WO2013053222A1 - 一种碟式聚光器及包括该聚光器的太阳能热发电系统 - Google Patents

一种碟式聚光器及包括该聚光器的太阳能热发电系统 Download PDF

Info

Publication number
WO2013053222A1
WO2013053222A1 PCT/CN2012/074739 CN2012074739W WO2013053222A1 WO 2013053222 A1 WO2013053222 A1 WO 2013053222A1 CN 2012074739 W CN2012074739 W CN 2012074739W WO 2013053222 A1 WO2013053222 A1 WO 2013053222A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
disc
rotating mirror
mirror
rotating shaft
Prior art date
Application number
PCT/CN2012/074739
Other languages
English (en)
French (fr)
Inventor
党安旺
马迎召
朱楷
黄敏
刘帅
王步根
付雪高
Original Assignee
湘潭电机力源模具有限公司
湘潭电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭电机力源模具有限公司, 湘潭电机股份有限公司 filed Critical 湘潭电机力源模具有限公司
Priority to IN3493DEN2014 priority Critical patent/IN2014DN03493A/en
Priority to US14/345,326 priority patent/US9644616B2/en
Publication of WO2013053222A1 publication Critical patent/WO2013053222A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/062Parabolic point or dish concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/75Arrangements for concentrating solar-rays for solar heat collectors with reflectors with conical reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • Dish concentrator and solar thermal power generation system including the concentrator
  • the present invention relates to the field of solar energy utilization, and more particularly to a dish concentrator and a solar thermal power generation system including the concentrator.
  • the dish type solar thermal power generation system is mainly composed of a dish concentrator, an engine (a steam turbine, a gas turbine, a Stirling engine), a tracking control system, and the like.
  • the dish concentrator is composed of a column, a disc holder, and a plurality of mirrors fixed in different sizes on the disc holder. After the disc concentrator is set up, the mirror is not moved relative to the disc frame, the focusing energy is not adjustable, and the focusing energy is not adjustable, which brings great technical difficulties to the debugging and operation of the whole system. For example: In the initial stage of the deployment of the dish-type solar thermal power system, the heat engine system has not been running stably, and the required energy needs to be changed.
  • the dish concentrator inputs energy to the heat collector of the heat engine with a fixed energy, and the heat collector of the heat engine does not have. Prolonging the heat away will cause the collector to heat up or even burn out; when the heat engine fails or leaves the normal working point, the energy required by the heat engine also needs to change, otherwise the heat collector of the heat engine will be burned; when the heat engine is in normal operation,
  • the dish concentrator will differ in the intensity of the morning and noon of the sun. The difference in the energy of the focus is large, and the power difference of the output of the heat engine system is also large, which causes the heat engine system to deviate too far from the optimal working point and the efficiency is greatly reduced.
  • the focusing energy of the existing dish concentrator is not adjustable, and due to the unadjustable focus energy, it brings great technical difficulties to the debugging and operation of the system using the dish concentrator.
  • the present invention provides a dish concentrator including a rotating mirror to realize adjustable control of the concentrated energy of the dish concentrator; the present invention also provides a dish including the above disc concentrator Solar thermal power generation system.
  • the present invention provides the following technical solutions:
  • a disc concentrator comprising a disc post and a disc holder, the disc concentrator further comprising: a rotating shaft disposed at both ends on the disc frame and rotatably connected to the disc rack;
  • a rotating mirror disposed on a side of the rotating shaft and fixedly coupled to the rotating shaft; a power driving device disposed on the disc frame or the rotating mirror backlight surface to drive the rotating mirror to rotate;
  • a control system coupled to the power drive to control the operational state of the power drive.
  • At least two rotating shaft supports are disposed between the disc frame and the rotating mirror, each of the rotating shaft supports is provided with a through hole, and the rotating shaft passes through the through hole and the rotating shaft
  • the seat has an interference fit, and the positions of the at least two shaft bearings are symmetric with the center line of the rotating mirror, and the center of gravity of the rotating mirror falls to the left side of the shaft bearing.
  • the dish concentrator further comprises:
  • a rotation limiting plate disposed on the disc frame to prevent the rotating mirror from rotating excessively and causing damage to the rotating mirror
  • a reset plate disposed on the disc frame and having the same position as a normal working position of the rotating mirror, wherein a normal working position of the rotating mirror is that the reflected light of the rotating mirror is focused on the disc The position at which the rotating mirror is located when the working object of the concentrator.
  • the rotation limiting plate and the reset plate are respectively provided with sensing elements, and the feeling
  • the control unit is connected to the control system, the power driving device is disposed on the disc frame, the power driving device rotates the rotating shaft through a power transmission element, and the rotating shaft drives the rotating mirror to rotate, the control The system controls the operating state of the power drive device based on information transmitted by the sensing element of the rotation limiting plate and the sensing element of the reset plate.
  • a return spring is further disposed between the rotating mirror and the disc frame, and the power driving device is disposed on a backlight surface of the rotating mirror, and a driving force of the power driving device directly acts on the Rotating the mirror, the rotating mirror is rotated by the support of the rotating shaft, and the return spring resets the rotating mirror to the position of the resetting plate when the power driving device stops working.
  • the return spring maintains a certain deformation when the rotating mirror is in a normal working position, and the resetting plate limits the rotation of the rotating mirror due to the deformation of the return spring.
  • the rotating mirrors of the plurality of rotating mirrors on the same radial direction are disposed on the same rotating shaft.
  • the dish concentrator further comprises a fixed mirror fixedly disposed on the disc holder.
  • the fixed mirror and the rotating mirror are annularly disposed in the disc frame, the fixed mirror is disposed on an outer ring of the disc frame, and the rotating mirror is disposed in the On the inner ring of the disc holder.
  • the present invention also provides a dish type solar thermal power generation system including a dish concentrator, an engine and a tracking control system, and the dish concentrator is specifically the above-described dish concentrator.
  • the dish concentrator provided by the present invention has a rotating shaft which is rotatably connected at both ends thereof, and a rotating mirror fixedly connected thereto is disposed on a side surface of the rotating shaft, and the rotating mirror is back-illuminated
  • a power drive for driving the rotation of the rotating mirror is disposed on the face or the disk, and the operating state of the power drive is controlled by a control system connected thereto.
  • the control system controls the operation of the power driving device, and the power driving device provides the rotating power for the rotating mirror, and the rotating mirror rotates under the driving or supporting action of the rotating shaft to change the rotation.
  • the reflected light direction of the mirror realizes the adjustable control of the concentrated energy of the dish concentrator.
  • FIG. 1 is a schematic structural view of a first embodiment of a dish concentrator according to the present invention.
  • FIG. 2 is a schematic view showing the installation of a rotating mirror of the dish concentrator of the present invention
  • FIG. 3 is a schematic structural view of a driving motor driving a rotating mirror
  • Figure 4 is a schematic structural view of a hydraulic system driving a rotating mirror
  • Figure 5 is a schematic view showing the structure of an electromagnet-driven rotating mirror
  • FIG. 6 is a schematic view showing the installation of the reset plate, the rotation restricting plate and the return spring of the present invention
  • FIG. 7 is a schematic structural view of a second embodiment of the dish concentrator according to the present invention.
  • Figure 8 is a schematic view showing the structure of the rotating mirror to the side of the ring
  • Figure 9 is a schematic view showing the structure of the rotating mirror ring inward and outward;
  • Figure 10 is a schematic view showing the structure of the rotating mirror rotating sideways
  • Figure 11 is a schematic view showing the structure of the rotating mirror inverting radially inside and outside.
  • Embodiments of the present invention disclose a dish concentrator including a rotating mirror to achieve adjustable control of the focusing energy of the dish concentrator.
  • 1 is a schematic structural view of a first embodiment of a dish concentrator according to the present invention.
  • the disc concentrator includes a disc rack column 1, a disc holder 2, a rotating shaft 3, a rotating mirror 4, a power driving device 5, and a control system 6.
  • Solar thermal utilization equipment 7 is The working object of the dish concentrator absorbs the energy focused by the dish concentrator.
  • the disc post 1 is used to support the disc holder 2.
  • the two ends of the rotating shaft 3 are disposed in the disc holder 2.
  • the rotating shaft 3 is rotatably connected with the disc holder 2.
  • the rotating shaft 3 When an external force acts on the rotating shaft 3, the rotating shaft 3 can rotate around itself.
  • the rotating shaft 3 is disposed on the side of the rotating shaft 3, and the rotating shaft 3 is fixedly connected with the rotating mirror 4, and the rotating shaft 3 can rotate the rotating mirror 4 by its own rotation; obviously, when an external force directly acts on the rotating mirror 4,
  • the rotating mirror 4 can also be rotated by the support of the rotating shaft 3.
  • the power driving device 5 is disposed on the backlight surface of the rotating mirror 4 for driving the rotating mirror 4 to rotate.
  • the power generated by the power driving device 5 directly acts on the rotating mirror 4, and the rotating mirror 4 is driven by the power driving device 5.
  • the rotation of the shaft 3 is started, and the power driving device 5 can be a hydraulic system or an electromagnet.
  • the power driving device 5 can also be disposed on the disc frame 2 near the position of the rotating shaft 3, and the power driving device 5 drives the rotating shaft 3 to rotate by the power transmission element, thereby driving the rotating mirror 4 to rotate, and the power driving device 5 can be a driving motor.
