WO2013054610A1 - Divided mechanical seal device - Google Patents

Divided mechanical seal device Download PDF

Info

Publication number
WO2013054610A1
WO2013054610A1 PCT/JP2012/072411 JP2012072411W WO2013054610A1 WO 2013054610 A1 WO2013054610 A1 WO 2013054610A1 JP 2012072411 W JP2012072411 W JP 2012072411W WO 2013054610 A1 WO2013054610 A1 WO 2013054610A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
seal
sealing ring
stationary
split
Prior art date
Application number
PCT/JP2012/072411
Other languages
French (fr)
Japanese (ja)
Inventor
嘉博 末藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2013538475A priority Critical patent/JP5873502B2/en
Publication of WO2013054610A1 publication Critical patent/WO2013054610A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/3488Split-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/126Shaft sealings using sealing-rings especially adapted for liquid pumps

Definitions

  • the present invention relates to a split-type mechanical seal device.
  • a mechanical seal device is known as a seal device that seals a gap between a rotating shaft and a casing in a rotating device.
  • a mechanical seal device that is not a split type to the rotating device, it is necessary to attach it from the shaft end of the rotating shaft.
  • other equipment is attached to the shaft end of the rotating shaft, it is necessary to attach the mechanical seal device after removing the equipment.
  • the split type mechanical seal device does not need to be attached from the end of the shaft because the seal ring is divided, and can be attached from the periphery of the rotating shaft. Easy maintenance.
  • split type mechanical seal device for example, a device shown in Patent Document 1 shown below is known.
  • the seal ring can be split and the seal cover can also be split.
  • a string-like gasket is attached to the split surface of the seal cover as a primary seal member.
  • an O-ring groove is formed at a corresponding portion of the seal cover to which the stationary seal ring is attached.
  • a ring is attached so that the O-ring slides on the stationary seal ring.
  • the O-ring and the gasket are in pressure contact to prevent leakage of the sealing fluid.
  • the O-ring attached to the O-ring groove of the seal cover slides on the stationary side sealing ring, and sealing fluid is sealed at that portion.
  • the stationary-side sealing ring is made of a hard material such as metal, and the O-ring is made of rubber or synthetic resin. Therefore, the O-ring may be damaged as the O-ring slides on the stationary-side sealing ring. .
  • the O-ring may be deformed by the pressure from the sealing fluid or the force acting during sliding, and the O-ring may enter the split surface of the stationary-side sealing ring, which may damage the O-ring.
  • the O-ring moves inside the O-ring groove due to the sliding movement of the sealing ring in the axial direction, especially when the sealing fluid is slurry, the slurry enters the O-ring groove and is fixed. The sealing performance of the is reduced.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a split-type mechanical seal device that is easy to maintain and that suppresses damage to a secondary seal member such as an O-ring and has excellent sealing characteristics. It is to be.
  • a split-type mechanical seal device includes: A rotating side sealing ring attached to the rotating shaft and rotating together with the rotating shaft; A stationary seal ring attached to the seal cover and sliding in contact with the rotary seal ring in the axial direction; A split-type mechanical seal device that seals a sealed fluid between the rotary shaft and a seal cover that covers the rotary shaft,
  • the seal cover or the shaft collar member fixed to the rotating shaft can be divided by a dividing surface so that it can be attached from the periphery of the rotating shaft,
  • the split surface of the seal cover or the split surface of the shaft collar member has a string-like primary seal member for preventing fluid leakage from the split surface, and at least a part of the primary seal member of the seal cover.
  • Either one of the rotating side sealing ring and the stationary side sealing ring includes a secondary seal member extending in the circumferential direction and a bullet that presses the one sealing ring toward the other sealing ring.
  • the firing means is attached, The secondary seal member is in contact with a portion exposed to the sealed fluid side of the primary seal member.
  • the secondary seal member that is attached to one seal ring that moves in the axial direction and slides with a member to which the seal ring is attached includes a rotary side seal ring and a stationary side seal ring. It is attached to either one and is in contact with the primary seal member exposed to the sealed fluid side of the seal cover or the shaft collar member. For this reason, the secondary seal member slides and moves on the primary seal member. For this reason, damage to the secondary seal member due to the secondary seal member sliding with the split surface of the seal cover or the shaft collar member can be suppressed.
  • the frictional force of the secondary seal member with respect to the primary seal member is small, and the secondary seal member The seal member can move smoothly in the axial direction with respect to the primary seal member.
  • the elastic means presses the one sealing ring toward the other sealing ring via a secondary seal member.
  • the elastic side moves in the axial direction together with the rotating side sealing ring or stationary side sealing ring on which the secondary seal member is mounted. For this reason, the secondary seal member does not move in the axial direction relative to any seal ring on which the secondary seal member is mounted, and the structure in which the secondary seal member slides and moves on the primary seal member can be easily achieved. Can be realized.
  • the secondary seal member since the secondary seal member does not move relative to the seal ring, the secondary seal member is prevented from entering and biting into the split surface of the seal ring, and this also suppresses damage to the secondary seal member. can do. Since damage to the secondary seal member can be suppressed, it is possible to prevent deterioration of the seal characteristics due to the secondary seal member and the primary seal member, and to improve the seal characteristics.
  • the sealing ring is pressed through the secondary seal at the contact portion between the secondary sealing member and the primary sealing member, the secondary seal and the sealing ring can be used even when the sealing fluid is slurry or the like. Therefore, there is no possibility that the slurry enters the gap between the secondary seal and the sealing ring and adheres to it, and the axial movement of the secondary seal is prevented from being inhibited, and the deterioration of the sealing characteristics is small.
  • an adapter is attached to the tip of the elastic means, and the secondary seal member is pressed in the axial direction via the adapter.
  • the secondary seal member can be held between the secondary seal member and the seal ring so as not to move relative to the seal ring.
  • the secondary seal member is mounted on a secondary seal mounting surface provided on the outer periphery of the stationary side sealing ring so as not to move relative to the stationary side sealing ring in the axial direction,
  • the stationary side sealing ring is pressed in the axial direction toward the rotation side sealing ring.
  • FIG. 1 is a schematic partial longitudinal sectional view of a split mechanical seal device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an essential part taken along line II-II shown in FIG.
  • FIG. 3 is an exploded perspective view showing the interrelationship among the stationary side sealing ring, the primary seal, the secondary seal member, and the adapter shown in FIGS. 1 and 2.
  • FIG. 4 is a schematic partial longitudinal sectional view of a split-type mechanical seal device according to another embodiment of the present invention.
  • the split mechanical seal device 2 leaks from an internal gap 8 between a casing 4 and a rotary shaft 6 of a pump or other fluid machine to an external gap 10.
  • This device 2 includes a seal cover 12 and a rotating side sealing ring 20 and a stationary side sealing ring 30 disposed therein as main components.
  • the seal cover 12 is composed of cover halves 12a and 12b that can be divided into two by a dividing surface 12c substantially parallel to the axis of the rotary shaft 6.
  • the cover halves 12a and 12b are detachably abutted at the dividing surface 12c and are detachably connected by bolts 14.
  • substantially parallel to the axis of the rotating shaft 6 means that it may be inclined with respect to the axis of the rotating shaft within a range that can be attached from the periphery of the rotating shaft (the same applies hereinafter). Is).
  • a gasket groove 13 is formed in the split surface 12c of the seal cover 12 along the axial direction with respect to each of the cover halves 12a and 12b, and a string shape as a string-shaped primary seal member is formed therein.
  • a gasket 15 is attached.
  • the cross-section of the string-like gasket 15 is preferably rectangular, and protrudes from the gasket groove 13 in a state where the split surface 12c is not joined, and is crushed in a state where the split surface is joined. The seal function is demonstrated.
  • the cross-sectional shape of the string-like gasket 15 may be other than a rectangle, for example, a circle or other shapes.
  • the one joining end surface 12 d in the axial direction of the seal cover 12 is detachably attached to the end surface of the casing 4 by a bolt 16.
  • An O-ring groove 17 formed along the circumferential direction is formed in a ring shape on the joining end surface 12d of the seal cover 12, and an O-ring 18 having a circular cross section is mounted therein. .
  • the O-ring 18 is cut at, for example, one place in the circumferential direction, and the O-ring 18 can be mounted in the O-ring groove 17 from the outer periphery of the rotating shaft 6.
  • the cut surface of the O-ring 18 is formed obliquely with respect to the radius in the same manner as the cut surface 35c of the O-ring 35 shown in FIG. 3 described later, and the adhesiveness is improved by joining the cut surfaces to each other. ing.
  • the O-ring 18 is crushed between the end face of the casing 4 and the joint end face of the seal cover 12, and attempts to leak radially outward from the internal gap 8 therebetween. Prevents leakage of sealing fluid.
  • the O-ring groove 17 and the gasket groove 13 intersect at two circumferential positions, that is, the position of the split surface 12 c of the seal cover 12, and one first end of the gasket 15.
  • the portion 15a and the O-ring 18 are in pressure contact with each other. Therefore, leakage of the sealing fluid that attempts to leak from the internal gap 8 to the outside through the dividing surface 12c is prevented at the position of the first end 15a of the gasket 15.
  • Rotation side sealing ring 20 and stationary side sealing ring 30 are arranged in the gap between seal cover 12 and rotating shaft 6 to constitute a mechanical seal.
  • the rotation-side sealing ring 20 has a rotation sliding surface 21 that slides with respect to the stationary sliding surface 31 of the stationary-side sealing ring 30, and the axis of the rotation shaft 6 is the same as the stationary-side sealing ring 30 described later. And a structure that can be divided into two along a dividing plane substantially parallel to.
  • the rotation-side sealing ring 20 is detachably fixed to the rotation shaft 6 by the shaft collar 22 and the holder 40, and rotates together with the rotation shaft 6.
  • the shaft collar 22 can be divided into two parts by a dividing surface substantially parallel to the axis of the rotating shaft 6, and the divided half can be separated by a bolt 24. It is connected.
  • the inner peripheral portion of the shaft collar 22 is in close contact with the outer periphery of the rotating shaft 6 by tightening the bolt 24, and the shaft collar 22 is fixed to the rotating shaft 6 and rotates together with the rotating shaft 6.
  • the shaft collar 22 and the holder 40 are detachably connected by a ring 26 and a bolt 27, and the holder 40 is positioned on the outer periphery of the rotation side sealing ring 20, and between the holder 40 and the rotation side sealing ring 20, An O-ring 42 is attached to ensure a seal between them.
  • the O-ring 42 is made of the same synthetic resin or rubber as the O-ring 18, and has a cut surface at one place in the circumferential direction, like the O-ring 18.
  • a concave groove 29 is formed on the inner peripheral side of the rotary seal ring 20 near the shaft collar located next to the holder 40 and the rotary seal ring 20 in the axial direction, and an O-ring 28 is attached thereto.
  • the gap between the rotation side sealing ring 20 and the rotation shaft 6 is sealed.
  • the O-ring 28 is also made of the same synthetic resin or rubber as the O-ring 18, and has a cut surface at one place in the circumferential direction like the O-ring 18.
  • the holder 40 can be divided into two parts by a dividing surface substantially parallel to the axis of the rotary shaft 6, and the divided halves can be separated by bolts 44. It is.
  • the bolts 44 of the holder 40 By tightening the bolts 44 of the holder 40, the adhesion on the split surface of the two-split rotary side sealing ring 20 is also improved.
  • the split halves of the rotation-side seal ring 20 use bolts for the seal ring 20 itself by tightening the holder 40 in the same manner as the split halves 30a and 30b of the stationary-side seal ring 30 described later. It adheres on the dividing surface without.
  • the stationary-side sealing ring 30 can be divided into two halves 30a and 30b at a dividing surface 30c substantially parallel to the axis of the rotary shaft 6,
  • a holder 50 is disposed on the outer periphery.
  • An O-ring 52 is attached between the holder 50 and the stationary-side sealing ring 30 to ensure a sealing property between them.
  • the holder 50 is non-rotatable with respect to the seal cover 12 by the non-rotating pin 56, but is allowed to move in the axial direction.
  • the adhesion on the split surface of the two-part stationary ring 30 is also improved.
  • the split halves 30a and 30b of the stationary-side sealing ring 30 are split without using bolts in the sealing ring 30 itself by tightening the holder 50 with the bolts 54 shown in FIG.
  • the surface 30c is closely attached.
  • an O-ring groove 32 having a semicircular cross section is formed along the circumferential direction on the outer peripheral surface of the stationary seal ring 30 close to the stationary sliding surface 31.
  • An O-ring 52 shown in FIG. 1 is mounted in the O-ring groove 32 and seals between the O-ring groove 32 and the holder 50.
  • a secondary seal mounting surface 33, an adapter front end mounting surface 34, and an adapter rear end mounting surface 36 are formed in this order on the outer peripheral surface of the stationary seal ring 30 adjacent to the O-ring groove 32 in the axial direction.
  • An O-ring 35 is mounted on the secondary seal mounting surface 33.
  • the O-ring 35 has a cutting surface 35c that is oblique to the radius at one place in the circumferential direction, and the string-shaped O-ring 35 is connected to the cutting surface 35c to form a ring-shaped O-ring. ing.
  • the cut surface 35c is kept sealed only by joining without using an adhesive, but may be joined using an adhesive.
  • the secondary seal mounting surface 33 has an arc shape (R of about 1 ⁇ 4 of a circle) whose cross section matches the outer peripheral shape of the O-ring 35.
  • the outer periphery of the O-ring 35 is the maximum outer diameter of the stationary seal ring 30 with the O-ring 35 mounted on the secondary seal mounting surface 33. It jumps out from the outer peripheral surface.
  • the dimension of the outer periphery of the O-ring 35 protruding radially outward from the outer peripheral surface 38 having the maximum outer diameter of the stationary-side sealing ring 30 is not particularly limited, but with respect to the cross-sectional diameter d1 (see FIG. 3) 1 or less and preferably larger than the gap width c1 between the outer peripheral surface 38 of the stationary seal ring 30 and the inner peripheral surface of the seal cover 12 shown in FIG.
  • the O-ring 35 contacts the secondary seal mounting surface 33 and also contacts the cylindrical outer peripheral surface which is the adapter tip mounting surface 34.
  • the adapter tip mounting surface 34 is also in contact with the inner peripheral surface of the tip of the adapter 63 so that the tip surface 63 a of the adapter 63 can contact the O-ring 35.
  • the tip surface 63 a of the adapter 63 is recessed in conformity with the outer peripheral surface shape of the O-ring 35, and comes into close contact with the O-ring 35.
  • the rear end portion 63b of the adapter 63 is formed with a large-diameter portion having a larger diameter than the tip portion and a small-diameter portion having a smaller inner diameter than the tip portion, and the inner peripheral surface of the small-diameter portion is the adapter shown in FIG.
  • the rear end mounting surface 36 is mounted.
  • the outer diameter is smaller in the order of the adapter front end mounting surface 34 and the adapter rear end mounting surface 36.
  • the adapter 63 is made of, for example, a synthetic resin harder than the flexible O-ring 35 and the gasket 15, and is made of, for example, a fluororesin. As shown in FIG. 3, the adapter 63 has a cut surface 63c at one place in the circumferential direction, and the adapter 63 is opened at the cut surface 63c so that the stationary side sealing ring extends from the outer peripheral side of the rotating shaft 6 shown in FIG. It can be attached to 30 mounting surfaces 36. After being attached to the mounting surface 36 of the stationary seal ring 30, they are joined to each other at the cut surface 63c due to the elasticity of the adapter 63 itself. Note that the adapter 63 may be of a two-divided type similarly to the stationary side sealing ring 30.
