WO2013054381A1 - Display apparatus, display method and integrated circuit - Google Patents

Display apparatus, display method and integrated circuit Download PDF

Info

Publication number
WO2013054381A1
WO2013054381A1 PCT/JP2011/005741 JP2011005741W WO2013054381A1 WO 2013054381 A1 WO2013054381 A1 WO 2013054381A1 JP 2011005741 W JP2011005741 W JP 2011005741W WO 2013054381 A1 WO2013054381 A1 WO 2013054381A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
output
input video
unit
correction
Prior art date
Application number
PCT/JP2011/005741
Other languages
French (fr)
Japanese (ja)
Inventor
山方 崇嗣
安部 秀喜
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/005741 priority Critical patent/WO2013054381A1/en
Publication of WO2013054381A1 publication Critical patent/WO2013054381A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2059Display of intermediate tones using error diffusion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a display device that displays an image on a display unit such as a liquid crystal display panel, a display method, and an integrated circuit.
  • correction processing is performed to increase or decrease the level of the input video data based on different correction values for each polarity of the driving voltage. May be.
  • this correction process for example, a process of adding a predetermined correction value to the input video data of the positive pixel and subtracting a predetermined correction value from the input video data of the negative pixel is performed.
  • the present invention solves the above-described problem, and even when correction processing is performed based on correction values that differ depending on the polarity of the drive voltage, error diffusion processing can be suitably performed, and the display unit is equivalent to input video data. It is an object of the present invention to provide a display device, a display method, and an integrated circuit that can display an image having a gray scale in a pseudo manner.
  • a display device includes a display unit that includes a plurality of pixels, displays a video based on input video data corresponding to the plurality of pixels, and has a predetermined number of bits for the input video data.
  • Performing error diffusion processing for diffusing error data to generate output video data having a number of bits smaller than the number of bits of the input video data by a predetermined number of bits; and a plurality of pixels of the display unit A drive unit that applies an alternating drive voltage based on the output video data generated by the error diffusion processing unit by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel; A correction process for correcting the level of the input video data based on a different correction value for each polarity of the drive voltage applied to the pixels by the drive unit for the input video data.
  • the error diffusion processing unit has the same polarity of the driving voltage as the input video data subjected to the correction processing by the correction processing unit in the predetermined inversion direction. The error diffusion process is performed for
  • a display method is a display method for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels.
  • An alternating drive voltage based on the output video data generated by the error diffusion processing step is applied to the plurality of pixels by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel.
  • a level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixel by the driving step.
  • a correction processing step for performing correction processing on the input video data wherein the error diffusion processing step is the input video that has been subjected to the correction processing by the correction processing step in the predetermined inversion direction.
  • the error diffusion process is performed on the data for each pixel having the same drive voltage polarity.
  • An integrated circuit is an integrated circuit for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels, wherein the input video data
  • An error diffusion processing circuit for performing error diffusion processing for diffusing error data of a predetermined number of bits to generate output video data having a number of bits less than the number of bits of the input video data, and
  • An alternating drive voltage based on the output video data generated by the error diffusion processing circuit is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately inverted for each predetermined pixel in a predetermined inversion direction.
  • the level of the input video data is compensated based on a different correction value for each polarity of the drive circuit to be applied and the polarity of the drive voltage applied to the pixel by the drive circuit.
  • a correction processing circuit that performs correction processing on the input video data, wherein the error diffusion processing circuit performs the correction processing by the correction processing circuit in the predetermined inversion direction.
  • the error diffusion process is performed for each pixel having the same polarity of the drive voltage.
  • FIG. 1 is a block diagram schematically showing a configuration of a display device according to a first embodiment of the present invention. It is a figure which shows roughly the polarity of the drive voltage applied to each pixel of a display part.
  • FIG. 2 is a diagram schematically showing a potential of a driving voltage applied to each pixel of a display unit, where (a) shows an ideal potential and (b) shows an actual potential. It is a figure which shows roughly the area
  • FIG. 3 is a block diagram illustrating configurations of a correction processing unit, an error diffusion processing unit, and a driving unit of the display device according to the first embodiment. It is a schematic diagram explaining the operation example of the error diffusion process by an error diffusion process part.
  • FIG. 1 is a block diagram schematically showing a configuration of a display device according to Embodiment 1 of the present invention.
  • the display device 1 includes a correction processing unit 10, an error diffusion processing unit 20, a driving unit 30, and a display unit 40.
  • (m + n) -bit input video data corresponding to each pixel of red (r), green (g), and blue (b) is input to the display device 1 from an external device.
  • m and n are positive integers.
  • the correction processing unit 10 performs a correction process, which will be described later, on a part of the input video data, and the input video data that is not subjected to the correction process is left as it is for the input video data that has undergone the correction process.
  • the input video data after the correction processing is output to the error diffusion processing unit 20. Further, the correction processing unit 10 outputs a correction control signal related to the correction processing to the error diffusion processing unit 20.
  • the error diffusion processing unit 20 generates output video data based on the input video data and the correction control signal output from the correction processing unit 10, and outputs them to the driving unit 30.
  • the drive unit 30 drives the display unit 40 based on the output video data output from the error diffusion processing unit 20.
  • the display unit 40 includes a liquid crystal display, for example.
  • the display unit 40 includes pixels composed of red (r), green (g), and blue (b) liquid crystals arranged in a matrix, and displays an image based on input image data.
  • the display unit 40 is configured to display a video based on m-bit output video data. That is, video data having a higher number of gradations than the number of gradations that can be displayed on the display unit 40 is input to the display device 1 as input video data.
  • FIG. 2 is a diagram schematically showing the polarity of the drive voltage applied to each pixel of the display unit.
  • 3A and 3B are diagrams schematically showing the potential of the drive voltage applied to each pixel of the display portion, and FIG. 3A shows an ideal potential, and FIG. b) shows the actual potential.
  • FIG. 4 is a diagram schematically showing a region where correction processing is performed by the correction processing unit 10.
  • the driving voltage applied to each pixel of the display unit 40 by the driving unit 30 and the correction processing performed by the correction processing unit 10 will be described with reference to FIGS.
  • the driving unit 30 performs AC voltage driving for driving the pixels by applying an AC driving voltage to each pixel of the display unit 40.
  • the drive unit 30 employs a dot inversion method in AC voltage driving. That is, as shown in FIG. 2, the pixel r1 is a negative electrode, the pixel g1 is a positive electrode, the pixel b1 is a negative electrode, the pixel r2 is a positive electrode, a pixel immediately below the pixel r1 is a positive electrode, a pixel immediately below the pixel g1 is a negative electrode, The polarity of the drive voltage applied to each pixel is alternately inverted for each adjacent pixel, such that the pixel immediately below the pixel b1 is a positive electrode and the pixel immediately below the pixel r2 is a negative electrode.
  • the drive unit 30 reverses the polarity of the drive voltage for each frame. That is, in the frame shown in FIG. 2, the polarity of the drive voltage of the pixel r1 is negative, but in the next frame, the polarity of the drive voltage of the pixel r1 is positive.
  • the driving voltage applied to each pixel of the display unit 40 by the driving unit 30 is ideally on the positive side and the negative side in the display region 40a of the display unit 40.
  • the potential difference with respect to the common electrode is equal, and the potentials on the positive electrode side and the negative electrode side are uniform. That is, in FIG. 3A, the potential difference Vi (+) between the ideal common electrode potential IVcom and the positive side pixel potential IV (+), and the ideal common electrode potential IVcom and the negative side pixel potential.
  • the ideal pixel potential IV (+) on the positive side and the ideal pixel potential IV ( ⁇ ) on the negative side are respectively uniform potentials.
  • the drive voltage actually applied to each pixel of the display unit 40 by the drive unit 30 is the distance between the drive element (for example, a thin film transistor) and the pixel, as shown in FIG. Due to the difference, the potential is not ideal.
  • the common electrode potential RVcom and the positive-side pixel potential RV so that an ideal potential can be obtained at the center of the display region 40a. (+) And the pixel potential RV ( ⁇ ) on the negative electrode side are optimized.
  • the actual pixel potential RV (+) on the positive side decreases with respect to the ideal pixel potential IV (+), and the actual pixel potential RV ( ⁇ ) Is also lower than the ideal pixel potential IV ( ⁇ ). Therefore, the potential difference Vr (+) between the common electrode potential RVcom and the actual pixel potential RV (+) on the positive side, and the potential difference Vi between the common electrode potential RVcom and the actual negative side pixel potential RV ( ⁇ ).
  • the relationship with ( ⁇ ) is Vr (+) ⁇ Vr ( ⁇ ).
  • the correction processing unit 10 performs a correction process on the input video data to increase or decrease the level of the input video data based on different correction values for each polarity of the pixel driving voltage. Specifically, the correction processing unit 10 performs a correction process of subtracting a predetermined correction value from the input video data corresponding to the negative pixel, and adds the predetermined correction value to the input video data corresponding to the positive pixel. Perform correction processing.
  • the influence of the relationship between the potential difference Vr (+) and the potential difference Vi ( ⁇ ) being Vr (+) ⁇ Vr ( ⁇ ) is reduced. Further, as shown in FIG.
  • the correction processing unit 10 performs the above correction processing on the pixels of the correction area 41 set in advance on the left and right ends of the display area 40 a, so that the center of the display area 40 a The correction process is not performed on the pixels in the non-correction area 42.
  • FIG. 5 is a block diagram illustrating the configuration of the correction processing unit 10, the error diffusion processing unit 20, and the driving unit 30 of the display device 1 according to the first embodiment.
  • the error diffusion processing unit 20 in the first embodiment includes a first processing unit 21, a separation unit 22, a second processing unit 23, a third processing unit 24, a multiplexing unit 25, and a selection unit. 26.
  • the correction processing unit 10 outputs (m + n) -bit input video data to the first processing unit 21 and the separation unit 22.
  • the correction processing unit 10 outputs a polarity signal to the separation unit 22 for each pixel and outputs a region signal to the selection unit 26 for each pixel as the correction control signal.
  • the polarity signal indicates the polarity of the drive voltage applied to each pixel. That is, the polarity signal indicates the polarity of the pixel corresponding to the input video data output from the correction processing unit 10 to the error diffusion processing unit 20.
  • the area signal indicates whether each pixel is a pixel in the correction area 41 or a pixel in the non-correction area 42.
  • the region signal is input video data corresponding to the pixels in the correction region 41 or the input video data corresponding to the pixels in the non-correction region 42 as input video data output from the correction processing unit 10 to the error diffusion processing unit 20. Indicates whether it is data.
  • the first processing unit 21 includes, for example, an adder and a delay unit.
  • the first processing unit 21 adds (m + n) -bit input video data and n-bit error data for each pixel to obtain an (m + n) -bit addition result, and uses the lower n bits of the addition result as the next pixel. And the upper m bits of the addition result are output to the selection unit 26 as the first output video data.
  • the separation unit 22 performs serial-parallel conversion on the input video data output from the correction processing unit 10 based on the polarity signal output from the correction processing unit 10, and the positive voltage corresponding to the pixel whose driving voltage is positive.
  • the input video data is separated into negative input video data and negative input video data corresponding to a pixel having a negative drive voltage.
  • the separation unit 22 outputs positive input video data to the second processing unit 23 and outputs negative input video data to the third processing unit 24.
  • the second processing unit 23 includes, for example, an adder and a delay unit.
  • the second processing unit 23 adds the (m + n) -bit positive input video data and the n-bit error data for each pixel to obtain an (m + n) -bit addition result, and then adds the lower n bits of the addition result. Is stored as error data of the next pixel, that is, the next positive pixel. For example, in FIG. 2, if the current pixel is the pixel r2, the lower n bits are held as error data of the pixel r4.
  • the second processing unit 23 outputs the upper m bits of the addition result to the multiplexing unit 25 as second output video data.
  • the third processing unit 24 includes, for example, an adder and a delay unit.
  • the third processing unit 24 adds the (m + n) -bit negative input video data and the n-bit error data for each pixel to obtain an (m + n) -bit addition result, and then adds the lower n bits of the addition result. Error data of the next pixel, that is, the next negative pixel. For example, in FIG. 2, if the current pixel is the pixel r1, the lower n bits are held as error data of the pixel r3.
  • the third processing unit 24 outputs the upper m bits of the addition result to the multiplexing unit 25 as third output video data.
  • the multiplexing unit 25 performs parallel-serial processing on the m-bit second output video data input from the second processing unit 23 and the m-bit third output video data input from the third processing unit 24. Conversion is performed and multiplexed, and multiplexed output video data corresponding to the input video data before separation by the separation unit 22 is generated. The multiplexing unit 25 outputs the generated m-bit multiplexed output video data to the selection unit 26.
  • the selection unit 26 selects one of the first output video data output from the first processing unit 21 and the multiplexed output video data output from the multiplexing unit 25 based on the region signal output from the correction processing unit 10. Are output to the drive unit 30 as output video data. Specifically, when the region signal indicates that the pixel of the non-correction region 42 is selected, the selection unit 26 outputs the first output video data output from the first processing unit 21 to the drive unit 30 as output video data. Output. Further, when the region signal indicates that the pixel of the correction region 41, the selection unit 26 outputs the multiplexed output video data output from the multiplexing unit 25 to the drive unit 30 as output video data.
  • the second output video data corresponds to an example of positive output video data
  • the third output video data corresponds to an example of negative output video data.
  • FIG. 6 is a schematic diagram illustrating an operation example of error diffusion processing by the error diffusion processing unit 20.
  • FIG. 6A to 6E show the red pixels r1 to r8 in the correction area 41.
  • FIG. Sections (F) to (H) in FIG. 6 show the red pixels r9 to r12 in the non-correction region.
  • the section (A) of FIG. 6 shows the polarity of the drive voltage applied to the red pixels r1, r2,..., R8 in the correction area 41 and the input video data.
  • the correction processing unit 10 subtracts “0011” from the input video data corresponding to the negative polarity pixel, and adds “0011” to the input video data corresponding to the positive polarity pixel. Correction processing is performed. Therefore, as shown in the section (A) of FIG. 6, the input video data after the correction processing corresponding to the negative pixels r1, r3, r5, r7 is “0101”, and the positive pixels r2, r4. , R6, r8, the input video data after the correction processing is “1011”. Thus, in FIG. 6, “ ⁇ 0011” and “+0011” correspond to examples of correction values.
  • Section (B) and (C) show the processing results in the third processing unit 24 for the negative input video data separated by the separation unit 22.
  • Section (B) in FIG. 6 shows a state in which the lower 2 bits of the negative polarity input video data are added as error data to the input video data of the next pixel of the same polarity.
  • the third output video data r ( ⁇ ) that is the upper 2 bits of the addition result shown in the section (B) of FIG. 6 is shown.
  • the upper 2 bits “01” of the input video data “0101” of the negative polarity red pixel r1 is output as the third output video data (section (C)), and the lower 2 bits “01” of the next negative polarity red pixel r3. It is added to the input video data “0101”.
  • the addition result is “0110” (section (B)), the upper 2 bits “01” are output as the third output video data (section (C)), and the lower 2 bits “10” are the next negative red color. It is added to the input video data “0101” of the pixel r5.
  • the addition result is “0111” (section (B)), the upper 2 bits “01” are output as the third output video data (section (C)), and the lower 2 bits “11” are the next negative red color. It is added to the input video data “0101” of the pixel r7.
  • the addition result is “1000” (section (B)), and the upper 2 bits “10” are output as the third output video data (section (C)).
  • the average value of the third output video data r ( ⁇ ) of the negative four pixels r1, r3, r5, r7 becomes 1.25, and the gradation of the input video data “0101” can be expressed in a pseudo manner. Yes.
  • sections (D) and (E) show the processing results in the second processing unit 23 for the positive input video data separated by the separation unit 22.
  • Section (D) in FIG. 6 shows a state in which the lower 2 bits of the positive input video data are added as error data to the input video data of the next pixel of the same polarity.
  • the section (E) in FIG. 6 shows the second output video data r (+) that is the upper 2 bits of the addition result shown in the section (D) in FIG.
  • the upper 2 bits “10” of the input video data “1011” of the positive red pixel r2 is output as the second output video data (section (E)), and the lower 2 bits “11” of the next positive red pixel r4. It is added to the input video data “1011”.
  • the addition result is “1110” (section (D)), the upper 2 bits “11” are output as the second output video data (section (E)), and the lower 2 bits “10” are the next positive red color. It is added to the input video data “1011” of the pixel r6.
  • the addition result is “1101” (section (D)), the upper 2 bits “11” are output as the second output video data (section (E)), and the lower 2 bits “01” are the next positive red color.
  • the section (F) in FIG. 6 shows the polarity of the drive voltage applied to the red pixels r9, r10, r11, r12 in the non-correction region 42 and the input video data.
  • the correction processing unit 10 does not perform the correction process on the input video data corresponding to the pixels in the non-correction area 42. Therefore, as shown in the section (F) of FIG. 6, the input video data corresponding to the negative pixels r9 and r11 and the positive pixels r10 and r12 are all “1000”.
  • Section (G) and (H) of FIG. 6 show the processing results in the first processing unit 21 for the input video data.
  • Section (G) in FIG. 6 shows a state in which the lower 2 bits of the input video data are added as error data to the input video data of the next pixel.
  • the section (H) in FIG. 6 shows the first output video data r (0) that is the upper 2 bits of the addition result shown in the section (G) in FIG.
  • the upper 2 bits “10” of the input video data “1000” of the negative red pixel r9 is output as the first output video data (section (H)), and the lower 2 bits “00” of the next positive red pixel r10. It is added to the input video data “1000”.
  • the addition result is “1000” (section (G)), the upper 2 bits “10” are output as the first output video data (section (H)), and the lower 2 bits “00” are the next negative red color. It is added to the input video data “1000” of the pixel r11.
  • the addition result is “1000” (section (G)), the upper 2 bits “10” are output as the first output video data (section (H)), and the lower 2 bits “00” are the next positive red color.
  • the section (A) of FIG. 7 shows the polarity of the drive voltage applied to the red pixels r1, r2,..., R8 in the correction area 41 and the input video data.
  • “0011” is subtracted from the input video data corresponding to the negative pixel, and the input video data corresponding to the positive pixel is “ Correction processing for adding “0011” is performed. Therefore, as shown in the section (A) of FIG. 7, the input video data after the correction processing corresponding to the negative pixels r1, r3, r5, r7 is “0101”, and the positive pixels r2, r4. , R6, and r8, the input video data after the correction processing is “1011”, which is the same as the operation example shown in the section (A) of FIG.
  • FIG. 7B shows a state where the lower 2 bits of the input video data are added as error data to the input video data of the next adjacent pixel.
  • output data that is the upper 2 bits of the addition result shown in section (B) of FIG. 7 is shown.
  • the upper 2 bits “01” of the input video data “0101” of the negative red pixel r1 are output as output data (section (C)), and the lower 2 bits “01” are the input video data of the next positive red pixel r2. It is added to “1011”.
  • the addition result is “1100” (section (B)), the upper 2 bits “11” are output as output data (section (C)), and the lower 2 bits “00” are the next negative red pixel r3. It is added to the input video data “0101”.
  • the addition result is “0101” (section (B)), the upper 2 bits “01” are output as output data (section (C)), and the lower 2 bits “01” are the next positive red pixel r4. It is added to the input video data “1011”.
  • the separation unit 22 separates the positive input video data and the negative input video data based on the polarity signal, and the second processing unit 23 and the third processing.
  • the unit 24 performs error diffusion processing independently on the positive input video data and the negative input video data. Therefore, even if the correction processing unit 10 performs correction processing for increasing or decreasing the level of the input video data based on different correction values for each polarity of the drive voltage, for each pixel of each polarity. Then, error diffusion processing with accurate gradation information added can be performed. As a result, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner in the entire display area 40a including the correction area 41 and the non-correction area 42.
  • the separation unit 22 separates input video data based on the polarity signal output from the correction processing unit 10, for example, the polarity of the drive voltage is inverted for each pixel.
  • the dot inversion method but also an inversion method in which the polarity of the drive voltage is inverted for each of a plurality of pixels, the error diffusion process can be suitably performed.
  • the configuration of the error diffusion processing unit 20 is not limited to the configuration shown in FIG. 5, and error diffusion is independently performed for the positive input video data and the negative input video data. Any configuration capable of performing processing may be used.
  • FIG. 8 is a block diagram schematically showing the configuration of the correction processing unit 10, the error diffusion processing unit 20, and the driving unit 30 of the display device according to the second embodiment of the present invention.
  • the configuration of the display device of the second embodiment is the same as that of the embodiment shown in FIGS. 1 and 5 except that the configuration of the error diffusion processing unit 20 and the signal output from the correction processing unit 10 to the error diffusion processing unit 20 are different.
  • 1 is the same as the display device 1 of FIG.
  • the same elements as those in the first embodiment are denoted by the same reference numerals.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • the error diffusion processing unit 20 in the second embodiment includes an adder 51, a first delay unit 52, a second delay unit 53, and a selection unit. Further, in the second embodiment, the correction processing unit 10 outputs an area signal for each pixel to the selection unit 54 as the correction control signal (FIG. 1). The area signal indicates whether each pixel is a pixel in the correction area 41 or a non-correction area 42 as in the first embodiment.
  • the adder 51 is a circuit for adding two input data, and for each pixel, the (m + n) -bit input video data output from the correction processing unit 10 and the n-bit addition data output from the selection unit 54. Addition and output the addition result of (m + n) bits.
  • the first delay device 52 is configured by, for example, a flip-flop, and is a circuit that delays input data by a control clock for one cycle period, that is, one pixel period of input video data.
  • the first delay unit 52 delays the addition result of (m + n) bits output from the adder 51 by one pixel period for each pixel and outputs the result to the second delay unit 53.
  • the first delay unit 52 outputs the lower n bits of the addition result of the (m + n) bits output from the adder 51 to the selection unit 54 as error data.
  • the second delay unit 53 is configured by a flip-flop, for example, and is a circuit that delays the input data by one cycle period of the control clock, that is, one pixel period of the input video data.
  • the second delay unit 53 delays and outputs the addition result of (m + n) bits output from the first delay unit 52 for each pixel by one pixel period.
  • the second delay unit 53 outputs the upper m bits of the addition result of the (m + n) bits output from the first delay unit 52 to the drive unit 30 as output video data, and selects the lower n bits as error data. Output to.
  • the selection unit 54 calculates the difference between the n-bit error data output from the first delay unit 52 and the n-bit error data output from the second delay unit 53. One of them is output to the adder 51 as addition data.
  • the selection unit 54 outputs the error data output from the first delay unit 52 to the adder 51 as addition data.
  • the selection unit 54 outputs the error data output from the second delay unit 53 to the adder 51 as addition data.
  • the adder 51 is an example of an adding unit
  • the first delay unit 52 is an example of a first delay unit
  • the second delay unit 53 is an example of a second delay unit.
  • the operation of the error diffusion processing unit 20 in the second embodiment will be described in the above configuration.
  • the input video data output from the correction processing unit 10 to the adder 51 is input video data corresponding to the pixels in the non-correction area 42
  • the error data output from the first delay unit 52 is selected as the addition data.
  • the data is output from the unit 54 to the adder 51. Therefore, the adder 51 adds the (m + n) -bit input video data that has not been subjected to the correction process output from the correction processing unit 10 and the n-bit error data output from the first delay unit 52.