  • the corresponding power transmission components can be gears, chains, worms and hinges.
  • the power driving device 5 can be any power driving system capable of driving the rotation of the rotating mirror 4, and is not limited to the limitation of the power driving device 5 in the embodiment.
  • the control system 6 is connected to the power drive unit 5 for controlling the operating state of the power drive unit 5, and the control system 6 can be remotely disposed to perform remote monitoring of the power drive unit 5.
  • the solar heat utilization device 7 is fixed to the upper side of the disk holder 2 through a support column extending from the center of the disk holder 2, and the solar heat utilization device 7 absorbs the energy focused by the disk concentrator.
  • FIG. 2 is a schematic view showing the installation of the rotating mirror of the dish concentrator of the present invention.
  • two rotating shaft supports 8 are disposed between the rotating mirror 4 and the disk holder 2.
  • One end of the rotating shaft support 8 is fixedly mounted on the disk frame 2, and the other end is fixedly mounted on the rotating mirror.
  • the backlight surface of 4, the position of the two shaft supports 8 is symmetrical with respect to the center line of the rotating mirror 4, and the center of gravity of the rotating mirror 4 falls on the left side of the line connecting the two shaft supports 8, the two shaft branches
  • the central portion of the seat 8 is provided with a through hole, and the rotating shaft 3 is installed in the through hole of the two rotating shaft supports 8, and an interference fit between the rotating shaft 3 and the rotating shaft support 8 is realized.
  • the rotating shaft support 8 can be fixedly mounted on the disc holder 2 by welding. If the rotating mirror 4 itself has a metal supporting member, the rotating shaft support 8 can also be fixedly mounted on the rotating mirror 4 by welding. The backlight surface; otherwise, the hinge support 8 can be bonded to the backlight of the rotating mirror 4.
  • the rotating shaft 3 can be divided into two rotating shafts, and the two rotating shafts respectively respectively mount the rotating shaft supports 8 In the through hole, the two rotating shafts are concentric and cooperate with the through holes of the respective rotating shaft supports 8.
  • One of the rotating shafts 3 realizes the supporting action of the rotating mirror 4, and the other one of them realizes the rotation of the rotating mirror 4.
  • the installation manner of the rotating mirror shown in FIG. 2 is only a preferred installation method of the rotating mirror of the dish concentrator of the present invention, and other mounting methods, such as the cooperation of the bearing and the rotating shaft, can be used to realize the rotating reflection.
  • Mirror installation The mounting of the rotating mirror shown in Fig. 2 is merely for the purpose of understanding the mounting principle of the rotating mirror 4 of the present invention, and should not be construed as limiting the manner of mounting it.
  • the disc frame 2 can be provided with a plurality of rotating shafts 3 and rotating mirrors 4, and one rotating mirror 4 is provided with at least one rotating shaft 3, and the number of rotating mirrors 4 can be determined according to the solar thermal utilization device 7 during initial commissioning or normal operation. , the energy absorbed by the collector is determined.
  • the plurality of rotating mirrors 4 can also share a rotating shaft 3, and a plurality of rotating mirrors 4 are rotated by a rotating shaft 3, and a plurality of rotating mirrors 4 on the same rotating shaft 3 form an array of rotating mirrors 4.
  • An array of rotating mirrors 4 can be formed as a plurality of rotating mirrors 4 in the same radial direction of the disc tray 2.
  • the case where the rotating mirror 4 is disposed with at least one of the rotating shafts 3 can be combined with the case where the plurality of rotating mirrors 4 share one rotating shaft 3.
  • the process of adjusting the focusing energy by the dish concentrator is specifically as follows:
  • the solar thermal utilization device 7 works normally, the reflected light of all the rotating mirrors 4 in the disc frame 2 is focused on the collector of the solar thermal utilization device 7, when the solar energy
  • the control system 6 receives the signal for reducing the focus energy, the control system 6 controls the operation of the power driving device 5, and the power driving device 5 drives the rotating mirror 4 to rotate, so that the reflected light of the rotating mirror 4 is rotated.
  • the number of rotating mirrors 4 controlled by the control system 6 can be determined based on the reduced focusing energy required by the disc concentrator.
  • the driving manner of driving the rotating mirror 4 by the power driving device 5 includes: driving the rotating shaft 3 to drive the rotating shaft 3 to rotate the rotating mirror 4, or driving the rotating mirror 4 directly by the power driving device 5, and implementing the rotating mirror under the support of the rotating shaft 3 4 rotation.
  • a power driving device 5 is not limited to driving only one rotating mirror 4, and one power driving device 5 can drive a plurality of rotating mirrors 4 according to actual work requirements, such as a power driving device 5 driving a rotating mirror 4.
  • the control system 6 simultaneously controls a plurality of power drives 5. According to the actual work needs, the control system 6 controls a certain number of power drives.
  • the moving device 5 works to drive the rotating mirror 4 corresponding to the number of power driving devices 5 to realize the focusing energy adjustment of the dish concentrator, and the number of the power driving devices 5 controlled by the control system 6 should satisfy the disc.
  • the concentrator adjusts the need for focusing energy.
  • the solar thermal utilization device 7 may further be provided with a sensing component, and the sensing component is connected to the control system 6.
  • the sensing component senses that the solar thermal utilization device is operating at an excessive temperature exceeding a predetermined operating temperature value
  • the sensing component The thermal signal is converted into an electrical signal and transmitted to the control system 6.
  • the control system 6 controls a certain number of rotating mirrors 4 to start rotating, and adjusts the focusing energy of the dish concentrator to reduce the solar heat utilization equipment.
  • the disc concentrator disclosed in the embodiment of the present invention has a rotating shaft which is rotatably connected at both ends thereof, and a rotating mirror fixedly connected thereto is disposed on a side surface of the rotating shaft, and a backlight surface or a disc frame of the rotating mirror is disposed A power drive for driving the rotation of the rotating mirror is provided, the operating state of the power drive being controlled by a control system connected thereto.
  • the control system controls the power driving device to operate, thereby driving the rotating mirror to rotate, so that the direction of the reflected light of the rotating mirror is changed, and the collecting energy of the dish concentrator is realized. Adjustable control.
  • Fig. 3 is a schematic structural view of a driving motor driving rotating mirror
  • Fig. 3 is a partial schematic view of the disk type concentrating device shown in Fig. 1 for explaining the working principle of the driving motor to drive the rotating mirror.
  • the disc holder 2 of the disc concentrator shown in FIG. 3 is further provided with a reset plate 9 and a rotation restricting plate 10, and the setting position of the reset plate 9 and the rotating mirror 4 are provided.
  • the normal working position is the same, and the normal working position of the rotating mirror 4 refers to the position where the rotating mirror 4 is located on the disk holder 2 when the reflected light of the rotating mirror 4 is focused on the heat collector of the solar heat utilization device 7.
  • Rotating the limiting plate 10 under the premise that the reflected light of the rotating mirror 4 deviates from the collector of the solar thermal utilization device 7, limits the rotation angle of the rotating mirror 4, and prevents the rotating mirror 4 from being damaged due to excessive rotation angle .
  • the power driving device 5A shown in FIG. 3 is more specific.
  • the power driving device 5A shown in FIG. 3 is a driving motor, and the driving motor 5A is disposed on the disk holder 2, and is driven.
  • the position of the movable motor 5A on the disk holder 2 is close to the rotating shaft 3, and the driving motor 5A is rotated by the gear driving rotating shaft 3, thereby driving the rotating mirror 4 to rotate.
  • the resetting plate 9 and the rotation restricting plate 10 are also provided with sensing elements, and the sensing elements of the resetting plate 9 and the sensing elements of the rotation limiting plate 10 are respectively connected to the control system 6.
  • the driving motor 5A drives the rotating mirror 4 to rotate.
  • the control system 6 controls the driving motor 5A to rotate, and the gear is driven by the rotation of the driving motor 5A.
  • the rotating shaft 3 starts to rotate, and the rotating mirror 4 starts to rotate under the driving of the rotating shaft 3.
  • the reflected light of the rotating mirror 4 starts to deviate from the collector of the solar heat utilization device.
  • the rotation limit The sensing element on the board 10 sends a signal to the control system 6, and after receiving the signal, the control system 6 controls the driving motor 5A to stop rotating, and completes the work of reducing the energy collected by the dish concentrator; when the control system 6 receives the signal, the disc needs to be added.
  • the control system 6 controls the driving motor 5A to rotate in the reverse direction. At this time, the direction in which the driving motor 5A rotates is opposite to the direction in which the driving motor 5A drives the rotating mirror 4 to reduce the focusing energy of the disc concentrator.
  • the gear drives the rotating shaft 3 to rotate in the opposite direction, and the rotating mirror 4 starts to be driven by the rotating shaft 3
  • the sensing element on the resetting plate 9 sends a signal to the control system 6, and after receiving the signal, the control system 6 controls the driving motor 5A to stop rotating, and completes the resetting operation of the rotating mirror 4,
  • the focusing energy of the dish concentrator begins to increase.
  • Fig. 4 is a schematic structural view of a hydraulic system driving a rotating mirror
  • Fig. 4 is a partial schematic view of the dish concentrator shown in Fig. 1 for explaining the working principle of the hydraulic system driving the rotating mirror.
  • a return spring 11 is further disposed between the disc holder 2 of the disc concentrator shown in FIG. 4 and the rotating mirror 4, and the return spring 11 is in the normal position of the rotating mirror 4.