  • the O-ring 35 and the gasket 15 are made of a material that is more flexible than the adapter 63.
  • the O-ring 35 is made of NBR, FKM, EPDM, FFKM, IIR, NR, etc.
  • the gasket 15 is made of NBR, It consists of FKM, EPDM, FFKM, IIR, NR, etc.
  • the O-ring 35 and the gasket 15 can be made of different materials, but the O-ring 35 and the gasket 15 are preferably made of the same material.
  • One end of a plurality of springs 62 arranged in the circumferential direction is in contact with the rear end surface of the adapter 63 so as to press the adapter 63 in the O-ring 35 direction.
  • the other end of the spring 62 is held by a retainer 60 as shown in FIG.
  • the retainer 60 is configured by a half-divided body that can be divided into two parts, and is assembled so as to be divided by bolts 64.
  • the retainer 60 is detachably attached to the outer end surface of the seal cover 12 by a bolt 66.
  • the spring force by the spring 62 attached to the retainer 60 is transmitted to the adapter 63, presses the O-ring 35, and presses the O-ring 35 against the secondary seal mounting surface 33.
  • the pressing force is transmitted to the stationary side sealing ring 30, and the stationary sliding surface 31 of the stationary side sealing ring 30 is pressed against the rotational sliding surface 21 of the rotating side sealing ring 20.
  • the stationary side sealing ring 30 is attached to the seal cover 12 together with the holder 50 and the O-ring 35 so as to be movable in the axial direction with respect to the seal cover 12.
  • the other second end 15b of the string-like gasket 15 provided on the dividing surface 12c of the seal cover 12 is at least within the movement range in the axial direction of the O-ring 35. It is exposed on the peripheral surface and is in pressure contact with a part of the outer peripheral surface of the O-ring 35.
  • the O-ring 35 is slidable along the second end portion 15b of the gasket when moving in the axial direction together with the stationary-side sealing ring 30, and the sealing property between them is maintained. . Further, the outer peripheral portion of the O-ring 35 is in contact with the inner peripheral surface of the seal cover 12 except for the contact portion with the second end portion 15b of the gasket. Accordingly, it is possible to prevent leakage of the sealing fluid that leaks from the gap width c1 between the outer peripheral surface 38 of the stationary seal ring 30 and the inner peripheral surface of the seal cover 12 shown in FIG.
  • reference numerals 68 and 70 denote a set plate and a set bolt, respectively, for aligning the axis of the stationary seal ring 30 with respect to the axis of the rotary shaft 6.
  • the material of the rotation side sealing ring 20 and the stationary side sealing ring 30 is not particularly limited.
  • the rotation sealing ring 20 is composed of SiC, C, SiN, Al 2 O 3 , zirconia, or the like, and is stationary.
  • the side sealing ring 20 is made of SiC, C, SiN, Al 2 O 3 , zirconia, or the like.
  • These sealing rings 20 and 30 are made of a material harder than the O-ring 35.
  • the O-ring 35 as a secondary seal member is mounted so as to move simultaneously in the axial direction with respect to the stationary-side seal ring 30, and the inner peripheral surface of the seal cover 12.
  • the second end portion 15b of the gasket 15 exposed to is movably contacted along the axial direction of the rotary shaft 6. For this reason, the O-ring 35 slides and moves on the second end 15 b of the gasket 15 without moving relative to the stationary seal ring 30 in the axial direction. For this reason, damage to the O-ring 35 due to the O-ring 35 sliding on the stationary seal ring 30 can be suppressed.
  • the O-ring 35 does not move relative to the stationary seal ring 30, the O-ring 35 is prevented from entering and biting into the split surface 30c of the stationary seal ring 30, and in this respect as well, the O-ring 35 is prevented. Damage can be suppressed. Since damage to the O-ring 35 can be suppressed, deterioration of the sealing characteristics due to the O-ring and the gasket 15 can be prevented, and the sealing characteristics can be improved.
  • the relative position between the secondary seal and the sealing ring does not change at the contact portion between the O-ring 35 and the gasket 15, even when the sealing fluid is slurry, the slurry is not between the secondary seal and the sealing ring. There is no risk of entering and fixing into the gap, preventing the secondary seal from moving in the axial direction and preventing deterioration of the seal characteristics.
  • a ring-shaped adapter 63 is attached to the tip of the spring 62, and the O-ring 35 is pressed in the axial direction via the adapter 63.
  • the O-ring 35 is held between the O-ring 35 and the stationary-side sealing ring 30 so as not to move relative to the sealing ring 30. Can do.
  • a split-type mechanical seal device 102 according to another embodiment of the present invention shown in FIG. 4 is a modification of the embodiment shown in FIGS.
  • An O-ring 235 as a seal member and a spring 62 are attached, and a gasket 215 as a primary seal member is attached to the split surface of the shaft collar 122.
  • members common to the members shown in the embodiment shown in FIGS. 1 to 3 are given the same reference numerals, and a part of the description is omitted.
  • This device 102 includes a seal cover 12 and a rotation side sealing ring 120 and a stationary side sealing ring 130 disposed therein as main components. Also in this embodiment, the seal cover 12 is configured by cover halves 12a and 12b (see FIG. 2) that can be divided into two by a dividing surface 12c substantially parallel to the axis of the rotating shaft 6.
  • a gasket groove 13 is formed in the split surface 12c of the seal cover 12 along the axial direction with respect to each of the cover halves, and a string-like string-like gasket 115 is mounted therein.
  • the string-like gasket 115 is the same as the string-like gasket shown in FIGS.
  • the one joining end surface 12 d in the axial direction of the seal cover 12 is detachably attached to the end surface of the casing 4 by a bolt 16.
  • An O-ring groove 17 formed along the circumferential direction is formed in a ring shape on the joining end surface 12d of the seal cover 12, and an O-ring 18 having a circular cross section is mounted therein. .
  • the O-ring groove 17 and the gasket groove 13 intersect at two circumferential positions, that is, at the position of the split surface 12 c of the seal cover 12, and one first end 115 a of the gasket 115. And the O-ring 18 are in pressure contact with each other. Therefore, leakage of the sealing fluid that attempts to leak from the internal gap 8 to the outside through the dividing surface 12c is prevented at the position of the first end 115a of the gasket 115.
  • Rotation side sealing ring 120 and stationary side sealing ring 130 are arranged in the gap between seal cover 12 and rotating shaft 6 to constitute a mechanical seal.
  • the rotation-side sealing ring 120 has a rotation sliding surface 121 that slides with respect to the stationary sliding surface 131 of the stationary-side sealing ring 130. And a structure that can be divided into two along a parallel dividing plane.
  • the rotation-side sealing ring 120 is detachably fixed to the rotation shaft 6 by the shaft collar 122 and rotates together with the rotation shaft 6.
  • the shaft collar 122 can be divided into two by a split surface 122c substantially parallel to the axis of the rotary shaft 6, and the split halves are connected to each other by a bolt 124 so as to be separable.
  • the inner peripheral portion of the uniaxial collar 22 is brought into close contact with the outer periphery of the rotating shaft 6 by tightening the bolt 24, and the shaft collar 122 is fixed to the rotating shaft 6 and rotates together with the rotating shaft 6.
  • the shaft collar 122 is equipped with a ring 126 and an O-ring 128 to seal the gap between the rotation-side sealing ring 120 and the rotation shaft 6.
  • the O-ring 128 is also made of the same synthetic resin or rubber as the O-ring 18 and has a cut surface at one place in the circumferential direction like the O-ring 18 shown in FIG.
  • the stationary side sealing ring 130 can be divided into two divided halves on a dividing surface substantially parallel to the axis of the rotary shaft 6, A holder 50 is arranged. An O-ring 52 is attached between the holder 50 and the stationary-side sealing ring 130 to ensure a sealing property between them.
  • an O-ring groove 32 having a semicircular cross section is formed along the circumferential direction.
  • An O-ring 52 is mounted in the O-ring groove 32 and seals between the holder 50.
  • a seal mounting surface 133 and an adapter tip mounting surface 134 are formed in this order next to the O-ring groove 32 in the axial direction.
  • An O-ring 135 is attached to the seal attachment surface 133.
  • the O-ring 135 constitutes a ring-shaped O-ring by connecting the string-like O-ring at the cut surface.
  • the seal mounting surface 133 has an arc shape (R of about 1 ⁇ 4 of a circle) whose cross section matches the outer peripheral shape of the O-ring 135, and has a gap between the seal ring 130 and the O-ring 135. Further, the outer periphery of the O-ring 135 protrudes from the outer peripheral surface of the maximum outer diameter of the stationary seal ring 130 with the O-ring 135 mounted on the seal mounting surface 133. .
  • the dimension in which the outer periphery of the O-ring 135 protrudes outward in the radial direction from the outer peripheral surface 138 having the maximum outer diameter of the stationary seal ring 130 is the same as that of the O-ring 35 and the outer peripheral surface 38 in the embodiment shown in FIGS. Same as relationship.
  • the other second end 115 b of the string-like gasket 115 provided on the split surface 12 c of the seal cover 12 is exposed on the inner peripheral surface of the seal cover 12, and the outer peripheral surface of the O-ring 135. It comes to press-contact with a part of.
  • the O-ring 135 contacts the seal mounting surface 133 and also contacts the outer peripheral surface of the cylinder that is the adapter tip mounting surface 134.
  • the adapter tip mounting surface 134 is also in contact with the inner peripheral surface of the tip of the adapter 163 so that the tip surface of the adapter 163 can contact the O-ring 135.
  • the tip surface of the adapter 163 is recessed in conformity with the shape of the outer peripheral surface of the O-ring 135 and is in close contact with the O-ring 135.
  • the rear end of the adapter 163 is held by a retainer 160.
  • the retainer 160 is configured by a half-divided body that can be divided into two parts, and is assembled so as to be divided by bolts.
  • the retainer 160 is detachably attached to the outer end surface of the seal cover 12 by a bolt 166.
  • the adapter 163 has the same configuration as the adapter 63 shown in FIGS.
  • the O-ring 135 and the gasket 115 are made of the same material as the O-ring 35 and the gasket 15 shown in FIGS.
  • An O-ring groove is formed along the circumferential direction on the outer peripheral surface of the rotary seal ring 120 close to the rotary sliding surface 121.
  • An O-ring 42 is mounted in the O-ring groove and seals between the holder 40 and the O-ring groove.
  • a seal mounting surface 233 and an adapter tip mounting surface 234 are formed in this order on the outer peripheral surface of the rotation-side seal ring 120 adjacent to the O-ring groove in which the O-ring 42 is mounted in the axial direction.
  • An O-ring 235 as a secondary seal member is attached to the seal attachment surface 233.
  • the O-ring 235 constitutes a ring-shaped O-ring by connecting the string-like O-ring at the cut surface.
  • the seal mounting surface 233 has an arc shape (R of about 1 ⁇ 4 of a circle) whose cross section matches the outer peripheral shape of the O-ring 235 and has a gap between the sealing ring 120 and the O-ring 235.
  • the outer periphery of the O-ring 235 protrudes from the outer peripheral surface having the maximum outer diameter of the rotation-side seal ring 130 with the O-ring 235 mounted on the seal mounting surface 233.
  • the dimension in which the outer periphery of the O-ring 235 protrudes radially outward from the outer peripheral surface having the maximum outer diameter of the rotary seal ring 120 is the relationship between the O-ring 35 and the outer peripheral surface 38 in the embodiment shown in FIGS. Is the same.
  • the O-ring 235 contacts the seal mounting surface 233 and also contacts the outer peripheral surface of the cylinder that is the adapter tip mounting surface 234.
  • the adapter tip mounting surface 234 is also in contact with the inner peripheral surface of the tip of the adapter 263 so that the tip surface of the adapter 263 can contact the O-ring 235.
  • the tip surface of the adapter 263 is recessed in conformity with the outer peripheral surface shape of the O-ring 235 so as to be in close contact with the O-ring 235, like the adapter 63 shown in FIGS.
  • the adapter 263 has the same configuration as the adapter 63 shown in FIGS.
  • the O-ring 235 and the gasket 215 are made of the same material as the O-ring 35 and the gasket 15 shown in FIGS.
  • One end of a plurality of springs 62 arranged in the circumferential direction is in contact with the rear end surface of the adapter 263 so as to press the adapter 263 in the O-ring 235 direction.
  • the other end of the spring 262 is held by the shaft collar 122.
  • the spring force by the spring 62 attached to the shaft collar 122 is transmitted to the adapter 263, presses the O-ring 235, and presses the O-ring 235 against the secondary seal mounting surface 233.
  • the pressing force is transmitted to the rotation-side sealing ring 120, and the stationary sliding surface 121 of the rotation-side sealing ring 120 is pressed against the rotation sliding surface 131 of the stationary-side sealing ring 130.
  • the rotation-side sealing ring 120 is attached to the shaft collar 122 so as to be movable in the axial direction with respect to the shaft collar 122 together with the holder 40 and the O-ring 235.
  • one first end 215a of the string-like gasket 215 provided on the split surface 112c of the shaft collar 122 abuts on the outer peripheral portion of the O-ring 128 on the split surface 112c. Sealing performance is ensured.
  • the other second end 215 b of the gasket 215 is exposed to the inner peripheral surface of the shaft collar 122 at least within the axial movement range of the O-ring 235, and is pressed against a part of the outer peripheral surface of the O-ring 235. It is supposed to be.
  • the O-ring 235 is slidable along the second end 215b of the gasket 215 when moving in the axial direction together with the rotation-side sealing ring 120, and maintains a sealing property between them. Yes. Further, the outer peripheral portion of the O-ring 235 is in contact with the inner peripheral surface of the shaft collar 122 except for the contact portion with the second end portion 215b of the gasket. Therefore, it is possible to prevent leakage of the sealing fluid that leaks to the outside from the gap width between the outer peripheral surface of the rotation-side sealing ring 120 and the inner peripheral surface of the shaft collar 122.
  • the O-ring 235 as a secondary seal member is mounted so as to move simultaneously in the axial direction with respect to the rotation-side seal ring 120, and the inner peripheral surface of the shaft collar 122.
  • the O-ring 235 slides and moves to the second end portion 215b of the gasket 215 without moving relative to the rotation-side sealing ring 120 in the axial direction.
  • damage to the O-ring 235 due to the O-ring 235 sliding on the rotation-side sealing ring 120 can be suppressed.
  • the O-ring 235 since the O-ring 235 does not move relative to the rotation-side sealing ring 120, the O-ring 235 is prevented from entering and biting into the split surface of the rotation-side sealing ring 120. Damage can be suppressed. Since damage to the O-ring 235 can be suppressed, deterioration of the sealing characteristics due to the O-ring 235 and the gasket 215 can be prevented, and the sealing characteristics can be improved.
  • the relative position between the secondary seal and the sealing ring does not change at the contact portion between the O-ring 235 and the gasket 215, even when the sealing fluid is a slurry or the like, the slurry does not move between the secondary seal and the sealing ring. There is no risk of entering and fixing into the gap, preventing the secondary seal from moving in the axial direction and preventing deterioration of the seal characteristics.
  • a ring-shaped adapter 263 is attached to the tip of the spring 62, and the O-ring 235 is pressed in the axial direction via the adapter 263.
  • the O-ring 235 is held between the O-ring 235 and the rotation-side sealing ring 120 so as not to move relative to the sealing ring 120. Can do.
  • an O-ring as a secondary seal member is attached to the stationary seal ring 30, but an O-ring as a secondary seal may be attached to the rotary seal ring 20.
  • an O-ring as a secondary seal may be attached to the rotary seal ring 20.
  • the inside type mechanical seal device in which the sealing fluid exists on the outer peripheral side of the sealing rings 20 and 30 has been described.
  • the outside type in which the sealing fluid exists on the inner peripheral side of the sealing rings 20 and 30 has been described.
  • the present invention can also be applied to a mechanical seal device.
  • the seal cover 12 and the housing 4 are constituted by different members, but the structure of the present invention can be applied to an apparatus in which these are integrated. In that case, the housing 4 also serves as a seal cover.
  • the split mechanical seal device of the present invention can be widely used as a seal device for sealing a gap between a rotating shaft and a casing in a rotating device such as a pump or a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

