WO2013055033A1 - Air compressor - Google Patents

Air compressor Download PDF

Info

Publication number
WO2013055033A1
WO2013055033A1 PCT/KR2012/006811 KR2012006811W WO2013055033A1 WO 2013055033 A1 WO2013055033 A1 WO 2013055033A1 KR 2012006811 W KR2012006811 W KR 2012006811W WO 2013055033 A1 WO2013055033 A1 WO 2013055033A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston rod
compression chamber
rod portion
air compressor
circumferential surface
Prior art date
Application number
PCT/KR2012/006811
Other languages
French (fr)
Korean (ko)
Inventor
전광석
엄평용
Original Assignee
주식회사 에어맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에어맥스 filed Critical 주식회사 에어맥스
Priority to US14/351,050 priority Critical patent/US20140255239A1/en
Publication of WO2013055033A1 publication Critical patent/WO2013055033A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • F04C18/045Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type having a C-shaped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to an air compressor, and more particularly to an air compressor having improved compression force.
  • a rotary air compressor is a device that seals a gas in a constant volume, compresses it to have a high air pressure by reducing the volume in which the gas is sealed with a piston or a rotor.
  • a piston or a rotor In terms of low noise and noise, it is widely used in various industrial sites such as vehicle maintenance, mechanical work, construction sites, and air tools.
  • the rotary shaft rotated by the motor of the lower end of the casing is fitted into the shaft hole of the first housing, and the ring gear is provided on the inner circumferential surface of the swinging body which rotates like the end of the rotary shaft.
  • the circular housing is integrally formed, and the second housing coupled to the first housing forms a ring gear on an inner circumferential surface of the circular space in contact with the circular space, and ring gears in the circular space of the oscillator and the second housing.
  • the rotating shaft is stable while being subjected to centrifugal force by one weight.
  • Rotation is enabled, and on both sides of the oscillator to form a ring-shaped operating hole symmetrically to compress the air by a circular vane fitted thereto, the compressed air compressed in the compression space by the ring-shaped operating hole oscillator It moves to the compression space by the ring-shaped operation hole received through the moving hole of the discharge to the discharge hole formed on the right side of the concave portion of the circular vane, moved to the air storage chamber through the discharge hole and then through the compressed air discharge port casing Patents (patent registration No. 10-0323063) of others that are configured to be collected in the interior of the present is presented.
  • the applicant divides the compression chamber into two first and second compression chambers when the orbiter is coupled to the compression chamber which becomes the compression space of the air, and the orbiter February 29, 2009, the "air compressor” that can provide compressed air by reducing the volume of the first and second compression chambers cross-reduced in a stable eccentric rotation movement in conjunction with the holder ring in the compression chamber Jha application (application number: 10-2009-0013659).
  • the above-mentioned "air compressor” is coaxial with the eccentric rotation shaft and the orbiter when the orbiter compressed to the eccentric rotation shaft rotates along the compression chamber while the eccentric rotation shaft to which rotational force is applied from an external power source rotates.
  • the holder ring which has been built up, is guided to the stable eccentric cam movement in the compression chamber, thereby making it possible to effectively compress air while having a simpler structure than the conventional rotary air compressors of various forms. There was a very big effect that can significantly reduce the manufacturing cost.
  • the holder ring for inducing a stable cam motion of the orbiter is coupled only to the center of the orbiter, which is an eccentric rotation of the orbiter having a certain amount of eccentricity.
  • the wide orbital orbiter had many difficulties in guiding the stable eccentric cam movement.
  • the present applicant has three driven members having equal intervals while rotating coaxially with the eccentric rotation axis on the circumferential surface of the orbiter constituting the "air compressor (application number: 10-2009-0013659).
  • the "Rotary Air Compressor” which is equipped with a holder and can attenuate vibration caused by eccentric rotation, has been filed (Application No. 10-2010-0034840).
  • the piston rod of the orbiter eccentric rotational movement in the compression chamber of the cylinder In this case, the volume of the first and second compression chambers of the compression chamber is selectively compressed to correspond to a method of discharging the compressed air to the air outlet.
  • the sealing force between them acts as an important factor for the compression force of the air compressor, and thus, to increase the sealing force of the piston rod portion and the compression chamber to improve the compression force of the air compressor. It is necessary.
  • the present invention is to solve the above problems, the object of the present invention is to provide an air compressor with improved compression force by increasing the sealing force of the piston rod and the compression chamber.
  • the present invention provides a cylinder including a compression chamber recessed; And an orbiter including a protruding piston rod portion, wherein the piston rod portion includes an inner circumferential surface of the piston rod portion and an outer circumferential surface of the piston rod portion, and includes an end portion at an end portion to protrude from the frame body. It provides an air compressor, characterized in that the diameter of the imaginary circle based on the curvature formed at the end is larger than the width from the inner peripheral surface of the piston rod to the outer peripheral surface of the piston rod.
  • the present invention is characterized in that the end portion comprises a first end and a second end, wherein the first end and the second end are partitioned by a discontinuous portion in which the piston rod portion does not protrude.
  • the end portion comprises a first end and a second end, wherein the first end and the second end are partitioned by a discontinuous portion in which the piston rod portion does not protrude.
  • the present invention is the compression chamber includes a compression chamber inner peripheral surface and the compression chamber outer peripheral surface, including a sealing surface at the end is formed in the interior of the cylinder, based on the curvature formed on the sealing surface of the end of the compression chamber An air compressor is provided, wherein the diameter of the imaginary circle is larger than the width from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
  • the present invention also provides that the sealing surface includes a first sealing surface and a second sealing surface, wherein the first sealing surface and the second sealing surface are partitioned by a sealing part in which the compression chamber is not formed. It provides an air compressor characterized by.
  • the present invention also provides an air compressor, wherein the cylinder further includes an air inlet formed through one side of the compression chamber and an air outlet formed through the other side of the compression chamber with respect to the sealing part. do.
  • the contact area is increased, thereby improving the compression force of the air compressor.
  • 1 to 3 is a schematic illustration showing a compressed state of a rotary air compressor of a general structure.
  • Figure 4 is a schematic diagram for explaining a compression chamber of a rotary air compressor of a general structure
  • Figure 5 is a schematic diagram for explaining a piston rod of a rotary air compressor of a general structure
  • Figure 6 is a rotary air of a general structure It is a schematic diagram for demonstrating that a compressor is not completely sealed.
  • FIG. 7 is a plan view showing a cylinder of the air compressor according to the present invention
  • Figure 8 is a cross-sectional view showing a cylinder of the air compressor according to the present invention
  • Figure 9 is a bottom view showing a cylinder of the air compressor according to the present invention.
  • 10 is a schematic diagram for explaining a compression chamber of a cylinder of an air compressor according to the present invention.
  • FIG. 11 is a plan view showing an orbiter of an air compressor according to the present invention
  • FIG. 12 is a sectional view showing an orbiter of an air compressor according to the present invention
  • FIG. 13 shows an orbiter of an air compressor according to the present invention. It is a bottom view.
  • 14 to 22 is a schematic illustration showing a compressed state of the air compressor according to the present invention.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It can be used to easily describe a component's correlation with other components. Spatially relative terms are to be understood as including terms in different directions of components in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as “below” or “beneath” of another component may be placed “above” the other component. Can be. Thus, the exemplary term “below” can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
  • FIG. 1 to 3 is a schematic illustration showing a compressed state of a rotary air compressor of a general structure.
  • the rotary air compressor of the general structure may be an air compressor of the application number 10-2009-0013659 and a rotary air compressor of the application number 10-2010-0034840.
  • a piston rod part 320 constituting an orbiter (not shown) is installed in the compression chambers 251 and 252 constituting the cylinder 200 in a rotary air compressor having a general structure. do.
  • the piston rod 320 is partitioned into two compression chambers 251 and two compression chambers 252 while eccentric movement in the compression chamber.
  • the orbiter for example, in accordance with the eccentric rotation operation of the eccentric rotation axis (not shown) as in the application number 10-2010-0034840, the eccentric rotation operation, the air intake 220
  • the air provided through the air is compressed to selectively reduce the first compression chamber 251 and the second compression chamber 252.
  • the compressed air compressed by the first air outlet 230 and the second air outlet 240 is selectively discharged.
  • the eccentric rotation shaft (not shown) continues to rotate with the power of the driving source, the orbiter (not shown) is eccentrically rotated along the outer circumferential surfaces of the compression chambers 251 and 252.
  • the piston rod 320 constituting the orbiter (not shown) reduces the second compression chamber 252 to compress the air sucked into the second compression chamber 252 in the second air.
  • the second air outlet 240 is closed.
  • Figure 4 is a schematic diagram for explaining a compression chamber of a rotary air compressor of a general structure
  • Figure 5 is a schematic schematic diagram for explaining the piston rod of the rotary air compressor of a general structure
  • Figure 6 is a rotary air of a general structure It is a schematic diagram for demonstrating that a compressor is not completely sealed.
  • the compression chamber 253 of the cylinder in the rotary air compressor having a general structure is formed recessed in the width of W1 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
  • the imaginary circle is formed on the compression chamber 253 of the cylinder based on the curvature formed at the closed end of the cylinder, the imaginary circle is recessed to a diameter of d1.
  • the diameter of the virtual circle d1 based on the width of W1 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber and the curvature formed at the closed end of the compression chamber is formed to have the same length.
  • the piston rod part 320 of the orbiter of the rotary air compressor of the general structure is formed to protrude in the width of W2 from the inner circumferential surface of the piston rod to the outer circumferential surface of the piston rod.
  • the piston rod 320 of the orbiter is formed of a virtual circle based on the curvature formed at the end of the most end, the virtual circle is formed to protrude to the diameter of d2.
  • the diameter of the virtual circle d2 based on the width of W2 from the inner circumferential surface of the piston rod portion to the outer circumferential surface of the piston rod portion and the curvature formed at the end of the end of the piston rod portion is formed to have the same length.
  • the recessed compression chamber is formed to have the same width or diameter as a whole
  • the protruding piston rod portion is formed to have the same width or diameter as a whole.
  • each of the most end regions that is, the region where the end of the piston rod portion and the sealing surface of the compression chamber are in contact with each other.
  • the area in contact with each other is limited, and the sealing force is lowered, and therefore, the compression force of the air compressor is also lowered.
  • the present applicant recognizes the importance of increasing the sealing force of the piston rod portion and the compression chamber to improve the compression force of the air compressor, and proposes a structure of the piston rod portion and the compression chamber for increasing the sealing force.
  • the present invention is characterized in that the compression chamber of the cylinder of the air compressor and the piston rod of the orbiter of the air compressor, the rest of the configuration, for example, the coupling structure of the cylinder and the frame, the cylinder And the combination structure of the orbiter, the individual structure and the coupling structure of the rotating core, the individual structure and the coupling structure of the driven holder, etc., the air compressor of the application No. 10-2009-0013659 and the rotary air compressor of the application No. 10-2010-0034840 Since reference may be made, a detailed description thereof will be omitted.
  • the present invention is characterized in that the compression chamber of the cylinder of the air compressor and the piston rod of the orbiter of the air compressor, the rest of the structure except for this can be changed freely, except for this kind of structure is limited It means not received.
  • FIG. 7 is a plan view showing a cylinder of the air compressor according to the present invention
  • Figure 8 is a cross-sectional view showing a cylinder of the air compressor according to the invention
  • Figure 9 is a bottom view showing a cylinder of the air compressor according to the present invention.
  • 10 is a schematic diagram for explaining a compression chamber of a cylinder of an air compressor according to the present invention.
  • the cylinder 600 of the air compressor according to the present invention includes a compression chamber 653 formed in the interior of the cylinder.
  • the compression chamber 653 is recessed in the inside of the cylinder in a circular ring shape, one side is sealed by the sealing portion 650, the compression chamber 653 of the compression chamber 653 An air inlet 620 is formed at one side thereof, and the first air outlet 630 and the second air outlet 640 are formed at the other side of the compression chamber 653 based on the sealing part 650.
  • the compression chamber is formed in a circular ring shape, and corresponds to a discontinuous circular ring shape in which the compression chamber is not recessed in the sealing part 650.
  • the shape of the compression chamber is a deformed ring shape including a discontinuous portion ( We will define the structure as).
  • the compression chamber 653 includes a compression chamber inner circumferential surface 655 and a compression chamber outer circumferential surface 656, and includes a first sealing surface 661 and a second sealing surface 662 at the extreme end thereof. Is formed in the interior of the recess, in this case, the first sealing surface 661 and the second sealing surface 662 is partitioned by the sealing portion 650.
  • the cylinder 600 of the air compressor according to the present invention may further include an eccentric space formed in the center region in addition to the compression chamber, which is not a characteristic part of the present invention As a detailed description thereof will be omitted, but for this matter, reference may be made to the rotary air compressor of Patent No. 10-2010-0034840.
  • the compression chamber 653 of the cylinder of the air compressor according to the present invention is recessed in the width of W3 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
  • the compression chamber 653 of the cylinder forms a virtual circle based on the curvature formed at the closed end of the cylinder, the virtual circle is recessed to a diameter of d3.
  • the present invention is characterized in that the diameter d3 of the imaginary circle based on the curvature formed at the closed end of the compression chamber is larger than the width W3 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
  • the contact area can be increased. This will be described later.
  • FIG 11 is a plan view showing an orbiter of the air compressor according to the present invention
  • Figure 12 is a cross-sectional view showing the orbiter of the air compressor according to the present invention
  • Figure 13 shows an orbiter of the air compressor according to the present invention It is a bottom view.
  • the orbiter 700 of the air compressor according to the present invention includes a frame 730 constituting a main body and a piston rod portion 720 protruding from the rear surface of the frame 730. .
  • the frame 730 is a portion for eccentric movement by receiving a rotational force from an eccentric rotation shaft (not shown), the piston rod is accommodated in the compression chamber 653 constituting the cylinder 600 of Figures 7 to 10, According to the eccentric movement of the frame 730, the external air introduced through the air inlet 620 is compressed in the compression chamber 653 to be discharged to the first air outlet 630 and the second air outlet 640.
  • the deformed ring shape is formed by the sealing part 650 constituting the cylinder 600 (
  • the piston rod portion 720 of the orbiter 700 accommodated in the compression chamber 653 having a structure of) does not perform an eccentric rotational movement and performs an eccentric cam movement along the inner and outer circumferential surfaces of the compression chamber 653. It will be done.
  • the piston rod 720 includes a piston rod inner circumferential surface 765 and the piston rod portion outer peripheral surface 755, the first end Including the first end 761 and the second end 762 protruding from the frame, wherein the first end 761 and the second end 762 is a non-continuous portion (not protruding from the piston rod) 750).
  • the piston rod 720 is formed in a circular ring shape
  • the non-continuous portion 750 corresponds to a discontinuous circular ring shape in which the piston rod is not protruded.
  • the shape of the piston rod portion is deformed ring shape including a discontinuous portion ( It will be defined as the structure of), which corresponds to the same or similar structure as the structure of the compression chamber described above.
  • the orbiter 700 of the air compressor according to the present invention may further include an eccentric groove formed in the center region and a concave groove formed in the outer region, in addition to the piston rod portion.
  • an eccentric groove formed in the center region and a concave groove formed in the outer region, in addition to the piston rod portion.
  • this is not a characteristic part of the present invention, a detailed description thereof will be omitted, however, reference may be made to the rotary air compressor of Patent No. 10-2010-0034840.
  • the orbiter 700 of the air compressor according to the present invention has a width of W4 from the inner circumferential surface 756 of the piston rod portion to the outer circumferential surface 755 of the piston rod portion. It is formed to protrude.
  • the orbiter 700 forms a virtual circle based on the curvature formed at the first end 761 and the second end 762 of the piston rod 720, the virtual circle Is protruded to a diameter of d4.
  • the present invention is characterized in that the diameter d4 of the imaginary circle based on the curvature formed at the end of the piston rod portion is larger than the width W4 from the inner circumferential surface of the piston rod portion to the outer circumferential surface of the piston rod portion.
  • the contact area can be increased.
  • 14 to 22 is a schematic illustration showing a compressed state of the air compressor according to the present invention.
  • a piston rod portion 720 constituting an orbiter (not shown) is installed in the compression chambers 651 and 652 constituting the cylinder in the air compressor according to the present invention.
  • the piston rod 720 is divided into two first compression chambers 651 and a second compression chamber 652 while eccentric movement in the compression chamber.
  • the orbiter for example, in accordance with the eccentric rotation operation of the eccentric rotation axis (not shown) as in the application number 10-2010-0034840, the eccentric rotation operation, the air intake 620
  • the air provided through the first compression chamber 651 and the second compression chamber 652 is selectively reduced to compress the air.
  • the compressed air compressed by the first air outlet 630 and the second air outlet 640 is selectively discharged.
  • the orbiter when the air is sucked into the compression chambers 651 and 652 through the air inlet 620, when the power is applied to the driving source to rotate the eccentric rotation axis (not shown), the orbiter (not shown) The eccentric rotation is performed along the inner and outer circumferential surfaces of the compression chambers 651 and 652. In this process, the piston rod 720 constituting the orbiter (not shown) reduces the first compression chamber 651. The air sucked into the first compression chamber 651 is discharged to the first air outlet 630 in a compressed state, and then the first air outlet 630 is closed.
  • the orbiter (not shown) is eccentric rotation operation along the outer circumferential surface of the compression chamber (651, 652), in this process orbiter (not shown) Piston rod 720 constituting the () is reduced to the second compression chamber 652 to discharge the air sucked in the second compression chamber 652 to the second air outlet 640 in the compressed state Next, the second air outlet 640 is closed.
  • reference numeral 660 denotes a central axis of the cylinder
  • 730 denotes a central axis of the orbiter.
  • the diameter of the virtual circle based on the curvature formed at the closed end of the compression chamber is larger than the width from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
  • the diameter of the imaginary circle based on the curvature formed at the end of the piston rod portion is formed larger than the width from the inner circumference of the piston rod portion to the outer circumference of the piston rod portion.
  • the air compressor of the general structure is formed in the same compression chamber is formed in the same width or diameter of the overall, the protruding piston rod is formed of the same width or diameter as the whole. .
  • the protruding piston rod is formed of the same width or diameter as the whole.
  • the diameter of the imaginary circle based on the curvature formed on the closed end of the compression chamber is larger than other areas of the compression chamber, and based on the curvature formed on the end of the piston rod. Since the diameter of one imaginary circle is formed larger than the other area of the piston rod portion, the contact area is increased by the length formed largely, and accordingly, the sealing force increases with the increase of the contact area, eventually, The compression force of the air compressor is to be improved.
  • the contact area is increased, thereby improving the compression force of the air compressor.
  • sealing surface 650 sealing

