WO2013053969A1 - Haptenos, conjugados y anticuerpos para el fungicida ciprodinil - Google Patents

Haptenos, conjugados y anticuerpos para el fungicida ciprodinil Download PDF

Info

Publication number
WO2013053969A1
WO2013053969A1 PCT/ES2012/070704 ES2012070704W WO2013053969A1 WO 2013053969 A1 WO2013053969 A1 WO 2013053969A1 ES 2012070704 W ES2012070704 W ES 2012070704W WO 2013053969 A1 WO2013053969 A1 WO 2013053969A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclopropyl
group
formula
phenyl
compound
Prior art date
Application number
PCT/ES2012/070704
Other languages
English (en)
French (fr)
Inventor
Josep Vicent Mercader Badia
Antonio Abad Fuentes
Antonio Abad Somovilla
Consuelo Agullo Blanes
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat De Valencia filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2013053969A1 publication Critical patent/WO2013053969A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/20Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D239/22Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins

Definitions

  • the present invention relates to haptens, conjugates, labeled derivatives and antibodies to cyprodinyl. Likewise, the present invention also relates to the use of cyprodinyl conjugates as test antigens or immunogens to obtain antibodies of this fungicide; and to the use of ciprodinyl labeled derivatives as test antigens. In addition, the present invention also relates to a method of analysis of ciprodinil using the antibodies obtained, sometimes together with test antigens that are conjugated or labeled derivatives. This invention also provides a kit for analyzing cyprodinyl comprising antibodies to this fungicide, sometimes together with test antigens that are conjugated or labeled derivatives.
  • STATE OF THE TECHNIQUE Fungicides are the group of pesticides that most frequently appear in surveillance and control programs. This is so not only because of its high use, but mainly because these plant protection products are used to fight fungal infections at times near harvest or even later (postharvest fungicides). This fact considerably increases the likelihood that residues from such treatments will remain when the food reaches the consumer, forcing regulatory and control bodies to be more vigilant and ideally to increase controls. Fungal attacks on stored fruits are one of the main reasons for economic losses in agriculture. The intensive use of conventional fungicides, such as thiabendazole or imazalil, has led in recent years to the emergence of resistant strains and therefore to a less effective treatment with these products.
  • Ciprodinil developed by NovartisCropProtection (currently Syngenta AG), was included in EU Annex I in 2006 and is currently marketed under the names Unix and Vangard. But without a doubt its agronomic application of greater impact derives from its commercialization under the name Switch, in which it is formulated jointly with fludioxonil, another fungicide but with a different mode of action.
  • ciprodinil wheat (0.5 ppm), pip fruits (1 ppm), stone fruits (0.5-2.0 ppm), grapes (5 ppm ), strawberries (5 ppm), solanaceae (0.5-1 .0 ppm), cucurbitaceae (0.5 ppm), celery trees (0.3 ppm) and spinach (8 ppm), in addition to a wide variety of broadleaf vegetables (10 ppm) .
  • the analytical methodologies used for the analysis of these fungicides are fundamentally instrumental, especially gas chromatography (GC) and high performance liquid chromatography (HPLC), coupled to different detectors according to the type of compound to be analyzed and the sensitivity required. These techniques are characterized by their ability to simultaneously analyze several residues with high precision and accuracy. However, despite the fact that they are essential in many circumstances, they often involve the use of high-cost and woolly methodologies, which must be carried out by highly qualified personnel in laboratories centralized well equipped and usually away from the production areas. These limitations condition the suitability of these techniques to undertake the analysis of large numbers of samples and to obtain results in the short term, two aspects that would contribute to guaranteeing the safety of marketed foods and conducting more exhaustive studies on consumer exposure. to these fungicides through food.
  • GC gas chromatography
  • HPLC high performance liquid chromatography
  • Immunoassays are bioanalytical techniques based on the interaction of an antigen (the analyte) with an antibody that specifically recognizes it.
  • a pesticide is a small organic molecule that constitutes a single antibody binding site, so in this type of analytical techniques the interaction between the analyte and the antibody is performed by displacing the binding between the antibody and an analogue. analyte marking.
  • analyte marking is carried out with an enzymatic activity, thus giving rise to enzyme immunoassays.
  • ELISA Enzyme-Linked Immunosorbent Assay
  • immunoassays as complementary techniques to chromatography for the analysis of small organic molecules is due to the fact that it is a simple, fast and low-cost methodology, exhibiting at the same time high sensitivity and specificity.
  • Immunoassays allow to specifically detect the target analyte in very complex mixtures, greatly simplifying the laborious preparation procedures of the sample, which in turn results in an increase in sampling capacity.
  • immunoassays can be performed in portable formats, which makes them independent of centralized laboratories and makes them ideal for analysis at production points.
  • the analytical excellencies attributed to immunoassays have already been demonstrated in many practical applications, where they have competed favorably with chromatographic techniques [MC Hennion, Analysis 1998, 26, 149-155; A.
  • the present invention provides ciprodinyl haptens, compounds of formula (I), which have adequate functionalization, in different positions of the molecule, for obtaining ciprodinyl conjugates or labeled ciprodinyl derivatives.
  • the ciprodinil conjugates, compounds of formula (II) can act as immunogens for obtaining antibodies to ciprodinil or as useful test antigens to detect this fungicide by competitive immunoassays.
  • Ciprodinil conjugates functionalized in different positions have different characteristics, thus the inventors they have found that not all reactive positions of the ciprodinil molecule are suitable for obtaining conjugates with good immunogenic properties.
  • the present invention also provides labeled derivatives of cyprodinyl, compounds of formula (III), useful as test antigens in competitive immunoassays.
  • the present invention also relates to antibodies with high affinity and selectivity towards ciprodinil, as well as to a method of analysis of ciprodinil using said antibodies, sometimes together with conjugates or derivatives labeled as test antigens.
  • the present invention also provides a kit for analyzing cyprodinyl comprising antibodies of this fungicide, optionally, together with conjugates or derivatives labeled as test antigens.
  • a first aspect of the present invention describes a compound of formula (I):
  • Rl is selected from the group consisting of [2 - ((4-cyclopropyl-6-methylpyrimidin-2- yl) amino) phenyl], [3 - ((4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl ] and [4 - ((4- cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl];
  • R-ll is [4-cyclopropyl-6-methyl-2- (phenylamino) pyrimidin-5-yl]
  • R-lll is selected from the group consisting of [2 - ((4-cyclopropylpyrimidin-2- yl) amino) phenyl], [3 - ((4-cyclopropylpyrimidin-2-yl) amino) phenyl] and [4- ( (4- cyclopropylpyrimidin-2-yl) amino) phenyl];
  • R-IV is selected from the group consisting of [6-cyclopropyl-2- (phenylamino) pyrimidin-4-yl] and [4-cyclopropyl-2- (phenylamino) pyrimidin-5-yl]; Y
  • R-V is [(4-cyclopropyl-6-methylpyrimidin-2-yl) phenyl) amino]
  • L is a hydrocarbon chain of 1 to 40 carbon atoms, where the chain is linear or branched, saturated or unsaturated, and said hydrocarbon chain comprises between 0 and 10 heteroatoms that are selected from the group consisting of S, O and N;
  • Y is a functional group selected from the group consisting of: -COOH, -NH 2 , -N 3 , -CH 2 CI, -CH 2 Br, -CH 2 I, -CHO, -SH, -S0 3 H, - OS0 2 Ph, -NH-NH 2 , -OS0 2 Ar and -C ⁇ CH;
  • L is a hydrocarbon chain of 1 to 40 carbon atoms, linear or branched, saturated or unsaturated, with the proviso that said hydrocarbon chain does not comprise any heteroatom.
  • aryl is understood as an aromatic carbocyclic group with a single ring, for example phenyl, multiple rings, for example biphenyl, or multiple condensed rings where at least one of them is aromatic, for example 1 , 2,3,4-tetrahydronaphthyl, 1-naphthyl, 2-naphthyl.
  • He aryl group may be substituted or not.
  • the aryl group is 4- methylphenyl.
  • the compound of formula (I) is characterized in that L is a linear hydrocarbon chain of 1 to 20 carbon atoms.
  • said linear hydrocarbon chain comprises between 2 and 8 carbon atoms.
  • the compound of formula (I) of the present invention is characterized in that Y is selected from the group consisting of -COOH, -CHO, -NH 2 and -SH.
  • Y is -COOH.
  • the compound of formula (I) as described in this patent application is characterized in that T is [3 - ((4- cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl] or [4 - (4-cyclopropyl-6-methylpyrimidin-2-1) amino) phenyl]; L is a linear hydrocarbon chain of 1 to 20 carbon atoms; and Y is selected from the group consisting of -COOH, -CHO, -NH 2 and -SH.
  • the compound of formula (I) of the present invention is characterized in that L is a linear hydrocarbon chain of 2 to 8 carbon atoms.
  • the compound of formula (I) of this invention is selected from the group consisting of
  • the compound of formula (I) as described in this patent application is characterized in that T is [6- cyclopropyl-2- (phenylamino) pyrimidin-4-yl]; L is a linear hydrocarbon chain from 1 to 20 carbon atoms; and Y is selected from the group consisting of -COOH, -CHO, -NH 2 and -SH.
  • the compound of formula (I) of the present invention is characterized in that L is a linear hydrocarbon chain of 2 to 8 carbon atoms.
  • the compound of formula (I) of this invention is
  • the compound of formula (I) as described in this patent application is characterized in that T is [(4- cyclopropyl-6-methylpyrimidin-2-yl) phenyl) amino]; L is a linear hydrocarbon chain of 1 to 20 carbon atoms; and Y is selected from the group consisting of -COOH, -CHO, -NH 2 and -SH.
  • the compound of formula (I) of the present invention is characterized in that L is a linear hydrocarbon chain of 2 to 8 carbon atoms.
  • the compound of formula (I) of this invention is
  • a second aspect of the present invention describes a compound of formula (II):
  • Rl is selected from the group consisting of [2 - ((4-cyclopropyl-6-methylpyrimidin-2- yl) amino) phenyl], [3 - ((4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl ] and [4 - ((4- cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl];
  • R-ll is [4-cyclopropyl-6-methyl-2- (phenylamino) pyrimidin-5-yl]
  • R-lll is selected from the group consisting of [2 - ((4-cyclopropylpyrimidin-2- yl) amino) phenyl], [3 - ((4-cyclopropylpyrimidin-2-yl) amino) phenyl] and [4- ( (4- cyclopropylpyrimidin-2-yl) amino) phenyl];
  • R-IV is selected from the group consisting of [6-cyclopropyl-2-
  • R-V is [(4-cyclopropyl-6-methylpyrimidin-2-yl) phenyl) amino]
  • L is a hydrocarbon chain of 1 to 40 carbon atoms, where the chain is linear or branched, saturated or unsaturated, and said hydrocarbon chain comprises between 0 and 10 heteroatoms that are selected from the group consisting of S, O and N;
  • P is a natural or synthetic polypeptide of molecular weight greater than 2000 daltons
  • n is a number with a value between 1 and 500;
  • L is a hydrocarbon chain of 1 to 40 carbon atoms, linear or branched, saturated or unsaturated, with the condition of that said hydrocarbon chain does not comprise any heteroatom.
  • n indicates the degree of conjugation, that is, the molar ratio between the fraction derived from the compound of formula (I) and P, the natural or synthetic polypeptide of molecular weight greater than 2000 daltons in the resulting compound of formula (II) .
  • the compound of formula (II) of the present invention can be used as an immunogen for the production of antibodies or as a test antigen, together with a cyprodinyl antibody, to determine or detect this fungicide in a sample by competitive immunoassay technology.
  • the compound of formula (II) is characterized in that L is a linear hydrocarbon chain of 1 to 20 carbon atoms. Preferably, said linear hydrocarbon chain comprises between 2 and 8 carbon atoms.
  • the compound of formula (II) of the present invention is characterized in that Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S- /
  • the compound of formula (II) object of the present invention is characterized in that Z is -CONH-.
  • the compound of formula (II) described in this patent application is characterized in that P is selected from the group consisting of albumin, thyroglobulin, hemocyanin, ⁇ -galactosidase, peroxidase, phosphatase and oxidase.
  • P is selected from the group consisting of albumin, thyroglobulin, hemocyanin, ⁇ -galactosidase, peroxidase, phosphatase and oxidase.
  • P is selected from the group consisting of albumin, thyroglobulin, hemocyanin, ⁇ -galactosidase, peroxidase, phosphatase and oxidase.
  • albumin it is egg albumin or serum albumin.
  • the compound of formula (II) of the present invention is characterized in that
  • T is [3 - ((4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl] or [4- (4-cyclopropyl-6- methylpyrimidin-2-yl) amino) phenyl];
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of-CONH-, -NHCO-, -NH-, -S-,
  • P is selected from the group consisting of albumin, thyroglobulin, hemocyanin, 3-galactosidase, peroxidase, phosphatase and oxidase.
  • the compound of formula (II) of the present invention is characterized in that T is [3 - ((4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl] or [4- ( (4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl]; L is a linear hydrocarbon chain of 5 carbon atoms; Z is -CONH-; P is selected from the group consisting of albumin and peroxidase; and n is a value selected between 1 and 50. According to another preferred embodiment, the compound of formula (II) of the present invention is characterized in that
  • T is [6-cyclopropyl-2- (phenylamino) pyrimidin-4-yl]
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-,
  • P is selected from the group consisting of albumin, thyroglobulin, hemocyanin, / 3-galactosidase, peroxidase, phosphatase and oxidase.
  • the compound of formula (II) of the present invention is characterized in that T is [6-cyclopropyl-2- (phenylamino) pyrimidin-4-yl]; L is a linear hydrocarbon chain of 4 carbon atoms; Z is -CONH-; P is selected from the group consisting of albumin and peroxidase; and n is a value selected between 1 and 50.
  • the compound of formula (II) of the present invention is characterized in that
  • T is [(4-cyclopropyl-6-methylpyrimidin-2-yl) (phenyl) amino];
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-, P is selected from the group consisting of albumin, thyroglobulin, hemocyanin, / 3-galactosidase, peroxidase, phosphatase and oxidase.
  • the compound of formula (II) of the present invention is characterized in that T is [(4-cyclopropyl-6-methylpyrimidin-2-yl) (phenyl) amino]; L is a linear hydrocarbon chain of 4 atoms of carbon; Z is -CONH-; P is selected from the group consisting of albumin and peroxidase; and n is a value selected between 1 and 50.
  • a third aspect of the present invention describes a compound of formula (III):
  • T, L and Z have the same meaning defined above for the compound of formula (II);
  • Q is a non-isotopic marker
  • n is an integer with an integer value between 1 and 1000.
  • marker means any molecule or fragment that gives rise to a signal measurable by any type of analytical technique.
  • Q of the compound of formula (III) identifies a fragment or a chemical detector, marker or tracer molecule.
  • This compound of formula (III) can be used as a test antigen together with a cyprodinyl antibody to determine or detect this fungicide in a sample by competitive immunoassay technology.
  • the compound of formula (III) is characterized in that L is a linear hydrocarbon chain of 1 to 20 carbon atoms.
  • L is a linear hydrocarbon chain of 2 to 8 carbon atoms.
  • the compound of formula (III) of the present invention is characterized in that Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, Preferably, the compound of formula (III) is characterized in that Z is -CONH-.
  • the compound of formula (III) of the present invention is characterized in that Q is biotin, a luminescent compound, a fluorophore, a label coupled to an indirect detection system, micro or nanoparticles or others.
