WO2013053081A1 - 灯泡的散热结构 - Google Patents

灯泡的散热结构 Download PDF

Info

Publication number
WO2013053081A1
WO2013053081A1 PCT/CN2011/001717 CN2011001717W WO2013053081A1 WO 2013053081 A1 WO2013053081 A1 WO 2013053081A1 CN 2011001717 W CN2011001717 W CN 2011001717W WO 2013053081 A1 WO2013053081 A1 WO 2013053081A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
fins
dissipation structure
housing
Prior art date
Application number
PCT/CN2011/001717
Other languages
English (en)
French (fr)
Inventor
陈镒明
Original Assignee
Chen I-Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen I-Ming filed Critical Chen I-Ming
Priority to PCT/CN2011/001717 priority Critical patent/WO2013053081A1/zh
Publication of WO2013053081A1 publication Critical patent/WO2013053081A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/507Cooling arrangements characterised by the adaptation for cooling of specific components of means for protecting lighting devices from damage, e.g. housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a heat dissipation structure of a light bulb, in particular to a heat dissipation structure of a bulb capable of improving heat dissipation efficiency.
  • Modern tungsten incandescent lamps were successfully developed during the handover period of the 19th and 20th centuries.
  • the illuminators used were filaments made of tungsten wire. This material is characterized by its high melting point and its ability to remain solid at high temperatures. In this way, the bulb has a certain life span, and the filament does not burn out in a short time and cannot be used.
  • the temperature of a lit incandescent lamp is as high as 300 (TC), and it is the radiant filament that produces light radiation that makes the electric light shine brightly. Since then, the night has come to people's lives. It is no longer a hindrance. With the bright light of incandescent light bulbs, all kinds of activities at night, whether at work or in life, can continue easily and carry out more possibilities.
  • the invention of incandescent light bulbs can be said. It has greatly changed people's life styles, and the period of activities has been extended, and there have been more different developments.
  • LEDs light-emitting diodes
  • peripheral integrated circuit control components and heat-dissipation technologies have become more and more mature, making the application of light-emitting diodes more diversified, such as low-power power supply indication.
  • LEDs Compared with incandescent bulbs, the lifespan is short and easy to burn. LEDs have low power consumption, no mercury, no Halogen-containing and low carbon dioxide emissions, in order to pay more attention to environmental issues, energy conservation and carbon reduction and reduce the use of mercury and halides, governments have banned incandescent lamps and extended the promotion of LEDs.
  • the design is more flexible, the light source can be made without the glare, and the light can be made more concentrated or specific area, and the color produced can be more vivid.
  • the luminous efficiency of bright, white LEDs has now reached 70 lm/W or more, which has exceeded 15 lm/W of incandescent bulbs. At present, only 35% of the input power of the LED will be converted into light, and the remaining 65% will be converted into heat. The heat generated is the culprit of the luminous efficiency of the LED.
  • the thermal energy generated by the LED If the heat dissipation mechanism of the whole device is not good, and the thermal energy accumulated in the LED cannot be derived in real time, the life of the LED will be shortened. Generally, the life of the LED lamp is more than 100000 hours, but if the working temperature is Above 85 °C, it will greatly reduce the life.
  • the heat dissipation is a means to solve this problem, and the related technology focuses on how to improve the heat dissipation efficiency of each component, and the service life is improved. .
  • the power supply driver generates heat. If the power supply driver does not dissipate heat well, it will cause the LED bulb to be inefficient or even unable to start the LED bulb. Therefore, if the heat dissipation mechanism of the two parts is not good or Even if they affect each other, the temperature will rise upwards. In addition to reducing the service life of the LED bulb, there is also a problem of increasing the indoor temperature and causing discomfort to the user. Therefore, the heat dissipation mechanism is a very important issue here.
  • the heat dissipation structure of the relevant bulbs on the market today is almost entirely an outer fin-type heat dissipation structure.
  • the outer fins of the structure grow outward from the center of the body, leaving a space in the center to provide power driver placement, due to the power supply.
  • the driver itself is also a heating element.
  • the heat energy generated by the light source is transmitted to the outer fin by heat conduction, the heat energy completely covers the power driving device, and further generates a heat-heating effect with the heat energy generated by the power driver.
  • the internal temperature is too high, which causes damage to the electronic components in the power driver device, such as electrolytic capacitors (temperature resistance is 105 °C, life expectancy 8000 hours), in addition to seriously affecting the life of the power driver, the light source
  • the temperature can also be lowered due to the co-heating effect, so that the luminous efficiency is lowered, so this is often caused by damage caused by the internal power supply, and the non-luminous source itself has a problem in luminous efficacy.
  • the heat dissipation structure of the outer fin type only the heat energy generated by the light source can be dissipated, and the heat dissipation mechanism is not perfect. Moreover, for the power driver placed therein, there is no mechanism for dissipating the heat energy generated by the light source driver, and The heat energy generated by the power driver may cause a heat-relaxing effect with the heat generated by the light source, thereby causing damage to the electronic components in the power driver, thereby affecting the service life of the light bulb.
  • the present invention provides a heat dissipation structure of the light bulb, which is mainly applied to The heat dissipation of the bulb.
  • the heat dissipation structure of the invention improves the defects of the outer fin type heat dissipation structure, and provides the heat dissipation mode of the power driver, and effectively solves the common heat effect, so that in addition to improving the service life of the light bulb, the luminous efficiency of the light source is improved. It can also be improved due to the improvement of heat dissipation, and it is safer for the user, and can eliminate the damage of the bulb due to high temperature, and subsequent problems occur. Summary of the invention
  • the main object of the present invention is to provide a heat dissipation structure of a bulb of a novel structure, and the technical problem to be solved is to make a heat dissipation shell by using a heat dissipation housing and a plurality of fins in the heat dissipation housing.
  • the body can increase the contact area with the air, so that the heat can be quickly transferred to the surrounding environment, the heat dissipation process is accelerated, and the overall heat dissipation mechanism and performance are improved, so that the service life of the bulb is improved, which is very suitable for practical use.
  • Another object of the present invention is to provide a heat dissipation structure of a bulb of a novel structure, which is solved by using a power connection portion and being disposed in the power connection portion.
  • a power driver wherein the power connection portion is disposed at a bottom of the fins, and the heat dissipation housing is effectively spaced apart from the power connection portion to maintain a distance such that the power generated by the power driver in the power connection portion is generated,