  • the return spring 11 maintains a certain deformation, and the resetting plate 9 acts as a baffle to prevent the rotating mirror 4 from being returned by the return spring.
  • the traction of 11 deviates from the working position.
  • the return spring 11 maintains a certain deformation when the rotating mirror 4 is in the working position, and prevents the rotating mirror 4 from being shaken when the disk holder 2 is rotated, thereby causing the rotating mirror 4 to operate abnormally.
  • the power driving device of the dish concentrator shown in Fig. 4 adopts a hydraulic system 5B, and the hydraulic system 5B is disposed on the backlight surface of the rotating mirror 4, and the power of the hydraulic system 5B directly acts on the rotating mirror 4, and is supported by the rotating shaft 3
  • the rotating mirror 4 is driven to rotate.
  • the reset plate 9 and the rotation restricting plate 10 of the dish concentrator shown in Fig. 4 are not provided with an inductive element as compared with the dish concentrator shown in Fig. 3.
  • the process of the hydraulic system 5B driving the rotating mirror 4 is specifically as follows:
  • the control system 6 controls the hydraulic system 5B to start working, and the hydraulic system 5B drives the rotating mirror. 4 starts to rotate, the reflected light of the rotating mirror 4 starts to deviate from the collector of the solar heat utilization device, and the deformation generated by the return spring 11 is increased.
  • Fig. 5 is a schematic view showing the structure of an electromagnet-driven rotating mirror
  • Fig. 5 is a partial schematic view of the disc concentrator shown in Fig. 1 for explaining the working principle of the electromagnet-driven rotating mirror.
  • the power driving device of the dish concentrator shown in FIG. 5 is an electromagnet 5C
  • the structure of the concentrator is the same.
  • the bracket extending from the electromagnet 5C through the disc holder 2 is disposed on the backlight surface of the rotating mirror 4, and the electromagnet 5C directly acts on the rotating mirror 4, and the rotating mirror 4 is rotated by the support of the rotating shaft 3. .
  • the resetting plate 9 and the rotation restricting plate 10 are not provided with an inductive element.
  • the process of driving the rotating mirror 4 by the electromagnet 5C is specifically as follows:
  • the control system 6 controls the electromagnet 5C to start working, and the electromagnet 5C is energized to drive the rotation.
  • the mirror 4 starts to rotate, and the reflected light of the rotating mirror 4 starts to deviate from the collector of the solar heat utilization device, and the deformation generated by the return spring 11 is increased.
  • the above embodiment is only a special case in which the power driving device drives the rotation of the rotating mirror. According to the actual working conditions, different power driving devices or different power driving devices can be used to provide power support for the rotating mirror.
  • Figure 6 is a schematic view showing the installation of the reset plate, the rotation restricting plate and the return spring of the present invention.
  • the rotation restricting plate 10 is fixedly mounted on the disk holder 2, and the position is set on the m line.
  • the return spring 11 is mounted at the position of the disk holder 11A, and the return spring 11 is preferably mounted such that the return spring 11 is spaced from the rotating shaft 3 by a distance greater than a quarter of the mounted side of the rotating mirror 4.
  • FIG. 7 is a schematic structural view of a second embodiment of a dish concentrator according to the present invention.
  • the disc holder 2 of the disc concentrator shown in FIG. The fixed mirror 12, the fixed mirror 12 does not rotate relative to the disc holder 2, and the fixed mirror 12 is disposed in the disc holder 2 such that the reflected light of the fixed mirror 12 can be focused on the collector of the solar thermal utilization device 7. .
  • the total number of fixed mirrors 12 and rotating mirrors 4 is determined according to the energy required by the collectors of the solar thermal utilization device 7 during initial commissioning or normal operation, and the number of rotating mirrors 4 is based on the solar thermal utilization device 7
  • the magnitude of the endothermic energy adjustment determines that the position of the rotating mirror 4 in the disc holder 2 can be determined according to the ease of rotation of the rotating mirror 4 in the disc holder 2 and the rotational balance of the disc holder 2.
  • the rotating mirror 4 starts to rotate, so that the reflected light deviates from the collector of the solar heat utilization device 7, and the fixed reflection
  • the mirror 12 does not rotate, and the reflected light is still focused on the heat collector of the solar heat utilization device 7, thereby achieving the effect of reducing the power of the dish concentrator and protecting the collector of the solar heat utilization device 7;
  • the rotating mirror 4 begins to reset, and its reflected light is refocused on the collector of the solar thermal utilization device 7.
  • the fixed mirror and the rotating mirror are annularly disposed in the disc frame, and the fixed mirror is preferably disposed on the outer ring of the disc frame, and the rotating mirror is preferably disposed on the inner ring of the disc holder.
  • Figure 8 is a schematic view showing the structure of the rotating mirror ring side
  • Figure 9 is the rotating mirror ring inward.
  • the disc frame 2 is divided into four inner and outer annular structures.
  • the inner ring of the disc frame 2 has a plurality of rotating mirrors 4, and the outer ring has a plurality of fixed reflections.
  • Mirror 12 Under normal working conditions, all the reflected light of the rotating mirror 4 and the fixed mirror 12 are focused on the collector of the solar thermal utilization device 7, and the power of the dish concentrator needs to be adjusted to be small.
  • the plurality of rotating mirrors 4 of the inner ring two layers are rotated sideways with respect to the disk frame 2, and the structure thereof is as shown in FIG. 8, or a plurality of rotating reflections of the inner ring two layers
  • the mirror 4 is turned inwardly and outwardly with respect to the disk frame 2, and its structure is as shown in FIG.
  • the reflected light of the plurality of rotating mirrors 4 of the inner ring is deviated from the collector of the solar thermal utilization device 7, and the reflected light of the plurality of fixed mirrors 12 of the outer ring is still focused on the heat collecting of the solar thermal utilization device 7. Therefore, the adjustment of the focusing energy of the dish concentrator is realized; when the dish concentrator needs to return to the normal working state, the rotating mirror 4 starts to reset.
  • the plurality of rotating mirrors 4 in the same radial direction of the disk holder 2 share a rotating shaft 3 to form an array of rotating mirrors 4.
  • the number of arrays of rotating mirrors 4 can be determined according to the magnitude of the heat absorption energy adjustment of the solar thermal utilization device 7, and the array of rotating mirrors 4 is disposed in the disk holder 2 at the position according to the array of rotating mirrors 4. The degree of difficulty of rotation and the balance of rotation of the disk holder 2 are determined.
  • Fig. 10 is a structural schematic view showing the radial side rotation of the rotating mirror
  • Fig. 11 is a structural schematic view showing the rotating mirror rotating inside and outside.
  • the rotating mirrors 4 of the disk holder 2 in the same radial direction form an array of rotating mirrors 4.
  • the array of all the rotating mirrors 4 and the reflected light of all the fixed mirrors 12 are focused on the collector of the solar thermal utilization device 7, when the power of the dish concentrator needs to be adjusted.
  • the collector of the solar thermal utilization device 7 is reduced or protected, the array of rotating mirrors 4 is rotated sideways with respect to the disk holder 2, the structure of which is shown in FIG.
  • the structure is as shown in Fig. 11.
  • the reflected light of the array of rotating mirrors 4 is deviated from the collector of the solar thermal utilization device 7, and the reflected light of the fixed mirror 12 is still focused on the heat collecting of the solar thermal utilization device 7. Therefore, the adjustment of the focusing energy of the dish concentrator is realized; when the dish concentrator needs to return to the normal working state, the array of the rotating mirror 4 starts to be reset.
  • the working principle of the rotation of the rotating mirror 4 relative to the rotation of the disk holder 2 and the rotation of the rotating mirror 4 is the same as that of the rotating mirror 4 described in the first embodiment. Therefore, the present embodiment rotates the rotating mirror 4 relative to the disk holder 2, and rotates the mirror. The working principle of 4 reset will not be described again.
  • the rotation direction of the rotating mirror 4 and the setting position of the rotating shaft 3 can be arbitrarily determined on the premise of facilitating the design of the dish concentrator, and the rotating direction of the rotating mirror 4 is preferably inverted or opposite to the inside and outside of the disc holder 2.
  • the disc tray 2 is rotated sideways.
  • the disc holder in order to facilitate the rotation of the rotating mirror 4 and maintain the stability of the disc holder 2, the disc holder
  • the shape of 2 is preferably a circle or a polygon.
  • the rotating mirror 4 and the fixed mirror 12 are preferably linear compound parabolic mirrors, linear Fresnel lenses or mirrors, convex lenses, lenses, linear parabolic mirrors.
  • the reflected light can be focused on other solar thermal utilization devices to realize the comprehensive utilization of solar energy.
  • control principle of the control system 6 for the components of the present invention is the same as the existing control theory and will not be described again.
  • the embodiment of the invention discloses a dish concentrator, which can rotate a corresponding number of rotating mirrors according to the needs of the solar energy utilization device, so that the reflected light of the rotating mirrors is offset or close to the solar energy utilization device.
  • the collector adjusts the focusing energy of the dish concentrator in time, and adjusts the output power of the solar energy utilization device.
  • the present invention also discloses a dish type solar thermal power generation system including the above-mentioned dish concentrator.
  • a dish type solar thermal power generation system including the above-mentioned dish concentrator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种碟式聚光器,包括:碟架立柱(1),碟架(2),两端设置在碟架(2)上、与碟架(2)转动连接的转轴(3),设置在转轴(3)的侧面、与转轴(3)固定连接的转动反射镜(4),设置在碟架(2)上或转动反射镜(4)背光面、驱动转动反射镜(4)转动的动力驱动装置(5),以及与动力驱动装置(5)相连、控制动力驱动装置(5)工作状态的控制系统(6)。碟式聚光器通过控制系统(6)控制动力驱动装置(5)工作,动力驱动装置(5)为转动反射镜(4)提供转动的动力,从而使转动反射镜(4)在转轴(3)的带动或支撑作用下转动,实现聚焦能量可调的目的。一种碟式太阳能热发电系统,包括碟式聚光器。