  • Q is selected from the group consisting of biotin, fluorescein or any one of its derivatives, a cyanine fluorophore, a rhodamine fluorophore, a cumanna fluorophore, a ruthenium bipyryl, lucifehna or any one of its derivatives, an ester of achdinium and micro- or nanoparticles of colloidal gold, carbon or latex.
  • the compound of formula (III) of the present invention is characterized in that
  • T is [3 - ((4-cyclopropyl-6-methylpihmidin-2-yl) amino) phenyl] or [4 - ((4-cyclopropyl-6- methylpihmidin-2-yl) amino) phenyl];
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-,
  • Q is selected from the group consisting of biotin, fluorescein or any one of its derivatives, a cyanine fluorophore, a rhodamine fluorophore, a cumanna fluorophore, a ruthenium bipyril, lucifehna or any one of its derivatives, an acridinium ester and micro- or nanoparticles of colloidal gold, carbon or latex.
  • the compound of formula (III) of the present invention is characterized in that
  • T is [6-cyclopropyl-2- (phenylamino) pihmidin-4-yl];
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms;
  • Z is selected from ru or ue consisting of -CONH-, -NHCO-, -NH
  • Q is selected from the group consisting of biotin, fluorescein or any one of its derivatives, a cyanine fluorophore, a rhodamine fluorophore, a coumarin fluorophore, a ruthenium bipyryl, luciferin or any one of its derivatives, an acridinium ester and micro- or nanoparticles of colloidal gold, carbon or latex.
  • the compound of formula (III) of the present invention is characterized in that
  • T is [(4-cyclopropyl-6-methylpyrimidin-2-yl) phenyl) amino]
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-,
  • Q is selected from the group consisting of biotin, fluorescein or any one of its derivatives, a cyanine fluorophore, a rhodamine fluorophore, a coumarin fluorophore, a ruthenium bipyryl, luciferin or any one of its derivatives, an acridinium ester and micro- or nanoparticles of colloidal gold, carbon or latex.
  • a fourth aspect of the present invention describes an antibody generated in response to a compound of formula (II) as described in this patent application.
  • the compound of formula (II) that generates an antibody as described in this patent application is characterized in that T is [3 - ((4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl] or [4 - ((4-cyclopropyl-6- methylpyrimidin-2-yl) amino) phenyl];
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-,
  • P is selected from the group consisting of albumin, thyroglobulin and hemocyanin.
  • the compound of formula (II) that generates an antibody as described in this patent application is characterized in that T is [3- ((4-cyclopropyl-6-methylpyrimidin-2-yl) amino) phenyl] or [4 - ((4-cyclopropyl-6- methylpyrimidin-2-yl) amino) phenyl]; L is a linear hydrocarbon chain of 5 carbon atoms; Z is-CONH-; P is albumin; and n is a value selected between 1 and 50.
  • the compound of formula (II) that generates an antibody as described in this patent application is characterized in that
  • T is [6-cyclopropyl-2- (phenylamino) pyrimidin-4-yl]
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-,
  • P is selected from the group consisting of albumin, thyroglobulin and hemocyanin.
  • the compound of formula (II) that generates an antibody as described in this patent application is characterized in that T is [6- cyclopropyl-2- (phenylamino) pihmidin-4-yl]; L is a linear hydrocarbon chain of 4 carbon atoms; Z is-CONH-; P is albumin; and n is a value selected between 1 and 50.
  • the compound of formula (II) that generates an antibody as described in this patent application is characterized in that
  • T is [(4-cyclopropyl-6-methylpihmidin-2-yl) (phenyl) amino]
  • L is a linear hydrocarbon chain of 1 to 20 carbon atoms
  • Z is selected from the group consisting of -CONH-, -NHCO-, -NH-, -S-,
  • P is selected from the group consisting of albumin, thyroglobulin and hemocyanin.
  • the compound of formula (II) that generates an antibody as described in this patent application is characterized in that T is [(4- cyclopropyl-6-methylpyrimidin-2-yl) (phenyl) amino]; L is a linear hydrocarbon chain of 4 carbon atoms; Z is -CONH-; P is albumin; and n is a value selected between 1 and 50.
  • a fifth aspect of the present invention relates to an in vitro method of analyzing cyprodinyl in a sample comprising the following steps: a. contacting a sample with a generated antibody as described in this patent application; b. incubate the sample and the antibody of step (a) for a suitable period of time for an immunochemical reaction to take place; C. determine the existence of an immunochemical reaction after the incubation of step (b).
  • the method of the present invention allows quantitative determination or qualitative analysis of the content of the fungicide ciprodinil in a sample.
  • the determination of the immunochemical reaction in step (c) is performed by a competitive immunoassay, using as a competitor a test antigen that is a compound of formula (II) as described in this patent application.
  • the competitive immunoassay is of the ELISA type.
  • the determination of the immunochemical reaction in step (c) is performed by a competitive immunoassay, using as a competitor a test antigen that is a compound of formula (III) as described in this patent application.
  • the competitive immunoassay is of the ELISA type.
  • immunoassay refers to an analytical assay in which an immunochemical reaction for the detection or quantification of an analyte occurs.
  • Competitive immunoassays are those in which the analyte competes with the test antigen for binding with the antibody.
  • antigen in this patent application refers to a molecule capable of interacting specifically with an antibody.
  • the interaction or immunochemical reaction consists in the specific and non-covalent binding between an antibody and an antigen, which may be the analyte or a test antigen.
  • antigen which may be the analyte or a test antigen.
  • test antigen, enzyme or tracer antigen refers to a compound of formula (I) coupled to a carrier or marker molecule that is used in the competitive assay.
  • a sixth aspect of the present invention also relates to a cyprodinyl detection kit that uses at least one antibody generated as described in this patent application. Additionally, the detection kit Cyprodinyl may comprise a test antigen that is a compound of formula (II) or a compound of formula (III) as described in the present patent application.
  • the compound of formula (II) of the present invention can be obtained by a process comprising reacting a compound of formula (I) with P, a natural or synthetic polypeptide of molecular weight greater than 2000 daltons, by methods widely known in the technique.
  • the process for obtaining the compound of formula (II) may also comprise, if necessary, an additional step of activating the functional group Y.
  • the compound of formula (III) of the present invention can be obtained by a process comprising reacting a compound of formula (I) with Q, a non-isotopic chemical marker, by methods widely known in the art.
  • the process for obtaining the compound of formula (III) may also comprise, if necessary, an additional step of activating the functional group Y.
  • the above-mentioned activation can take place by reacting the compound of formula (I) with ⁇ , ⁇ ' - disuccinimidylcarbonate.
  • This activation procedure can take place in an organic solvent such as acetonitrile, propanonitrile, dichloromethane, chloroform, tetrahydrofuran, benzene or toluene; in the presence of a base such as exemplotriethylamine, triisopropylamine, pyridine, 4-N, N-dimethylaminopyridine, picoline or diazo (1,3) bicyclo- [5.4.0] undecano; in a temperature range between 0 and 30 ° C.
  • obtaining antibodies from compounds of formula (II) can also take place by immunization methods widely known in the art.
  • immunogenic and immunogenic as used in the present invention refer to a substance that is recognized as foreign to the living organism and is therefore capable of producing or generating an immune response in a host.
  • antibody refers to a molecule that exhibits specific binding affinity for the analyte, essentially excluding other unrelated substances.
  • the term includes polyclonal antibodies, monoclonal antibodies, recombinant antibodies and antibody fragments.
  • analyte refers to a substance or group of substances whose presence or concentration is to be determined in the sample.
  • the analyte is the fungicide ciprodinil.
  • the word "comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps.
  • functionalized derivatives of said fungicide is required, that is, structural analogs of ciprodinil that incorporate a functional group capable of being used for conjugation to a P carrier or Q marker.
  • This functional group is separated from Skeleton of the cyprodinyl molecule by a spacer L.
  • the position of incorporation of the functional group into the ciprodinyl structure for conjugation is not an obvious aspect and may be decisive for the viability of immunogens as inducers of affinity antibody production. and adequate selectivity against ciprodinil and even of test conjugates that allow the development of a sensitive and specific immunoassay for said fungicide, the ultimate object of the present invention.
  • Figure 1 Scheme of the synthesis of the compound of formula (I) CDm6.
  • the synthesis of the compound of formula (I) that incorporates the spacer by the pyrimidine ring is based on the previous preparation of a 1, 3- dicarbonyl compound that incorporates in the proper position the carboxylated hydrocarbon chain that constitutes the spacer of the compound of formula (I) in question. Once this intermediate is prepared, the preparation of the pyrimidine ring is completed through a condensation reaction of the carbonyl groups with the amino groups of the phenylguanidine.
  • 1,3-dicarbonyl compound (15) is carried out through the acylation reaction of allyl 3-cyclopropyl-3-oxopropanoate (12), obtained via condensation Claisen of the cyclopropylmethyl ketone (10) with diallyl carbonate (11) in basic medium, with methyl 6-chloro-6-oxohexanoate (13), followed by Pd catalyzed dealylation-decarboxylation reaction (0).
  • the / 3-ketoester 12 (288.3 mg, 1.5 mmol) was added on a stirred suspension of MgCl 2 (142.8 mg, 1.5 mmol) in dry CH 2 CI 2 (2 mL_) at room temperature under nitrogen.
  • the reaction mixture was cooled to 0 ° C, dried pyridine (243 ⁇ , 3 mmol) was added and the resulting mixture was stirred at this temperature for 15 min.
  • adipoyl chloride 13, 234 ⁇ 4, 1.5 mmol was added and stirred at 0 ° C for 15 min and then at room temperature for 1 h.
  • keto-enol 15 (285.8 mg, 91%), which exists in equilibrium with the 6,8-diketonic tautomeric form [approximately a 4: 1 mixture of the keto-enol 15 form and the 6,8-diketonic tautomer].
  • Examples of compounds of formula (I) presented herein contain a carboxyl group as a functional chemical group for conjugation to carrier proteins, specifically by reaction with the free amino groups of the protein.
  • the carboxyl group was activated according to the scheme of Figure 5, using / V, / V'-disuccinimidyl carbonate (DSC) following previously published protocols [FA Esteve-Turrillas et al. Anal Chim. / 4cfa2010, 682, 93-103].
  • DSC dissuccinimidyl carbonate
  • PB 100 mM sodium phosphate buffer, pH 7.4;
  • PBS 10 mM sodium phosphate buffer, pH 7.4 with 140 mM NaCl;
  • PBST PBS buffer containing 0.05% (v / v) of polyoxyethylene (20) sorbitanmonolaurate (known as Tween 20);
  • Washing solution 150mM NaCI containing 0.05% (v / v) Tween 20.
  • the analytes were dissolved in anhydrous ⁇ /, / V-dimethylformamide (DMF) and stored at -20 ° C.
  • 96-well polystyrene plates were used. Each antiserum was evaluated in the two classic formats of competitive ELISA (the one of antigen or conjugate immobilized with indirect detection and the one of immobilized antibody with direct detection) using both homologous test antigens, that is to say a test antigen from the same compound of formula (I) than that used to obtain the immunogen; as heterologous test antigens, that is, obtained from a compound of formula (I) different from that used to obtain the immunogen. 8-channel electronic pipettes were used for rapid and accurate dispensing of immunoreactive agents.
  • the absorbance of each well was read at 492 nm using a reference wavelength of 650 nm in a PowerWave HT microplate reader (Biotek Instruments, Winooski, USA).
  • the sigmoid standard curves obtained by representing absorbance versus analyte concentration were adjusted to a four-parameter logistic equation using the SPSS SigmaPlot software package (Chicago, USA).
  • the antiserum titer was defined as the reciprocal of the antiserum dilution that provides a maximum signal (A max ) of 1.0 in the absence of free analyte in Competitive ELISA assay in the immobilized conjugate format homologous at 0.1 mg / mL with indirect detection.
  • the affinity of the antibody (IC50) was estimated as the concentration of free analyte capable of halving the maximum signal.
  • test antigen solution which is a compound of formula (II) where P is OVA at 0.01 or 0.1 pg / mL in CB buffer by overnight incubation at room temperature.
  • 50 ⁇ per well of a complete standard delanalite curve in PBS was dispensed in each column followed by 50 ⁇ per well of a specific dilution of a given antiserum in PBST.
  • the same reagent distribution was repeated for each plate with a different conjugate.
  • the immunochemical reaction was carried out for 1 h at room temperature and then the plates were washed.
  • each well received 100 ⁇ of a 1/10000 dilution of GAR-HRP in PBST containing 10% fetal bovine serum. This reaction was left at room temperature for 1 h. After washing the plates, the retained peroxidase activity was revealed and the absorbance at 492 nm was read as described above.
  • the plates were upholstered with 100 ⁇ per well of a dilution of antiserum in CB buffer by incubation overnight at room temperature. After washing the plates, 50 ⁇ per well of a complete standard analyte curve in PBS was dispensed in each column followed by 50 ⁇ per well of a specific dilution of a given enzyme tracer in PBST. The same reagent distribution was repeated for each plate with a different antiserum. The immunochemical reaction was carried out for 1 ha. room temperature and then the plates were washed. Finally, the retained peroxidase activity was revealed and the absorbance at 492 nm was read as described.
  • each of the antisera obtained was tested against its homologous test antigen using the competitive ELISA type assay, both in immobilized antigen assay format with indirect detection and in the immobilized antibody format with direct detection.
  • Different concentrations of test antigen were tested against different concentrations of antiserum in competitive assay using different concentrations of cyprodinyl prepared by designated dilution as a competitor.
  • the values of the maximum signal, the IC50 and the slope of the resulting inhibition curve for each antibody with its homologous test antigen have been included in Tables 1 (a-d) and Tables 2 (a-d).
  • CDm6 # 1 0.01 10 0.85 0.40 89.2
  • CDp6 # 1 0.01 10 0.93 0.58 17.2
  • CDp6 # 2 0.01 10 1 .10 0.64 15.1
  • CDb5 # 1 0.01 10 0.85 0.66 25.4
  • CDb5 # 2 0.01 10 1 .04 0.63 31 .5
  • CDn5 # 1 0.01 100 0.97 0.39 3356.7
  • CDn5 # 2 0.01 100 0.95 - -
  • CDb5 # 2 1 10 1 .15 0.76 3.9
  • the inhibition curves obtained with the immobilized assay antigen format with indirect detection and with the immobilized antibody format with direct detection are shown in Figure 7.
  • the indirect test employed 100 ⁇ _ per well of the compound of formula (II) OVA-CDp6 at 0.1 pg / mL and the CDp6 # 1 antiserum at a test dilution of 1 / 3x10 4 .
  • the direct format test the well was upholstered with 100 ⁇ _ of a dilution of the CDb5 # 1 antiserum at 1 / 3x10 4 and in the competitive stage 0.3 ng of homologous enzyme tracer was used.
  • the immunogens in which the compound of formula (I) contained the spacer located on either of the two aromatic rings provided high affinity antibodies for cyprodinyl.
  • the immunogen with the spacer over the amine nitrogen that binds the two aromatic rings provided low affinity antibodies towards said fungicide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Haptenos, conjugados y anticuerpos para el fungicida ciprodinil La presente invención se refiere a haptenos, conjugados, derivados marcados y anticuerpos para ciprodinil. Así mismo, la presente invención también se refiere al uso de conjugados de ciprodinil como antígenos de ensayo o inmunógenos para obtener anticuerpos de este fungicida; y al uso de los derivados marcados de ciprodinil como antígenos de ensayo. Además, la presente invención también se refiere a un método de análisis de ciprodinil utilizando los anticuerpos obtenidos, en ocasiones junto con antígenos de ensayo que son conjugados o derivados marcados. Esta invención también proporciona un kit para analizar ciprodinil que comprende anticuerpos de este fungicida, en ocasiones junto con antígenos de ensayo que son conjugados o derivados marcados.