  • the heat energy can be dissipated through the heat dissipation holes of the heat dissipation housing, which is more suitable for practical use.
  • a heat dissipation structure for a light bulb according to the present invention comprising:
  • a plurality of fins are disposed on the inner wall of the heat dissipation housing.
  • the heat dissipation structure of the bulb further includes an annular body disposed in the center of the heat dissipation housing and in contact with the fins.
  • the annular body is in contact with the fins, and the fins are partially extended to a central portion of the annular body.
  • the heat dissipation housing is provided with a plurality of first heat dissipation holes.
  • the apertures of the first heat dissipation holes are increased upward from the bottom of the heat dissipation housing.
  • the heat dissipation housing and the fins are integrally formed.
  • the bottom of the fins is provided with a receiving portion.
  • a power connection portion is disposed in the accommodating portion, and the power connection portion is a hollow body.
  • a power driver is disposed in the power connection portion.
  • the power connection portion is provided with a plurality of second heat dissipation holes.
  • the heat dissipation housing is provided with a plurality of first heat dissipation holes, and the first heat dissipation holes are disposed opposite to the second heat dissipation holes.
  • the bottom and the top of the hollow body are provided with a plurality of vertical heat dissipation holes.
  • the power connection portion is provided with a plurality of second heat dissipation holes, and the vertical heat dissipation holes are disposed opposite to the second heat dissipation holes.
  • the heat dissipation structure of the bulb of the present invention has at least the following advantages and beneficial effects:
  • the heat dissipation structure of the light bulb provided by the invention, when the light source generates thermal energy, directs heat energy to the heat dissipation shell through the fins directly contacting the light source, and dissipates heat from the heat dissipation shell, and the heat dissipation process can be accelerated by the structure , so that the temperature does not always concentrate on the light source, so that the light source Both luminous efficiency and service life are considerably improved.
  • the heat dissipation housing of the present invention can effectively dissipate the heat generated by the power driver to increase the life of the power driver and thereby increase the life of the lamp.
  • the heat dissipation housing of the heat dissipation structure of the present invention further includes a plurality of heat dissipation holes disposed on the heat dissipation housing and the surface of the power connection portion, and the heat dissipation efficiency can be effectively improved by such a structure.
  • the present invention relates to a heat dissipation structure of a light bulb, which has the effect of improving the heat dissipation efficiency of the light bulb.
  • the heat dissipation structure has a heat dissipation shell and a plurality of fins, and the light source is assembled on the fins.
  • the fins guide the thermal energy generated by the illumination source to the heat dissipation housing.
  • a power driver is disposed at the bottom of the fins and dissipates heat through the heat dissipation housing.
  • the light source is separated from the two heat sources of the power driver, and the heat is transmitted to the surrounding environment through the heat dissipating casing to accelerate the entire heat dissipation process, so that the luminous efficiency and the service life of the bulb can be improved.
  • the invention has significant advances in technology and has obvious positive effects, and is a novel, progressive and practical new design.
  • FIG. 1A is a top plan view of a heat dissipation structure in accordance with a preferred embodiment of the present invention.
  • Figure 1B is a side elevational view of a heat dissipation structure in accordance with a preferred embodiment of the present invention.
  • FIG. 1C is a bottom plan view of a heat dissipation structure in accordance with a preferred embodiment of the present invention.
  • FIG. 1D is a perspective view of a heat dissipation structure in accordance with a preferred embodiment of the present invention.
  • FIG. 2A is a top plan view of a heat dissipation structure in accordance with another preferred embodiment of the present invention.
  • Figure 2B is a side elevational view of a heat dissipation structure in accordance with another preferred embodiment of the present invention.
  • FIG. 2C is a bottom plan view of a heat dissipation structure in accordance with another preferred embodiment of the present invention.
  • 2D is a perspective view of a heat dissipation structure according to another preferred embodiment of the present invention.
  • FIG. 3 is a schematic view showing the assembly of a light source and a heat dissipation structure according to another preferred embodiment of the present invention.
  • Fig. 4 is a schematic view showing the completion of assembly of a light source and a heat dissipating structure according to another preferred embodiment of the present invention.
  • Fig. 5 is a perspective view showing the heat dissipation structure of a preferred embodiment of the present invention in a solid body.
  • First cooling hole 12 Fin
  • Screw hole 13 accommodating part 20: Heat dissipation structure 21 : heat sink housing
  • louvers 22 fins
  • Solid body 23 accommodating part
  • Substrate 321 Screw
  • Second cooling hole 342 Power driver
  • the invention relates to a "heat dissipation structure of a bulb", which solves the problems caused by the outer fin type heat dissipation structure of the prior art, which comprises the disadvantage that the illumination source is not easy to dissipate heat, and the common heat effect of the illumination source and the power driver is generated.
  • the heat dissipation structure of the present invention the luminous efficiency and the service life of the bulb can be improved.
  • a heat dissipating structure 10 according to a preferred embodiment of the heat dissipating structure of the bulb of the present invention comprises: a heat dissipating housing 11 and a plurality of fins 12, the fins 12 being disposed on the inner wall of the heat dissipating housing 11
  • the heat generated by the light source is transmitted to the heat dissipation housing 11 through the fins 12, and the heat is dissipated in this manner.
  • the length of the fins 12 may be inconsistent or uniform, and the prior art is through the cup.
  • the present invention first absorbs heat energy through the fins 12 The heat dissipation is performed by the heat dissipation housing 11. Since the total absorption heat enthalpy of the fins 12 is larger than the heat dissipation housing 11, the present invention has better heat dissipation efficiency.
  • the heat dissipation housing 11 of the heat dissipation structure 10 further includes: a plurality of first heat dissipation holes 111, wherein the first heat dissipation holes 111 are disposed on the surface of the heat dissipation housing 11, and the fins 12 not only transfer heat energy after being absorbed by heat
  • the heat dissipation housing 11 is dissipated, and the first heat dissipation holes 111 are used for heat convection, and the lower temperature one end is introduced to make the hotter end discharge heat, and the heat is absorbed by the fins 12 efficiently.
  • the heat energy is discharged through the fins 12 and the surface of the heat dissipation housing 11 and the outside air, and the heat convection is enhanced by the first heat dissipation holes 111.
  • the effect of the cooling is improved.