Description

一种碟式聚光器及包括该聚光器的太阳能热发电系统
本申请要求于 2011 年 10 月 13 日提交中国专利局、 申请号为 201110309055.7、 发明名称为"一种碟式聚光器及包括该聚光器的太阳能热 发电系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请
技术领域
本发明涉及太阳能利用领域, 更具体地说, 涉及一种碟式聚光器及包 括该聚光器的太阳能热发电系统。
背景技术
目前, 在世界常规能源逐渐不足的情况下, 太阳能因其储量无限性、 分布普遍性、 利用清洁性及经济性等特征被普遍看好、 得到世界各国的普 遍重视。 太阳能热发电是太阳能开发利用的一个重要方向。 在太阳能热发 电领域, 根据聚光方式的不同, 主要有槽式、 塔式和碟式三种主要技术路 线。 碟式太阳能热发电由于其灵活的模块化部署能力、 较高的聚光比、 方 便的二维跟踪系统、 适应缺少环境、 灵活的电站构建模式、 设备故障对电 网的干扰小, 尤其采用斯特林发动机的碟式发电系统光电转后效率高达 32-38% , 因而越来越被市场青睐。
目前, 碟式太阳能热发电系统主要由碟式聚光器, 发动机(蒸汽轮机、 燃气轮机、斯特林发动机),跟踪控制系统等组成。其中碟式聚光器由立柱、 碟架、 固定于碟架上大小不同的很多块反射镜组成。 该种碟式聚光器制造 设置完成后, 其反射镜相对于碟架不动, 聚焦能量不可调节, 聚焦能量不 可调节给整个系统的调试和运行带来了很大的技术困难。 例如: 在碟式太 阳能热发电系统调试初期, 热机系统还未稳定运行, 所需能量需要变化, 但是碟式聚光器以固定的能量向热机的集热器输入能量而热机的集热器没 有及时导走这些热量会导致集热器一直升温甚至烧毁; 在热机发生故障或 脱离正常工作点时, 热机所需能量也需要变化, 否则也会烧毁热机的集热 器; 在热机正常运行时, 碟式聚光器会因为阳光的早上与中午的强度差别 所聚焦的能量差别^艮大, 热机系统输出的功率差别也艮大, 这样会导致热 机系统偏离最佳工作点太远而效率大大降低。
可以看出, 现有的碟式聚光器的聚焦能量不可调节, 并且由于其聚焦 能量的不可调节, 给利用碟式聚光器的系统的调试和运行带来了很大的技 术难题。
发明内容
有鉴于此, 本发明提供一种包括转动反射镜的碟式聚光器, 以实现碟 式聚光器的聚集能量的可调节控制; 本发明还提供一种包括上述碟式聚光 器的碟式太阳能热发电系统。
为实现上述目的, 本发明提供如下技术方案:
一种碟式聚光器, 包括碟架立柱和碟架, 所述碟式聚光器还包括: 两端设置在所述碟架上, 并与所述碟架转动连接的转轴;
设置在所述转轴的侧面, 并与所述转轴固定连接的转动反射镜; 设置在所述碟架上或所述转动反射镜背光面, 驱动所述转动反射镜转 动的动力驱动装置;
与所述动力驱动装置相连, 控制所述动力驱动装置工作状态的控制系 统。
优选的,所述碟架与所述转动反射镜之间还设置有至少两个转轴支座, 每个所述转轴支座开有通孔, 所述转轴通过所述通孔与所述转轴支座过盈 配合, 所述至少两个转轴支座的位置与所述转动反射镜的中心线对称, 所 述转动反射镜的重心落在所述转轴支座的左侧。
优选的, 所述碟式聚光器还包括:
设置在所述碟架上, 防止所述转动反射镜转动角度过大而造成所述转 动反射镜损坏的转动限制板;
设置在所述碟架上, 且设置位置与所述转动反射镜的正常工作位置相 同的复位板, 所述转动反射镜的正常工作位置为所述转动反射镜的反射光 聚焦于所述碟式聚光器的工作对象时, 所述转动反射镜所处的位置。
优选的, 所述转动限制板和所述复位板分别设置有感应元件, 所述感 应元件与所述控制系统相连, 所述动力驱动装置设置在所述碟架上, 所述 动力驱动装置通过动力传输元件转动所述转轴, 所述转轴带动所述转动反 射镜转动, 所述控制系统根据所述转动限制板的感应元件和所述复位板的 感应元件传输的信息, 控制所述动力驱动装置的工作状态。
优选的, 所述转动反射镜与所述碟架之间还设置有复位弹簧, 所述动 力驱动装置设置在所述转动反射镜的背光面, 所述动力驱动装置的驱动力 直接作用在所述转动反射镜上, 所述转动反射镜通过所述转轴的支撑而转 动, 所述复位弹簧在所述动力驱动装置停止工作时, 将所述转动反射镜复 位到所述复位板的位置。
优选的, 所述复位弹簧在所述转动反射镜处于正常工作位置时, 保持 一定的形变, 所述复位板限制所述转动反射镜因所述复位弹簧的形变而造 成的转动。
优选的, 所述碟架同一径向上多个的所述转动反射镜设置在相同的所 述转轴上。
优选的,所述碟式聚光器还包括固定设置在所述碟架上的固定反射镜。 优选的,所述固定反射镜和所述转动反射镜呈环状设置在所述碟架内, 所述固定反射镜设置在所述碟架的外环上, 所述转动反射镜设置在所述碟 架的内环上。
本发明还提供一种碟式太阳能热发电系统, 包括碟式聚光器, 发动机 和跟踪控制系统, 所述碟式聚光器具体为上述所述的碟式聚光器。
从以上技术方案可以看出, 本发明提供的碟式聚光器, 碟架内设置有 两端与其转动连接的转轴,转轴的侧面设置有与其固定连接的转动反射镜, 该转动反射镜的背光面或碟架上设置有驱动该转动反射镜转动的动力驱动 装置, 该动力驱动装置的工作状态由与其连接的控制系统控制。 显然, 当 碟式聚光器需要调整聚光能量时, 控制系统控制动力驱动装置工作, 动力 驱动装置为转动反射镜提供转动的动力, 转动反射镜在转轴的带动或支撑 作用下转动, 改变转动反射镜的反射光方向, 实现了碟式聚光器的聚集能 量可调节控制。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明一种碟式聚光器的实施例一的结构示意图;
图 2为本发明碟式聚光器的转动反射镜的安装示意图;
图 3为驱动电机驱动转动反射镜的结构示意图;
图 4为液压系统驱动转动反射镜的结构示意图;
图 5为电磁铁驱动转动反射镜的结构示意图;
图 6为本发明复位板、 转动限制板和复位弹簧的安装示意图; 图 7为本发明一种碟式聚光器的实施例二的结构示意图;
图 8为转动反射镜环向侧转的结构示意图;
图 9为转动反射镜环向内外翻转的结构示意图;
图 10为转动反射镜径向侧转的结构示意图;
图 11为转动反射镜径向内外翻转的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例公开了一种包含转动反射镜的碟式聚光器, 以实现碟式 聚光器的聚焦能量的可调节控制。 图 1为本发明一种碟式聚光器的实施例 一的结构示意图。 如图 1所示, 碟式聚光器包括碟架立柱 1、 碟架 2、 转轴 3、 转动反射镜 4、 动力驱动装置 5和控制系统 6。 太阳能热利用设备 7为 碟式聚光器的工作对象, 吸收碟式聚光器聚焦的能量。 碟架立柱 1用于支 撑碟架 2, 转轴 3的两端设置在碟架 2内, 转轴 3与碟架 2转动连接, 当 有外力作用在转轴 3上时, 转轴 3可绕自身转动。 转轴 3的侧面设置有转 动反射镜 4, 转轴 3与转动反射镜 4固定连接, 转轴 3可通过自身的转动 带动转动反射镜 4转动; 显然, 当有外力直接作用在转动反射镜 4上时, 转动反射镜 4也可通过转轴 3的支撑而转动。 动力驱动装置 5设置在转动 反射镜 4的背光面, 用于驱动转动反射镜 4转动, 动力驱动装置 5产生的 动力直接作用在转动反射镜 4上, 转动反射镜 4在动力驱动装置 5的驱动 下,通过转轴 3的支撑开始转动,动力驱动装置 5可为液压系统或电磁铁。 显然, 动力驱动装置 5也可以设置在碟架 2上, 靠近转轴 3的位置, 动力 驱动装置 5通过动力传输元件驱动转轴 3转动, 从而带动转动反射镜 4转 动, 动力驱动装置 5可为驱动电机, 相应的动力传输元件可为齿轮、链条、 涡轮蜗杆和铰链等。 显然, 动力驱动装置 5可以是任何能带动转动反射镜 4转动的动力驱动系统, 并不限于本实施例对动力驱动装置 5的限制。 控 制系统 6与动力驱动装置 5相连, 用于控制动力驱动装置 5的工作状态, 控制系统 6可远程安置, 对动力驱动装置 5实行远程监控。 太阳能热利用 设备 7通过碟架 2的中心位置延伸出的支撑立柱, 固定在碟架 2的上空, 太阳能热利用设备 7吸收碟式聚光器聚焦的能量。