A divided mechanical seal device, wherein: a seal cover (12) can be divided at a division surface (12c) substantially parallel to the shaft core of a rotating shaft (6); a string-shaped primary seal member (15) that prevents leakage of fluid from the division surface (12c) is attached to the division surface (12c) of the seal cover (12), such that at least part (15b) of the primary seal member (15) is exposed to the inner circumferential surface of the seal cover (12); a secondary seal member (35) extending in the circumferential direction is attached to a stationary-side seal ring (30); and the secondary seal member (35) is in contact, so as to be movable along the shaft direction of the rotating shaft (6), with the primary seal member (15) exposed to the inner circumferential surface of the seal cover (12). 

Description

分割型メカニカルシール装置Split type mechanical seal device
 本発明は、分割型メカニカルシール装置に関する。 The present invention relates to a split-type mechanical seal device.
 回転装置における回転軸とケーシングとの隙間を密封するシール装置として、メカニカルシール装置が知られている。分割型ではないメカニカルシール装置を回転装置に取り付けるために、回転軸の軸端から取り付ける必要がある。回転軸の軸端に、他の機器が取り付けられている場合には、その機器を取り外してからメカニカルシール装置を取り付ける必要がある。 A mechanical seal device is known as a seal device that seals a gap between a rotating shaft and a casing in a rotating device. In order to attach a mechanical seal device that is not a split type to the rotating device, it is necessary to attach it from the shaft end of the rotating shaft. When other equipment is attached to the shaft end of the rotating shaft, it is necessary to attach the mechanical seal device after removing the equipment.
 分割型メカニカルシール装置は、密封環が分割されていることから、軸端から取り付ける必要はなく、回転軸の周囲から取り付けることが可能であり、狭い場所でのメカニカルシール装置の取付および取り外し、すなわちメンテナンスが容易である。 The split type mechanical seal device does not need to be attached from the end of the shaft because the seal ring is divided, and can be attached from the periphery of the rotating shaft. Easy maintenance.
 分割型メカニカルシール装置としては、たとえば下記に示す特許文献1に示す装置が知られている。分割型メカニカルシール装置では、密封環が分割可能であると共に、そのシールカバーも分割可能になっている。シールカバーの分割面からの密封流体の漏洩を防止するために、シールカバーの分割面には、一次シール部材として紐状のガスケットが装着してある。 As a split type mechanical seal device, for example, a device shown in Patent Document 1 shown below is known. In the split-type mechanical seal device, the seal ring can be split and the seal cover can also be split. In order to prevent leakage of the sealing fluid from the split surface of the seal cover, a string-like gasket is attached to the split surface of the seal cover as a primary seal member.
 また、シールカバーと静止側密封環との間の隙間をシールするために、静止側密封環が取り付けられるシールカバーの該当箇所には、Oリング溝が形成してあり、二次シール部材としてOリングが取り付けられ、Oリングが静止側密封環に摺動するようになっている。Oリング溝の底部では、Oリングとガスケットとが圧接し、密封流体の漏洩を防止している。 Further, in order to seal the gap between the seal cover and the stationary seal ring, an O-ring groove is formed at a corresponding portion of the seal cover to which the stationary seal ring is attached. A ring is attached so that the O-ring slides on the stationary seal ring. At the bottom of the O-ring groove, the O-ring and the gasket are in pressure contact to prevent leakage of the sealing fluid.
 ところが従来の分割型メカニカルシール装置では、シールカバーのOリング溝に取り付けられたOリングが静止側密封環に摺動するようになっており、その部分で密封流体のシールを行っている。一般に静止側密封環は金属などの硬質材で構成され、Oリングはゴムまたは合成樹脂で構成されることから、Oリングが静止側密封環に摺動するに従い、Oリングが損傷するおそれがある。 However, in the conventional split-type mechanical seal device, the O-ring attached to the O-ring groove of the seal cover slides on the stationary side sealing ring, and sealing fluid is sealed at that portion. Generally, the stationary-side sealing ring is made of a hard material such as metal, and the O-ring is made of rubber or synthetic resin. Therefore, the O-ring may be damaged as the O-ring slides on the stationary-side sealing ring. .
 また、密封流体からの圧力、あるいは摺動の際に作用する力によりOリングが変形し、静止側密封環の割面にOリングが入り込み、そのことによりOリングが損傷するおそれがある。 Also, the O-ring may be deformed by the pressure from the sealing fluid or the force acting during sliding, and the O-ring may enter the split surface of the stationary-side sealing ring, which may damage the O-ring.
 また、密封環の軸方向移動による摺動でOリングがOリング溝内部で移動するため、特に密封流体がスラリーなどの場合には、Oリング溝にスラリーが入り込んで固着してしまい、Oリングのシール性が低下する。 Also, since the O-ring moves inside the O-ring groove due to the sliding movement of the sealing ring in the axial direction, especially when the sealing fluid is slurry, the slurry enters the O-ring groove and is fixed. The sealing performance of the is reduced.
特表2003-531347号公報Special Table 2003-53347
 本発明は、このような実状に鑑みてなされ、その目的は、メンテナンスが容易であり、しかもOリングなどの二次シール部材の損傷を抑制し、シール特性に優れた分割型メカニカルシール装置を提供することである。 The present invention has been made in view of such a situation, and an object thereof is to provide a split-type mechanical seal device that is easy to maintain and that suppresses damage to a secondary seal member such as an O-ring and has excellent sealing characteristics. It is to be.
 上記目的を達成するために、本発明に係る分割型メカニカルシール装置は、
回転軸に取り付けられて当該回転軸と共に回転する回転側密封環と、
シールカバーに取り付けられて前記回転側密封環に対して軸方向に当接して摺動する静止側密封環とを有し、
前記回転軸と当該回転軸を覆うシールカバーとの間の被密封流体を密封する分割型メカニカルシール装置であって、
前記シールカバー、または前記回転軸に固定してある軸カラー部材が、前記回転軸の周囲から取り付け可能なように、分割面で分割可能であり、
前記シールカバーの分割面、または前記軸カラー部材の分割面には、当該分割面からの流体の漏洩を防止する紐状の一次シール部材が、当該一次シール部材の少なくとも一部が前記シールカバーの被密封流体側に露出するように装着され、
前記回転側密封環および前記静止側密封環のいずれか一方の密封環には、周方向に延在する二次シール部材と前記一方の密封環をいずれか他方の密封環に向けて押圧する弾発手段が装着され、
前記一次シール部材の被密封流体側に露出する部分に、前記二次シール部材が接触していることを特徴とする。
In order to achieve the above object, a split-type mechanical seal device according to the present invention includes:
A rotating side sealing ring attached to the rotating shaft and rotating together with the rotating shaft;
A stationary seal ring attached to the seal cover and sliding in contact with the rotary seal ring in the axial direction;
A split-type mechanical seal device that seals a sealed fluid between the rotary shaft and a seal cover that covers the rotary shaft,
The seal cover or the shaft collar member fixed to the rotating shaft can be divided by a dividing surface so that it can be attached from the periphery of the rotating shaft,
The split surface of the seal cover or the split surface of the shaft collar member has a string-like primary seal member for preventing fluid leakage from the split surface, and at least a part of the primary seal member of the seal cover. It is mounted so as to be exposed to the sealed fluid side,
Either one of the rotating side sealing ring and the stationary side sealing ring includes a secondary seal member extending in the circumferential direction and a bullet that presses the one sealing ring toward the other sealing ring. The firing means is attached,
The secondary seal member is in contact with a portion exposed to the sealed fluid side of the primary seal member.
 本発明に係る分割型メカニカルシール装置では、軸方向移動する一方の密封環に取り付けられ、当該密封環が取り付けられる部材と摺動する二次シール部材は、回転側密封環および静止側密封環のいずれか一方に装着され、シールカバーまたは軸カラー部材の被密封流体側に露出する一次シール部材に対して接触している。このため、二次シール部材は一次シール部材に摺動して移動する。このため、二次シール部材がシールカバーまたは軸カラー部材の分割面と摺動することによる二次シール部材の損傷を抑制することができる。 In the split-type mechanical seal device according to the present invention, the secondary seal member that is attached to one seal ring that moves in the axial direction and slides with a member to which the seal ring is attached includes a rotary side seal ring and a stationary side seal ring. It is attached to either one and is in contact with the primary seal member exposed to the sealed fluid side of the seal cover or the shaft collar member. For this reason, the secondary seal member slides and moves on the primary seal member. For this reason, damage to the secondary seal member due to the secondary seal member sliding with the split surface of the seal cover or the shaft collar member can be suppressed.
 なお、二次シール部材と一次シール部材との接触は、シールカバーまたは軸カラー部材の分割面でのみ行われ全周ではないことから、一次シール部材に対する二次シール部材の摩擦力も少なく、二次シール部材は一次シール部材に対して軸方向にスムーズに移動可能である。 In addition, since the contact between the secondary seal member and the primary seal member is performed only on the divided surface of the seal cover or the shaft collar member and not the entire circumference, the frictional force of the secondary seal member with respect to the primary seal member is small, and the secondary seal member The seal member can move smoothly in the axial direction with respect to the primary seal member.
 好ましくは、前記弾発手段が二次シール部材を介して前記一方の密封環を、前記他方の密封環に向けて押圧している。 Preferably, the elastic means presses the one sealing ring toward the other sealing ring via a secondary seal member.
 弾発手段により二次シールを介して回転側密封環または静止側密封環を押圧することで、二次シール部材が装着してある回転側密封環または静止側密封環と共に軸方向に移動する。このため、二次シール部材は、当該二次シール部材が装着されるいずれかの密封環に対して軸方向に相対移動することがなくなり、一次シール部材に摺動して移動する構造を容易に実現することができる。 By pressing the rotating side sealing ring or stationary side sealing ring through the secondary seal by the elastic means, the elastic side moves in the axial direction together with the rotating side sealing ring or stationary side sealing ring on which the secondary seal member is mounted. For this reason, the secondary seal member does not move in the axial direction relative to any seal ring on which the secondary seal member is mounted, and the structure in which the secondary seal member slides and moves on the primary seal member can be easily achieved. Can be realized.
 また二次シール部材が密封環に対して相対移動しないことから、密封環の割面に二次シール部材が入り込んで噛み込まれることが防止され、この点でも、二次シール部材の損傷を抑制することができる。二次シール部材の損傷を抑制することができるため、二次シール部材と一次シール部材によるシール特性の劣化を防止することができ、シール特性の向上を図ることができる。 In addition, since the secondary seal member does not move relative to the seal ring, the secondary seal member is prevented from entering and biting into the split surface of the seal ring, and this also suppresses damage to the secondary seal member. can do. Since damage to the secondary seal member can be suppressed, it is possible to prevent deterioration of the seal characteristics due to the secondary seal member and the primary seal member, and to improve the seal characteristics.
 さらに、二次シール部材と一次シール部材との接触部において、二次シールを介して密封環を押圧している構造なので、密封流体がスラリーなどである場合においても、二次シールと密封環との相対位置が変わらないため、スラリーが二次シールと密封環との隙間に入り込んで固着するおそれはなくなり、二次シールの軸方向移動を阻害することが防止され、シール特性の劣化が少ない。 Furthermore, since the sealing ring is pressed through the secondary seal at the contact portion between the secondary sealing member and the primary sealing member, the secondary seal and the sealing ring can be used even when the sealing fluid is slurry or the like. Therefore, there is no possibility that the slurry enters the gap between the secondary seal and the sealing ring and adheres to it, and the axial movement of the secondary seal is prevented from being inhibited, and the deterioration of the sealing characteristics is small.
 好ましくは、前記弾発手段の先端にアダプタが取り付けられ、前記アダプタを介して、前記二次シール部材を軸方向に押圧する。アダプタを介して二次シールを軸方向に押圧することで、二次シール部材と密封環との間で、二次シール部材を、密封環に対して相対移動しないように保持させることができる。 Preferably, an adapter is attached to the tip of the elastic means, and the secondary seal member is pressed in the axial direction via the adapter. By pressing the secondary seal in the axial direction via the adapter, the secondary seal member can be held between the secondary seal member and the seal ring so as not to move relative to the seal ring.
 好ましくは、前記静止側密封環の外周に設けられた二次シール装着面に、当該静止側密封環に対して軸方向に相対移動ができないように前記二次シール部材が装着してあり、前記静止側密封環が前記回転側密封環に向けて軸方向に押圧されている。スプリングなどの弾発手段により二次シール部材を二次シール装着面に向けて押圧することで、その力は、静止側密封環に伝わり、静止側密封環を回転側密封環に向けて押圧し、これらの密封環の相互間でのシール特性が向上する。 Preferably, the secondary seal member is mounted on a secondary seal mounting surface provided on the outer periphery of the stationary side sealing ring so as not to move relative to the stationary side sealing ring in the axial direction, The stationary side sealing ring is pressed in the axial direction toward the rotation side sealing ring. By pressing the secondary seal member toward the secondary seal mounting surface by means of elastic means such as a spring, the force is transmitted to the stationary seal ring, and the stationary seal ring is pressed toward the rotary seal ring. The sealing characteristics between these sealing rings are improved.
 また、弾発手段により二次シール部材を二次シール装着面に向けて押圧することで、二次シール部材を静止側密封環に軸方向移動不能に装着することが容易になる。 Also, by pressing the secondary seal member toward the secondary seal mounting surface by the elastic means, it becomes easy to mount the secondary seal member on the stationary seal ring so as not to move in the axial direction.
図1は本発明の一実施形態に係る分割型メカニカルシール装置の概略一部縦断面図である。FIG. 1 is a schematic partial longitudinal sectional view of a split mechanical seal device according to an embodiment of the present invention. 図2は図1に示すII-II線に沿う要部概略断面図である。FIG. 2 is a schematic cross-sectional view of an essential part taken along line II-II shown in FIG. 図3は図1および図2に示す静止側密封環と一次シールと二次シール部材とアダプタとの相互関係を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the interrelationship among the stationary side sealing ring, the primary seal, the secondary seal member, and the adapter shown in FIGS. 1 and 2. 図4は本発明の他の実施形態に係る分割型メカニカルシール装置の概略一部縦断面図である。FIG. 4 is a schematic partial longitudinal sectional view of a split-type mechanical seal device according to another embodiment of the present invention.
 第1実施形態
 以下、本発明を、図面に示す実施形態に基づき説明する。
図1に示すように、本発明の一実施形態に係る分割型メカニカルシール装置2は、ポンプやその他の流体機械のケーシング4と回転軸6との間の内部隙間8から外部隙間10へと漏れようとする流体を密封するための装置である。この装置2は、シールカバー12と、その内部に配置された回転側密封環20および静止側密封環30とを、主要部品として有する。
First Embodiment Hereinafter, the present invention will be described based on the embodiments shown in the drawings.
As shown in FIG. 1, the split mechanical seal device 2 according to an embodiment of the present invention leaks from an internal gap 8 between a casing 4 and a rotary shaft 6 of a pump or other fluid machine to an external gap 10. An apparatus for sealing a fluid to be tried. This device 2 includes a seal cover 12 and a rotating side sealing ring 20 and a stationary side sealing ring 30 disposed therein as main components.