  • the aperture of the first heat dissipation hole 111 is increased from the bottom of the opening to the top of the opening.
  • the aperture arrangement of the first heat dissipation hole 111 is not limited to the incremental manner as described above.
  • the aperture of the present invention is not limited to this embodiment, and the heat dissipation efficiency of the heat dissipation housing 11 can be further improved.
  • the heat dissipating structure 10 of the present invention further includes a receiving portion 13 disposed at the bottom of the fins 12 and located within the heat dissipating housing 11 for the function of the receiving portion 13 This will be explained later.
  • the heat dissipation structure 20 includes: a heat dissipation housing 21; a plurality of fins 22 , the fins 22 are disposed on the inner wall of the heat dissipation housing 21 , and the fins 22 further include an annular body 222 disposed at the center of the heat dissipation housing 21 and associated with The fins 22 are connected to each other, and the annular body 222 is hollow. The fins 22 partially extend to the central portion of the annular body 222.
  • the fins 22 and the annular body 222 can be integrally formed.
  • the heat dissipation structure 20 of the present invention further includes a receiving portion 23 disposed at the bottom of the fins 22 and located within the heat dissipation housing 21, and the function of the receiving portion 23 will be This will be explained later.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the assembly and assembly of the light source and the heat dissipation structure according to another preferred embodiment of the present invention.
  • the light bulb disclosed in the present invention includes a light source 30.
  • the light source 30 includes: a substrate 32 directly contacting the fins 12, and the side of the substrate 32 and the heat sink The upper end of the inner wall of the body 11 is in close contact with each other, and can be tightly fitted by the thermal paste/glue; further comprising a power connection portion 34, the power connection portion 34 is disposed in the accommodating portion 13, and the power connection portion 34 is A power supply 342 is disposed in the hollow body and a power driver 342 is disposed therein.
  • the thermal energy of the power driver 342 can be quickly transferred to the power connection by filling the thermal adhesive.
  • the portion 34 is provided with a plurality of LED chips above the substrate 32.
  • a heat dissipating paste or a heat sink may be used on the contact surface of the substrate 32 and the fins 12 to make them in close contact with each other through heat conduction. Heat is quickly transferred from the substrate 32 to the fins 12 and the heat sink housing 11.
  • the illumination source 30 further includes: a lamp cover 31 disposed above the substrate 32.
  • the material of the lamp cover 31 is a transparent or astigmatous material shield. Since the illumination source uses an LED module, the LED is a point light source, and the direct view is not avoided. After the glare is caused, the visual discomfort is generated. Therefore, the lampshade 31 uses an acrylic material having light-diffusing particles to break up the light of the LED.
  • the heat dissipation housing 11 of the heat dissipation structure 10 has the first heat dissipation holes 111 due to The first heat dissipation holes 111 are disposed on the surface of the heat dissipation housing 11 , so that the heat dissipation efficiency of the heat dissipation housing 11 is better, and the fins 12 of the heat dissipation structure 10 further include a plurality of screw holes. 121.
  • the substrate 32 is fixed to the screw holes 121 of the fins 12 by using a plurality of screws 321 , wherein the screws 321 can be materials with good thermal conductivity, such as copper, gold, aluminum or other heat dissipation. Metal or ceramic material.
  • the heat dissipation mechanism is different according to each part.
  • the bottom surface of the substrate 32 is used to guide the generated heat energy to the heat dissipation housing 11 through the fins 12.
  • the heat energy on the side of the substrate 32 is directly matched with the heat dissipation housing 11, and the heat energy can be transmitted to convect with the outside air to achieve the heat dissipation effect; finally, the heat dissipation at the top of the substrate 32 can be passed.
  • the screws 321 are directly guided to the fins 12 and further transmitted to the bottom of the heat dissipation housing 11 for rapid heat dissipation. Therefore, the heat dissipation mechanism of the present invention is a multi-heat conduction channel to quickly remove the thermal energy of the substrate 32 away.
  • the power connection portion 34 of the light source 30 further includes a plurality of second heat dissipation holes 341, and a cover plate 33 is disposed above the power connection portion 34, and the cover plate 33 is the substrate 32.
  • the generated heat is separated from the power connection portion 34. If not separated in this manner, the power driver 342 in the power connection portion 34 will generate a common heat effect due to the heat energy transmitted from the substrate 32, thereby causing damage to the electronic components.
  • the heat dissipation mode of the power driver 342 is lacking, so the thermal energy of the power driver 342 in the bulb cannot be dissipated, and the substrate 32 is not separated from the power driver 342. Therefore, the substrate is in this case.
  • the thermal energy of 32 and the thermal energy of the power driver 342 induce a co-heating effect, and the resulting high temperature causes both the bulb age and the luminous efficiency to be affected, which includes affecting the life of the LED chip and the power driver, for which purpose, on the side of the power connection portion 34
  • the second heat dissipation holes 341 and the plurality of vertical heat dissipation holes 343 are disposed on the surface and the vertical surface, and the heat dissipation holes 341 and 34 are formed.
  • the arrangement of 3 matches the first heat dissipation hole 111 of the heat dissipation housing 11 and is not blocked by the fins 12, so that convective air can be directly flowed from the inside to the outside, so that the heat dissipation efficiency of the power driver 342 is improved.
  • the power driver 342 allows cold air to enter from below through the second heat dissipation holes 341, and the hot air is discharged by convection from above, and the heat energy is discharged.
  • the heat dissipation structure of the present invention is not limited to a single direction when used in a light bulb, and is more convenient to use.
  • FIG. 5 it is a perspective view of a heat dissipation structure according to another preferred embodiment of the present invention.
  • the center of the annular body 222 disposed in the heat dissipation structure 20 and in contact with the fins 22 may be a solid body 223.
  • the number of the annular bodies 222 that are in contact with the fins 22 may be plural, which may be adjusted as needed, but it is not limited to the shape or the number described above.
  • the heat dissipation structure of a light bulb provided by the present invention has the effect of improving the heat dissipation efficiency of the light bulb.
  • the heat dissipation structure has a heat dissipation shell and a plurality of fins, and the light source is assembled on the fins.
  • the fins guide the thermal energy generated by the illumination source to the heat dissipation housing.
  • a power driver is disposed at the bottom of the fins and dissipates heat through the heat dissipation housing.
  • the illumination source is separated from the two heat sources of the power driver, and the heat energy is transmitted to the surrounding environment through the heat dissipation housing to accelerate the entire heat dissipation process, so that the luminous efficiency and the service life of the bulb can be improved.

