を前処理ガス121や反応ガス122が通過し、高周波電極13の表面に形成された噴出孔131からこれらのガスがチャンバー11内に噴出する例を示した。しかし、高周波電極13が上記のようなシャワープレート型電極でない場合にも、本発明は適用可能である。
<Modification>
FIG. 10 shows an example in which the pretreatment gas 121 and the reaction gas 122 pass through the inside of the high-frequency electrode 13 and these gases are ejected into the chamber 11 from the ejection holes 131 formed on the surface of the high-frequency electrode 13. However, the present invention can also be applied when the high-frequency electrode 13 is not a shower plate type electrode as described above.
 例えば、図12に示すように、前処理ガス121や反応ガス122を高周波電極13の内部を通過させずに、ガス供給機構15から直接チャンバー11内に前処理ガス121や反応ガス122を導入してもよい。図12に示した薄膜形成装置10においても、表面に溝132が形成された高周波電極13はホローカソード電極として機能する。即ち、高周波電極13の表面に形成された溝132においてホローカソード効果による電子の閉じ込めが起こり、高密度プラズマが安定に生成される。 For example, as shown in FIG. 12, the pretreatment gas 121 and the reaction gas 122 are directly introduced into the chamber 11 from the gas supply mechanism 15 without passing the pretreatment gas 121 and the reaction gas 122 through the inside of the high-frequency electrode 13. May be. Also in the thin film forming apparatus 10 shown in FIG. 12, the high-frequency electrode 13 having a groove 132 formed on the surface functions as a hollow cathode electrode. That is, electrons are confined by the hollow cathode effect in the groove 132 formed on the surface of the high-frequency electrode 13, and high-density plasma is stably generated.
 なお、図10に示した薄膜形成装置10と同様に、図12に示した薄膜形成装置10においても、溝132のレイアウトに種々の構成を採用できる。即ち、溝132を格子状に形成してもよいし、ストライプ状に形成してもよい。或いは、高周波電極13の表面に開口部を有する長円筒状の貫通孔を格子状に配列し、これらの開口部を溝132で連結してもよい。 As in the thin film forming apparatus 10 shown in FIG. 10, various configurations can be adopted for the layout of the grooves 132 in the thin film forming apparatus 10 shown in FIG. 12. That is, the grooves 132 may be formed in a lattice shape or a stripe shape. Alternatively, long cylindrical through holes having openings on the surface of the high-frequency electrode 13 may be arranged in a lattice pattern, and these openings may be connected by grooves 132.
 (その他の実施形態)
 上記のように、本発明は第1乃至第3の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the first to third embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 既に述べた第1乃至第3の実施形態の説明においては、前処理ガス121がアンモニアガスであったが、アンモニアと窒素の混合ガスや水素ガスなどを前処理ガス121に使用してもよい。 In the description of the first to third embodiments already described, the pretreatment gas 121 is ammonia gas, but a mixed gas of ammonia and nitrogen, hydrogen gas, or the like may be used as the pretreatment gas 121.
 また、薄膜形成装置10が、プラズマCVD装置以外の、薄膜を成膜する半導体プロセスに使用される装置であっても、前処理ガス121を含むプラズマに基板100を曝すことによって基板100のパッシベーション効果を高めることができる。その結果、基板100中のキャリアライフタイムが長くなり、変換効率を向上させることができる。 Even if the thin film forming apparatus 10 is an apparatus used for a semiconductor process for forming a thin film other than the plasma CVD apparatus, the passivation effect of the substrate 100 is obtained by exposing the substrate 100 to plasma containing the pretreatment gas 121. Can be increased. As a result, the carrier lifetime in the substrate 100 becomes longer and the conversion efficiency can be improved.
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明の薄膜形成装置は、薄膜を形成する半導体プロセスに使用する装置に利用可能である。 The thin film forming apparatus of the present invention can be used for an apparatus used in a semiconductor process for forming a thin film.