 図1および図2に示すように、シールカバー12は、回転軸6の軸芯に実質的に平行な分割面12cで2分割可能なカバー半割体12a,12bで構成してある。カバー半割体12a,12bは、分割面12cにて着脱可能に突き合わされ、ボルト14により着脱可能に連結してある。なお、「回転軸6の軸芯に実質的に平行」とは、回転軸の周囲から取り付け可能な範囲で、回転軸の軸芯に対して傾斜しても良いという趣旨である(以下、同様である)。 As shown in FIGS. 1 and 2, the seal cover 12 is composed of cover halves 12a and 12b that can be divided into two by a dividing surface 12c substantially parallel to the axis of the rotary shaft 6. The cover halves 12a and 12b are detachably abutted at the dividing surface 12c and are detachably connected by bolts 14. Note that “substantially parallel to the axis of the rotating shaft 6” means that it may be inclined with respect to the axis of the rotating shaft within a range that can be attached from the periphery of the rotating shaft (the same applies hereinafter). Is).
 シールカバー12の割面12cには、ガスケット溝13がカバー半割体12a,12bのそれぞれに対して軸方向に沿って形成してあり、その内部に、紐状の一次シール部材としての紐状ガスケット15が装着してある。紐状ガスケット15の横断面は、本実施形態では、好ましくは矩形状であり、割面12cが接合されていない状態でガスケット溝13から突き出ており、割面が接合された状態で、押し潰されてシール機能を発揮する。なお、紐状ガスケット15の横断面形状は、矩形以外であっても良く、たとえば円形、その他の形状であっても良い。 A gasket groove 13 is formed in the split surface 12c of the seal cover 12 along the axial direction with respect to each of the cover halves 12a and 12b, and a string shape as a string-shaped primary seal member is formed therein. A gasket 15 is attached. In this embodiment, the cross-section of the string-like gasket 15 is preferably rectangular, and protrudes from the gasket groove 13 in a state where the split surface 12c is not joined, and is crushed in a state where the split surface is joined. The seal function is demonstrated. In addition, the cross-sectional shape of the string-like gasket 15 may be other than a rectangle, for example, a circle or other shapes.
 シールカバー12の軸方向の一方の接合端面12dは、ケーシング4の端面に対してボルト16により着脱自在に装着してある。シールカバー12の接合端面12dには、円周方向に沿って形成してあるOリング溝17がリング状に形成してあり、その内部に、横断面が円形のOリング18が装着してある。 The one joining end surface 12 d in the axial direction of the seal cover 12 is detachably attached to the end surface of the casing 4 by a bolt 16. An O-ring groove 17 formed along the circumferential direction is formed in a ring shape on the joining end surface 12d of the seal cover 12, and an O-ring 18 having a circular cross section is mounted therein. .
 Oリング18は、たとえば円周方向の一カ所で切断されており、回転軸6の外周からOリング溝17内にOリング18を装着可能になっている。Oリング18の切断面は、後述する図3に示すOリング35の切断面35cと同様に、半径に対して斜めに形成してあり、切断面相互が接合されることで密着性が向上している。 The O-ring 18 is cut at, for example, one place in the circumferential direction, and the O-ring 18 can be mounted in the O-ring groove 17 from the outer periphery of the rotating shaft 6. The cut surface of the O-ring 18 is formed obliquely with respect to the radius in the same manner as the cut surface 35c of the O-ring 35 shown in FIG. 3 described later, and the adhesiveness is improved by joining the cut surfaces to each other. ing.
 図1に示すように、Oリング18は、ケーシング4の端面とシールカバー12の接合端面との間で押し潰され、これらの間で、内部隙間8から半径方向の外方に漏れようとする密封流体の漏洩を防止している。また、Oリング溝17の底部では、周方向の二カ所位置、すなわちシールカバー12の割面12cの位置で、Oリング溝17とガスケット溝13とが交差し、ガスケット15の一方の第1端部15aとOリング18とが圧接して接触するようになっている。そのため、ガスケット15の第1端部15aの位置で、内部隙間8から分割面12cを通して外部に漏れようとする密封流体の漏洩を防止している。 As shown in FIG. 1, the O-ring 18 is crushed between the end face of the casing 4 and the joint end face of the seal cover 12, and attempts to leak radially outward from the internal gap 8 therebetween. Prevents leakage of sealing fluid. In addition, at the bottom of the O-ring groove 17, the O-ring groove 17 and the gasket groove 13 intersect at two circumferential positions, that is, the position of the split surface 12 c of the seal cover 12, and one first end of the gasket 15. The portion 15a and the O-ring 18 are in pressure contact with each other. Therefore, leakage of the sealing fluid that attempts to leak from the internal gap 8 to the outside through the dividing surface 12c is prevented at the position of the first end 15a of the gasket 15.
 シールカバー12と回転軸6との間の隙間には、回転側密封環20と静止側密封環30とが配置してあり、メカニカルシールを構成している。回転側密封環20は、静止側密封環30の静止摺動面31に対して摺動する回転摺動面21を有し、後述する静止側密封環30と同様に、回転軸6の軸芯に実質的に平行な分割面に沿って二分割可能な構造を有する。 Rotation side sealing ring 20 and stationary side sealing ring 30 are arranged in the gap between seal cover 12 and rotating shaft 6 to constitute a mechanical seal. The rotation-side sealing ring 20 has a rotation sliding surface 21 that slides with respect to the stationary sliding surface 31 of the stationary-side sealing ring 30, and the axis of the rotation shaft 6 is the same as the stationary-side sealing ring 30 described later. And a structure that can be divided into two along a dividing plane substantially parallel to.
 回転側密封環20は、軸カラー22およびホルダ40により回転軸6に対して着脱可能に固定され、回転軸6と共に回転するようになっている。軸カラー22は、図2に示すシールカバー12と同様に、回転軸6の軸芯に実質的に平行な分割面で二分割可能になっており、ボルト24により分割半割体が分離可能に連結してある。軸カラー22の内周部は、ボルト24の締め付けにより回転軸6の外周に密着し、軸カラー22は、回転軸6に固定され、回転軸6と共に回転するようになっている。 The rotation-side sealing ring 20 is detachably fixed to the rotation shaft 6 by the shaft collar 22 and the holder 40, and rotates together with the rotation shaft 6. As with the seal cover 12 shown in FIG. 2, the shaft collar 22 can be divided into two parts by a dividing surface substantially parallel to the axis of the rotating shaft 6, and the divided half can be separated by a bolt 24. It is connected. The inner peripheral portion of the shaft collar 22 is in close contact with the outer periphery of the rotating shaft 6 by tightening the bolt 24, and the shaft collar 22 is fixed to the rotating shaft 6 and rotates together with the rotating shaft 6.
 軸カラー22とホルダ40とは、リング26およびボルト27により着脱可能に連結され、ホルダ40は、回転側密封環20の外周に位置し、ホルダ40と回転側密封環20との間には、Oリング42が装着してあり、それらの間のシールを確保している。Oリング42は、Oリング18と同様な合成樹脂あるいはゴムなどで構成され、Oリング18と同様に、周方向の一カ所で切断面を有する。 The shaft collar 22 and the holder 40 are detachably connected by a ring 26 and a bolt 27, and the holder 40 is positioned on the outer periphery of the rotation side sealing ring 20, and between the holder 40 and the rotation side sealing ring 20, An O-ring 42 is attached to ensure a seal between them. The O-ring 42 is made of the same synthetic resin or rubber as the O-ring 18, and has a cut surface at one place in the circumferential direction, like the O-ring 18.
 ホルダ40および回転側密封環20の軸方向の隣に位置する軸カラーの近くで、回転側密封環20の内周側には、凹溝29が形成してあり、そこにOリング28が装着してあり、回転側密封環20と回転軸6との間の隙間をシールしている。このOリング28も、Oリング18と同様な合成樹脂あるいはゴムなどで構成され、Oリング18と同様に、周方向の一カ所で切断面を有する。 A concave groove 29 is formed on the inner peripheral side of the rotary seal ring 20 near the shaft collar located next to the holder 40 and the rotary seal ring 20 in the axial direction, and an O-ring 28 is attached thereto. The gap between the rotation side sealing ring 20 and the rotation shaft 6 is sealed. The O-ring 28 is also made of the same synthetic resin or rubber as the O-ring 18, and has a cut surface at one place in the circumferential direction like the O-ring 18.
 ホルダ40は、図2に示すシールカバー12と同様に、回転軸6の軸芯に実質的に平行な分割面で二分割可能になっており、ボルト44により分割半割体が分離可能に連結してある。ホルダ40のボルト44を締め付けることで、二分割型回転側密封環20の分割面での密着性も向上する。なお、回転側密封環20の分割半割体は、後述する静止側密封環30の分割半割体30a,30bと同様に、ホルダ40を締め付けることで、密封環20自体にはボルトを用いることなく分割面において密着される。 As with the seal cover 12 shown in FIG. 2, the holder 40 can be divided into two parts by a dividing surface substantially parallel to the axis of the rotary shaft 6, and the divided halves can be separated by bolts 44. It is. By tightening the bolts 44 of the holder 40, the adhesion on the split surface of the two-split rotary side sealing ring 20 is also improved. In addition, the split halves of the rotation-side seal ring 20 use bolts for the seal ring 20 itself by tightening the holder 40 in the same manner as the split halves 30a and 30b of the stationary-side seal ring 30 described later. It adheres on the dividing surface without.
 図1および図2に示すように、静止側密封環30は、回転軸6の軸芯に実質的に平行な分割面30cにおいて、分割半割体30a,30bへと二分割可能であり、その外周には、ホルダ50が配置してある。ホルダ50と静止側密封環30との間には、Oリング52が装着してあり、それらの間のシール性を確保している。ホルダ50は、回り止めピン56により、シールカバー12に対して回転不能になっているが、軸方向の移動は許容している。 As shown in FIG. 1 and FIG. 2, the stationary-side sealing ring 30 can be divided into two halves 30a and 30b at a dividing surface 30c substantially parallel to the axis of the rotary shaft 6, A holder 50 is disposed on the outer periphery. An O-ring 52 is attached between the holder 50 and the stationary-side sealing ring 30 to ensure a sealing property between them. The holder 50 is non-rotatable with respect to the seal cover 12 by the non-rotating pin 56, but is allowed to move in the axial direction.
 ホルダ50の分割半割体をボルト54により締め付けることで、二分割型静止側密封環30の分割面での密着性も向上する。なお、図3に示すように、静止側密封環30の分割半割体30a,30bは、図1に示すボルト54によりホルダ50を締め付けることで、密封環30自体にはボルトを用いることなく分割面30cにおいて密着される。 By tightening the split halves of the holder 50 with the bolts 54, the adhesion on the split surface of the two-part stationary ring 30 is also improved. As shown in FIG. 3, the split halves 30a and 30b of the stationary-side sealing ring 30 are split without using bolts in the sealing ring 30 itself by tightening the holder 50 with the bolts 54 shown in FIG. The surface 30c is closely attached.
 図3に示すように、静止摺動面31に近い静止側密封環30の外周面には、横断面が半円形状のOリング溝32が円周方向に沿って形成してある。Oリング溝32には、図1に示すOリング52が装着され、ホルダ50との間をシールしている。 As shown in FIG. 3, an O-ring groove 32 having a semicircular cross section is formed along the circumferential direction on the outer peripheral surface of the stationary seal ring 30 close to the stationary sliding surface 31. An O-ring 52 shown in FIG. 1 is mounted in the O-ring groove 32 and seals between the O-ring groove 32 and the holder 50.
 静止側密封環30の外周面において、Oリング溝32の軸方向の隣には、二次シール装着面33、アダプタ先端装着面34およびアダプタ後端装着面36が、この順で形成してある。二次シール装着面33には、Oリング35が装着される。Oリング35は、円周方向の一カ所において半径に対して斜めの切断面35cを有し、紐状のOリング35が切断面35cにおいて連結されることで、リング形状のOリングを構成している。切断面35cにおいては、接着剤を用いることなく接合するのみで、密封が保たれるが、接着剤を用いて接合しても良い。 A secondary seal mounting surface 33, an adapter front end mounting surface 34, and an adapter rear end mounting surface 36 are formed in this order on the outer peripheral surface of the stationary seal ring 30 adjacent to the O-ring groove 32 in the axial direction. . An O-ring 35 is mounted on the secondary seal mounting surface 33. The O-ring 35 has a cutting surface 35c that is oblique to the radius at one place in the circumferential direction, and the string-shaped O-ring 35 is connected to the cutting surface 35c to form a ring-shaped O-ring. ing. The cut surface 35c is kept sealed only by joining without using an adhesive, but may be joined using an adhesive.
 二次シール装着面33は、図1に示すように、その横断面がOリング35の外周形状に合わせた円弧形状(円の約1/4のR)を有し、密封環とOリングとの間の隙間を有さないように形成しており、また、二次シール装着面33にOリング35を装着した状態で、Oリング35の外周が、静止側密封環30の最大外径の外周面から飛び出すようになっている。Oリング35の外周が静止側密封環30の最大外径の外周面38から半径方向の外方に飛び出す寸法は、特に限定されないが、Oリング35の横断面直径d1(図3参照)に対して1/2以下で、図1に示す静止側密封環30の外周面38とシールカバー12の内周面との隙間幅c1よりも大きいことが好ましい。 As shown in FIG. 1, the secondary seal mounting surface 33 has an arc shape (R of about ¼ of a circle) whose cross section matches the outer peripheral shape of the O-ring 35. The outer periphery of the O-ring 35 is the maximum outer diameter of the stationary seal ring 30 with the O-ring 35 mounted on the secondary seal mounting surface 33. It jumps out from the outer peripheral surface. The dimension of the outer periphery of the O-ring 35 protruding radially outward from the outer peripheral surface 38 having the maximum outer diameter of the stationary-side sealing ring 30 is not particularly limited, but with respect to the cross-sectional diameter d1 (see FIG. 3) 1 or less and preferably larger than the gap width c1 between the outer peripheral surface 38 of the stationary seal ring 30 and the inner peripheral surface of the seal cover 12 shown in FIG.
 Oリング35は、二次シール装着面33に接触すると共に、アダプタ先端装着面34である円筒外周面にも接触する。アダプタ先端装着面34には、アダプタ63の先端内周面も接触し、アダプタ63の先端面63aが、Oリング35に接触可能になっている。アダプタ63の先端面63aは、図1に示すように、Oリング35の外周面形状に合わせて凹状に窪んでおり、Oリング35に密着するようになっている。 The O-ring 35 contacts the secondary seal mounting surface 33 and also contacts the cylindrical outer peripheral surface which is the adapter tip mounting surface 34. The adapter tip mounting surface 34 is also in contact with the inner peripheral surface of the tip of the adapter 63 so that the tip surface 63 a of the adapter 63 can contact the O-ring 35. As shown in FIG. 1, the tip surface 63 a of the adapter 63 is recessed in conformity with the outer peripheral surface shape of the O-ring 35, and comes into close contact with the O-ring 35.
 アダプタ63の後端部63bには、先端部よりも大径の大径部と先端部よりも内径が小さい小径部とが形成してあり、小径部の内周面が、図3に示すアダプタ後端装着面36に装着してある。静止側密封環30の最大外径の外周面38に比較して、アダプタ先端装着面34およびアダプタ後端装着面36の順序で、外径が小さくなっている。 The rear end portion 63b of the adapter 63 is formed with a large-diameter portion having a larger diameter than the tip portion and a small-diameter portion having a smaller inner diameter than the tip portion, and the inner peripheral surface of the small-diameter portion is the adapter shown in FIG. The rear end mounting surface 36 is mounted. Compared with the outer peripheral surface 38 having the maximum outer diameter of the stationary-side sealing ring 30, the outer diameter is smaller in the order of the adapter front end mounting surface 34 and the adapter rear end mounting surface 36.
 アダプタ63は、たとえば柔軟性のあるOリング35やガスケット15よりも硬い合成樹脂で構成してあり、たとえばフッ素樹脂などで構成される。アダプタ63は、図3に示すように、円周方向の一カ所において切断面63cを有し、切断面63cにおいてアダプタ63を開いて、図1に示す回転軸6の外周側から静止側密封環30の装着面36に取り付け可能になっている。静止側密封環30の装着面36に取り付けた後は、アダプタ63自体の弾力性により、切断面63cで相互に接合する。なお、アダプタ63は、静止側密封環30と同様に二分割型としても良い。 The adapter 63 is made of, for example, a synthetic resin harder than the flexible O-ring 35 and the gasket 15, and is made of, for example, a fluororesin. As shown in FIG. 3, the adapter 63 has a cut surface 63c at one place in the circumferential direction, and the adapter 63 is opened at the cut surface 63c so that the stationary side sealing ring extends from the outer peripheral side of the rotating shaft 6 shown in FIG. It can be attached to 30 mounting surfaces 36. After being attached to the mounting surface 36 of the stationary seal ring 30, they are joined to each other at the cut surface 63c due to the elasticity of the adapter 63 itself. Note that the adapter 63 may be of a two-divided type similarly to the stationary side sealing ring 30.
 Oリング35およびガスケット15は、アダプタ63よりも柔軟性に優れた材質で構成され、たとえばOリング35は、NBR、FKM、EPDM、FFKM、IIR、NRなどで構成され、ガスケット15は、NBR、FKM、EPDM、FFKM、IIR、NRなどで構成される。Oリング35とガスケット15は、異なる材質で構成することができるが、Oリング35とガスケット15は同じ材質であることが好ましい。 The O-ring 35 and the gasket 15 are made of a material that is more flexible than the adapter 63. For example, the O-ring 35 is made of NBR, FKM, EPDM, FFKM, IIR, NR, etc., and the gasket 15 is made of NBR, It consists of FKM, EPDM, FFKM, IIR, NR, etc. The O-ring 35 and the gasket 15 can be made of different materials, but the O-ring 35 and the gasket 15 are preferably made of the same material.