Description

Haptenos, conjugados y anticuerpos para el fungicida ciprodinil
La presente invención se refiere a haptenos, conjugados, derivados marcados y anticuerpos para ciprodinil. Así mismo, la presente invención también se refiere al uso de conjugados de ciprodinil como antígenos de ensayo o inmunógenos para obtener anticuerpos de este fungicida; y al uso de los derivados marcados de ciprodinil como antígenos de ensayo. Además, la presente invención también se refiere a un método de análisis de ciprodinil utilizando los anticuerpos obtenidos, en ocasiones junto con antígenos de ensayo que son conjugados o derivados marcados. Esta invención también proporciona un kit para analizar ciprodinil que comprende anticuerpos de este fungicida, en ocasiones junto con antígenos de ensayo que son conjugados o derivados marcados.
ESTADO DE LA TÉCNICA Los fungicidas son el grupo de plaguicidas que con mayor frecuencia aparece en los programas de vigilancia y control. Esto es así no sólo por su elevado uso, sino principalmente porque estos productos de protección vegetal se emplean para combatir las infecciones causadas por hongos en momentos muy próximos a la cosecha o incluso con posterioridad (fungicidas postcosecha). Este hecho incrementa considerablemente la probabilidad de que residuos de dichos tratamientos permanezcan cuando el alimento llegue al consumidor, lo que obliga a los organismos de regulación y control a estar más vigilantes e idealmente a aumentar los controles. Los ataques por hongos en frutos almacenados constituyen uno de los motivos principales de pérdidas económicas en agricultura. El uso intensivo de fungicidas convencionales, como el tiabendazol o el imazalil, ha llevado en los últimos años a la aparición de cepas resistentes y por tanto a una menor eficacia de los tratamientos con estos productos. Ante esta circunstancia, las empresas agroquímicas pusieron en marcha programas de l+D encaminados a desarrollar nuevos productos que presentaran mecanismos de acción innovadores y que permitieran combatir de forma eficaz las infecciones fúngicas, al tiempo que fueran seguros y compatibles con los programas de gestión integrada de plagas. Estos productos están comenzando a sustituir progresivamente a los productos más antiguos, que resultan menos aceptables desde un punto de vista toxicológico y medioambiental.
Entre los fungicidas más relevantes desarrollados en la última década destaca el ciprodinil [4-ciclopropil-6-metil-/V-fenilpirimidin-2-amina]. Este plaguicida pertenece a la familia de las anilinopirimidinas cuyo modo bioquímico de acción es común y diferente al del resto de fungicidas. El ciprodinil, desarrollado por NovartisCropProtection (actualmente Syngenta AG), se incluyó en el Anexo I de la UE en 2006 y actualmente se comercializa bajo los nombres Unix y Vangard. Pero sin duda su aplicación agronómica de mayor impacto deriva de su comercialización bajo la denominación Switch, en la que se formula conjuntamente con fludioxonil, otro fungicida pero con un modo de acción diferente. Entre los cultivos para los que la UE ha establecido límites máximos de residuos de forma explícita para ciprodinil se encuentran el trigo (0.5 ppm), frutas de pepita (1 ppm), frutas de hueso (0.5-2.0 ppm), uva (5 ppm), fresas (5 ppm), solanáceas (0.5-1 .0 ppm), cucurbitáceas (0.5 ppm), apionabos (0.3 ppm) y espinacas (8 ppm), además de una gran variedad de hortalizas de hoja ancha (10 ppm).
Las metodologías analíticas empleadas para el análisis de estos fungicidas son fundamentalmente de tipo instrumental, en especial cromatografía de gases (GC) y cromatografía líquida de alta resolución (HPLC), acopladas a diferentes detectores según el tipo de compuesto a analizar y la sensibilidad requerida. Estas técnicas se caracterizan por su capacidad para analizar simultáneamente varios residuos con una elevada precisión y exactitud. Sin embargo, pese a que resultan imprescindibles en muchas circunstancias, con frecuencia implican la utilización de metodologías labonosas y de elevado coste, que deben realizarse por personal altamente cualificado en laboratorios centralizados bien equipados y habitualmente alejados de las zonas de producción. Estas limitaciones condicionan la idoneidad de estas técnicas para acometer el análisis de grandes números de muestras y para obtener resultados en breve plazo, dos aspectos que contribuirían a garantizar la segundad de los alimentos comercializados y a la realización de estudios más exhaustivos sobre la exposición de los consumidores a estos fungicidas a través de los alimentos.
Los inmunoensayos son técnicas bioanalíticas basadas en la interacción de un antígeno (el analito) con un anticuerpo que lo reconoce específicamente. No obstante, un plaguicida es una molécula orgánica pequeña que constituye un único sitio de unión al anticuerpo, por lo que en este tipo de técnicas analíticas la interacción entre el analito y el anticuerpo se realiza por desplazamiento de la unión entre el anticuerpo y un análogo marcado del analito. De este modo, en presencia del analito se establece una competencia entre éste y el análogo marcado por la unión al anticuerpo. Habitualmente, el mareaje se realiza con una actividad enzimática, dando así lugar a los enzimoinmunoensayos. Cuando además uno de los participantes en la reacción se encuentra inmovilizado sobre un soporte sólido, la técnica se denomina ELISA (del inglés Enzyme- Linked Immunosorbent Assay). Los primeros inmunoensayos enzimáticos para plaguicidas se desarrollaron durante la primera mitad de los años 80. Desde entonces hasta la actualidad el número de plaguicidas para los cuales se han desarrollado inmunoensayos ha aumentado espectacularmente, suponiendo varias decenas y cubriendo los principales grupos de compuestos: insecticidas, herbicidas y fungicidas. De hecho, un gran número de estos ensayos están disponibles comercialmente en forma de kits con diferentes formatos. La creciente aceptación de los inmunoensayos como técnicas complementarias a las cromatográficas para el análisis de pequeñas moléculas orgánicas se debe a que se trata de una metodología sencilla, rápida y de bajo coste, exhibiendo al mismo tiempo una elevada sensibilidad y especificidad. Los inmunoensayos permiten detectar específicamente el analito diana en mezclas muy complejas, simplificando considerablemente los laboriosos procedimientos de preparación de la muestra, lo que a su vez redunda en un aumento en la capacidad de muestreo. Además, los inmunoensayos pueden realizarse en formatos portátiles, lo que los independiza de los laboratorios centralizados y los convierte en ¡dóneos para el análisis en los puntos de producción. Las excelencias analíticas atribuidas a los inmunoensayos ya han sido demostradas en muchas aplicaciones prácticas, donde han competido favorablemente con las técnicas cromatográficas [M.C. Hennion, Analysis 1998, 26, 149-155; A. Abad et al. , J. Chromatogr. \1999, 833, 3-12; A. Abad et al. , J. Agrie. Food Cftem.2001 , 49, 1707-1712; N A. Lee y I. R. Kennedy, J. AOAC Int. 2001 , 84, 1393-1406; F.A. Esteve-Turrillas et al. , Anal. Chim. Acta 2010, 682, 93-103].
Sin embargo, hasta la fecha no se ha descrito la utilización de la tecnología de inmunoensayo para analizar el contenido del fungicida ciprodinil en una muestra. Por lo tanto, existe una necesidad, en particular en la industria alimentaria y/o agrícola, de desarrollar un método analítico que permita la determinación o detección mediante la tecnología de inmunoensayo de ciprodinil, fungicida ampliamente utilizado en la actualidad, preferentemente mediante la utilización de un kit que comprenda al menos un anticuerpo de ciprodinil. DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona haptenos de ciprodinil, compuestos de fórmula (I), que presentan una funcionalización adecuada, en diferentes posiciones de la molécula, para la obtención de conjugados de ciprodinil o derivados marcados de ciprodinil. Los conjugados de ciprodinil, compuestos de fórmula (II), pueden actuar como inmunógenos para la obtención de anticuerpos para ciprodinil o como antígenos de ensayo útiles para detectar este fungicida mediante inmunoensayos competitivos. Los conjugados de ciprodinil funcionalizados en diferentes posiciones presentan características diferentes, así los inventores han encontrado que no todas las posiciones reactivas de la molécula de ciprodinil son adecuadas para la obtención de conjugados con buenas propiedades inmunogénicas.
La presente invención también proporciona derivados marcados de ciprodinil, compuestos de fórmula (III), útiles como antígenos de ensayo en inmunoensayos competitivos.
La presente invención también se refiere a anticuerpos con elevada afinidad y selectividad hacia ciprodinil, así como a un método de análisis de ciprodinil utilizando dichos anticuerpos, en ocasiones junto a conjugados o derivados marcados como antígenos de ensayo.
Finalmente, la presente invención también proporciona un kit para analizar ciprodinil que comprende anticuerpos de este fungicida, opcionalmente, junto a conjugados o derivados marcados como antígenos de ensayo.
Un primer aspecto de la presente invención describe un compuesto de fórmula (I):
-L-Y
Figure imgf000007_0001
donde
R-l se selecciona del grupo que consiste en [2-((4-ciclopropil-6-metilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo];
R-ll es [4-ciclopropil-6-metil-2-(fenilamino)pirimidin-5-ilo];
R-lll se selecciona del grupo que consiste en [2-((4-ciclopropilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropilpirimidin-2-il)amino)fenilo];
R-IV se selecciona del grupo que consiste en [6-ciclopropil-2- (fenilamino)pirimidin-4-ilo] y [4-ciclopropil-2-(fenilamino)pirimidin-5-ilo]; y
R-V es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino];
L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, donde la cadena es lineal o ramificada, saturada o insaturada, y dicha cadena hidrocarbonada comprende entre 0 y 10 heteroátomos que se seleccionan del grupo que consiste en S, O y N;
Y es un grupo funcional seleccionado del grupo que consiste en: -COOH, -NH2, -N3, -CH2CI, -CH2Br, -CH2I, -CHO, -SH, -S03H, -OS02Ph, -NH-NH2, -OS02Ar y -C≡CH;
con la condición de que:
a) cuando T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo], el fragmento-L-Y es diferente de -SCH2CHNH2COOH;
b) cuando T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo] y L es -CH2-, Y es diferente a -NH2; y
c) cuando T es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino], L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, lineal o ramificada, saturada o insaturada, con la condición de que dicha cadena hidrocarbonada no comprende ningún heteroátomo.
En la presente solicitud de patente se entiende por arilo (-Ar) un grupo carbocíclico aromático con un único anillo, por ejemplo fenilo, múltiples anillos, por ejemplo bifenilo, o múltiples anillos condensados donde al menos uno de ellos es aromático, por ejemplo 1 ,2,3,4-tetrahidronaftilo, 1 -naftilo, 2-naftilo. El grupo arilo puede estar sustituido o no. Preferentemente, el grupo arilo es 4- metilfenilo.
Según una realización preferida, el compuesto de fórmula (I) se caracteriza porque L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono. Preferentemente, dicha cadena hidrocarbonada lineal comprende entre 2 y 8 átomos de carbono.
Según otra realización preferida adicional, el compuesto de fórmula (I) de la presente invención se caracteriza porque Y se selecciona del grupo que consiste en -COOH, -CHO, -NH2 y -SH. Preferentemente, el compuesto de fórmula (I) objeto de la presente invención se caracteriza porque Y es -COOH.
Según otra realización preferida, el compuesto de formula (I) tal como se describe en esta solicitud de patente se caracteriza porque T es [3-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-(4-ciclopropil-6-metilpirimidin- 2-¡l)amino)fenilo]; L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono; e Y se selecciona del grupo que consiste en -COOH, -CHO, -NH2 y -SH. Preferentemente, el compuesto de fórmula (I) de la presente invención se caracteriza porque L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono.
Según una realización aún más preferida, el compuesto de fórmula (I) de esta invención se selecciona del grupo que consiste en
Figure imgf000009_0001
Según otra realización preferida adicional, el compuesto de formula (I) tal como se describe en esta solicitud de patente se caracteriza porque T es [6- ciclopropil-2-(fenilamino)pirimidin-4-ilo]; L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono; e Y se selecciona del grupo que consiste en -COOH, -CHO, -NH2 y -SH. Preferentemente, el compuesto de fórmula (I) de la presente invención se caracteriza porque L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono. Según una realización aún más preferida, el compuesto de fórmula (I) de esta invención es
Figure imgf000010_0001
Según otra realización preferida adicional, el compuesto de formula (I) tal como se describe en esta solicitud de patente se caracteriza porque T es [(4- ciclopropil-6-metilpirimidin-2-il) fenil)amino]; L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono; e Y se selecciona del grupo que consiste en -COOH, -CHO, -NH2 y -SH. Preferentemente, el compuesto de fórmula (I) de la presente invención se caracteriza porque L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono. Según una realización aún más preferida, el compuesto de fórmula (I) de esta invención es
H
Figure imgf000010_0002
Un segundo aspecto de la presente invención describe un compuesto de fórmula (II):
[T-L-Z]n-P
(II)
Figure imgf000011_0001
donde
R-l se selecciona del grupo que consiste en [2-((4-ciclopropil-6-metilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo];
R-ll es [4-ciclopropil-6-metil-2-(fenilamino)pirimidin-5-ilo];
R-lll se selecciona del grupo que consiste en [2-((4-ciclopropilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropilpirimidin-2-il)amino)fenilo];
R-IV se selecciona del grupo que consiste en [6-ciclopropil-2-
(fenilamino)pirimidin-4-ilo] y [4-ciclopropil-2-(fenilamino)pirimidin-5-ilo]; y
R-V es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino];
L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, donde la cadena es lineal o ramificada, saturada o insaturada, y dicha cadena hidrocarbonada comprende entre 0 y 10 heteroátomos que se seleccionan del grupo que consiste en S, O y N;