图 2为本发明碟式聚光器转动反射镜的一种安装示意图。 结合图 1和 图 2所示,转动反射镜 4与碟架 2之间设置有两个转轴支座 8,转轴支座 8 的一端固定安装在碟架 2上, 另一端固定安装在转动反射镜 4的背光面, 两个转轴支座 8的位置相对于转动反射镜 4的中心线对称, 且转动反射镜 4的重心落在两个转轴支座 8的连线的左侧, 两个转轴支座 8的中心部位 都开有通孔, 转轴 3安装在两个转轴支座 8的通孔内, 并实现转轴 3与转 轴支座 8的过盈配合。
较佳的, 可使用焊接的方式使转轴支座 8 固定安装在碟架 2, 如果转 动反射镜 4本身有金属支撑部件, 也可使用焊接的方式使转轴支座 8固定 安装在转动反射镜 4的背光面; 否则, 转轴支座 8可粘接在转动反射镜 4 的背光面。
较佳的, 转轴 3可分为两段转轴, 该两段转轴分别安装各转轴支座 8 的通孔内, 该两段转轴同轴心, 并与各自转轴支座 8的通孔过盈配合。 其 中一段转轴 3实现对转动反射镜 4的支撑作用, 另一段实现带动转动反射 镜 4转动的作用。
显然, 图 2所示转动反射镜的安装方式, 仅是本发明碟式聚光器的转 动反射镜的一种优选安装方式, 还可使用其他安装方式, 如轴承与转轴的 配合来实现转动反射镜的安装。 图 2所示转动反射镜的安装方式仅是为便 于理解本发明转动反射镜 4的安装原理而作的说明, 而不应作为对其安装 方式的限定。
显然, 碟架 2内可设置有多个转轴 3与转动反射镜 4, 一个转动反射 镜 4配置至少一个转轴 3 ,转动反射镜 4的数量可根据太阳能热利用设备 7 在调试初期或正常运行时, 其集热器所吸收的能量来确定。 多个转动反射 镜 4也可共用一个转轴 3 ,通过一个转轴 3实现多个转动反射镜 4的转动, 同在一个转轴 3上的多个转动反射镜 4, 形成一个转动反射镜 4的阵列, 如在碟架 2同一径向上的多个转动反射镜 4就可形成一个转动反射镜 4的 阵列。 显然, 根据碟式聚光器的工作需要, 可将转动反射镜 4配置至少一 个转轴 3的情况, 与多个转动反射镜 4共用一个转轴 3的情况进行组合。
碟式聚光器调整聚焦能量的过程具体为: 当太阳能热利用设备 7正常 工作时, 碟架 2内的所有转动反射镜 4的反射光聚焦于太阳能热利用设备 7的集热器, 当太阳能热利用设备 7需要减少吸收的能量时, 控制系统 6 接收减少聚焦能量的信号, 控制系统 6控制动力驱动装置 5工作, 动力驱 动装置 5驱动转动反射镜 4转动, 使转动反射镜 4的反射光方向改变, 反 射光不再聚焦于太阳能热利用设备 7的集热器。 控制系统 6所控制转动的 转动反射镜 4的数量, 可根据碟式聚光器所需减少的聚焦能量来确定。 动 力驱动装置 5驱动转动反射镜 4转动的方式包括: 动力驱动转轴 5驱动转 轴 3带动转动反射镜 4转动, 或动力驱动装置 5直接驱动转动反射镜 4, 在转轴 3的支撑下实现转动反射镜 4的转动。
进一步, 一个动力驱动装置 5并不限于只驱动一个转动反射镜 4, 根 据实际工作需要, 一个动力驱动装置 5可驱动多个转动反射镜 4, 如一个 动力驱动装置 5驱动一个转动反射镜 4的阵列。 控制系统 6同时控制多个 动力驱动装置 5。 根据实际工作需要, 控制系统 6控制一定数量的动力驱 动装置 5工作, 以驱动与该数量动力驱动装置 5对应数量的转动反射镜 4 转动, 实现碟式聚光器的聚焦能量调整, 控制系统 6所控制工作的动力驱 动装置 5的数量应满足碟式聚光器调整聚焦能量的需求。
进一步, 太阳能热利用设备 7上还可设置传感元件, 该传感元件与控 制系统 6相连, 当传感元件感应太阳能热利用设备工作温度过高, 超过预 定工作温度值时, 该传感元件将热信号转化为电信号传输给控制系统 6, 控制系统 6接收该信号后, 控制一定数量的转动反射镜 4开始转动, 对碟 式聚光器的聚焦能量进行调整, 减少对太阳能热利用设备 7的能量聚焦; 当太阳能热利用设备 7 的传感元件感应太阳能热利用设备吸收能量较少 时, 该传感元件将热信号转化为电信号, 并传输给控制系统 6, 控制系统 6 接收该信号后, 控制转动反射镜 4复位, 增加对太阳能热利用设备 7的能 量聚焦。
本发明实施例所公开的碟式聚光器, 其碟架内设置有两端与其转动连 接的转轴, 转轴的侧面设置有与其固定连接的转动反射镜, 该转动反射镜 的背光面或碟架上设置有驱动该转动反射镜转动的动力驱动装置, 该动力 驱动装置的工作状态由与其连接的控制系统控制。 显然, 当碟式聚光器需 要调整聚光能量时, 控制系统控制动力驱动装置工作, 从而驱动转动反射 镜转动, 使转动反射镜的反射光方向改变, 实现了碟式聚光器的聚集能量 可调节控制。
图 3为驱动电机驱动转动反射镜的结构示意图, 图 3为图 1所示碟式 聚光器的局部示意图, 用于说明驱动电机驱动转动反射镜的工作原理。 与 图 1所示碟式聚光器相比, 图 3所示碟式聚光器的碟架 2上还设置有复位 板 9和转动限制板 10, 复位板 9的设置位置与转动反射镜 4的正常工作位 置相同, 转动反射镜 4的正常工作位置是指, 转动反射镜 4的反射光聚焦 于太阳能热利用设备 7的集热器时,转动反射镜 4在碟架 2上所处的位置; 转动限制板 10, 在转动反射镜 4的反射光偏离太阳能热利用设备 7的集热 器的前提下, 限制转动反射镜 4的转动角度, 防止转动反射镜 4由于转动 角度过大而造成损坏。
与图 1所示碟式聚光器相比, 图 3所示动力驱动装置 5A更为具体, 图 3所示动力驱动装置 5A为驱动电机,驱动电机 5A设置在碟架 2上,驱 动电机 5A在碟架 2上的设置位置靠近转轴 3 , 驱动电机 5A通过齿轮驱动 转轴 3转动, 从而带动转动反射镜 4转动。
较佳的,复位板 9和转动限制板 10还可设置感应元件,复位板 9的感 应元件与转动限制板 10的感应元件分别与控制系统 6相连。
驱动电机 5A驱动转动反射镜 4转动的过程具体为: 当控制系统 6接 收信号需减少碟式聚光器的聚集能量时, 控制系统 6控制驱动电机 5A转 动, 齿轮在驱动电机 5A的转动下带动转轴 3开始转动, 转动反射镜 4在 转轴 3的带动下开始转动, 转动反射镜 4的反射光开始偏离太阳能热利用 设备的集热器, 当转动反射镜 4靠近转动限制板 10时, 转动限制板 10上 的感应元件向控制系统 6发送信号, 控制系统 6接收该信号后, 控制驱动 电机 5A停止转动, 完成减少碟式聚光器聚集能量的工作; 当控制系统 6 接收信号, 需增加碟式聚光器的聚集能量时,控制系统 6控制驱动电机 5A 反方向转动, 此时驱动电机 5A转动的方向, 与驱动电机 5A驱动转动反射 镜 4减少碟式聚光器聚焦能量时的方向相反,齿轮带动转轴 3反方向转动, 转动反射镜 4在转轴 3的带动下开始复位, 当转动反射镜 4接近复位板 9 时, 复位板 9上的感应元件向控制系统 6发送信号, 控制系统 6接收该信 号后, 控制驱动电机 5A停止转动, 完成转动反射镜 4的复位工作, 碟式 聚光器的聚焦能量开始增加。
图 4为液压系统驱动转动反射镜的结构示意图, 图 4为图 1所示碟式 聚光器的局部示意图, 用于说明液压系统驱动转动反射镜的工作原理。 与 图 3所示碟式聚光器相比, 图 4所示碟式聚光器的碟架 2与转动反射镜 4 之间还设置有复位弹簧 11 , 复位弹簧 11在转动反射镜 4处于正常工作位 置时, 通过复位板 9的限制作用保持稳定, 即转动反射镜 4位于复位板 9 的位置时, 复位弹簧 11保持一定的形变, 复位板 9作为挡板, 防止转动反 射镜 4由于复位弹簧 11的牵引而偏离工作位置。 复位弹簧 11在转动反射 镜 4处于工作位置时, 保持一定的形变, 可防止碟架 2在转动时, 造成转 动反射镜 4晃动, 从而导致转动反射镜 4工作异常。
图 4所示碟式聚光器的动力驱动装置采用液压系统 5B , 液压系统 5B 设置在转动反射镜 4的背光面, 液压系统 5B的动力直接作用在转动反射 镜 4上, 通过转轴 3的支撑带动转动反射镜 4转动。 较佳的, 与图 3所示碟式聚光器相比, 图 4所示碟式聚光器的复位板 9和转动限制板 10可不设置感应元件。
液压系统 5B驱动转动反射镜 4转动的过程具体为: 当控制系统 6接 收信号, 需减少碟式聚光器的聚焦能量时, 控制系统 6控制液压系统 5B 开始工作, 液压系统 5B驱动转动反射镜 4开始转动, 转动反射镜 4的反 射光开始偏离太阳能热利用设备的集热器, 复位弹簧 11产生的形变加大, 当转动反射镜 4靠近转动限制板 10时, 液压系统 5B的输出驱动力保持不 变, 维持转动反射 4与复位弹簧 11间的平衡, 完成减少碟式聚光器聚焦能 量的工作; 当控制系统 6接收信号, 需增加碟式聚光器的聚集能量时, 控 制系统 6控制液压系统 5B开始泄压,液压系统 5B的输出驱动力开始减少, 复位弹簧 11在形变产生的弹性势能作用下,带动转动反射镜 4反方向转动, 当转动到复位板 9的位置时, 由于复位板 9的限制作用, 转动反射镜 4停 止转动, 完成转动反射镜 4的复位工作,碟式聚光器的聚焦能量开始增加。