Claims (8)

  1.  基板上に薄膜を形成する薄膜形成装置であって、
     前記基板が格納されるチャンバーと、
     前記チャンバー内に配置され、前記基板を載せる基板プレートと、
     前記チャンバー内に配置され、前記基板プレート上の前記基板と対向する高周波電極と、
     水素を含む前処理ガス、又は前記基板上に形成する前記薄膜の原料ガスを含む反応ガスのいずれかを前記チャンバー内に供給するガス供給機構と、
     前記基板プレートと前記高周波電極間に交流電力を供給し、前記基板の上面において前記前処理ガスを含むプラズマ、又は前記原料ガスを含むプラズマのいずれかを成膜工程の異なる段階でそれぞれ励起する交流電源と
     を備えることを特徴とする薄膜形成装置。
    A thin film forming apparatus for forming a thin film on a substrate,
    A chamber in which the substrate is stored;
    A substrate plate disposed in the chamber for mounting the substrate;
    A high-frequency electrode disposed in the chamber and facing the substrate on the substrate plate;
    A gas supply mechanism for supplying either a pretreatment gas containing hydrogen or a reaction gas containing a raw material gas for the thin film formed on the substrate into the chamber;
    AC power is supplied between the substrate plate and the high-frequency electrode to excite either the plasma containing the pretreatment gas or the plasma containing the source gas at different stages of the film formation process on the upper surface of the substrate. A thin film forming apparatus comprising: a power source.
  2.  前記基板プレート上の前記基板と対向する前記高周波電極の表面に溝が形成されていることを特徴とする請求項1に記載の薄膜形成装置。 The thin film forming apparatus according to claim 1, wherein a groove is formed on a surface of the high-frequency electrode facing the substrate on the substrate plate.
  3.  前記溝が、前記基板プレートを貫通するように形成されていることを特徴とする請求項2に記載の薄膜形成装置。 3. The thin film forming apparatus according to claim 2, wherein the groove is formed so as to penetrate the substrate plate.
  4.  前記高周波電極に形成された前記溝の底部に、前記前処理ガス及び前記反応ガスが通過する複数の噴出孔の開口部が形成されていることを特徴とする請求項2に記載の薄膜形成装置。 3. The thin film forming apparatus according to claim 2, wherein openings of a plurality of ejection holes through which the pretreatment gas and the reaction gas pass are formed at the bottom of the groove formed in the high-frequency electrode. .
  5.  前記基板が、p型シリコン基板上に表面拡散濃度が1×1018~1×1022のn型半導体層を形成した太陽電池基板、或いは、n型シリコン基板上に表面拡散濃度が1×1018~1×1022のp型半導体層を形成した太陽電池基板であることを特徴とする請求項1に記載の薄膜形成装置。 The substrate is a solar cell substrate in which an n-type semiconductor layer having a surface diffusion concentration of 1 × 10 18 to 1 × 10 22 is formed on a p-type silicon substrate, or a surface diffusion concentration of 1 × 10 6 on an n-type silicon substrate. 2. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is a solar cell substrate on which 18 to 1 × 10 22 p-type semiconductor layers are formed.
  6.  前記基板上に形成される前記薄膜が、前記太陽電池上に配置された屈折率が1.8~3.0、膜厚が50~150nmの窒化シリコンからなる反射防止膜であることを特徴とする請求項5に記載の薄膜形成装置。 The thin film formed on the substrate is an antireflection film made of silicon nitride having a refractive index of 1.8 to 3.0 and a film thickness of 50 to 150 nm disposed on the solar cell. The thin film forming apparatus according to claim 5.
  7.  請求項1に記載の薄膜形成装置を用いて形成された反射防止膜又はパッシベーション膜を備えることを特徴とする結晶太陽電池。 A crystal solar cell comprising an antireflection film or a passivation film formed using the thin film forming apparatus according to claim 1.
  8.  請求項1に記載の薄膜形成装置を用いて形成された反射防止膜又はパッシベーション膜を備えることを特徴とする半導体素子。 A semiconductor element comprising an antireflection film or a passivation film formed using the thin film forming apparatus according to claim 1.
PCT/JP2011/074318 2011-09-26 2011-10-21 Thin film forming apparatus WO2013057835A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/074318 WO2013057835A1 (en) 2011-10-21 2011-10-21 Thin film forming apparatus
TW101135387A TWI494466B (en) 2011-09-26 2012-09-26 Plasma film forming apparatus, crystal solar cell and semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074318 WO2013057835A1 (en) 2011-10-21 2011-10-21 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
WO2013057835A1 true WO2013057835A1 (en) 2013-04-25