 アダプタ63の後端面には、円周方向に複数配置されたスプリング62の一端が当接し、アダプタ63をOリング35方向に押圧するようになっている。スプリング62の他端は、図1に示すように、リテーナ60に保持してある。リテーナ60は、シールカバー12と同様に、二分割可能な半割体で構成してあり、ボルト64により分割可能に組み立てられている。リテーナ60は、ボルト66によりシールカバー12の外方端面に着脱自在に装着される。 One end of a plurality of springs 62 arranged in the circumferential direction is in contact with the rear end surface of the adapter 63 so as to press the adapter 63 in the O-ring 35 direction. The other end of the spring 62 is held by a retainer 60 as shown in FIG. Similar to the seal cover 12, the retainer 60 is configured by a half-divided body that can be divided into two parts, and is assembled so as to be divided by bolts 64. The retainer 60 is detachably attached to the outer end surface of the seal cover 12 by a bolt 66.
 リテーナ60に取り付けられたスプリング62によるスプリング力は、アダプタ63に伝わり、Oリング35を押圧し、Oリング35を二次シール装着面33に押し付ける。その押し付け力は、静止側密封環30に伝わり、静止側密封環30の静止摺動面31は、回転側密封環20の回転摺動面21に押し付けられる。 The spring force by the spring 62 attached to the retainer 60 is transmitted to the adapter 63, presses the O-ring 35, and presses the O-ring 35 against the secondary seal mounting surface 33. The pressing force is transmitted to the stationary side sealing ring 30, and the stationary sliding surface 31 of the stationary side sealing ring 30 is pressed against the rotational sliding surface 21 of the rotating side sealing ring 20.
 すなわち、静止側密封環30は、ホルダ50およびOリング35と共に、シールカバー12に対して軸方向移動可能にシールカバー12に取り付けられる。しかも、本実施形態では、シールカバー12の分割面12cに設けられた紐状のガスケット15の他方の第2端部15bは、少なくともOリング35の軸方向の移動範囲内でシールカバー12の内周面に露出しており、Oリング35の外周面の一部に圧接するようになっている。 That is, the stationary side sealing ring 30 is attached to the seal cover 12 together with the holder 50 and the O-ring 35 so as to be movable in the axial direction with respect to the seal cover 12. Moreover, in the present embodiment, the other second end 15b of the string-like gasket 15 provided on the dividing surface 12c of the seal cover 12 is at least within the movement range in the axial direction of the O-ring 35. It is exposed on the peripheral surface and is in pressure contact with a part of the outer peripheral surface of the O-ring 35.
 そのためOリング35は、静止側密封環30と共に軸方向に移動する際に、ガスケットの第2端部15bに沿って摺動可能になっており、しかもそれらの間のシール性を保持している。また、Oリング35の外周部は、ガスケットの第2端部15bとの接触部以外では、シールカバー12の内周面に接触している。したがって、図1に示す静止側密封環30の外周面38とシールカバー12の内周面との隙間幅c1から外部隙間10へと漏れようとする密封流体の漏れを防止することができる。 Therefore, the O-ring 35 is slidable along the second end portion 15b of the gasket when moving in the axial direction together with the stationary-side sealing ring 30, and the sealing property between them is maintained. . Further, the outer peripheral portion of the O-ring 35 is in contact with the inner peripheral surface of the seal cover 12 except for the contact portion with the second end portion 15b of the gasket. Accordingly, it is possible to prevent leakage of the sealing fluid that leaks from the gap width c1 between the outer peripheral surface 38 of the stationary seal ring 30 and the inner peripheral surface of the seal cover 12 shown in FIG.
 なお、図1において、符号68および70は、それぞれセットプレートおよびセットボルトを示し、回転軸6の軸芯に対して静止側密封環30の軸芯をアライメントするためのものであり、メカニカルシール装置2が回転軸6の回りに取り付けられた後には取り除かれる。 In FIG. 1, reference numerals 68 and 70 denote a set plate and a set bolt, respectively, for aligning the axis of the stationary seal ring 30 with respect to the axis of the rotary shaft 6. After 2 is mounted around the axis of rotation 6, it is removed.
 本実施形態において、回転側密封環20および静止側密封環30の材質は、特に限定されず、たとえば回転密封環20は、SiC、C、SiN、Al2 3 、ジルコニアなどで構成され、静止側密封環20は、SiC、C、SiN、Al2 3 、ジルコニアなどで構成される。これら密封環20および30は、Oリング35よりも硬い材料で構成される。 In this embodiment, the material of the rotation side sealing ring 20 and the stationary side sealing ring 30 is not particularly limited. For example, the rotation sealing ring 20 is composed of SiC, C, SiN, Al 2 O 3 , zirconia, or the like, and is stationary. The side sealing ring 20 is made of SiC, C, SiN, Al 2 O 3 , zirconia, or the like. These sealing rings 20 and 30 are made of a material harder than the O-ring 35.
 本実施形態に係る分割型メカニカルシール装置2では、二次シール部材としてのOリング35は、静止側密封環30に対して軸方向に同時に移動するように装着され、シールカバー12の内周面に露出するガスケット15の第2端部15bに対して、回転軸6の軸方向に沿って移動可能に接触している。このため、Oリング35は、静止側密封環30に対して軸方向に相対移動することなく、ガスケット15の第2端部15bに摺動して移動する。このためOリング35が静止側密封環30に摺動することによるOリング35の損傷を抑制することができる。 In the split mechanical seal device 2 according to this embodiment, the O-ring 35 as a secondary seal member is mounted so as to move simultaneously in the axial direction with respect to the stationary-side seal ring 30, and the inner peripheral surface of the seal cover 12. The second end portion 15b of the gasket 15 exposed to is movably contacted along the axial direction of the rotary shaft 6. For this reason, the O-ring 35 slides and moves on the second end 15 b of the gasket 15 without moving relative to the stationary seal ring 30 in the axial direction. For this reason, damage to the O-ring 35 due to the O-ring 35 sliding on the stationary seal ring 30 can be suppressed.
 またOリング35が静止側密封環30に対して相対移動しないことから、静止側密封環30の割面30cにOリング35が入り込んで噛み込まれることが防止され、この点でも、Oリング35の損傷を抑制することができる。Oリング35の損傷を抑制することができるため、Oリングとガスケット15によるシール特性の劣化を防止することができ、シール特性の向上を図ることができる。 Further, since the O-ring 35 does not move relative to the stationary seal ring 30, the O-ring 35 is prevented from entering and biting into the split surface 30c of the stationary seal ring 30, and in this respect as well, the O-ring 35 is prevented. Damage can be suppressed. Since damage to the O-ring 35 can be suppressed, deterioration of the sealing characteristics due to the O-ring and the gasket 15 can be prevented, and the sealing characteristics can be improved.
 なお、Oリング35とガスケット15との接触は、シールカバー12の分割面12cでのみ行われ全周ではないことから、ガスケット15に対するOリング35の摩擦力も少なく、Oリング35はガスケット15に対して軸方向にスムーズに移動可能である。 Since the contact between the O-ring 35 and the gasket 15 is performed only on the dividing surface 12c of the seal cover 12 and not the entire circumference, the frictional force of the O-ring 35 against the gasket 15 is small, and the O-ring 35 is Can move smoothly in the axial direction.
 さらに、Oリング35とガスケット15との接触部において、二次シールと密封環の相対位置が変化しない構造なので、密封流体がスラリーなどである場合においても、スラリーが二次シールと密封環との隙間に入り込んで固着するおそれはなくなり、二次シールの軸方向移動を阻害することが防止され、シール特性の劣化が少ない。 Further, since the relative position between the secondary seal and the sealing ring does not change at the contact portion between the O-ring 35 and the gasket 15, even when the sealing fluid is slurry, the slurry is not between the secondary seal and the sealing ring. There is no risk of entering and fixing into the gap, preventing the secondary seal from moving in the axial direction and preventing deterioration of the seal characteristics.
 しかも本実施形態では、スプリング62の先端にリング状のアダプタ63が取り付けられ、アダプタ63を介して、Oリング35を軸方向に押圧する。アダプタ63を介してOリング35を軸方向に押圧することで、Oリング35と静止側密封環30との間で、Oリング35を、密封環30に対して相対移動しないように保持させることができる。 In addition, in the present embodiment, a ring-shaped adapter 63 is attached to the tip of the spring 62, and the O-ring 35 is pressed in the axial direction via the adapter 63. By pressing the O-ring 35 in the axial direction via the adapter 63, the O-ring 35 is held between the O-ring 35 and the stationary-side sealing ring 30 so as not to move relative to the sealing ring 30. Can do.
 第2実施形態
 図4に示す本発明の他の実施形態に係る分割型メカニカルシール装置102は、図1~図3に示す実施形態の変形例であり、回転密封環120に対して、二次シール部材としてのOリング235とスプリング62とが装着してあり、軸カラー122の割面に一次シール部材としてのガスケット215が装着してある。以下に、詳細に説明するが、図4において、図1~図3に示す実施形態に示す部材と共通する部材には、共通する符号を付し、その説明を一部省略する。
Second Embodiment A split-type mechanical seal device 102 according to another embodiment of the present invention shown in FIG. 4 is a modification of the embodiment shown in FIGS. An O-ring 235 as a seal member and a spring 62 are attached, and a gasket 215 as a primary seal member is attached to the split surface of the shaft collar 122. Although described in detail below, in FIG. 4, members common to the members shown in the embodiment shown in FIGS. 1 to 3 are given the same reference numerals, and a part of the description is omitted.
 この装置102は、シールカバー12と、その内部に配置された回転側密封環120および静止側密封環130とを、主要部品として有する。この実施形態においても、シールカバー12は、回転軸6の軸芯に実質的に平行な分割面12cで2分割可能なカバー半割体12a,12b(図2参照)で構成してある。 This device 102 includes a seal cover 12 and a rotation side sealing ring 120 and a stationary side sealing ring 130 disposed therein as main components. Also in this embodiment, the seal cover 12 is configured by cover halves 12a and 12b (see FIG. 2) that can be divided into two by a dividing surface 12c substantially parallel to the axis of the rotating shaft 6.
 シールカバー12の割面12cには、ガスケット溝13がカバー半割体のそれぞれに対して軸方向に沿って形成してあり、その内部に、紐状の紐状ガスケット115が装着してある。紐状ガスケット115は、図1~図3に示す紐状ガスケット同様である。 A gasket groove 13 is formed in the split surface 12c of the seal cover 12 along the axial direction with respect to each of the cover halves, and a string-like string-like gasket 115 is mounted therein. The string-like gasket 115 is the same as the string-like gasket shown in FIGS.
 シールカバー12の軸方向の一方の接合端面12dは、ケーシング4の端面に対してボルト16により着脱自在に装着してある。シールカバー12の接合端面12dには、円周方向に沿って形成してあるOリング溝17がリング状に形成してあり、その内部に、横断面が円形のOリング18が装着してある。 The one joining end surface 12 d in the axial direction of the seal cover 12 is detachably attached to the end surface of the casing 4 by a bolt 16. An O-ring groove 17 formed along the circumferential direction is formed in a ring shape on the joining end surface 12d of the seal cover 12, and an O-ring 18 having a circular cross section is mounted therein. .
 Oリング溝17の底部では、周方向の二カ所位置、すなわちシールカバー12の割面12cの位置で、Oリング溝17とガスケット溝13とが交差し、ガスケット115の一方の第1端部115aとOリング18とが圧接して接触するようになっている。そのため、ガスケット115の第1端部115aの位置で、内部隙間8から分割面12cを通して外部に漏れようとする密封流体の漏洩を防止している。 At the bottom of the O-ring groove 17, the O-ring groove 17 and the gasket groove 13 intersect at two circumferential positions, that is, at the position of the split surface 12 c of the seal cover 12, and one first end 115 a of the gasket 115. And the O-ring 18 are in pressure contact with each other. Therefore, leakage of the sealing fluid that attempts to leak from the internal gap 8 to the outside through the dividing surface 12c is prevented at the position of the first end 115a of the gasket 115.
 シールカバー12と回転軸6との間の隙間には、回転側密封環120と静止側密封環130とが配置してあり、メカニカルシールを構成している。回転側密封環120は、静止側密封環130の静止摺動面131に対して摺動する回転摺動面121を有し、静止側密封環130と同様に、回転軸6の軸芯に実質的に平行な分割面に沿って二分割可能な構造を有する。 Rotation side sealing ring 120 and stationary side sealing ring 130 are arranged in the gap between seal cover 12 and rotating shaft 6 to constitute a mechanical seal. The rotation-side sealing ring 120 has a rotation sliding surface 121 that slides with respect to the stationary sliding surface 131 of the stationary-side sealing ring 130. And a structure that can be divided into two along a parallel dividing plane.
 回転側密封環120は、軸カラー122により回転軸6に対して着脱可能に固定され、回転軸6と共に回転するようになっている。軸カラー122は、回転軸6の軸芯に実質的に平行な分割面122cで二分割可能になっており、ボルト124により分割半割体が分離可能に連結してある。1軸カラー22の内周部は、ボルト24の締め付けにより回転軸6の外周に密着し、軸カラー122は、回転軸6に固定され、回転軸6と共に回転するようになっている。 The rotation-side sealing ring 120 is detachably fixed to the rotation shaft 6 by the shaft collar 122 and rotates together with the rotation shaft 6. The shaft collar 122 can be divided into two by a split surface 122c substantially parallel to the axis of the rotary shaft 6, and the split halves are connected to each other by a bolt 124 so as to be separable. The inner peripheral portion of the uniaxial collar 22 is brought into close contact with the outer periphery of the rotating shaft 6 by tightening the bolt 24, and the shaft collar 122 is fixed to the rotating shaft 6 and rotates together with the rotating shaft 6.
 軸カラー122には、リング126が装着してあると共に、Oリング128が装着してあり、回転側密封環120と回転軸6との間の隙間をシールしている。このOリング128も、Oリング18と同様な合成樹脂あるいはゴムなどで構成され、図1に示すOリング18と同様に、周方向の一カ所で切断面を有する。 The shaft collar 122 is equipped with a ring 126 and an O-ring 128 to seal the gap between the rotation-side sealing ring 120 and the rotation shaft 6. The O-ring 128 is also made of the same synthetic resin or rubber as the O-ring 18 and has a cut surface at one place in the circumferential direction like the O-ring 18 shown in FIG.
 静止側密封環130は、図1に示す静止側密封環30と同様に、回転軸6の軸芯に実質的に平行な分割面において、分割半割体へと二分割可能であり、その外周には、ホルダ50が配置してある。ホルダ50と静止側密封環130との間には、Oリング52が装着してあり、それらの間のシール性を確保している。 As with the stationary side sealing ring 30 shown in FIG. 1, the stationary side sealing ring 130 can be divided into two divided halves on a dividing surface substantially parallel to the axis of the rotary shaft 6, A holder 50 is arranged. An O-ring 52 is attached between the holder 50 and the stationary-side sealing ring 130 to ensure a sealing property between them.
 静止摺動面131に近い静止側密封環130の外周面には、横断面が半円形状のOリング溝32が円周方向に沿って形成してある。Oリング溝32には、Oリング52が装着され、ホルダ50との間をシールしている。 On the outer peripheral surface of the stationary seal ring 130 close to the stationary sliding surface 131, an O-ring groove 32 having a semicircular cross section is formed along the circumferential direction. An O-ring 52 is mounted in the O-ring groove 32 and seals between the holder 50.
 静止側密封環130の外周面において、Oリング溝32の軸方向の隣には、シール装着面133およびアダプタ先端装着面134が、この順で形成してある。シール装着面133には、Oリング135が装着される。Oリング135は、紐状のOリングが切断面において連結されることで、リング形状のOリングを構成している。 On the outer peripheral surface of the stationary seal ring 130, a seal mounting surface 133 and an adapter tip mounting surface 134 are formed in this order next to the O-ring groove 32 in the axial direction. An O-ring 135 is attached to the seal attachment surface 133. The O-ring 135 constitutes a ring-shaped O-ring by connecting the string-like O-ring at the cut surface.