Abstract

一种灯泡的散热结构(10),具有提升灯泡散热效率的功效,该散热结构(10)内具有一散热壳体(11)及多个鳍片(12),发光源(30)组装于该些鳍片(12),经由该些鳍片(12)将发光源(30)产生的热能导引至该散热壳体(11);一电源驱动器(342)设置于该些鳍片(12)的底部,并通过该散热壳体(11)进行散热。籍此将发光源(30)与该电源驱动器(342)的二热源分离设置,再经由该散热壳体(11)将热能传送到周围环境,以加速整个散热流程,让灯泡的发光效能与使用年限均能有所提升。

Description

灯泡的散热结构 技术领域
本发明涉及一种灯泡的散热结构, 特別是涉及一种能提升散热效率的 灯泡散热结构。 背景技术
现代的钨丝白炽灯约在十九、 二十世纪交接时期研制成功, 里面的发 光体采用了钨丝制成的灯丝, 这种材料特点是其熔点很高, 在高温下仍能 保持固态, 如此才能使得灯泡有一定的寿命, 灯丝不会在短时间就烧断而 无法使用。 实际上, 一只点亮的白炽灯的灯丝温度高达 300(TC , 而正是由 于炽热的灯丝产生了光辐射, 才使电灯发出了明亮的光芒。 而自此, 夜晚 的降临对于人们的生活不再是一种阻碍, 有了白炽灯泡的大放光明, 在夜 间的种种活动, 无论是工作或生活上, 都能很便利的继续下去, 开展了更 多可能性, 白炽灯泡的发明可说大大的改变了人们的生活型态, 使活动的 时段得以延伸, 进而有更不一样的种种发展。
而随着照明科技的进展, 各式照明灯具——被开发出来, 而在所有用 电的照明灯具中, 白炽灯泡的效率是最低的, 所消耗的电能转成光能的部 分只有 12% - 18%, 能源转换相当的差,其余部分都以热能的形式散失,而浪 费掉了大部分的能量。 随着科技的日益进展, 发光二极管(Light Emi t t ing Diode, LED)的技术,与相关外围集成电路控制组件及散热技术的日渐成熟,使 得发光二极管的应用更加多元化, 诸如低功率的电源指示灯及手机键盘光 源,到 LED背光模块与一般照明产品, 并已逐渐取代传统常用的发光源,相 比较于白炽灯泡的寿命短及易发烫, 发光二极管有着耗电低、 不含汞、 不 含卤化物及二氧化碳排放量低等优势, 为了日渐为人们重视的环保议题,节 能减碳及减少汞及卤化物使用的多方考虑, 各国政府已明令限期禁用白炽 灯并全面推广发光二极管。
且由于发光二极管的发光特性,是光源点的模式,故设计上更有弹性,可 以做出 光源而不刺眼的灯具, 也能做成集中一点或特定区域的灯具,所 产生的颜色能够更鲜艳明亮,白光 LED发光效率目前已达 70 lm/W以上,已 超过白炽灯泡的 15 lm/W。 目前发光二极管的输入功率仅有 35 %会转换成 光,其余 65%则转变成为热, 产生的该些热量, 是造成发光二极管其发光效 率降低的元凶, 再者, 发光二极管所产生的热能, 若其整个装置的散热机 制不佳, 导致热能累积于发光二极管无法实时导出, 则会使得发光二极管 的寿命缩短, 一般来说, LED灯的寿命在 100000小时以上, 但如果工作温 度高于 85 °C, 就会大大减低寿命。
所以包含 LED灯泡在内, 灯泡在使用时, 热量上升是必然的结果, 散 热是解决此问题的手段, 而相关技术的着眼点, 会放在如何提升各部件的 散热效率, 而使用寿命获得提升。 由于灯泡除了发光源之外, 还有电源驱 动器会产生热能, 电源驱动器若散热不佳, 一样会导致 LED灯泡的效率不 彰甚至无法启动 LED灯泡, 故, 若此两部分的散热机制不佳或甚至彼此影 响,温度会因此而向上飙升, 除了降低 LED灯泡使用寿命之外, 也会有提高 室内温度, 造成使用者不适的问题, 因此散热机制在此是相当重要的一个 课题。
现今市面上的相关灯泡的散热结构,几乎全为外鳍片式的散热结构,该 结构的外鳍片从本体的中心向外长出, 正中央留一空间提供电源驱动器置 放之用,由于电源驱动器本身也为一发热体, 当发光源产生的热能以热传导 方式传到外鳍片时,此时热能会完全包覆电源驱动装置, 再进一步与电源驱 动器所产生的热能发生共热效应,在此效应之下造成了内部温度过高,从而 造成电源驱动器装置内的电子零件受损, 例如:电解电容 (耐温为 105 °C,寿 命 8000 小时), 除了严重影响电源驱动器的寿命, 发光源的温度也会因共 热效应而降不下来, 使得发光效率降低, 故这往往是因为电源驱动器内部 造成的损坏所致, 而非发光源本身发光效能有问题。
有鉴于外鳍片式的散热结构, 只能散去发光源产生的热能, 且散热机 制也并非完善, 再者, 对于置于其中的电源驱动器, 缺乏散去其所产生的 热能的机制, 且该电源驱动器所产生的热能会与发光源产生的热能引发共 热效应, 而导致该电源驱动器内的电子零件受损, 进而影响灯泡的使用寿 命,本发明提供一种灯泡的散热结构, 主要应用于灯泡的散热。 本发明的散 热结构改善了外鳍片式的散热结构的缺陷, 并提供了电源驱动器的散热方 式,且有效解决了共热效应, 这样除了能提升灯泡的使用寿命之外, 对于发 光源的发光效率, 也能因为散热改善而有所提升, 对使用者来说也更为安 全,且能够免除灯泡因高温而损坏, 并发生后续的种种问题。 发明内容
本发明的主要目的在于, 提供一种新型结构的灯泡的散热结构, 所要 解决的技术问题是使其通过使用一散热壳体, 并在该散热壳体内环设多个 鳍片, 使该散热壳体可提高与空气的接触面积, 从而能将热能快速传递到 周围环境, 加快散热过程, 并提升整体的散热机制与效能, 使得灯泡的使 用寿命获得提升, 非常适于实用。
本发明的另一目的在于, 提供一种新型结构的灯泡的散热结构, 所要 解决的技术问题是使其通过使用一电源连接部, 并在该电源连接部内设置 一电源驱动器, 且该电源连接部设置于该些鳍片的底部, 将该散热壳体与 该电源连接部有效隔开, 保持一段距离, 使得该电源连结部内的该电源驱 动器所产生的热能, 能够通过散热壳体的散热孔将热能散发出去, 从而更 加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种灯泡的散热结构, 其包含:
一散热壳体; 以及
多个鳍片, 环设于该散热壳体的内壁。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的灯泡的散热结构, 还进一步包含一环形体, 该环形体设置于该 散热壳体的中央, 并与该些鳍片相接。
前述的灯泡的散热结构, 其中所述的环形体是呈中空状。
前述的灯泡的散热结构, 其中所述的环形体与该些鳍片相接,且,该些 鳍片是部分延伸至该环形体的中央部。
前述的灯泡的散热结构, 其中所述的环形体的中央为一实心体。
前述的灯泡的散热结构, 其中所述的散热壳体设置多个第一散热孔。 前述的灯泡的散热结构, 其中该些第一散热孔的孔径为由该散热壳体 的底部向上递增。
前述的灯泡的散热结构, 其中该些鳍片是设置多个螺丝孔。
前述的灯泡的散热结构, 其中所述的散热壳体与该些鳍片是一体成型。 前述的灯泡的散热结构, 其中该些鳍片的底部设有一容置部。
前述的灯泡的散热结构, 其中所述的容置部内设置一电源连接部,该电 源连接部为一中空本体。
前述的灯泡的散热结构, 其中所述的电源连接部内设有一电源驱动器。 前述的灯泡的散热结构, 其中所述的电源连接部设有多个第二散热孔。 前述的灯泡的散热结构, 其中所述的散热壳体是设置多个第一散热孔, 该些第一散热孔与该些第二散热孔相对设置。
前述的灯泡的散热结构, 其中所述的中空本体的底部与顶部设有多个 垂直散热孔。
前述的灯泡的散热结构, 其中所述的电源连接部设有多个第二散热 孔,该些垂直散热孔与该些第二散热孔相对设置。
本发明与现有技术相比具有明显的优点和有益效果。 借由上述技术方 案,本发明灯泡的散热结构至少具有下列优点及有益效果:
本发明提供的灯泡的散热结构, 当发光源产生热能时, 通过与发光源 直接接触的鳍片, 将热能导至散热壳体, 并由散热壳体进行散热, 通过此 结构能够加速散热的过程, 使温度不会一直集中于发光源, 使得发光源的 发光效率与使用寿命均能获得相当的提升。
再者, 本发明所述的散热壳体能够有效地将该电源驱动器产生的热散 发出去, 以提高该电源驱动器的寿命, 进而提升灯泡的寿命。
并且, 本发明散热结构的该散热壳体还进一步包含多个散热孔, 该些 散热孔设置于该散热壳体及该电源连接部表面, 通过这样的结构能够有效 提高散热效率。
综上所述, 本发明是有关于一种灯泡的散热结构, 具有提升灯泡散热 效率的功效, 该散热结构内具有一散热壳体及多个鳍片, 发光源组装于该 些鳍片, 经由该些鳍片将发光源产生的热能导引至该散热壳体; 再者,一电 源驱动器设置于该些鳍片的底部, 并通过该散热壳体进行散热。 藉此将发 光源与该电源驱动器的二热源分离设置, 再经由该散热壳体将热能传送到 周围环境,以加速整个散热流程, 让灯泡的发光效能与使用年限均能有所提 升。 本发明在技术上有显著的进步,并具有明显的积极效果,诚为一新颖、 进 步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1A是本发明的一较佳实施例的散热结构的俯视图。
图 1B是本发明的一较佳实施例的散热结构的侧视图。
图 1C是本发明的一较佳实施例的散热结构的仰视图。
图 1D是本发明的一较佳实施例的散热结构的立体示意图。
图 2A是本发明的另一较佳实施例的散热结构的俯视图。
图 2B是本发明的另一较佳实施例的散热结构的侧视图。
图 2C是本发明的另一较佳实施例的散热结构的仰视图。
图 2D是本发明的另一较佳实施例的散热结构的立体示意图。
图 3是本发明的另一较佳实施例的发光源与散热结构的组装示意图。 图 4是本发明的另一较佳实施例的发光源与散热结构组装完成的示意 图。
图 5 是本发明的另一较佳实施例的散热结构改用实心体的立体示意 图。
10: 散热结构 11 : 散热壳体
111 : 第一散热孔 12: 鳍片
121: 螺丝孔 13: 容置部 20: 散热结构 21 : 散热壳体
211: 散热孔 22: 鳍片
221 : 螺丝孑 L 222: 环形体
223: 实心体 23: 容置部
30: 发光源 31 : 灯罩
32: 基板 321 : 螺丝
33: 盖板 34: 电源连接部
341 : 第二散热孔 342: 电源驱动器
343: 垂直散热孔 实现 明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的灯泡的散热结构其具 体实施方式、 结构、 特征及其功效, 详细说明如后。
本发明为一种 "灯泡的散热结构", 为解决习知技术的外鳍片式的散热 结构所产生的问题, 其系包含发光源散热不易, 以及发光源与电源驱动器 所产生共热效应的缺点, 经由本发明的散热结构, 可使得灯泡的发光效率 与使用年限均获得改善。
请参阅图 1A、 图 1B、 图 1C、 图 1D所示,其是本发明的一较佳实施例的 散热结构的附上视图、 侧视图、 仰视图及立体示意图。 本发明的灯泡的散热 结构的一较佳实施例所揭示的一散热结构 10,其包含: 一散热壳体 11、 多 个鳍片 12,该些鳍片 12环设于该散热壳体 11内壁,通过该些鳍片 12,将发 光源所产生的热能传递到该散热壳体 11, 以此方式进行散热, 其中该些鳍 片 12的长度可为不一致或一致皆可, 先前技术是通过杯体传热给鳍片进行 散热, 由于杯体的功能及结构与本发明的散热壳体相似, 大量所产生的热 能通过薄型状的杯体先进行吸热, 由于薄型状的杯体其所吸热的热焓值相 当有限, 故, 再通过鳍片散热, 整体散热并无法有效率将热能通过杯体吸 热再传递给鳍片进行散热; 本发明是通过该些鳍片 12先进行吸收热能, 再 通过该散热壳体 11进行散热, 由于该些鳍片 12的总吸收热焓值是大于该 散热壳体 11, 故, 本发明具有较佳的散热效率。
该散热结构 10的该散热壳体 11海进一步包含:多个第一散热孔 111,该 些第一散热孔 111设置于该散热壳体 11表面, 该些鳍片 12吸热后不仅将 热能传递给该散热壳体 11进行散热, 更通过该些第一散热孔 111进行热对 流,由较低温的一端进气而使较热的一端将热排出, 有效率将该些鳍片 12 所吸收的热能予以排出, 本发明不仅通过该些鳍片 12与该散热壳体 11的 表面与外界空气进行热交换, 更可通过该些第一散热孔 111加强热对流以 提升冷却的效果; 其中, 该第一散热孔 111 的孔径可由开口较窄的底部往 开口较宽的顶部递增, 该第一散热孔 111 的孔径排列并非限定于如上的递 增方式, 可根据实际需要予以弹性调整或采用其它孔径的变化, 本发明的 孔径不以此为限, 仅用以说明本实施例而已; 藉此能让该散热壳体 11的散 热效率更为良好。