Z es un grupo funcional seleccionado del grupo que consiste en -CONH-, -NHCO-, -NHCONH-, -NHCSNH-, -OCONH-, -NHOCO-, -OCSNH-, -SCONH-, -S-, -S-S-, -NH(C=NH)- -OCO-, -CO-, -CHOH- -N=N-, -NH-, -NR-,
Figure imgf000012_0001
P es un polipéptido natural o sintético de peso molecular mayor de 2000 daltons; y
n es un número con un valor entre 1 y 500;
con la condición de que:
a) cuando T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo], el fragmento -L-Z- es diferente de -SCH2CHNH2COO-, -SCH2CHNH2-CO-NH- o -SCH2CH(COOH)NHCO-;
b) cuando T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo] y L es -CH2-, Z es diferente a -NHCO-; y
c) cuando T es [(4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino], L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, lineal o ramificada, saturada o insaturada, con la condición de que dicha cadena hidrocarbonada no comprende ningún heteroátomo.
El valor de n indica el grado de conjugación, es decir la relación molar entre la fracción derivada del compuesto de fórmula (I) y P, el polipéptido natural o sintético de peso molecular mayor de 2000 daltons en el compuesto de fórmula (II) resultante.
El compuesto de fórmula (II) de la presente invención puede utilizarse como inmunógeno para la producción de anticuerpos o como antígeno de ensayo, junto con un anticuerpo de ciprodinil, para determinar o detectar este fungicida en una muestra mediante la tecnología de inmunoensayo competitivo. Según una realización preferida, el compuesto de fórmula (II) se caracteriza porque L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono. Preferentemente, dicha cadena hidrocarbonada lineal comprende entre 2 y 8 átomos de carbono. Según otra realización preferida adicional, el compuesto de fórmula (II) de la presente invención se caracteriza porque Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S- /
Figure imgf000013_0001
Preferentemente, el compuesto de fórmula (II) objeto de la presente invención se caracteriza porque Z es -CONH-.
Según otra realización preferida de la presente invención, el compuesto de fórmula (II) descrito en esta solicitud de patente se caracteriza porque P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, β- galactosidasa, peroxidasa, fosfatasa y oxidasa. Preferentemente, cuando P es albúmina, es albúmina de huevo o albúmina sérica.
Según otra realización preferida, el compuesto de formula (II) de la presente invención se caracteriza porque
T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-(4-ciclopropil-6- metilpirimidin-2-il)amino)fenilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en-CONH-, -NHCO-, -NH-, -S-,
Figure imgf000013_0002
P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, 3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
Según una realización aún más preferida, el compuesto de formula (II) de la presente invención se caracteriza porque T es [3-((4-ciclopropil-6-metilpirimidin- 2-¡l)amino)fenilo] o [4-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo]; L es una cadena hidrocarbonada lineal de 5 átomos de carbono; Z es -CONH-; P se selecciona del grupo que consiste en albúmina y peroxidasa; y n es un valor seleccionado entre 1 y 50. Según otra realización preferida, el compuesto de formula (II) de la presente invención se caracteriza porque
T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000014_0001
P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, /3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
Según una realización aún más preferida, el compuesto de formula (II) de la presente invención se caracteriza porque T es [6-ciclopropil-2- (fenilamino)pirimidin-4-ilo]; L es una cadena hidrocarbonada lineal de 4 átomos de carbono; Z es -CONH-; P se selecciona del grupo que consiste en albúmina y peroxidasa; y n es un valor seleccionado entre 1 y 50.
Según otra realización preferida, el compuesto de formula (II) de la presente invención se caracteriza porque
T es [(4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000014_0002
P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, /3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
Según una realización aún más preferida, el compuesto de formula (II) de la presente invención se caracteriza porque T es [(4-ciclopropil-6-metilpirimidin-2- il)(fenil)amino]; L es una cadena hidrocarbonada lineal de 4 átomos de carbono; Z es -CONH-; P se selecciona del grupo que consiste en albúmina y peroxidasa; y n es un valor seleccionado entre 1 y 50.
Un tercer aspecto de la presente invención describe un compuesto de fórmula (III):
[T-L-Z]m-Q
(III) caracterizado porque
T, L y Z tienen el mismo significado definido anteriormente para el compuesto de fórmula (II);
Q es un marcador no isotópico; y
m es un número entero con un valor entero entre 1 y 1000.
En la presente invención se entiende por marcador cualquier molécula o fragmento que dé lugar a una señal medible por cualquier tipo de técnica analítica. En la presente invención, Q del compuesto de fórmula (III) identifica un fragmento o una molécula química detectora, marcadora o trazadora.
Este compuesto de fórmula (III) puede utilizarse como antígeno de ensayo junto con un anticuerpo de ciprodinil para determinar o detectar este fungicida en una muestra mediante la tecnología de inmunoensayo competitivo. Según una realización preferida, el compuesto de fórmula (III) se caracteriza porque L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono. Preferentemente, L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono.
Según otra realización preferida adicional, el compuesto de fórmula (III) de la presente invención se caracteriza porque Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-,
Figure imgf000015_0001
Preferentemente, el compuesto de fórmula (III) se caracteriza porque Z es -CONH-.
Según otra realización preferida adicional, el compuesto de fórmula (III) de la presente invención se caracteriza porque Q es biotina, un compuesto luminiscente, un fluoroforo, un marcador acoplado a un sistema de detección indirecta, micro o nanopartículas u otros.
Preferentemente, Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoroforo de cianina, un fluoroforo de rodamina, un fluoroforo de cumanna, un bipirilo de rutenio, lucifehna o uno cualquiera de sus derivados, un éster de achdinio y micro- o nanopartículas de oro coloidal, de carbón o de látex.
Según otra realización preferida, el compuesto de formula (III) de la presente invención se caracteriza porque
T es [3-((4-ciclopropil-6-metilpihmidin-2-il)amino)fenilo] o [4-((4-ciclopropil-6- metilpihmidin-2-il)amino)fenilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000016_0001
Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoroforo de cianina, un fluoroforo de rodamina, un fluoroforo de cumanna, un bipirilo de rutenio, lucifehna o uno cualquiera de sus derivados, un éster de acridinio y micro- o nanopartículas de oro coloidal, de carbón o de látex.
Según otra realización preferida, el compuesto de formula (III) de la presente invención se caracteriza porque
T es [6-ciclopropil-2-(fenilamino)pihmidin-4-ilo]; L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del ru o ue consiste en -CONH-, -NHCO-, -NH
Figure imgf000017_0001
Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoróforo de cianina, un fluoróforo de rodamina, un fluoróforo de cumarina, un bipirilo de rutenio, luciferina o uno cualquiera de sus derivados, un éster de acridinio y micro- o nanopartículas de oro coloidal, de carbón o de látex.
Según otra realización preferida, el compuesto de formula (III) de la presente invención se caracteriza porque
T es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000017_0002
Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoróforo de cianina, un fluoróforo de rodamina, un fluoróforo de cumarina, un bipirilo de rutenio, luciferina o uno cualquiera de sus derivados, un éster de acridinio y micro- o nanopartículas de oro coloidal, de carbón o de látex. Un cuarto aspecto de la presente invención describe un anticuerpo generado en respuesta a un compuesto de fórmula (II) tal como se describe en esta solicitud de patente.
Según una realización preferida de la invención, el compuesto de fórmula (II) que genera un anticuerpo tal como se describe en esta solicitud de patente se caracteriza porque T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-((4-ciclopropil-6- metilpirimidin-2-il)amino)fenilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000018_0001
P se selecciona del grupo que consiste en albúmina, tiroglobulina y hemocianina.
Preferentemente, el compuesto de formula (II) que genera un anticuerpo tal como se descnbe en esta solicitud de patente, se caracteriza porque T es [3- ((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-((4-ciclopropil-6- metilpirimidin-2-il)amino)fenilo]; L es una cadena hidrocarbonada lineal de 5 átomos de carbono; Z es-CONH-; P es albúmina; y n es un valor seleccionado entre 1 y 50.
Según otra realización preferida adicional de la invención, el compuesto de fórmula (II) que genera un anticuerpo tal como se descnbe en esta solicitud de patente se caracteriza porque
T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000018_0002
P se selecciona dentro del grupo que consiste en albúmina, tiroglobulina y hemocianina. Preferentemente, el compuesto de formula (II) que genera un anticuerpo tal como se descnbe en esta solicitud de patente, se caracteriza porque T es [6- ciclopropil-2-(fenilamino)pihmidin-4-ilo]; L es una cadena hidrocarbonada lineal de 4 átomos de carbono; Z es-CONH-; P es albúmina; y n es un valor seleccionado entre 1 y 50.
Según otra realización preferida adicional de la invención, el compuesto de fórmula (II) que genera un anticuerpo tal como se describe en esta solicitud de patente se caracteriza porque
T es [(4-ciclopropil-6-metilpihmidin-2-il)(fenil)amino];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000019_0001
P se selecciona del grupo que consiste en albúmina, tiroglobulina y hemocianina.
Preferentemente, el compuesto de formula (II) que genera un anticuerpo tal como se describe en esta solicitud de patente, se caracteriza porque T es [(4- ciclopropil-6-metilpirimidin-2-il)(fenil)amino]; L es una cadena hidrocarbonada lineal de 4 átomos de carbono; Z es -CONH-; P es albúmina; y n es un valor seleccionado entre 1 y 50.
Un quinto aspecto de la presente invención se refiere a un método in vitro de análisis de ciprodinil en una muestra que comprende las siguientes etapas: a. poner en contacto una muestra con un anticuerpo generado tal como se describe en esta solicitud de patente; b. incubar la muestra y el anticuerpo del paso (a) durante un periodo de tiempo adecuado para que tenga lugar una reacción inmunoquímica; c. determinar la existencia de reacción ¡nmunoquímica tras la incubación del paso (b).
El método de la presente invención permite la determinación cuantitativa o análisis cualitativo del contenido del fungicida ciprodinil en una muestra. Según una realización preferida, la determinación de la reacción ¡nmunoquímica en el paso (c) se realiza mediante un inmunoensayo competitivo, usando como competidor un antígeno de ensayo que es un compuesto de fórmula (II) tal como se describe en esta solicitud de patente. Preferentemente, el inmunoensayo competitivo es de tipo ELISA. Según otra realización preferida, la determinación de la reacción ¡nmunoquímica en el paso (c) se realiza mediante un inmunoensayo competitivo, usando como competidor un antígeno de ensayo que es un compuesto de fórmula (III) tal como se describe en esta solicitud de patente. Preferentemente, el inmunoensayo competitivo es de tipo ELISA. El término inmunoensayo hace referencia a un ensayo analítico en el que ocurre una reacción ¡nmunoquímica para la detección o cuantificación de un analito. Los inmunoensayos competitivos son aquellos en los que el analito compite con el antígeno de ensayo por la unión con el anticuerpo.
El término antígeno en esta solicitud de patente se refiere a una molécula capaz de interaccionar específicamente con un anticuerpo. La interacción o reacción ¡nmunoquímica consiste en la unión específica y no covalente entre un anticuerpo y un antígeno, pudiendo ser éste el analito o un antígeno de ensayo. En la presente memoria el término antígeno de ensayo, antígeno enzimático o trazador se refiere a un compuesto de fórmula (I) acoplado a una molécula portadora o marcadora que se utiliza en el ensayo competitivo.
Un sexto aspecto de la presente invención también se refiere a un kit de detección de ciprodinil que utiliza al menos un anticuerpo generado tal como se describe en esta solicitud de patente. Adicionalmente, el kit de detección de ciprodinil puede comprender un antígeno de ensayo que es un compuesto de fórmula (II) o un compuesto de fórmula (III) tal como se describen en la presente solicitud de patente.
El compuesto de fórmula (II) de la presente invención se puede obtener por un procedimiento que comprende hacer reaccionar un compuesto de fórmula (I) con P, un polipéptido natural o sintético de peso molecular mayor a 2000 daltons, por métodos ampliamente conocidos en la técnica.
El procedimiento de obtención del compuesto de fórmula (II) también puede comprender, de ser necesario, una etapa adicional de activación del grupo funcional Y.
Por otro lado, el compuesto de fórmula (III) de la presente invención se puede obtener por un procedimiento que comprende hacer reaccionar un compuesto de fórmula (I) con Q, un marcador químico no isotópico, por métodos ampliamente conocidos en la técnica. El procedimiento de obtención del compuesto de fórmula (III) también puede comprender, de ser necesario, una etapa adicional de activación del grupo funcional Y.
Cuando el compuesto de fórmula (I) se caracteriza porque Y es un grupo carboxílico, la activación mencionada anteriormente puede tener lugar haciendo reaccionar el compuesto de fórmula (I) con Ν,Ν'- disuccinimidilcarbonato. Este procedimiento de activación puede tener lugar en un disolvente orgánico como por ejemplo acetonitrilo, propanonitrilo, diclorometano, cloroformo, tetrahidrofurano, benceno o tolueno; en presencia de una base como por ejemplotrietilamina, triisopropilamina, piridina, 4-N,N- dimetilaminopiridina, picolina o diazo(1 ,3)biciclo-[5.4.0]undecano; en un intervalo de temperatura entre 0 y 30 °C. Así mismo, la obtención de anticuerpos a partir de compuestos de fórmula (II) también puede tener lugar por métodos de inmunización ampliamente conocidos en la técnica.
Los términos inmunógeno e inmunogénico tal como se utilizan en la presente invención se refieren a una sustancia que es reconocida como extraña al organismo vivo y por lo tanto es capaz de producir o de generar una respuesta inmune en un huésped.
El término anticuerpo se refiere a una molécula que presenta afinidad de unión específica para el analito, excluyendo esencialmente otras sustancias no relacionadas. El término incluye anticuerpos policlonales, anticuerpos monoclonales, anticuerpos recombinantes y fragmentos de anticuerpo.
El término analito se refiere a una sustancia o grupo de sustancias cuya presencia o concentración se quiere determinar en la muestra. En el caso de la presente invención, el analito es el fungicida ciprodinil. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Para preparar anticuerpos frente a ciprodinil se requiere la preparación de derivados funcionalizados de dicho fungicida, es decir, análogos estructurales de ciprodinil que incorporan un grupo funcional susceptible de ser utilizado para la conjugación a un portador P o marcador Q. Este grupo funcional está separado del esqueleto de la molécula de ciprodinil por un espaciador L. La posición de incorporación del grupo funcional a la estructura de ciprodinil para la conjugación no es un aspecto obvio y puede ser determinante para la viabilidad de los inmunógenos como inductores de la producción de anticuerpos de afinidad y selectividad adecuadas frente a ciprodinil e incluso de conjugados de ensayo que permitan el desarrollo de un inmunoensayo sensible y específico para dicho fungicida, objeto último de la presente invención.
A continuación se ¡lustra con algunos ejemplos y dibujos la forma en que puede efectuarse la preparación de varios derivados de ciprodinil que son compuestos de fórmula (I) y los correspondientes compuestos de fórmula (II) inmunogénicos, que no pretenden que sean limitativos de la presente invención, y que sirven para mostrar no solo la forma en que puede efectuarse la preparación de los mismos sino también la importancia que puede tener la naturaleza estructural del inmunogeno para la producción de anticuerpos de afinidad adecuada hacía el analito, aptos para el desarrollo de un buen inmunoensayo.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 . Esquema de la síntesis del compuesto de fórmula (I) CDm6.
Figura 2. Esquema de la síntesis del compuesto de fórmula (I) CDp6. Figura 3. Esquema de la síntesis del compuesto de fórmula (I) CDb5.
Figura 4. Esquema de la síntesis del compuesto de fórmula (I) CDn5.
Figura 5. Esquema de la preparación de un compuesto de fórmula (II) a partir del correspondiente compuesto de fórmula (I).
Figura 6. Señales obtenidas frente a 0.1 pg de compuesto de fórmula (II) antigénico homólogo inmovilizado con los antisueros anti-ciprodinil a diluciones de 1x106 (negro), 3x105 (gris claro) y 1x105 (gris oscuro).
Figura 7. Curvas estándar para ciprodinil en diferentes formatos de ELISA competitivo. EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto la especificidad y efectividad de los compuestos de fórmula (II) como inmunógenos para la obtención de anticuerpos anti-ciprodinil. En los siguientes ejemplos los números en negrita hacen referencia a la correspondiente estructura que se muestra en los esquemas de las Figuras 1 a 4. Estos ejemplos se presentan a modo de demostración pero de ningún modo pueden suponer un límite a la invención.
1. Preparación de compuestos de fórmula (II) 1.1. Síntesis de compuestos de fórmula (I)
Ejemplo 1 . Síntesis de CDm6 [radical del tipo T= R-l]
La síntesis del compuesto CDm6 (5) se describe en la Figura 1 e implica la elaboración del anillo de pirimidina a través de una reacción de condensación en medio básico de la 1 -ciclopropilbutano-1 ,3-d¡ona (1 ) con una aril-guanidina, tal como 3, que incorpora la cadena hidrocarbonada de seis átomos de carbono que constituye el espaciador en la posición adecuada del anillo fenílico. Esta aril-guanidina se prepara previamente en forma de nitrato por reacción del éster metílico del ácido 6-(3-aminofenil)hexanó¡co (E. Moreauet al. , Bioorg. Med. Chem. 2008, 16, 1206-1217) con cianamida en medio etanólico ácido. La síntesis del compuesto CDm6 (5) se completa mediante una reacción de hidrólisis del éster metílico obtenido (4) en medio básico. A continuación se ¡lustran los detalles de la preparación y caracterización de este compuesto de fórmula (I) y los intermedios de su síntesis. i) Preparación del nitrato de 6-(3-guanidinofenil)hexanoato de metilo(3). Una mezcla de 6-(3-aminofenil)hexanoato de metilo (2, 188 mg, 0.850 mmol), disolución acuosa de cianamida al 50% (132 μί, 1 .70 mmol, 2 equiv.) y HN03 concentrado (70% p/v, 84 μΙ_, 1 .13 mmol, 1 .3 equiv.) en EtOH (1 .6 mL) se introdujo en una ampolla topacio bajo nitrógeno. La ampolla se cerró a vacío y se calentó con agitación a 78 °C durante toda la noche. El contenido de la ampolla se transfirió a un matraz con la ayuda de EtOH, se concentró a sequedad bajo vacío y el residuo se purificó por cromatografía, usando CHCI3- MeOH 9: 1 como eluyente, para dar el nitrato de la arilguanidina 3 (242 mg, 87%). 1 H NMR (300 MHz, CDCI3) δ (ppm) 9.62 (1 H, s, NH-C(/VH)-NH2), 7.92 (2H, s ancho, NH-C(NH)-/VH2), 6.60 (1 H, s ancho, /VH-C(NH)-NH2), 7.33 (1 H, dd, J = 8.0, 8.0 Hz, H-5 Ph), 7.14 (1 H, d, J = 7.5 Hz, H-4 Ph), 7.07 (2H, m, H-2 y H-6 Ph), 3.64 (3H, s, C02Me), 2.62 (2H, t, J = 7.6 Hz, H-6), 2.30 (2H, t, J = 7.4 Hz, H-2), 1 .64 (4H, m, H-3 y H-5), 1 .35 (2H, m, H-4); RMN de 13C (75 MHz, CDCI3) δ (ppm) 174.3 (C02Me), 156.4 (NH-C(NH)-NH2), 145.1 (C-3 Ph), 134.0 (C-1 Ph), 130.0 (C-5 Ph), 128.0 (C-4 Ph), 125.2 (C-6 Ph), 122.5 (C-2 Ph), 51 .5 (C02Me), 35.3 (C-6), 33.8 (C-2), 30.6 (C-3), 28.5 (C-5), 24.5 (C-4); IR (NaCI) v /cm"1 3338, 3200, 2940, 1724, 1674, 1600, 1352, 1267, 736; EM (IE)m/z (%) 263 (M+, 100), 262 (13), 246 (4), 233 (3), 232 (18), 221 (17), 190 (5), 170 (12), 148 (8), 132 (38); EMAR m/z calculado para CuH2i N302 263.16338, encontrado 263.16271 .
¡i) Preparación del 6-(3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenil)- hexanoato de metilo (4). Una mezcla del nitrato de arilguanidina 3 (143.1 mg, 0.438 mmol), 1 - ciclopropilbutano-1 ,3-diona (1 , 1 10.5 mg, 0.876 mmol, 3 equiv.), Na2C03 (23.2 mg, 0.219 mmol, 0.5 equiv.) y MeOH (1 mL) contenida en una ampolla de vidrio cerrada a vacío se calentó con agitación a 78°C durante 48 h. La ampolla se abrió y el disolvente se evaporó a presión reducida para dar un residuo que fue purificado por cromatografía de columna, usando CHCI3 como eluyente, para obtener el derivado pirimidínico 4 (96.5 mg, 62%) como un aceite. RMN de 1 H (300 MHz, CDCI3) δ (ppm) 7.50 (1 H, dd, J = 1 .6, 1 .6 Hz, H-2 Ph), 7.39 (1 H, ddd, J = 7.7, 1 .8, 1 .6 Hz, H-4 Ph), 7.19 (1 H, dd, J = 7.7, 7.7 Hz, H-5 Ph), 6.96 (1 H, s ancho, H-NH), 6.80 (1 H, ddd, J = 7.7, 1 .6, 1 .6 Hz, H-6 Ph), 6.51 (1 H, s, H-5 Pirim), 3.66 (3H, s, CO2Me), 2.60 (2H, t, J = 7.5 Hz, H-6), 2.34 (3H, s, Me), 2.31 (2H, t, J = 7.7 Hz, H-2), 1 .85 (1 H, m, CH-ciclopropilo), 1 .67 (4H, m, H-3 yH-5), 1 .39 (2H, m, H-4), 1 .15 y 0.99 (2H cada uno m, CH2CH2-ciclopropilo); RMN de 13C (75 MHz, CDCI3) δ (ppm) 174.2 (C02Me), 172.4 (C-2 Pihm), 166.6 (C-6 Pirim), 159.8 (C-4 Pihm), 143.1 (C-3 Ph), 140.1 (C-1 Ph), 128.6 (C-5 Ph), 121.9 (C-4 Ph), 1 18.6 (C-6 Ph), 1 16.0 (C-2 Ph), 1 10.0 (C-5 Pirim), 51 .4 (C02Me), 35.9 (C-6), 34.0 (C-2), 31 .0 (C-3), 28.7 (C-5), 24.8 (C-4), 23.8 (Me), 16.8 (CH-ciclopropilo), 10.3 (CH2CH2-ciclopropilo); IR (NaCI) i /cm~1 3356, 3009, 2932, 2850, 1736, 1588, 1541 , 1445, 1 171 , 789, 695; EM (\E)m/z (%) 353 (M+, 97), 352 (28), 323 (49), 322 (15), 294 (12), 280 (17), 266 (1 1 ), 252 (51 ), 250 (87), 240 (17), 239 (100), 238 (23), 221 (20); EMAR m/z calculado para C2iH27N302353.21033, encontrado 353.21022. iii) Preparación del ácido 6-(3-((4-ciclopropil-6-metilpyrimidin-2-il)amino)fenil) hexanoico (5, compuesto CDm6).
Una mezcla del éster metílico 4 (82.3 mg, 0.233 mmol) en una mezcla de MeOH (2 ml_) y una disolución acuosa 2M de NaOH (0.47 ml_, 0.932 mmol, 4 equiv.) se calentó a reflujo con agitación durante 2 h. Después de eliminar el disolvente a presión reducida, el residuo sólido obtenido se disolvió en la mínima cantidad de ácido fórmico y la disolución resultante se agitó a la vez que se añadía agua, gota a gota, hasta la aparición de un sólido blanco. La suspensión blanquecina se dejo enfriando en la nevera durante varias horas y se filtró. Los cristales se lavaron con agua fría y se secaron durante toda la noche en un desecador a vacío, para obtener el compuesto CDm6 (5, 57.7 mg, 73%) como un sólido, prácticamente puro por análisis de 1H RMN. Pf. 170-173 °C (cristalizado de DMSO-H20); 1H NMR (300 MHz, DMSO-d6) δ (ppm) 1 1 .98 (1 H, s ancho, C02H), 9.26 (1 H, s, NH), 7.69 (1 H, s ancho, H-2 Ph), 7.45 (1 H, d ancho, J = 8.0 Hz, H-4 Ph), 7.1 1 (1 H, dd, J = 7.7, 7.7 Hz, H-5 Ph), 6.71 (1 H, d ancho, J = 7.7 Hz, H-6 Ph), 6.66 (1 H, s, H-5 Pihm), 2.28 (3H, s, Me), 2.56 (2H, t, J = 7.5 Hz, H-6), 2.20 (2H, t, J = 7.3 Hz, H-2), 1 .94 (1 H, m, CH-ciclopropilo), 1 .56 (4H, m, H-3 yH-5), 1.31 (2H, m, H-4), 1.01 (4H, m, CH2CH2-ciclopropilo); 13C NMR (75 MHz, DMSO-d6) δ (ppm) 174.4 (C02H), 171.4 (C-2 Pirim), 166.2 (C-6 Pirim), 159.8 (C-4 Pirim), 142.1 (C-3 Ph), 140.8 (C-1 Ph), 128.1 (C-5 Ph), 120.9 (C-4 Ph), 1 18.2 (C-6 Ph), 1 15.8 (C-2 Ph), 109.4 (C-5 Pirim), 35.3 (C-6), 33.5 (C-2), 30.5 (C-5), 28.2 (C-4), 24.3 (C-3), 23.3 (Me), 16.2 (CH-ciclopropilo), 9.8 (CH2CH2-ciclopropilo); IR (KBr) /crrf1 3292, 3213, 3101 , 3014, 2932, 2853, 1700, 1633, 1604, 1558, 1487, 1452, 1404, 1264, 960, 784; EMAR (TOF EM ES+) m/z calculado para C2oH25N302Na[M+Na]+ 362.18445, encontrado 362.18380.
Ejemplo 2. Síntesis de CDp6 (9) [radical del tipo T= R-l]
La síntesis del compuesto CDp6 (9) se describe en la Figura 2. Su síntesis parte de la 1 -ciclopropilbutano-1 ,3-diona (1 ) e implica una secuencia de transformaciones idéntica a la descrita en el ejemplo 1 para la preparación del compuesto CDm6 (5), pero utilizando en este caso la aril-guanidina 7, preparada a partir de la reacción del éster metílico del ácido 6-(4-aminofenil)hexanó¡co (6) (C. Suárez-Pantaleón et al., J. Agrie. FoodChem. 2008, 56, 1 1 122-1 1 131 ) con cianamida en medio etanólico ácido.
A continuación se ¡lustran los detalles de la preparación y caracterización de este compuesto de fórmula (I) y los intermedios de su síntesis. i) Preparación del nitrato de 6-(4-guanidinofenil)hexanoato de metilo (7)
Una mezcla de 6-(4-aminofenil)hexanoato de metilo (6, 1 15 mg, 0.515 mmol), disolución acuosa al 50% de cianamida (75 μΙ_, 0.780 mmol, 1 .5 equiv.) y HN03 concentrado (70% p/v, 40 μΙ_, 0.517 mmol, 1 equiv.) en EtOH (1 mL) se calentó en una ampolla cerrada con agitación a 78 °C por 22 h. El contenido de la ampolla se concentró a vacío y el aceite anaranjado obtenido se purificó por cromatografía de columna sobre gel de sílice, usando CHCl3-MeOH 9: 1 como eluyente, para obtener la aril-guanidina 7 (134.5 mg, 79%), en forma de nitrato, como un sólido blanco. Pf 1 19-121 °C (cristalizado de CHCI3-EtOAc); RMN de 1H (300 MHz, CDCI3) δ (ppm) 9.54 (1 H, s, NH-C(/VH)-NH2), 7.80 (3H, sa, /VH-C(NH)-/VH2), 7.20 (2H, aparente d, parte AA de un sistema ΑΑΒΒ', J = 8.1 Hz, H-2/H-6 Ph), 7.13 (2H, aparente d, parte ΒΒ' de un sistema AA'BB', J = 8.1 Hz, H-3/H-5 Ph), 3.64 (3H, s, C02Me), 2.60 (2H, t, J = 7.5 Hz, H-6), 2.28 (2H, t, J = 7.5 Hz, H-2), 1 .61 (4H, m, H-3 y H-5), 1 .34 (2H, m, H-4); RMN de 13C (75 MHz, CDCI3) δ (ppm) 174.1 (C02Me), 156.6 (NH-C(NH)-NH2), 142.7 (C-1 Ph), 131 .6 (C-4 Ph), 130.1 (C-2/C-6 Ph), 125.5 (C-3/C-5 Ph), 51 .5 (CO2Me), 35.1 (C-6), 33.8 (C-2), 30.8 (C-3), 28.5 (C-5), 24.6 (C-4); EM (\E)m/z (%) 263(M+, 8), 247 (1 ), 246 (7), 221 (10), 170 (25), 148 (15), 132 (10), 131 (59), 106 (26), 106 (100); EMAR m/z calculado para CuH2 N302 263.16338, encontrado 263.16446. ii) Preparación del 6-(4-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenil) hexanoato de metilo (8)
Una mezcla de la arilguanidina 7 (1 16 mg, 0.355 mmol), 1 -ciclopropilbutano- 1 ,3-diona (1 , 134.5 mg, 1 .066 mmol, 3 equiv.), Na2C03 (18.8 mg, 0.177 mmol, 0.5 equiv.) y MeOH (1 mL) contenida en una ampolla cerrada a vacío se calentó con agitación a 78 °C durante 50 h. El contenido de la ampolla se concentró a presión reducida y se cromatografió en gel de sílice, usando CHCI3 como eluyente, para obtener el derivado pirimidílico 8 (95 mg, 76%) como un aceite viscoso. RMN de 1H (300 MHz, CDCI3) δ (ppm) 7.51 (2H, aparente d, parte AA' de un sistema AA'BB', J = 8.4 Hz, H-3/H-5 Ph), 7.09 (2H, aparente d, parte ΒΒ' de un sistema AA'BB', J = 8.4 Hz, H-2/H-6 Ph), 6.94 (1 H, sa, H-NH), 6.48 (1 H, s, H-5 Pirim), 3.66 (3H, s, CO2Me), 2.56 (2H, t, J = 7.5 Hz, H-6), 2.30 (2H, t, J = 7.6 Hz, H-2), 1 .84 (1 H, m, CH-ciclopropilo), 1 .62 (4H, m, H-3 yH-5), 1 .36 (2H, m, H-4), 1 .13 y 0.98 (2H cada uno, cada uno m, CH2CH2-ciclopropilo); RMN de 13C (75 MHz, CDCI3) δ (ppm) 174.2 (CO2Me), 172.4 (C-2 Pirim), 166.5 (C-6 Pirim), 159.9 (C-4 Pirim), 137.8 (C-1 Ph), 135.8 (C-4 Ph), 128.6 (C-2/C-6 Ph), 1 18.6 (C-3/C-5 Ph), 109.7 (C-5 Pirim), 51 .4 (CO2Me), 35.0 (C-6), 34.0 (C- 2), 31 .1 (C-3), 28.7 (C-5), 24.8 (C-4), 23.8 (Me), 16.8 (CH-ciclopropilo), 10.2 (CH2CH2-ciclopropilo); IR (KBr) /crrf1 3361 , 3273, 3192, 3008, 2930, 2855, 1736, 1595, 1530, 1463, 1405, 1364, 1290, 1248, 959, 818, 757; EM (IE)m/z (%) 353 (M+, 81 ), 352 (12), 323 (2), 322 (7), 252 (5), 239 (21 ), 238 (100), 221 (6), 187 (6), 106 (58); EMAR m/z calculado para C21 H27N3O2 353.21033, encontrado 353.21057. iii) Preparación del ácido 6-(4-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenil) hexanoico (9, compuesto CDp6) Una disolución del éster metílico 8 (128.5 mg, 0.364 mmol) en una mezcla de MeOH (4 ml_) y NaOH acuoso 2M (0.73 ml_, 1 .46 mmol, 4 equiv.) se agitó a 60 °C durante 2.5 h. La mezcla de reacción amarillenta formada se transfirió a un matraz y la mayoría del disolvente se eliminó a presión reducida. El residuo pardusco semisólido obtenido se disolvió en ácido fórmico (aproximadamente 0.5 ml_), se diluyó con agua y se extrajo con CHCI3. Los extractos orgánicos reunidos se lavaron con disolución saturada de NaCI y se secaron sobre MgS04 anhidro. La filtración y evaporación del disolvente a vacío proporcionó el compuesto CDp6 (9, 104.5 mg, 85%) como un sólido blanco y que por análisis de RMN de 1H y cromatografía de capa fina mostró ser prácticamente puro. Pf 146-147 °C (cristalizado deMeOH); 1H RMN de (300 MHz, DMSO-d6) δ (ppm) 1 1.97 (1 H, s, COOH), 9.22 (1 H, s, NH), 7.62 (2H, aparente d, parte AA de un sistema ΑΑΒΒ', J = 8.5 Hz, H-3/H-5 Ph), 7.04 (2H, aparente d, parte ΒΒ' de un sistema AA'BB', J = 8.5 Hz, H-2/H-6 Ph), 6.62 (1 H, s, H-5 Pirim), 2.48 (2H, t, J = 7.5 Hz, H-6), 2.19 (2H, t, J = 7.6 Hz, H-2), 1 .92 (1 H, m, CH- ciclopropilo), 1.52 (4H, m, H-3 yH-5), 1 .27 (2H, m, H-4), 0.99 (4H, m, CH2CH2- ciclopropilo); 13C RMN de (75 MHz, DMSO-d6) δ (ppm) 174.4 (C02Me), 171 .4 (C-2 Pirim), 166.1 (C-6 Pirim), 159.8 (C-4 Pirim), 138.6 (C-1 Ph), 134.4(C-4 Ph), 128.0 (C-2/C-6 Ph), 1 18.4 (C-3/C-5 Ph), 109.0 (C-5 Pirim), 34.3 (C-6), 33.5 (C- 2), 30.8 (C-5), 28.1 (C-4), 24.3 (C-3), 23.3 (Me), 16.3 (CH-ciclopropilo), 9.8 (CH2CH2-c¡cloprop¡lo); IR (KBr) /cm"1 3306, 3209, 3006, 2968, 2928, 2848, 1684, 1592, 1559, 1517, 1406, 964, 807; EM (IE)m/z (%) 339 (M+, 75), 338 (12), 252 (6), 250 (2), 240 (2), 239 (20), 238 (100), 237 (2), 236 (2), 224 (2), 222 (2), 131 (4); EMAR m/z calculado para C20H25N3O2 339.19468, encontrado 339.19430. Ejemplo 3. Síntesis de CDb5 (18) [radical del tipo T= R-IV]
La síntesis del compuesto de fórmula (I) que incorpora el espaciador por el anillo de pirimidina se basa en la preparación previa de un compuesto 1 ,3- dicarbonílico que incorpora en la posición adecuada la cadena hidrocarbonada carboxilada que constituye el espaciador del compuesto de fórmula (I) en cuestión. Una vez preparado este intermedio se completa la elaboración del anillo de pirimidina a través de una reacción de condensación de los grupos carbonilo con los grupos amino de la fenilguanidina. Tal como se ¡lustra en la Figura 3, la preparación del compuesto 1 ,3-dicarbonílico (15) se lleva a cabo a través de la reacción de acilación del 3-ciclopropil-3-oxopropanoato de alilo (12), obtenido vía condensación de Claisen de la ciclopropilmetilcetona (10) con carbonato de dialilo (11 ) en medio básico, con el 6-cloro-6-oxohexanoato de metilo (13), seguido de reacción de desalilación-descarboxilativa catalizada por Pd(0). La condensación de la 1 ,3-dicetona (15), que existe en un equilibrio tautomérico en el que básicamente predomina la forma enólica, con el nitrato de la fenilguanidina (16) en medio básico genera el esqueleto completo del hapteno cuya síntesis finaliza con la hidrólisis del éster metílico de (17) en medio básico acuoso. A continuación se ¡lustran los detalles de la preparación y caracterización de este compuesto (18) y todos los intermedios de su síntesis. i) Preparación del 3-ciclopropil-3-oxopropanoato de alilo ( 12)
Carbonato de dialilo (11 , 1 .0 g, 2.55 mL, 17.82 mmol, 1 .5 equiv.) y 1 -ciclopropiletanona (10, 1 .17 mL, 1 1 .88 mmol, 1 equiv.) se añadieron sucesivamente a una suspensión agitada de HNa (dispersión al 60% en aceite mineral, 1 .19 g, 29.75 mmol, 2.5 equiv.) en benceno anhidro (5 mL) a temperatura ambiente bajo nitrógeno y la mezcla se refluyó durante 5 h. La mezcla de reacción se enfrió a 0 °C, se trató cuidadosamente con disolución acuosa de HCI 3 M hasta pH ácido y se extrajo con CH2CI2. Los extractos orgánicos se lavaron con disolución saturada de NaCI, se secaron con MgS04 anhidro y se concentraron a sequedad. El residuo obtenido se purificó por cromatografía sobre gel de sílice, usando hexano-Et20 9: 1 como eluyente, para proporcionar el /3-cetoéster 12 (1 .36 g, 60%) como un aceite. RMN de 1 H (CDCIs) δ (ppm) 5.88 (1 H, ddt, J =17.2, 10.4, 5.7 Hz, H-2 alilo), 5.32 (1 H, ddt, J = 17.2, 1.5, 1 .5 Hz, H-3 alilo), 5.23 (1 H, ddt, J = 10.4, 1.5, 1 .4 Hz, H'-3 alilo), 4.62 (2H, dt, J = 5.7, 1 .4 Hz, H-1 alilo), 3.58 ( 2H, s, H-2), 2.02 (1 H, tt, J = 4.5, 4.4 Hz, CH-ciclopropilo), 1 .09 y 0.95 (2H cada uno, cada uno m, CH2CH2- ciclopropilo); RMN de 13C (CDCI3) δ (ppm) 202.4 (C-1 ), 166.6 (C-3), 131 .5 (C-2 alilo), 1 18.4 (C-3 alilo), 65.6 (C-1 alilo), 49.6 (C-2), 20.6 (CH-ciclopropilo), 1 1 .5 (CH2CH2-c¡cloprop¡lo); IR (NaCI) /cm"13088, 3012, 2943, 1736, 1707, 1649, 1442, 1385, 1312, 1271 , 1 151 , 1074, 992, 933, 735. ii) Preparación del (E)-2-(ciclopropanocarbonil)-3-hidroxioct-2-enodioato de 1-alil-8-metilo (14)
El /3-cetoéster 12 (288.3 mg, 1 .5 mmol) se añadió sobre una suspensión agitada de MgCI2 (142.8 mg, 1 .5 mmol) en CH2CI2 seco (2 ml_) a temperatura ambiente bajo nitrógeno. La mezcla de reacción se enfrió a 0 °C, se añadió piridina seca (243 μΙ_, 3 mmol) y la mezcla resultante se agitó a esta temperatura durante 15 min. A continuación se añadió cloruro de adipoilo (13, 234 μΙ_, 1 .5 mmol) y se agitó a 0 °C durante 15 min y luego a temperatura ambiente durante 1 h. Después de adicionar HCI 6 M (3 ml_) a la suspensión blanquecina formada, la mezcla se extrajo con Et20, los extractos orgánicos se lavaron con disolución saturada de NaCI y se secaron sobre MgS04 anhidro. La purificación cromatográfica del residuo obtenido, utilizando hexano-EtOAc 9: 1 como eluyente, proporcionó un aceite amarillento correspondiente a la /3-dicetona esperada, la cual existe exclusivamente en la forma tautomérica ceto-enólica 14 (457.5 mg, 98%). RMN de 1H (CDCI3) δ (ppm) 5.98 (1 H, ddt, J =17.2, 10.4, 5.9 Hz, H-2 alilo), 5.32 (1 H, ddt, J = 17.2, 1 .5, 1 .5 Hz, H-3 alilo), 5.23 (1 H, ddt, J = 10.4, 1 .3, 1 .3 Hz, H'-3 alilo), 4.72 (2H, dt, J = 5.9, 1 .3 Hz, H-1 alilo), 2.60 (2H, m, H-7), 2.31 (3H, m, H-4yCH-ciclopropilo), 1 .66 (4H, m, H- 5yH-6), 1 .22 y0.99 (2H cada uno, cada uno m, CH2CH2-ciclopropilo). RMN de 13C (CDCI3) δ (ppm) 199.2 (CO-ciclopropilo), 195.0 (C-3), 173.8 (C02Me), 167.4 (C-1 ), 131 .7 (C-2 alilo), 1 19.1 (C-3 alilo), 108.6 (C-2), 65.7 (C-1 alilo), 51 .5 (CO2Me), 36.6 (C-4), 33.7 (C-7), 25.4 (C-6), 24.5 (C-5), 16.6 (CH-ciclopropilo), 12.1 (CH2CH2-ciclopropilo); IR (NaCI) /cm"13087, 3014, 2952, 2873, 1735, 1560, 1437, 1271 , 1208, 1 101 , 1062, 936, 737; EM (IE) m/z(%) 310 (M+, 0.7), 282 (0.6), 252 (1 ), 253 (0.5), 251 (0.4), 226 (2.5), 220 (0.4), 195 (4), 143 (6.4), 126 (10), 1 1 1 (30), 69 (100); EMAR m/z calculado para Ci6H2206 310.14164, encontrado 310.14148. üi) Preparación de (Z)-8-ciclopropil-6-hidroxi-8-oxooct-6-enoato de metilo ( 15)
Sobre una disolución del éster alílico 14 (431 mg, 1 .388 mmol) en THF (5.8 ml_) se añadieron Pd(PPh3)4 (105.6 mg, 0.091 mmol, 0.06 equiv.) y morfolina (254 μΙ_, 2.916 mmol, 2 equiv.) gota a gota. La mezcla de reacción se dejó calentar hasta temperatura ambiente y se agitó a esta temperatura durante 40 min. El disolvente se eliminó a presión reducida y el residuo obtenido se purificó por cromatografía sobre gel de sílice, usando hexano-Et20 9: 1 como eluyente, para dar el ceto-enol 15 (285.8 mg, 91 %), que existe en equilibrio con la forma tautomérica 6,8-dicetónica [aproximadamente una mezcla 4: 1 de la forma ceto-enol 15 y el tautómero 6,8-dicetónico]. RMN de 1 H (CDCI3) δ (ppm) 15.63 (0.8H, s, OH, forma ceto-enol), 5.60 (0.8H, s, H-7 forma ceto-enol), 3.67 (3H, s, CO2Me formas ceto-enol + diceto), 3.66 (0.4H, s, H-7 forma diceto), 2.51 (0.4H, m, H-5 forma ceto), 2.34 (2H, t, J = 7.1 Hz, H-2 formas ceto-enol + diceto), 2.26 (1 .6H, t, J = 7.1 Hz, H-5 forma ceto-enol), 2.0 (0.2H, m, CH- ciclopropilo forma diceto), 1 .55-1 .51 (4.8H, m, H-3 y H-4 formas ceto-enol + diceto y CH-ciclopropilo forma ceto-enol), 1 .09 y0.92 (2H cada uno, cada uno m, CH2CH2-ciclopropilo formas ceto-enol + diceto); RMN de 13C (CDCI3) (solo se dan las señales del tautómero ceto-enol mayoritario 15) δ (ppm) 199.0 (C-8), 187.3 (C-6), 173.7 (CO2Me), 98.8 (C-7), 51 .5 (CO2Me) 36.3 (C-5), 33.6 (C-2), 25.3 (C-3), 24.3 (C-4), 18.5 (CH-ciclopropilo), 10.2 (CH2CH2-ciclopropilo); IR (NaCI) /cm"1 3008, 2945, 2863, 1735, 1609, 1440, 1377, 932, 777. iv) Preparación de 5-(6-ciclopropil-2-(fenilamino)pirimidin-4-il)pentanoato de metilo (17) Una mezcla del nitrato de la fenilguanidina 16 (289.1 mg, 1.459 mmol, 1 .6 equiv.), Na2C03 (76.3 mg, 0.72 mmol, 0.8 equiv.) y el ceto-enol 15 (203.6 mg, 0.90 mmol) en MeOH (2.5 mL) se calentó a 80 °C con agitación en una ampolla cerrada durante 24 h. La mezcla de reacción se vertió sobre agua y se extrajo con EtOAc. Los extractos orgánicos se lavaron con disolución acuosa saturada de NaCI, se secó sobre Na2SO4 anhidro y se concentraron para dar un residuo aceitoso que se purificó cromatográficamente sobre gel de sílice, usando hexano-EtOAc 9: 1 como eluyente, proporcionando el derivado pirimidínico 17 (231 .3 mg, 79%) como un aceite. RMN de 1H (CDCI3) δ (ppm) 7.62 (2H, aparente dd, parte AA' de un sistema AA'BB'C, J= 7.5, 0.9 Hz, H-2/H-6 Ph), 7.30 (2H, aparente t, parte ΒΒ' de un sistema AA'BB'C, J = 7.5 Hz, H-3/H-5 Ph), 7.01 (1 H, sa, NH), 6.97 (1 H, aparente tt, parte C de un sistema AA'BB'C, J = 7.5, 0.9 Hz, H-4 Ph), 6.49 (1 H, s, H-5 Pirim), 3.67 (3H, s, CO2Me), 2.59 (2H, t, J = 7.2 Hz, H-5), 2.36 (2H, t, J = 7.2 Hz, H-2), 1 .86 (1 H, m, CH-ciclopropilo), 1 .72 (4H, m, H-3 yH-4), 1 .15 y 0.98 (2H cada uno, cada uno m, CH2CH2- ciclopropilo); RMN de 13C (CDCI3) δ (ppm) 173.9 (CO2Me), 172.5 (C-4 Pirim), 169.8 (C-2 Pirim), 159.8 (C-6 Pirim), 140.1 (C-1 Ph), 128.7 (C-3/C-5 Ph), 121.6 (C-4 Ph), 1 18.4 (C-2/C-6 Ph), 109.5 (C-5 Pirim), 51 .5 (CO2Me), 37.1 (C-5), 33.8 (C-2), 27.9 (C-4), 24.5 (C-3), 16.8 (CH-ciclopropilo), 10.3 (CH2CH2-ciclopropilo); IR (NaCI) /cm"13356, 3002, 2939, 2856, 1730, 1584, 1443, 1249, 1026, 754; EM (IE) m/z(%) 325 (M+, 17), 324 (4), 295 (2), 294 (8), 266 (4), 252 (13), 226 (16), 225 (100), 224 (1 1 ), 178 (3); EMAR m/z calculado para Ci9H23N3O2 325.17903, encontrado 325.17933. v) Preparación del ácido 5-(6-ciclopropil-2-(fenilamino)pirimidin-4-il) pentanoico ( 18, compuesto de fórmula (l) CDb5)
Una disolución del éster metílico 17 (159 mg, 0.488 mmol) en una mezcla de MeOH (5.3 mL) y disolución acuosa de NaOH 2 M (0.98 mL, 1 .96 mmol, 4 equiv.) se agitó a 60 °C durante 1 .5 h. La mayor parte del disolvente se eliminó a presión reducida y el residuo resultante se disolvió en la mínima cantidad de ácido fórmico y la disolución resultante se concentró de nuevo a vacío. El residuo sólido blanco obtenido se purificó por cromatografía sobre gel de sílice, usando CHC -EtOAc 9: 1 como eluyente, para dar el compuesto CDb5 (18, 129.3 mg, 85%) como un sólido blanco, prácticamente puro por análisis de RMN de 1H y cromatografía de capa fina. Pf 158-160 °C (cristalizado de benceno); RMN de 1H (DMSO-d6) δ (ppm) 12.02 (1 H, s, COOH), 9.32 (1 H, s, NH), 7.74 (2H, aparente dd, parte AA' de un sistema AA'BB'C, J = 7.7, 0.9 Hz, H-2/H-6 Ph), 7.23 (2H, aparente t, parte ΒΒ' de un sistema AA'BB'C, J = 7.7 Hz, H-3/H-5 Ph), 6.88 (1 H, aparente tt, parte C de un sistema AA'BB'C, J = 7.3, 0.9 Hz, H-4 Ph), 6.67 (1 H, s, H-5 Pirim), 2.54 (2H, t, J = 7.3 Hz, H-5), 2.25 (2H, t, J = 7.2 Hz, H-2), 1 .95 (1 H, m, CH-ciclopropilo), 1 .67 (2H, m, H-4), 1 .54 (2H, m, H-3), 1 .03-0.97 (4H, m, CH2CH2-c¡cloprop¡lo); RMN de 13C (DMSO-d6) δ (ppm) 174.3 (C02H), 171 .6 (C-4 Pirim), 169.7 (C-2 Pirim), 159.8 (C-6 Pirim), 140.9 (C- 1 Ph), 128.3 (C-3/C-5 Ph), 120.7 (C-4 Ph), 1 18.3 (C-2/C-6 Ph), 108.8 (C-5 Pirim), 36.4 (C-5), 33.4 (C-2), 27.5 (C-4), 24.1 (C-3), 16.4 (CH-ciclopropilo), 9.9 (CH2CH2-c¡cloprop¡lo); IR (KBr) /crrf1 3290, 3138, 2936, 2360, 1684, 1590, 1558, 1499, 1386, 1250, 970, 756, 689; EM (IE) m/z(%) 31 1 (M+, 24), 310(4), 309 (2), 266 (4), 265 (6), 264 (14), 250 (4), 238 (1 1 ), 226 (14), 224 (16), 225 (100), 210 (4.5); EMAR m/z calculado para Ci8H2 N302 31 1 .16338, encontrado 31 1 .16254. Ejemplo 4. Síntesis de CDn5 (21 ) [radical del tipo T= R-V]
La síntesis del compuesto de fórmula (I) que incorpora el espaciador por el nitrógeno amínico de ciprodinil se lleva a cabo a través de una reacción de alquilación del anión amiduro derivado del mismo con el ω-bromo éster de longitud de cadena adecuada, seguido de hidrólisis básica del grupo éster al correspondiente ácido carboxílico, tal como se ¡lustra en la Figura 4 y se detalla a continuación. i) Preparación del 5-((4-ciclopropil-6-metilpirimidin-2-il) (fenil)amino)pentanoato de metilo (20) Una disolución de ciprodinil (170 mg, 0,754 mmol) en DMF anhidra (3 ml_) se añadió gota a gota sobre una disolución agitada de NaOH (60% dispersión en aceite mineral, 36.9 mg, 0.925 mmol, 1 .2 equiv. , prelavado con pentano seco) en DMF (2 ml_) a 0 °C bajo nitrógeno. Después de 30 min de agitación a esta temperatura la mezcla de reacción se dejó calentar hasta temperatura ambiente y se agitó durante 15 min adicionales. A continuación se añadió 5- bromoisovalerato de metilo (19, 0.224 ml_, 1 .51 mmol, 2 equiv.) y la mezcla se agitó a temperatura ambiente durante 72 h. Transcurrido este tiempo la mezcla de reacción se vertió sobre agua y se extrajo con EtOAc. Los extractos orgánicos combinados se lavaron sucesivamente con disoluciones acuosas saturadas de LiCI y Na, se secaron sobre Na2S04 y se concentraron a vacío. El residuo obtenido se cromatografio sobre gel de sílice, usando hexano-EtOAc 9: 1 como eluyente, obteniéndose una mezcla aproximadamente 7:3 (basado en el análisis de RMN de 1 H) del éster y el material de partida no reaccionado que no pudo separarse por las técnicas cromatográficas convencionales (203.4 mg). ii) Preparación del ácido 5-((4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino) pentanoico (21, compuesto de fórmula (l) CDn5)