  • the adder 51 adds the (m + n) -bit input video data after the correction process output from the correction processing unit 10 and the n-bit error data output from the second delay unit 53. That is, in the correction area 41, error diffusion processing is performed every two pixels. Therefore, operations similar to those of the negative red pixels r1, r3, r5, r7 and the positive red pixels r2, r4, r6, r8 in the correction region 41 shown in FIG. 6 are performed.
  • the selection unit 54 adds the error data output from the first delay device 52 in the non-correction region 42 based on the region signal output from the correction processing unit 10. Data is output to the adder 51, and in the correction area 41, the error data output from the second delay unit 53 is output to the adder 51 as addition data.
  • the driving unit 30 drives each pixel of the display unit 40 by a dot inversion method that inverts the polarity of the driving voltage for each pixel. Therefore, also in the second embodiment, error diffusion processing can be performed independently on positive input video data and negative input video data.
  • the correction processing unit 10 performs a correction process for increasing / decreasing the level of the input video data based on different correction values for each polarity of the drive voltage. Even if it is performed on video data, error diffusion processing with accurate gradation information added can be performed for each pixel of each polarity. As a result, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner in the entire display area 40a including the correction area 41 and the non-correction area 42.
  • the configuration of the error diffusion processing unit 20 is not limited to the configuration shown in FIG. For example, a configuration in which error diffusion processing is performed on input video data every two pixels to generate output video data, and a configuration in which error diffusion processing is performed on input video data for each pixel to generate output video data And a configuration for outputting one of the output video data to the drive unit based on the region signal.
  • the driving unit 30 employs a dot inversion method in which the polarity of the driving voltage applied to the pixel is inverted for each pixel, but the present invention is not limited to this.
  • a column line inversion method in which the drive voltages of pixels in the column direction (vertical direction) have the same polarity and the polarity of the drive voltage is inverted for each column may be used.
  • the above embodiments are applied when performing error diffusion processing for adding error data to the pixels in the horizontal direction. The same effect can be obtained.
  • each of the above embodiments can obtain an effect when the direction in which the polarity of the drive voltage is inverted coincides with the direction of the pixel to which the error data is added.
  • each unit of the error diffusion processing unit 20 is configured by a hardware circuit, but is not limited thereto.
  • a part or all of the error diffusion processing unit 20 may be configured by a CPU, and each function may be executed by software.
  • the correction processing unit 10, the functional blocks 21 to 26 constituting the error diffusion processing unit 20, and the driving unit 30 are typically realized as an LSI that is an integrated circuit.
  • the functional blocks 51 to 54 and the drive unit 30 constituting the correction processing unit 10, the error diffusion processing unit 20, and the driving unit 30 are typically realized as an LSI that is an integrated circuit. Each of these may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • LSI is used, but depending on the degree of integration, it may be called IC, system LSI, super LSI, or ultra LSI.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • a display device includes a display unit that includes a plurality of pixels, displays a video based on input video data corresponding to the plurality of pixels, and has a predetermined number of bits for the input video data.
  • Performing error diffusion processing for diffusing error data to generate output video data having a number of bits smaller than the number of bits of the input video data by a predetermined number of bits; and a plurality of pixels of the display unit A drive unit that applies an alternating drive voltage based on the output video data generated by the error diffusion processing unit by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel; A correction process for correcting the level of the input video data based on a different correction value for each polarity of the drive voltage applied to the pixels by the drive unit for the input video data.
  • the error diffusion processing unit has the same polarity of the driving voltage as the input video data subjected to the correction processing by the correction processing unit in the predetermined inversion direction. The error diffusion process is performed for
  • the display unit has a plurality of pixels and displays an image based on the input image data corresponding to the plurality of pixels.
  • the error diffusion processing unit performs error diffusion processing for diffusing error data having a predetermined number of bits on the input video data, and generates output video data having a number of bits less than the number of bits of the input video data.
  • the drive unit alternately inverts the drive voltage of alternating current based on the output video data generated by the error diffusion processing unit to the plurality of pixels of the display unit in a predetermined inversion direction for each predetermined pixel.
  • the correction processing unit performs a correction process on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixels by the driving unit.
  • the polarity of the drive voltage is different between the correction value for the positive pixel and the correction value for the negative pixel. Therefore, if the error data is diffused with respect to the input video data corresponding to the adjacent pixels in the inversion direction in which the polarity of the drive voltage is inverted, the polarity is inverted. The error data is diffused into the input video data that has been subjected to the correction process for correcting based on different correction values. For this reason, the error diffusion process cannot be suitably performed.
  • the error diffusion processing unit performs, for each pixel having the same polarity of the drive voltage with respect to the input video data that has been corrected by the correction processing unit in a predetermined inversion direction. Then, error diffusion processing is performed. Therefore, the correction processing unit performs correction processing on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage, but corrects based on the same correction value. Error diffusion processing is performed for each pixel on which correction processing has been performed. For this reason, error diffusion processing can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed on the display unit in a pseudo manner.
  • the correction processing unit performs the correction process on the input video data corresponding to the pixels in a correction area set in advance among display areas for displaying the video on the display unit.
  • the corrected input video data is output to the error diffusion processing unit, and the input video data corresponding to the pixels in the non-correction region other than the correction region in the display region is output to the error diffusion processing unit.
  • the input video data that is output without performing the correction process and is output to the error diffusion processing unit is the input video data corresponding to the pixels in the correction area or the pixels in the non-correction area
  • An area signal indicating whether or not the input video data corresponds to is output to the error diffusion processing unit for each pixel, and the error diffusion processing unit is output from the correction processing unit
  • the recording area signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction area
  • the driving voltage is calculated based on the input video data.
  • the output video data generated by performing the error diffusion process for each pixel having the same polarity is output to the driving unit, and the region signal output from the correction processing unit is the correction processing unit.
  • the error diffusion process is performed on the adjacent pixels based on the input video data.
  • the output video data generated by the output unit is output to the drive unit, and the drive unit is based on the output video data output from the error diffusion processing unit.
  • the dynamic voltage it is preferable to be applied to the plurality of pixels.
  • the correction processing unit performs a correction process on the input video data corresponding to the pixels in the correction area set in advance among the display areas for displaying the video on the display unit, and performs the input after the correction process.
  • Video data is output to an error diffusion processing unit.
  • the correction processing unit outputs the input video data corresponding to the pixels in the non-correction region other than the correction region in the display region to the error diffusion processing unit without performing correction processing.
  • the correction processing unit also outputs a region signal indicating whether the input video data output to the error diffusion processing unit is input video data corresponding to a pixel in the correction region or input video data corresponding to a pixel in the non-correction region Is output to the error diffusion processing unit for each pixel.
  • the error diffusion processing unit Based on the above, output video data generated by performing error diffusion processing for each pixel having the same polarity of the drive voltage is output to the drive unit. Further, the error diffusion processing unit, when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to the pixels in the non-correction region, Based on the input video data, output video data generated by performing error diffusion processing on adjacent pixels is output to the drive unit.
  • the driving unit applies a driving voltage based on the output video data output from the error diffusion processing unit to the plurality of pixels.
  • the input video data corresponding to the pixels in the correction area is corrected by the correction processing unit and output from the correction processing unit to the error diffusion processing unit.
  • the area signal indicates that the input video data is input video data corresponding to a pixel in the correction area
  • an error diffusion process is performed for each pixel having the same drive voltage polarity based on the input video data.
  • the output video data generated by this is output to the drive unit. Accordingly, output video data generated by appropriately performing error diffusion processing in the correction region is output from the error diffusion processing unit to the driving unit. For this reason, an image having the same gradation as the input image data can be displayed in a pseudo manner in the correction area.
  • the input video data corresponding to the pixels in the non-correction area is output from the correction processing unit to the error diffusion processing unit without being subjected to correction processing.
  • the area signal indicates that the input video data is input video data corresponding to a pixel in the non-correction area
  • the area signal is generated by performing error diffusion processing on adjacent pixels based on the input video data.
  • Output video data is output to the drive unit. Therefore, in the non-correction area, output video data generated by suitably performing error diffusion processing is output from the error diffusion processing unit to the driving unit. For this reason, an image having a gradation equivalent to that of the input image data can be displayed in a pseudo manner in the non-correction area.
  • an image having the same gradation as the input image data can be displayed in a pseudo manner over the entire display region including the correction region and the non-correction region of the display unit.
  • the error diffusion processing unit generates the positive output video data by performing the error diffusion processing based on the positive input video data corresponding to the pixel having the positive polarity of the driving voltage. Then, based on the negative input video data corresponding to the pixel having a negative polarity of the driving voltage, the error diffusion process is performed to generate negative output video data, and the output from the correction processing unit.
  • the area signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction area
  • the positive output video data and the negative output video It is preferable that the output video data generated based on the data is output to the driving unit.
  • the error diffusion processing unit performs error diffusion processing based on the positive input video data corresponding to the pixel having the positive polarity of the drive voltage to generate the positive output video data.
  • the error diffusion processing unit performs error diffusion processing based on the negative input video data corresponding to the pixel having the negative polarity of the drive voltage to generate negative output video data.
  • the error diffusion processing unit when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the correction region, Output video data generated based on the output video data and the negative output video data is output to the driving unit.
  • the error diffusion process is performed independently for the pixel having the positive polarity of the drive voltage and the pixel having the negative polarity. Therefore, even when the polarity of the drive voltage is inverted for each pixel, or when the polarity of the drive voltage is inverted for each of a plurality of pixels, the error diffusion process can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed in a pseudo manner in the correction area.
  • the correction processing unit outputs a polarity signal indicating the polarity of the driving voltage applied to the pixel by the driving unit to the error diffusion processing unit for each pixel, and the error diffusion The processing unit separates the input video data output from the correction processing unit into the positive input video data and the negative input video data based on the polarity signal output from the correction processing unit.
  • the multiplexing unit that generates data and the region signal output from the correction processing unit are the input video data corresponding to the pixels in the correction region, and the input video data output from the correction processing unit
  • the multiplexed output video data generated by the multiplexing unit is output to the driving unit as the output video data, and the correction processing unit When the output region signal indicates
  • the correction processing unit outputs a polarity signal indicating the polarity of the driving voltage applied to the pixel by the driving unit to the error diffusion processing unit for each pixel.
  • the separation unit separates the input video data output from the correction processing unit into positive input video data and negative input video data based on the polarity signal output from the correction processing unit. Therefore, even when the polarity of the drive voltage is inverted for each pixel or when the polarity of the drive voltage is inverted for each of the plurality of pixels, the positive input video data is surely provided for each pixel whose polarity is inverted. And negative input video data.
  • the first processing unit performs error diffusion processing based on the input video data output from the correction processing unit, and generates first output video data as output video data. Accordingly, the first output video data is output video data generated by performing error diffusion processing on adjacent pixels.
  • the second processing unit performs error diffusion processing based on the positive input video data separated by the separation unit, and generates positive output video data as output video data. Accordingly, the positive output video data is output video data generated by applying error diffusion processing to pixels with a positive drive voltage applied.
  • the third processing unit performs error diffusion processing based on the negative input video data separated by the separation unit, and generates negative output video data as output video data. Therefore, the negative output video data is output video data generated by applying an error diffusion process to pixels whose negative drive voltage is applied.
  • the multiplexing unit multiplexes the positive output video data generated by the second processing unit and the negative output video data generated by the third processing unit into input video data before being separated by the separation unit. Corresponding multiplexed output video data is generated. Therefore, the multiplexed output video data is output video data generated by performing error diffusion processing for each pixel having the same polarity of the applied drive voltage.
  • the selection unit is generated by the multiplexing unit when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the correction region.
  • the multiplexed output video data is output to the drive unit as output video data. Therefore, in the correction region, the drive voltage is suitably applied to a plurality of pixels based on output video data generated by performing error diffusion processing for each pixel having the same drive voltage polarity.
  • the selection unit performs the first process.
  • the first output video data generated by the unit is output to the drive unit as output video data.
  • a driving voltage is suitably applied to a plurality of pixels based on output video data generated by performing error diffusion processing on adjacent pixels.
  • an image having a gradation equivalent to that of the input image data can be displayed in a pseudo manner in the entire display region including the correction region and the non-correction region of the display unit.
  • the drive unit alternately inverts the polarity of the drive voltage for each pixel in the predetermined inversion direction, and the error diffusion processing unit is output from the correction processing unit.
  • the area signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction area, the error diffusion process is performed every two pixels.
  • the generated output video data is output to the drive unit, and the region signal output from the correction processing unit is the pixel data of the non-correction region from the input video data output from the correction processing unit. Is preferably output to the drive unit, the output video data generated by performing the error diffusion processing for each pixel.
  • the drive unit alternately inverts the polarity of the drive voltage for each pixel in a predetermined inversion direction.
  • the area signal output from the correction processing section indicates that the input video data output from the correction processing section is input video data corresponding to a pixel in the correction area
  • the error diffusion processing section Output video data generated by performing error diffusion processing is output to the drive unit.
  • the error signal from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the non-correction region
  • the error diffusion processing unit Output video data generated by performing error diffusion processing for each pixel is output to the drive unit.
  • the output video data generated by suitably performing the error diffusion process is output to the drive unit, so that a video having the same gradation as the input video data can be displayed in a pseudo manner.
  • output video data generated by performing error diffusion processing on each pixel, that is, adjacent pixels is output to the drive unit, so that the video having the same gradation as the input video data is output.
  • an image having a gradation equivalent to the input image data can be displayed in a pseudo manner on the entire display area of the display unit.
  • the number of bits of the input video data is (m + n) bits (m and n are positive integers), the number of bits of the output video data is m bits, and the error diffusion is performed.
  • the processing unit adds the (m + n) -bit input video data output from the correction processing unit and the addition data, and outputs an (m + n) -bit addition result; and one pixel of the input video data
  • a first delay unit that outputs the addition result of the (m + n) bits output from the addition unit, and outputs the lower n bits of the addition result of the (m + n) bits as the error data, delayed by a period
  • the upper m bits of the addition result of the (m + n) bits output from the first delay unit with a delay of one pixel period of the input video data are used as the output video data.
  • a second delay unit that outputs the lower n bits of the addition result of the (m + n) bits as the error data, and the region signal output from the correction processing unit is output from the correction processing unit
  • the error data output from the first delay unit is used as the addition data.
  • the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction region.
  • the addition data includes a selection unit that outputs the error data output from the second delay unit to the addition unit.
  • the number of bits of input video data is (m + n) bits (m and n are positive integers), and the number of bits of output video data is m bits.
  • the addition unit adds the (m + n) -bit input video data output from the correction processing unit and the addition data, and outputs an (m + n) -bit addition result.
  • the first delay unit delays by one pixel period of the input video data, outputs the addition result of (m + n) bits output from the addition unit, and outputs the lower n bits of the addition result of (m + n) bits as error data Output as.
  • the second delay unit delays by one pixel period of the input video data, and outputs the upper m bits of the addition result of (m + n) bits output from the first delay unit to the drive unit as output video data.
  • m + n) The lower n bits of the addition result are output as error data.
  • the input video data corresponding to the pixel and the error data of the adjacent pixel are added by the adding unit.
  • the error diffusion process can be suitably performed for each pixel based on the input video data corresponding to the pixel that is not subjected to the correction process by the correction processing unit.
  • input video data corresponding to the pixel and error data of a pixel further adjacent to the adjacent pixel are added by the adding unit. That is, error diffusion processing is performed every two pixels. For this reason, since the polarity of the drive voltage is inverted for each pixel, the error diffusion process can be suitably performed for each pixel having the same polarity. Therefore, with a simple configuration, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner on the entire display area of the display unit.
  • a display method is a display method for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels.
  • An alternating drive voltage based on the output video data generated by the error diffusion processing step is applied to the plurality of pixels by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel.
  • a level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixel by the driving step.
  • a correction processing step for performing correction processing on the input video data wherein the error diffusion processing step is the input video that has been subjected to the correction processing by the correction processing step in the predetermined inversion direction.
  • the error diffusion process is performed on the data for each pixel having the same drive voltage polarity.
  • the error diffusion processing step performs error diffusion processing for diffusing error data of a predetermined number of bits on the input video data, so that the number of bits less than the number of bits of the input video data by a predetermined number of bits.
  • Output video data is generated.
  • the drive step alternately inverts the drive voltage of alternating current based on the output video data generated by the error diffusion processing step to the plurality of pixels of the display unit in the predetermined inversion direction for each predetermined pixel.
  • the correction processing step performs correction processing on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixels in the driving step.
  • error diffusion processing error diffusion processing is performed for each pixel having the same drive voltage polarity on the input video data subjected to the correction processing in the correction processing step in a predetermined inversion direction.
  • the polarity of the drive voltage is different between the correction value for the positive pixel and the correction value for the negative pixel. Therefore, if the error data is diffused with respect to the input video data corresponding to the adjacent pixels in the inversion direction in which the polarity of the drive voltage is inverted, the polarity is inverted. The error data is diffused into the input video data that has been subjected to the correction process for correcting based on different correction values. For this reason, the error diffusion process cannot be suitably performed.
  • the error diffusion processing step is performed for each pixel having the same drive voltage polarity with respect to the input video data subjected to the correction processing by the correction processing step in a predetermined inversion direction. Then, error diffusion processing is performed. Therefore, although the correction processing step is performed on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage, the correction is performed based on the same correction value. Error diffusion processing is performed for each pixel on which correction processing has been performed. For this reason, error diffusion processing can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed on the display unit in a pseudo manner.
  • An integrated circuit is an integrated circuit for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels, wherein the input video data
  • An error diffusion processing circuit for performing error diffusion processing for diffusing error data of a predetermined number of bits to generate output video data having a number of bits less than the number of bits of the input video data, and
  • An alternating drive voltage based on the output video data generated by the error diffusion processing circuit is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately inverted for each predetermined pixel in a predetermined inversion direction.
  • the level of the input video data is compensated based on a different correction value for each polarity of the drive circuit to be applied and the polarity of the drive voltage applied to the pixel by the drive circuit.
  • a correction processing circuit that performs correction processing on the input video data, wherein the error diffusion processing circuit performs the correction processing by the correction processing circuit in the predetermined inversion direction.
  • the error diffusion process is performed for each pixel having the same polarity of the drive voltage.
  • the error diffusion processing circuit performs error diffusion processing for diffusing error data of a predetermined number of bits on the input video data, so that the number of bits less than the number of bits of the input video data by a predetermined number of bits.
  • Output video data is generated.
  • the drive circuit alternately inverts the drive voltage of the alternating current based on the output video data generated by the error diffusion processing circuit to a plurality of pixels of the display unit in a predetermined inversion direction for each predetermined pixel.
  • the correction processing circuit performs correction processing on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage applied to the pixels by the drive circuit.
  • the error diffusion processing circuit performs error diffusion processing for each pixel having the same drive voltage polarity on the input video data that has been corrected by the correction processing circuit in a predetermined inversion direction.
  • the polarity of the drive voltage is different between the correction value for the positive pixel and the correction value for the negative pixel. Therefore, if the error data is diffused with respect to the input video data corresponding to the adjacent pixels in the inversion direction in which the polarity of the drive voltage is inverted, the polarity is inverted. The error data is diffused into the input video data that has been subjected to the correction process for correcting based on different correction values. For this reason, the error diffusion process cannot be suitably performed.
  • the error diffusion processing circuit for the input video data corrected by the correction processing circuit in a predetermined inversion direction, for each pixel having the same drive voltage polarity.
  • the correction processing circuit performs correction processing on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the drive voltage.
  • correction is performed based on the same correction value. Error diffusion processing is performed for each pixel on which correction processing has been performed. For this reason, error diffusion processing can be suitably performed.
  • an image having a gradation equivalent to that of the input image data can be displayed on the display unit in a pseudo manner.
  • the display device, the display method, and the integrated circuit according to the present invention are useful as a device, a method, and a circuit that suitably display an image on a display unit including a liquid crystal display.