本发明的散热结构 10还进一步包含一容置部 13, 该容置部 1 3是设置 于该些鳍片 12的底部, 且位于该散热壳体 11之内,该容置部 13的功用,将 在后文中予以说明。
请参阅图 2A、 图 2B、 图 2C、 图 2D所示,其是本发明的另一较佳实施例 的散热结构的俯视图、 侧视图、 仰视图及立体示意图。 本发明另一较佳实 施例所揭示的一散热结构中 20 的鳍片具有与前述的较佳实施例不同的形 状,如图所示,该散热结构 20,其包含:一散热壳体 21、 多个鳍片 22,该些鳍 片 22环设于该散热壳体 21内壁, 该些鳍片 22还进一步包含一环形体 222,该 环形体 222设置于该散热壳体 21的中央,并与该些鳍片 22相接,该环形体 222是呈中空状, 该些鳍片 22有部分延伸置该环形体 222的中央部, 该些 鳍片 22、 环形体 222可为一体成型的结构, 以使发光源所产生的热能传递 到该散热壳体 21时, 具有有良好的功效。
本发明的散热结构 20还进一步包含一容置部 23, 该容置部 23是设置 于该些鳍片 22的底部, 且位于该散热壳体 21之内,该容置部 23的功用,将 在后文中予以说明。
请参阅图 3、 图 4所示, 其是本发明的另一较佳实施例的发光源与散热 结构的组装示意图及组装完成示意图。 本发明所揭示的灯泡其包含一发光 源 30, 该发光源 30包含: 一基板 32, 该基板 32是系直接接触于该些鳍片 12的上方, 且该基板 32的侧边与该散热壳体 11的内壁上端紧密贴合, 并 可通过导热膏 /胶使两者紧配;还进一步包含一电源连接部 34 , 电源连接部 34装置于该容置部 13内, 该电源连接部 34是呈一中空体并设置一电源驱 动器 342于其内, 其中在该电源连接部 34内设置该电源驱动器 342时, 也 可通过填充导热胶, 以将该电源驱动器 342 的热能快速传递至该电源连接 部 34; 其中, 该基板 32的上方设置多 LED芯片, 为求散热效果更佳, 可在 该基板 32与该些鳍片 12的接触面使用散热膏或散热片以使其紧密接触,通 过热传导将热快速地由该基板 32传递至该些鳍片 12及该散热壳体 11。
该发光源 30还进一步包含: 一灯罩 31,设置于该基板 32的上方,该灯 罩 31的材质是使用透明或散光的材盾, 由于发光源使用 LED模块, LED为 点光源, 未避免直视后造成炫光, 进而产生視觉上的不适, 故, 该灯罩 31 皆使用具有光扩散粒子的压克力材料, 以将 LED的光线打散。
再者,该散热结构 10的该散热壳体 11具有该些第一散热孔 111, 由于 该些第一散热孔 111设置于该散热壳体 11表面,这样能够让该散热壳体 11 的散热效率更为良好, 且该散热结构 10的该些鳍片 12上还进一步包含多 个螺丝孔 121,该基板 32使用多个螺丝 321固定于该些鳍片 12上的该螺丝 孔 121之中, 其中该些螺丝 321可为导热性佳的材料, 例如:铜、 金、 铝或 其它散热佳的金属或陶瓷材料。
由于该基板 32为发热源之一, 其散热机制依据各部位分别有不同的方 式,首先, 该基板 32的底面是将所产生的热能通过该些鳍片 12导引至该散 热壳体 11进行散热;再者,该基板 32侧边的热能则因直接与该散热壳体 11 紧配,可将热能传递出去与外界空气对流, 而达成散热的效果;最后,该基板 32顶端的散热可通过该些螺丝 321直接导引到该些鳍片 12进而传递至该散 热壳体 11的底部而快速散热。 故,本发明的散热机制为多导热渠道,以快速 将该基板 32的热能迅速带离。
另外, 在该发光源 30中的该电源连接部 34还进一步包含多个第二散 热孔 341, 且该电源连接部 34的上方是设置一盖板 33, 该盖板 33是将该 基板 32所产生的热与该电源连接部 34予以分隔, 如未经此方式分隔, 该 电源连接部 34内的该电源驱动器 342将会因该基板 32传来的热能产生共 热效应, 进而导致电子零件损坏, 并且, 先前技术中缺乏对于该电源驱动 器 342的散热方式, 因此灯泡内的该电源驱动器 342的热能无法散出,而该 基板 32又未与该电源驱动器 342做一分隔, 故此情形下, 该基板 32的热 能与该电源驱动器 342 的热能引发了共热效应, 产生的高温使得灯泡年限 以及发光效率都受到影响, 其包含影响 LED芯片与电源驱动器的寿命, 为 此, 在该电源连接部 34的侧表面及垂直面设有该些第二散热孔 341与多个 垂直散热孔 343,且该些散热孔 341、 343的设置与该散热壳体 11上的第一 散热孔 111相匹配, 不会被该些鳍片 12给挡住, 使得对流空气可由内直接 流通到外, 以使该电源驱动器 342 的散热效率提高, 以本实施例来说, 当 该灯泡以水平方向使用时, 该电源驱动器 342是通过该些第二散热孔 341 使冷空气由下方进入, 热空气由上方排出的对流方式将热能排出, 而该灯 泡改以垂直方向使用时, 热能是通过位于电源连接部 34上下的该些垂直散 热孔 343进行空气交换,使得该灯泡在任何方向使用时,该电源驱动器 342 产生的热能都能以热对流的方式排出; 故, 本发明的散热结构使用于灯泡 时,不会局限在单一方向, 使用起来更加便利。
请参阅图 5 所示, 是本发明的另一较佳实施例的散热结构改用实心体 的立体示意图。 图中揭示的设置于该散热结构 20并与该些鳍片 22相接的 该环形体 222的中央可为一实心体 223。 或者, 与该些鳍片 22相接的该环 形体 222数量可为多个, 其可根据需要予以调整, 但其不限于以上所述的 形状或数量。 综上所述, 本发明所提供的一种灯泡的散热结构, 具有提升灯泡散热 效率的功效, 该散热结构内具有一散热壳体及多个鳍片, 发光源组装于该 些鳍片, 经由该些鳍片将发光源产生的热能导引至该散热壳体; 再者,一电 源驱动器设置于该些鳍片的底部, 并通过该散热壳体进行散热。 藉此将发 光源与该电源驱动器的二热源分离设置, 再经由该散热壳体将热能传送到 周围环境, 以加速整个散热流程, 让灯泡的发光效能与使用年限均能有所 提升, 在产业上的利用, 以及一般家庭的使用上, 其优势自是不言可喻。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims

权 利 要 求
1、 一种灯泡的散热结构, 其特征在于, 其包含:
一散热壳体; 以及
多个鳍片, 环设于该散热壳体的内壁。
2、 根据权利要求 1所述的灯泡的散热结构, 其特征在于其还进一步包 含:
一基板, 其螺设于该些鳍片之上。
3、 根据权利要求 1所述的灯泡的散热结构, 其特征在于其中该些鳍片 还进一步包含一环形体, 该环形体设置于该散热壳体的中央, 并与该些鳍 片相接。
4、 根据权利要求 3所述的灯泡的散热结构, 其特征在于其中所述的环 形体是呈中空状。
5、 根据权利要求 3所述的灯泡的散热结构, 其特征在于其中所述的环 形体与该些鳍片相接, 且, 该些鳍片是部分延伸至该环形体的中央部。
6、 根据权利要求 3所述的灯泡的散热结构, 其特征在于其中所述的环 形体的中央为一实心体。
7、 根据权利要求 1所述的灯泡的散热结构, 其特征在于其中所述的散 热壳体设置有多个第一散热孔。
8、 根据权利要求 7所述的灯泡的散热结构, 其特征在于其中该些第一 散热孔的孔径为由该散热壳体的底部向上递增。
9、 根据权利要求 1所述的灯泡的散热结构, 其特征在于其中该些鳍片 设置多个螺丝孔。
10、 根据权利要求 1 所述的灯泡的散热结构, 其特征在于其中所述的 散热壳体与该些鳍片是一体成型。
11、 根据权利要求 1 所述的灯泡的散热结构, 其特征在于其中该些鳍 片的底部设有一容置部。
12、 根据权利要求 11所述的灯泡的散热结构, 其特征在于其中所述的 容置部内设置一电源连接部, 该电源连接部为一中空本体。
13、 根据权利要求 12所述的灯泡的散热结构, 其特征在于其中所述的 电源连接部内设有一电源驱动器。
14、 根据权利要求 12所述的灯泡的散热结构, 其特征在于其中所述的 电源连接部设有多个第二散热孔。
15、 根据权利要求 14所述的灯泡的散热结构, 其特征在于其中所述的 散热壳体是设置多个第一散热孔, 该些第一散热孔与该些第二散热孔相对 设置。
16、 根据权利要求 12所述的灯泡的散热结构, 其特征在于其中所述的 中空本体的底部与顶部设有多个垂直散热孔。
17、 根据权利要求 16所述的灯泡的散热结构, 其特征在于其中所述的 电源连接部设有多个第二散热孔, 该些垂直散热孔与该些第二散热孔相对 设置。
PCT/CN2011/001717 2011-10-13 2011-10-13 灯泡的散热结构 WO2013053081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001717 WO2013053081A1 (zh) 2011-10-13 2011-10-13 灯泡的散热结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001717 WO2013053081A1 (zh) 2011-10-13 2011-10-13 灯泡的散热结构