Abstract

The present invention pertains to an air compressor, which includes: a cylinder having a compression chamber which is formed with an indentation; and an orbiter having a piston rod portion which is formed with a protrusion. The piston rod portion includes a piston rod portion inner peripheral surface, a piston rod portion outer peripheral surface, and an end portion at the end thereof such that the piston rod portion is formed to protrude from a frame member. An imaginary circle based on the curvature, which is formed at the end portion of the piston rod portion, has a diameter larger than a width from the piston rod portion inner peripheral surface to the piston rod portion outer peripheral surface. Due to the compression of outdoor air by the piston rod portion making contact with the compression chamber at the farthest end portion of the piston rod portion and the area of the sealed surface of the farthest end portion of the compression chamber, the mutual contact areas increase such that the compression force of the air compressor may increase.

Description

공기 압축기Air compressor
본 발명은 공기 압축기에 관한 것으로서, 더욱 상세하게는 압축력이 향상된 공기 압축기에 관한 것이다.The present invention relates to an air compressor, and more particularly to an air compressor having improved compression force.
일반적으로 회전식 공기압축기는 일정한 체적 내에 기체를 밀봉하여, 피스톤이나 로터 등으로 상기 기체가 밀봉된 체적을 감소시켜 높은 공기 압력을 가지도록 압축시키는 장치로서, 특히 소형 경량화를 도모할 수 있다는 점과 진동과 소음이 적게 발생된다는 점에 있어서 차량 정비용, 기계제작용, 건설 현장용, 에어공구 등과 같이 다양한 산업현장에서 널리 사용되고 있는 실정이다.In general, a rotary air compressor is a device that seals a gas in a constant volume, compresses it to have a high air pressure by reducing the volume in which the gas is sealed with a piston or a rotor. In terms of low noise and noise, it is widely used in various industrial sites such as vehicle maintenance, mechanical work, construction sites, and air tools.
위와 같은 회전식 공기 압축기의 대표적인 구조로서, 케이싱의 하단의 모터에 의해 회전하는 회전축은 제 1 하우징의 축공에 끼워지고, 상기 회전축의 끝단과 같이 회전하는 요동체의 안쪽에는 링기어가 내주면에 구비된 원형공간을 일체로 형성하고, 상기 제 1 하우징과 결합되는 제 2 하우징에는 상기의 원형공간에 접하는 원형공간의 내주면에 링기어를 형성하고, 상기 요동체 및 제 2 하우징의 원형 공간에서 링기어들에 양측의 선기어들이 치합되도록 회전 억제구를 결합하여 캠운동이 이루어지도록 하고, 상기 제 2 하우징의 원형 압축실에 연결되면서 상기의 링형 작동공에 끼워지는 원형 베인을 일체로 형성하여 공기공급공을 통하여 공기를 공급받도록 한 소형 콤프레샤에 있어서, 상기의 회전축은 일측의 웨이트에 의해 원심력을 받으면서 안정된 회전이 가능하도록 하고, 상기 요동체의 양측에는 링형 작동공을 대칭으로 형성하여 이에 끼워지는 원형 베인에 의해 공기를 압축시키도록 하고, 상기 링형작동공에 의한 압축공간에서 압축된 압축공기를 요동체의 이동구멍을 통해 전달받는 링형작동공에 의한 압축공간으로 이동시켜 원형 베인의 오목부의 우측에 형성된 토출공으로 토출시키도록 하고, 상기의 토출공을 통해 공기 저장실로 이동한 후 압축공기 토출구를 거쳐 케이싱의 내부에 모아지도록 구성하고 있는 타인의 선 등록특허(특허등록 제10- 0323063호)가 제시되어 있다.As a typical structure of the rotary air compressor as described above, the rotary shaft rotated by the motor of the lower end of the casing is fitted into the shaft hole of the first housing, and the ring gear is provided on the inner circumferential surface of the swinging body which rotates like the end of the rotary shaft. The circular housing is integrally formed, and the second housing coupled to the first housing forms a ring gear on an inner circumferential surface of the circular space in contact with the circular space, and ring gears in the circular space of the oscillator and the second housing. Combining the rotational restraint so that the sun gears on both sides are engaged with each other so that the cam movement is made, and the air supply hole is formed by integrally forming a circular vane fitted to the ring-shaped operation hole while being connected to the circular compression chamber of the second housing. In a compact compressor adapted to receive air through the above, the rotating shaft is stable while being subjected to centrifugal force by one weight. Rotation is enabled, and on both sides of the oscillator to form a ring-shaped operating hole symmetrically to compress the air by a circular vane fitted thereto, the compressed air compressed in the compression space by the ring-shaped operating hole oscillator It moves to the compression space by the ring-shaped operation hole received through the moving hole of the discharge to the discharge hole formed on the right side of the concave portion of the circular vane, moved to the air storage chamber through the discharge hole and then through the compressed air discharge port casing Patents (patent registration No. 10-0323063) of others that are configured to be collected in the interior of the present is presented.
그런데 위 선 등록특허(특허등록 제10- 0323063호)의 경우, 요동체 및 링형 작동공이 좌우 대칭에 따른 회전운동을 할 때 원형 베인 및 제2 하우징의 내벽에 연속적으로 부딪치면서 작동하는 구조로 되어 있는 바, 이는 작동소음이 매우 크게 발생되는 문제점이 있었고, 나아가 원형 베인이 제2 하우징과 일체로 구성됨에 따라 금형가공 작업이 복잡해지며, 이에 따른 제작시간 및 경비가 크게 증가되는 등의 경제적인 문제점이 있었던 것이다.However, in the case of the above registered patent (Patent Registration No. 10-0323063), when the oscillator and the ring-shaped operating hole rotates according to the left and right symmetry, it is constructed to operate while continuously hitting the inner wall of the circular vane and the second housing. There is a problem that the operation noise is very large, and furthermore, as the circular vane is integrally formed with the second housing, the mold processing is complicated, and thus, the manufacturing time and cost are greatly increased. This was there.
위와 같은 문제점을 개선시킨 다양한 형태의 회전식 공기압축기들 중, 본 출원인은 공기의 압축공간이 되는 압축챔버에 오비터가 결합될 때 압축챔버를 2개의 제1,2 압축챔버로 구획하고, 오비터가 압축챔버에서 홀더링과 연동되어 안정적으로 편심 회전운동을 하면서 상기 제1,2 압축챔버의 체적을 교차적으로 축소시켜 압축된 공기를 제공할 수 있는 "에어 컴프레셔"를 2009년 2월 29일 자로 출원(출원번호: 10-2009-0013659호)한 바 있다.Among various types of rotary air compressors which improve the above problems, the applicant divides the compression chamber into two first and second compression chambers when the orbiter is coupled to the compression chamber which becomes the compression space of the air, and the orbiter February 29, 2009, the "air compressor" that can provide compressed air by reducing the volume of the first and second compression chambers cross-reduced in a stable eccentric rotation movement in conjunction with the holder ring in the compression chamber Jha application (application number: 10-2009-0013659).
즉, 상술한 "에어 컴프레셔"는 외부 동력원으로부터 회전력이 부가되는 편심 회전축이 회전을 하면서 상기 편심 회전축에 압착되어 있는 오비터가 압축챔버를 따라 편심운동을 할 때, 상기 편심 회전축과 오비터에 동축상으로 축설되어 있는 홀더링이 상기 압축챔버에서 안정적인 편심캠운동으로 유도함으로써 종래의 다양한 형태로 된 회전식 공기압축기들에 비하여 결합형태가 간단한 구조로 되면서 효과적으로 공기를 압축할 수 있게 되어 공기압축기에 대한 제조원가를 현저히 절감할 수 있는 매우 큰 효과가 있었던 것이다.That is, the above-mentioned "air compressor" is coaxial with the eccentric rotation shaft and the orbiter when the orbiter compressed to the eccentric rotation shaft rotates along the compression chamber while the eccentric rotation shaft to which rotational force is applied from an external power source rotates. The holder ring, which has been built up, is guided to the stable eccentric cam movement in the compression chamber, thereby making it possible to effectively compress air while having a simpler structure than the conventional rotary air compressors of various forms. There was a very big effect that can significantly reduce the manufacturing cost.
하지만, 상술한 "에어 컴프레셔"의 경우, 오비터의 안정적인 캠운동을 유도하기 위한 홀더링이 오비터의 중심부에만 결합되어 있는 바, 이는 일정크기의 편심량을 가지는 오비터의 편심 회전운동을 할 때 작동반경이 넓은 오비터가 안정적인 편심 캠운동으로 유도하는 데 많은 어려움이 있었다.However, in the case of the "air compressor" described above, the holder ring for inducing a stable cam motion of the orbiter is coupled only to the center of the orbiter, which is an eccentric rotation of the orbiter having a certain amount of eccentricity. The wide orbital orbiter had many difficulties in guiding the stable eccentric cam movement.
이에 따라, 본 출원인은 상기 "에어 컴프레셔(출원번호: 10-2009-0013659호)"를 구성하고 있는 오비터의 원주면에 편심 회전축과 동축상으로 회전하면서 등(等) 간격을 가지는 3개의 종동(從動)홀더를 장착하여 편심 회전운동에 의한 진동을 감쇄할 수 있는 "회전식 공기압축기"를 2010년 4월 15일 자로 출원(출원번호 : 10-2010-0034840호)한 바 있다.Accordingly, the present applicant has three driven members having equal intervals while rotating coaxially with the eccentric rotation axis on the circumferential surface of the orbiter constituting the "air compressor (application number: 10-2009-0013659). On April 15, 2010, the "Rotary Air Compressor", which is equipped with a holder and can attenuate vibration caused by eccentric rotation, has been filed (Application No. 10-2010-0034840).
이때, 에어 컴프레셔에 관한 출원번호 제10-2009-0013659호 및 회전식 공기압축기에 관한 출원번호 제10-2010-0034840호의 경우, 양출원 모두 오비터의 피스톤 로드부가 실린더의 압축챔버 내에서 편심 회전운동을 하면서, 압축챔버의 제1, 2 압축챔버의 체적을 선택적으로 압축시켜, 압축된 공기를 공기 배출구로 배출시키는 방식에 해당한다.At this time, in the application number 10-2009-0013659 for the air compressor and the application number 10-2010-0034840 for the rotary air compressor, both applications, the piston rod of the orbiter eccentric rotational movement in the compression chamber of the cylinder In this case, the volume of the first and second compression chambers of the compression chamber is selectively compressed to correspond to a method of discharging the compressed air to the air outlet.