Abstract

A display apparatus comprises: a display unit (40) that has a plurality of pixels and displays an image that is based on input image data corresponding to the plurality of pixels; an error spreading unit (20) that performs, for the input image data, an error spread process of spreading error data having a predetermined number of bits and generates output image data having a smaller number of bits, by a predetermined number of bits, than the number of the bits of the input image data; a driving unit (30) that applies, to the plurality of pixels of the display unit, an AC drive voltage, which is based on the output image data generated by the error spreading unit, in such a manner that the polarity of the drive voltage is alternately inverted in a predetermined inversion direction for every predetermined pixel; and a correcting unit (10) that performs, for the input image data, a correction process of correcting, on the basis of different correction values, the level of the input image data for the respective polarities of the drive voltage to be applied to the pixels by the driving unit. The error spreading unit performs, for the input image data for which the correction process has been performed by the correcting unit, the error spread process in the predetermined inversion direction for every pixel having the same polarity of the drive voltage.

Description

表示装置、表示方法及び集積回路Display device, display method, and integrated circuit
 本発明は、液晶表示パネルなどの表示部に映像を表示する表示装置、表示方法及び集積回路に関するものである。 The present invention relates to a display device that displays an image on a display unit such as a liquid crystal display panel, a display method, and an integrated circuit.
 デジタル信号処理を用いた映像表示においては、デジタル化するビット数が多ければ多いほど表示する映像の階調性は向上する。しかしながら、ビット数が増加すると、デジタル信号処理回路の規模が増大し、表示部に接続する端子数が増大することにより、装置構成が複雑化してコストが増大するという問題が生じる。そこで、特許文献1では、入力映像データに画素ごとに誤差データを加算し、加算結果のデータの所定数の下位ビットを次の誤差データとして保持し、入力映像データのビット数より少ないビット数の出力映像データに、表示部で表示可能な階調数以上の階調情報を付加している。これによって、入力映像データと同等の階調を有する映像を擬似的に表示するようにしている。 In video display using digital signal processing, the gradation of the displayed video improves as the number of bits to be digitized increases. However, when the number of bits increases, the scale of the digital signal processing circuit increases, and the number of terminals connected to the display unit increases, resulting in a problem that the device configuration becomes complicated and costs increase. Therefore, in Patent Document 1, error data is added to the input video data for each pixel, a predetermined number of lower bits of the addition result data are held as the next error data, and the number of bits less than the number of bits of the input video data. The output video data is added with gradation information more than the number of gradations that can be displayed on the display unit. As a result, an image having a gradation equivalent to that of the input image data is displayed in a pseudo manner.
 液晶表示パネルにおいて、液晶からなる画素を駆動するために、直流の駆動電圧を画素に印加すると、液晶の寿命が短くなることが知られている。そこで、一般に、液晶表示パネルでは、交流の駆動電圧を画素に印加する交流電圧駆動が行われている。この交流電圧駆動では、フレームごとに、駆動電圧の極性を反転させている。さらに、例えばドット反転方式の交流電圧駆動では、フレームごとに、隣接する赤色(r)、緑色(g)、青色(b)の各画素に印加する駆動電圧の極性を、1画素ごとに交互に反転させている。 It is known that in a liquid crystal display panel, when a DC driving voltage is applied to a pixel in order to drive a pixel made of liquid crystal, the life of the liquid crystal is shortened. Therefore, in general, in the liquid crystal display panel, AC voltage driving is performed in which an AC driving voltage is applied to the pixels. In this AC voltage drive, the polarity of the drive voltage is reversed for each frame. Further, for example, in the dot inversion AC voltage drive, the polarity of the drive voltage applied to each adjacent red (r), green (g), and blue (b) pixel is alternately changed for each pixel for each frame. Inverted.
 このような交流電圧駆動において、液晶表示パネルに表示される映像の画質低下を抑制するために、駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき増減補正する補正処理が行われる場合がある。この補正処理では、例えば、正極の画素の入力映像データに所定の補正値だけ加算し、負極の画素の入力映像データから所定の補正値だけ減算する処理が行われる。 In such AC voltage driving, in order to suppress deterioration of the image quality of the video displayed on the liquid crystal display panel, correction processing is performed to increase or decrease the level of the input video data based on different correction values for each polarity of the driving voltage. May be. In this correction process, for example, a process of adding a predetermined correction value to the input video data of the positive pixel and subtracting a predetermined correction value from the input video data of the negative pixel is performed.
 このような補正処理が行われる場合において、駆動電圧の極性が反転する方向の画素に誤差データを加算する誤差拡散処理を行うと、所定の補正値に基づき補正処理が行われた画素の入力映像データから得られた誤差データを、異なる補正値に基づき補正処理が行われた画素の入力映像データに対して加算することになる。したがって、誤差拡散処理を好適に行うことができず、各画素に対して所望の階調情報が付加されないため、表示部に入力映像データと同等の階調を有する映像を擬似的に表示することができない。 When such correction processing is performed, if error diffusion processing is performed in which error data is added to the pixel in the direction in which the polarity of the drive voltage is reversed, the input image of the pixel that has been corrected based on a predetermined correction value The error data obtained from the data is added to the input video data of the pixels that have been corrected based on different correction values. Therefore, the error diffusion process cannot be suitably performed, and desired gradation information is not added to each pixel, so that an image having a gradation equivalent to the input image data is displayed on the display unit in a pseudo manner. I can't.
特開2004-304216号公報JP 2004-304216 A
 本発明は、上記課題を解決するもので、駆動電圧の極性ごとに異なる補正値に基づき補正処理が行われる場合でも、誤差拡散処理を好適に行うことができ、表示部に入力映像データと同等の階調を有する映像を擬似的に表示することができる表示装置、表示方法及び集積回路を提供することを目的とする。 The present invention solves the above-described problem, and even when correction processing is performed based on correction values that differ depending on the polarity of the drive voltage, error diffusion processing can be suitably performed, and the display unit is equivalent to input video data. It is an object of the present invention to provide a display device, a display method, and an integrated circuit that can display an image having a gray scale in a pseudo manner.
 本発明の一局面に係る表示装置は、複数の画素を有し、前記複数の画素に対応する入力映像データに基づく映像を表示する表示部と、前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理部と、前記表示部の前記複数の画素に、前記誤差拡散処理部により生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動部と、前記駆動部により前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理部と、を備え、前記誤差拡散処理部は、前記所定の反転方向において、前記補正処理部により前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行う。 A display device according to an aspect of the present invention includes a display unit that includes a plurality of pixels, displays a video based on input video data corresponding to the plurality of pixels, and has a predetermined number of bits for the input video data. Performing error diffusion processing for diffusing error data to generate output video data having a number of bits smaller than the number of bits of the input video data by a predetermined number of bits; and a plurality of pixels of the display unit A drive unit that applies an alternating drive voltage based on the output video data generated by the error diffusion processing unit by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel; A correction process for correcting the level of the input video data based on a different correction value for each polarity of the drive voltage applied to the pixels by the drive unit for the input video data. The error diffusion processing unit has the same polarity of the driving voltage as the input video data subjected to the correction processing by the correction processing unit in the predetermined inversion direction. The error diffusion process is performed for each of the pixels.
 本発明の他の局面に係る表示方法は、複数の画素を有する表示部に、前記複数の画素に対応する入力映像データに基づく映像を表示する表示方法であって、前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理ステップと、前記表示部の前記複数の画素に、前記誤差拡散処理ステップにより生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動ステップと、前記駆動ステップにより前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理ステップと、を含み、前記誤差拡散処理ステップは、前記所定の反転方向において、前記補正処理ステップにより前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行う。 A display method according to another aspect of the present invention is a display method for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels. Performing error diffusion processing for diffusing error data having a predetermined number of bits to generate output video data having a number of bits less than the number of bits of the input video data by the predetermined number of bits; and An alternating drive voltage based on the output video data generated by the error diffusion processing step is applied to the plurality of pixels by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel. And a level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixel by the driving step. A correction processing step for performing correction processing on the input video data, wherein the error diffusion processing step is the input video that has been subjected to the correction processing by the correction processing step in the predetermined inversion direction. The error diffusion process is performed on the data for each pixel having the same drive voltage polarity.
 本発明のさらに他の局面に係る集積回路は、複数の画素を有する表示部に、前記複数の画素に対応する入力映像データに基づく映像を表示するための集積回路であって、前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理回路と、前記表示部の前記複数の画素に、前記誤差拡散処理回路により生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動回路と、前記駆動回路により前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理回路と、を備え、前記誤差拡散処理回路は、前記所定の反転方向において、前記補正処理回路により前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行う。 An integrated circuit according to still another aspect of the present invention is an integrated circuit for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels, wherein the input video data An error diffusion processing circuit for performing error diffusion processing for diffusing error data of a predetermined number of bits to generate output video data having a number of bits less than the number of bits of the input video data, and An alternating drive voltage based on the output video data generated by the error diffusion processing circuit is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately inverted for each predetermined pixel in a predetermined inversion direction. The level of the input video data is compensated based on a different correction value for each polarity of the drive circuit to be applied and the polarity of the drive voltage applied to the pixel by the drive circuit. A correction processing circuit that performs correction processing on the input video data, wherein the error diffusion processing circuit performs the correction processing by the correction processing circuit in the predetermined inversion direction. On the other hand, the error diffusion process is performed for each pixel having the same polarity of the drive voltage.
本発明の実施の形態1の表示装置の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of a display device according to a first embodiment of the present invention. 表示部の各画素に印加される駆動電圧の極性を概略的に示す図である。It is a figure which shows roughly the polarity of the drive voltage applied to each pixel of a display part. 表示部の各画素に印加される駆動電圧の電位を概略的に示す図で、(a)は理想的な電位を示し、(b)は実際の電位を示している。FIG. 2 is a diagram schematically showing a potential of a driving voltage applied to each pixel of a display unit, where (a) shows an ideal potential and (b) shows an actual potential. 補正処理部により補正処理が行われる領域を概略的に示す図である。It is a figure which shows roughly the area | region where a correction process is performed by the correction process part. 実施の形態1の表示装置の補正処理部、誤差拡散処理部及び駆動部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating configurations of a correction processing unit, an error diffusion processing unit, and a driving unit of the display device according to the first embodiment. 誤差拡散処理部による誤差拡散処理の動作例を説明する模式図である。It is a schematic diagram explaining the operation example of the error diffusion process by an error diffusion process part. 補正領域において隣接画素に誤差データを拡散する通常の誤差拡散処理を行う比較例の動作を説明する模式図である。It is a schematic diagram explaining the operation | movement of the comparative example which performs the normal error diffusion process which diffuses error data to an adjacent pixel in a correction | amendment area | region. 本発明の実施の形態2の表示装置の補正処理部、誤差拡散処理部及び駆動部の構成を示すブロック図である。It is a block diagram which shows the structure of the correction process part of the display apparatus of Embodiment 2 of this invention, an error diffusion process part, and a drive part.
 以下、本発明の実施の形態が、図面を参照しながら説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は本発明の実施の形態1の表示装置の構成を概略的に示すブロック図である。表示装置1は、図1に示されるように、補正処理部10、誤差拡散処理部20、駆動部30、及び表示部40を備える。表示装置1には、例えば外部装置から、赤色(r)、緑色(g)、青色(b)の各画素に対応する(m+n)ビットの入力映像データが入力される。ここでm,nは正の整数である。補正処理部10は、入力映像データのうち一部の入力映像データに対して後述する補正処理を行い、補正処理を行わない入力映像データについては、そのまま、補正処理を行った入力映像データについては、補正処理後の入力映像データを、誤差拡散処理部20に出力する。また、補正処理部10は、補正処理に関連する補正制御信号を誤差拡散処理部20に出力する。
(Embodiment 1)
FIG. 1 is a block diagram schematically showing a configuration of a display device according to Embodiment 1 of the present invention. As shown in FIG. 1, the display device 1 includes a correction processing unit 10, an error diffusion processing unit 20, a driving unit 30, and a display unit 40. For example, (m + n) -bit input video data corresponding to each pixel of red (r), green (g), and blue (b) is input to the display device 1 from an external device. Here, m and n are positive integers. The correction processing unit 10 performs a correction process, which will be described later, on a part of the input video data, and the input video data that is not subjected to the correction process is left as it is for the input video data that has undergone the correction process. The input video data after the correction processing is output to the error diffusion processing unit 20. Further, the correction processing unit 10 outputs a correction control signal related to the correction processing to the error diffusion processing unit 20.
 誤差拡散処理部20は、補正処理部10から出力される入力映像データ及び補正制御信号に基づき出力映像データを生成し、駆動部30に出力する。駆動部30は、誤差拡散処理部20から出力される出力映像データに基づき、表示部40を駆動する。表示部40は、実施の形態1では例えば、液晶ディスプレイを備える。表示部40は、行列状に配列された赤色(r)、緑色(g)、青色(b)の液晶からなる画素を有し、入力映像データに基づく映像を表示する。表示部40は、mビットの出力映像データに基づき映像を表示可能に構成されている。つまり、表示装置1には、表示部40で表示可能な階調数より高い階調数の映像データが入力映像データとして入力される。 The error diffusion processing unit 20 generates output video data based on the input video data and the correction control signal output from the correction processing unit 10, and outputs them to the driving unit 30. The drive unit 30 drives the display unit 40 based on the output video data output from the error diffusion processing unit 20. In the first embodiment, the display unit 40 includes a liquid crystal display, for example. The display unit 40 includes pixels composed of red (r), green (g), and blue (b) liquid crystals arranged in a matrix, and displays an image based on input image data. The display unit 40 is configured to display a video based on m-bit output video data. That is, video data having a higher number of gradations than the number of gradations that can be displayed on the display unit 40 is input to the display device 1 as input video data.
 図2は表示部の各画素に印加される駆動電圧の極性を概略的に示す図である。図3(a)、図3(b)は表示部の各画素に印加される駆動電圧の電位を概略的に示す図で、図3(a)は、理想的な電位を示し、図3(b)は実際の電位を示している。図4は補正処理部10により補正処理が行われる領域を概略的に示す図である。以下、図2ないし図4を参照して、駆動部30により表示部40の各画素に印加される駆動電圧及び補正処理部10により行われる補正処理が説明される。 FIG. 2 is a diagram schematically showing the polarity of the drive voltage applied to each pixel of the display unit. 3A and 3B are diagrams schematically showing the potential of the drive voltage applied to each pixel of the display portion, and FIG. 3A shows an ideal potential, and FIG. b) shows the actual potential. FIG. 4 is a diagram schematically showing a region where correction processing is performed by the correction processing unit 10. Hereinafter, the driving voltage applied to each pixel of the display unit 40 by the driving unit 30 and the correction processing performed by the correction processing unit 10 will be described with reference to FIGS.
 この実施の形態1では、駆動部30は、表示部40の各画素に対して、交流の駆動電圧を印加して画素を駆動する交流電圧駆動を行っている。また、駆動部30は、交流電圧駆動において、ドット反転方式を採用している。すなわち、図2に示されるように、画素r1は負極、画素g1は正極、画素b1は負極、画素r2は正極、画素r1の直ぐ下の画素は正極、画素g1の直ぐ下の画素は負極、画素b1の直ぐ下の画素は正極、画素r2の直ぐ下の画素は負極、というように、各画素に印加される駆動電圧の極性が、隣接する1画素ごとに交互に反転している。また、駆動部30は、フレームごとに、駆動電圧の極性を反転させている。すなわち、図2に示されるフレームでは、画素r1の駆動電圧の極性は負極にされているが、次のフレームでは、画素r1の駆動電圧の極性は正極にされる。 In the first embodiment, the driving unit 30 performs AC voltage driving for driving the pixels by applying an AC driving voltage to each pixel of the display unit 40. The drive unit 30 employs a dot inversion method in AC voltage driving. That is, as shown in FIG. 2, the pixel r1 is a negative electrode, the pixel g1 is a positive electrode, the pixel b1 is a negative electrode, the pixel r2 is a positive electrode, a pixel immediately below the pixel r1 is a positive electrode, a pixel immediately below the pixel g1 is a negative electrode, The polarity of the drive voltage applied to each pixel is alternately inverted for each adjacent pixel, such that the pixel immediately below the pixel b1 is a positive electrode and the pixel immediately below the pixel r2 is a negative electrode. Further, the drive unit 30 reverses the polarity of the drive voltage for each frame. That is, in the frame shown in FIG. 2, the polarity of the drive voltage of the pixel r1 is negative, but in the next frame, the polarity of the drive voltage of the pixel r1 is positive.
 駆動部30により、表示部40の各画素に印加される駆動電圧は、図3(a)に示されるように、表示部40の表示領域40aにおいて、理想的には、正極側及び負極側の共通電極に対する電位差が等しく、正極側及び負極側の電位がそれぞれ均一である。すなわち、図3(a)では、理想的な共通電極の電位IVcomと正極側の画素電位IV(+)との電位差Vi(+)と、理想的な共通電極の電位IVcomと負極側の画素電位IV(-)との電位差Vi(-)との関係は、Vi(+)=Vi(-)となっている。また、理想的な正極側の画素電位IV(+)と、理想的な負極側の画素電位IV(-)とは、それぞれ、均一な電位になっている。 As shown in FIG. 3A, the driving voltage applied to each pixel of the display unit 40 by the driving unit 30 is ideally on the positive side and the negative side in the display region 40a of the display unit 40. The potential difference with respect to the common electrode is equal, and the potentials on the positive electrode side and the negative electrode side are uniform. That is, in FIG. 3A, the potential difference Vi (+) between the ideal common electrode potential IVcom and the positive side pixel potential IV (+), and the ideal common electrode potential IVcom and the negative side pixel potential. The relationship between the potential difference Vi (−) and IV (−) is Vi (+) = Vi (−). Also, the ideal pixel potential IV (+) on the positive side and the ideal pixel potential IV (−) on the negative side are respectively uniform potentials.
 これに対して、駆動部30により、実際に、表示部40の各画素に印加される駆動電圧は、図3(b)に示されるように、駆動素子(例えば薄膜トランジスタ)と画素との距離の差などに起因して、理想的な電位にはなっていない。この実施の形態1の表示装置1では、図3(b)に示されるように、表示領域40aの中央において理想的な電位が得られるように、共通電極の電位RVcom、正極側の画素電位RV(+)及び負極側の画素電位RV(-)が最適化されている。その結果、表示領域40aの左右の端部では、実際の正極側の画素電位RV(+)は、理想的な画素電位IV(+)に対して低下し、実際の負極側の画素電位RV(-)も、理想的な画素電位IV(-)に対して低下している。このため、共通電極の電位RVcomと実際の正極側の画素電位RV(+)との電位差Vr(+)と、共通電極の電位RVcomと実際の負極側の画素電位RV(-)との電位差Vi(-)との関係は、Vr(+)<Vr(-)となっている。 On the other hand, the drive voltage actually applied to each pixel of the display unit 40 by the drive unit 30 is the distance between the drive element (for example, a thin film transistor) and the pixel, as shown in FIG. Due to the difference, the potential is not ideal. In the display device 1 according to the first embodiment, as shown in FIG. 3B, the common electrode potential RVcom and the positive-side pixel potential RV so that an ideal potential can be obtained at the center of the display region 40a. (+) And the pixel potential RV (−) on the negative electrode side are optimized. As a result, at the left and right ends of the display area 40a, the actual pixel potential RV (+) on the positive side decreases with respect to the ideal pixel potential IV (+), and the actual pixel potential RV ( −) Is also lower than the ideal pixel potential IV (−). Therefore, the potential difference Vr (+) between the common electrode potential RVcom and the actual pixel potential RV (+) on the positive side, and the potential difference Vi between the common electrode potential RVcom and the actual negative side pixel potential RV (−). The relationship with (−) is Vr (+) <Vr (−).
 そこで、補正処理部10は、画素の駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき増減補正する補正処理を入力映像データに対して行う。具体的には、補正処理部10は、負極の画素に対応する入力映像データから所定の補正値を減算する補正処理を行い、正極の画素に対応する入力映像データに所定の補正値を加算する補正処理を行う。これによって、電位差Vr(+)と電位差Vi(-)との関係が、Vr(+)<Vr(-)となっていることによる影響を低減するようにしている。また、図3(b)に示されるように、画素電位RV(+),RV(-)が低下しているのは、表示領域40aの一部の領域、すなわち表示領域40aの左右の端部を含む領域となっている。そこで、補正処理部10は、図4に示されるように、表示領域40aの左右の端部に予め設定された補正領域41の画素に対して、上記補正処理を行い、表示領域40aの中央の非補正領域42の画素に対しては、上記補正処理を行わない。 Therefore, the correction processing unit 10 performs a correction process on the input video data to increase or decrease the level of the input video data based on different correction values for each polarity of the pixel driving voltage. Specifically, the correction processing unit 10 performs a correction process of subtracting a predetermined correction value from the input video data corresponding to the negative pixel, and adds the predetermined correction value to the input video data corresponding to the positive pixel. Perform correction processing. Thus, the influence of the relationship between the potential difference Vr (+) and the potential difference Vi (−) being Vr (+) <Vr (−) is reduced. Further, as shown in FIG. 3B, the pixel potentials RV (+) and RV (−) are decreased because of a partial region of the display region 40a, that is, the left and right end portions of the display region 40a. It is an area including Therefore, as shown in FIG. 4, the correction processing unit 10 performs the above correction processing on the pixels of the correction area 41 set in advance on the left and right ends of the display area 40 a, so that the center of the display area 40 a The correction process is not performed on the pixels in the non-correction area 42.
 図5は実施の形態1の表示装置1の補正処理部10、誤差拡散処理部20及び駆動部30の構成を示すブロック図である。図5に示されるように、実施の形態1における誤差拡散処理部20は、第1処理部21、分離部22、第2処理部23、第3処理部24、多重化部25、及び選択部26を備える。 FIG. 5 is a block diagram illustrating the configuration of the correction processing unit 10, the error diffusion processing unit 20, and the driving unit 30 of the display device 1 according to the first embodiment. As shown in FIG. 5, the error diffusion processing unit 20 in the first embodiment includes a first processing unit 21, a separation unit 22, a second processing unit 23, a third processing unit 24, a multiplexing unit 25, and a selection unit. 26.
 補正処理部10は、(m+n)ビットの入力映像データを第1処理部21及び分離部22に出力する。また、補正処理部10は、この実施の形態1では、上記補正制御信号として、極性信号を画素ごとに分離部22に出力し、領域信号を画素ごとに選択部26に出力する。極性信号は、各画素に印加される駆動電圧の極性を示す。すなわち、極性信号は、補正処理部10から誤差拡散処理部20に出力される入力映像データに対応する画素の極性を示す。領域信号は、各画素が補正領域41の画素であるか非補正領域42の画素であるかを示す。すなわち、領域信号は、補正処理部10から誤差拡散処理部20に出力される入力映像データが、補正領域41の画素に対応する入力映像データであるか非補正領域42の画素に対応する入力映像データであるかを示す。 The correction processing unit 10 outputs (m + n) -bit input video data to the first processing unit 21 and the separation unit 22. In the first embodiment, the correction processing unit 10 outputs a polarity signal to the separation unit 22 for each pixel and outputs a region signal to the selection unit 26 for each pixel as the correction control signal. The polarity signal indicates the polarity of the drive voltage applied to each pixel. That is, the polarity signal indicates the polarity of the pixel corresponding to the input video data output from the correction processing unit 10 to the error diffusion processing unit 20. The area signal indicates whether each pixel is a pixel in the correction area 41 or a pixel in the non-correction area 42. That is, the region signal is input video data corresponding to the pixels in the correction region 41 or the input video data corresponding to the pixels in the non-correction region 42 as input video data output from the correction processing unit 10 to the error diffusion processing unit 20. Indicates whether it is data.
 第1処理部21は、例えば加算器及び遅延器を有する。第1処理部21は、(m+n)ビットの入力映像データとnビットの誤差データとを画素ごとに加算して(m+n)ビットの加算結果を求め、当該加算結果の下位nビットを次の画素の誤差データとして保持し、当該加算結果の上位mビットを第1出力映像データとして、選択部26に出力する。 The first processing unit 21 includes, for example, an adder and a delay unit. The first processing unit 21 adds (m + n) -bit input video data and n-bit error data for each pixel to obtain an (m + n) -bit addition result, and uses the lower n bits of the addition result as the next pixel. And the upper m bits of the addition result are output to the selection unit 26 as the first output video data.