 シール装着面133は、その横断面がOリング135の外周形状に合わせた円弧形状(円の約1/4のR)を有し、密封環130とOリング135との間の隙間を有さないように形成しており、また、シール装着面133にOリング135を装着した状態で、Oリング135の外周が、静止側密封環130の最大外径の外周面から飛び出すようになっている。Oリング135の外周が静止側密封環130の最大外径の外周面138から半径方向の外方に飛び出す寸法は、図1~図3に示す実施形態において、Oリング35と外周面38との関係と同じである。 The seal mounting surface 133 has an arc shape (R of about ¼ of a circle) whose cross section matches the outer peripheral shape of the O-ring 135, and has a gap between the seal ring 130 and the O-ring 135. Further, the outer periphery of the O-ring 135 protrudes from the outer peripheral surface of the maximum outer diameter of the stationary seal ring 130 with the O-ring 135 mounted on the seal mounting surface 133. . The dimension in which the outer periphery of the O-ring 135 protrudes outward in the radial direction from the outer peripheral surface 138 having the maximum outer diameter of the stationary seal ring 130 is the same as that of the O-ring 35 and the outer peripheral surface 38 in the embodiment shown in FIGS. Same as relationship.
 本実施形態では、シールカバー12の分割面12cに設けられた紐状のガスケット115の他方の第2端部115bは、シールカバー12の内周面に露出しており、Oリング135の外周面の一部に圧接するようになっている。 In the present embodiment, the other second end 115 b of the string-like gasket 115 provided on the split surface 12 c of the seal cover 12 is exposed on the inner peripheral surface of the seal cover 12, and the outer peripheral surface of the O-ring 135. It comes to press-contact with a part of.
 Oリング135は、シール装着面133に接触すると共に、アダプタ先端装着面134である円筒外周面にも接触する。アダプタ先端装着面134には、アダプタ163の先端内周面も接触し、アダプタ163の先端面が、Oリング135に接触可能になっている。アダプタ163の先端面は、図1~図3に示すアダプタ63と同様に、Oリング135の外周面形状に合わせて凹状に窪んでおり、Oリング135に密着するようになっている。 The O-ring 135 contacts the seal mounting surface 133 and also contacts the outer peripheral surface of the cylinder that is the adapter tip mounting surface 134. The adapter tip mounting surface 134 is also in contact with the inner peripheral surface of the tip of the adapter 163 so that the tip surface of the adapter 163 can contact the O-ring 135. Like the adapter 63 shown in FIGS. 1 to 3, the tip surface of the adapter 163 is recessed in conformity with the shape of the outer peripheral surface of the O-ring 135 and is in close contact with the O-ring 135.
 アダプタ163の後端部は、リテーナ160により保持してある。リテーナ160は、シールカバー12と同様に、二分割可能な半割体で構成してあり、ボルトにより分割可能に組み立てられている。リテーナ160は、ボルト166によりシールカバー12の外方端面に着脱自在に装着される。 The rear end of the adapter 163 is held by a retainer 160. Like the seal cover 12, the retainer 160 is configured by a half-divided body that can be divided into two parts, and is assembled so as to be divided by bolts. The retainer 160 is detachably attached to the outer end surface of the seal cover 12 by a bolt 166.
 アダプタ163は、図1~図3に示すアダプタ63と同様な構成を有している。Oリング135およびガスケット115は、図1~図3に示すOリング35およびガスケット15と同様な材質で構成される。 The adapter 163 has the same configuration as the adapter 63 shown in FIGS. The O-ring 135 and the gasket 115 are made of the same material as the O-ring 35 and the gasket 15 shown in FIGS.
 回転摺動面121に近い回転側密封環120の外周面には、Oリング溝が円周方向に沿って形成してある。Oリング溝には、Oリング42が装着され、ホルダ40との間をシールしている。 An O-ring groove is formed along the circumferential direction on the outer peripheral surface of the rotary seal ring 120 close to the rotary sliding surface 121. An O-ring 42 is mounted in the O-ring groove and seals between the holder 40 and the O-ring groove.
 回転側密封環120の外周面において、Oリング42が装着してあるOリング溝の軸方向の隣には、シール装着面233およびアダプタ先端装着面234が、この順で形成してある。シール装着面233には、二次シール部材としてのOリング235が装着される。Oリング235は、紐状のOリングが切断面において連結されることで、リング形状のOリングを構成している。 A seal mounting surface 233 and an adapter tip mounting surface 234 are formed in this order on the outer peripheral surface of the rotation-side seal ring 120 adjacent to the O-ring groove in which the O-ring 42 is mounted in the axial direction. An O-ring 235 as a secondary seal member is attached to the seal attachment surface 233. The O-ring 235 constitutes a ring-shaped O-ring by connecting the string-like O-ring at the cut surface.
 シール装着面233は、その横断面がOリング235の外周形状に合わせた円弧形状(円の約1/4のR)を有し、密封環120とOリング235との間の隙間を有さないように形成しており、また、シール装着面233にOリング235を装着した状態で、Oリング235の外周が、回転側密封環130の最大外径の外周面から飛び出すようになっている。Oリング235の外周が回転側密封環120の最大外径の外周面から半径方向の外方に飛び出す寸法は、図1~図3に示す実施形態において、Oリング35と外周面38との関係と同じである。 The seal mounting surface 233 has an arc shape (R of about ¼ of a circle) whose cross section matches the outer peripheral shape of the O-ring 235 and has a gap between the sealing ring 120 and the O-ring 235. In addition, the outer periphery of the O-ring 235 protrudes from the outer peripheral surface having the maximum outer diameter of the rotation-side seal ring 130 with the O-ring 235 mounted on the seal mounting surface 233. . The dimension in which the outer periphery of the O-ring 235 protrudes radially outward from the outer peripheral surface having the maximum outer diameter of the rotary seal ring 120 is the relationship between the O-ring 35 and the outer peripheral surface 38 in the embodiment shown in FIGS. Is the same.
 Oリング235は、シール装着面233に接触すると共に、アダプタ先端装着面234である円筒外周面にも接触する。アダプタ先端装着面234には、アダプタ263の先端内周面も接触し、アダプタ263の先端面が、Oリング235に接触可能になっている。アダプタ263の先端面は、図1~図3に示すアダプタ63と同様に、Oリング235の外周面形状に合わせて凹状に窪んでおり、Oリング235に密着するようになっている。 The O-ring 235 contacts the seal mounting surface 233 and also contacts the outer peripheral surface of the cylinder that is the adapter tip mounting surface 234. The adapter tip mounting surface 234 is also in contact with the inner peripheral surface of the tip of the adapter 263 so that the tip surface of the adapter 263 can contact the O-ring 235. The tip surface of the adapter 263 is recessed in conformity with the outer peripheral surface shape of the O-ring 235 so as to be in close contact with the O-ring 235, like the adapter 63 shown in FIGS.
 アダプタ263は、図1~図3に示すアダプタ63と同様な構成を有している。Oリング235およびガスケット215は、図1~図3に示すOリング35およびガスケット15と同様な材質で構成される。 The adapter 263 has the same configuration as the adapter 63 shown in FIGS. The O-ring 235 and the gasket 215 are made of the same material as the O-ring 35 and the gasket 15 shown in FIGS.
 アダプタ263の後端面には、円周方向に複数配置されたスプリング62の一端が当接し、アダプタ263をOリング235方向に押圧するようになっている。スプリング262の他端は、軸カラー122に保持してある。 One end of a plurality of springs 62 arranged in the circumferential direction is in contact with the rear end surface of the adapter 263 so as to press the adapter 263 in the O-ring 235 direction. The other end of the spring 262 is held by the shaft collar 122.
 軸カラー122に取り付けられたスプリング62によるスプリング力は、アダプタ263に伝わり、Oリング235を押圧し、Oリング235を二次シール装着面233に押し付ける。その押し付け力は、回転側密封環120に伝わり、回転側密封環120の静止摺動面121は、静止側密封環130の回転摺動面131に押し付けられる。 The spring force by the spring 62 attached to the shaft collar 122 is transmitted to the adapter 263, presses the O-ring 235, and presses the O-ring 235 against the secondary seal mounting surface 233. The pressing force is transmitted to the rotation-side sealing ring 120, and the stationary sliding surface 121 of the rotation-side sealing ring 120 is pressed against the rotation sliding surface 131 of the stationary-side sealing ring 130.
 すなわち、回転側密封環120は、ホルダ40およびOリング235と共に、軸カラー122に対して軸方向移動可能に軸カラー122に取り付けられる。しかも、本実施形態では、軸カラー122の分割面112cに設けられた紐状のガスケット215の一方の第1端部215aは、分割面112cにおいて、Oリング128の外周部に当接し、これらの間の密封性を確保している。また、ガスケット215の他方の第2端部215bは、少なくともOリング235の軸方向の移動範囲内で軸カラー122の内周面に露出しており、Oリング235の外周面の一部に圧接するようになっている。 That is, the rotation-side sealing ring 120 is attached to the shaft collar 122 so as to be movable in the axial direction with respect to the shaft collar 122 together with the holder 40 and the O-ring 235. In addition, in the present embodiment, one first end 215a of the string-like gasket 215 provided on the split surface 112c of the shaft collar 122 abuts on the outer peripheral portion of the O-ring 128 on the split surface 112c. Sealing performance is ensured. The other second end 215 b of the gasket 215 is exposed to the inner peripheral surface of the shaft collar 122 at least within the axial movement range of the O-ring 235, and is pressed against a part of the outer peripheral surface of the O-ring 235. It is supposed to be.
 そのためOリング235は、回転側密封環120と共に軸方向に移動する際に、ガスケット215の第2端部215bに沿って摺動可能になっており、しかもそれらの間のシール性を保持している。また、Oリング235の外周部は、ガスケットの第2端部215bとの接触部以外では、軸カラー122の内周面に接触している。したがって、回転側密封環120の外周面と軸カラー122の内周面との隙間幅から外部へと漏れようとする密封流体の漏れを防止することができる。 Therefore, the O-ring 235 is slidable along the second end 215b of the gasket 215 when moving in the axial direction together with the rotation-side sealing ring 120, and maintains a sealing property between them. Yes. Further, the outer peripheral portion of the O-ring 235 is in contact with the inner peripheral surface of the shaft collar 122 except for the contact portion with the second end portion 215b of the gasket. Therefore, it is possible to prevent leakage of the sealing fluid that leaks to the outside from the gap width between the outer peripheral surface of the rotation-side sealing ring 120 and the inner peripheral surface of the shaft collar 122.
 本実施形態に係る分割型メカニカルシール装置2では、二次シール部材としてのOリング235は、回転側密封環120に対して軸方向に同時に移動するように装着され、軸カラー122の内周面に露出するガスケット215の第2端部215bに対して、回転軸6の軸方向に沿って移動可能に接触している。このため、Oリング235は、回転側密封環120に対して軸方向に相対移動することなく、ガスケット215の第2端部215bに摺動して移動する。このためOリング235が回転側密封環120に摺動することによるOリング235の損傷を抑制することができる。 In the split mechanical seal device 2 according to the present embodiment, the O-ring 235 as a secondary seal member is mounted so as to move simultaneously in the axial direction with respect to the rotation-side seal ring 120, and the inner peripheral surface of the shaft collar 122. The second end portion 215b of the gasket 215 exposed to slidably contacts with the second shaft 215b along the axial direction of the rotary shaft 6. For this reason, the O-ring 235 slides and moves to the second end portion 215b of the gasket 215 without moving relative to the rotation-side sealing ring 120 in the axial direction. For this reason, damage to the O-ring 235 due to the O-ring 235 sliding on the rotation-side sealing ring 120 can be suppressed.
 またOリング235が回転側密封環120に対して相対移動しないことから、回転側密封環120の割面にOリング235が入り込んで噛み込まれることが防止され、この点でも、Oリング235の損傷を抑制することができる。Oリング235の損傷を抑制することができるため、Oリング235とガスケット215によるシール特性の劣化を防止することができ、シール特性の向上を図ることができる。 Further, since the O-ring 235 does not move relative to the rotation-side sealing ring 120, the O-ring 235 is prevented from entering and biting into the split surface of the rotation-side sealing ring 120. Damage can be suppressed. Since damage to the O-ring 235 can be suppressed, deterioration of the sealing characteristics due to the O-ring 235 and the gasket 215 can be prevented, and the sealing characteristics can be improved.
 なお、Oリング235とガスケット215との接触は、軸カラー122の分割面212cでのみ行われ全周ではないことから、ガスケット215に対するOリング235の摩擦力も少なく、Oリング235はガスケット215に対して軸方向にスムーズに移動可能である。 Since the contact between the O-ring 235 and the gasket 215 is performed only on the dividing surface 212 c of the shaft collar 122 and not the entire circumference, the frictional force of the O-ring 235 with respect to the gasket 215 is small, and the O-ring 235 is against the gasket 215. Can move smoothly in the axial direction.
 さらに、Oリング235とガスケット215との接触部において、二次シールと密封環の相対位置が変化しない構造なので、密封流体がスラリーなどである場合においても、スラリーが二次シールと密封環との隙間に入り込んで固着するおそれはなくなり、二次シールの軸方向移動を阻害することが防止され、シール特性の劣化が少ない。 Further, since the relative position between the secondary seal and the sealing ring does not change at the contact portion between the O-ring 235 and the gasket 215, even when the sealing fluid is a slurry or the like, the slurry does not move between the secondary seal and the sealing ring. There is no risk of entering and fixing into the gap, preventing the secondary seal from moving in the axial direction and preventing deterioration of the seal characteristics.
 しかも本実施形態では、スプリング62の先端にリング状のアダプタ263が取り付けられ、アダプタ263を介して、Oリング235を軸方向に押圧する。アダプタ263を介してOリング235を軸方向に押圧することで、Oリング235と回転側密封環120との間で、Oリング235を、密封環120に対して相対移動しないように保持させることができる。 In addition, in the present embodiment, a ring-shaped adapter 263 is attached to the tip of the spring 62, and the O-ring 235 is pressed in the axial direction via the adapter 263. By pressing the O-ring 235 in the axial direction through the adapter 263, the O-ring 235 is held between the O-ring 235 and the rotation-side sealing ring 120 so as not to move relative to the sealing ring 120. Can do.
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.
 たとえば、上述した実施形態においては静止側密封環30に対して二次シール部材としてのOリングを装着したが、回転側密封環20に対して、二次シールとしてのOリングを装着することも可能である。
 また、上述した実施形態では、密封環20および30の外周側に密封流体が存在するインサイド型メカニカルシール装置について説明したが、密封環20および30の内周側に密封流体が存在するアウトサイド型メカニカルシール装置に対しても本発明を適用することができる。
 さらに上述した実施形態では、シールカバー12とハウジング4とが別の部材で構成してあるが、これらは一体化してある装置に対しても本発明の構造を適用することができる。その場合には、ハウジング4がシールカバーを兼ねることになる。
For example, in the embodiment described above, an O-ring as a secondary seal member is attached to the stationary seal ring 30, but an O-ring as a secondary seal may be attached to the rotary seal ring 20. Is possible.
In the above-described embodiment, the inside type mechanical seal device in which the sealing fluid exists on the outer peripheral side of the sealing rings 20 and 30 has been described. However, the outside type in which the sealing fluid exists on the inner peripheral side of the sealing rings 20 and 30 has been described. The present invention can also be applied to a mechanical seal device.
Further, in the above-described embodiment, the seal cover 12 and the housing 4 are constituted by different members, but the structure of the present invention can be applied to an apparatus in which these are integrated. In that case, the housing 4 also serves as a seal cover.
 本発明の分割型メカニカルシール装置は、ポンプやコンプレッサなどの回転装置における回転軸とケーシングとの隙間を密封するシール装置として幅広く利用することができる。 The split mechanical seal device of the present invention can be widely used as a seal device for sealing a gap between a rotating shaft and a casing in a rotating device such as a pump or a compressor.
2,102… 分割型メカニカルシール装置
4… ケーシング
6… 回転軸
12… シールカバー
15,215… ガスケット(一次シール部材)
20,120… 回転側密封環
21,121… 回転摺動面
22,122… 軸カラー
30,130… 静止側密封環
31,131… 静止摺動面
33,233… 二次シール装着面
35,235… Oリング(二次シール部材)
40,50… ホルダ
60… リテーナ
62… スプリング
63… アダプタ
2, 102 ... Split mechanical seal device 4 ... Casing 6 ... Rotating shaft 12 ... Seal cover 15, 215 ... Gasket (primary seal member)
20, 120 ... rotation side sealing ring 21, 121 ... rotation sliding surface 22, 122 ... shaft collar 30, 130 ... stationary side sealing ring 31, 131 ... stationary sliding surface 33, 233 ... secondary seal mounting surface 35, 235 ... O-ring (secondary seal member)
40, 50 ... Holder 60 ... Retainer 62 ... Spring 63 ... Adapter