때문에, 피스톤 로드부가 압축챔버 내에서 편심 운동을 함에 있어, 이들 간의 밀폐력이 공기 압축기의 압축력에 중요한 요소로 작용하며, 따라서, 공기 압축기의 압축력 향상을 위해 피스톤 로드부와 압축챔버의 밀폐력을 증대시키는 것이 필요한 실정이다.Therefore, in the eccentric movement of the piston rod portion in the compression chamber, the sealing force between them acts as an important factor for the compression force of the air compressor, and thus, to increase the sealing force of the piston rod portion and the compression chamber to improve the compression force of the air compressor. It is necessary.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 피스톤 로드부와 압축챔버의 밀폐력을 증대시켜, 압축력이 향상된 공기 압축기를 제공하는데 그 목적이 있다.The present invention is to solve the above problems, the object of the present invention is to provide an air compressor with improved compression force by increasing the sealing force of the piston rod and the compression chamber.
본 발명의 해결하려는 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Problems to be solved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 지적된 문제점을 해결하기 위해서 본 발명은 함몰 형성된 압축챔버를 포함하는 실린더; 및 돌출 형성된 피스톤 로드부를 포함하는 오비터를 포함하고, 상기 피스톤 로드부는 피스톤 로드부 내주면과 피스톤 로드부 외주면을 포함하고, 끝단에 단부를 포함하여 틀체로부터 돌출 형성되며, 상기 피스톤 로드부의 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 상기 피스톤 로드부 내주면에서 상기 피스톤 로드부 외주면까지의 폭보다 큰 것을 특징으로 하는 공기압축기를 제공한다.In order to solve the above-mentioned problems, the present invention provides a cylinder including a compression chamber recessed; And an orbiter including a protruding piston rod portion, wherein the piston rod portion includes an inner circumferential surface of the piston rod portion and an outer circumferential surface of the piston rod portion, and includes an end portion at an end portion to protrude from the frame body. It provides an air compressor, characterized in that the diameter of the imaginary circle based on the curvature formed at the end is larger than the width from the inner peripheral surface of the piston rod to the outer peripheral surface of the piston rod.
또한, 본 발명은 상기 단부는 제1단부 및 제2단부를 포함하고, 상기 제1단부 및 상기 제2단부는 상기 피스톤 로드부가 돌출 형성되지 않은 비연속부에 의해 구획 형성되는 것을 특징으로 하는 공기압축기를 제공한다.In another aspect, the present invention is characterized in that the end portion comprises a first end and a second end, wherein the first end and the second end are partitioned by a discontinuous portion in which the piston rod portion does not protrude. Provide a compressor.
또한, 본 발명은 상기 압축챔버는 압축챔버 내주면과 압축챔버 외주면를 포함하고, 끝단에 밀폐면을 포함하여 상기 실린더의 내부에 함몰 형성되며, 상기 압축챔버의 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 상기 압축챔버 내주면에서 상기 압축챔버 외주면까지의 폭보다 큰 것을 특징으로 하는 공기압축기를 제공한다.In addition, the present invention is the compression chamber includes a compression chamber inner peripheral surface and the compression chamber outer peripheral surface, including a sealing surface at the end is formed in the interior of the cylinder, based on the curvature formed on the sealing surface of the end of the compression chamber An air compressor is provided, wherein the diameter of the imaginary circle is larger than the width from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
또한, 본 발명은 상기 밀폐면은 제1밀폐면 및 제2밀폐면을 포함하고, 상기 제1밀폐면 및 상기 제2밀폐면은 상기 압축챔버가 함몰 형성되지 않는 밀폐부에 의해 구획 형성되는 것을 특징으로 하는 공기압축기를 제공한다.The present invention also provides that the sealing surface includes a first sealing surface and a second sealing surface, wherein the first sealing surface and the second sealing surface are partitioned by a sealing part in which the compression chamber is not formed. It provides an air compressor characterized by.
또한, 본 발명은 상기 실린더는, 상기 밀폐부를 중심으로, 상기 압축챔버의 일측에 관통 형성되는 공기흡입구 및 상기 압축챔버의 타측에 관통 형성되는 공기배출구를 더 포함하는 것을 특징으로 하는 공기압축기를 제공한다.The present invention also provides an air compressor, wherein the cylinder further includes an air inlet formed through one side of the compression chamber and an air outlet formed through the other side of the compression chamber with respect to the sealing part. do.
상기한 바와 같은 본 발명에 따르면, 압축챔버의 가장 끝단의 밀폐면 영역에 피스톤 로드부의 가장 끝단의 단부가 접촉하여 외부공기를 압축함에 있어서, 상호 접촉하는 면적이 증대시킴으로써, 공기 압축기의 압축력을 향상시킬 수 있다.According to the present invention as described above, in compressing the outside air by contacting the end of the piston rod portion with the end of the piston rod part in the closed surface region of the extreme end of the compression chamber, the contact area is increased, thereby improving the compression force of the air compressor. You can.
도 1 내지 도 3은 일반적인 구조의 회전식 공기압축기의 압축 상태를 도시한 개략적인 예시도이다.1 to 3 is a schematic illustration showing a compressed state of a rotary air compressor of a general structure.
도 4는 일반적인 구조의 회전식 공기압축기의 압축챔버를 설명하기 위한 개략적인 모식도이며, 도 5는 일반적인 구조의 회전식 공기압축기의 피스톤 로드부를 설명하기 위한 개략적인 모식도이고, 도 6은 일반적인 구조의 회전식 공기압축기의 완전한 밀폐가 이루어지지 않음을 설명하기 위한 모식도이다.Figure 4 is a schematic diagram for explaining a compression chamber of a rotary air compressor of a general structure, Figure 5 is a schematic diagram for explaining a piston rod of a rotary air compressor of a general structure, Figure 6 is a rotary air of a general structure It is a schematic diagram for demonstrating that a compressor is not completely sealed.
도 7은 본 발명에 따른 공기압축기의 실린더를 도시하는 평면도이고, 도 8은 본 발명에 따른 공기압축기의 실린더를 도시하는 단면도이며, 도 9는 본 발명에 따른 공기압축기의 실린더를 도시하는 저면도이고, 도 10은 본 발명에 따른 공기압축기의 실린더의 압축챔버를 설명하기 위한 개략적인 모식도이다.7 is a plan view showing a cylinder of the air compressor according to the present invention, Figure 8 is a cross-sectional view showing a cylinder of the air compressor according to the present invention, Figure 9 is a bottom view showing a cylinder of the air compressor according to the present invention. 10 is a schematic diagram for explaining a compression chamber of a cylinder of an air compressor according to the present invention.
도 11은 본 발명에 따른 공기압축기의 오비터를 도시하는 평면도이고, 도 12는 본 발명에 따른 공기압축기의 오비터를 도시하는 단면도이며, 도 13은 본 발명에 따른 공기압축기의 오비터를 도시하는 저면도이다.11 is a plan view showing an orbiter of an air compressor according to the present invention, FIG. 12 is a sectional view showing an orbiter of an air compressor according to the present invention, and FIG. 13 shows an orbiter of an air compressor according to the present invention. It is a bottom view.
도 14 내지 도 22는 본 발명에 따른 공기압축기의 압축 상태를 도시한 개략적인 예시도이다.14 to 22 is a schematic illustration showing a compressed state of the air compressor according to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Regardless of the drawings, the same reference numbers refer to the same components, and “and / or” includes each and every combination of one or more of the items mentioned.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and / or "comprising" does not exclude the presence or addition of one or more other components in addition to the mentioned components.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, the terms defined in the commonly used dictionaries are not ideally or excessively interpreted unless they are specifically defined clearly.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소와 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)" 또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다. The spatially relative terms " below ", " beneath ", " lower ", " above ", " upper " It can be used to easily describe a component's correlation with other components. Spatially relative terms are to be understood as including terms in different directions of components in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as "below" or "beneath" of another component may be placed "above" the other component. Can be. Thus, the exemplary term "below" can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 3은 일반적인 구조의 회전식 공기압축기의 압축 상태를 도시한 개략적인 예시도이다. 이때, 상기 일반적인 구조의 회전식 공기압축기라함은 출원번호 제10-2009-0013659호의 에어 컴프레셔 및 출원번호 제10-2010-0034840호의 회전식 공기압축기일 수 있다.1 to 3 is a schematic illustration showing a compressed state of a rotary air compressor of a general structure. At this time, the rotary air compressor of the general structure may be an air compressor of the application number 10-2009-0013659 and a rotary air compressor of the application number 10-2010-0034840.
먼저, 도 1을 참조하면, 일반적인 구조의 회전식 공기압축기에서 실린더(200)를 구성하고 있는 상기 압축챔버(251, 252)에는 오비터(미도시)를 구성하고 있는 피스톤로드부(320)가 설치된다. 상기 피스톤로드부(320)는 상기 압축챔버에서 편심운동을 하면서, 상기 압축챔버를 두 개의 제1압축 챔버(251) 및 제2압축챔버(252)로 구획 형성시키게 된다. First, referring to FIG. 1, a piston rod part 320 constituting an orbiter (not shown) is installed in the compression chambers 251 and 252 constituting the cylinder 200 in a rotary air compressor having a general structure. do. The piston rod 320 is partitioned into two compression chambers 251 and two compression chambers 252 while eccentric movement in the compression chamber.
이때, 상기 오비터(미도시)는 예를 들면, 출원번호 제10-2010-0034840호에서와 같은 편심 회전축(미도시)의 편심 회전 동작에 따라 연동하여 편심 회전 동작하며, 공기흡입구(220)를 통해 제공된 공기를 제1압축챔버(251) 및 제2압축챔버(252)를 선택적으로 축소시켜 공기를 압축시킨다.At this time, the orbiter (not shown), for example, in accordance with the eccentric rotation operation of the eccentric rotation axis (not shown) as in the application number 10-2010-0034840, the eccentric rotation operation, the air intake 220 The air provided through the air is compressed to selectively reduce the first compression chamber 251 and the second compression chamber 252.
또한, 제1공기배출구(230) 및 제2공기배출구(240)로 압축된 공기를 압축시킨 상태에서 선택적으로 배출시키게 되는 것이다. In addition, the compressed air compressed by the first air outlet 230 and the second air outlet 240 is selectively discharged.