 分離部22は、補正処理部10から出力された極性信号に基づき、補正処理部10から出力された入力映像データに対してシリアル-パラレル変換を行い、駆動電圧が正極性の画素に対応する正極性入力映像データと、駆動電圧が負極性の画素に対応する負極性入力映像データとに、入力映像データを分離する。分離部22は、正極性入力映像データを第2処理部23に出力し、負極性入力映像データを第3処理部24に出力する。 The separation unit 22 performs serial-parallel conversion on the input video data output from the correction processing unit 10 based on the polarity signal output from the correction processing unit 10, and the positive voltage corresponding to the pixel whose driving voltage is positive. The input video data is separated into negative input video data and negative input video data corresponding to a pixel having a negative drive voltage. The separation unit 22 outputs positive input video data to the second processing unit 23 and outputs negative input video data to the third processing unit 24.
 第2処理部23は、例えば加算器及び遅延器を有する。第2処理部23は、(m+n)ビットの正極性入力映像データとnビットの誤差データとを画素ごとに加算して(m+n)ビットの加算結果を求め、当該加算結果の下位nビットを次の画素、つまり次の正極性画素の誤差データとして保持する。例えば図2において、現在の画素が画素r2であれば、上記下位nビットは、画素r4の誤差データとして保持される。また、第2処理部23は、上記加算結果の上位mビットを第2出力映像データとして多重化部25に出力する。 The second processing unit 23 includes, for example, an adder and a delay unit. The second processing unit 23 adds the (m + n) -bit positive input video data and the n-bit error data for each pixel to obtain an (m + n) -bit addition result, and then adds the lower n bits of the addition result. Is stored as error data of the next pixel, that is, the next positive pixel. For example, in FIG. 2, if the current pixel is the pixel r2, the lower n bits are held as error data of the pixel r4. The second processing unit 23 outputs the upper m bits of the addition result to the multiplexing unit 25 as second output video data.
 第3処理部24は、例えば加算器及び遅延器を有する。第3処理部24は、(m+n)ビットの負極性入力映像データとnビットの誤差データとを画素ごとに加算して(m+n)ビットの加算結果を求め、当該加算結果の下位nビットを次の画素、つまり次の負極性画素の誤差データとして保持する。例えば図2において、現在の画素が画素r1であれば、上記下位nビットは、画素r3の誤差データとして保持される。また、第3処理部24は、上記加算結果の上位mビットを第3出力映像データとして多重化部25に出力する。 The third processing unit 24 includes, for example, an adder and a delay unit. The third processing unit 24 adds the (m + n) -bit negative input video data and the n-bit error data for each pixel to obtain an (m + n) -bit addition result, and then adds the lower n bits of the addition result. Error data of the next pixel, that is, the next negative pixel. For example, in FIG. 2, if the current pixel is the pixel r1, the lower n bits are held as error data of the pixel r3. The third processing unit 24 outputs the upper m bits of the addition result to the multiplexing unit 25 as third output video data.
 多重化部25は、第2処理部23から入力されるmビットの第2出力映像データと、第3処理部24から入力されるmビットの第3出力映像データとに対して、パラレル-シリアル変換を行って多重化し、分離部22による分離前の入力映像データに対応する多重化出力映像データを生成する。多重化部25は、生成したmビットの多重化出力映像データを選択部26に出力する。 The multiplexing unit 25 performs parallel-serial processing on the m-bit second output video data input from the second processing unit 23 and the m-bit third output video data input from the third processing unit 24. Conversion is performed and multiplexed, and multiplexed output video data corresponding to the input video data before separation by the separation unit 22 is generated. The multiplexing unit 25 outputs the generated m-bit multiplexed output video data to the selection unit 26.
 選択部26は、補正処理部10から出力された領域信号に基づき、第1処理部21から出力された第1出力映像データと、多重化部25から出力された多重化出力映像データとの一方を、出力映像データとして駆動部30に出力する。具体的には、選択部26は、領域信号が非補正領域42の画素であることを示すときは、第1処理部21から出力された第1出力映像データを出力映像データとして駆動部30に出力する。また、選択部26は、領域信号が補正領域41の画素であることを示すときは、多重化部25から出力された多重化出力映像データを出力映像データとして駆動部30に出力する。本実施形態において、第2出力映像データが正極性出力映像データの一例に対応し、第3出力映像データが負極性出力映像データの一例に対応する。 The selection unit 26 selects one of the first output video data output from the first processing unit 21 and the multiplexed output video data output from the multiplexing unit 25 based on the region signal output from the correction processing unit 10. Are output to the drive unit 30 as output video data. Specifically, when the region signal indicates that the pixel of the non-correction region 42 is selected, the selection unit 26 outputs the first output video data output from the first processing unit 21 to the drive unit 30 as output video data. Output. Further, when the region signal indicates that the pixel of the correction region 41, the selection unit 26 outputs the multiplexed output video data output from the multiplexing unit 25 to the drive unit 30 as output video data. In the present embodiment, the second output video data corresponds to an example of positive output video data, and the third output video data corresponds to an example of negative output video data.
 図6は誤差拡散処理部20による誤差拡散処理の動作例を説明する模式図である。図7は補正領域41において隣接画素に誤差データを拡散する通常の誤差拡散処理を行う比較例の動作を説明する模式図である。図6及び図7では、m=n=2とし、各画素に対応する入力映像データを一律に「1000」としている。以下、図5ないし図7を参照して、実施の形態1における誤差拡散処理の具体的な動作例と、比較例における動作とが説明される。 FIG. 6 is a schematic diagram illustrating an operation example of error diffusion processing by the error diffusion processing unit 20. FIG. 7 is a schematic diagram for explaining the operation of a comparative example in which normal error diffusion processing for diffusing error data to adjacent pixels in the correction region 41 is performed. 6 and 7, m = n = 2 and the input video data corresponding to each pixel is uniformly “1000”. Hereinafter, a specific operation example of the error diffusion processing according to the first embodiment and an operation in the comparative example will be described with reference to FIGS.
 図6のセクション(A)~(E)は、補正領域41の赤色画素r1~r8について示している。図6のセクション(F)~(H)は、非補正領域42の赤色画素r9~r12について示している。 6A to 6E show the red pixels r1 to r8 in the correction area 41. FIG. Sections (F) to (H) in FIG. 6 show the red pixels r9 to r12 in the non-correction region.
 図6のセクション(A)には、補正領域41の赤色画素r1、r2、・・・、r8に印加される駆動電圧の極性及び入力映像データが示されている。図6に示される動作例では、補正処理部10は、負極性の画素に対応する入力映像データから「0011」を減算し、正極性の画素に対応する入力映像データに「0011」を加算する補正処理を行っている。したがって、図6のセクション(A)に示されるように、負極性の画素r1、r3、r5、r7に対応する補正処理後の入力映像データは、「0101」となり、正極性の画素r2、r4、r6、r8に対応する補正処理後の入力映像データは、「1011」となる。このように、図6では、「-0011」、「+0011」が、補正値の一例に対応する。 The section (A) of FIG. 6 shows the polarity of the drive voltage applied to the red pixels r1, r2,..., R8 in the correction area 41 and the input video data. In the operation example shown in FIG. 6, the correction processing unit 10 subtracts “0011” from the input video data corresponding to the negative polarity pixel, and adds “0011” to the input video data corresponding to the positive polarity pixel. Correction processing is performed. Therefore, as shown in the section (A) of FIG. 6, the input video data after the correction processing corresponding to the negative pixels r1, r3, r5, r7 is “0101”, and the positive pixels r2, r4. , R6, r8, the input video data after the correction processing is “1011”. Thus, in FIG. 6, “−0011” and “+0011” correspond to examples of correction values.
 図6のセクション(B)、(C)には、分離部22により分離された負極性入力映像データに対する第3処理部24における処理結果が示されている。図6のセクション(B)には、負極性入力映像データの下位2ビットが誤差データとして次の同一極性の画素の入力映像データに加算された状態が示されている。図6のセクション(C)には、図6のセクション(B)に示される加算結果の上位2ビットである第3出力映像データr(-)が示されている。 6 (B) and (C) show the processing results in the third processing unit 24 for the negative input video data separated by the separation unit 22. Section (B) in FIG. 6 shows a state in which the lower 2 bits of the negative polarity input video data are added as error data to the input video data of the next pixel of the same polarity. In the section (C) of FIG. 6, the third output video data r (−) that is the upper 2 bits of the addition result shown in the section (B) of FIG. 6 is shown.
 負極性赤色画素r1の入力映像データ「0101」の上位2ビット「01」が第3出力映像データとして出力され(セクション(C))、下位2ビット「01」が次の負極性赤色画素r3の入力映像データ「0101」に加算される。その加算結果が「0110」となり(セクション(B))、その上位2ビット「01」が第3出力映像データとして出力され(セクション(C))、下位2ビット「10」が次の負極性赤色画素r5の入力映像データ「0101」に加算される。その加算結果が「0111」となり(セクション(B))、その上位2ビット「01」が第3出力映像データとして出力され(セクション(C))、下位2ビット「11」が次の負極性赤色画素r7の入力映像データ「0101」に加算される。その加算結果が「1000」となり(セクション(B))、その上位2ビット「10」が第3出力映像データとして出力される(セクション(C))。その結果、負極性の4画素r1、r3、r5、r7の第3出力映像データr(-)の平均値は1.25となり、入力映像データ「0101」の階調を擬似的に表現できている。 The upper 2 bits “01” of the input video data “0101” of the negative polarity red pixel r1 is output as the third output video data (section (C)), and the lower 2 bits “01” of the next negative polarity red pixel r3. It is added to the input video data “0101”. The addition result is “0110” (section (B)), the upper 2 bits “01” are output as the third output video data (section (C)), and the lower 2 bits “10” are the next negative red color. It is added to the input video data “0101” of the pixel r5. The addition result is “0111” (section (B)), the upper 2 bits “01” are output as the third output video data (section (C)), and the lower 2 bits “11” are the next negative red color. It is added to the input video data “0101” of the pixel r7. The addition result is “1000” (section (B)), and the upper 2 bits “10” are output as the third output video data (section (C)). As a result, the average value of the third output video data r (−) of the negative four pixels r1, r3, r5, r7 becomes 1.25, and the gradation of the input video data “0101” can be expressed in a pseudo manner. Yes.
 図6のセクション(D)、(E)には、分離部22により分離された正極性入力映像データに対する第2処理部23における処理結果が示されている。図6のセクション(D)には、正極性入力映像データの下位2ビットが誤差データとして次の同一極性の画素の入力映像データに加算された状態が示されている。図6のセクション(E)には、図6のセクション(D)に示される加算結果の上位2ビットである第2出力映像データr(+)が示されている。 6, sections (D) and (E) show the processing results in the second processing unit 23 for the positive input video data separated by the separation unit 22. Section (D) in FIG. 6 shows a state in which the lower 2 bits of the positive input video data are added as error data to the input video data of the next pixel of the same polarity. The section (E) in FIG. 6 shows the second output video data r (+) that is the upper 2 bits of the addition result shown in the section (D) in FIG.
 正極性赤色画素r2の入力映像データ「1011」の上位2ビット「10」が第2出力映像データとして出力され(セクション(E))、下位2ビット「11」が次の正極性赤色画素r4の入力映像データ「1011」に加算される。その加算結果が「1110」となり(セクション(D))、その上位2ビット「11」が第2出力映像データとして出力され(セクション(E))、下位2ビット「10」が次の正極性赤色画素r6の入力映像データ「1011」に加算される。その加算結果が「1101」となり(セクション(D))、その上位2ビット「11」が第2出力映像データとして出力され(セクション(E))、下位2ビット「01」が次の正極性赤色画素r8の入力映像データ「1011」に加算される。その加算結果が「1100」となり(セクション(D))、その上位2ビット「11」が第2出力映像データとして出力される(セクション(E))。その結果、正極性の4画素r2、r4、r6、r8の第2出力映像データr(+)の平均値は2.75となり、入力映像データ「1011」の階調を擬似的に表現できている。 The upper 2 bits “10” of the input video data “1011” of the positive red pixel r2 is output as the second output video data (section (E)), and the lower 2 bits “11” of the next positive red pixel r4. It is added to the input video data “1011”. The addition result is “1110” (section (D)), the upper 2 bits “11” are output as the second output video data (section (E)), and the lower 2 bits “10” are the next positive red color. It is added to the input video data “1011” of the pixel r6. The addition result is “1101” (section (D)), the upper 2 bits “11” are output as the second output video data (section (E)), and the lower 2 bits “01” are the next positive red color. It is added to the input video data “1011” of the pixel r8. The addition result is “1100” (section (D)), and the upper 2 bits “11” are output as second output video data (section (E)). As a result, the average value of the second output video data r (+) of the positive four pixels r2, r4, r6, r8 is 2.75, and the gradation of the input video data “1011” can be expressed in a pseudo manner. Yes.
 図6のセクション(F)には、非補正領域42の赤色画素r9、r10、r11、r12に印加される駆動電圧の極性及び入力映像データが示されている。上述のように、非補正領域42の画素に対応する入力映像データに対して、補正処理部10は補正処理を行わない。したがって、図6のセクション(F)に示されるように、負極性の画素r9、r11及び正極性の画素r10、r12に対応する入力映像データは、いずれも「1000」のままとなっている。 The section (F) in FIG. 6 shows the polarity of the drive voltage applied to the red pixels r9, r10, r11, r12 in the non-correction region 42 and the input video data. As described above, the correction processing unit 10 does not perform the correction process on the input video data corresponding to the pixels in the non-correction area 42. Therefore, as shown in the section (F) of FIG. 6, the input video data corresponding to the negative pixels r9 and r11 and the positive pixels r10 and r12 are all “1000”.
 図6のセクション(G)、(H)には、入力映像データに対する第1処理部21における処理結果が示されている。図6のセクション(G)には、入力映像データの下位2ビットが誤差データとして次の画素の入力映像データに加算された状態が示されている。図6のセクション(H)には、図6のセクション(G)に示される加算結果の上位2ビットである第1出力映像データr(0)が示されている。 The sections (G) and (H) of FIG. 6 show the processing results in the first processing unit 21 for the input video data. Section (G) in FIG. 6 shows a state in which the lower 2 bits of the input video data are added as error data to the input video data of the next pixel. The section (H) in FIG. 6 shows the first output video data r (0) that is the upper 2 bits of the addition result shown in the section (G) in FIG.
 負極性赤色画素r9の入力映像データ「1000」の上位2ビット「10」が第1出力映像データとして出力され(セクション(H))、下位2ビット「00」が次の正極性赤色画素r10の入力映像データ「1000」に加算される。その加算結果が「1000」となり(セクション(G))、その上位2ビット「10」が第1出力映像データとして出力され(セクション(H))、下位2ビット「00」が次の負極性赤色画素r11の入力映像データ「1000」に加算される。その加算結果が「1000」となり(セクション(G))、その上位2ビット「10」が第1出力映像データとして出力され(セクション(H))、下位2ビット「00」が次の正極性赤色画素r12の入力映像データ「1000」に加算される。その加算結果が「1000」となり(セクション(G))、その上位2ビット「10」が第1出力映像データとして出力される(セクション(H))。その結果、4画素r9、r10、r11、r12の第1出力映像データr(0)の平均値は2.0となり、入力映像データ「1000」の階調を実現できている。なお、図6では、赤色画素における動作例を説明しているが、緑色画素及び青色画素でも、同様の動作が行われる。 The upper 2 bits “10” of the input video data “1000” of the negative red pixel r9 is output as the first output video data (section (H)), and the lower 2 bits “00” of the next positive red pixel r10. It is added to the input video data “1000”. The addition result is “1000” (section (G)), the upper 2 bits “10” are output as the first output video data (section (H)), and the lower 2 bits “00” are the next negative red color. It is added to the input video data “1000” of the pixel r11. The addition result is “1000” (section (G)), the upper 2 bits “10” are output as the first output video data (section (H)), and the lower 2 bits “00” are the next positive red color. It is added to the input video data “1000” of the pixel r12. The addition result is “1000” (section (G)), and the upper 2 bits “10” are output as the first output video data (section (H)). As a result, the average value of the first output video data r (0) of the four pixels r9, r10, r11, r12 is 2.0, and the gradation of the input video data “1000” can be realized. Note that FIG. 6 illustrates an operation example in the red pixel, but the same operation is performed in the green pixel and the blue pixel.
 図7のセクション(A)には、補正領域41の赤色画素r1、r2、・・・、r8に印加される駆動電圧の極性及び入力映像データが示されている。図7に示される比較例では、図6に示される動作例と同様に、負極性の画素に対応する入力映像データから「0011」を減算し、正極性の画素に対応する入力映像データに「0011」を加算する補正処理を行っている。したがって、図7のセクション(A)に示されるように、負極性の画素r1、r3、r5、r7に対応する補正処理後の入力映像データは、「0101」となり、正極性の画素r2、r4、r6、r8に対応する補正処理後の入力映像データは、「1011」となっており、図6のセクション(A)に示される動作例と同じになっている。 The section (A) of FIG. 7 shows the polarity of the drive voltage applied to the red pixels r1, r2,..., R8 in the correction area 41 and the input video data. In the comparative example shown in FIG. 7, similarly to the operation example shown in FIG. 6, “0011” is subtracted from the input video data corresponding to the negative pixel, and the input video data corresponding to the positive pixel is “ Correction processing for adding “0011” is performed. Therefore, as shown in the section (A) of FIG. 7, the input video data after the correction processing corresponding to the negative pixels r1, r3, r5, r7 is “0101”, and the positive pixels r2, r4. , R6, and r8, the input video data after the correction processing is “1011”, which is the same as the operation example shown in the section (A) of FIG.
 図7のセクション(B)には、入力映像データの下位2ビットが、誤差データとして隣接する次の画素の入力映像データに加算された状態が示されている。図7のセクション(C)には、図7のセクション(B)に示される加算結果の上位2ビットである出力データが示されている。 FIG. 7B shows a state where the lower 2 bits of the input video data are added as error data to the input video data of the next adjacent pixel. In section (C) of FIG. 7, output data that is the upper 2 bits of the addition result shown in section (B) of FIG. 7 is shown.
 負極性赤色画素r1の入力映像データ「0101」の上位2ビット「01」が出力データとして出力され(セクション(C))、下位2ビット「01」が次の正極性赤色画素r2の入力映像データ「1011」に加算される。その加算結果が「1100」となり(セクション(B))、その上位2ビット「11」が出力データとして出力され(セクション(C))、下位2ビット「00」が次の負極性赤色画素r3の入力映像データ「0101」に加算される。その加算結果が「0101」となり(セクション(B))、その上位2ビット「01」が出力データとして出力され(セクション(C))、下位2ビット「01」が次の正極性赤色画素r4の入力映像データ「1011」に加算される。その加算結果が「1100」となり(セクション(B))、その上位2ビット「11」が出力データとして出力される(セクション(C))。以下、赤色画素r5、r6、r7、r8についても、赤色画素r1、r2、r3、r4と全く同様の出力データが得られる。その結果、負極性の4画素r1、r3、r5、r7の出力データの平均値は1.00となり、入力映像データ「0101」を擬似的に表現できていない。また、正極性の4画素r2、r4、r6、r8の出力データの平均値は3.00となり、入力映像データ「1011」を擬似的に表現できていない。 The upper 2 bits “01” of the input video data “0101” of the negative red pixel r1 are output as output data (section (C)), and the lower 2 bits “01” are the input video data of the next positive red pixel r2. It is added to “1011”. The addition result is “1100” (section (B)), the upper 2 bits “11” are output as output data (section (C)), and the lower 2 bits “00” are the next negative red pixel r3. It is added to the input video data “0101”. The addition result is “0101” (section (B)), the upper 2 bits “01” are output as output data (section (C)), and the lower 2 bits “01” are the next positive red pixel r4. It is added to the input video data “1011”. The addition result is “1100” (section (B)), and the upper 2 bits “11” are output as output data (section (C)). Hereinafter, output data exactly the same as that of the red pixels r1, r2, r3, r4 can be obtained for the red pixels r5, r6, r7, r8. As a result, the average value of the output data of the negative four pixels r1, r3, r5, r7 is 1.00, and the input video data “0101” cannot be expressed in a pseudo manner. Further, the average value of the output data of the positive four pixels r2, r4, r6, r8 is 3.00, and the input video data “1011” cannot be expressed in a pseudo manner.
 以上説明されたように、実施の形態1によれば、分離部22は、極性信号に基づき、正極性入力映像データと負極性入力映像データとに分離し、第2処理部23及び第3処理部24は、正極性入力映像データと負極性入力映像データとに対して、それぞれ独立に誤差拡散処理を行っている。したがって、補正処理部10によって、駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき増減補正する補正処理が入力映像データに対して行われていても、各極性の画素ごとに、正確な階調情報を付加した誤差拡散処理を行うことができる。その結果、補正領域41及び非補正領域42を含む表示領域40a全体において、入力映像データと同等の階調を有する映像を擬似的に表示することが可能になる。 As described above, according to the first embodiment, the separation unit 22 separates the positive input video data and the negative input video data based on the polarity signal, and the second processing unit 23 and the third processing. The unit 24 performs error diffusion processing independently on the positive input video data and the negative input video data. Therefore, even if the correction processing unit 10 performs correction processing for increasing or decreasing the level of the input video data based on different correction values for each polarity of the drive voltage, for each pixel of each polarity. Then, error diffusion processing with accurate gradation information added can be performed. As a result, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner in the entire display area 40a including the correction area 41 and the non-correction area 42.
 また、実施の形態1では、分離部22は、補正処理部10から出力された極性信号に基づき、入力映像データを分離しているため、例えば、1画素ごとに駆動電圧の極性が反転されるドット反転方式に限られず、複数画素ごとに駆動電圧の極性を反転する反転方式でも、好適に誤差拡散処理を行うことができる。 In the first embodiment, since the separation unit 22 separates input video data based on the polarity signal output from the correction processing unit 10, for example, the polarity of the drive voltage is inverted for each pixel. Not only the dot inversion method, but also an inversion method in which the polarity of the drive voltage is inverted for each of a plurality of pixels, the error diffusion process can be suitably performed.
 なお、上記実施の形態1では、誤差拡散処理部20の構成は、図5に示される構成に限られず、正極性入力映像データと、負極性入力映像データとに対して、それぞれ独立に誤差拡散処理を行うことが可能な構成であればよい。 In the first embodiment, the configuration of the error diffusion processing unit 20 is not limited to the configuration shown in FIG. 5, and error diffusion is independently performed for the positive input video data and the negative input video data. Any configuration capable of performing processing may be used.
 (実施の形態2)
 図8は本発明の実施の形態2の表示装置の補正処理部10、誤差拡散処理部20及び駆動部30の構成を概略的に示すブロック図である。実施の形態2の表示装置の構成は、誤差拡散処理部20の構成及び補正処理部10から誤差拡散処理部20に出力される信号が異なるほかは、図1及び図5に示される実施の形態1の表示装置1と同様である。図8では、実施の形態1と同一要素には同一符号を付している。以下、実施の形態1との相違点を中心として実施の形態2が説明される。
(Embodiment 2)
FIG. 8 is a block diagram schematically showing the configuration of the correction processing unit 10, the error diffusion processing unit 20, and the driving unit 30 of the display device according to the second embodiment of the present invention. The configuration of the display device of the second embodiment is the same as that of the embodiment shown in FIGS. 1 and 5 except that the configuration of the error diffusion processing unit 20 and the signal output from the correction processing unit 10 to the error diffusion processing unit 20 are different. 1 is the same as the display device 1 of FIG. In FIG. 8, the same elements as those in the first embodiment are denoted by the same reference numerals. Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment.
 図8に示されるように、実施の形態2における誤差拡散処理部20は、加算器51、第1遅延器52、第2遅延器53、及び選択部54を備える。また、補正処理部10は、上記補正制御信号(図1)として、この実施の形態2では、領域信号を画素ごとに選択部54に出力する。領域信号は、実施の形態1と同様に、各画素が補正領域41の画素であるか非補正領域42の画素であるかを示す。 As shown in FIG. 8, the error diffusion processing unit 20 in the second embodiment includes an adder 51, a first delay unit 52, a second delay unit 53, and a selection unit. Further, in the second embodiment, the correction processing unit 10 outputs an area signal for each pixel to the selection unit 54 as the correction control signal (FIG. 1). The area signal indicates whether each pixel is a pixel in the correction area 41 or a non-correction area 42 as in the first embodiment.
 加算器51は、2つの入力データを加算する回路で、画素ごとに、補正処理部10から出力された(m+n)ビットの入力映像データと選択部54から出力されたnビットの加算データとを加算して、(m+n)ビットの加算結果を出力する。第1遅延器52は、例えばフリップフロップで構成され、制御クロックを1周期期間、つまり入力映像データの1画素期間だけ、入力データを遅延する回路である。第1遅延器52は、加算器51から出力された(m+n)ビットの加算結果を画素ごとに1画素期間だけ遅延して、第2遅延器53に出力する。第1遅延器52は、加算器51から出力された(m+n)ビットの加算結果の下位nビットを誤差データとして、選択部54に出力する。 The adder 51 is a circuit for adding two input data, and for each pixel, the (m + n) -bit input video data output from the correction processing unit 10 and the n-bit addition data output from the selection unit 54. Addition and output the addition result of (m + n) bits. The first delay device 52 is configured by, for example, a flip-flop, and is a circuit that delays input data by a control clock for one cycle period, that is, one pixel period of input video data. The first delay unit 52 delays the addition result of (m + n) bits output from the adder 51 by one pixel period for each pixel and outputs the result to the second delay unit 53. The first delay unit 52 outputs the lower n bits of the addition result of the (m + n) bits output from the adder 51 to the selection unit 54 as error data.
 第2遅延器53は、第1遅延器52と同様に、例えばフリップフロップで構成され、制御クロックを1周期期間、つまり入力映像データの1画素期間だけ、入力データを遅延する回路である。第2遅延器53は、第1遅延器52から出力された(m+n)ビットの加算結果を画素ごとに1画素期間だけ遅延して出力する。第2遅延器53は、第1遅延器52から出力された(m+n)ビットの加算結果の上位mビットを出力映像データとして駆動部30に出力し、下位nビットを誤差データとして、選択部54に出力する。 Similarly to the first delay unit 52, the second delay unit 53 is configured by a flip-flop, for example, and is a circuit that delays the input data by one cycle period of the control clock, that is, one pixel period of the input video data. The second delay unit 53 delays and outputs the addition result of (m + n) bits output from the first delay unit 52 for each pixel by one pixel period. The second delay unit 53 outputs the upper m bits of the addition result of the (m + n) bits output from the first delay unit 52 to the drive unit 30 as output video data, and selects the lower n bits as error data. Output to.
 選択部54は、補正処理部10から出力された領域信号に基づき、第1遅延器52から出力されたnビットの誤差データと、第2遅延器53から出力されたnビットの誤差データとの一方を、加算データとして加算器51に出力する。選択部54は、領域信号が非補正領域42の画素であることを示すときは、第1遅延器52から出力された誤差データを加算データとして加算器51に出力する。また、選択部54は、領域信号が補正領域41の画素であることを示すときは、第2遅延器53から出力された誤差データを加算データとして加算器51に出力する。実施の形態2では、加算器51が加算部の一例であり、第1遅延器52が第1遅延部の一例であり、第2遅延器53が第2遅延部の一例である。 Based on the region signal output from the correction processing unit 10, the selection unit 54 calculates the difference between the n-bit error data output from the first delay unit 52 and the n-bit error data output from the second delay unit 53. One of them is output to the adder 51 as addition data. When the region signal indicates that the pixel is in the non-correction region 42, the selection unit 54 outputs the error data output from the first delay unit 52 to the adder 51 as addition data. Further, when the region signal indicates that the pixel of the correction region 41, the selection unit 54 outputs the error data output from the second delay unit 53 to the adder 51 as addition data. In the second embodiment, the adder 51 is an example of an adding unit, the first delay unit 52 is an example of a first delay unit, and the second delay unit 53 is an example of a second delay unit.