Claims (4)

  1.  回転軸に取り付けられて当該回転軸と共に回転する回転側密封環と、
    シールカバーに取り付けられて前記回転側密封環に対して軸方向に当接して摺動する静止側密封環とを有し、
    前記回転軸と当該回転軸を覆うシールカバーとの間の被密封流体を密封する分割型メカニカルシール装置であって、
    前記シールカバー、または前記回転軸に固定してある軸カラー部材が、前記回転軸の周囲から取り付け可能なように、分割面で分割可能であり、
    前記シールカバーの分割面、または前記軸カラー部材の分割面には、当該分割面からの流体の漏洩を防止する紐状の一次シール部材が、当該一次シール部材の少なくとも一部が前記シールカバーの被密封流体側に露出するように装着され、
    前記回転側密封環および前記静止側密封環のいずれか一方の密封環には、周方向に延在する二次シール部材と前記一方の密封環をいずれか他方の密封環に向けて押圧する弾発手段が装着され、
    前記一次シール部材の被密封流体側に露出する部分に、前記二次シール部材が接触していることを特徴とする分割型メカニカルシール装置。
    A rotating side sealing ring attached to the rotating shaft and rotating together with the rotating shaft;
    A stationary seal ring attached to the seal cover and sliding in contact with the rotary seal ring in the axial direction;
    A split-type mechanical seal device that seals a sealed fluid between the rotary shaft and a seal cover that covers the rotary shaft,
    The seal cover or the shaft collar member fixed to the rotating shaft can be divided by a dividing surface so that it can be attached from the periphery of the rotating shaft,
    The split surface of the seal cover or the split surface of the shaft collar member has a string-like primary seal member for preventing fluid leakage from the split surface, and at least a part of the primary seal member of the seal cover. It is mounted so as to be exposed to the sealed fluid side,
    Either one of the rotating side sealing ring and the stationary side sealing ring includes a secondary seal member extending in the circumferential direction and a bullet that presses the one sealing ring toward the other sealing ring. The firing means is attached,
    The split mechanical seal device, wherein the secondary seal member is in contact with a portion exposed to the sealed fluid side of the primary seal member.
  2.  前記弾発手段が二次シール部材を介して前記一方の密封環を、前記他方の密封環に向けて押圧していることを特徴とする請求項1に記載の分割型メカニカルシール装置。 2. The split mechanical seal device according to claim 1, wherein the elastic means presses the one sealing ring toward the other sealing ring via a secondary sealing member.
  3.  前記弾発手段の先端にアダプタが取り付けられ、前記アダプタを介して、前記二次シール部材を軸方向に押圧する請求項2に記載の分割型メカニカルシール装置。 The split-type mechanical seal device according to claim 2, wherein an adapter is attached to a tip of the elastic means, and the secondary seal member is pressed in the axial direction via the adapter.
  4.  前記静止側密封環の外周に設けられた二次シール装着面に、当該静止側密封環に対して軸方向に相対移動ができないように前記二次シール部材が装着してあり、
    前記静止側密封環が前記回転側密封環に向けて軸方向に押圧されている請求項1~3のいずれかに記載の分割型メカニカルシール装置。
    The secondary seal member is mounted on the secondary seal mounting surface provided on the outer periphery of the stationary side sealing ring so that it cannot move relative to the stationary side sealing ring in the axial direction.
    The split mechanical seal device according to any one of claims 1 to 3, wherein the stationary seal ring is pressed in the axial direction toward the rotary seal ring.
PCT/JP2012/072411 2011-10-11 2012-09-04 Divided mechanical seal device WO2013054610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013538475A JP5873502B2 (en) 2011-10-11 2012-09-04 Split type mechanical seal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011224263 2011-10-11
JP2011-224263 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054610A1 true WO2013054610A1 (en) 2013-04-18

Family

ID=48081669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072411 WO2013054610A1 (en) 2011-10-11 2012-09-04 Divided mechanical seal device

Country Status (2)

Country Link
JP (1) JP5873502B2 (en)
WO (1) WO2013054610A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072275A1 (en) * 2013-11-12 2015-05-21 イーグル工業株式会社 Divided mechanical seal
CZ307002B6 (en) * 2013-07-01 2017-11-08 České vysoké učení technické v Praze A wing expander
WO2017103332A3 (en) * 2015-12-18 2018-01-25 Outotec (Finland) Oy Method for constructing a flotation apparatus, flotation apparatus, method and system for flotation and use
JP2019215079A (en) * 2018-06-08 2019-12-19 株式会社酉島製作所 Split type mechanical seal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558341A (en) * 1995-01-11 1996-09-24 Stein Seal Company Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member
JP2002048248A (en) * 2000-05-04 2002-02-15 Flowserve Management Co Split mechanical face seal assembly
JP2003531347A (en) * 1999-07-27 2003-10-21 ノースイースト・イクイップメント・インコーポレーテッド・ドゥーイング・ビジネス・アズ・デルタ・メカニカル・シールズ Split mechanical seal
US20070267819A1 (en) * 2006-05-17 2007-11-22 A.W. Chesterton Company Mechanical seal assembly
WO2011111279A1 (en) * 2010-03-08 2011-09-15 イーグル工業株式会社 Mechanical seal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961122A (en) * 1995-07-21 1999-10-05 Flowserve Management Company Split mechanical face seal and method of assembly thereof
AU2001270214A1 (en) * 2000-06-29 2002-01-14 Northeast Equipment, Inc. Doing Business As Delta Mechanical Seals Method and kit for reducing leakage in mechanical seals
JP4724727B2 (en) * 2008-03-27 2011-07-13 日本ピラー工業株式会社 mechanical seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558341A (en) * 1995-01-11 1996-09-24 Stein Seal Company Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member
JP2003531347A (en) * 1999-07-27 2003-10-21 ノースイースト・イクイップメント・インコーポレーテッド・ドゥーイング・ビジネス・アズ・デルタ・メカニカル・シールズ Split mechanical seal
JP2002048248A (en) * 2000-05-04 2002-02-15 Flowserve Management Co Split mechanical face seal assembly
US20070267819A1 (en) * 2006-05-17 2007-11-22 A.W. Chesterton Company Mechanical seal assembly
WO2011111279A1 (en) * 2010-03-08 2011-09-15 イーグル工業株式会社 Mechanical seal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307002B6 (en) * 2013-07-01 2017-11-08 České vysoké učení technické v Praze A wing expander
WO2015072275A1 (en) * 2013-11-12 2015-05-21 イーグル工業株式会社 Divided mechanical seal
CN105473912A (en) * 2013-11-12 2016-04-06 伊格尔工业股份有限公司 Divided mechanical seal
JPWO2015072275A1 (en) * 2013-11-12 2017-03-16 イーグル工業株式会社 Split type mechanical seal
US10077843B2 (en) 2013-11-12 2018-09-18 Eagle Industry Co., Ltd. Division type mechanical seal
WO2017103332A3 (en) * 2015-12-18 2018-01-25 Outotec (Finland) Oy Method for constructing a flotation apparatus, flotation apparatus, method and system for flotation and use
US10507472B2 (en) * 2015-12-18 2019-12-17 Outotec (Finland) Oy Method for constructing a flotation apparatus, flotation apparatus, method and system for flotation and use
JP2019215079A (en) * 2018-06-08 2019-12-19 株式会社酉島製作所 Split type mechanical seal
JP7164490B2 (en) 2018-06-08 2022-11-01 株式会社酉島製作所 split mechanical seal

Also Published As

Publication number Publication date
JP5873502B2 (en) 2016-03-01
JPWO2013054610A1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5480492B2 (en) Double seal assembly
JP6078558B2 (en) Segment seal
JP5873502B2 (en) Split type mechanical seal device
WO2015108107A1 (en) Mechanical seal
CN104395654B (en) Mechanical seal
JP6577329B2 (en) mechanical seal
JP7046928B2 (en) mechanical seal
JP5863810B2 (en) mechanical seal
JP2014059039A (en) Mechanical seal
JP6283023B2 (en) mechanical seal
WO2018074395A1 (en) Sealing device
JP2013167317A (en) Floating seal
JP2010084802A (en) Rotary seal
JP5701683B2 (en) Shaft seal device
JP6333865B2 (en) mechanical seal
JP2017040327A (en) Split type mechanical seal and manufacturing method for split type mechanical seal
JP7055579B2 (en) Segment seal
JP7419176B2 (en) mechanical seal
JP6823559B2 (en) Shaft sealing device
JP6884486B2 (en) mechanical seal
JP2007092791A (en) Seal ring
JP2008057710A (en) Sealing device
JP7186996B2 (en) Pipe joint structure
JP2018066398A (en) Sealing device
JP2018066397A (en) Sealing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840756

Country of ref document: EP

Kind code of ref document: A1