보다 구체적으로, 도 2를 참조하면, 공기흡입구(220)를 통해 압축챔버(251, 252)로 공기가 흡입되는 과정에서 구동원으로 전원을 인가하여 편심 회전축(미도시)을 회전동작시키게 되면, 상기 오비터(미도시)는 압축챔버(251, 252)의 내주면을 따라 편심 회전동작하게 되는데, 이 과정에서 오비터(미도시)를 구성하고 있는 피스톤로드부(320)는 제1압축챔버(251)를 축소시켜 상기 제1압축챔버(251)에 흡입되어 있는 공기를 압축시킨 상태에서 제1공기배출구(230)로 배출시키게 다음, 상기 제1공기배출구(230)를 폐쇄시키게 된다.More specifically, referring to FIG. 2, when the air is sucked into the compression chambers 251 and 252 through the air suction port 220, power is applied to the driving source to rotate the eccentric rotation shaft (not shown). The orbiter (not shown) is eccentrically rotated along the inner circumferential surfaces of the compression chambers 251 and 252. In this process, the piston rod 320 constituting the orbiter (not shown) is the first compression chamber 251. ) Is reduced to discharge the air sucked into the first compression chamber 251 to the first air outlet 230 in a compressed state, and then close the first air outlet 230.
다음으로, 도 3을 참조하면, 편심 회전축(미도시)이 구동원의 동력으로 계속 회전 동작하게 되면 오비터(미도시)는 압축챔버(251, 252)의 외주면을 따라 편심 회전동작하게 되는데, 이 과정에서 오비터(미도시)를 구성하고 있는 피스톤 로드부(320)는 제2압축챔버(252)를 축소시켜 상기 제2압축챔버(252)에 흡입되어 있는 공기를 압축시킨 상태에서 제2공기배출구(240)로 배출시킨 다음, 상기 제2공기배출구(240)를 폐쇄시키게 된다.Next, referring to FIG. 3, when the eccentric rotation shaft (not shown) continues to rotate with the power of the driving source, the orbiter (not shown) is eccentrically rotated along the outer circumferential surfaces of the compression chambers 251 and 252. In the process, the piston rod 320 constituting the orbiter (not shown) reduces the second compression chamber 252 to compress the air sucked into the second compression chamber 252 in the second air. After discharging to the outlet 240, the second air outlet 240 is closed.
이때, 일반적인 구조의 회전식 공기압축기에서는 피스톤 로드부가 압축챔버의 내주면을 따라 편심 회전동작함에 있어서, 각각의 가장 끝단영역, 즉, 피스톤 로드부의 단부와 압축챔버의 밀폐면이 접촉하는 영역에서 완전한 밀폐가 이루어지지 않고, 도 2 및 도 3에 도시된 바와 같이, G1 및 G2와 같은 갭이 발생하게 된다. 이에 대해 후술하기로 한다.At this time, in the rotary air compressor having a general structure, in the eccentric rotation operation of the piston rod portion along the inner circumferential surface of the compression chamber, complete sealing is performed at each end region, that is, the region where the end of the piston rod portion and the sealing surface of the compression chamber are in contact with each other. 2 and 3, gaps such as G1 and G2 occur. This will be described later.
도 4는 일반적인 구조의 회전식 공기압축기의 압축챔버를 설명하기 위한 개략적인 모식도이며, 도 5는 일반적인 구조의 회전식 공기압축기의 피스톤 로드부를 설명하기 위한 개략적인 모식도이고, 도 6는 일반적인 구조의 회전식 공기압축기의 완전한 밀폐가 이루어지지 않음을 설명하기 위한 모식도이다.Figure 4 is a schematic diagram for explaining a compression chamber of a rotary air compressor of a general structure, Figure 5 is a schematic schematic diagram for explaining the piston rod of the rotary air compressor of a general structure, Figure 6 is a rotary air of a general structure It is a schematic diagram for demonstrating that a compressor is not completely sealed.
먼저, 도 4를 참조하면, 일반적인 구조의 회전식 공기압축기에서의 실린더의 압축챔버는(253)는 압축챔버 내주면에서 압축챔버 외주면까지의 W1의 폭으로 함몰 형성되어 있다.First, referring to FIG. 4, the compression chamber 253 of the cylinder in the rotary air compressor having a general structure is formed recessed in the width of W1 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
또한, 상기 실린더의 압축챔버(253)는 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 가상의 원을 형성하였을 시, 상기 가상의 원은 d1의 직경으로 함몰 형성되어 있다.In addition, when the imaginary circle is formed on the compression chamber 253 of the cylinder based on the curvature formed at the closed end of the cylinder, the imaginary circle is recessed to a diameter of d1.
이때, 압축챔버 내주면에서 압축챔버 외주면까지의 W1의 폭과 압축챔버의 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 d1의 직경은 동일한 길이로 형성이 되어 있다.At this time, the diameter of the virtual circle d1 based on the width of W1 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber and the curvature formed at the closed end of the compression chamber is formed to have the same length.
다음으로, 도 5를 참조하면, 일반적인 구조의 회전식 공기압축기의 오비터의 피스톤 로드부(320)는 피스톤 로드부 내주면에서 피스톤 로드부 외주면까지의 W2의 폭으로 돌출 형성되어 있다.Next, referring to FIG. 5, the piston rod part 320 of the orbiter of the rotary air compressor of the general structure is formed to protrude in the width of W2 from the inner circumferential surface of the piston rod to the outer circumferential surface of the piston rod.
또한, 상기 오비터의 피스톤 로드부(320)는 가장 끝단의 단부에 형성된 곡률을 바탕으로 가상의 원을 형성하였을 시, 상기 가상의 원은 d2의 직경으로 돌출 형성되어 있다.In addition, when the piston rod 320 of the orbiter is formed of a virtual circle based on the curvature formed at the end of the most end, the virtual circle is formed to protrude to the diameter of d2.
이때, 피스톤 로드부 내주면에서 피스톤 로드부 외주면까지의 W2의 폭과 피스톤 로드부의 가장 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 d2의 직경은 동일한 길이로 형성이 되어 있다.At this time, the diameter of the virtual circle d2 based on the width of W2 from the inner circumferential surface of the piston rod portion to the outer circumferential surface of the piston rod portion and the curvature formed at the end of the end of the piston rod portion is formed to have the same length.
즉, 도 4 및 도 5에 도시된 바와 같이, 함몰 형성된 압축챔버는 폭 또는 직경이 전체적으로 동일하게 형성되어 있고, 돌출 형성된 피스톤 로드부는 폭 또는 직경이 전체적으로 동일하게 형성되어 있다.That is, as shown in FIGS. 4 and 5, the recessed compression chamber is formed to have the same width or diameter as a whole, and the protruding piston rod portion is formed to have the same width or diameter as a whole.
이로 인하여, 도 1 내지 도 3에 도시된 바와 같이, 피스톤 로드부가 압축챔버의 내주면을 따라 편심 회전동작함에 있어서, 각각의 가장 끝단영역, 즉, 피스톤 로드부의 단부와 압축챔버의 밀폐면가 접촉하는 영역에서는 상호 접촉되는 면적에 한계가 있어, 밀폐력이 저하되게 되고, 따라서, 공기 압축기의 압축력 또한 저하되게 된다.Thus, as shown in FIGS. 1 to 3, in the eccentric rotation operation of the piston rod portion along the inner circumferential surface of the compression chamber, each of the most end regions, that is, the region where the end of the piston rod portion and the sealing surface of the compression chamber are in contact with each other. In this case, the area in contact with each other is limited, and the sealing force is lowered, and therefore, the compression force of the air compressor is also lowered.
즉, 도 6에 도시된 바와 같이, 예를 들어, 완전한 2개의 원(252, 320)이 접촉하게 되는 경우, 어느 한점(P)에서 점에서 접촉하게 될 것이나, 일반적인 구조의 공기압축기는 완전한 원의 형태를 가진 것이 아닌, 예를 들면, 밀폐부(260)를 포함하고 있기 때문에, 도 2 및 도 3와 같은 갭이 발생하게 되는 것이다.That is, as shown in FIG. 6, for example, when two complete circles 252 and 320 come into contact, at one point P, they will come into contact at a point. Since the sealing unit 260 is included, for example, the gap shown in FIGS. 2 and 3 is generated.
이에 따라, 본 출원인은 공기 압축기의 압축력 향상을 위해 피스톤 로드부와 압축챔버의 밀폐력을 증대시키는 것이 중요함을 인식하고, 상기 밀폐력 증대를 위한 피스톤 로드부와 압축챔버의 구조를 제안하고자 한다.Accordingly, the present applicant recognizes the importance of increasing the sealing force of the piston rod portion and the compression chamber to improve the compression force of the air compressor, and proposes a structure of the piston rod portion and the compression chamber for increasing the sealing force.
한편, 후술할 바와 같이, 본 발명은 공기압축기의 실린더의 압축챔버 및 공기압축기의 오비터의 피스톤 로드부에 특징이 있는 것으로, 이를 제외한 나머지 구성, 예를 들면, 실린더와 프레임의 결합구조, 실린더와 오비터의 결합구조, 현심 회전축의 개별구조 및 결합구조, 종동 홀더부의 개별구조 및 결합구조 등은 출원번호 제10-2009-0013659호의 에어 컴프레셔 및 출원번호 제10-2010-0034840호의 회전식 공기압축기를 참조할 수 있으므로, 구체적인 설명은 생략하기로 한다.On the other hand, as will be described later, the present invention is characterized in that the compression chamber of the cylinder of the air compressor and the piston rod of the orbiter of the air compressor, the rest of the configuration, for example, the coupling structure of the cylinder and the frame, the cylinder And the combination structure of the orbiter, the individual structure and the coupling structure of the rotating core, the individual structure and the coupling structure of the driven holder, etc., the air compressor of the application No. 10-2009-0013659 and the rotary air compressor of the application No. 10-2010-0034840 Since reference may be made, a detailed description thereof will be omitted.
또한, 이는 본 발명에서는 공기압축기의 실린더의 압축챔버 및 공기압축기의 오비터의 피스톤 로드부에 특징이 있으므로, 이를 제외한 나머지 구조에 대해서는 자유로는 변경이 가능하며, 이를 제외한 나머지 구조의 종류에 대해 제한받지 않음을 의미한다.In addition, since the present invention is characterized in that the compression chamber of the cylinder of the air compressor and the piston rod of the orbiter of the air compressor, the rest of the structure except for this can be changed freely, except for this kind of structure is limited It means not received.
도 7은 본 발명에 따른 공기압축기의 실린더를 도시하는 평면도이고, 도 8는 본 발명에 따른 공기압축기의 실린더를 도시하는 단면도이며, 도 9는 본 발명에 따른 공기압축기의 실린더를 도시하는 저면도이고, 도 10은 본 발명에 따른 공기압축기의 실린더의 압축챔버를 설명하기 위한 개략적인 모식도이다.7 is a plan view showing a cylinder of the air compressor according to the present invention, Figure 8 is a cross-sectional view showing a cylinder of the air compressor according to the invention, Figure 9 is a bottom view showing a cylinder of the air compressor according to the present invention. 10 is a schematic diagram for explaining a compression chamber of a cylinder of an air compressor according to the present invention.
먼저, 도 7 내지 도 9를 참조하면, 본 발명에 따른 공기압축기의 실린더(600)는 실린더의 내부에 함몰 형성된 압축챔버(653)를 포함한다.First, referring to FIGS. 7 to 9, the cylinder 600 of the air compressor according to the present invention includes a compression chamber 653 formed in the interior of the cylinder.