 次に、上記の構成において、実施の形態2における誤差拡散処理部20の動作が説明される。補正処理部10から加算器51に出力された入力映像データが、非補正領域42の画素に対応する入力映像データの場合は、加算データとして、第1遅延器52から出力された誤差データが選択部54から加算器51に出力される。したがって、加算器51において、補正処理部10から出力された補正処理が行われていない(m+n)ビットの入力映像データと、第1遅延器52から出力されたnビットの誤差データとが加算される。つまり、非補正領域42では、1画素ごとに誤差拡散処理が行われる。したがって、図6に示される非補正領域42の赤色画素r9、r10、r11、r12と同様の動作が行われることとなる。 Next, the operation of the error diffusion processing unit 20 in the second embodiment will be described in the above configuration. When the input video data output from the correction processing unit 10 to the adder 51 is input video data corresponding to the pixels in the non-correction area 42, the error data output from the first delay unit 52 is selected as the addition data. The data is output from the unit 54 to the adder 51. Therefore, the adder 51 adds the (m + n) -bit input video data that has not been subjected to the correction process output from the correction processing unit 10 and the n-bit error data output from the first delay unit 52. The That is, in the non-correction area 42, error diffusion processing is performed for each pixel. Therefore, the same operation as that of the red pixels r9, r10, r11, r12 in the non-correction region 42 shown in FIG. 6 is performed.
 一方、補正処理部10から加算器51に出力された入力映像データが、補正領域41の画素に対応する入力映像データの場合は、加算データとして、第2遅延器53から出力された誤差データが選択部54から加算器51に出力される。したがって、加算器51において、補正処理部10から出力された補正処理後の(m+n)ビットの入力映像データと、第2遅延器53から出力されたnビットの誤差データとが加算される。つまり、補正領域41では、2画素ごとに誤差拡散処理が行われる。したがって、図6に示される補正領域41の負極性赤色画素r1、r3、r5、r7及び正極性赤色画素r2、r4、r6、r8と同様の動作が行われることとなる。 On the other hand, when the input video data output from the correction processing unit 10 to the adder 51 is input video data corresponding to the pixels in the correction area 41, the error data output from the second delay unit 53 is added as additional data. The data is output from the selector 54 to the adder 51. Accordingly, the adder 51 adds the (m + n) -bit input video data after the correction process output from the correction processing unit 10 and the n-bit error data output from the second delay unit 53. That is, in the correction area 41, error diffusion processing is performed every two pixels. Therefore, operations similar to those of the negative red pixels r1, r3, r5, r7 and the positive red pixels r2, r4, r6, r8 in the correction region 41 shown in FIG. 6 are performed.
 以上説明されたように、実施の形態2では、選択部54は、補正処理部10から出力された領域信号に基づき、非補正領域42では、第1遅延器52から出力された誤差データを加算データとして加算器51に出力し、補正領域41では、第2遅延器53から出力された誤差データを加算データとして加算器51に出力している。また、実施の形態2では、駆動部30は、実施の形態1と同様に、1画素ごとに駆動電圧の極性を反転させるドット反転方式で、表示部40の各画素を駆動している。したがって、実施の形態2においても、正極性入力映像データと負極性入力映像データとに対して、それぞれ独立に誤差拡散処理を行うことができる。このため、実施の形態2によれば、実施の形態1と同様に、補正処理部10によって、駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき増減補正する補正処理が入力映像データに対して行われていても、各極性の画素ごとに、正確な階調情報を付加した誤差拡散処理を行うことができる。その結果、補正領域41及び非補正領域42を含む表示領域40a全体において、入力映像データと同等の階調を有する映像を擬似的に表示することが可能になる。 As described above, in the second embodiment, the selection unit 54 adds the error data output from the first delay device 52 in the non-correction region 42 based on the region signal output from the correction processing unit 10. Data is output to the adder 51, and in the correction area 41, the error data output from the second delay unit 53 is output to the adder 51 as addition data. In the second embodiment, similarly to the first embodiment, the driving unit 30 drives each pixel of the display unit 40 by a dot inversion method that inverts the polarity of the driving voltage for each pixel. Therefore, also in the second embodiment, error diffusion processing can be performed independently on positive input video data and negative input video data. For this reason, according to the second embodiment, as in the first embodiment, the correction processing unit 10 performs a correction process for increasing / decreasing the level of the input video data based on different correction values for each polarity of the drive voltage. Even if it is performed on video data, error diffusion processing with accurate gradation information added can be performed for each pixel of each polarity. As a result, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner in the entire display area 40a including the correction area 41 and the non-correction area 42.
 なお、上記実施の形態2では、誤差拡散処理部20の構成は、図8に示される構成に限られない。例えば、入力映像データに対して2画素ごとに誤差拡散処理を行って出力映像データを生成する構成と、入力映像データに対して1画素ごとに誤差拡散処理を行って出力映像データを生成する構成と、領域信号に基づき、上記各出力映像データの一方を駆動部に出力する構成とを備えるようにしてもよい。 In the second embodiment, the configuration of the error diffusion processing unit 20 is not limited to the configuration shown in FIG. For example, a configuration in which error diffusion processing is performed on input video data every two pixels to generate output video data, and a configuration in which error diffusion processing is performed on input video data for each pixel to generate output video data And a configuration for outputting one of the output video data to the drive unit based on the region signal.
 (その他)
 上記各実施の形態では、駆動部30は、画素に印加する駆動電圧の極性を1画素ごとに反転するドット反転方式としているが、本発明は、これに限られない。例えば、列方向(垂直方向)の画素の駆動電圧を同一極性とし、列ごとに駆動電圧の極性を反転する列ライン反転方式でもよい。この列ライン反転方式でも、水平方向では駆動電圧の極性が画素ごとに反転しているため、水平方向の画素に誤差データを加算する誤差拡散処理を行う場合に、上記各実施の形態を適用すると、同様の効果を得ることができる。言い換えると、上記各実施の形態は、駆動電圧の極性が反転する方向と、誤差データを加算する画素の方向とが一致する場合に、効果を得ることができる。
(Other)
In each of the embodiments described above, the driving unit 30 employs a dot inversion method in which the polarity of the driving voltage applied to the pixel is inverted for each pixel, but the present invention is not limited to this. For example, a column line inversion method in which the drive voltages of pixels in the column direction (vertical direction) have the same polarity and the polarity of the drive voltage is inverted for each column may be used. Even in this column line inversion method, since the polarity of the driving voltage is inverted for each pixel in the horizontal direction, the above embodiments are applied when performing error diffusion processing for adding error data to the pixels in the horizontal direction. The same effect can be obtained. In other words, each of the above embodiments can obtain an effect when the direction in which the polarity of the drive voltage is inverted coincides with the direction of the pixel to which the error data is added.
 上記各実施の形態では、誤差拡散処理部20の各部をハードウェア回路で構成しているが、これに限られない。例えば、誤差拡散処理部20の一部又は全部をCPUで構成し、各機能をソフトウェアで実行するようにしてもよい。 In each of the above embodiments, each unit of the error diffusion processing unit 20 is configured by a hardware circuit, but is not limited thereto. For example, a part or all of the error diffusion processing unit 20 may be configured by a CPU, and each function may be executed by software.
 上記実施の形態1において、補正処理部10、誤差拡散処理部20を構成する各機能ブロック21~26、及び駆動部30は、典型的には集積回路であるLSIとして実現される。また、上記実施の形態2において、補正処理部10、誤差拡散処理部20を構成する各機能ブロック51~54、及び駆動部30は、典型的には集積回路であるLSIとして実現される。これらは、それぞれ、個別に1チップ化されても良いし、一部又は全てを含むように1チップ化されても良い。 In the first embodiment, the correction processing unit 10, the functional blocks 21 to 26 constituting the error diffusion processing unit 20, and the driving unit 30 are typically realized as an LSI that is an integrated circuit. In the second embodiment, the functional blocks 51 to 54 and the drive unit 30 constituting the correction processing unit 10, the error diffusion processing unit 20, and the driving unit 30 are typically realized as an LSI that is an integrated circuit. Each of these may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Here, LSI is used, but depending on the degree of integration, it may be called IC, system LSI, super LSI, or ultra LSI.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied as a possibility.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係る表示装置は、複数の画素を有し、前記複数の画素に対応する入力映像データに基づく映像を表示する表示部と、前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理部と、前記表示部の前記複数の画素に、前記誤差拡散処理部により生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動部と、前記駆動部により前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理部と、を備え、前記誤差拡散処理部は、前記所定の反転方向において、前記補正処理部により前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行う。 A display device according to an aspect of the present invention includes a display unit that includes a plurality of pixels, displays a video based on input video data corresponding to the plurality of pixels, and has a predetermined number of bits for the input video data. Performing error diffusion processing for diffusing error data to generate output video data having a number of bits smaller than the number of bits of the input video data by a predetermined number of bits; and a plurality of pixels of the display unit A drive unit that applies an alternating drive voltage based on the output video data generated by the error diffusion processing unit by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel; A correction process for correcting the level of the input video data based on a different correction value for each polarity of the drive voltage applied to the pixels by the drive unit for the input video data. The error diffusion processing unit has the same polarity of the driving voltage as the input video data subjected to the correction processing by the correction processing unit in the predetermined inversion direction. The error diffusion process is performed for each of the pixels.
 この構成によれば、表示部は、複数の画素を有し、複数の画素に対応する入力映像データに基づく映像を表示する。誤差拡散処理部は、入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、入力映像データのビット数より所定ビット数だけ少ないビット数の出力映像データを生成する。駆動部は、表示部の複数の画素に、誤差拡散処理部により生成された出力映像データに基づく交流の駆動電圧を、所定の反転方向に駆動電圧の極性を所定の画素ごとに交互に反転させて印加する。補正処理部は、駆動部により画素に印加される駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき補正する補正処理を入力映像データに対して行う。 According to this configuration, the display unit has a plurality of pixels and displays an image based on the input image data corresponding to the plurality of pixels. The error diffusion processing unit performs error diffusion processing for diffusing error data having a predetermined number of bits on the input video data, and generates output video data having a number of bits less than the number of bits of the input video data. . The drive unit alternately inverts the drive voltage of alternating current based on the output video data generated by the error diffusion processing unit to the plurality of pixels of the display unit in a predetermined inversion direction for each predetermined pixel. Apply. The correction processing unit performs a correction process on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixels by the driving unit.
 補正処理部により行われる補正処理では、駆動電圧の極性が正極の画素に対する補正値と負極の画素に対する補正値とで異なっている。したがって、駆動電圧の極性が反転している反転方向において、隣接する画素に対応する入力映像データに対して、誤差データを拡散したのでは、極性が反転しているので、入力映像データのレベルを異なる補正値に基づき補正する補正処理が行われた入力映像データに、誤差データが拡散されることになる。このため、誤差拡散処理を好適に行うことができない。これに対して、上記構成によれば、誤差拡散処理部は、所定の反転方向において、補正処理部により補正処理が行われた入力映像データに対して、駆動電圧の極性が同一の画素ごとに、誤差拡散処理を行う。したがって、補正処理部により、駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき補正する補正処理が入力映像データに対して行われているが、同一の補正値に基づき補正する補正処理が行われた画素ごとに、誤差拡散処理が行われることになる。このため、誤差拡散処理を好適に行うことができる。その結果、入力映像データと同等の階調を有する映像を擬似的に表示部に表示することができる。 In the correction processing performed by the correction processing unit, the polarity of the drive voltage is different between the correction value for the positive pixel and the correction value for the negative pixel. Therefore, if the error data is diffused with respect to the input video data corresponding to the adjacent pixels in the inversion direction in which the polarity of the drive voltage is inverted, the polarity is inverted. The error data is diffused into the input video data that has been subjected to the correction process for correcting based on different correction values. For this reason, the error diffusion process cannot be suitably performed. On the other hand, according to the above configuration, the error diffusion processing unit performs, for each pixel having the same polarity of the drive voltage with respect to the input video data that has been corrected by the correction processing unit in a predetermined inversion direction. Then, error diffusion processing is performed. Therefore, the correction processing unit performs correction processing on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage, but corrects based on the same correction value. Error diffusion processing is performed for each pixel on which correction processing has been performed. For this reason, error diffusion processing can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed on the display unit in a pseudo manner.
 また、上記の表示装置において、前記補正処理部は、前記表示部の前記映像を表示する表示領域のうち予め設定された補正領域の前記画素に対応する前記入力映像データに対して前記補正処理を行って、補正処理後の前記入力映像データを前記誤差拡散処理部に出力し、前記表示領域のうち前記補正領域以外の非補正領域の前記画素に対応する前記入力映像データを前記誤差拡散処理部に前記補正処理を行うことなく出力し、かつ、前記誤差拡散処理部に出力する前記入力映像データが、前記補正領域の前記画素に対応する前記入力映像データであるか前記非補正領域の前記画素に対応する前記入力映像データであるかを示す領域信号を前記画素ごとに前記誤差拡散処理部に出力し、前記誤差拡散処理部は、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、当該入力映像データに基づき、前記駆動電圧の極性が同一の前記画素ごとに前記誤差拡散処理を行うことにより生成された前記出力映像データを前記駆動部に出力し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、当該入力映像データに基づき、隣接する前記画素に前記誤差拡散処理を行うことにより生成された前記出力映像データを前記駆動部に出力し、前記駆動部は、前記誤差拡散処理部から出力された前記出力映像データに基づく前記駆動電圧を、前記複数の画素に印加することが好ましい。 Further, in the display device, the correction processing unit performs the correction process on the input video data corresponding to the pixels in a correction area set in advance among display areas for displaying the video on the display unit. The corrected input video data is output to the error diffusion processing unit, and the input video data corresponding to the pixels in the non-correction region other than the correction region in the display region is output to the error diffusion processing unit. The input video data that is output without performing the correction process and is output to the error diffusion processing unit is the input video data corresponding to the pixels in the correction area or the pixels in the non-correction area An area signal indicating whether or not the input video data corresponds to is output to the error diffusion processing unit for each pixel, and the error diffusion processing unit is output from the correction processing unit When the recording area signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction area, the driving voltage is calculated based on the input video data. The output video data generated by performing the error diffusion process for each pixel having the same polarity is output to the driving unit, and the region signal output from the correction processing unit is the correction processing unit. When the input video data output from the image data indicates that the input video data corresponds to the pixel in the non-correction area, the error diffusion process is performed on the adjacent pixels based on the input video data. The output video data generated by the output unit is output to the drive unit, and the drive unit is based on the output video data output from the error diffusion processing unit. The dynamic voltage, it is preferable to be applied to the plurality of pixels.
 この構成によれば、補正処理部は、表示部の映像を表示する表示領域のうち予め設定された補正領域の画素に対応する入力映像データに対して補正処理を行って、補正処理後の入力映像データを誤差拡散処理部に出力する。また、補正処理部は、表示領域のうち補正領域以外の非補正領域の画素に対応する入力映像データを誤差拡散処理部に補正処理を行うことなく出力する。また、補正処理部は、誤差拡散処理部に出力する入力映像データが、補正領域の画素に対応する入力映像データであるか非補正領域の画素に対応する入力映像データであるかを示す領域信号を画素ごとに誤差拡散処理部に出力する。誤差拡散処理部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが補正領域の画素に対応する入力映像データであることを示すときは、当該入力映像データに基づき、駆動電圧の極性が同一の画素ごとに誤差拡散処理を行うことにより生成された出力映像データを駆動部に出力する。また、誤差拡散処理部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが非補正領域の画素に対応する入力映像データであることを示すときは、当該入力映像データに基づき、隣接する画素に誤差拡散処理を行うことにより生成された出力映像データを駆動部に出力する。駆動部は、誤差拡散処理部から出力された出力映像データに基づく駆動電圧を、複数の画素に印加する。 According to this configuration, the correction processing unit performs a correction process on the input video data corresponding to the pixels in the correction area set in advance among the display areas for displaying the video on the display unit, and performs the input after the correction process. Video data is output to an error diffusion processing unit. The correction processing unit outputs the input video data corresponding to the pixels in the non-correction region other than the correction region in the display region to the error diffusion processing unit without performing correction processing. The correction processing unit also outputs a region signal indicating whether the input video data output to the error diffusion processing unit is input video data corresponding to a pixel in the correction region or input video data corresponding to a pixel in the non-correction region Is output to the error diffusion processing unit for each pixel. When the area signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the correction region, the error diffusion processing unit Based on the above, output video data generated by performing error diffusion processing for each pixel having the same polarity of the drive voltage is output to the drive unit. Further, the error diffusion processing unit, when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to the pixels in the non-correction region, Based on the input video data, output video data generated by performing error diffusion processing on adjacent pixels is output to the drive unit. The driving unit applies a driving voltage based on the output video data output from the error diffusion processing unit to the plurality of pixels.
 このように、補正領域の画素に対応する入力映像データは、補正処理が補正処理部により行われて、補正処理部から誤差拡散処理部に出力される。そして、領域信号が、入力映像データが補正領域の画素に対応する入力映像データであることを示すときは、当該入力映像データに基づき、駆動電圧の極性が同一の画素ごとに誤差拡散処理を行うことにより生成された出力映像データが、駆動部に出力される。したがって、補正領域において、誤差拡散処理が好適に行われて生成された出力映像データが、誤差拡散処理部から駆動部に出力される。このため、補正領域において、入力映像データと同等の階調を有する映像を擬似的に表示することができる。 In this way, the input video data corresponding to the pixels in the correction area is corrected by the correction processing unit and output from the correction processing unit to the error diffusion processing unit. When the area signal indicates that the input video data is input video data corresponding to a pixel in the correction area, an error diffusion process is performed for each pixel having the same drive voltage polarity based on the input video data. The output video data generated by this is output to the drive unit. Accordingly, output video data generated by appropriately performing error diffusion processing in the correction region is output from the error diffusion processing unit to the driving unit. For this reason, an image having the same gradation as the input image data can be displayed in a pseudo manner in the correction area.
 また、非補正領域の画素に対応する入力映像データは、補正処理が行われることなく補正処理部から誤差拡散処理部に出力される。そして、領域信号が、入力映像データが非補正領域の画素に対応する入力映像データであることを示すときは、当該入力映像データに基づき、隣接する画素に誤差拡散処理を行うことにより生成された出力映像データが、駆動部に出力される。したがって、非補正領域において、誤差拡散処理が好適に行われて生成された出力映像データが、誤差拡散処理部から駆動部に出力される。このため、非補正領域において、入力映像データと同等の階調を有する映像を擬似的に表示することができる。その結果、表示部の補正領域及び非補正領域を含む表示領域全体で、入力映像データと同等の階調を有する映像を擬似的に表示することができる。 Also, the input video data corresponding to the pixels in the non-correction area is output from the correction processing unit to the error diffusion processing unit without being subjected to correction processing. When the area signal indicates that the input video data is input video data corresponding to a pixel in the non-correction area, the area signal is generated by performing error diffusion processing on adjacent pixels based on the input video data. Output video data is output to the drive unit. Therefore, in the non-correction area, output video data generated by suitably performing error diffusion processing is output from the error diffusion processing unit to the driving unit. For this reason, an image having a gradation equivalent to that of the input image data can be displayed in a pseudo manner in the non-correction area. As a result, an image having the same gradation as the input image data can be displayed in a pseudo manner over the entire display region including the correction region and the non-correction region of the display unit.
 また、上記の表示装置において、前記誤差拡散処理部は、前記駆動電圧の極性が正極の前記画素に対応する正極性入力映像データに基づき、前記誤差拡散処理を行って正極性出力映像データを生成し、前記駆動電圧の極性が負極の前記画素に対応する負極性入力映像データに基づき、前記誤差拡散処理を行って負極性出力映像データを生成し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記正極性出力映像データ及び前記負極性出力映像データに基づき生成された前記出力映像データを前記駆動部に出力することが好ましい。 In the display device, the error diffusion processing unit generates the positive output video data by performing the error diffusion processing based on the positive input video data corresponding to the pixel having the positive polarity of the driving voltage. Then, based on the negative input video data corresponding to the pixel having a negative polarity of the driving voltage, the error diffusion process is performed to generate negative output video data, and the output from the correction processing unit When the area signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction area, the positive output video data and the negative output video It is preferable that the output video data generated based on the data is output to the driving unit.
 この構成によれば、誤差拡散処理部は、駆動電圧の極性が正極の画素に対応する正極性入力映像データに基づき、誤差拡散処理を行って正極性出力映像データを生成する。また、誤差拡散処理部は、駆動電圧の極性が負極の画素に対応する負極性入力映像データに基づき、誤差拡散処理を行って負極性出力映像データを生成する。また、誤差拡散処理部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが補正領域の画素に対応する入力映像データであることを示すときは、正極性出力映像データ及び負極性出力映像データに基づき生成された出力映像データを駆動部に出力する。このように、駆動電圧の極性が正極の画素と負極の画素とで、それぞれ独立して誤差拡散処理を行っている。したがって、駆動電圧の極性が1画素ごとに反転している場合や複数画素ごとに反転している場合等であっても、誤差拡散処理を好適に行うことができる。その結果、補正領域において、確実に、入力映像データと同等の階調を有する映像を擬似的に表示することができる。 According to this configuration, the error diffusion processing unit performs error diffusion processing based on the positive input video data corresponding to the pixel having the positive polarity of the drive voltage to generate the positive output video data. The error diffusion processing unit performs error diffusion processing based on the negative input video data corresponding to the pixel having the negative polarity of the drive voltage to generate negative output video data. Further, the error diffusion processing unit, when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the correction region, Output video data generated based on the output video data and the negative output video data is output to the driving unit. As described above, the error diffusion process is performed independently for the pixel having the positive polarity of the drive voltage and the pixel having the negative polarity. Therefore, even when the polarity of the drive voltage is inverted for each pixel, or when the polarity of the drive voltage is inverted for each of a plurality of pixels, the error diffusion process can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed in a pseudo manner in the correction area.
 また、上記の表示装置において、前記補正処理部は、前記駆動部により前記画素に印加される前記駆動電圧の極性を示す極性信号を前記画素ごとに前記誤差拡散処理部に出力し、前記誤差拡散処理部は、前記補正処理部から出力された前記極性信号に基づき、前記補正処理部から出力された前記入力映像データを、前記正極性入力映像データと前記負極性入力映像データとに分離する分離部と、前記補正処理部から出力された前記入力映像データに基づき、前記誤差拡散処理を行って、前記出力映像データとして第1出力映像データを生成する第1処理部と、前記分離部により分離された前記正極性入力映像データに基づき、前記誤差拡散処理を行って、前記出力映像データとして前記正極性出力映像データを生成する第2処理部と、前記分離部により分離された前記負極性入力映像データに基づき、前記誤差拡散処理を行って、前記出力映像データとして前記負極性出力映像データを生成する第3処理部と、前記第2処理部により生成された前記正極性出力映像データと前記第3処理部により生成された前記負極性出力映像データとを多重化して、前記分離部により分離される前の前記入力映像データに対応する多重化出力映像データを生成する多重化部と、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記多重化部により生成された前記多重化出力映像データを前記出力映像データとして前記駆動部に出力し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記第1処理部により生成された前記第1出力映像データを前記出力映像データとして前記駆動部に出力する選択部と、を含むことが好ましい。 In the display device, the correction processing unit outputs a polarity signal indicating the polarity of the driving voltage applied to the pixel by the driving unit to the error diffusion processing unit for each pixel, and the error diffusion The processing unit separates the input video data output from the correction processing unit into the positive input video data and the negative input video data based on the polarity signal output from the correction processing unit. A first processing unit that performs the error diffusion processing based on the input video data output from the correction processing unit and generates first output video data as the output video data, and is separated by the separation unit A second processing unit that performs the error diffusion process based on the positive input video data and generates the positive output video data as the output video data; Generated by the second processing unit, a third processing unit that performs the error diffusion processing based on the negative input video data separated by the separation unit and generates the negative output video data as the output video data Multiplexed output video data corresponding to the input video data before being separated by the separation unit by multiplexing the positive output video data and the negative output video data generated by the third processing unit The multiplexing unit that generates data and the region signal output from the correction processing unit are the input video data corresponding to the pixels in the correction region, and the input video data output from the correction processing unit The multiplexed output video data generated by the multiplexing unit is output to the driving unit as the output video data, and the correction processing unit When the output region signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the non-correction region, the region signal is generated by the first processing unit. And a selection unit that outputs the output first video data to the driving unit as the output video data.