图 5为电磁铁驱动转动反射镜的结构示意图, 图 5为图 1所示碟式聚 光器的局部示意图, 用于说明电磁铁驱动转动反射镜的工作原理。 与图 4 所示碟式聚光器相比, 图 5所示碟式聚光器的动力驱动装置为电磁铁 5C, 图 5所示碟式聚光器的其余结构与图 4所示碟式聚光器的结构相同。 如图 5所示,电磁铁 5C通过碟架 2延伸出的支架设置在转动反射镜 4的背光面, 电磁铁 5C直接作用在转动反射镜 4上, 通过转轴 3的支撑带动转动反射 镜 4转动。
较佳的, 复位板 9和转动限制板 10可不设置感应元件。
电磁铁 5C驱动转动反射镜 4转动的过程具体为: 当控制系统 6接收 信号, 需减少碟式聚光器的聚焦能量时, 控制系统 6控制电磁铁 5C开始 工作, 电磁铁 5C通电, 驱动转动反射镜 4开始转动, 转动反射镜 4的反 射光开始偏离太阳能热利用设备的集热器, 复位弹簧 11产生的形变加大, 当转动反射镜 4靠近转动限制板 10时,电磁铁 5C的输出驱动力保持不变, 维持转动反射 4与复位弹簧 11间的平衡,完成减少碟式聚光器聚焦能量的 工作; 当控制系统 6接收信号, 需增加碟式聚光器的聚集能量时, 控制系 统 6控制电磁铁 5C断电, 复位弹簧 11在形变产生的弹性势能作用下, 带 动转动反射镜 4转动到复位板 9的位置, 完成转动反射镜 4的复位工作, 碟式聚光器的聚焦能量开始增加。
显然,上述实施例仅是动力驱动装置驱动转动反射镜转动的特别个例, 根据实际的工作情况, 可使用不同的动力驱动装置或不同的动力驱动装置 组合为转动反射镜提供动力支持。
图 6为本发明复位板、 转动限制板和复位弹簧的安装示意图。 结合图
1和图 6所示, 转动反射镜 4在 m线的位置时, 转动反射镜 4的反射光正 好偏离太阳能热利用设备 7的集热器, 转动反射镜 4在 n线的位置时, 转 动反射镜 4的反射光正好聚焦于太阳能热利用设备 7的集热器。 复位板 9 固定安装在碟架 2上, 当转动反射镜 4处于复位板 9的位置时, 转动反射 镜 4的反射光刚好照射入太阳能热利用设备 7的集热器中, 即此时转动反 射镜 4与 n线基本平行。转动限制板 10固定安装在碟架 2上,位置设置在 m线上。 复位弹簧 11安装在碟架 11A的位置, 复位弹簧 11优选的安装位 置为,复位弹簧 11离转轴 3的距离大于转动反射镜 4被安装边的四分之一。
图 7为本发明一种碟式聚光器的实施例二的结构示意图, 与图 1所示 碟式聚光器相比,图 7所示碟式聚光器的碟架 2内还设置有固定反射镜 12, 固定反射镜 12相对碟架 2不转动,固定反射镜 12在碟架 2内的设置位置, 应使固定反射镜 12的反射光能聚焦于太阳能热利用设备 7的集热器。固定 反射镜 12与转动反射镜 4的总数量根据太阳能热利用设备 7在调试初期或 正常运行时, 其集热器所需的能量来确定, 转动反射镜 4的数量根据太阳 能热利用设备 7的吸热能量调节的大小来确定, 转动反射镜 4在碟架 2内 的设置位置可根据转动反射镜 4在碟架 2内的转动难易程度以及碟架 2的 转动平衡性来确定。 当需要调节碟式聚光器的功率变小或保护太阳能热利 用设备 7的集热器时, 转动反射镜 4开始转动, 使其反射光偏离太阳能热 利用设备 7的集热器, 而固定反射镜 12不转动,其反射光仍聚焦于太阳能 热利用设备 7的集热器, 从而达到减小碟式聚光器功率、 保护太阳能热利 用设备 7的集热器的效果; 当需要增大碟式聚光器的功率时, 转动反射镜 4开始复位, 其反射光重新聚焦于太阳能热利用设备 7的集热器。
较佳的, 固定反射镜和转动反射镜呈环状设置在碟架内, 固定反射镜 优选设置在碟架的外环上, 转动反射镜优选设置在碟架的内环上。
图 8为转动反射镜环向侧转的结构示意图, 图 9为转动反射镜环向内 外翻转的结构示意图。 结合图 7、 图 8和图 9所示, 碟架 2分为内外四层 的环状结构, 碟架 2的内环两层为多个转动反射镜 4, 外环两层为多个固 定反射镜 12。 碟式聚光器在正常工作状态下, 所有的转动反射镜 4和固定 反射镜 12的反射光都聚焦于太阳能热利用设备 7的集热器,当需要调节碟 式聚光器的功率变小或保护太阳能热利用设备 7集热器时, 内环两层的多 个转动反射镜 4相对碟架 2环向侧转, 其结构如图 8所示, 或内环两层的 多个转动反射镜 4相对碟架 2环向内外翻转, 其结构如图 9所示。 内环两 层的多个转动反射镜 4的反射光偏离太阳能热利用设备 7的集热器, 外环 两层的多个固定反射镜 12的反射光仍聚焦于太阳能热利用设备 7的集热 器, 从而实现碟式聚光器的聚焦能量的调整; 当碟式聚光器需要恢复正常 工作状态时, 转动反射镜 4开始复位。
较佳的, 碟架 2同一径向上的多个转动反射镜 4可共用一个转轴 3 , 组成一个转动反射镜 4的阵列。 转动反射镜 4的阵列数量可根据太阳能热 利用设备 7的吸热能量调节的大小来确定, 转动反射镜 4的阵列在碟架 2 内的设置位置, 可根据转动反射镜 4的阵列在该位置的转动难易程度以及 碟架 2的转动平衡性来确定。
图 10为转动反射镜径向侧转的结构示意图, 图 11为转动反射镜径向 内外翻转的结构示意图。 结合图 7、 图 10和图 11所示, 碟架 2同一径向 上的转动反射镜 4组成一个转动反射镜 4的阵列。 碟式聚光器在正常工作 状态下,所有转动反射镜 4的阵列和所有固定反射镜 12的反射光都聚焦于 太阳能热利用设备 7的集热器, 当需要调节碟式聚光器的功率变小或保护 太阳能热利用设备 7的集热器时, 转动反射镜 4的阵列相对碟架 2径向侧 转,其结构如图 10所示,或转动反射镜 4的阵列相对碟架 2径向内外翻转, 其结构如图 11所示,转动反射镜 4的阵列的反射光偏离太阳能热利用设备 7的集热器, 固定反射镜 12的反射光仍聚焦于太阳能热利用设备 7的集热 器, 从而实现碟式聚光器的聚焦能量的调整; 当碟式聚光器需要恢复正常 工作状态时, 转动反射镜 4的阵列开始复位。
需要说明的是, 本实施例转动反射镜 4相对碟架 2转动和转动反射镜 4复位的工作原理, 与实施例一中描述的转动反射镜 4转动与复位的工作 原理相同。 因此本实施例对转动反射镜 4相对碟架 2转动, 和转动反射镜 4复位的工作原理不再赘述。
较佳的, 转动反射镜 4的转动方向和转轴 3的设置位置在有利于碟式 聚光器设计的前提下可以任意确定, 转动反射镜 4的转动方向优选为相对 碟架 2内外翻转或相对碟架 2侧向转动。
较佳的, 为了便于转动反射镜 4的转动及维持碟架 2的稳定性, 碟架
2的形状优选为圓形或多边形。
较佳的,转动反射镜 4与固定反射镜 12优选为线性复合抛物面反射镜、 线性菲涅尔透镜或反射镜、 凸透镜、 透镜、 线性抛物面反射镜。
较佳的, 对于反射光偏离太阳能热利用设备 7的集热器的转动反射镜 4,其反射光可聚焦在其它的太阳能热利用设备上,实现太阳能的综合利用。
需要说明的是, 控制系统 6对本发明元件的控制原理, 与现有控制理 论相同, 不再赘述。
本发明实施例公开了一种碟式聚光器, 该碟式聚光器可根据太阳能利 用装置的需要, 转动相应数量的转动反射镜, 使这些转动反射镜的反射光 偏离或靠近太阳能利用装置的集热器, 及时调节碟式聚光器的聚焦能量, 调节太阳能利用装置的输出功率。
本发明还公开了一种包括上述碟式聚光器的碟式太阳能热发电系统, 该碟式太阳能热发电系统的其他各部分结构请参考现有技术, 本文不再赘 述。
对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使 用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的 情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的 这些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的 范围。