Family

ID=48140512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074318 WO2013057835A1 (en) 2011-09-26 2011-10-21 Thin film forming apparatus

Country Status (1)

Country Link
WO (1) WO2013057835A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117569A (en) * 2007-11-06 2009-05-28 Shimadzu Corp Reflection preventive film forming method, and reflection preventive film forming device
JP2009164518A (en) * 2008-01-10 2009-07-23 Shimadzu Corp Antireflection film forming method, antireflection film forming apparatus, and solar cell
JP2009272428A (en) * 2008-05-07 2009-11-19 Shimadzu Corp Antireflective film coating method and antireflective film coating apparatus
JP2011023655A (en) * 2009-07-17 2011-02-03 Shimadzu Corp Silicon nitride thin film depositing method, and silicon nitride thin film depositing device
JP2011199156A (en) * 2010-03-23 2011-10-06 Shimadzu Corp Plasma cleaning method of vacuum chamber and plasma cvd film-deposition device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117569A (en) * 2007-11-06 2009-05-28 Shimadzu Corp Reflection preventive film forming method, and reflection preventive film forming device
JP2009164518A (en) * 2008-01-10 2009-07-23 Shimadzu Corp Antireflection film forming method, antireflection film forming apparatus, and solar cell
JP2009272428A (en) * 2008-05-07 2009-11-19 Shimadzu Corp Antireflective film coating method and antireflective film coating apparatus
JP2011023655A (en) * 2009-07-17 2011-02-03 Shimadzu Corp Silicon nitride thin film depositing method, and silicon nitride thin film depositing device
JP2011199156A (en) * 2010-03-23 2011-10-06 Shimadzu Corp Plasma cleaning method of vacuum chamber and plasma cvd film-deposition device

Similar Documents

Publication Publication Date Title
KR101535582B1 (en) Thin film forming device
US8633050B2 (en) Solar cell, and method of manufacturing the same
JP2011023655A (en) Silicon nitride thin film depositing method, and silicon nitride thin film depositing device
JP4859472B2 (en) Plasma process equipment
US7589002B2 (en) Method of forming an oxygen- or nitrogen-terminated silicon nanocrystalline structure and an oxygen- or nitrogen-terminated silicon nanocrystalline structure formed by the method
TW201321550A (en) Plasma film forming apparatus, crystal solar cell and semiconductor element
KR20140135202A (en) Film forming device
JPWO2009107196A1 (en) Plasma film forming method and plasma CVD apparatus
JP5018688B2 (en) Film forming apparatus and film forming method
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
JP5614180B2 (en) Plasma CVD equipment
JP5053595B2 (en) DLC film forming method and DLC film manufacturing apparatus
WO2013057835A1 (en) Thin film forming apparatus
JP6194850B2 (en) Thin film forming equipment
JP4051619B2 (en) Silicon oxide film fabrication method
JP5862027B2 (en) Plasma CVD apparatus and method for manufacturing thin film substrate
JP2006019593A (en) Deposition apparatus for amorphous solar cell and its manufacturing method
JP2016197651A (en) Thin film and forming method of the same
JP2016197528A (en) Plasma processing apparatus
JP2005244037A (en) Manufacturing method of silicon film and manufacturing method of solar battery
JP2010073970A (en) Apparatus and method for forming thin film
JP6065111B2 (en) Plasma processing equipment
JP6024417B2 (en) Sample holder
US20220059340A1 (en) Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
JP2011199156A (en) Plasma cleaning method of vacuum chamber and plasma cvd film-deposition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP