WO2013053338A1 - 一种利用三控制点双曲线构造矿料级配的确定方法 - Google Patents

一种利用三控制点双曲线构造矿料级配的确定方法 Download PDF

Info

Publication number
WO2013053338A1
WO2013053338A1 PCT/CN2012/082989 CN2012082989W WO2013053338A1 WO 2013053338 A1 WO2013053338 A1 WO 2013053338A1 CN 2012082989 W CN2012082989 W CN 2012082989W WO 2013053338 A1 WO2013053338 A1 WO 2013053338A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
grading
function model
pass rate
coarse
Prior art date
Application number
PCT/CN2012/082989
Other languages
English (en)
French (fr)
Inventor
王旭东
傅琴
张蕾
刘奕
周兴业
李福建
Original Assignee
交通运输部公路科学研究所
广西交通投资集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 交通运输部公路科学研究所, 广西交通投资集团有限公司 filed Critical 交通运输部公路科学研究所
Priority to US14/348,843 priority Critical patent/US20140257742A1/en
Publication of WO2013053338A1 publication Critical patent/WO2013053338A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/14Details or accessories
    • B07B13/18Control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/10Design or test methods for bitumen or asphalt mixtures, e.g. series of measures, procedures or tests to obtain a bitumen or asphalt mixture having preset defined properties, general or international test methods, procedures or standards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch

Definitions

  • the invention relates to a method for determining the gradation of asphalt mixture in road engineering, in particular to a method for determining the gradation of mineral material by using a three-control point hyperbolic curve.
  • the grading of mineral materials is composed of a variety of mineral materials of different grain sizes. It is very complicated to determine the reasonable proportion of mineral materials of various sizes in actual engineering. Setting a grading curve or grading range in advance, and then applying it to various mineral materials of different particle sizes, is the starting point of the currently used grading design of the mixture. In this way, the technical characteristics of various mineral materials cannot be fully utilized, and the blindness of the gradation design is also caused.
  • the first N method Taibo A.N method, according to the principle of maximum density:
  • the second method I Professor Lin Xiuxian from Tongji University In the 1970s, the percentage decline rate i was adopted.
  • the third K method the former Soviet Union control sieve residual amount reduction coefficient method. k x -l
  • the present application proposes a three-control point hyperbolic mineral grading model composed of coarse and fine aggregate curves, thereby expanding the gradation selection margin, and determining the characteristics suitable for the mineral materials through experimental analysis and evaluation. Optimize the grading.
  • a method for determining a grading of a mineral material by using a three-control point hyperbolic curve includes the following steps:
  • control points are determined: the nominal maximum particle size of the mixture and its pass rate, the nominal minimum particle size of the mixture is 0. 075mm and its pass rate, the coarse and fine aggregate discontinuity points are nominally The diameter is 4.75 and its passing rate,
  • a, b, Y is the pass rate of each particle size;
  • X is the pore diameter (mm) of each particle size, 3) determining the tamping density of the mixture and the crevice ratio of the rammed mineral, according to the engineering Need, coarse aggregate grading and fine aggregate grading are used respectively.
  • the step 3) further comprises determining the bulk density, the void ratio, the mineral gap ratio, and the coarse aggregate gap ratio of the mixture.
  • the above measurement method is a Marshall compact test.
  • the pass rate of discontinuities should be above 30%. To ensure that the mix has a certain skeleton structure, the pass rate of discontinuities is generally not more than 40%. For open grade mixes, the pass rate of discontinuities is typically around 15% to 25%.
  • Invention point 1 "Three control points, hyperbolic" grading composition method.
  • the first control point is the nominal maximum particle size of the mixture and its pass rate
  • the second control point is the minimum particle size of the mixture (0. 075 mm) and The pass rate
  • the third control point is the discontinuity of the coarse and fine aggregates (4.75 mm) and its throughput.
  • the coarse aggregate gradation curve refers to the curve from the nominal maximum particle size to the discontinuity of the coarse and fine aggregates; the fine aggregate gradation curve refers to the curve from the discontinuous point to the minimum particle size of the coarse and fine aggregates.
  • Invention point 2 The coarse aggregate gradation curve and the fine aggregate gradation curve respectively select the power function model, the exponential function model, and the logarithmic function model, so that the two curves are respectively coarse, The combination of fine and medium three mineral materials is conducive to the selection of mineral grading rules. After this combination, the entire grading curve can obtain nine test grading curves, and one of the reasonable design curves is selected through experiments.
  • the corresponding coarse aggregate ⁇ fine aggregate function models are respectively power function ⁇ power function, power function ⁇ exponential function, power function ⁇ logarithm function, exponential function ⁇ power function, exponential function ⁇ exponential function, exponential function ⁇ logarithm function , logarithmic function ⁇ power function, logarithmic function ⁇ exponential function, logarithmic function ⁇ logarithmic function.
  • Invention point 3 Through performance testing, grading is determined according to engineering needs.
  • the adjustability of the break rate of the breakage point of the coarse and fine aggregates In addition to controlling the grading of the whole mineral material by the selection of the theoretical grading curve of coarse and fine aggregates, the composition trend of the grading curve can be controlled by the passing rate of the discontinuous points of the coarse and fine aggregates. For key indicators such as the compactness of the mixture, the influence of the breakage point pass rate of the coarse and fine aggregates is crucial.
  • the pass rate of discontinuities should be above 30%. To ensure that the mix has a certain skeleton structure, the pass rate of discontinuities is generally not more than 40%. For open grade mixes, the pass rate of discontinuities is typically around 15% to 25%.
  • the mineral grading is composed of a variety of minerals of different grain sizes. In theory, an infinite number of curves can be constructed according to any law between two key points. Three mathematical models are now available to construct the grading curve: Although these three models can have the same key points, due to the different proportions of the particle sizes in the mineral materials, the constructed grading of the mineral materials has obvious road performance. difference.
  • the invention can fully construct different gradation curve forms for the mineral materials of different regions and different materials according to the characteristics of the mineral materials constituting the mixed materials, and fully exert the performance characteristics of the mineral materials in the mixed materials, and the mixing ratio of the mixed materials.
  • the design has a good guiding significance.
  • Figure 8 Test grading curve.
  • the 16-type mixture is taken as an example, and the principle of skeleton grading is adopted.
  • the pass rate of 16mm is 95%, the pass rate of 4.75mm is 30%, and the pass rate of 0. 075 is 7%.
  • the coarse and fine aggregate gradation curves are calculated by logarithmic function, power function and exponential function respectively. According to the orthogonal experiment, the curves of different fine aggregates and coarse aggregates can be determined. In this technical scheme, only the influence of the blending ratio change of the coarse aggregates on various indexes and performances is considered. 4. 75mm ⁇ 0. 075mm fine set The material is uniformly generated by a power function. Establish a fine aggregate gradation curve; 16mm ⁇ 4.
  • the gradation curve of the power function coarse aggregate is very similar to the gradation curve of the linear function, almost overlapping; the coarse aggregate gradation of the logarithmic function is finer than the power function, and The coarse aggregate gradation of the exponential function is coarser than the power function.
  • the following is a performance analysis of the asphalt mixture in which the power function, the logarithmic function, and the exponential function are matched.
  • Table 7 The test results of three grades of coarse aggregate compacted density and rammed coarse aggregate mineral gap ratio. From the test results in the table, the logarithmic gradation density is the smallest, and the compact VCA is the largest; the power function's compact density is second, and the compact VCA is centered; the exponential grading has the highest compact density and the compacted VCA is the smallest.
  • Table 7 Test results of coarse aggregates grading the mineral gap ratio of three functional models.
  • Table 8 Results of the Marshall Compaction Test for the three grading models (75 per side)
  • the exponential function has the largest gross bulk density, and the void ratio, the mineral gap ratio and the coarse aggregate mineral gap ratio are the smallest, and the saturation is the largest;
  • the volume density is the smallest, the void ratio, the mineral gap ratio and the coarse aggregate mineral gap ratio are the largest, and the saturation is the smallest;
  • the power function Between the two. Therefore, it can be considered that the gradation of the mixture constructed by the exponential function is the best, the density of the mixture grading with the logarithmic function component is poor, and the compactness of the gradation of the power function is between two. Between the people. This is consistent with the test results of the previous tamping coarse aggregate material clearance rate, indicating that the coarse aggregate compaction test can help predict the volume performance of the mixture.
  • the oil-stone ratio of the mixture is determined according to the design void ratio, the oil-stone ratio of the exponential function mixture is 3.85%, the oil-stone ratio of the power function mixture is 4.15%, and the oil-stone ratio of the logarithmic function mixture is 4.50%.
  • the coarse aggregate content of the large particle size in the exponential function gradation is higher.
  • the structural depth is large and the anti-sliding performance is good.
  • the only shortcoming is the construction. It is easy to produce segregation in the process, and the process level of paving construction is relatively high.
  • the logarithmic function grading has a small content of coarse aggregates with large particle size, and the anti-sliding performance is weak, but the segregation phenomenon during construction is relatively small. Easy to construct; power function grading is somewhere in between.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Mathematical Analysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Road Paving Structures (AREA)

Abstract

一种利用三控制点双曲线构造矿料级配的确定方法,包括如下步骤:(1)根据混合料的性质,确定三个控制点,分别是混合料的公称最大粒径及其通过率,混合料的公称最小粒径及其通过率,粗、细集料间断点公称粒径及其通过率;(2)粗集料级配曲线和细集料级配曲线分别选择幂函数模型、指数函数模型、对数函数模型;(3)测定混合料的捣实密度和捣实矿料间隙率,根据工程需要,分别选用粗集料级配和细集料级配。这种方法可根据沥青混合料配合比设计要求,选择合理的级配形式,并可根据不同地区、不同料源构成的混合料特点,选择构建不同的级配曲线形式,充分发挥矿料在混合料中的性能。

Description

说明书 一种利用三控制点双曲线构造矿料级配的确定方法 技术领域
本发明涉及道路工程中一种沥青混合料级配的确定方法,特别是涉及一种利 用三控制点双曲线构造矿料级配的确定方法。
背景技术
矿料级配是由多种不同粒级的矿料组成,在实际工程中确定各级粒径的矿料 之间的合理比例十分复杂。事先设定好一种级配曲线或级配范围, 然后套用于各 种不同粒径大小的矿料, 是当前常用的混合料级配设计的出发点。这样不能充分 发挥各种矿料的技术特点, 也造成级配设计的盲目性。
例如: 分别采用北京玄武岩、河北玄武岩、 四川轧制河卵石和广东花岗岩的 矿料, 按照相同的级配曲线, 进行的马歇尔击实试验 (试验结果见表 1 )。 可以 发现相同级配和相同油石比的情况下,混合料的空隙率相差很大,最小的 3. 84%, 最大的 6. 80%。 进一步, 对几乎占混合料重量 60%以上的 4. 75〜9. 5隱粗集料的 粒径分析结果看, 这四种石料的粗集料粒径相差很大, 见表 2。 由此说明, 在相 同级配情况下,由于各地原材料等特性不一样,导致混合料的密实程度也不一样。 因此应结合原材料性能特点对混合料的级配进行有效的控制措施。
表 1 : 不同粗集料产地的 SAC10马歇尔试验结果
Figure imgf000002_0001
表 2 : 不同产地的粗集料当量半径
石料来源 北京 广东 四川 河北 粗集料当量半径 (cm ) 0. 38 0. 41 0. 41 0. 46 那么, 如何根据矿料情况选择合理的级配曲线? 这是本专利主要的发明重 点。 当前国际上公认的有三种级配曲线的构成方法:
第一种 N法: 泰波 A.N法, 根据最大密度原则提出:
P. = \00(di /D)n
P -孔径为 d (™«)的筛孔的通过百分率 %;
i i
d -希望计算的各级粒径 ( mm)
i
/) -混合料中的最大粒径 ( mm 通常情况下 n=0.3-0.7; 当 n=0.5, 为富勒曲线; 日本推荐 n=0.35-0.45; 美国 以 n=0.45作为标准级配依据。
第二种 I法: 同济大学林绣贤教授 70年代提出 已通过百分率的递减率 i为
Ρχ = 100 X ix
x = 32 \g(D I d)
i -通过百分率递减系数;
d -希望计算的某级矿料粒 径 ( )
D -混合料的最大粒径 ( mm
i=0.7-0.8为合理范围。 i>0.8细料偏多; 当 i<0.7容易透水。 i=0.75为最佳 < 第三种 K法: 前苏联控制筛余量递减系数方法。 kx-l
P =l
ky-l
= 3.321g(Z)/0.004)
x = 3.32\g(D/d)
颗粒分级重量递减系数;
希望计算的某级矿料粒径 (mm) ;
X -矿料分档数目。
同济大学主张 k=0.7-0.8较为合理;在我国南方 k=0.7为好,北方 k=0.75为好, 当 k>0.8容易产生车辙。 表 3 : 不同设计方法得到的设计级配差异
Figure imgf000004_0001
这些方法的共同特点是采用一条级配曲线描述各个粒径的组成规律,也正因 为如此, 级配的选择余地小, 不能充分反映原材料的矿料级配特点。 发明内容
针对上述领域中的不足,本申请提出将粗、细集料曲线分别构成的三控制点 双曲线矿料级配模型, 从而扩大级配选择余地, 通过试验分析评价, 确定适应于 矿料特点的优化级配。
一种利用三控制点双曲线构造矿料级配的确定方法, 包括如下步骤:
1 ) 根据混合料的性质, 确定三个控制点: 混合料的公称最大粒径及其通过率, 混合料的公称最小粒径 0. 075mm及其通过率, 粗、 细集料间断点公称粒径为 4. 75 及其通过率,
2) 粗集料级配曲线和细集料级配曲线分别选择幂函数模型、 指数函数模型、 对 数函数模型, 幂函数模型: y ^ 指数函数模型: y = a ' ebx 对数函数模型: y = " ' ln(^+
均有两个待定参数: a、 b, Y为各粒径的通过率; X为各粒径的孔径(mm), 3 ) 测定混合料的捣实密度和捣实矿料间隙率, 根据工程需要, 分别选用粗集料 级配和细集料级配。
所述步骤 3 )还包括测定测定混合料的毛体积密度, 空隙率, 矿料间隙率和 粗集料间隙率。
所述上述测定方法为马歇尔击实试验。
对于密实性混合料, 间断点的通过率应达到 30%以上, 为保证混合料具有一 定的骨架结构, 间断点的通过率一般不大于 40%。 对于开级配混合料, 间断点的 通过率一般为 15%_25%左右。 本发明的具体步骤如下:
发明点一: "三控制点、 双曲线 "级配构成方法。 在矿料粒径及其通过率的平 面坐标中,第一个控制点为混合料的公称最大粒径及其通过率, 第二个控制点为 混合料的最小粒径 (0. 075mm) 及其通过率, 第三个控制点为粗、 细集料的间断 点(4. 75mm)及其通过率。 这三个控制点将整个矿料级配分为粗集料级配曲线和 细集料级配曲线。粗集料级配曲线是指从公称最大粒径到粗、细集料间断点的曲 线; 细集料级配曲线是指从粗、细集料间断点到最小粒径的曲线。 (如图 1所示) 发明点二: 粗集料级配曲线和细集料级配曲线分别选择幂函数模型、指数函 数模型、对数函数模型, 从而使这两个曲线分别有偏粗、偏细和中等的三种矿料 搭配规律, 以利于矿料级配规律的选择。这样组合后, 整个级配曲线可以得到九 条试验级配曲线, 通过试验, 选择其中一条合理的设计曲线。 幂函数模型:
Figure imgf000005_0001
指数函数模型: a ' 对数函数模型: y = " ' ln(^+ 均有两个待定参数: a、 b。 Y为各粒径的通过率; X为各粒径的孔径(mm)。 对应的粗集料〜细集料函数模型分别为幂函数〜幂函数、 幂函数〜指数函 数、 幂函数〜对数函数、 指数函数〜幂函数、 指数函数〜指数函数、 指数函数〜 对数函数、 对数函数〜幂函数、 对数函数〜指数函数、 对数函数〜对数函数。
发明点三: 通过性能检测, 根据工程需要确定级配。
粗细集料间断点通过率的可调性。除了通过粗、细集料理论级配曲线形式选 择来控制整体矿料级配的走向外,而且可以通过粗细集料间断点的通过率控制级 配曲线的构成趋势。对于混合料的密实性等关键指标, 粗细集料间断点通过率的 影响至关重要。
对于密实性混合料, 间断点的通过率应达到 30%以上, 为保证混合料具有一 定的骨架结构, 间断点的通过率一般不大于 40%。 对于开级配混合料, 间断点的 通过率一般为 15%_25%左右。
矿料级配是由多种以上不同粒级的矿料组成, 理论上讲, 在两个关键点之间 可以按照任意规律构建无数条曲线。 现可提供三种数学模型构建级配曲线: 这三种模型尽管可以有相同的关键点, 但是由于矿料中各档粒径的比例关系不 同, 构建的矿料级配具有明显的路用性能差异。
在沥青混合料级配设计中提出一种 "三控制点、 双曲线 "级配选择方法, 能 更清晰迅速的进行级配优化选择。可根据沥青混合料配合比设计要求设计出密实 性、半开级配、开级配的混合料,通过对这些混合料性能的分析,根据工程需要, 选择合理的级配形式。
该发明可以充分根据构成混合料的矿料的特点,对于不同地区、不同料源的 矿料选择构建不同的级配曲线形式, 充分发挥矿料在混合料中的性能特点, 对混 合料配合比设计具有较好的指导意义。
附图说明
图 1 : 矿料级配设计关键要素,
图 2: 三种数学函数模型设计得到的粗集料级配曲线,
图 3: 三种级配混合料毛体积密度的比较,
图 4: 三种级配混合料空隙率的比较,
图 5: 三种级配混合料矿料间隙率的比较, 图 6: 三种级配混合料粗集料矿料间隙率的比较,
图 7 : 三种级配混合料饱和度的比较,
图 8: 试验用级配曲线。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
本试验以 16型混合料为例,采用骨架断级配原则, 16mm通过率为 95%, 4. 75mm 通过率为 30%, 0. 075隱通过率为 7%, 以这三点作为控制点, 粗、 细集料级配曲 线分别采用对数函数、幂函数和指数函数计算生成。按照正交实验可以确定不同 的细集料和粗集料的曲线,本技术方案中仅考虑粗集料部分的配合比变化对各项 指标、 性能的影响, 4. 75mm〜0. 075mm细集料统一采用幂函数生成。 建立细集料 级配曲线; 16mm〜4. 75mm 的粗集料分别采用对数函数模型、 幂函数模型和指数 函数模型, 构建三种不同的粗集料级配曲线。 由此形成三种 16型级配曲线, 见 下表 4和图 2、 8。 表 4: 本发明三种函数模型对应的级配结果
Figure imgf000007_0001
由表 4看出, 对于 16型级配, 幂函数粗集料的级配曲线与线性函数的级配 曲线极为相似, 几乎重叠; 对数函数的粗集料级配比幂函数偏细, 而指数函数的 粗集料级配比幂函数偏粗。 以下将针对幂函数、对数函数和指数函数三种级配对 应的沥青混合料进行性能分析。
本试验采用石料和矿粉的密度试验结果如下表 5
表 5: 试验用矿料密度试验结果
表干密度 表观密度 毛体积密度 吸水率 16 2. 7370 2. 7520 2. 7285 0. 31%
13. 2 2. 7359 2. 7519 2. 7268 0. 33%
9. 5 2. 7338 2. 7524 2. 7232 0. 39%
4. 75 2. 7626 2. 8055 2. 7388 0. 87%
2. 36 2. 6875 2. 7258 2. 6653 0. 83%
1. 18 2. 6880 2. 7259 2. 6660 0. 82%
0. 6 2. 6805 2. 7205 2. 6573 0. 87%
0. 3 2. 6894 2. 7191 2. 6722 0. 65%
0. 15 2. 7326
0. 075 2. 7714
矿粉 2. 8303
按表观密度和毛体积密度的平均值计算三种级配混合料不同油石比下的理 论密度, 同时计算三种级配混合料粗集料的毛体积密度和矿料毛体积密度, 见下 表 6
表 6: 三种函数模型级配混合料的密度计算结果
Figure imgf000008_0001
下表 7三种级配粗集料捣实密度和捣实粗集料矿料间隙率的试验结果。从表 中试验结果看出, 对数级配的捣实密度最小, 捣实 VCA最大; 幂函数的捣实密 度其次, 捣实 VCA居中; 指数级配的捣实密度最大, 捣实 VCA最小。
表 7: 三种函数模型级配的粗集料捣实矿料间隙率的试验结果 函数模型 捣实密度 (g/cm3 ) 捣实 VCA 幂函数 1. 6820 38. 39% 对数函数 1. 6804 38. 50% 指数函数 1. 6891 38. 11% 表 8: 三种级配模型的混合料马歇尔击实试验结果(每面 75次)
Figure imgf000009_0001
三种级配比较而言, 在相同的油石比情况下, 指数函数的毛体积密度最大, 空隙率、矿料间隙率和粗集料矿料间隙率最小, 饱和度最大; 对数函数的毛体积 密度最小, 空隙率、 矿料间隙率和粗集料矿料间隙率最大, 饱和度最小; 幂函数 介于两者之间。 因此, 可以认为用指数函数构建的混合料级配的密实性最好, 用 对数函数构件的混合料级配的密实性较差,而幂函数构建的混合料级配的密实性 介于两者之间。这与前面捣实粗集料矿料间隙率的试验结果一致, 说明粗集料捣 实试验对预测混合料的体积性能有一定帮助。
如按照设计空隙率确定混合料的油石比, 指数函数混合料的油石比为 3.85%, 幂函数混合料的油石比为 4.15%, 对数函数混合料的油石比为 4.50%。
这三种混合料的试验结果说明, 对于相同矿料品种、 相同碎石含量断级配混 合料, 粗集料之间比例关系不同, 即粗集料的级配不同, 对混合料的性能影响是 显著的。 在实际工程中, 当确定了混合料中的碎石含量后, 仍需要对碎石(粗集 料) 的级配进行优化设计, 以期达到混合料的最优状态。
根据三种粗集料的级配特点角度分析, 指数函数级配中大粒径的粗集料含量 较高, 摊铺到路面后, 构造深度较大, 抗滑性能好, 唯一不足的是施工过程中容 易产生离析,对摊铺施工的工艺水平要求较高; 而对数函数级配中大粒径的粗集 料含量较少, 抗滑性能较弱, 但施工过程中离析现象比较少, 易于施工; 幂函数 级配介于两者之间。
在沥青混合料级配设计中提出一种 "三控制点、 双曲线"级配选择方法, 能 更清晰迅速的进行级配优化选择。可根据沥青混合料配合比设计要求设计出密实 性、半开级配、开级配的混合料,通过对这些混合料性能的分析,根据工程需要, 选择合理的级配形式。

Claims

权利要求书
1、 一种利用三控制点双曲线构造矿料级配的确定方法, 包括如下步骤:
1 ) 根据混合料的性质, 确定三个控制点: 混合料的公称最大粒径及其通过率, 混合料的公称最小粒径 0. 075mm及其通过率, 粗、 细集料间断点公称粒径为 4. 75 及其通过率,
2) 粗集料级配曲线和细集料级配曲线分别选择幂函数模型、 指数函数模型、 对 数函数模型, 幂函数模型: y = fl ' 指数函数模型: y = a ' ebX 对数函数模型: y = " ' ln^)+
均有两个待定参数: a b Y为各粒径的通过率; X为各粒径的孔径(mm),
3) 测定混合料的捣实密度和捣实矿料间隙率, 根据工程需要, 分别选用粗集料 级配和细集料级配。
2、 根据权利要求 1所述的确定的方法, 所述步骤 3 ) 还包括测定混合料的毛体 积密度, 空隙率, 矿料间隙率和粗集料间隙率。
3、 根据权利要求 1所述的确定方法, 所述测定混合料的毛体积密度, 空隙率, 矿料间隙率和粗集料间隙率的方法为马歇尔击实试验。
4、 根据权利要求 1所述的确定方法, 所述混合料为密实性混合料, 间断点的通 过率为 30%以上; 所述混合料骨架性混合料, 间断点的通过率不大于 40%; 所述 混合料为开级配混合料, 间断点的通过率为 15%_25%
PCT/CN2012/082989 2011-10-15 2012-10-15 一种利用三控制点双曲线构造矿料级配的确定方法 WO2013053338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,843 US20140257742A1 (en) 2011-10-15 2012-10-15 Method to structure mineral aggregate gradation by using three control points and two curves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103130535A CN102503243B (zh) 2011-10-15 2011-10-15 一种利用三控制点双曲线构造矿料级配的确定方法
CN201110313053.5 2011-10-15

Publications (1)

Publication Number Publication Date
WO2013053338A1 true WO2013053338A1 (zh) 2013-04-18

Family

ID=46215394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082989 WO2013053338A1 (zh) 2011-10-15 2012-10-15 一种利用三控制点双曲线构造矿料级配的确定方法

Country Status (3)

Country Link
US (1) US20140257742A1 (zh)
CN (1) CN102503243B (zh)
WO (1) WO2013053338A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277939A (zh) * 2015-05-14 2017-01-04 长沙理工大学 一种基于等效原理的沥青混合料细观组分材料的等效基体配合比设计方法
CN109916760A (zh) * 2019-03-19 2019-06-21 浙江省水利河口研究院 一种确定不同最大粒径下堆石料最优细粒含量的方法
CN110489923A (zh) * 2019-08-30 2019-11-22 西安建筑科技大学 一种级配碎石混合料重复荷载作用下塑性应变预估方法
CN112347622A (zh) * 2020-09-27 2021-02-09 南京航空航天大学 一种基于级配的多档粒径碎石压碎值估算方法
CN114330008A (zh) * 2021-12-31 2022-04-12 河北省交通规划设计研究院有限公司 一种应用于路表的低冰点超薄磨耗层级配范围确定方法
CN114835447A (zh) * 2022-03-18 2022-08-02 广州大学 一种钢管约束改性级配橡胶混凝土柱及建造方法
CN115368045A (zh) * 2022-03-15 2022-11-22 长安大学 一种超大粒径lsam-50沥青混合料级配设计方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503243B (zh) * 2011-10-15 2013-03-27 交通运输部公路科学研究所 一种利用三控制点双曲线构造矿料级配的确定方法
CN103122603B (zh) * 2013-02-06 2015-09-02 长安大学 Atb-30沥青混合料的设计方法
CN103334363B (zh) * 2013-02-06 2015-09-02 长安大学 一种atb-25沥青混合料的设计方法
CN108563911B (zh) * 2018-05-10 2020-03-10 武汉大学 预测原级配筑坝堆石料最小孔隙比的方法
CN109241661B (zh) * 2018-09-28 2023-05-02 武汉市市政建设集团有限公司 一种掺钢渣再生沥青混合料级配设计方法
CN110119582B (zh) * 2019-05-17 2022-09-27 安徽省交通规划设计研究总院股份有限公司 一种旧料分级再生沥青混合料设计方法
CN111222249A (zh) * 2020-01-14 2020-06-02 交通运输部科学研究院 常温快速修补路面所用材料配合比的设计方法
CN112380708B (zh) * 2020-11-18 2023-02-07 同济大学 水泥-集料-外加剂体系的高强透水混凝土优化设计方法
CN112528470B (zh) * 2020-11-24 2024-03-26 长安大学 一种颗粒系统粗集料复合几何特征计算模型及其建立方法
CN112575641A (zh) * 2020-12-14 2021-03-30 江苏天诺道路材料科技有限公司 一种高模量抗车辙沥青路面结构
CN112612994B (zh) * 2020-12-17 2024-03-08 中交路桥北方工程有限公司 沥青稳定碎石2倍标准差确定级配方法
CN113109219B (zh) * 2021-04-29 2022-07-01 重庆交通大学 一种基于图像分析的沥青路面用粗集料级配监控方法
CN113652962A (zh) * 2021-08-25 2021-11-16 中国石油天然气股份有限公司 一种降噪抗冰雪桥面铺装复合层及其铺装方法
CN114180884A (zh) * 2021-11-12 2022-03-15 山西省交通科技研发有限公司 一种骨架密实超薄罩面沥青混合料级配设计方法
CN113912313B (zh) * 2021-11-17 2022-07-08 宁夏大学 一种骨料密度大差异的水稳碎石级配方法
CN115050432A (zh) * 2022-05-20 2022-09-13 广西中交建设发展有限公司 一种超高性能hupc混凝土配合比精准设计方法
CN116663378B (zh) * 2023-05-23 2024-06-04 合肥工业大学 一种考虑再生砂颗粒形貌的级配优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240441A (ja) * 2004-02-27 2005-09-08 Nippo Corporation:Kk 低μ舗装路面およびその構築方法
CN101746995A (zh) * 2008-12-17 2010-06-23 交通部公路科学研究院 基于最紧密状态的沥青混合料配合比设计方法
CN102503243A (zh) * 2011-10-15 2012-06-20 交通运输部公路科学研究所 一种利用三控制点双曲线构造矿料级配的确定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221603A (en) * 1979-03-23 1980-09-09 Riguez Associates, A Limited Partnership Mix design method for asphalt paving mixtures
US4383864A (en) * 1980-02-21 1983-05-17 Riguez Associates Adaptive mix proportioning method for use in asphaltic concrete mixing plants
US20100144521A1 (en) * 2008-05-29 2010-06-10 Brent Constantz Rocks and Aggregate, and Methods of Making and Using the Same
CN101318794B (zh) * 2008-07-16 2011-01-26 兰州交通大学 一种基于矿料分形分布特征的沥青混合料配合比设计方法
CN101463584A (zh) * 2009-01-05 2009-06-24 东南大学 骨架密实型沥青混合料体积的设计方法
WO2010116354A2 (en) * 2009-04-07 2010-10-14 D.S.I - Dimona Silica Industries Ltd. Composition for improving the stability and operational performance and reducing the environmental impact of asphalt mixes
CN102503244B (zh) * 2011-10-17 2013-03-27 交通运输部公路科学研究所 骨架嵌挤型粗粒式高模量沥青混凝土组成及其确定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240441A (ja) * 2004-02-27 2005-09-08 Nippo Corporation:Kk 低μ舗装路面およびその構築方法
CN101746995A (zh) * 2008-12-17 2010-06-23 交通部公路科学研究院 基于最紧密状态的沥青混合料配合比设计方法
CN102503243A (zh) * 2011-10-15 2012-06-20 交通运输部公路科学研究所 一种利用三控制点双曲线构造矿料级配的确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG, XINJUN ET AL.: "A Study on Gradation Design Method of Open-Graded Asphalt Treated Base Mixtures", HIGHWAY, vol. 10, October 2009 (2009-10-01), pages 189 - 193 *
WANG, SHUIYIN: "Asphalt Concrete Gap Gradation", TRANSPORT STANDARDIZATION, November 2009 (2009-11-01), pages 17 - 21 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277939A (zh) * 2015-05-14 2017-01-04 长沙理工大学 一种基于等效原理的沥青混合料细观组分材料的等效基体配合比设计方法
CN109916760A (zh) * 2019-03-19 2019-06-21 浙江省水利河口研究院 一种确定不同最大粒径下堆石料最优细粒含量的方法
CN110489923A (zh) * 2019-08-30 2019-11-22 西安建筑科技大学 一种级配碎石混合料重复荷载作用下塑性应变预估方法
CN110489923B (zh) * 2019-08-30 2022-10-11 西安建筑科技大学 一种级配碎石混合料重复荷载作用下塑性应变预估方法
CN112347622A (zh) * 2020-09-27 2021-02-09 南京航空航天大学 一种基于级配的多档粒径碎石压碎值估算方法
CN112347622B (zh) * 2020-09-27 2024-02-13 南京航空航天大学 一种基于级配的多档粒径碎石压碎值估算方法
CN114330008A (zh) * 2021-12-31 2022-04-12 河北省交通规划设计研究院有限公司 一种应用于路表的低冰点超薄磨耗层级配范围确定方法
CN114330008B (zh) * 2021-12-31 2024-05-07 河北省交通规划设计研究院有限公司 一种应用于路表的低冰点超薄磨耗层级配范围确定方法
CN115368045A (zh) * 2022-03-15 2022-11-22 长安大学 一种超大粒径lsam-50沥青混合料级配设计方法
CN114835447A (zh) * 2022-03-18 2022-08-02 广州大学 一种钢管约束改性级配橡胶混凝土柱及建造方法