Claims

1、 一种碟式聚光器, 包括碟架立柱和碟架, 其特征在于, 所述碟式聚 光器还包括:
两端设置在所述碟架上, 并与所述碟架转动连接的转轴;
设置在所述转轴的侧面, 并与所述转轴固定连接的转动反射镜; 设置在所述碟架上或所述转动反射镜背光面, 驱动所述转动反射镜转 动的动力驱动装置; 权
与所述动力驱动装置相连, 控制所述动力驱动装置工作状态的控制系 利 _
统。 1
3
2、根据权利要求 1所述的碟式聚光要器, 其特征在于, 所述碟架与所述 转动反射镜之间还设置有至少两个转轴支座求,每个所述转轴支座开有通孔, 所述转轴通过所述通孔与所述转轴支座过盈配合, 所述至少两个转轴支座 的位置与所述转动反射镜的中心线对称, 所述转动反射镜的重心落在所述 转轴支座的左侧。
3、根据权利要求 1或 2所述的碟式聚光器, 其特征在于, 所述碟式聚 光器还包括:
设置在所述碟架上, 防止所述转动反射镜转动角度过大而造成所述转 动反射镜损坏的转动限制板;
设置在所述碟架上, 且设置位置与所述转动反射镜的正常工作位置相 同的复位板, 所述转动反射镜的正常工作位置为所述转动反射镜的反射光 聚焦于所述碟式聚光器的工作对象时, 所述转动反射镜所处的位置。
4、根据权利要求 3所述的碟式聚光器, 其特征在于, 所述转动限制板 和所述复位板分别设置有感应元件, 所述感应元件与所述控制系统相连, 所述动力驱动装置设置在所述碟架上, 所述动力驱动装置通过动力传输元 件转动所述转轴, 所述转轴带动所述转动反射镜转动, 所述控制系统根据 所述转动限制板的感应元件和所述复位板的感应元件传输的信息, 控制所 述动力驱动装置的工作状态。
5、根据权利要求 3所述的碟式聚光器, 其特征在于, 所述转动反射镜 与所述碟架之间还设置有复位弹簧, 所述动力驱动装置设置在所述转动反 射镜的背光面,所述动力驱动装置的驱动力直接作用在所述转动反射镜上, 所述转动反射镜通过所述转轴的支撑而转动, 所述复位弹簧在所述动力驱 动装置停止工作时, 将所述转动反射镜复位到所述复位板的位置。
6、根据权利要求 5所述的碟式聚光器, 其特征在于, 所述复位弹簧在 所述转动反射镜处于正常工作位置时, 保持一定的形变, 所述复位板限制 所述转动反射镜因所述复位弹簧的形变而造成的转动。
7、根据权利要求 1所述的碟式聚光器, 其特征在于, 所述碟架同一径 向上多个的所述转动反射镜设置在相同的所述转轴上。
8、根据权利要求 1述的碟式聚光器, 其特征在于, 所述碟式聚光器还 包括固定设置在所述碟架上的固定反射镜。
9、根据权利要求 8所述的碟式聚光器, 其特征在于, 所述固定反射镜 和所述转动反射镜呈环状设置在所述碟架内, 所述固定反射镜设置在所述 碟架的外环上, 所述转动反射镜设置在所述碟架的内环上。
10、 一种碟式太阳能热发电系统, 包括碟式聚光器, 发动机和跟踪控 制系统, 其特征在于, 所述碟式聚光器具体为权利要求 1至 9任一项所述 的碟式聚光器。
PCT/CN2012/074739 2011-10-13 2012-04-26 一种碟式聚光器及包括该聚光器的太阳能热发电系统 WO2013053222A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN3493DEN2014 IN2014DN03493A (zh) 2011-10-13 2012-04-26
US14/345,326 US9644616B2 (en) 2011-10-13 2012-04-26 Disc-type concentrator and solar thermal power generation system comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110309055.7 2011-10-13
CN2011103090557A CN102360116B (zh) 2011-10-13 2011-10-13 一种碟式聚光器及包括该聚光器的太阳能热发电系统

Publications (1)

Publication Number Publication Date
WO2013053222A1 true WO2013053222A1 (zh) 2013-04-18

Family

ID=45585474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074739 WO2013053222A1 (zh) 2011-10-13 2012-04-26 一种碟式聚光器及包括该聚光器的太阳能热发电系统

Country Status (4)

Country Link
US (1) US9644616B2 (zh)
CN (1) CN102360116B (zh)
IN (1) IN2014DN03493A (zh)
WO (1) WO2013053222A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642743A (zh) * 2016-10-31 2017-05-10 中航动力股份有限公司 一种反光镜片按整圆排布的聚光碟架

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360116B (zh) 2011-10-13 2013-11-13 湘潭电机力源模具有限公司 一种碟式聚光器及包括该聚光器的太阳能热发电系统
JP2013181669A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 集光装置、その回転軸線の設定方法、集光装置を備えている集熱設備及び太陽熱発電設備
CN102749060A (zh) * 2012-07-23 2012-10-24 湘电集团有限公司 大口径碟式抛物曲面反射镜的检测控制方法、系统
US9863666B1 (en) * 2013-08-14 2018-01-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heliostat with stowing and wind survival capabilities
CN103955230A (zh) * 2014-04-11 2014-07-30 中科力函(深圳)热声技术有限公司 聚光功率调节装置和太阳能发电设备
CN105091369A (zh) * 2014-05-15 2015-11-25 杭州三花研究院有限公司 碟式太阳能热利用系统及其控制方法
CN104133287B (zh) * 2014-07-30 2016-04-06 清华大学 一种大型碟式太阳能聚光器镜面及其制造方法
CN105626405B (zh) * 2016-01-05 2018-10-30 王旭 一种带储热装置的太阳能碟式系统的制备方法
CN105910298B (zh) * 2016-04-15 2018-03-23 中国科学院理化技术研究所 一种带蓄热碟式太阳能自由活塞斯特林发电系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373512A (en) * 1980-02-08 1983-02-15 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method and apparatus for protecting an arrangement located in an area of highly concentrated radiation
US4536847A (en) * 1982-12-30 1985-08-20 Atlantic Richfield Company Heliostat control employing direct current motor
CN2155531Y (zh) * 1993-03-27 1994-02-09 徐家声 太阳能采集器的自动跟踪太阳装置
CN2597897Y (zh) * 2002-12-23 2004-01-07 中国科学院电工研究所 一种碟式聚光太阳跟踪装置
CN101526275A (zh) * 2008-03-03 2009-09-09 安徽电子信息职业技术学院 可调反射镜太阳能跟踪集热装置
CN101608836A (zh) * 2008-06-18 2009-12-23 深圳市中科力函热声技术工程研究中心有限公司 组合反射面太阳能集热器
CN201412976Y (zh) * 2009-05-25 2010-02-24 廖一 小镜面组合型太阳能灶
CN201429240Y (zh) * 2009-06-24 2010-03-24 廖梦娜 一种阳光自动跟踪装置
CN101813038A (zh) * 2010-04-13 2010-08-25 上海兆阳新能源科技有限公司 一种镜面聚焦自动随转式太阳能热机发电系统
CN201739107U (zh) * 2010-08-06 2011-02-09 王智勇 碟式太阳能-热气机热发电装置
CN102150282A (zh) * 2008-07-03 2011-08-10 葛瑞佛德太阳能股份有限公司 太阳能收集器组合件
CN102360116A (zh) * 2011-10-13 2012-02-22 湘潭电机力源模具有限公司 一种碟式聚光器及包括该聚光器的太阳能热发电系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463749A (en) * 1982-03-08 1984-08-07 Ford Aerospace & Communications Corporation Modular solar concentrator
US5325844A (en) * 1992-02-11 1994-07-05 Power Kinetics, Inc. Lightweight, distributed force, two-axis tracking, solar radiation collector structures
US6959993B2 (en) * 2003-07-10 2005-11-01 Energy Innovations, Inc. Solar concentrator array with individually adjustable elements
US7192146B2 (en) * 2003-07-28 2007-03-20 Energy Innovations, Inc. Solar concentrator array with grouped adjustable elements
CN2781284Y (zh) * 2004-10-15 2006-05-17 吴丹晨 多镜面太阳能利用装置
US7380549B1 (en) * 2006-08-21 2008-06-03 Ratliff George D Solar energy concentrator for power plants
CN201191090Y (zh) * 2008-03-03 2009-02-04 安徽电子信息职业技术学院 可调反射镜太阳能跟踪集热装置
CN108317753A (zh) * 2008-09-22 2018-07-24 益科博科技有限公司 二维模块化日光反射装置的追踪及构造
CA2745388A1 (en) * 2008-12-12 2010-06-17 Heliofocus Ltd. Solar concentrator systems
CN101776330B (zh) * 2009-01-09 2013-08-14 深圳市三诺电子有限公司 一种太阳能聚光集热方法
US8322333B2 (en) * 2009-04-01 2012-12-04 Abengoa Solar Inc. Torque transfer between trough collector modules
CN101697030B (zh) * 2009-10-23 2011-08-31 刘奇灵 定日镜
JP2011196676A (ja) * 2010-02-25 2011-10-06 Mitaka Koki Co Ltd ビームダウン型太陽集光装置
CN101858649A (zh) * 2010-05-28 2010-10-13 益科博能源科技(上海)有限公司 菲涅尔太阳集热装置
CN201878052U (zh) * 2010-11-26 2011-06-22 益科博能源科技(上海)有限公司 太阳能集热装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373512A (en) * 1980-02-08 1983-02-15 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method and apparatus for protecting an arrangement located in an area of highly concentrated radiation
US4536847A (en) * 1982-12-30 1985-08-20 Atlantic Richfield Company Heliostat control employing direct current motor
CN2155531Y (zh) * 1993-03-27 1994-02-09 徐家声 太阳能采集器的自动跟踪太阳装置
CN2597897Y (zh) * 2002-12-23 2004-01-07 中国科学院电工研究所 一种碟式聚光太阳跟踪装置
CN101526275A (zh) * 2008-03-03 2009-09-09 安徽电子信息职业技术学院 可调反射镜太阳能跟踪集热装置
CN101608836A (zh) * 2008-06-18 2009-12-23 深圳市中科力函热声技术工程研究中心有限公司 组合反射面太阳能集热器
CN102150282A (zh) * 2008-07-03 2011-08-10 葛瑞佛德太阳能股份有限公司 太阳能收集器组合件
CN201412976Y (zh) * 2009-05-25 2010-02-24 廖一 小镜面组合型太阳能灶
CN201429240Y (zh) * 2009-06-24 2010-03-24 廖梦娜 一种阳光自动跟踪装置
CN101813038A (zh) * 2010-04-13 2010-08-25 上海兆阳新能源科技有限公司 一种镜面聚焦自动随转式太阳能热机发电系统
CN201739107U (zh) * 2010-08-06 2011-02-09 王智勇 碟式太阳能-热气机热发电装置
CN102360116A (zh) * 2011-10-13 2012-02-22 湘潭电机力源模具有限公司 一种碟式聚光器及包括该聚光器的太阳能热发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642743A (zh) * 2016-10-31 2017-05-10 中航动力股份有限公司 一种反光镜片按整圆排布的聚光碟架

Also Published As

Publication number Publication date
CN102360116A (zh) 2012-02-22
US9644616B2 (en) 2017-05-09
CN102360116B (zh) 2013-11-13
US20140345277A1 (en) 2014-11-27
IN2014DN03493A (zh) 2015-06-05

Similar Documents

Publication Publication Date Title
WO2013053222A1 (zh) 一种碟式聚光器及包括该聚光器的太阳能热发电系统
KR101003294B1 (ko) 태양광 집광기구 및 그를 이용한 태양광 집속식 발전장치
JP5797737B2 (ja) 太陽熱集熱システム
KR20080024309A (ko) 태양광 집속식 발전장치
KR20100102402A (ko) 태양전지패널의 태양위치추적장치
CN107328116B (zh) 一种光热光伏一体化发电装置
JP2015094534A (ja) トラフ型太陽熱集熱器
CN101093114A (zh) 改进型太阳光自动跟踪器
JP6342632B2 (ja) 太陽光集光発電装置
CN102062937A (zh) 一种太阳能汇聚方法及其在加热和照明中的应用
KR101068283B1 (ko) 태양광 발전 트래커 장치
CN105577104B (zh) 一种太阳能聚光光伏发电系统
MX2014006740A (es) Sistema hibrido de recuperacion de energia solar.
CN105116927A (zh) 碟式太阳能定向跟踪装置
KR20110124824A (ko) 태양광 추적용 구동장치
KR20110009023U (ko) 태양광 발전기용 집광장치
KR101822743B1 (ko) 무동력 회전 반사수단이 구비된 태양광 발전장치
CN202196224U (zh) 一种太阳能环形聚焦装置
JPWO2016121614A1 (ja) パネル駆動装置及びヘリオスタット
WO2018077106A1 (zh) 一种双轴跟踪装置
CN102331621B (zh) 一种太阳能环形聚焦装置
CN103868245A (zh) 碟式太阳能热发电系统的混合集热结构
TW201906307A (zh) 浮水式對焦菲涅爾聚光集能裝置
JP2015118360A (ja) ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
KR101390887B1 (ko) 자동일사조절장치를 갖는 디쉬형 태양열 집광기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345326

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839822

Country of ref document: EP

Kind code of ref document: A1