즉, 상기 압축챔버(653)는 원형의 링 형상으로 실린더의 내부에 함몰 형성되되, 일측은 밀폐부(650)로 밀폐 구성하여, 상기 밀폐부(650)를 중심으로 해서 압축챔버(653)의 일측에는 공기흡입구(620)가 관통 형성되도록 하며, 상기 밀폐부(650)를 중심으로 해서 압축챔버(653)의 타측에는 제1공기배출구(630) 및 제2공기배출구(640)가 관통 형성되도록 구성한다. That is, the compression chamber 653 is recessed in the inside of the cylinder in a circular ring shape, one side is sealed by the sealing portion 650, the compression chamber 653 of the compression chamber 653 An air inlet 620 is formed at one side thereof, and the first air outlet 630 and the second air outlet 640 are formed at the other side of the compression chamber 653 based on the sealing part 650. Configure.
즉, 상기 압축챔버는 원형의 링 형상으로 형성되되, 상기 밀폐부(650)에서는 압축챔버가 함몰 형성되지 않는 비연속적인 원형의 링 형상에 해당한다. 이하, 본 발명에서는 상기 압축챔버의 형상을 비연속부를 포함한 변형 링형상(
Figure PCTKR2012006811-appb-I000001
)의 구조라 정의하기로 한다.
That is, the compression chamber is formed in a circular ring shape, and corresponds to a discontinuous circular ring shape in which the compression chamber is not recessed in the sealing part 650. Hereinafter, in the present invention, the shape of the compression chamber is a deformed ring shape including a discontinuous portion (
Figure PCTKR2012006811-appb-I000001
We will define the structure as).
보다 구체적으로, 상기 압축챔버(653)는 압축챔버 내주면(655)과 압축챔버 외주면(656)를 포함하고, 가장 끝단에 제1밀폐면(661) 및 제2밀폐면(662)을 포함하여 실린더의 내부에 함몰 형성되며, 이때, 제1밀폐면(661) 및 제2밀폐면(662)은 상기 밀폐부(650)에 의해 구획 형성된다.More specifically, the compression chamber 653 includes a compression chamber inner circumferential surface 655 and a compression chamber outer circumferential surface 656, and includes a first sealing surface 661 and a second sealing surface 662 at the extreme end thereof. Is formed in the interior of the recess, in this case, the first sealing surface 661 and the second sealing surface 662 is partitioned by the sealing portion 650.
한편, 도 8에 도시된 바와 같이, 본 발명에 따른 공기압축기의 실린더(600)는 압축챔버 이외에, 그 중심영역에 함몰 형성된 편심 공간부를 더 포함할 수 있으며, 이는 본 발명의 특징적인 부분이 아니므로, 구체적인 설명은 생략하기로 하며, 다만, 이 사항에 대해서는 출원번호 제10-2010-0034840호의 회전식 공기압축기를 참조할 수 있다.On the other hand, as shown in Figure 8, the cylinder 600 of the air compressor according to the present invention may further include an eccentric space formed in the center region in addition to the compression chamber, which is not a characteristic part of the present invention As a detailed description thereof will be omitted, but for this matter, reference may be made to the rotary air compressor of Patent No. 10-2010-0034840.
다음으로, 도 10을 참조하면, 본 발명에 따른 공기압축기의 실린더의 압축챔버(653)는 압축챔버 내주면에서 압축챔버 외주면까지의 W3의 폭으로 함몰 형성되어 있다.Next, referring to FIG. 10, the compression chamber 653 of the cylinder of the air compressor according to the present invention is recessed in the width of W3 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
또한, 상기 실린더의 압축챔버(653)는 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 가상의 원을 형성하였을 시, 상기 가상의 원은 d3의 직경으로 함몰 형성되어 있다.In addition, when the compression chamber 653 of the cylinder forms a virtual circle based on the curvature formed at the closed end of the cylinder, the virtual circle is recessed to a diameter of d3.
이때, 본 발명에서는 압축챔버의 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 직경(d3)이 압축챔버 내주면에서 압축챔버 외주면까지의 폭(W3)보다 큰 것을 특징으로 한다.At this time, the present invention is characterized in that the diameter d3 of the imaginary circle based on the curvature formed at the closed end of the compression chamber is larger than the width W3 from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
즉, 압축챔버의 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 직경(d3)을 압축챕버의 다른 부분에 형성된 압축챔버 내주면에서 압축챔버 외주면까지의 폭(W3)보다 크게 함으로써, 후술하는 오비터의 실린더 로드부와 접촉함에 있어, 그 접촉면적을 증대시킬 수 있다. 이에 대해서는 후술하기로 한다.That is, by making the diameter d3 of the imaginary circle based on the curvature formed at the closed end of the compression chamber larger than the width W3 from the inner circumferential surface of the compression chamber formed at the other part of the compression chamber to the outer circumferential surface of the compression chamber, In contact with the cylinder rod portion of the orbiter described later, the contact area can be increased. This will be described later.
도 11은 본 발명에 따른 공기압축기의 오비터를 도시하는 평면도이고, 도 12는 본 발명에 따른 공기압축기의 오비터를 도시하는 단면도이며, 도 13는 본 발명에 따른 공기압축기의 오비터를 도시하는 저면도이다.11 is a plan view showing an orbiter of the air compressor according to the present invention, Figure 12 is a cross-sectional view showing the orbiter of the air compressor according to the present invention, Figure 13 shows an orbiter of the air compressor according to the present invention It is a bottom view.
도 11 내지 도 13을 참조하면, 본 발명에 따른 공기압축기의 오비터(700)는 본체를 이루는 틀체(730)와 상기 틀체(730)의 배면으로 돌출 형성되는 피스톤 로드부(720)를 포함한다.11 to 13, the orbiter 700 of the air compressor according to the present invention includes a frame 730 constituting a main body and a piston rod portion 720 protruding from the rear surface of the frame 730. .
상기 틀체(730)는 편심 회전축(미도시)으로부터 회전력을 전달받아 편심운동하는 부분이고, 상기 피스톤 로드부는 도 7 내지 도 10의 실린더(600)를 구성하고 있는 압축챔버(653)에 수용되어, 상기 틀체(730)의 편심운동에 따라 공기흡입구(620)를 통하여 유입된 외부공기를 압축챔버(653)에서 압축시켜 제1공기 배출구(630) 및 제2공기배출구(640)로 토출되게 한다.The frame 730 is a portion for eccentric movement by receiving a rotational force from an eccentric rotation shaft (not shown), the piston rod is accommodated in the compression chamber 653 constituting the cylinder 600 of Figures 7 to 10, According to the eccentric movement of the frame 730, the external air introduced through the air inlet 620 is compressed in the compression chamber 653 to be discharged to the first air outlet 630 and the second air outlet 640.
보다 구체적으로, 실린더(600)를 구성하고 있는 밀폐부(650)에 의하여 변형 링형상(
Figure PCTKR2012006811-appb-I000002
)의 구조를 가진 압축챔버(653)에 수용되어 있는 상기 오비터(700)의 피스톤 로드부(720)는 편심 회전운동을 하지 못하고 상기 압축챔버(653)의 내주면 및 외주면을 따라 편심 캠운동을 수행하게 되는 것이다.
More specifically, the deformed ring shape is formed by the sealing part 650 constituting the cylinder 600 (
Figure PCTKR2012006811-appb-I000002
The piston rod portion 720 of the orbiter 700 accommodated in the compression chamber 653 having a structure of) does not perform an eccentric rotational movement and performs an eccentric cam movement along the inner and outer circumferential surfaces of the compression chamber 653. It will be done.
상기 상기 오비터(700)의 피스톤 로드부(720)를 보다 구체적으로 살펴보면, 피스톤 로드부(720)는 피스톤 로드부 내주면(765)과 피스톤 로드부 외주면(755)을 포함하고, 가장 끝단에 제1단부(761) 및 제2단부(762)를 포함하여 틀체로부터 돌출 형성되며, 이때, 제1단부(761) 및 제2단부(762)는 상기 피스톤 로드부가 돌출 형성되지 않은 비연속부(750)에 의해 구획 형성된다.Looking at the piston rod portion 720 of the orbiter 700 in more detail, the piston rod 720 includes a piston rod inner circumferential surface 765 and the piston rod portion outer peripheral surface 755, the first end Including the first end 761 and the second end 762 protruding from the frame, wherein the first end 761 and the second end 762 is a non-continuous portion (not protruding from the piston rod) 750).
즉, 상기 피스톤 로드부(720)는 원형의 링 형상으로 형성되되, 상기 비연속부(750)에서는 피스톤 로드부가 돌출 형성되지 않는 비연속적인 원형의 링 형상에 해당한다. 이하, 본 발명에서는 상기 피스톤 로드부의 형상을 비연속부를 포함한 변형 링형상(
Figure PCTKR2012006811-appb-I000003
)의 구조라 정의하기로 하며, 이는 상술한 압축챔버의 구조와 동일 또는 유사한 구조에 해당한다.
That is, the piston rod 720 is formed in a circular ring shape, the non-continuous portion 750 corresponds to a discontinuous circular ring shape in which the piston rod is not protruded. Hereinafter, in the present invention, the shape of the piston rod portion is deformed ring shape including a discontinuous portion (
Figure PCTKR2012006811-appb-I000003
It will be defined as the structure of), which corresponds to the same or similar structure as the structure of the compression chamber described above.
한편, 도 11에 도시된 바와 같이, 본 발명에 따른 공기압축기의 오비터(700)는 피스톤 로드부 이외에, 그 중심영역에 함몰 형성된 편심홈 및 외곽영역에 함몰형성된 오목홈을 더 포함할 수 있으며, 이는 본 발명의 특징적인 부분이 아니므로, 구체적인 설명은 생략하기로 하며, 다만, 이 사항에 대해서는 출원번호 제10-2010-0034840호의 회전식 공기압축기를 참조할 수 있다.Meanwhile, as shown in FIG. 11, the orbiter 700 of the air compressor according to the present invention may further include an eccentric groove formed in the center region and a concave groove formed in the outer region, in addition to the piston rod portion. However, since this is not a characteristic part of the present invention, a detailed description thereof will be omitted, however, reference may be made to the rotary air compressor of Patent No. 10-2010-0034840.
계속해서, 도 13을 참조하면, 본 발명에 따른 공기압축기의 오비터(700)는 피스톤 로드부(720)는 피스톤 로드부의 내주면(756)에서 피스톤 로드부의 외주면(755)까지의 W4의 폭으로 돌출 형성되어 있다.Subsequently, referring to FIG. 13, the orbiter 700 of the air compressor according to the present invention has a width of W4 from the inner circumferential surface 756 of the piston rod portion to the outer circumferential surface 755 of the piston rod portion. It is formed to protrude.
또한, 상기 오비터(700)는 피스톤 로드부(720)는 가장 끝단의 제1단부(761) 및 제2단부(762)에 형성된 곡률을 바탕으로 가상의 원을 형성하였을 시, 상기 가상의 원은 d4의 직경으로 돌출 형성되어 있다.In addition, when the orbiter 700 forms a virtual circle based on the curvature formed at the first end 761 and the second end 762 of the piston rod 720, the virtual circle Is protruded to a diameter of d4.