Se añadió L¡OH H20 (158.4 mg, 3.80 mmol) a una disolución de la mezcla previamente obtenida (200 mg, ca. 0.41 mmol de 20) en THF (3.3 ml_) y agua (1 .5 ml_). La mezcla de reacción se agitó a temperatura ambiente durante 24 hy el THF se eliminó a presión reducida en un rotavapor. El residuo obtenido se diluyó con agua (4 mL), se acidificó por la adición de KHS04 sólido hasta pH 3- 4 y se extrajo con EtOAc. Los extractos orgánicos combinados se secaron sobre Na2S04 anhidro y se concentraron para obtener un residuo que se purificó por cromatografía sobre gel de sílice, usando CHCl3-MeOH 9: 1 como eluyente, para proporcionar, en orden de elución, ciprodinil de partida no reaccionado (53 mg) y el compuesto deseado CDn5 (21 , 132.6 mg, 54% a partir de ciprodinil) como un sólido. Pf 1 18-121 °C (cristalizado de hexano- benceno). RMN de 1 H (300 MHz, CDCI3) δ (ppm) 10.0 (1 H, sa, COOH), 7.37-7.17 (5H, m, Ph), 6.37 (1 H, s, H-5 Pirim), 3.99 (2H, t, J = 6.9 Hz, H-5), 2.37 (2H, t, J = 6.9 Hz, H-2), 1 .67 (4H, m, H-3 y H-4), 1 .75 (1 H, m, CH-ciclopropilo), 0.96 y 0.87 (2H cada uno, cada uno m, CH2CH2-ciclopropilo); RMN de 13C (75 MHz, CDCIs) δ (ppm) 179.2 (C-1 ), 171 .4 (C-2 Pirim), 166.2 (C-4 Pirim), 161 .6 (C-6 Pirim), 144.6 (C-1 Ph), 128.6 (C-3/C-5 Ph), 127.4 (C-2/C-6 Ph), 125.1 (C-4 Ph), 108.5 (C-5 Pirim), 49.6 (C-5), 33.7 (C-2), 27.4 (C-4), 23.9 (Me), 21 .9 (C-3), 16.5 (CH-ciclopropilo), 9.8 (CH2CH2-ciclopropilo); IR (KBr) vmax/cm"1 3400- 2600, 3009, 2940, 2861 , 1698, 1574, 1558, 1473, 1398, 1307, 1236, 1 100, 959, 819, 702; EM (IE)m/z (%) 325 (M+, 25), 324 (1 1 ), 310 (2), 253 (6), 252 (33), 250 (2.5), 239 (19), 238 (100), 225 (19), 224 (21 ), 222 (3), 210 (2), 163 (6); EMAR m/z calculado para Ci9H23N302 325.17903, encontrado 325.17857.
1.2. Activación de los compuestos de fórmula (I)
Los ejemplos de compuestos de fórmula (I) aquí presentados contienen un grupo carboxilo como grupo químico funcional para su conjugación a proteínas portadoras, concretamente por reacción con los grupos amino libres de la proteína. El grupo carboxilo se activó según el esquema de la Figura 5, utilizando carbonato de /V,/V'-disuccinimidilo(DSC) siguiendo protocolos previamente publicados [F.A. Esteve-Turrillas et al. , Anal. Chim. /4cfa2010, 682, 93-103]. En concreto, se disolvió 0.082 mmol del correspondiente compuesto de fórmula (I) de ciprodinil y 0.14 mmol de DSC en 0.8 ml_ de acetonitrilo seco en atmósfera de nitrógeno. A continuación, se añadió 0.31 mmol de trietilamina y se agitó a temperatura ambiente hasta la desaparición del material de partida (análisis por cromatografía de capa fina). La disolución se diluyó en cloroformo, se lavó con una disolución saturada de NaHC03 y salmuera y se secó con Na2S04 anhidro. Después de evaporar el disolvente, el residuo restante se purificó por cromatografía en columna, usando cloroformo como eluyente, obteniéndose el éster de /V-hidroxisuccinimida del compuesto de fórmula (I) de ciprodinil en forma pura. 1.3. Conjugación de los compuestos de fórmula (I) a proteínas para obtener compuestos de fórmula (II)
Tampones y disoluciones:
PB: Tampón fosfato sódico 100 mM,pH 7.4;
PBS: Tampón fosfato sódico 10 mM, pH 7.4 con NaCI 140 mM;
PBST: Tampón PBS conteniendo 0.05% (v/v) de polioxietilen (20) sorbitanmonolaurato (conocido como Tween 20);
CB: Tampón carbonato sódico 50 mM, pH 9.6;
Disolución de lavado: NaCI 150mM conteniendo 0.05% (v/v) de Tween 20. Los analitos se disolvieron en Λ/,/V-dimetilformamida (DMF) anhidra y se almacenaron a -20 °C.
Los compuestos de fórmula (II) se prepararon como se esquematiza en la Figura 5, según los procedimientos siguientes.
1 .3.1 . Inmunógeno A 2.0 mL de una disolución de 15 mg/mL de proteína albúmina de suero bovino (BSA) en tampón CB se añadió gota a gota 200 μί de una disolución 50 mM de compuesto de fórmula (I) activado, obtenido tal como se indica en el apartado 1 .2, en DMF. La reacción se llevó a cabo durante 4 h a temperatura ambiente con agitación suave y a continuación, el conjugado se purificó por cromatografía de exclusión molecular usando tampón PB como eluyente. El grado de conjugación, n tal como se describe en el compuesto de fórmula (II), medido espectrofotométricamente fue de 1 1 , 1 1 , 14 y 14 para CDm6, CDp6, CDb5 y CDn5, respectivamente.
1 .3.2. Compuesto de fórmula (II) como antígeno de ensayo A 2.0 mL de una disolución de 15 mg/mL de proteína albúmina de huevo (OVA) en tampón CB se añadió gota a gota 100 μί de una disolución 100 mM de compuesto de fórmula (I) activado, obtenido tal como se indica en el apartado 1 .2, en DMF. La reacción se llevó a cabo durante 2.5 h a temperatura ambiente con agitación suave y a continuación, el compuesto de fórmula (II) se purificó por cromatografía de exclusión molecular usando tampón PB como eluyente. El grado de conjugación, n tal como se describe en el compuesto de fórmula (II), medido espectrofotom ófricamente fue de 8, 8, 8 y 9 para CDm6, CDp6, CDb5 y CDn5, respectivamente.
1 .3.3. Trazador o antígeno enzimático
A 1 .0 mL de una disolución de 2.2 mg/ml_ de proteína peroxidasa de rábano picante (HRP) en tampón CB se añadió gota a gota 100 μΙ_ de una disolución 10 mM (ó 5 mM) de compuesto de fórmula (I) activado, obtenido tal como se indica en el apartado 1 .2, en DMF. La reacción se llevó a cabo durante 4 h a temperatura ambiente con agitación suave y a continuación, el conjugado se purificó por cromatografía de exclusión molecular usando tampón PB como eluyente. El grado de conjugación, n tal como se describe en el compuesto de fórmula (II), medido espectrofotométricamente fue de 4, 6, 5 y 3 para CDm6, CDp6, CDb5 y CDn5, respectivamente.
2. Inmunización de conejos
Se inmunizaron, siguiendo protocolos estandarizados, 2 hembras de conejo blancas de la raza New Zealand con cada inmunógeno que son compuestos de fórmula (II) donde P es BSA obtenidos tal como se describe en el apartado 1 .3.1 . [C. Suárez-Pantaleón et al. , J. Agrie. Food Cftem.2010, 58, 8502-851 1 ]. Cada animal recibió 0.3 mg de uno de los inmunógenos disuelto en 1 mL de una mezcla 1 : 1 de tampón PB y adyuvante de Freund completo. La inmunización prosiguió con la inoculación de una dosis de recuerdo cada 21 días con la misma cantidad de inmunógeno pero empleando adyuvante de Freund incompleto. Diez días después de la cuarta inyección, los animales fueron desangrados y la sangre obtenida se dejó coagular a 4 °C durante toda la noche. Al día siguiente, se recuperaron los sueros por centrifugación, se diluyeron a ½ con PBS frío y se les añadió un volumen de una disolución saturada de sulfato amónico. El precipitado proteico resultante de cada suero se recogió por centrifugación y se redisolvió en tampón PBS frío. Finalmente, las proteínas se reprecipitaron como anteriormente y se almacenaron en este estado a 4°C. Este precipitado contiene una mezcla indeterminada de proteínas que denominamos antisuero, anticuerpo policlonal o simplemente anticuerpo. Se obtuvieron dos antisueros de cada inmunógeno, identificados como #1 y #2.
3. Procedimiento ELISA
Se emplearon placas de poliestireno de 96 pocilios. Cada antisuero se evaluó en los dos formatos clásicos de ELISA competitivo (el de antígeno o conjugado inmovilizado con detección indirecta y el de anticuerpo inmovilizado con detección directa) usando tanto antígenos de ensayo homólogos, es decir un antigeno de ensayo a partir del mismo compuesto de fórmula (I) que el utilizado para obtener el inmunógeno; como antígenos de ensayo heterólogos, es decir obtenidos a partir de un compuesto de fórmula (I) diferente al empleado para obtener el inmunógeno. Se emplearon pipetas electrónicas de 8 canales para la dispensación rápida y precisa de los inmunorreactivos. Después de cada etapa de incubación, las placas se lavaron cuatro veces con una disolución de lavado, usando un lavador de 96 canales ELx405 (Biotek Instruments, Winooski, USA). La actividad peroxidasa usada como marcador se reveló con 100 μί por pocilio de una disolución 2 mg/mL de o-fenilendiamina en tampón 25 mM citrato sódico, 62 mM fosfato sódico, pH 5.4 conteniendo 0.012% (v/v) de H2O2. Este revelado se desarrolló durante 10 min a temperatura ambiente y se paró usando 100 μί por pocilio de H2S04 2.5 M. Al finalizar los ensayos, la absorbancia de cada pocilio se leyó a 492 nm usando una longitud de onda de referencia de 650 nm en un lector de microplacas PowerWave HT (Biotek Instruments, Winooski, USA). Las curvas patrón sigmoideas obtenidas al representar la absorbancia frente a la concentración de analito se ajustaron a una ecuación logística de cuatro parámetros usando el paquete informático SigmaPlot de SPSS (Chicago, USA). El título del antisuero se definió como el recíproco de la dilución del antisuero que proporciona una señal máxima (Amax) de 1 .0 en ausencia de analito libre en ensayo de ELISA competitivo en el formato de conjugado inmovilizado homólogo a 0.1 mg/mL con detección indirecta. La afinidad del anticuerpo (IC50) se estimó como la concentración de analito libre capaz de reducir a la mitad la señal máxima. 3.1. Ensayos ELISA competitivos en formato de antígeno o conjugado inmovilizado con detección indirecta (ensayo indirecto)
Las placas se tapizaron con 100 μί por pocilio de una disolución de antigeno de ensayo que es un compuesto de fórmula (II) donde P es OVA a 0.01 o a 0.1 pg/mL en tampón CB por incubación durante toda la noche a temperatura ambiente. Después de lavar las placas, en cada columna se dispensó 50 μί por pocilio de una curva estándar completa delanalito en PBS seguido de 50 μί por pocilio de una dilución concreta de un determinado antisuero en PBST. La misma distribución de reactivos se repitió para cada placa con un conjugado diferente. La reacción inmunoquímica se llevó a cabo durante 1 h a temperatura ambiente y después se lavaron las placas. A continuación, cada pocilio recibió 100 μί de una dilución 1/10000 de GAR-HRP en PBST conteniendo 10% de suero bovino fetal. Esta reacción se dejó a temperatura ambiente durante 1 h. Después de lavar las placas, se reveló la actividad peroxidasa retenida y se leyó la absorbancia a 492 nm como se ha descrito anteriormente.
3.2. Ensayos ELISA competitivos en formato de anticuerpo inmovilizado con detección directa (ensayo directo)
Las placas se tapizaron con 100 μί por pocilio de una dilución de antisuero en tampón CB por incubación durante toda la noche a temperatura ambiente. Después de lavar las placas, en cada columna se dispensó 50 μί por pocilio de una curva estándar completa del analito en PBS seguido de 50 μί por pocilio de una dilución concreta de un trazador enzimático determinado en PBST. La misma distribución de reactivos se repitió para cada placa con un antisuero diferente. La reacción inmunoquímica se llevó a cabo durante 1 h a temperatura ambiente y después se lavaron las placas. Finalmente, se reveló la actividad peroxidasa retenida y se leyó la absorbancia a 492 nm como se ha descrito.
4. Resultados 4.1. Respuesta inmune
Los cuatro inmunógenos de ciprodinil produjeron respuestas inmunes semejantes y equivalentes con títulos cercanos a 3x105. En la Figura 6 se muestran las señales obtenidas con los diferentes antisueros en ensayos con antígeno de ensayo homólogo para diferentes diluciones del antisuero. 4.1 .1 . Determinación de la afinidad de los anticuerpos
Cada uno de los antisueros obtenidos se ensayó frente a su antígeno de ensayo homólogo usando el ensayo de tipo ELISA competitivo, tanto en formato de ensayo de antígeno inmovilizado con detección indirecta como en el formato de anticuerpo inmovilizado con detección directa. Se ensayaron diferentes concentraciones de antígeno de ensayo frente a diferentes concentraciones de antisuero en ensayo competitivo utilizando como competidor diferentes concentraciones de ciprodinil preparadas por dilución senada. Solamente a partir de tres de los compuestos de fórmula (I) sintetizados, CDm6, CDp6 y CDb5, se obtuvieron anticuerpos capaces de reconocer al ciprodinil con elevada afinidad. Este resultado confirma que dichas estructuras son idóneas para el objetivo que se persigue y demuestra la dificultad para predecir la posición óptima de funcionalización de los compuestos de fórmula (I). Los valores de la señal máxima, la IC50 y de la pendiente de la curva de inhibición resultante para cada anticuerpo con su antígeno de ensayo homólogo se han incluido en las Tablas 1 (a-d) y las Tablas 2 (a-d).
Resultado de los ensayos en formato ELISA competitivo de conjugado inmovilizado con detección indirecta: Tabla 1a
OVA-CDm6
Antisuero Conjugado Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDm6#1 0.01 10 0.85 0.40 89.2
0.1 300 0.84 0.48 60.1
CDm6#2 0.01 10 1 .04 0.55 36.9
0.1 300 0.96 0.52 25.5
Tabla 1 b
OVA-CDp6
Antisuero Conjugado Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDp6#1 0.01 10 0.93 0.58 17.2
0.1 100 1 .27 0.47 25.8
CDp6#2 0.01 10 1 .10 0.64 15.1
0.1 100 1 .24 0.45 23.8
Tabla 1 c
OVA-CDb5
Antisuero Conjugado Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDb5#1 0.01 10 0.85 0.66 25.4
0.1 300 0.73 0.58 15.8
CDb5#2 0.01 10 1 .04 0.63 31 .5
0.1 300 0.89 0.56 15.8
Tabla 1 d
OVA-CDn5
Antisuero Conjugado Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDn5#1 0.01 100 0.97 0.39 3356.7
0.1 300 1 .15 0.44 9555.8
CDn5#2 0.01 100 0.95 — —
0.1 300 1 .21 0.95 6465.3
Resultado de los ensayos en formato ELISA competitivo de anticuerpo inmovilizado con detección directa: Tabla 2a
HRP-CDm6
Antisuero Trazador Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDm6#1 3 10 1 .18 0.47 19.8
3 30 0.73 0.40 4.8
CDm6#2 3 10 1 .19 0.64 31 .0
3 30 0.81 0.62 8.9
Tabla 2b
HRP-CDp6
Antisuero Trazador Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDp6#1 3 10 1 .22 0.44 29.6
3 30 0.74 0.55 9.9
CDp6#2 3 10 1 .26 0.49 27.3
3 30 0.92 0.64 7.8
Tabla 2c
HRP-CDb5
Antisuero Trazador Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDb5#1 3 10 1 .25 0.66 5.8
3 30 0.97 0.72 4.2
CDb5#2 1 10 1 .15 0.76 3.9
3 30 0.73 0.65 2.3
Tabla 2d
HRP-CDn5
Antisuero Trazador Título As Amax Pendiente IC50 (nM)
(Mg/mL) (x103)
CDn5#1 3 10 0.94 0.50 1035.5
10 30 1 .30 0.59 261 .5
CDn5#2 3 10 0.91 0.53 1556.0
10 30 1 .23 0.69 278.5
En la Figura 7 se muestran las curvas de inhibición obtenidas con el formato de antígeno de ensayo inmovilizado con detección indirecta y con el formato de anticuerpo inmovilizado con detección directa. Para el ensayo indirecto se empleó 100 μΙ_ por pocilio del compuesto de fórmula (II) OVA-CDp6 a 0.1 pg/mL y el antisuero CDp6#1 a una dilución en ensayo de 1 /3x104. En el caso del ensayo con formato directo, el pocilio se tapizó con 100 μΙ_ de una dilución del antisuero CDb5#1 a 1 /3x104 y en la etapa competitiva se usó 0.3 ng de trazador enzimático homólogo.
Como se desprende de los resultados obtenidos en los ejemplos ¡lustrados, los inmunogenos en los que el compuesto de fórmula (I) contenía el espaciador situado sobre cualquiera de los dos anillos aromáticos proporcionaron anticuerpos de elevada afinidad para ciprodinil. Por el contrario, el inmunogeno con el espaciador sobre el nitrógeno amínico que une los dos anillos aromáticos proporcionó anticuerpos de baja afinidad hacia dicho fungicida.