Also Published As

Publication number Publication date
US20140257742A1 (en) 2014-09-11
CN102503243B (zh) 2013-03-27
CN102503243A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013053338A1 (zh) 一种利用三控制点双曲线构造矿料级配的确定方法
Fang et al. Aggregate gradation theory, design and its impact on asphalt pavement performance: a review
US9434842B2 (en) Mix composition determination method of coarse graded high modulus asphalt concrete with skeleton embedded structure
CN109279818B (zh) 一种基于细观指标设计骨架密实型沥青混合料的方法
CN106544944B (zh) 一种小粒径骨架密实型沥青混合料级配方法
Oluwasola et al. Evaluation of rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace steel slag and copper mine tailing
Yuan et al. Optimization design and verification of large stone porous asphalt mixes gradation using compressible packing model
Akacem et al. A method to use local low performances aggregates in asphalt pavements–An Algerian case study
CN109776007B (zh) 一种人工填料最优级配确定方法
Chen et al. Improved design method of emulsified asphalt cold recycled mixture
Wu et al. Review and evaluation of the prediction methods for voids in the mineral aggregate in asphalt mixtures
Leghrieb et al. The manufacture of raw brick from the Saharan sand-based mortar of Ouargla (located in the Septentrional Sahara, Algeria) for use in Arid Regions
Malkanthi et al. Particle Packing Application for Improvement in the Properties of Compressed Stabilized Earth Blocks with Reduced Clay and Silt.
Yang et al. Mixture design of fire-retarded OGFC in road tunnel
Panda et al. Source of jointing sand for concrete block pavement
Anagi et al. Performance of skid resistance of warm-mix asphalt with buton natural asphalt-rubber (BNA-R) and zeolite additives as a result of road surface temperature changes
Wu et al. Evaluation of experimental testing methods for the design of permeable friction course mixtures
Wang et al. Study on the low temperature cracking mechanism of steel slag asphalt mixture by macroscale and microscale tests
Takahashi et al. Improvement of mix design for porous asphalt
Oluwasola et al. Effect of Steel Slag on Engineering Properties of Lateritic Soil
CN111910482B (zh) 双层多孔沥青路面上下层抗堵塞型配合比设计方法
Hui et al. Analysis of high temperature ability influence factors of anti-rutting agent modified asphalt mixture
Hadi et al. Comparative Study of Marshall Properties and Durability of Superpave and AC-WC Pavement by Using Starbit E-55 and Pen 60/70
Elufowoju Investigation of the impact of selected additives on index properties of subgrade soils
CN115368046B (zh) 一种大粒径ctb-50水泥稳定碎石级配设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348843

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839588

Country of ref document: EP

Kind code of ref document: A1