이때, 본 발명에서는 피스톤 로드부의 가장 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 직경(d4)이 피스톤 로드부 내주면에서 피스톤 로드부 외주면까지의 폭(W4)보다 큰 것을 특징으로 한다.At this time, the present invention is characterized in that the diameter d4 of the imaginary circle based on the curvature formed at the end of the piston rod portion is larger than the width W4 from the inner circumferential surface of the piston rod portion to the outer circumferential surface of the piston rod portion.
즉, 피스톤 로드부의 가장 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 직경(d4)을 피스톤 로드부의 다른 부분에 형성된 피스톤 로드부의 내주면에서 피스톤 로드부의 외주면까지의 폭(W4)보다 크게 함으로써, 상술한 실린더의 압축챔버와 접촉함에 있어, 그 접촉면적을 증대시킬 수 있다. That is, by making the diameter d4 of the imaginary circle based on the curvature formed at the end of the piston rod portion larger than the width W4 from the inner circumferential surface of the piston rod portion formed at the other portion of the piston rod portion to the outer circumferential surface of the piston rod portion, In contact with the compression chamber of the cylinder described above, the contact area can be increased.
도 14 내지 도 22는 본 발명에 따른 공기압축기의 압축 상태를 도시한 개략적인 예시도이다.14 to 22 is a schematic illustration showing a compressed state of the air compressor according to the present invention.
도 14 내지 도 22를 참조하면, 본 발명에 따른 공기압축기에서 실린더를 구성하고 있는 상기 압축챔버(651, 652)에는, 오비터(미도시)를 구성하고 있는 피스톤로드부(720)가 설치된다. 상기 피스톤로드부(720)는 상기 압축챔버에서 편심운동을 하면서, 상기 압축챔버를 두 개의 제1압축 챔버(651) 및 제2압축챔버(652)로 구획 형성시키게 된다. 14 to 22, in the compression chambers 651 and 652 constituting the cylinder in the air compressor according to the present invention, a piston rod portion 720 constituting an orbiter (not shown) is installed. . The piston rod 720 is divided into two first compression chambers 651 and a second compression chamber 652 while eccentric movement in the compression chamber.
이때, 상기 오비터(미도시)는 예를 들면, 출원번호 제10-2010-0034840호에서와 같은 편심 회전축(미도시)의 편심 회전 동작에 따라 연동하여 편심 회전 동작하며, 공기흡입구(620)를 통해 제공된 공기를 제1압축챔버(651) 및 제2압축챔버(652)를 선택적으로 축소시켜 공기를 압축시킨다.At this time, the orbiter (not shown), for example, in accordance with the eccentric rotation operation of the eccentric rotation axis (not shown) as in the application number 10-2010-0034840, the eccentric rotation operation, the air intake 620 The air provided through the first compression chamber 651 and the second compression chamber 652 is selectively reduced to compress the air.
또한, 제1공기배출구(630) 및 제2공기배출구(640)로 압축된 공기를 압축시킨 상태에서 선택적으로 배출시키게 되는 것이다. In addition, the compressed air compressed by the first air outlet 630 and the second air outlet 640 is selectively discharged.
보다 구체적으로, 공기흡입구(620)를 통해 압축챔버(651, 652)로 공기가 흡입되는 과정에서 구동원으로 전원을 인가하여 편심 회전축(미도시)을 회전동작시키게 되면, 상기 오비터(미도시)는 압축챔버(651, 652)의 내주면 및 외주면을 따라 편심 회전동작하게 되는데, 이 과정에서 오비터(미도시)를 구성하고 있는 피스톤로드부(720)는 제1압축챔버(651)를 축소시켜 상기 제1압축챔버(651)에 흡입되어 있는 공기를 압축시킨 상태에서 제1공기배출구(630)로 배출시키게 다음, 상기 제1공기배출구(630)를 폐쇄시키게 된다.More specifically, when the air is sucked into the compression chambers 651 and 652 through the air inlet 620, when the power is applied to the driving source to rotate the eccentric rotation axis (not shown), the orbiter (not shown) The eccentric rotation is performed along the inner and outer circumferential surfaces of the compression chambers 651 and 652. In this process, the piston rod 720 constituting the orbiter (not shown) reduces the first compression chamber 651. The air sucked into the first compression chamber 651 is discharged to the first air outlet 630 in a compressed state, and then the first air outlet 630 is closed.
또한, 편심 회전축(미도시)이 구동원의 동력으로 계속 회전 동작하게 되면 오비터(미도시)는 압축챔버(651, 652)의 외주면을 따라 편심 회전동작하게 되는데, 이 과정에서 오비터(미도시)를 구성하고 있는 피스톤 로드부(720)는 제2압축챔버(652)를 축소시켜 상기 제2압축챔버(652)에 흡입되어 있는 공기를 압축시킨 상태에서 제2공기배출구(640)로 배출시킨 다음, 상기 제2공기배출구(640)를 폐쇄시키게 된다.In addition, when the eccentric rotation axis (not shown) continues to rotate by the power of the drive source, the orbiter (not shown) is eccentric rotation operation along the outer circumferential surface of the compression chamber (651, 652), in this process orbiter (not shown) Piston rod 720 constituting the () is reduced to the second compression chamber 652 to discharge the air sucked in the second compression chamber 652 to the second air outlet 640 in the compressed state Next, the second air outlet 640 is closed.
이때, 미설명 부호 660은 실린더의 중심축을 나타내며, 730은 오비터의 중심축을 나타낸다.In this case, reference numeral 660 denotes a central axis of the cylinder, and 730 denotes a central axis of the orbiter.
한편, 상술한 바와 같이, 본 발명에서는 압축챔버의 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 압축챔버 내주면에서 압축챔버 외주면까지의 폭보다 크게 형성되어 있다.On the other hand, as described above, in the present invention, the diameter of the virtual circle based on the curvature formed at the closed end of the compression chamber is larger than the width from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
또한, 본 발명에서는 피스톤 로드부의 가장 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 피스톤 로드부 내주면에서 피스톤 로드부 외주면까지의 폭보다 크게 형성되어 있다.Further, in the present invention, the diameter of the imaginary circle based on the curvature formed at the end of the piston rod portion is formed larger than the width from the inner circumference of the piston rod portion to the outer circumference of the piston rod portion.
이로 인하여, 본 발명에서는 압축챔버의 가장 끝단의 밀폐면 영역에 피스톤 로드부의 가장 끝단의 단부가 접촉하여 외부공기를 압축함에 있어서, 상호 접촉하는 면적이 증대됨을 알 수 있다.For this reason, in the present invention, it can be seen that the area in contact with each other increases in compressing the outside air by contacting the end of the end of the piston rod with the closed surface area of the end of the compression chamber.
즉, 도 4 및 도 5에 도시된 바와 같이, 일반적인 구조의 공기압축기는 함몰 형성된 압축챔버는 폭 또는 직경이 전체적으로 동일하게 형성되어 있고, 돌출 형성된 피스톤 로드부는 폭 또는 직경이 전체적으로 동일하게 형성되어 있다. 이로 인하여, 피스톤 로드부가 압축챔버의 내주면을 따라 편심 회전동작함에 있어서, 각각의 가장 끝단영역, 즉, 피스톤 로드부의 단부와 압축챔버의 밀폐면가 접촉하는 영역에서는 상호 접촉되는 면적에 한계가 있어, 밀폐력이 저하되게 되고, 따라서, 공기 압축기의 압축력 또한 저하되게 된다.That is, as shown in Figures 4 and 5, the air compressor of the general structure is formed in the same compression chamber is formed in the same width or diameter of the overall, the protruding piston rod is formed of the same width or diameter as the whole. . For this reason, in the eccentric rotation operation of the piston rod portion along the inner circumferential surface of the compression chamber, there is a limit in the area that is in contact with each other at the most end region, that is, the region where the end of the piston rod portion and the sealing surface of the compression chamber are in contact with each other. This is lowered and, therefore, the compression force of the air compressor is also lowered.
하지만, 본 발명에서는 압축챔버의 가장 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 압축챔버의 다른 영역보다 크게 형성되어 있고, 피스톤 로드부의 가장 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 피스톤 로드부의 다른 영역보다 크게 형성되어 있기 때문에, 크게 형성된 길이만큼 접촉하는 면적이 증대되게 되고, 따라서, 상호 접촉되는 면적의 증대에 따라, 밀폐력이 증가하게 되므로, 결국, 공기 압축기의 압축력이 향상되게 된다.However, in the present invention, the diameter of the imaginary circle based on the curvature formed on the closed end of the compression chamber is larger than other areas of the compression chamber, and based on the curvature formed on the end of the piston rod. Since the diameter of one imaginary circle is formed larger than the other area of the piston rod portion, the contact area is increased by the length formed largely, and accordingly, the sealing force increases with the increase of the contact area, eventually, The compression force of the air compressor is to be improved.
이상과 같은 본 발명에 따르면, 압축챔버의 가장 끝단의 밀폐면 영역에 피스톤 로드부의 가장 끝단의 단부가 접촉하여 외부공기를 압축함에 있어서, 상호 접촉하는 면적이 증대시킴으로써, 공기 압축기의 압축력을 향상시킬 수 있다.According to the present invention as described above, in compressing the outside air by contacting the end of the piston rod portion with the end of the piston rod in contact with the closed surface region of the extreme end of the compression chamber, the contact area is increased, thereby improving the compression force of the air compressor. Can be.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. You will understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
이상과 같은 본 발명에 따르면 공기 압축기의 압축력을 향상시킴으로써, 소형 경량화를 도모할 수 있다는 점과 진동과 소음이 적게 발생된다는 점에 있어서 차량 정비용, 기계제작용, 건설 현장용, 에어공구 등과 같이 다양한 산업현장에서 널리 사용될 수 있다.According to the present invention as described above by improving the compression force of the air compressor, it is possible to achieve a compact and light weight and less vibration and noise generated in various ways such as vehicle maintenance, mechanical work, construction sites, air tools, etc. It can be widely used in industrial field.
600 : 실린더 620 : 공기흡입구600: cylinder 620: air intake
630, 640 : 공기배출구 653 : 압축챔버630, 640: air outlet 653: compression chamber
655 : 압축챔버 내주면 656 : 압축챔버 외주면655: inner surface of the compression chamber 656: outer surface of the compression chamber
661, 662 : 밀폐면 650 : 밀폐부661, 662: sealing surface 650: sealing
700 : 오비터 730 : 틀체700: Orbiter 730: Frame
720 : 피스톤 로드부 761, 762 : 단부720: piston rod portion 761, 762: end
755 : 피스톤 로드부 외주면 756 : 피스톤 로드부 내주면755: outer peripheral surface of the piston rod 756: inner peripheral surface of the piston rod