Claims

REIVINDICACIONES
1 . Un compuesto de fórmula (I):
T-L-Y
(I)
caracterizado porque
T se selecciona del grupo que consiste en R-l, R-ll, R-lll, R-IV y R-V;
Figure imgf000045_0001
donde
R-l se selecciona del grupo que consiste en [2-((4-ciclopropil-6-metilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo];
R-ll es [4-ciclopropil-6-metil-2-(fenilamino)pirimidin-5-ilo];
R-lll se selecciona del grupo que consiste en [2-((4-ciclopropilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropilpirimidin-2-il)amino)fenilo];
R-IV se selecciona del grupo que consiste en [6-ciclopropil-2-
(fenilamino)pirimidin-4-ilo] y [4-ciclopropil-2-(fenilamino)pirimidin-5-ilo]; y
R-V es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino];
L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, donde la cadena es lineal o ramificada, saturada o insaturada, y dicha cadena hidrocarbonada comprende entre 0 y 10 heteroátomos que se seleccionan del grupo que consiste en S, O y N;
Y es un grupo funcional seleccionado del grupo que consiste en: -COOH, -NH2, -N3, -CH2CI, -CH2Br, -CH2I, -CHO, -SH, -S03H, -OS02Ph, -NH-NH2, -OS02Ar y -C≡CH;
con la condición de que:
a) cuando T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo], el fragmento-L-Y es diferente de -SCH2CHNH2COOH;
b) cuando T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo] y L es -CH2-, Y es diferente a -NH2; y
c) cuando T es [(4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino], L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, lineal o ramificada, saturada o insaturada, con la condición de que dicha cadena hidrocarbonada no comprende ningún heteroátomo.
2. Un compuesto de fórmula (I) según la reivindicación 1 , caracterizado porque L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono.
3. Un compuesto de fórmula (I) según una cualquiera de las reivindicaciones anteriores, caracterizado porque Y se selecciona del grupo que consiste en -COOH, -CHO, -NH2 y -SH.
4. Un compuesto de fórmula (I) según una cualquiera de las reivindicaciones anteriores, caracterizado porque T es [3-((4-ciclopropil-6-metilpirimidin-2- ¡l)amino)fenilo] o [4-(4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo]; L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono; e Y se selecciona dentro del grupo que consiste en -COOH, -CHO, -NH2 y -SH.
5. Un compuesto de fórmula (I) según la reivindicación 4, caracterizado porque se selecciona dentro del grupo que consiste en
Figure imgf000047_0001
6. Un compuesto de fórmula (I) según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo]; L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono; e Y se selecciona dentro del grupo que consiste en -COOH, -CHO, -NH2 y -SH.
7. Un compuesto de fórmula (I) según la reivindicación 6, caracterizado porque es
Figure imgf000047_0002
8. Un compuesto de fórmula (I) según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque T es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino]; L es una cadena hidrocarbonada lineal de 2 a 8 átomos de carbono; e Y se selecciona dentro del grupo que consiste en -COOH, -CHO, -NH2 y -SH.
9. Un compuesto de fórmula (I) según la reivindicación 8, caracterizado porque es
Figure imgf000047_0003
10. Un compuesto de fórmula (II):
[T-L-Z]n-P
(II)
caracterizado porque T se selecciona del grupo que consiste en R-l, R-ll, R-lll, R-IV y R-V;
Figure imgf000048_0001
donde
R-l se selecciona del grupo que consiste en [2-((4-ciclopropil-6-metilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo];
R-ll es [4-ciclopropil-6-metil-2-(fenilamino)pirimidin-5-ilo];
R-lll se selecciona del grupo que consiste en [2-((4-ciclopropilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropilpirimidin-2-il)amino)fenilo];
R-IV se selecciona del grupo que consiste en [6-ciclopropil-2- (fenilamino)pirimidin-4-ilo] y [4-ciclopropil-2-(fenilamino)pirimidin-5-ilo]; y
R-V es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino];
L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, donde la cadena es lineal o ramificada, saturada o insaturada, y dicha cadena hidrocarbonada comprende entre 0 y 10 heteroátomos que se seleccionan del grupo que consiste en S, O y N;
Z es un grupo funcional seleccionado del grupo que consiste en -CONH-, -NHCO-, -NHCONH-, -NHCSNH-, -OCONH-, -NHOCO-, -OCSNH-, -SCONH-, -S-, -S-S-, -NH(C=NH)-, -OCO-, -CO-, -CHOH-, -N=N-,
Figure imgf000048_0002
P es un polipéptido natural o sintético de peso molecular mayor de 2000 daltons; y
n es un número con un valor entre 1 y 500;
con la condición de que:
a) cuando T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo], el fragmento -L-Z- es diferente de -SCH2CHNH2COO-, -SCH2CHNH2-CO-NH- o -SCH2CH(COOH)NHCO-;
b) cuando T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo] y L es -CH2-, Z es diferente a -NHCO-; y
c) cuando T es [(4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino], L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, lineal o ramificada, saturada o insaturada, con la condición de que dicha cadena hidrocarbonada no comprende ningún heteroátomo.
1 1 . Un compuesto de fórmula (II) según la reivindicación 10, caracterizado porque L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono.
12. Un compuesto de fórmula (II) según una cualquiera de las reivindicaciones 10 o 1 1 , caracterizado porque Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-, Q 9 y N /
O
13. Un compuesto de fórmula (II) según una cualquiera de las reivindicaciones 10 a 12, caracterizado porque P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, 3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
14. Un compuesto de fórmula (II) según una cualquiera de las reivindicaciones 10 a 13, caracterizado porque
T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-(4-ciclopropil-6- metilpirimidin-2-il)amino)fenilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono; Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000050_0001
P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, /3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
15. Un compuesto de formula (II) según la reivindicación 14, caracterizado porque T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo]; L es una cadena hidrocarbonada lineal de 5 átomos de carbono; Z es -CONH-; P se selecciona del grupo que consiste en albúmina y peroxidasa; y n es un valor seleccionado entre 1 y 50.
16. Un compuesto de fórmula (II) según una cualquiera de las reivindicaciones 10 a 13, caracterizado porque
T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000050_0002
P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, /3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
17. Un compuesto de formula (II) según la reivindicación 16, caracterizado porque T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo]; L es una cadena hidrocarbonada lineal de 4 átomos de carbono; Z es -CONH-; P se selecciona del grupo que consiste en albúmina y peroxidasa; y n es un valor seleccionado entre 1 y 50.
18. Un compuesto de fórmula (II) según una cualquiera de las reivindicaciones
10 a 13, caracterizado porque
T es [(4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino]; L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000051_0001
P se selecciona del grupo que consiste en albúmina, tiroglobulina, hemocianina, 3-galactosidasa, peroxidasa, fosfatasa y oxidasa.
19. Un compuesto de formula (II) según la reivindicación 18, caracterizado porque T es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino]; L es una cadena hidrocarbonada lineal de 4 átomos de carbono; Z es -CONH-; P se selecciona del grupo que consiste en albúmina y peroxidasa; y n es un valor seleccionado entre 1 y 50.
20. Un compuesto de fórmula (III):
[T-L-Z]m-Q
(III)
caracterizado porque
T se selecciona del grupo que consiste en R-l, R-ll, R-lll, R-IV y R-V;
Figure imgf000051_0002
donde
R-l se selecciona del grupo que consiste en [2-((4-ciclopropil-6-metilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropil-6-metilpirimidin-2-il)amino)fenilo]; R-ll es [4-ciclopropil-6-metil-2-(fenilamino)pinmidin-5-ilo];
R-lll se selecciona del grupo que consiste en [2-((4-ciclopropilpirimidin-2- il)amino)fenilo], [3-((4-ciclopropilpirimidin-2-il)amino)fenilo] y [4-((4- ciclopropilpirimidin-2-il)amino)fenilo];
R-IV se selecciona del grupo que consiste en [6-ciclopropil-2- (fenilamino)pirimidin-4-ilo] y [4-ciclopropil-2-(fenilamino)pirimidin-5-ilo]; y
R-V es [(4-ciclopropil-6-metilpirimidin-2-il) fenil)amino];
L es una cadena hidrocarbonada de 1 a 40 átomos de carbono, donde la cadena es lineal o ramificada, saturada o insaturada, y dicha cadena hidrocarbonada comprende entre 0 y 10 heteroátomos que se seleccionan del grupo que consiste en S, O y N;
Z es un grupo funcional seleccionado del grupo que consiste en -CONH-,
-NHCO-, -NHCONH-, -NHCSNH-, -OCONH-, -NHOCO-, -OCSNH-,
CO-, -CHOH-, -N=N-,
Figure imgf000052_0001
Q es un marcador no isotópico; y
m es un número entero con un valor entero entre 1 y 1000.
21 . Un compuesto de fórmula (III) según la reivindicación 20, caracterizado porque L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono.
22. Un compuesto de fórmula (III) según una cualquiera de las reivindicaciones 20 o 21 , caracterizado porque Z se selecciona del grupo que consiste en
-CONH-, -NHCO-, -NH-, -S-,
Figure imgf000052_0002
23. Un compuesto de fórmula (III) según una cualquiera de las reivindicaciones 20 a 22, caracterizado porque Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoróforo de cianina, un fluoróforo de rodamina, un fluoróforo de cumarina, un bipirilo de rutenio, luciferina o uno cualquiera de sus derivados, un éster de acridinio y micro- o nanopartículas de oro coloidal, de carbón o de látex.
24. Un compuesto de fórmula (III) según una cualquiera de las reivindicaciones 20 a 23, caracterizado porque
T es [3-((4-ciclopropil-6-metilpirimidin-2-il)amino)fenilo] o [4-((4-ciclopropil-6- metilpirimidin-2-il)amino)fenilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000053_0001
Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoróforo de cianina, un fluoróforo de rodamina, un fluoróforo de cumarina, un bipirilo de rutenio, luciferina o uno cualquiera de sus derivados, un éster de acridinio y micro- o nanopartículas de oro coloidal, de carbón o de látex.
25. Un compuesto de fórmula (III) según una cualquiera de las reivindicaciones
20 a 23, caracterizado porque
T es [6-ciclopropil-2-(fenilamino)pirimidin-4-ilo];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000053_0002
Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoróforo de cianina, un fluoróforo de rodamina, un fluoróforo de cumarina, un bipirilo de rutenio, luciferina o uno cualquiera de sus derivados, un éster de acridinio y micro- o nanopartículas de oro coloidal, de carbón o de látex.
26. Un compuesto de fórmula (III) según una cualquiera de las reivindicaciones 20 a 23, caracterizado porque
T es [(4-ciclopropil-6-metilpirimidin-2-il)(fenil)amino];
L es una cadena hidrocarbonada lineal de 1 a 20 átomos de carbono;
Z se selecciona del grupo que consiste en -CONH-, -NHCO-, -NH-, -S-,
Figure imgf000054_0001
Q se selecciona del grupo que consiste en biotina, fluoresceína o uno cualquiera de sus derivados, un fluoróforo de cianina, un fluoróforo de rodamina, un fluoróforo de cumarina, un bipirilo de rutenio, luciferina o uno cualquiera de sus derivados, un éster de acridinio y micro o nanopartículas de oro coloidal, de carbón o de látex.
27. Un anticuerpo generado en respuesta a un compuesto de fórmula (II) tal como se describe en una cualquiera de las reivindicaciones 10 a 19.
28. Método de análisis in vitro de ciprodinil en una muestra que comprende las siguientes etapas: a. poner en contacto una muestra con un anticuerpo generado tal como se describe en la reivindicación 27; b. incubar la muestra y el anticuerpo del paso (a) durante un periodo de tiempo adecuado para que tenga lugar una reacción inmunoquímica; y c. determinar la existencia de reacción inmunoquímica tras la incubación del paso (b).
29. Método de análisis de ciprodinil según la reivindicación 28, caracterizado porque la determinación de la reacción inmunoquímica en el paso (c) se realiza mediante un inmunoensayo competitivo, usando como competidor un antígeno de ensayo que es un compuesto de formula (II) tal como se descnbe en una cualquiera de las reivindicaciones 10 a 19.
30. Método de análisis de ciprodinil según la reivindicación 28, caracterizado porque la determinación de la reacción inmunoquímica en el paso (c) se realiza mediante un inmunoensayo competitivo, usando como competidor un antígeno de ensayo que es un compuesto de formula (III) tal como se describe en una cualquiera de las reivindicaciones 20 a 26.
31 . Kit de detección de ciprodinil, que comprende al menos un anticuerpo generado tal como se define en la reivindicación 27 junto con un compuesto de fórmula (II) generado tal como se define en cualquiera de las reivindicaciones 10 a 19 o un compuesto de fórmula (III) tal como se define en cualquiera de las reivindicaciones 20 a 26.
PCT/ES2012/070704 2011-10-13 2012-10-10 Haptenos, conjugados y anticuerpos para el fungicida ciprodinil WO2013053969A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131641 2011-10-13
ES201131641A ES2402036B1 (es) 2011-10-13 2011-10-13 Haptenos conjugados y anticuerpos para el fungicida ciprodinil.

Publications (1)

Publication Number Publication Date
WO2013053969A1 true WO2013053969A1 (es) 2013-04-18

Family

ID=48050987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070704 WO2013053969A1 (es) 2011-10-13 2012-10-10 Haptenos, conjugados y anticuerpos para el fungicida ciprodinil

Country Status (2)

Country Link
ES (1) ES2402036B1 (es)
WO (1) WO2013053969A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022554350A (ja) * 2019-11-06 2022-12-28 アルベルト・アインシュタイン・カレッジ・オブ・メディシン 小分子プロスタグラジン輸送阻害剤
JP7493835B2 (ja) 2019-11-06 2024-06-03 アルベルト・アインシュタイン・カレッジ・オブ・メディシン 小分子プロスタグラジン輸送阻害剤

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897396A (en) * 1988-06-03 1990-01-30 Ciba-Geigy Corporation 2-phenylamino pyrimidine derivatives and their uses as microbicides
US4931560A (en) * 1987-09-28 1990-06-05 Ciba-Geigy Corporation Pesticides
EP0457727A1 (de) * 1990-05-17 1991-11-21 Ciba-Geigy Ag Schädlingsbekämpfungsmittel
US5120741A (en) * 1990-02-07 1992-06-09 Ciba-Geigy Corporation Microbicides
ES2081863T3 (es) * 1989-03-22 1996-03-16 Ciba Geigy Ag Plaguicidas.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931560A (en) * 1987-09-28 1990-06-05 Ciba-Geigy Corporation Pesticides
US4897396A (en) * 1988-06-03 1990-01-30 Ciba-Geigy Corporation 2-phenylamino pyrimidine derivatives and their uses as microbicides
ES2081863T3 (es) * 1989-03-22 1996-03-16 Ciba Geigy Ag Plaguicidas.
US5120741A (en) * 1990-02-07 1992-06-09 Ciba-Geigy Corporation Microbicides
EP0457727A1 (de) * 1990-05-17 1991-11-21 Ciba-Geigy Ag Schädlingsbekämpfungsmittel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAPP, M. ET AL.: "Characterization of the bound residues of the fungicide cyprodinil formed in plant cell supension cultures of wheat", PEST MANAGEMENT SCIENCE 2003, vol. 60, 3 November 2003 (2003-11-03), pages 65 - 74 *
XU, Y. ET AL.: "Catalytic antibodies: hapten design strategies and screening methods", BIOORGANIC & MEDICINAL CHEMISTRY 2004, vol. 12, 11 September 2004 (2004-09-11), pages 5247 - 5268. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022554350A (ja) * 2019-11-06 2022-12-28 アルベルト・アインシュタイン・カレッジ・オブ・メディシン 小分子プロスタグラジン輸送阻害剤
JP7493835B2 (ja) 2019-11-06 2024-06-03 アルベルト・アインシュタイン・カレッジ・オブ・メディシン 小分子プロスタグラジン輸送阻害剤

Also Published As

Publication number Publication date
ES2402036B1 (es) 2014-03-10
ES2402036A1 (es) 2013-04-26

Similar Documents

Publication Publication Date Title
Sun et al. A sensitive heterogeneous biotin–streptavidin enzyme-linked immunosorbent assay for the determination of di-(2-ethylhexyl) phthalate (DEHP) in beverages using a specific polyclonal antibody
Esteve-Turrillas et al. Mepanipyrim haptens and antibodies with nanomolar affinity
Zhang et al. Effect of hapten structures on specific and sensitive enzyme-linked immunosorbent assays for N-methylcarbamate insecticide metolcarb
Mercader et al. Antibody generation and immunoassay development in diverse formats for pyrimethanil specific and sensitive analysis
ES2421056B1 (es) Haptenos, conjugados y anticuerpos para el fungicida pirimetanil
Zhang et al. Determination of N-methylcarbamate insecticide metolcarb by enzyme-linked immunosorbent assay
ES2402036B1 (es) Haptenos conjugados y anticuerpos para el fungicida ciprodinil.
ES2668776T3 (es) Inmunoensayo mejorado para pirrolidinofenonas
ES2672945B1 (es) Preparacion de nuevos bioconjugados y anticuerpos para la inmunodeteccion de ocratoxina a
ES2849398B2 (es) Bioconjugados y anticuerpos para la inmunodeteccion asistida por derivatizacion de la micotoxina patulina
Parra et al. Exploring alternative hapten tethering sites for high-affinity anti-picoxystrobin antibody generation
ES2461415B1 (es) Derivados funcionalizados e inmunorreactivos para el fungicida fludioxonil
ES2382401B1 (es) Derivados funcionalizados de boscalid
Gao et al. Development of immunoassay based on a specific antibody for sensitive detection of nicosulfuron in environment
KR20080102900A (ko) 살충제 비스트리플루론 잔류물 검출용 효소면역학적 분석법
ES2898125B2 (es) Bioconjugados heterologos y su uso para la inmunodeteccion de aflatoxinas
Schütz et al. Development of an enzyme-linked immunosorbent assay for azadirachtins
ES2610471T3 (es) Inmunoensayo para cannabinoides sintéticos basados en ciclopropilindol, metabolitos y derivados de los mismos
KR100876435B1 (ko) 살충제 비스트리플루론 잔류물의 효소면역학적 분석에이용되는 합텐-단백질 복합체 및 항체
Kolár et al. Production and characterization of generic antibodies against s-triazine and sulfonylurea herbicides
ES2612751B1 (es) Preparación de bioconjugados y anticuerpos para la inmunodetección de anatoxina-a
US20230184759A1 (en) In vitro method for detection of infections caused by pseudomonas aeruginosa
Mercader Badia et al. A Monoclonal Antibody-Based Immunoassay for Mepanipyrim Residue Sensitive Analysis in Grape Juice and Wine
WO2024062149A1 (es) Compuestos y anticuerpos para la inmunodetección de alternariol
Mercader Badia et al. Antibody generation and immunoassay development in diverse formats for pyrimethanil specific and sensitive analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839689

Country of ref document: EP

Kind code of ref document: A1