 この構成によれば、補正処理部は、駆動部により画素に印加される駆動電圧の極性を示す極性信号を画素ごとに誤差拡散処理部に出力する。分離部は、補正処理部から出力された極性信号に基づき、補正処理部から出力された入力映像データを、正極性入力映像データと負極性入力映像データとに分離する。したがって、駆動電圧の極性が1画素ごとに反転している場合や複数画素ごとに反転している場合等であっても、確実に、極性が反転している画素ごとに、正極性入力映像データと負極性入力映像データとに分離することができる。 According to this configuration, the correction processing unit outputs a polarity signal indicating the polarity of the driving voltage applied to the pixel by the driving unit to the error diffusion processing unit for each pixel. The separation unit separates the input video data output from the correction processing unit into positive input video data and negative input video data based on the polarity signal output from the correction processing unit. Therefore, even when the polarity of the drive voltage is inverted for each pixel or when the polarity of the drive voltage is inverted for each of the plurality of pixels, the positive input video data is surely provided for each pixel whose polarity is inverted. And negative input video data.
 第1処理部は、補正処理部から出力された入力映像データに基づき、誤差拡散処理を行って、出力映像データとして第1出力映像データを生成する。したがって、第1出力映像データは、隣接する画素に誤差拡散処理を行うことにより生成された出力映像データとなる。第2処理部は、分離部により分離された正極性入力映像データに基づき、誤差拡散処理を行って、出力映像データとして正極性出力映像データを生成する。したがって、正極性出力映像データは、印加される駆動電圧が正極の画素に誤差拡散処理を行うことにより生成された出力映像データとなる。第3処理部は、分離部により分離された負極性入力映像データに基づき、誤差拡散処理を行って、出力映像データとして負極性出力映像データを生成する。したがって、負極性出力映像データは、印加される駆動電圧が負極の画素に誤差拡散処理を行うことにより生成された出力映像データとなる。 The first processing unit performs error diffusion processing based on the input video data output from the correction processing unit, and generates first output video data as output video data. Accordingly, the first output video data is output video data generated by performing error diffusion processing on adjacent pixels. The second processing unit performs error diffusion processing based on the positive input video data separated by the separation unit, and generates positive output video data as output video data. Accordingly, the positive output video data is output video data generated by applying error diffusion processing to pixels with a positive drive voltage applied. The third processing unit performs error diffusion processing based on the negative input video data separated by the separation unit, and generates negative output video data as output video data. Therefore, the negative output video data is output video data generated by applying an error diffusion process to pixels whose negative drive voltage is applied.
 多重化部は、第2処理部により生成された正極性出力映像データと第3処理部により生成された負極性出力映像データとを多重化して、分離部により分離される前の入力映像データに対応する多重化出力映像データを生成する。したがって、多重化出力映像データは、印加される駆動電圧の極性が同一の画素ごとに誤差拡散処理を行うことにより生成された出力映像データとなる。 The multiplexing unit multiplexes the positive output video data generated by the second processing unit and the negative output video data generated by the third processing unit into input video data before being separated by the separation unit. Corresponding multiplexed output video data is generated. Therefore, the multiplexed output video data is output video data generated by performing error diffusion processing for each pixel having the same polarity of the applied drive voltage.
 選択部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが補正領域の画素に対応する入力映像データであることを示すときは、多重化部により生成された多重化出力映像データを出力映像データとして駆動部に出力する。したがって、補正領域では、駆動電圧の極性が同一の画素ごとに誤差拡散処理を行うことにより生成された出力映像データに基づき、複数の画素に駆動電圧が好適に印加されることとなる。また、選択部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが非補正領域の画素に対応する入力映像データであることを示すときは、第1処理部により生成された第1出力映像データを出力映像データとして駆動部に出力する。したがって、非補正領域では、隣接する画素に誤差拡散処理を行うことにより生成された出力映像データに基づき、複数の画素に駆動電圧が好適に印加されることとなる。その結果、表示部の補正領域及び非補正領域を含む表示領域全体において、入力映像データと同等の階調を有する映像を擬似的に表示することができる。 The selection unit is generated by the multiplexing unit when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the correction region. The multiplexed output video data is output to the drive unit as output video data. Therefore, in the correction region, the drive voltage is suitably applied to a plurality of pixels based on output video data generated by performing error diffusion processing for each pixel having the same drive voltage polarity. Further, when the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the non-correction region, the selection unit performs the first process. The first output video data generated by the unit is output to the drive unit as output video data. Therefore, in the non-correction region, a driving voltage is suitably applied to a plurality of pixels based on output video data generated by performing error diffusion processing on adjacent pixels. As a result, an image having a gradation equivalent to that of the input image data can be displayed in a pseudo manner in the entire display region including the correction region and the non-correction region of the display unit.
 また、上記の表示装置において、前記駆動部は、前記所定の反転方向に前記1画素ごとに前記駆動電圧の極性を交互に反転させ、前記誤差拡散処理部は、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、2画素ごとに前記誤差拡散処理を行って生成された前記出力映像データを前記駆動部に出力し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、1画素ごとに前記誤差拡散処理を行って生成された前記出力映像データを前記駆動部に出力することが好ましい。 In the display device, the drive unit alternately inverts the polarity of the drive voltage for each pixel in the predetermined inversion direction, and the error diffusion processing unit is output from the correction processing unit. When the area signal indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction area, the error diffusion process is performed every two pixels. The generated output video data is output to the drive unit, and the region signal output from the correction processing unit is the pixel data of the non-correction region from the input video data output from the correction processing unit. Is preferably output to the drive unit, the output video data generated by performing the error diffusion processing for each pixel.
 この構成によれば、駆動部は、所定の反転方向に1画素ごとに駆動電圧の極性を交互に反転させる。誤差拡散処理部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが補正領域の画素に対応する入力映像データであることを示すときは、2画素ごとに誤差拡散処理を行って生成された出力映像データを駆動部に出力する。また、誤差拡散処理部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが非補正領域の画素に対応する入力映像データであることを示すときは、1画素ごとに誤差拡散処理を行って生成された出力映像データを駆動部に出力する。駆動電圧の極性が1画素ごとに反転しているため、2画素ごとに誤差拡散処理を行うと、極性が同一の画素ごとに誤差拡散処理を行うことになる。したがって、補正領域では誤差拡散処理を好適に行って生成された出力映像データが駆動部に出力されることから、入力映像データと同等の階調を有する映像を擬似的に表示することができる。また、非補正領域では、1画素ごとに、つまり隣接する画素に誤差拡散処理を行って生成された出力映像データが駆動部に出力されることから、入力映像データと同等の階調を有する映像を擬似的に表示することができる。その結果、表示部の表示領域全体に、入力映像データと同等の階調を有する映像を擬似的に表示することができる。 According to this configuration, the drive unit alternately inverts the polarity of the drive voltage for each pixel in a predetermined inversion direction. When the area signal output from the correction processing section indicates that the input video data output from the correction processing section is input video data corresponding to a pixel in the correction area, the error diffusion processing section Output video data generated by performing error diffusion processing is output to the drive unit. Further, when the error signal from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the non-correction region, the error diffusion processing unit Output video data generated by performing error diffusion processing for each pixel is output to the drive unit. Since the polarity of the drive voltage is inverted for each pixel, if error diffusion processing is performed for every two pixels, error diffusion processing is performed for each pixel having the same polarity. Therefore, in the correction area, the output video data generated by suitably performing the error diffusion process is output to the drive unit, so that a video having the same gradation as the input video data can be displayed in a pseudo manner. In the non-correction area, output video data generated by performing error diffusion processing on each pixel, that is, adjacent pixels, is output to the drive unit, so that the video having the same gradation as the input video data is output. Can be displayed in a pseudo manner. As a result, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner on the entire display area of the display unit.
 また、上記の表示装置において、前記入力映像データのビット数は、(m+n)ビット(m,nは正の整数)であり、前記出力映像データのビット数は、mビットであり、前記誤差拡散処理部は、前記補正処理部から出力された前記(m+n)ビットの入力映像データと加算データとを加算して(m+n)ビットの加算結果を出力する加算部と、前記入力映像データの1画素期間だけ遅延して、前記加算部から出力された前記(m+n)ビットの加算結果を出力するとともに、前記(m+n)ビットの加算結果の下位nビットを前記誤差データとして出力する第1遅延部と、前記入力映像データの1画素期間だけ遅延して、前記第1遅延部から出力された前記(m+n)ビットの加算結果の上位mビットを前記出力映像データとして前記駆動部に出力するとともに、前記(m+n)ビットの加算結果の下位nビットを前記誤差データとして出力する第2遅延部と、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記加算データとして、前記第1遅延部から出力された前記誤差データを前記加算部に出力し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記加算データとして、前記第2遅延部から出力された前記誤差データを前記加算部に出力する選択部と、を含むことが好ましい。 In the display device, the number of bits of the input video data is (m + n) bits (m and n are positive integers), the number of bits of the output video data is m bits, and the error diffusion is performed. The processing unit adds the (m + n) -bit input video data output from the correction processing unit and the addition data, and outputs an (m + n) -bit addition result; and one pixel of the input video data A first delay unit that outputs the addition result of the (m + n) bits output from the addition unit, and outputs the lower n bits of the addition result of the (m + n) bits as the error data, delayed by a period The upper m bits of the addition result of the (m + n) bits output from the first delay unit with a delay of one pixel period of the input video data are used as the output video data. A second delay unit that outputs the lower n bits of the addition result of the (m + n) bits as the error data, and the region signal output from the correction processing unit is output from the correction processing unit When the input video data is the input video data corresponding to the pixel in the non-correction area, the error data output from the first delay unit is used as the addition data. And the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction region. In some cases, the addition data includes a selection unit that outputs the error data output from the second delay unit to the addition unit.
 この構成によれば、入力映像データのビット数は、(m+n)ビット(m,nは正の整数)であり、出力映像データのビット数は、mビットである。加算部は、補正処理部から出力された(m+n)ビットの入力映像データと加算データとを加算して(m+n)ビットの加算結果を出力する。第1遅延部は、入力映像データの1画素期間だけ遅延して、加算部から出力された(m+n)ビットの加算結果を出力するとともに、(m+n)ビットの加算結果の下位nビットを誤差データとして出力する。第2遅延部は、入力映像データの1画素期間だけ遅延して、第1遅延部から出力された(m+n)ビットの加算結果の上位mビットを出力映像データとして駆動部に出力するとともに、(m+n)ビットの加算結果の下位nビットを誤差データとして出力する。選択部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが非補正領域の画素に対応する入力映像データであることを示すときは、加算データとして、第1遅延部から出力された誤差データを加算部に出力する。また、選択部は、補正処理部から出力された領域信号が、補正処理部から出力された入力映像データが補正領域の画素に対応する入力映像データであることを示すときは、加算データとして、第2遅延部から出力された誤差データを加算部に出力する。 According to this configuration, the number of bits of input video data is (m + n) bits (m and n are positive integers), and the number of bits of output video data is m bits. The addition unit adds the (m + n) -bit input video data output from the correction processing unit and the addition data, and outputs an (m + n) -bit addition result. The first delay unit delays by one pixel period of the input video data, outputs the addition result of (m + n) bits output from the addition unit, and outputs the lower n bits of the addition result of (m + n) bits as error data Output as. The second delay unit delays by one pixel period of the input video data, and outputs the upper m bits of the addition result of (m + n) bits output from the first delay unit to the drive unit as output video data. m + n) The lower n bits of the addition result are output as error data. When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the non-correction region, The error data output from the one delay unit is output to the addition unit. Further, when the selection unit indicates that the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is input video data corresponding to a pixel in the correction region, The error data output from the second delay unit is output to the addition unit.
 したがって、非補正領域では、画素に対応する入力映像データと隣接する画素の誤差データとが加算部により加算される。このため、補正処理部によって補正処理が行われない画素に対応する入力映像データに基づき、1画素ごとに誤差拡散処理を好適に行うことができる。また、補正領域では、画素に対応する入力映像データと隣接する画素にさらに隣接する画素の誤差データとが加算部により加算される。つまり、2画素ごとに誤差拡散処理が行われる。このため、駆動電圧の極性が1画素ごとに反転していることから、極性が同一の画素ごとに、誤差拡散処理を好適に行うことができる。したがって、簡素な構成で、表示部の表示領域全体に、入力映像データと同等の階調を有する映像を擬似的に表示することができる。 Therefore, in the non-correction area, the input video data corresponding to the pixel and the error data of the adjacent pixel are added by the adding unit. For this reason, the error diffusion process can be suitably performed for each pixel based on the input video data corresponding to the pixel that is not subjected to the correction process by the correction processing unit. Further, in the correction area, input video data corresponding to the pixel and error data of a pixel further adjacent to the adjacent pixel are added by the adding unit. That is, error diffusion processing is performed every two pixels. For this reason, since the polarity of the drive voltage is inverted for each pixel, the error diffusion process can be suitably performed for each pixel having the same polarity. Therefore, with a simple configuration, an image having a gradation equivalent to the input image data can be displayed in a pseudo manner on the entire display area of the display unit.
 本発明の他の局面に係る表示方法は、複数の画素を有する表示部に、前記複数の画素に対応する入力映像データに基づく映像を表示する表示方法であって、前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理ステップと、前記表示部の前記複数の画素に、前記誤差拡散処理ステップにより生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動ステップと、前記駆動ステップにより前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理ステップと、を含み、前記誤差拡散処理ステップは、前記所定の反転方向において、前記補正処理ステップにより前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行う。 A display method according to another aspect of the present invention is a display method for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels. Performing error diffusion processing for diffusing error data having a predetermined number of bits to generate output video data having a number of bits less than the number of bits of the input video data by the predetermined number of bits; and An alternating drive voltage based on the output video data generated by the error diffusion processing step is applied to the plurality of pixels by alternately inverting the polarity of the drive voltage in a predetermined inversion direction for each predetermined pixel. And a level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixel by the driving step. A correction processing step for performing correction processing on the input video data, wherein the error diffusion processing step is the input video that has been subjected to the correction processing by the correction processing step in the predetermined inversion direction. The error diffusion process is performed on the data for each pixel having the same drive voltage polarity.
 この構成によれば、誤差拡散処理ステップは、入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、入力映像データのビット数より所定ビット数だけ少ないビット数の出力映像データを生成する。駆動ステップは、表示部の複数の画素に、誤差拡散処理ステップにより生成された出力映像データに基づく交流の駆動電圧を、所定の反転方向に駆動電圧の極性を所定の画素ごとに交互に反転させて印加する。補正処理ステップは、駆動ステップにより画素に印加される駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき補正する補正処理を入力映像データに対して行う。誤差拡散処理ステップは、所定の反転方向において、補正処理ステップにより補正処理が行われた入力映像データに対して、駆動電圧の極性が同一の画素ごとに、誤差拡散処理を行う。 According to this configuration, the error diffusion processing step performs error diffusion processing for diffusing error data of a predetermined number of bits on the input video data, so that the number of bits less than the number of bits of the input video data by a predetermined number of bits. Output video data is generated. The drive step alternately inverts the drive voltage of alternating current based on the output video data generated by the error diffusion processing step to the plurality of pixels of the display unit in the predetermined inversion direction for each predetermined pixel. Apply. The correction processing step performs correction processing on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixels in the driving step. In the error diffusion processing step, error diffusion processing is performed for each pixel having the same drive voltage polarity on the input video data subjected to the correction processing in the correction processing step in a predetermined inversion direction.
 補正処理ステップにより行われる補正処理では、駆動電圧の極性が正極の画素に対する補正値と負極の画素に対する補正値とで異なっている。したがって、駆動電圧の極性が反転している反転方向において、隣接する画素に対応する入力映像データに対して、誤差データを拡散したのでは、極性が反転しているので、入力映像データのレベルを異なる補正値に基づき補正する補正処理が行われた入力映像データに、誤差データが拡散されることになる。このため、誤差拡散処理を好適に行うことができない。これに対して、上記構成によれば、誤差拡散処理ステップは、所定の反転方向において、補正処理ステップにより補正処理が行われた入力映像データに対して、駆動電圧の極性が同一の画素ごとに、誤差拡散処理を行う。したがって、補正処理ステップにより、駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき補正する補正処理が入力映像データに対して行われているが、同一の補正値に基づき補正する補正処理が行われた画素ごとに、誤差拡散処理が行われることになる。このため、誤差拡散処理を好適に行うことができる。その結果、入力映像データと同等の階調を有する映像を擬似的に表示部に表示することができる。 In the correction processing performed in the correction processing step, the polarity of the drive voltage is different between the correction value for the positive pixel and the correction value for the negative pixel. Therefore, if the error data is diffused with respect to the input video data corresponding to the adjacent pixels in the inversion direction in which the polarity of the drive voltage is inverted, the polarity is inverted. The error data is diffused into the input video data that has been subjected to the correction process for correcting based on different correction values. For this reason, the error diffusion process cannot be suitably performed. On the other hand, according to the above configuration, the error diffusion processing step is performed for each pixel having the same drive voltage polarity with respect to the input video data subjected to the correction processing by the correction processing step in a predetermined inversion direction. Then, error diffusion processing is performed. Therefore, although the correction processing step is performed on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage, the correction is performed based on the same correction value. Error diffusion processing is performed for each pixel on which correction processing has been performed. For this reason, error diffusion processing can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed on the display unit in a pseudo manner.
 本発明のさらに他の局面に係る集積回路は、複数の画素を有する表示部に、前記複数の画素に対応する入力映像データに基づく映像を表示するための集積回路であって、前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理回路と、前記表示部の前記複数の画素に、前記誤差拡散処理回路により生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動回路と、前記駆動回路により前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理回路と、を備え、前記誤差拡散処理回路は、前記所定の反転方向において、前記補正処理回路により前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行う。 An integrated circuit according to still another aspect of the present invention is an integrated circuit for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels, wherein the input video data An error diffusion processing circuit for performing error diffusion processing for diffusing error data of a predetermined number of bits to generate output video data having a number of bits less than the number of bits of the input video data, and An alternating drive voltage based on the output video data generated by the error diffusion processing circuit is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately inverted for each predetermined pixel in a predetermined inversion direction. The level of the input video data is compensated based on a different correction value for each polarity of the drive circuit to be applied and the polarity of the drive voltage applied to the pixel by the drive circuit. A correction processing circuit that performs correction processing on the input video data, wherein the error diffusion processing circuit performs the correction processing by the correction processing circuit in the predetermined inversion direction. On the other hand, the error diffusion process is performed for each pixel having the same polarity of the drive voltage.
 この構成によれば、誤差拡散処理回路は、入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、入力映像データのビット数より所定ビット数だけ少ないビット数の出力映像データを生成する。駆動回路は、表示部の複数の画素に、誤差拡散処理回路により生成された出力映像データに基づく交流の駆動電圧を、所定の反転方向に駆動電圧の極性を所定の画素ごとに交互に反転させて印加する。補正処理回路は、駆動回路により画素に印加される駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき補正する補正処理を入力映像データに対して行う。誤差拡散処理回路は、所定の反転方向において、補正処理回路により補正処理が行われた入力映像データに対して、駆動電圧の極性が同一の画素ごとに、誤差拡散処理を行う。 According to this configuration, the error diffusion processing circuit performs error diffusion processing for diffusing error data of a predetermined number of bits on the input video data, so that the number of bits less than the number of bits of the input video data by a predetermined number of bits. Output video data is generated. The drive circuit alternately inverts the drive voltage of the alternating current based on the output video data generated by the error diffusion processing circuit to a plurality of pixels of the display unit in a predetermined inversion direction for each predetermined pixel. Apply. The correction processing circuit performs correction processing on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage applied to the pixels by the drive circuit. The error diffusion processing circuit performs error diffusion processing for each pixel having the same drive voltage polarity on the input video data that has been corrected by the correction processing circuit in a predetermined inversion direction.
 補正処理回路により行われる補正処理では、駆動電圧の極性が正極の画素に対する補正値と負極の画素に対する補正値とで異なっている。したがって、駆動電圧の極性が反転している反転方向において、隣接する画素に対応する入力映像データに対して、誤差データを拡散したのでは、極性が反転しているので、入力映像データのレベルを異なる補正値に基づき補正する補正処理が行われた入力映像データに、誤差データが拡散されることになる。このため、誤差拡散処理を好適に行うことができない。これに対して、上記構成によれば、誤差拡散処理回路は、所定の反転方向において、補正処理回路により補正処理が行われた入力映像データに対して、駆動電圧の極性が同一の画素ごとに、誤差拡散処理を行う。したがって、補正処理回路により、駆動電圧の極性ごとに、入力映像データのレベルを異なる補正値に基づき補正する補正処理が入力映像データに対して行われているが、同一の補正値に基づき補正する補正処理が行われた画素ごとに、誤差拡散処理が行われることになる。このため、誤差拡散処理を好適に行うことができる。その結果、入力映像データと同等の階調を有する映像を擬似的に表示部に表示することができる。 In the correction processing performed by the correction processing circuit, the polarity of the drive voltage is different between the correction value for the positive pixel and the correction value for the negative pixel. Therefore, if the error data is diffused with respect to the input video data corresponding to the adjacent pixels in the inversion direction in which the polarity of the drive voltage is inverted, the polarity is inverted. The error data is diffused into the input video data that has been subjected to the correction process for correcting based on different correction values. For this reason, the error diffusion process cannot be suitably performed. On the other hand, according to the above configuration, the error diffusion processing circuit, for the input video data corrected by the correction processing circuit in a predetermined inversion direction, for each pixel having the same drive voltage polarity. Then, error diffusion processing is performed. Therefore, the correction processing circuit performs correction processing on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the drive voltage. However, correction is performed based on the same correction value. Error diffusion processing is performed for each pixel on which correction processing has been performed. For this reason, error diffusion processing can be suitably performed. As a result, an image having a gradation equivalent to that of the input image data can be displayed on the display unit in a pseudo manner.
 本発明に係る表示装置、表示方法及び集積回路は、液晶ディスプレイなどからなる表示部に映像を好適に表示する装置、方法及び回路として有用である。 The display device, the display method, and the integrated circuit according to the present invention are useful as a device, a method, and a circuit that suitably display an image on a display unit including a liquid crystal display.