Claims (5)

  1. 함몰 형성된 압축챔버를 포함하는 실린더; 및A cylinder including a recessed compression chamber; And
    본체를 이루는 틀체와 상기 틀체로부터 돌출 형성된 피스톤 로드부를 포함하는 오비터를 포함하고,An orbiter including a frame forming a body and a piston rod protruding from the frame,
    상기 피스톤 로드부는 피스톤 로드부 내주면과 피스톤 로드부 외주면을 포함하고, 끝단에 단부를 포함하여 상기 틀체로부터 돌출 형성되며,The piston rod portion includes an inner circumferential surface of the piston rod portion and an outer circumferential surface of the piston rod, and includes an end portion at an end thereof to protrude from the frame body.
    상기 피스톤 로드부의 끝단의 단부에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 상기 피스톤 로드부 내주면에서 상기 피스톤 로드부 외주면까지의 폭보다 큰 것을 특징으로 하며,The diameter of the imaginary circle based on the curvature formed at the end of the end of the piston rod portion is larger than the width from the inner peripheral surface of the piston rod portion to the outer peripheral surface of the piston rod portion,
    상기 피스톤 로드부는 비연속부를 포함한 변형 링형상(
    Figure PCTKR2012006811-appb-I000004
    )의 구조이고, 상기 피스톤 로드부 내주면은 상기 변형 링형상의 내주면이며, 상기 피스톤 로드부 외주면은 상기 변형 링형상의 외주면이고, 상기 단부는 상기 변형 링형상의 비연속부에 의해 구획 형성되는 것을 특징으로 하는 공기압축기.
    The piston rod portion has a deformed ring shape including a discontinuous portion (
    Figure PCTKR2012006811-appb-I000004
    The piston rod portion inner circumferential surface is the inner ring surface of the deformed ring shape, the piston rod portion outer circumferential surface is the outer ring surface of the deformed ring shape, and the end portion is formed by the discontinuous portion of the deformed ring shape. Air compressor characterized in that.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 단부는 제1단부 및 제2단부를 포함하고,The end includes a first end and a second end,
    상기 제1단부 및 상기 제2단부는 상기 피스톤 로드부가 돌출 형성되지 않은 비연속부에 의해 구획 형성되는 것을 특징으로 하는 공기압축기.And the first end and the second end are defined by a discontinuous portion in which the piston rod portion does not protrude.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 압축챔버는 압축챔버 내주면과 압축챔버 외주면를 포함하고, 끝단에 밀폐면을 포함하여 상기 실린더의 내부에 함몰 형성되며,The compression chamber includes an inner circumferential surface of the compression chamber and an outer circumferential surface of the compression chamber, and includes a sealing surface at an end thereof, and is formed in the interior of the cylinder.
    상기 압축챔버의 끝단의 밀폐면에 형성된 곡률을 바탕으로 한 가상의 원의 직경이 상기 압축챔버 내주면에서 상기 압축챔버 외주면까지의 폭보다 큰 것을 특징으로 하는 공기압축기.And the diameter of the virtual circle based on the curvature formed on the closed surface of the end of the compression chamber is larger than the width from the inner circumferential surface of the compression chamber to the outer circumferential surface of the compression chamber.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 밀폐면은 제1밀폐면 및 제2밀폐면을 포함하고,The sealing surface includes a first sealing surface and a second sealing surface,
    상기 제1밀폐면 및 상기 제2밀폐면은 상기 압축챔버가 함몰 형성되지 않는 밀폐부에 의해 구획 형성되는 것을 특징으로 하는 공기압축기.And the first sealing surface and the second sealing surface are partitioned by a sealing portion in which the compression chamber is not recessed.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 실린더는, 상기 밀폐부를 중심으로, 상기 압축챔버의 일측에 관통 형성되는 공기흡입구 및 상기 압축챔버의 타측에 관통 형성되는 공기배출구를 더 포함하는 것을 특징으로 하는 공기압축기.The cylinder further comprises an air inlet formed through one side of the compression chamber and an air outlet formed through the other side of the compression chamber with respect to the sealing part.
PCT/KR2012/006811 2011-10-11 2012-08-27 Air compressor WO2013055033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/351,050 US20140255239A1 (en) 2011-10-11 2012-08-27 Air compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110103688A KR101144288B1 (en) 2011-10-11 2011-10-11 Air compressor
KR10-2011-0103688 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013055033A1 true WO2013055033A1 (en) 2013-04-18