Publications (1)

Publication Number Publication Date
WO2013053081A1 true WO2013053081A1 (zh) 2013-04-18

Family

ID=48081330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001717 WO2013053081A1 (zh) 2011-10-13 2011-10-13 灯泡的散热结构

Country Status (1)

Country Link
WO (1) WO2013053081A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2934914Y (zh) * 2006-06-06 2007-08-15 捷飞有限公司 灯具散热结构
TW200912189A (en) * 2007-09-14 2009-03-16 Foxconn Tech Co Ltd LED lamp with heat sink
CN201310855Y (zh) * 2008-12-10 2009-09-16 上海三思电子工程有限公司 散热灯座及led像素灯
CN101542188A (zh) * 2006-11-24 2009-09-23 香港应用科技研究院有限公司 发光组件
CN201373284Y (zh) * 2009-02-06 2009-12-30 厦门华联电子有限公司 一种高压的大功率led灯泡
CN201401765Y (zh) * 2009-04-24 2010-02-10 和谐光电科技(泉州)有限公司 发光二极管灯具用的散热模块
CN201636694U (zh) * 2010-03-04 2010-11-17 东莞市贻嘉光电科技有限公司 一种led照明灯具
CN201739813U (zh) * 2010-05-21 2011-02-09 深圳市诺必达科技有限公司 一种led自散热模组式节能灯
CN201748200U (zh) * 2010-07-02 2011-02-16 惠州市华阳多媒体电子有限公司 一种led球泡灯
JP3175599U (ja) * 2011-10-13 2012-05-17 鎰明 陳 バルブの放熱構造

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2934914Y (zh) * 2006-06-06 2007-08-15 捷飞有限公司 灯具散热结构
CN101542188A (zh) * 2006-11-24 2009-09-23 香港应用科技研究院有限公司 发光组件
TW200912189A (en) * 2007-09-14 2009-03-16 Foxconn Tech Co Ltd LED lamp with heat sink
CN201310855Y (zh) * 2008-12-10 2009-09-16 上海三思电子工程有限公司 散热灯座及led像素灯
CN201373284Y (zh) * 2009-02-06 2009-12-30 厦门华联电子有限公司 一种高压的大功率led灯泡
CN201401765Y (zh) * 2009-04-24 2010-02-10 和谐光电科技(泉州)有限公司 发光二极管灯具用的散热模块
CN201636694U (zh) * 2010-03-04 2010-11-17 东莞市贻嘉光电科技有限公司 一种led照明灯具
CN201739813U (zh) * 2010-05-21 2011-02-09 深圳市诺必达科技有限公司 一种led自散热模组式节能灯
CN201748200U (zh) * 2010-07-02 2011-02-16 惠州市华阳多媒体电子有限公司 一种led球泡灯
JP3175599U (ja) * 2011-10-13 2012-05-17 鎰明 陳 バルブの放熱構造

Similar Documents

Publication Publication Date Title
TWM423207U (en) Heat-dissipation structure for light bulb
WO2008086665A1 (en) Led light
TWI429849B (zh) 照明裝置
US20110232886A1 (en) Heat dissipation housing for led lamp
TW201200794A (en) LED lamp
WO2009111905A1 (zh) 半导体固态照明灯具及其照明方法
CN206310277U (zh) Led照明灯具
TWI565909B (zh) 發光二極體燈泡
CN201344405Y (zh) 一种led灯泡
TWI557364B (zh) 發光二極體燈泡
TW201043851A (en) LED lamp with heat dissipating structure
WO2013053081A1 (zh) 灯泡的散热结构
TWI313739B (zh)
CN205979243U (zh) 一种大功率led节能灯
CN206973300U (zh) 一种散热效率高的led灯泡
CN202327920U (zh) Led-cob天花灯
WO2017219504A1 (zh) 一种大功率led灯
CN201748191U (zh) 一种led节能灯
CN201628120U (zh) 一种多重散热的led灯模组
CN208011316U (zh) 具备风扇散热功能的led照明灯具
CN202065773U (zh) 散热效率高的led射灯
CN205640500U (zh) 一种户外路灯配件
CN206846665U (zh) 一种led宝塔灯
CN206600637U (zh) Led大功率光源
CN205424474U (zh) 一种led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874003

Country of ref document: EP

Kind code of ref document: A1