Claims (8)

  1.  複数の画素を有し、前記複数の画素に対応する入力映像データに基づく映像を表示する表示部と、
     前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理部と、
     前記表示部の前記複数の画素に、前記誤差拡散処理部により生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動部と、
     前記駆動部により前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理部と、
    を備え、
     前記誤差拡散処理部は、前記所定の反転方向において、前記補正処理部により前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行うことを特徴とする表示装置。
    A display unit that has a plurality of pixels and displays video based on input video data corresponding to the plurality of pixels;
    Error diffusion processing for performing error diffusion processing for diffusing error data of a predetermined number of bits on the input video data to generate output video data having a number of bits smaller than the number of bits of the input video data And
    An alternating drive voltage based on the output video data generated by the error diffusion processing unit is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately changed for each predetermined pixel in a predetermined inversion direction. A drive unit for applying inversion;
    A correction processing unit that performs correction processing on the input video data for correcting the level of the input video data based on different correction values for each polarity of the driving voltage applied to the pixels by the driving unit;
    With
    The error diffusion processing unit performs the error diffusion for each of the pixels having the same polarity of the driving voltage with respect to the input video data subjected to the correction processing by the correction processing unit in the predetermined inversion direction. A display device that performs processing.
  2.  前記補正処理部は、
     前記表示部の前記映像を表示する表示領域のうち予め設定された補正領域の前記画素に対応する前記入力映像データに対して前記補正処理を行って、補正処理後の前記入力映像データを前記誤差拡散処理部に出力し、
     前記表示領域のうち前記補正領域以外の非補正領域の前記画素に対応する前記入力映像データを前記誤差拡散処理部に前記補正処理を行うことなく出力し、かつ、
     前記誤差拡散処理部に出力する前記入力映像データが、前記補正領域の前記画素に対応する前記入力映像データであるか前記非補正領域の前記画素に対応する前記入力映像データであるかを示す領域信号を前記画素ごとに前記誤差拡散処理部に出力し、
     前記誤差拡散処理部は、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、当該入力映像データに基づき、前記駆動電圧の極性が同一の前記画素ごとに前記誤差拡散処理を行うことにより生成された前記出力映像データを前記駆動部に出力し、かつ、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、当該入力映像データに基づき、隣接する前記画素に前記誤差拡散処理を行うことにより生成された前記出力映像データを前記駆動部に出力し、
     前記駆動部は、前記誤差拡散処理部から出力された前記出力映像データに基づく前記駆動電圧を、前記複数の画素に印加することを特徴とする請求項1に記載の表示装置。
    The correction processing unit
    The correction processing is performed on the input video data corresponding to the pixels in a correction area set in advance in a display area for displaying the video on the display unit, and the input video data after the correction processing is converted into the error. Output to the diffusion processing unit,
    Outputting the input video data corresponding to the pixels in the non-correction area other than the correction area in the display area to the error diffusion processing unit without performing the correction process; and
    An area indicating whether the input video data output to the error diffusion processing unit is the input video data corresponding to the pixels in the correction area or the input video data corresponding to the pixels in the non-correction area A signal is output to the error diffusion processing unit for each pixel,
    The error diffusion processing unit
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction region, the input video Based on the data, the output video data generated by performing the error diffusion processing for each of the pixels having the same polarity of the drive voltage is output to the drive unit, and
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the non-correction region, the input signal Based on the video data, output the output video data generated by performing the error diffusion processing on the adjacent pixels to the drive unit,
    The display device according to claim 1, wherein the driving unit applies the driving voltage based on the output video data output from the error diffusion processing unit to the plurality of pixels.
  3.  前記誤差拡散処理部は、
     前記駆動電圧の極性が正極の前記画素に対応する正極性入力映像データに基づき、前記誤差拡散処理を行って正極性出力映像データを生成し、
     前記駆動電圧の極性が負極の前記画素に対応する負極性入力映像データに基づき、前記誤差拡散処理を行って負極性出力映像データを生成し、かつ、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記正極性出力映像データ及び前記負極性出力映像データに基づき生成された前記出力映像データを前記駆動部に出力することを特徴とする請求項2に記載の表示装置。
    The error diffusion processing unit
    Based on the positive input video data corresponding to the pixel having a positive polarity of the driving voltage, the error diffusion process is performed to generate positive output video data,
    Based on negative input video data corresponding to the pixel having a negative polarity of the driving voltage, the error diffusion process is performed to generate negative output video data, and
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction region, the positive polarity The display device according to claim 2, wherein the output video data generated based on the output video data and the negative output video data is output to the driving unit.
  4.  前記補正処理部は、前記駆動部により前記画素に印加される前記駆動電圧の極性を示す極性信号を前記画素ごとに前記誤差拡散処理部に出力し、
     前記誤差拡散処理部は、
     前記補正処理部から出力された前記極性信号に基づき、前記補正処理部から出力された前記入力映像データを、前記正極性入力映像データと前記負極性入力映像データとに分離する分離部と、
     前記補正処理部から出力された前記入力映像データに基づき、前記誤差拡散処理を行って、前記出力映像データとして第1出力映像データを生成する第1処理部と、
     前記分離部により分離された前記正極性入力映像データに基づき、前記誤差拡散処理を行って、前記出力映像データとして前記正極性出力映像データを生成する第2処理部と、
     前記分離部により分離された前記負極性入力映像データに基づき、前記誤差拡散処理を行って、前記出力映像データとして前記負極性出力映像データを生成する第3処理部と、
     前記第2処理部により生成された前記正極性出力映像データと前記第3処理部により生成された前記負極性出力映像データとを多重化して、前記分離部により分離される前の前記入力映像データに対応する多重化出力映像データを生成する多重化部と、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記多重化部により生成された前記多重化出力映像データを前記出力映像データとして前記駆動部に出力し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記第1処理部により生成された前記第1出力映像データを前記出力映像データとして前記駆動部に出力する選択部と、
    を含むことを特徴とする請求項3に記載の表示装置。
    The correction processing unit outputs a polarity signal indicating the polarity of the driving voltage applied to the pixel by the driving unit to the error diffusion processing unit for each pixel,
    The error diffusion processing unit
    A separation unit that separates the input video data output from the correction processing unit into the positive input video data and the negative input video data based on the polarity signal output from the correction processing unit;
    A first processing unit that performs the error diffusion processing based on the input video data output from the correction processing unit and generates first output video data as the output video data;
    A second processing unit that performs the error diffusion processing based on the positive input video data separated by the separation unit and generates the positive output video data as the output video data;
    A third processing unit that performs the error diffusion processing based on the negative input video data separated by the separation unit and generates the negative output video data as the output video data;
    The input video data before multiplexing the positive output video data generated by the second processing unit and the negative output video data generated by the third processing unit and separating them by the separation unit A multiplexing unit for generating multiplexed output video data corresponding to
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction region, the multiplexing is performed. The multiplexed output video data generated by the unit is output as the output video data to the drive unit, and the region signal output from the correction processing unit is output from the correction processing unit. When the data indicates the input video data corresponding to the pixels in the non-correction area, the first output video data generated by the first processing unit is output to the drive unit as the output video data A selection section to
    The display device according to claim 3, further comprising:
  5.  前記駆動部は、前記所定の反転方向に前記1画素ごとに前記駆動電圧の極性を交互に反転させ、
     前記誤差拡散処理部は、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、2画素ごとに前記誤差拡散処理を行って生成された前記出力映像データを前記駆動部に出力し、かつ、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、1画素ごとに前記誤差拡散処理を行って生成された前記出力映像データを前記駆動部に出力することを特徴とする請求項2に記載の表示装置。
    The drive unit alternately inverts the polarity of the drive voltage for each pixel in the predetermined inversion direction;
    The error diffusion processing unit
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the correction region, every two pixels Output the output video data generated by performing the error diffusion processing to the drive unit, and
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixel in the non-correction region, one pixel The display device according to claim 2, wherein the output video data generated by performing the error diffusion processing every time is output to the driving unit.
  6.  前記入力映像データのビット数は、(m+n)ビット(m,nは正の整数)であり、
     前記出力映像データのビット数は、mビットであり、
     前記誤差拡散処理部は、
     前記補正処理部から出力された前記(m+n)ビットの入力映像データと加算データとを加算して(m+n)ビットの加算結果を出力する加算部と、
     前記入力映像データの1画素期間だけ遅延して、前記加算部から出力された前記(m+n)ビットの加算結果を出力するとともに、前記(m+n)ビットの加算結果の下位nビットを前記誤差データとして出力する第1遅延部と、
     前記入力映像データの1画素期間だけ遅延して、前記第1遅延部から出力された前記(m+n)ビットの加算結果の上位mビットを前記出力映像データとして前記駆動部に出力するとともに、前記(m+n)ビットの加算結果の下位nビットを前記誤差データとして出力する第2遅延部と、
     前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記非補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記加算データとして、前記第1遅延部から出力された前記誤差データを前記加算部に出力し、かつ、前記補正処理部から出力された前記領域信号が、前記補正処理部から出力された前記入力映像データが前記補正領域の前記画素に対応する前記入力映像データであることを示すときは、前記加算データとして、前記第2遅延部から出力された前記誤差データを前記加算部に出力する選択部と、
    を含むことを特徴とする請求項5に記載の表示装置。
    The number of bits of the input video data is (m + n) bits (m and n are positive integers),
    The number of bits of the output video data is m bits,
    The error diffusion processing unit
    An addition unit that adds the (m + n) -bit input video data and the addition data output from the correction processing unit and outputs an addition result of (m + n) bits;
    The input video data is delayed by one pixel period, and the addition result of the (m + n) bits output from the addition unit is output, and the lower n bits of the addition result of the (m + n) bits are used as the error data. A first delay unit to output;
    The input video data is delayed by one pixel period, and the upper m bits of the addition result of the (m + n) bits output from the first delay unit are output to the driving unit as the output video data. m + n) a second delay unit that outputs the lower n bits of the addition result as bits as the error data;
    When the region signal output from the correction processing unit indicates that the input video data output from the correction processing unit is the input video data corresponding to the pixels in the non-correction region, the addition As the data, the error data output from the first delay unit is output to the adding unit, and the region signal output from the correction processing unit is the input video data output from the correction processing unit. Indicates that the input video data corresponding to the pixels in the correction area is a selection unit that outputs the error data output from the second delay unit to the addition unit as the addition data;
    The display device according to claim 5, comprising:
  7.  複数の画素を有する表示部に、前記複数の画素に対応する入力映像データに基づく映像を表示する表示方法であって、
     前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理ステップと、
     前記表示部の前記複数の画素に、前記誤差拡散処理ステップにより生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動ステップと、
     前記駆動ステップにより前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理ステップと、
    を含み、
     前記誤差拡散処理ステップは、前記所定の反転方向において、前記補正処理ステップにより前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行うことを特徴とする表示方法。
    A display method for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels,
    Error diffusion processing for performing error diffusion processing for diffusing error data of a predetermined number of bits on the input video data to generate output video data having a number of bits smaller than the number of bits of the input video data Steps,
    An alternating drive voltage based on the output video data generated by the error diffusion processing step is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately changed for each predetermined pixel in a predetermined inversion direction. A driving step of applying inversion;
    A correction processing step for performing correction processing on the input video data for correcting the level of the input video data based on a different correction value for each polarity of the driving voltage applied to the pixels by the driving step;
    Including
    In the error diffusion processing step, the error diffusion is performed for each of the pixels having the same polarity of the driving voltage with respect to the input video data subjected to the correction processing in the correction processing step in the predetermined inversion direction. A display method characterized by performing processing.
  8.  複数の画素を有する表示部に、前記複数の画素に対応する入力映像データに基づく映像を表示するための集積回路であって、
     前記入力映像データに対して、所定ビット数の誤差データを拡散する誤差拡散処理を行って、前記入力映像データのビット数より前記所定ビット数だけ少ないビット数の出力映像データを生成する誤差拡散処理回路と、
     前記表示部の前記複数の画素に、前記誤差拡散処理回路により生成された前記出力映像データに基づく交流の駆動電圧を、所定の反転方向に前記駆動電圧の極性を所定の前記画素ごとに交互に反転させて印加する駆動回路と、
     前記駆動回路により前記画素に印加される前記駆動電圧の極性ごとに、前記入力映像データのレベルを異なる補正値に基づき補正する補正処理を前記入力映像データに対して行う補正処理回路と、
    を備え、
     前記誤差拡散処理回路は、前記所定の反転方向において、前記補正処理回路により前記補正処理が行われた前記入力映像データに対して、前記駆動電圧の極性が同一の前記画素ごとに、前記誤差拡散処理を行うことを特徴とする集積回路。
    An integrated circuit for displaying a video based on input video data corresponding to the plurality of pixels on a display unit having a plurality of pixels,
    Error diffusion processing for performing error diffusion processing for diffusing error data of a predetermined number of bits on the input video data to generate output video data having a number of bits smaller than the number of bits of the input video data Circuit,
    An alternating drive voltage based on the output video data generated by the error diffusion processing circuit is alternately applied to the plurality of pixels of the display unit, and the polarity of the drive voltage is alternately changed for each predetermined pixel in a predetermined inversion direction. A drive circuit for applying inversion;
    A correction processing circuit that performs correction processing on the input video data for correcting the level of the input video data based on different correction values for each polarity of the drive voltage applied to the pixels by the drive circuit;
    With
    The error diffusion processing circuit performs the error diffusion for each of the pixels having the same polarity of the driving voltage with respect to the input video data subjected to the correction processing by the correction processing circuit in the predetermined inversion direction. An integrated circuit characterized by performing processing.
PCT/JP2011/005741 2011-10-13 2011-10-13 Display apparatus, display method and integrated circuit WO2013054381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005741 WO2013054381A1 (en) 2011-10-13 2011-10-13 Display apparatus, display method and integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005741 WO2013054381A1 (en) 2011-10-13 2011-10-13 Display apparatus, display method and integrated circuit