Family

ID=46271794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006811 WO2013055033A1 (en) 2011-10-11 2012-08-27 Air compressor

Country Status (3)

Country Link
US (1) US20140255239A1 (en)
KR (1) KR101144288B1 (en)
WO (1) WO2013055033A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890003862B1 (en) * 1984-08-22 1989-10-05 가부시기 가이샤 히다찌세이사꾸쇼 Scroll compressor
KR100407741B1 (en) * 1999-03-24 2003-12-01 황동일 Aaaaa
KR100624374B1 (en) * 2004-10-06 2006-09-18 엘지전자 주식회사 A rotary type orbiter compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684036A (en) * 1949-02-14 1954-07-20 Stratveit Nils Nilsen Rotary machine
BR8605494A (en) * 1985-02-27 1987-04-22 Gutag Innovations Ag DISPLACEMENT MACHINE, OVERALL DISPLACEMENT PUMP, AND PROCESS FOR YOUR MANUFACTURING
JP3724495B1 (en) * 2004-07-09 2005-12-07 ダイキン工業株式会社 Rotary fluid machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890003862B1 (en) * 1984-08-22 1989-10-05 가부시기 가이샤 히다찌세이사꾸쇼 Scroll compressor
KR100407741B1 (en) * 1999-03-24 2003-12-01 황동일 Aaaaa
KR100624374B1 (en) * 2004-10-06 2006-09-18 엘지전자 주식회사 A rotary type orbiter compressor

Also Published As

Publication number Publication date
KR101144288B1 (en) 2012-05-11
US20140255239A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
CN1940297A (en) Scroll fluid machine
WO2012079468A1 (en) Rotary engine and rotor unit thereof
WO2012091416A1 (en) Hermetic compressor and manufacturing method thereof
WO2018151428A1 (en) Rotary compressor
CN101776078B (en) Totally-enclosed type refrigeration compressor and rotor compressor unit thereof
WO2013055033A1 (en) Air compressor
WO2013005906A1 (en) Scroll compressor
WO2018216916A1 (en) Rotary compressor
WO2013028015A2 (en) Oil-free air compressor
WO2015129961A1 (en) Vane rotary compressor
CN211449023U (en) Rotary compressor
CN102392809B (en) Vacuum displacement pump based on Maltese cross movement mechanism
WO2018151538A1 (en) Electric compressor
CN202001299U (en) Rotary air compressor
CN201513346U (en) Full-enclosed refrigeration compressor and rotor compressor unit
WO2023080489A1 (en) Vane rotary compressor
WO2018151512A1 (en) Scroll compressor
CN209083477U (en) A kind of Bidirectional tilting tray type automobile air conditioner compressor and compressor driving spindle
WO2020153665A1 (en) Scroll compressor
CN110594151A (en) Rotary compressor
WO2022119048A1 (en) Rotary piston air compressor
KR101042703B1 (en) Rotary air compressor
WO2023096160A1 (en) Electric compressor
WO2014175474A1 (en) Two-stage turbine unit having triple trochoidal rotor
WO2016099002A1 (en) Rotating-type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14351050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839287

Country of ref document: EP

Kind code of ref document: A1