Publications (1)

Publication Number Publication Date
WO2013054381A1 true WO2013054381A1 (en) 2013-04-18

Family

ID=48081463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005741 WO2013054381A1 (en) 2011-10-13 2011-10-13 Display apparatus, display method and integrated circuit

Country Status (1)

Country Link
WO (1) WO2013054381A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118921A (en) * 1992-10-02 1994-04-28 Sanyo Electric Co Ltd Method and device for image information processing
JP2002182622A (en) * 2000-10-04 2002-06-26 Seiko Epson Corp Correction circuit for video signal, correcting method therefor, liquid crystal display device, and electronic equipment
JP2006003866A (en) * 2004-05-20 2006-01-05 Seiko Epson Corp Electro-optical device, driving circuit thereof, and electronic apparatus
JP2008145642A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Error diffusion apparatus and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118921A (en) * 1992-10-02 1994-04-28 Sanyo Electric Co Ltd Method and device for image information processing
JP2002182622A (en) * 2000-10-04 2002-06-26 Seiko Epson Corp Correction circuit for video signal, correcting method therefor, liquid crystal display device, and electronic equipment
JP2006003866A (en) * 2004-05-20 2006-01-05 Seiko Epson Corp Electro-optical device, driving circuit thereof, and electronic apparatus
JP2008145642A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Error diffusion apparatus and display device

Similar Documents

Publication Publication Date Title
JP4772276B2 (en) Frame rate control method and liquid crystal display device therefor
JP4390483B2 (en) Liquid crystal halftone display method and liquid crystal display device using the method
JP5153336B2 (en) Method for reducing motion blur in a liquid crystal cell
US9024964B2 (en) System and method for dithering video data
JP5173342B2 (en) Display device
US20020000964A1 (en) Liquid crystal display device
US8988333B2 (en) Liquid crystal display apparatus, and driving device and driving method of liquid crystal display element
JP2007033864A (en) Image processing circuit and image processing method
JP2005269110A (en) Gamma correction circuit, display panel, and display apparatus provided with them
KR20160124360A (en) Display apparatus and method of driving display panel using the same
CN113053285A (en) Color difference compensation circuit and driving device for display applying same
JP2005284038A (en) Drive circuit for flat display device and flat display device
JP6400331B2 (en) Display panel driving apparatus and display panel driving method
KR100810567B1 (en) Reduction of contouring in liquid crystal on silicon displays by dithering
JP4114628B2 (en) Flat display device drive circuit and flat display device
WO2013054381A1 (en) Display apparatus, display method and integrated circuit
CN106328086B (en) Drive circuit and drive method of liquid crystal display device
JP5596477B2 (en) Display panel drive device
JP5375795B2 (en) Liquid crystal display device, driving device and driving method for liquid crystal display element
TW583634B (en) Method and apparatus for sparkle reduction by reactive and anticipatory slew rate limiting
KR102260175B1 (en) Field-sequential-color display device
KR102462785B1 (en) Field-sequential-color display device
JP2011227375A (en) Display
JP2006259372A (en) Color irregularity correction apparatus
JP2009180825A (en) Polarity control circuit, and liquid crystal display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP