WO2013051892A2 - Membrane comprising metal nanotubes, and method for manufacturing same - Google Patents

Membrane comprising metal nanotubes, and method for manufacturing same Download PDF

Info

Publication number
WO2013051892A2
WO2013051892A2 PCT/KR2012/008090 KR2012008090W WO2013051892A2 WO 2013051892 A2 WO2013051892 A2 WO 2013051892A2 KR 2012008090 W KR2012008090 W KR 2012008090W WO 2013051892 A2 WO2013051892 A2 WO 2013051892A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
substrate
separation membrane
separator
nanorods
Prior art date
Application number
PCT/KR2012/008090
Other languages
French (fr)
Korean (ko)
Other versions
WO2013051892A3 (en
Inventor
박호범
백운규
송태섭
신혜진
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2013051892A2 publication Critical patent/WO2013051892A2/en
Publication of WO2013051892A3 publication Critical patent/WO2013051892A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0062Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Definitions

  • the present invention relates to a separator having a cylinder-shaped pores and a method of manufacturing the same, and more particularly, to a separator comprising a metal nanotube and a method of manufacturing the same.
  • a membrane is a material that can separate a specific component by selectively passing or excluding a desired material from a bicomponent or multicomponent mixture.
  • various membrane materials and processes are being developed, which are largely classified into reverse osmosis membranes, ultrafiltration membranes, and microfiltration membranes, depending on the level of separation.
  • the ideal separator should have a high permeability and a high permeability to selectively permeate the desired material.
  • a cylinder shape with less bend of pores is suitable.
  • a membrane having uniform pores is required.
  • membranes are manufactured in the form of flat membranes or hollow fiber membranes using polymer materials such as cellulose acetate (CA) and poly sulfone (PSf) .
  • the membrane separator using polymers has uneven pores and sponge-like pores.
  • the resistance to the inside of the membrane during water permeation is large, and the separation range by size is not constant.
  • it is necessary to maximize the actual separation area by reducing the inner diameter and increasing the density of the hollow fiber membrane per unit area, but the inner diameter that can be manufactured is limited to several tens of micrometers.
  • An example of making cylinder-shaped pores by using a polymer is a method of making vertical pores by etching ion weakened portions by irradiating ion beams on the surface of strong polycarbonate (PC) or polyethylene (PE) polymer membranes (track etching ) Is commercialized only.
  • the separation membrane has a non-uniform structure such that the porosity is very low, less than 5%, and two or three adjacent pores overlap each other to form pores two times larger than the original pores.
  • inorganic separators are also partly commercialized.
  • aluminum oxide is used, a cylindrical membrane having a porosity of about 50% can be realized.
  • brittleness is strong, so that it is easily broken and difficult to be used in actual processes.
  • separators by forming pores in inorganic materials (eg, silicon, silicon nitride, etc.) having a thickness of tens to hundreds of nanometers by heat treatment, lithography, or heavy ion etching, but the thickness is thin to withstand pressure of 1 bar or more. It is difficult and easy to break the situation is not applied to the actual situation.
  • inorganic materials eg, silicon, silicon nitride, etc.
  • the conventional polymer membrane is low in resistance to external stimuli such as temperature, pH, oxidant, physical stimulation or organic fouling has the disadvantage that the membrane must be frequently replaced when used in the actual process.
  • the resistance inside the membrane is minimized to have high permeability and at the same time high selectivity, and organic matter fouling the surface of the separator has little effect of lowering the separation efficiency, and strong resistance to organic solvents, strong acids or strong bases, and oxidation conditions.
  • a new separator having.
  • the development of a membrane having pores in the form of a cylinder using a strong inorganic material is expected to be able to produce a membrane having high permeability and selectivity and resistant to physical stimuli.
  • the technical problem to be solved by the present invention is to provide a separator comprising a metal nanotube having excellent permeability and durability.
  • Another technical problem to be solved by the present invention is to provide a method for producing a separator comprising a metal nanotube.
  • an aspect of the present invention provides a separator.
  • the separator includes a substrate having a plurality of holes; And a plurality of metal nanotubes oriented in an upward direction from the substrate surface, arranged to be spaced apart from each other, and having an open end.
  • another aspect of the present invention provides a method of manufacturing a separator.
  • the manufacturing method includes forming a plurality of nanorods oriented upwardly from the surface of the substrate and arranged spaced apart from each other on the substrate; Coating a metal on the nanorods to form a tubular metal layer surrounding the nanorods; Etching the upper ends of the nanorods and the tubular metal film to form metal nanotubes having open ends; And forming a plurality of holes in the substrate.
  • a separator including metal nanotubes is used as an inorganic material having cylinder-type pores, resistance to compression pressure may be increased, and rapid permeability may be achieved even at low pressure.
  • the pressurization pressure can be lowered during water treatment, energy cost required for operation can be reduced, and the required size of the facility can be reduced compared to a conventional separator based on the same amount of water treatment.
  • it since it is resistant to chemical and physical stimuli, it is possible to increase the replacement cycle of the membrane, and thus there is an advantage in that efficient operation is possible.
  • 1 to 5 are cross-sectional views illustrating a method of manufacturing a separator according to an embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of a separator including a metal nanotube array according to an embodiment of the present invention.
  • FIG. 7 is an SEM image of a ZnO nanorod array prepared in Preparation Example 1.
  • FIG. 8 is an SEM image of a core-shell structured ZnO nanorod-silicon coating film prepared in Preparation Example 1.
  • FIG. 9 are SEM images of the silicon nanotube array manufactured in Preparation Example 1.
  • FIG. 10 is an SEM image of an epoxy resin-coated silicon nanotube array prepared in Preparation Example 2.
  • FIG. 11 is an SEM image of ZnO nanorods prepared in Preparation Example 3.
  • 1 to 5 are cross-sectional views illustrating a method of manufacturing a separator according to an embodiment of the present invention.
  • a plurality of nanorods 110 oriented upward from the surface of the substrate 100 and spaced apart from each other are formed on the substrate 100.
  • the substrate 100 is not particularly limited as long as it can form the nanorod 110 thereon, and may be an inorganic substrate, an organic substrate, or a substrate having a structure in which two or more of them are stacked in the same or different types.
  • the substrate 100 may be appropriately selected in consideration of the type of separator to which it is applied, the function in the separator, and the ease of hole formation corresponding to the channel of the fluid.
  • the substrate 100 may be prepared as a conductive substrate.
  • the nanorod 110 arranged on the substrate 100 may be, for example, a nanorod made of a metal oxide such as zinc oxide, aluminum oxide, or magnesium oxide.
  • the material of the nanorod 110 is not particularly limited as long as it is a material that can be selectively removed after the metal coating film is formed as in the process described below with reference to FIG. 3.
  • the nanorod 110 may have a diameter of 10 nm to 200 nm, and a length of 300 nm to 20 ⁇ m.
  • the nanorod 110 may be formed by various methods known in the art, such as a top-down method or a bottom-up method.
  • the nanorod 110 may be formed by disposing a bulk material serving as a base material on the substrate 100 and then performing an etching process using patterning and lithography.
  • the nanorod 110 may be formed by a hydrothermal synthesis method in which a metal oxide seed layer is formed on a substrate 100, and the substrate on which the seed layer is formed is immersed in a nanorod growth solution containing metal ions. It may be.
  • the seed layer may be a metal oxide nanoparticles coated layer or a metal oxide thin film layer, and serves as a base layer for growing the metal oxide nanorods in the [001] direction.
  • the nanorod 110 may be formed in a cone (top) shape of the upper.
  • the cone shape means that the nanorod 110 has a shape that becomes thinner toward the upper portion, that is, the portion of the nanorod 110 farther from the substrate 100.
  • the shape of the nanorod 110 can be controlled by a variety of methods, for example, when forming the nanorod 110 with zinc oxide nanorods, diaminoprop in the nanorod growth solution in which zinc ions are dissolved. By adding a shape control agent such as pane, a nanorod having a cone shape can be formed.
  • a metal coating 122 is formed on the nanorod 110 to form a tubular metal layer 122 surrounding the nanorod 110.
  • the metal is defined to include materials classified as metalloids as well as materials classified as metals.
  • the metal may include any one selected from silicon, germanium, tin, aluminum, zinc, silver, gold, and platinum or an alloy thereof.
  • the tubular metal film 122 is a structure corresponding to a precursor of a metal nanotube to be described later, and the thickness thereof may be appropriately set in consideration of the thickness of the metal nanotube finally formed.
  • the tubular metal film 122 may be formed to a thickness of 10nm to 150nm.
  • the tubular metal film 122 may be formed by a vapor deposition method in which a metal precursor gas is brought into contact with the nanorod 122.
  • a metal precursor gas is brought into contact with the nanorod 122.
  • the present invention is not limited thereto, and other conventional deposition methods or coating methods known in the art may be used.
  • SiH 4 , SiCl 4 , GeH 4 may be used as the metal precursor gas, but the present invention is not limited thereto, and any metal compound gas may be used as long as it can be used in the art. Do.
  • the metal precursor gas may further include a dopant precursor gas. It is possible to increase the conductivity of the metal film 122 coated on the nanorod 100 by the addition of the dopant, or to modify the surface of the metal film 122 to be hydrophilic or hydrophobic according to a desired purpose.
  • the dopant may include, for example, boron, aluminum, gallium, thallium, indium, phosphorus, arsenic, antimony, bismuth, and the like, and the dopant precursor gas may be BH 3 or PH 5 , but is not limited thereto. .
  • the tubular metal film 122 is formed by using the nanorod 110 as a template, thereby forming a core-shell nanostructure consisting of the nanorod 110 core and the metal film 122 shell. . Therefore, when the upper shape of the nanorod 110 has a cone shape, the upper shape of the tubular metal film 122 may also have a cone shape.
  • the metal coated in the process of forming the tubular metal film 122 by coating the metal on the nano-rod 110 may be coated along the surface of the substrate 100 as well as the nano-rod (110). Accordingly, the tubular metal films 122 may have a structure in which their lower ends are connected to each other by the metal film 124 coated along the substrate surface.
  • a structure referred to herein as a metal nanotube means a metal nanotube having an open end unless otherwise specified.
  • Etching the nanorods 110 and the tubular metal film 122 to form the metal nanotubes 120 may be performed by various known dry etching methods, wet etching methods, or a combination thereof. .
  • the forming of the metal nanotubes 120 may be performed by first removing the nanorods 110 corresponding to the core parts, and then forming the tubular metal films corresponding to the shell parts. 122) may be used to etch the top.
  • the tubular metal film remaining by dry etching using plasma 122 may be etched (FIG. 4).
  • the heat treatment may be performed under a hydrogen atmosphere, and the nanorods 110 may be thermally decomposed or thermally decomposed through a reduction reaction.
  • the gas used for the dry etching is not particularly limited as long as it can be used in the art, and for example, any one or more gases selected from the group consisting of Ar, Cl 2 , SF 6 , and CF 4 may be used. have.
  • the forming of the metal nanotubes 120 may include etching the upper end of the tubular metal film 122 corresponding to the shell part, and then removing the nanorod 110 corresponding to the core part. Can be used (not shown).
  • the upper end of the tubular metal film 122 is etched by dry etching using plasma to expose at least an upper surface of the nanorod 110, and then subjected to heat treatment in a reducing atmosphere or to wet etching using an etchant. Only the nanorod 110 can be selectively removed.
  • the length of the upper end of the tubular metal film 122 may be adjusted by etching the upper end diameter (specifically, the inner diameter of the upper end).
  • the metal nanotubes 120 may be formed. That is, if the tubular metal film 122 has a cone shape, as the length of the etched length increases, the inner diameter of the upper end of the finally manufactured metal nanotube 120 will increase. Therefore, the inner diameter of the upper end of the metal nanotubes 120 by a simple process (specifically, the etching time is controlled) of adjusting the length of etching the metal film 122 according to the size of particles to be separated from the fluid. There is an advantage that can be easily controlled.
  • the metal nanotubes 120 may be heat treated under an oxidizing atmosphere.
  • an oxide film may be formed on the surface of the metal nanotubes 120 that are finally formed, and through this, surface characteristics of the metal nanotubes 120 may be modified.
  • the metal nanotube array 130 including the plurality of metal nanotubes 120 having open ends may be formed on the substrate 100.
  • the metal nanotube array 130 refers to an aggregate of a plurality of metal nanotubes 120.
  • the method of manufacturing a separator according to the present embodiment before etching the upper end of the tubular metal film 122 corresponding to the shell portion, by coating a polymer resin on the substrate 100 to the plurality of metal nanotubes ( The method may further include forming a polymer resin layer (not shown) that fills at least some of the spaces of the space 120.
  • the substrate 100 is formed. It may be carried out by coating a solution in which the polymer resin is dispersed in the phase, followed by drying and curing.
  • the polymer resin may be a curable resin such as an epoxy resin, but is not limited thereto.
  • the metal nanotube array 130 can secure more improved mechanical strength and structural stability by forming the polymer resin layer.
  • a plurality of holes h are formed in the substrate 100 on which the metal nanotubes 120 having open ends are formed.
  • the hole h is a channel into which the fluid to be separated is injected, and may be formed in a desired size and shape using various known etching processes.
  • the metal coated in the tubular metal film 122 formation process may be coated along the surface of the substrate 100 as well as the nanorod 110. Accordingly, the tubular metal films 122 may have a structure in which lower ends thereof are connected to each other by the metal film 124 coated along the surface of the substrate 100. Therefore, even when the hole h is formed in the substrate 100, the metal nanotubes positioned in the hole h region do not collapse and maintain their structural stability.
  • a plurality of holes h are formed in the substrate 100 after the metal nanotubes 120 are formed.
  • the present invention is not limited thereto, and after the nanorods 110 are formed. In any step, the step of forming the hole h in the substrate 100 may be performed.
  • a separator including an array of metal nanotubes is provided.
  • FIG. 6 is a schematic perspective view of a separator including a metal nanotube array according to the present embodiment.
  • the separator includes a substrate 100 having a plurality of holes and a metal nanotube array 130 positioned on the substrate 100.
  • the metal nanotube array 130 includes a plurality of metal nanotubes 120 oriented upward from the surface of the substrate 100, spaced apart from each other, and having an open end.
  • the separator according to the present embodiment may be a separator manufactured by the above-described manufacturing method with reference to FIGS. 1 to 5.
  • the metal nanotubes may include any one or two or more alloys selected from silicon, germanium, tin, aluminum, zinc, silver, gold, and platinum, and may have conductivity or surface by addition of a suitable dopant. It may have hydrophilicity or hydrophobicity.
  • the length of the metal nanotube 120 may be 300nm to 20 ⁇ m
  • the inner diameter may be 10nm to 200nm
  • the thickness may be 10nm to 150nm.
  • the upper shape of the metal nanotube 120 may be a cone (not shown).
  • the metal nanotube array 130 may further include a polymer resin layer (not shown) to fill at least a part of the space of the separation space.
  • a 200 nm thick SiNx layer was deposited on both surfaces of a Si wafer having a thickness of 500 to 700 ⁇ m having a [001] direction using low pressure chemical vapor deposition (LPCVD). Subsequently, a square pattern (700 um ⁇ 700 um to 500 um ⁇ 500 um) was formed on one surface of the substrate through patterning using a PR process and a lithography process. After the SiNx layer exposed through the patterning process was removed using a reactive ion etcher (SF 6 gas 5 sccm, 5 mTorr, 180 seconds under RF power 100 W), the substrate was removed by 40wt% KOH solution. Wet etching was carried out at 80 °C for 15 hours using.
  • SF 6 gas 5 sccm, 5 mTorr reactive ion etcher
  • a ZnO thin film having a thickness of 200 nm is formed on the surface of the substrate on which the pattern is not formed by using RF-sputter equipment, and 0.025M zinc nitrate (Zinc) is formed on the substrate on which the ZnO thin film is formed.
  • Zinc zinc nitrate
  • nitrate) and 0.025M methamine (metheneamine) was immersed in an aqueous solution, and then left for 24 hours at 90 °C, ZnO nanorods were grown on the substrate in the vertical direction.
  • ZnO nanorod growth was repeated 3 to 15 times in the same aqueous solution to grow the ZnO nanorods to the desired length.
  • the thickness of the layer which consists only of the obtained ZnO nanorods was 6 micrometers, and the diameter of the ZnO nanorods was 80-120 nm.
  • the silicon coated nanorods were arranged in a hydrogen atmosphere at a temperature of 550 to 750 ° C. while flowing H 2 at a flow rate of 100 to 400 sccm and Ar at a flow rate of 100 to 400 sccm.
  • H 2 a flow rate of 100 to 400 sccm
  • Ar a flow rate of 100 to 400 sccm
  • the silicon nanotube formed substrate was placed in a reactive ion etcher, and the SiNx layer remaining on the back side of the substrate was removed by SF 6 gas (600 sec under 5 sccm, 5 mTorr, RF power 100 W). A plurality of holes were formed in the substrate.
  • the process of opening the end of the silicon nanotube was performed, but if necessary, after etching the end of the silicon nanotube first, the process of removing ZnO was performed to open the silicon Nanotubes can be formed.
  • FIG. 7 is an SEM image of a ZnO nanorod array prepared in Preparation Example 1.
  • a plurality of ZnO nanorods oriented in a direction upward from the substrate surface and arranged to be spaced apart from each other according to the present example.
  • FIG. 8 is an SEM image of a core-shell structured ZnO nanorod-silicon coating film prepared in Preparation Example 1.
  • the ZnO nanorods are positioned in the core portion, and the coating layer is formed in the form of the silicon surrounding the ZnO nanorods in the shell portion.
  • FIG. 9 are SEM images of the silicon nanotube array manufactured in Preparation Example 1.
  • the diameters of the openings are about 15 nm, 20 to 25 nm, respectively. It can be seen that the increase to 30 ⁇ 40nm and 35 ⁇ 40nm.
  • FIG. 10 is an SEM image of an epoxy resin-coated silicon nanotube array prepared in Preparation Example 2.
  • step 2 In order to control the shape of the top portion of the ZnO nanorod, in step 2), 190 mM of 1,3-diaminopropane (1,3-DAP) was added with 0.025M zinc nitrate and 0.025M. The same procedure as in Preparation Example 1 was performed except that methamine was added to the aqueous solution in which metheneamine was dissolved.
  • FIG. 11 is an SEM image of ZnO nanorods prepared in Preparation Example 3.
  • the ZnO nanorods prepared according to the present Preparation Example have a cone shape in which the ends thereof become thinner.
  • Gases used in the gas permeation experiment were H 2 , He, N 2 , O 2 , CH 4 , CO 2 , SF 6 , and permeability and selectivity of each gas were measured under normal temperature and pressure of 0.5 bar.
  • the gas permeability of a 60 nm diameter cylinder was compared with the gas permeability predicted in the Knudsen flow, which is ideal for following the Knudsen flow.
  • the transmittance of He was 2.1 ⁇ 10 8 barrer, which is 100 times faster than the theoretical value, compared to 2.8 ⁇ 10 6 barrer, which is expected by Knudsen flow.
  • the 50nm polycarbonate separator showed 4.5x10 5 barrer of theoretical value and 1.7 ⁇ 10 6 barrer of experimental value, which showed 4 times faster transmission than theoretical value.
  • 100nm polycarbonate membrane showed almost similar permeability with theoretical value 2.5 ⁇ 10 6 barrer and experimental value 2.0 ⁇ 10 6 barrer, and 100nm aluminum oxide membrane showed theoretical value 4.2 ⁇ 10 7 barrer and experimental value 6.7 ⁇ 10 7 barrer. .
  • the water in the tank was pressurized with a pressure of 1 bar using N 2 , and this was applied to a dead-end system equipped with a separator to measure the permeability of water coming through the separator.
  • the permeability of water through the pores was predicted using the Hagen-poisuille model and compared with the experimental data.
  • the experimental value was 6,600LMH, which was about 13 times faster than the theoretical value of 476LMH.
  • Example 2 In the same manner as in Example 1, a polycarbonate separator and an aluminum oxide separator were used to compare properties.
  • the aluminum oxide separator having a pore diameter of 100 nm showed 1.5 times faster transmittance with a theoretical value of 1,650 LMH and an experimental value of 2,682 LMH.
  • the cylinder-shaped pores of the nanotubes from the analytical examples 1 and 2 can improve the permeability by smoothly flowing the fluid, and unlike the conventional polymer membrane, when using the silicon separator, the surface characteristics of the silicon nanotubes It can be confirmed that the permeability can be further improved by affecting the flow of the fluid.
  • the separator of the present invention can be expected to improve the permeation efficiency at a lower pressure than the conventional process.
  • the pressurized pressure can be lowered during water treatment, energy cost required for operation can be reduced, and the size of the facility can be reduced compared to a conventional separator based on the same amount of water treatment.
  • inorganic materials such as silicon are resistant to chemical and physical stimuli, it is possible to increase the replacement cycle of the separator and thus have an advantage of enabling efficient operation.
  • metal nanotube 122 tubular metal film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are a membrane comprising metal nanotubes and a method for manufacturing same. The membrane comprises: a substrate having a plurality of holes; and a plurality of metal nanotubes which are aligned in the direction extending upward from the surface of the substrate, which are spaced apart from each other, and each of which has an open end. According to the present invention, the membrane comprising metal nanotubes as an inorganic material which have cylindrical air pores is used to achieve quick permeation even with a low pressure, and strong resistance of the membrane against chemical and physical stimulations can be obtained. Therefore, the replacement cycle of the membrane can be lengthened in order to enable efficient operation.

Description

금속나노튜브를 포함하는 분리막 및 그 제조방법Separation membrane comprising metal nanotube and manufacturing method thereof
본 발명은 실리더형의 기공을 갖는 분리막 및 그 제조방법에 관한 것으로서, 보다 상세하게는 금속나노튜브를 포함하는 분리막 및 그 제조방법에 관한 것이다.The present invention relates to a separator having a cylinder-shaped pores and a method of manufacturing the same, and more particularly, to a separator comprising a metal nanotube and a method of manufacturing the same.
분리막(membrane)은 2성분 또는 다성분 혼합물로부터 목적하는 물질을 선택적으로 통과시키거나 배제시켜 특정성분을 분리할 수 있는 소재를 말한다. 산업의 발달과 함께 다양한 분리막 소재 및 공정이 개발되고 있는데, 분리 수준에 따라 크게 역삼투막, 한외여과막, 정밀여과막으로 구분되며 이들은 용도에 따라 단독 또는 복합으로 사용되고 있다.A membrane is a material that can separate a specific component by selectively passing or excluding a desired material from a bicomponent or multicomponent mixture. With the development of the industry, various membrane materials and processes are being developed, which are largely classified into reverse osmosis membranes, ultrafiltration membranes, and microfiltration membranes, depending on the level of separation.
이상적인 분리막은 투과 물질의 빠른 투과도를 지니면서 목적하는 물질을 선택적으로 투과시키는 효율이 높아야 한다. 물질 투과 시 분리막 내부에서 유체가 받게 되는 저항을 최소화하여 빠른 투과도를 갖도록 하기 위해서는 기공의 굴곡이 적은 실린더 형태가 적합하다. 또한 물질의 크기에 의한 분리 효율을 높이기 위해서는 균일한 기공을 갖는 분리막이 필요하다.The ideal separator should have a high permeability and a high permeability to selectively permeate the desired material. In order to minimize the resistance of the fluid inside the membrane during material permeation and to have a fast permeability, a cylinder shape with less bend of pores is suitable. In addition, in order to increase the separation efficiency by the size of the material, a membrane having uniform pores is required.
일반적으로 분리막은 CA(cellulose acetate), PSf(poly sulfone) 등의 고분자 재료를 이용해 평막 또는 중공사막 형태로 제조되는데, 고분자를 이용한 평막 분리막은 기공의 크기가 불균일하고 스폰지 형태의 기공을 갖고 있어, 수투과시 분리막 내부에 걸리는 저항이 크고, 크기에 의한 분리 범위가 일정하지 않다. 또한, 중공사막의 경우 분리효율을 높이기 위해서는 내부 직경을 줄이고 단위면적당 중공사막의 밀도를 높여 실제 분리면적을 최대화시켜야 하지만 현재 제작 가능한 내부 직경은 수십 마이크로미터로 제한적이다.Generally, membranes are manufactured in the form of flat membranes or hollow fiber membranes using polymer materials such as cellulose acetate (CA) and poly sulfone (PSf) .The membrane separator using polymers has uneven pores and sponge-like pores. The resistance to the inside of the membrane during water permeation is large, and the separation range by size is not constant. In addition, in order to increase the separation efficiency of the hollow fiber membrane, it is necessary to maximize the actual separation area by reducing the inner diameter and increasing the density of the hollow fiber membrane per unit area, but the inner diameter that can be manufactured is limited to several tens of micrometers.
고분자를 이용하여 실린더 형태의 기공을 만든 예로는 강도가 강한 폴리카보네이트(PC)나 폴리에틸렌(PE) 고분자막의 표면에 이온빔을 조사하여 결합이 약해진 부분을 에칭시켜 수직형태의 기공을 만드는 방법(트랙에칭)만이 상업화되어 있다. 하지만 이렇게 만들어진 분리막은 공극률이 5% 미만으로 매우 낮고 인접한 2~3개의 기공이 서로 겹쳐 원래의 기공보다 2배 이상의 큰 기공을 형성하는 등 불균일한 구조를 지니고 있다.An example of making cylinder-shaped pores by using a polymer is a method of making vertical pores by etching ion weakened portions by irradiating ion beams on the surface of strong polycarbonate (PC) or polyethylene (PE) polymer membranes (track etching ) Is commercialized only. However, the separation membrane has a non-uniform structure such that the porosity is very low, less than 5%, and two or three adjacent pores overlap each other to form pores two times larger than the original pores.
고분자의 이러한 한계 때문에 무기물 분리막 또한 일부 상용화되어 있다. 알루미늄 옥사이드를 이용하는 경우 거의 50%의 공극률을 가지는 실린더 형태의 분리막을 구현할 수 있지만, 높은 공극률과 무기물 자체의 기계적 특성 때문에 취성이 강해 쉽게 깨어져 실제 공정에 사용되기에 많은 어려움이 있다.Because of this limitation of polymers, inorganic separators are also partly commercialized. When aluminum oxide is used, a cylindrical membrane having a porosity of about 50% can be realized. However, due to high porosity and mechanical properties of the inorganic material, brittleness is strong, so that it is easily broken and difficult to be used in actual processes.
열처리, 리소그래피 또는 중이온 에칭법으로 수십~수백 나노미터의 두께를 가지는 무기물질(예: 실리콘, 질화규소 등)에 기공을 형성하여 분리막을 제작하는 연구가 진행되고 있지만, 두께가 얇아 1bar 이상의 압력을 견디기 힘들고, 쉽게 깨지는 단점이 있어 실제 공정에 적용되지 못하고 있는 실정이다.Although research is being conducted to form separators by forming pores in inorganic materials (eg, silicon, silicon nitride, etc.) having a thickness of tens to hundreds of nanometers by heat treatment, lithography, or heavy ion etching, but the thickness is thin to withstand pressure of 1 bar or more. It is difficult and easy to break the situation is not applied to the actual situation.
또한 종래의 고분자 분리막은 온도, pH, 산화제, 물리적 자극 또는 유기물 파울링 등의 외부적 자극에 저항성이 낮아 실제 공정에 사용될 때 분리막을 자주 교체해 주어야 하는 단점이 있다.In addition, the conventional polymer membrane is low in resistance to external stimuli such as temperature, pH, oxidant, physical stimulation or organic fouling has the disadvantage that the membrane must be frequently replaced when used in the actual process.
따라서 분리막 내부의 저항을 최소화하여 높은 투과도를 지니면서 동시에 높은 선택도를 가지며, 유기물이 분리막 표면에 파울링되어 분리효율을 저하시키는 영향이 적고, 유기용매나 강산 혹은 강염기 및 산화 조건에 강한 저항성을 갖는 새로운 분리막의 개발이 필요한 실정이다. 특히, 강도가 강한 무기물을 이용하여 실린더 형태의 기공을 가지는 분리막을 개발한다면 높은 투과도와 선택도를 가지면서 물리적 자극에도 강한 분리막을 제작할 수 있을 것으로 기대된다.Therefore, the resistance inside the membrane is minimized to have high permeability and at the same time high selectivity, and organic matter fouling the surface of the separator has little effect of lowering the separation efficiency, and strong resistance to organic solvents, strong acids or strong bases, and oxidation conditions. There is a need for the development of a new separator having. In particular, the development of a membrane having pores in the form of a cylinder using a strong inorganic material is expected to be able to produce a membrane having high permeability and selectivity and resistant to physical stimuli.
본 발명이 해결하고자 하는 기술적 과제는 우수한 투과도 및 내구성을 갖는 금속나노튜브를 포함하는 분리막을 제공함에 있다.The technical problem to be solved by the present invention is to provide a separator comprising a metal nanotube having excellent permeability and durability.
본 발명이 해결하고자 하는 다른 기술적 과제는 금속나노튜브를 포함하는 분리막의 제조방법을 제공함에 있다.Another technical problem to be solved by the present invention is to provide a method for producing a separator comprising a metal nanotube.
상기 기술적 과제를 해결하기 위하여 본 발명의 일 측면은 분리막을 제공한다. 상기 분리막은 복수의 홀을 구비한 기판; 및 상기 기판 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열되며, 말단이 개구된 복수의 금속나노튜브를 포함한다.In order to solve the above technical problem, an aspect of the present invention provides a separator. The separator includes a substrate having a plurality of holes; And a plurality of metal nanotubes oriented in an upward direction from the substrate surface, arranged to be spaced apart from each other, and having an open end.
상기 기술적 과제를 해결하기 위하여 본 발명의 다른 측면은 분리막의 제조방법을 제공한다. 상기 제조방법은 기판 상에 상기 기판 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열된 복수의 나노막대를 형성하는 단계; 상기 나노막대 상에 금속을 코팅하여 상기 나노막대를 감싸는 튜브형 금속막을 형성하는 단계; 상기 나노막대 및 상기 튜브형 금속막의 상단을 식각하여 말단이 개구된 금속나노튜브를 형성하는 단계; 및 상기 기판에 복수의 홀을 형성하는 단계를 포함한다.In order to solve the above technical problem, another aspect of the present invention provides a method of manufacturing a separator. The manufacturing method includes forming a plurality of nanorods oriented upwardly from the surface of the substrate and arranged spaced apart from each other on the substrate; Coating a metal on the nanorods to form a tubular metal layer surrounding the nanorods; Etching the upper ends of the nanorods and the tubular metal film to form metal nanotubes having open ends; And forming a plurality of holes in the substrate.
본 발명에 따르면, 실리더형의 기공을 갖는 무기물로서 금속나노튜브를 포함하는 분리막을 사용하므로, 압축 압력에 저항성을 증가시키고, 낮은 압력으로도 빠른 투과도를 가질 수 있다. 또한 수처리 시 가압 압력을 낮출 수 있으므로 운전에 필요한 에너지 비용을 절감할 수 있으며, 동일한 수처리량을 기준으로 종래의 분리막에 비해 요구되는 설비 규모를 축소할 수 있다. 또한, 화학적 및 물리적 자극에도 저항성이 강하므로 분리막의 교체주기를 증가시킬 수 있어 효율적인 운영이 가능한 장점이 있다.According to the present invention, since a separator including metal nanotubes is used as an inorganic material having cylinder-type pores, resistance to compression pressure may be increased, and rapid permeability may be achieved even at low pressure. In addition, since the pressurization pressure can be lowered during water treatment, energy cost required for operation can be reduced, and the required size of the facility can be reduced compared to a conventional separator based on the same amount of water treatment. In addition, since it is resistant to chemical and physical stimuli, it is possible to increase the replacement cycle of the membrane, and thus there is an advantage in that efficient operation is possible.
다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1 내지 5는 본 발명의 일 실시예에 따른 분리막의 제조방법을 설명하기 위한 단면도들이다.1 to 5 are cross-sectional views illustrating a method of manufacturing a separator according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 금속나노튜브 어레이를 포함하는 분리막의 개략적인 사시도이다.6 is a schematic perspective view of a separator including a metal nanotube array according to an embodiment of the present invention.
도 7은 제조예 1의 과정에서 제조된 ZnO 나노막대 어레이의 SEM 이미지이다.FIG. 7 is an SEM image of a ZnO nanorod array prepared in Preparation Example 1. FIG.
도 8은 제조예 1의 과정에서 제조된 코어-쉘 구조의 ZnO 나노로드-실리콘 코팅막의 SEM 이미지이다.FIG. 8 is an SEM image of a core-shell structured ZnO nanorod-silicon coating film prepared in Preparation Example 1. FIG.
도 9는 제조예 1의 과정에서 제조된 실리콘 나노튜브 어레이의 SEM 이미지들이다.9 are SEM images of the silicon nanotube array manufactured in Preparation Example 1. FIG.
도 10은 제조예 2의 과정에서 제조된 에폭시 수지가 코팅된 실리콘 나노튜브 에레이의 SEM 이미지이다.FIG. 10 is an SEM image of an epoxy resin-coated silicon nanotube array prepared in Preparation Example 2. FIG.
도 11은 제조예 3의 과정에서 제조된 ZnO 나노막대의 SEM 이미지이다.FIG. 11 is an SEM image of ZnO nanorods prepared in Preparation Example 3. FIG.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수 있으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면들에 있어서, 층 및 영역들의 두께는 설명의 편의 및 명확성을 기하기 위하여 과장 또는 생략된 것일 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms and should be understood to include all equivalents and substitutes included in the spirit and scope of the present invention. In the drawings, the thicknesses of layers and regions may be exaggerated or omitted for ease of explanation and clarity. Like numbers refer to like elements throughout. In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 1 내지 5는 본 발명의 일 실시예에 따른 분리막의 제조방법을 설명하기 위한 단면도들이다.1 to 5 are cross-sectional views illustrating a method of manufacturing a separator according to an embodiment of the present invention.
도 1을 참조하면, 기판(100) 상에 상기 기판(100) 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열된 복수의 나노막대(110)를 형성한다.Referring to FIG. 1, a plurality of nanorods 110 oriented upward from the surface of the substrate 100 and spaced apart from each other are formed on the substrate 100.
상기 기판(100)은 그 위에 나노막대(110)를 형성할 수 있는 것이라면 특별히 제한되지 않으며, 무기물 기판, 유기물 기판, 또는 이들이 동종 또는 이종으로 2 이상 적층된 구조의 기판일 수 있다. 또한, 상기 기판(100)은 그것이 적용되는 분리막의 종류, 분리막 내에서의 기능 및 유체의 채널에 해당하는 홀 형성의 용이성 등을 고려하여 적절하게 선택될 수 있다. 일 예로서, 분리막에 전압을 인가하여 전기적 포텐셜에 의해 물속의 이온을 제거할 목적이라면, 상기 기판(100)은 전도성 기판으로 준비될 수 있다.The substrate 100 is not particularly limited as long as it can form the nanorod 110 thereon, and may be an inorganic substrate, an organic substrate, or a substrate having a structure in which two or more of them are stacked in the same or different types. In addition, the substrate 100 may be appropriately selected in consideration of the type of separator to which it is applied, the function in the separator, and the ease of hole formation corresponding to the channel of the fluid. As an example, if the purpose of removing ions in the water by electrical potential by applying a voltage to the separator, the substrate 100 may be prepared as a conductive substrate.
상기 기판(100) 상에 배열되는 상기 나노막대(110)는 예를 들어, 아연 산화물, 알루미늄 산화물 또는 마그네슘 산화물과 같은 금속 산화물로 이루어진 나노막대일 수 있다. 다만, 상기 나노막대(110)의 재료는 도 3을 참조하며 후술하는 공정에서와 같이 금속 코팅막을 형성한 후 선택적으로 제거가 가능한 물질이라면 특별히 제한되지 아니한다. 상기 나노막대(110)는 예를 들어, 그 직경이 10nm 내지 200nm일 수 있으며, 그 길이는 300nm 내지 20㎛일 수 있다.The nanorod 110 arranged on the substrate 100 may be, for example, a nanorod made of a metal oxide such as zinc oxide, aluminum oxide, or magnesium oxide. However, the material of the nanorod 110 is not particularly limited as long as it is a material that can be selectively removed after the metal coating film is formed as in the process described below with reference to FIG. 3. For example, the nanorod 110 may have a diameter of 10 nm to 200 nm, and a length of 300 nm to 20 μm.
상기 나노막대(110)는 탑-다운(top-down) 방식 또는 바텀-업(bottom-up) 방식 등 당해 기술분야에서 공지된 다양한 방법에 의해 형성할 수 있다.The nanorod 110 may be formed by various methods known in the art, such as a top-down method or a bottom-up method.
일 예로서, 상기 나노막대(110)는 그것의 모재가 되는 벌크형 물질을 기판(100) 상에 배치한 후, 패터닝 및 리소그래피를 이용하는 식각 공정 등을 수행하여 형성할 수 있다.For example, the nanorod 110 may be formed by disposing a bulk material serving as a base material on the substrate 100 and then performing an etching process using patterning and lithography.
다른 예로서, 상기 나노막대(110)는 기판(100) 상에 금속산화물 씨드층을 형성하고, 상기 씨드층이 형성된 기판을 금속 이온을 포함하는 나노막대 성장 용액에 침지시키는 수열합성법에 의해 형성할 수도 있다. 이때, 상기 씨드층은 금속산화물 나노입자가 코팅된 층 또는 금속산화물 박막층일 수 있으며, 금속산화물 나노막대를 [001] 방향으로 성장시키는 기저층의 역할을 한다.As another example, the nanorod 110 may be formed by a hydrothermal synthesis method in which a metal oxide seed layer is formed on a substrate 100, and the substrate on which the seed layer is formed is immersed in a nanorod growth solution containing metal ions. It may be. In this case, the seed layer may be a metal oxide nanoparticles coated layer or a metal oxide thin film layer, and serves as a base layer for growing the metal oxide nanorods in the [001] direction.
한편, 상기 나노막대(110)는 그 상부 형상을 콘(cone)형으로 형성할 수 있다. 여기서, 상기 콘형이란 상기 나노막대(110)의 형상이 상부로 갈수록, 즉 기판(100)으로부터 먼 쪽의 나노막대(110) 부분일수록 점점 가늘어지는 모양을 갖는 것을 의미한다. 상기 나노막대(110)의 형상은 다양한 방법에 의해 제어할 수 있으며, 예를 들어 상기 나노막대(110)를 아연 산화물 나노막대로 형성하는 경우, 아연 이온이 용해된 나노막대 성장 용액에 다이아미노프로페인과 같은 형상 제어제를 첨가함으로써, 콘형의 형상을 갖는 나노막대를 형성할 수 있다.On the other hand, the nanorod 110 may be formed in a cone (top) shape of the upper. Here, the cone shape means that the nanorod 110 has a shape that becomes thinner toward the upper portion, that is, the portion of the nanorod 110 farther from the substrate 100. The shape of the nanorod 110 can be controlled by a variety of methods, for example, when forming the nanorod 110 with zinc oxide nanorods, diaminoprop in the nanorod growth solution in which zinc ions are dissolved. By adding a shape control agent such as pane, a nanorod having a cone shape can be formed.
도 2를 참조하면, 상기 나노막대(110) 상에 금속을 코팅하여 상기 나노막대(110)를 감싸는 튜브형 금속막(122)을 형성한다. 본 명세서 전체에 걸쳐서, 상기 금속이란 통상적으로 금속으로 분류되는 물질뿐 아니라 준금속으로 분류되는 물질도 포함하는 것으로 정의된다. 예를 들어, 상기 금속은 실리콘, 게르마늄, 주석, 알루미늄, 아연, 은, 금 및 백금 중에서 선택되는 어느 하나 또는 이들의 합금을 포함할 수 있다.Referring to FIG. 2, a metal coating 122 is formed on the nanorod 110 to form a tubular metal layer 122 surrounding the nanorod 110. Throughout this specification, the metal is defined to include materials classified as metalloids as well as materials classified as metals. For example, the metal may include any one selected from silicon, germanium, tin, aluminum, zinc, silver, gold, and platinum or an alloy thereof.
상기 튜브형 금속막(122)은 후술하는 금속나노튜브의 전구체에 해당하는 구조물로서 그 두께는 최종적으로 형성되는 금속나노튜브의 두께를 고려하여 적절하게 설정할 수 있다. 일 예로, 상기 튜브형 금속막(122)은 10nm 내지 150nm의 두께로 형성될 수 있다.The tubular metal film 122 is a structure corresponding to a precursor of a metal nanotube to be described later, and the thickness thereof may be appropriately set in consideration of the thickness of the metal nanotube finally formed. For example, the tubular metal film 122 may be formed to a thickness of 10nm to 150nm.
상기 튜브형 금속막(122)의 형성은 금속 전구체 가스를 상기 나노막대(122)에 접촉시키는 기상증착법에 의해 수행할 수 있다. 다만, 이에 제한되는 것은 아니며 당해 기술분야에서 공지된 통상의 다른 증착법 내지 코팅법을 사용할 수 있다.The tubular metal film 122 may be formed by a vapor deposition method in which a metal precursor gas is brought into contact with the nanorod 122. However, the present invention is not limited thereto, and other conventional deposition methods or coating methods known in the art may be used.
상기 금속 전구체 가스로는 예를 들어, SiH4, SiCl4, GeH4 등을 사용할 수 있으나, 이에 제한되는 것은 아니며, 기화될 수 있는 금속 원자를 포함하는 화합물로서 당해 기술분야에서 사용될 수 있는 것이라면 모두 가능하다.For example, SiH 4 , SiCl 4 , GeH 4 may be used as the metal precursor gas, but the present invention is not limited thereto, and any metal compound gas may be used as long as it can be used in the art. Do.
또한, 상기 금속 전구체 가스는 도펀트 전구체 가스를 더 포함할 수 있다. 상기 도펀트의 첨가에 의해 상기 나노막대(100) 상에 코팅되는 금속막(122)의 전도성을 증가시키거나, 상기 금속막(122)의 표면을 원하는 목적에 따라 친수성 또는 소수성으로 개질하는 것이 가능하다. 상기 도펀트는 예를 들어, 붕소, 알루미늄, 갈륨, 탈륨, 인듐, 인, 비소, 안티몬, 비스무트 등을 포함할 수 있으며, 상기 도펀트 전구체 가스는 BH3, PH5 등일 수 있으나, 이에 제한되는 것은 아니다.In addition, the metal precursor gas may further include a dopant precursor gas. It is possible to increase the conductivity of the metal film 122 coated on the nanorod 100 by the addition of the dopant, or to modify the surface of the metal film 122 to be hydrophilic or hydrophobic according to a desired purpose. . The dopant may include, for example, boron, aluminum, gallium, thallium, indium, phosphorus, arsenic, antimony, bismuth, and the like, and the dopant precursor gas may be BH 3 or PH 5 , but is not limited thereto. .
상기 튜브형 금속막(122)은 상기 나노막대(110)를 주형(template)으로 하여 형성되며, 이에 따라 나노막대(110) 코어와 금속막(122) 쉘로 구성된 코어-쉘 형의 나노구조체가 형성된다. 따라서, 상기 나노막대(110)의 상부 형상이 콘형의 형상을 갖는 경우, 상기 튜브형 금속막(122)의 상부 형상도 콘형의 형상을 가질 수 있다.The tubular metal film 122 is formed by using the nanorod 110 as a template, thereby forming a core-shell nanostructure consisting of the nanorod 110 core and the metal film 122 shell. . Therefore, when the upper shape of the nanorod 110 has a cone shape, the upper shape of the tubular metal film 122 may also have a cone shape.
또한, 나노막대(110) 상에 금속을 코팅하여 튜브형 금속막(122)을 형성 과정에서 코팅되는 금속은 나노막대(110) 뿐 아니라, 기판(100) 면을 따라서도 코팅될 수 있다. 이에 따라, 상기 튜브형 금속막(122)들은 그 하단부가 기판 면을 따라 코팅된 금속막(124)에 의해 서로 연결된 구조를 가질 수 있다.In addition, the metal coated in the process of forming the tubular metal film 122 by coating the metal on the nano-rod 110 may be coated along the surface of the substrate 100 as well as the nano-rod (110). Accordingly, the tubular metal films 122 may have a structure in which their lower ends are connected to each other by the metal film 124 coated along the substrate surface.
도 3 및 4를 참조하면, 도 2에 도시된 코어-쉘 형의 나노구조체에서 상기 코어 부분의 나노막대(110)를 모두 식각하고 상기 쉘 부분의 튜브형 금속막(122)의 상단을 식각하여 말단이 개구된 금속나노튜브(120)를 형성한다. 이하, 본원에서 금속나노튜브로 지칭되는 구조체는 특별한 언급이 없는 한 말단이 개구된 금속나노튜브를 의미한다.3 and 4, in the core-shell nanostructure shown in FIG. 2, all of the nanorods 110 of the core portion are etched and the upper end of the tubular metal layer 122 of the shell portion is etched. The opened metal nanotubes 120 are formed. Hereinafter, a structure referred to herein as a metal nanotube means a metal nanotube having an open end unless otherwise specified.
상기 금속나노튜브(120)를 형성하기 위해 상기 나노막대(110) 및 상기 튜브형 금속막(122)을 식각하는 단계는 공지된 다양한 건식 식각법, 습식 식각법 또는 이들의 조합에 의해 수행할 수 있다.Etching the nanorods 110 and the tubular metal film 122 to form the metal nanotubes 120 may be performed by various known dry etching methods, wet etching methods, or a combination thereof. .
구체적으로, 도 3 및 4에 도시된 바와 같이, 상기 금속나노튜브(120)를 형성하는 단계는, 먼저 코어 부분에 해당하는 나노막대(110)를 제거한 후, 쉘 부분에 해당하는 튜브형 금속막(122)의 상단을 식각하는 방법을 사용할 수 있다.Specifically, as shown in FIGS. 3 and 4, the forming of the metal nanotubes 120 may be performed by first removing the nanorods 110 corresponding to the core parts, and then forming the tubular metal films corresponding to the shell parts. 122) may be used to etch the top.
일 예로서, 환원성 분위기 하에서 열처리에 의해 상기 튜브형 금속막(122)을 제외한 상기 나노막대(110)만을 선택적으로 열분해시켜 제거한 후에(도 3), 플라즈마를 이용한 건식 식각 등으로 남아있는 튜브형 금속막(122)의 상단을 식각할 수 있다(도 4). 이때, 상기 열처리는 수소 분위기 하에서 수행할 수 있으며, 상기 나노막대(110)는 그대로 열분해되거나 환원 반응을 거쳐 열분해되어 제거될 수 있다. 상기 건식 식각에 사용되는 기체는 당해 기술분야에서 사용될 수 있는 기체라면 특별히 제한되지 않으며, 예를 들어, Ar, Cl2, SF6, 및 CF4로 이루어진 군에서 선택되는 어느 하나 이상의 기체를 사용할 수 있다.For example, after selectively thermally decomposing only the nanorod 110 except for the tubular metal film 122 by heat treatment under a reducing atmosphere (FIG. 3), the tubular metal film remaining by dry etching using plasma ( 122 may be etched (FIG. 4). In this case, the heat treatment may be performed under a hydrogen atmosphere, and the nanorods 110 may be thermally decomposed or thermally decomposed through a reduction reaction. The gas used for the dry etching is not particularly limited as long as it can be used in the art, and for example, any one or more gases selected from the group consisting of Ar, Cl 2 , SF 6 , and CF 4 may be used. have.
또한, 상술한 바와 반대로 상기 금속나노튜브(120)를 형성하는 단계는, 먼저 쉘 부분에 해당하는 튜브형 금속막(122)의 상단을 식각한 후, 코어 부분에 해당하는 나노막대(110)를 제거하는 방법을 사용할 수도 있다(미도시).In addition, as described above, the forming of the metal nanotubes 120 may include etching the upper end of the tubular metal film 122 corresponding to the shell part, and then removing the nanorod 110 corresponding to the core part. Can be used (not shown).
일 예로서, 플라즈마를 이용한 건식 식각 등으로 튜브형 금속막(122)의 상단을 식각하여 나노막대(110)의 적어도 상부면을 노출시킨 후, 환원성 분위기 하에서 열처리하거나 식각액(etchant)을 이용한 습식 식각에 의해 상기 나노막대(110)만을 선택적으로 제거할 수 있다.As an example, the upper end of the tubular metal film 122 is etched by dry etching using plasma to expose at least an upper surface of the nanorod 110, and then subjected to heat treatment in a reducing atmosphere or to wet etching using an etchant. Only the nanorod 110 can be selectively removed.
이 경우, 특히 상기 튜브형 금속막(122)이 콘형을 갖는 경우에는 상기 튜브형 금속막(122)의 상단을 식각하는 단계에서 식각되는 길이를 조절하여 다양한 크기의 상단 직경(구체적으로는 상단의 내부 직경)을 갖는 금속나노튜브(120)를 형성할 수 있다. 즉, 상기 튜브형 금속막(122)이 콘형의 형상을 갖는다면, 그 식각되는 길이를 길게 할수록 최종적으로 제조되는 금속나노튜브(120)의 상단의 내부 직경은 증가할 것이다. 따라서, 유체에서 분리하고자 하는 입자의 크기에 따라 상기 금속막(122)을 식각하는 길이를 조절하는 간단한 공정(구체적으로는 식각 시간의 조절)에 의해 상기 금속나노튜브(120)의 상단의 내부 직경을 용이하게 제어할 수 있는 장점이 있다.In this case, in particular, when the tubular metal film 122 has a cone shape, the length of the upper end of the tubular metal film 122 may be adjusted by etching the upper end diameter (specifically, the inner diameter of the upper end). The metal nanotubes 120 may be formed. That is, if the tubular metal film 122 has a cone shape, as the length of the etched length increases, the inner diameter of the upper end of the finally manufactured metal nanotube 120 will increase. Therefore, the inner diameter of the upper end of the metal nanotubes 120 by a simple process (specifically, the etching time is controlled) of adjusting the length of etching the metal film 122 according to the size of particles to be separated from the fluid. There is an advantage that can be easily controlled.
또한, 필요에 따라서는 상기 금속나노튜브(120)를 산화성 분위기 하에서 열처리할 수도 있다. 이 경우, 최종적으로 생성되는 금속나노튜브(120)의 표면에 산화막을 형성할 수 있으며, 이를 통해 상기 금속노나튜브(120)의 표면 특성을 개질할 수도 있다.In addition, if necessary, the metal nanotubes 120 may be heat treated under an oxidizing atmosphere. In this case, an oxide film may be formed on the surface of the metal nanotubes 120 that are finally formed, and through this, surface characteristics of the metal nanotubes 120 may be modified.
이와 같이 상술한 과정들에 따르면, 기판(100) 상에 말단이 개구된 복수의 금속나노튜브(120)를 포함하는 금속나노튜브 어레이(130)를 형성할 수 있다. 본원에 있어서, 금속나노튜브 어레이(130)란 복수의 금속나노튜브(120)의 집합체를 의미한다.As described above, the metal nanotube array 130 including the plurality of metal nanotubes 120 having open ends may be formed on the substrate 100. In the present application, the metal nanotube array 130 refers to an aggregate of a plurality of metal nanotubes 120.
한편, 본 실시예에 따른 분리막의 제조방법은 상기 쉘 부분에 해당하는 튜브형 금속막(122)의 상단을 식각하기 전에, 상기 기판(100) 상에 고분자 수지를 코팅하여 상기 복수의 금속나노튜브(120)의 이격 공간 중 적어도 일부 공간을 메우는 고분자 수지층(미도시)을 형성하는 단계를 더 포함할 수 있다.On the other hand, the method of manufacturing a separator according to the present embodiment, before etching the upper end of the tubular metal film 122 corresponding to the shell portion, by coating a polymer resin on the substrate 100 to the plurality of metal nanotubes ( The method may further include forming a polymer resin layer (not shown) that fills at least some of the spaces of the space 120.
예를 들어, 상기 고분자 수지층을 형성하는 단계는 상기 코어 부분에 해당하는 나노막대(110)를 제거한 후, 상기 쉘 부분에 해당하는 튜브형 금속막(122)를 식각하기 전에, 상기 기판(100) 상에 고분자 수지가 분산된 용액을 코팅한 후 건조 및 경화시키는 과정에 의해 수행될 수 있다. 상기 고분자 수지는 에폭시 수지와 같은 경화성 수지일 수 있으나, 이에 제한되는 것은 아니다.For example, in the forming of the polymer resin layer, after removing the nanorod 110 corresponding to the core portion, and before etching the tubular metal layer 122 corresponding to the shell portion, the substrate 100 is formed. It may be carried out by coating a solution in which the polymer resin is dispersed in the phase, followed by drying and curing. The polymer resin may be a curable resin such as an epoxy resin, but is not limited thereto.
이에 따르면, 상기 고분자 수지층의 형성에 의해 상기 금속나노튜브 어레이(130)는 보다 향상된 기계적 강도 및 구조적 안정성을 확보할 수 있다.According to this, the metal nanotube array 130 can secure more improved mechanical strength and structural stability by forming the polymer resin layer.
도 5를 참조하면, 말단이 개구된 금속나노튜브(120)가 형성된 기판(100)에 복수의 홀(h)을 형성한다. 상기 홀(h)은 분리하고자 하는 유체가 주입되는 채널로서, 공지된 다양한 식각 공정을 사용하여 원하는 크기 및 모양으로 형성할 수 있다.Referring to FIG. 5, a plurality of holes h are formed in the substrate 100 on which the metal nanotubes 120 having open ends are formed. The hole h is a channel into which the fluid to be separated is injected, and may be formed in a desired size and shape using various known etching processes.
이때, 상기 금속나노튜브 어레이(130)의 중 일부는 그 하단이 기판(100)에 형성된 홀(h)을 통해 노출된다. 한편, 도 2를 참조하며 설명한 바와 같이 상기 튜브형 금속막(122) 형성 과정에서 코팅되는 금속은 나노막대(110) 뿐 아니라, 기판(100) 면을 따라서도 코팅될 수 있다. 이에 따라, 튜브형 금속막(122)들은 그 하단부가 기판(100) 면을 따라 코팅된 금속막(124)에 의해 서로 연결된 구조를 가질 수 있다. 따라서, 기판(100)에 홀(h)을 형성하더라도 홀(h) 영역에 위치한 금속나노튜브들은 붕괴되지 않고 그 구조적 안정성을 유지할 수 있다.In this case, a part of the metal nanotube array 130 is exposed at its lower end through the hole h formed in the substrate 100. Meanwhile, as described with reference to FIG. 2, the metal coated in the tubular metal film 122 formation process may be coated along the surface of the substrate 100 as well as the nanorod 110. Accordingly, the tubular metal films 122 may have a structure in which lower ends thereof are connected to each other by the metal film 124 coated along the surface of the substrate 100. Therefore, even when the hole h is formed in the substrate 100, the metal nanotubes positioned in the hole h region do not collapse and maintain their structural stability.
한편, 본 실시예에서는 금속나노튜브(120)를 형성된 후에 기판(100)에 복수의 홀(h)을 형성하는 것으로 예시하였으나, 이에 제한되는 것은 아니며, 상기 나노막대(110)를 형성한 후라면 어느 단계에서도 상기 기판(100)에 홀(h)을 형성하는 단계를 수행할 수 있다.Meanwhile, in the present exemplary embodiment, a plurality of holes h are formed in the substrate 100 after the metal nanotubes 120 are formed. However, the present invention is not limited thereto, and after the nanorods 110 are formed. In any step, the step of forming the hole h in the substrate 100 may be performed.
본 발명의 다른 실시예에 따르면 금속나노튜브의 어레이를 포함하는 분리막을 제공한다.According to another embodiment of the present invention, a separator including an array of metal nanotubes is provided.
도 6은 본 실시예에 따른 금속나노튜브 어레이를 포함하는 분리막의 개략적인 사시도이다.6 is a schematic perspective view of a separator including a metal nanotube array according to the present embodiment.
도 6에 도시된 바와 같이, 본 실시예에 따른 분리막은 복수의 홀을 구비한 기판(100) 및 상기 기판(100) 상에 위치하는 금속나노튜브 어레이(130)를 포함한다. 구체적으로, 상기 금속나노튜브 어레이(130)는 상기 기판(100) 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열되며, 말단이 개구된 복수의 금속나노튜브(120)를 포함한다.As shown in FIG. 6, the separator according to the present exemplary embodiment includes a substrate 100 having a plurality of holes and a metal nanotube array 130 positioned on the substrate 100. Specifically, the metal nanotube array 130 includes a plurality of metal nanotubes 120 oriented upward from the surface of the substrate 100, spaced apart from each other, and having an open end.
한편, 본 실시예에 따른 분리막은 도 1 내지 5를 참조하며 상술한 제조방법에 의해 제조된 분리막일 수 있다.Meanwhile, the separator according to the present embodiment may be a separator manufactured by the above-described manufacturing method with reference to FIGS. 1 to 5.
따라서, 상기 금속나노튜브는 실리콘, 게르마늄, 주석, 알루미늄, 아연, 은, 금 및 백금 중에서 선택되는 어느 하나 또는 둘 이상의 합금을 포함할 수 있으며, 적절한 도펀트의 첨가에 의해 전도성을 갖거나, 그 표면이 친수성 또는 소수성을 가질 수 있다.Accordingly, the metal nanotubes may include any one or two or more alloys selected from silicon, germanium, tin, aluminum, zinc, silver, gold, and platinum, and may have conductivity or surface by addition of a suitable dopant. It may have hydrophilicity or hydrophobicity.
또한, 상기 금속나노튜브(120)의 길이는 300nm 내지 20㎛일 수 있고, 내부 직경은 10nm 내지 200nm일 수 있으며, 두께는 10nm 내지 150nm일 수 있다.In addition, the length of the metal nanotube 120 may be 300nm to 20㎛, the inner diameter may be 10nm to 200nm, the thickness may be 10nm to 150nm.
또한, 상기 금속나노튜브(120)의 상부 형상은 콘(cone)형(미도시)일 수 있다.In addition, the upper shape of the metal nanotube 120 may be a cone (not shown).
또한, 상기 금속나노튜브 어레이(130)의 이격 공간 중 적어도 일부 공간을 메우는 고분자 수지층(미도시)를 더 포함할 수 있다.In addition, the metal nanotube array 130 may further include a polymer resin layer (not shown) to fill at least a part of the space of the separation space.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred experimental examples are presented to help understand the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
<제조예 1><Manufacture example 1>
1) [001] 방향을 갖는 두께 500~700㎛의 Si 웨이퍼의 양쪽 표면에 200nm 두께의 SiNx층을 LPCVD(low pressure chemical vapor deposition)를 이용하여 증착시켰다. 그 다음, PR 공정 및 리소그래피 공정을 이용한 패터닝을 통해 정사각형의 패턴(700um×700um ~ 500um×500um)을 기판의 일면에 형성시켰다. 상기 패터닝 공정을 통하여 노출된 SiNx층을 반응성 이온 식각기(reactive ion etcher) (SF6가스 5 sccm, 5 mTorr, RF power 100 W 조건 하에서 180 초)를 이용하여 제거한 후, 기판을 40wt% KOH 용액을 사용하여 80℃에서 15시간 동안 습식 식각하였다.1) A 200 nm thick SiNx layer was deposited on both surfaces of a Si wafer having a thickness of 500 to 700 μm having a [001] direction using low pressure chemical vapor deposition (LPCVD). Subsequently, a square pattern (700 um × 700 um to 500 um × 500 um) was formed on one surface of the substrate through patterning using a PR process and a lithography process. After the SiNx layer exposed through the patterning process was removed using a reactive ion etcher (SF 6 gas 5 sccm, 5 mTorr, 180 seconds under RF power 100 W), the substrate was removed by 40wt% KOH solution. Wet etching was carried out at 80 ℃ for 15 hours using.
2) 상기의 공정을 진행한 후, 패턴이 형성되지 않은 기판의 표면에, RF-스퍼터 장비를 사용하여 200nm 두께를 갖는 ZnO 박막을 형성하고, 상기 ZnO 박막이 형성된 기판을 0.025M 질산염 아연(Zinc nitrate)과 0.025M 메틴아민(metheneamine)이 용해된 수용액에 침지시킨 후, 90℃에서 24시간 방치하여, 상기 기판 상에 ZnO 나노막대를 수직 방향으로 성장시켰다. ZnO 나노막대를 목표한 길이로 성장시키기 위하여 동일한 수용액에서 ZnO 나노막대 성장을 3 내지 15회 반복적으로 수행하였다. 얻어진 ZnO 나노막대만으로 이루어진 층의 두께는 6㎛이었고, ZnO 나노막대의 직경은 80 내지 120nm이었다.2) After the above process, a ZnO thin film having a thickness of 200 nm is formed on the surface of the substrate on which the pattern is not formed by using RF-sputter equipment, and 0.025M zinc nitrate (Zinc) is formed on the substrate on which the ZnO thin film is formed. nitrate) and 0.025M methamine (metheneamine) was immersed in an aqueous solution, and then left for 24 hours at 90 ℃, ZnO nanorods were grown on the substrate in the vertical direction. ZnO nanorod growth was repeated 3 to 15 times in the same aqueous solution to grow the ZnO nanorods to the desired length. The thickness of the layer which consists only of the obtained ZnO nanorods was 6 micrometers, and the diameter of the ZnO nanorods was 80-120 nm.
3) 수소 분위기 및 545℃의 온도가 유지되는 챔버에서 상기 ZnO 나노막대가 배열된 기판 상으로 H2 가스와 SiH4 (H2 가스에 10%(부피비)로 희석된 상태) 가스를 H2의 경우 10~40 sccm, SiH4의 경우 50~80 sccm의 유속(flow rate)으로 12분 동안 흘려주어 실리콘 코팅막을 형성시켰다.3) of the ZnO nanorods the state diluted with (10% (by volume in H 2 gas), H 2 gas and SiH 4 onto the array substrate), a gas in the chamber in which the hydrogen atmosphere and a temperature of 545 ℃ maintain H 2 In the case of 10 ~ 40 sccm, SiH 4 For 12 minutes at a flow rate (flow rate) of 50 ~ 80 sccm to form a silicon coating film.
4) 이어서, 상기 실리콘으로 코팅된 나노막대가 배열된 기판을 수소 분위기에서 550 내지 750℃의 온도에서, H2를 100~400 sccm의 유속으로, Ar을 100~400 sccm의 유속으로 흘려주면서 12시간 이상 열처리하여 ZnO 만을 선택적으로 제거함으로써, 기판 상에 수직으로 배열된 말단이 폐색된 실리콘 나노튜브를 얻었다.4) Subsequently, the silicon coated nanorods were arranged in a hydrogen atmosphere at a temperature of 550 to 750 ° C. while flowing H 2 at a flow rate of 100 to 400 sccm and Ar at a flow rate of 100 to 400 sccm. By heat-treating for at least time to selectively remove only ZnO, silicon nanotubes with closed vertically arranged ends on the substrate were obtained.
5) 상기 실리콘 나노튜브를 반응성 이온 식각기에 투입한 후, 염소(chlorine) 가스(80 sccm, 80 mTorr, RF power 150 W 조건 하에서 35~70초간)로 식각하여 말단이 개구된 실리콘 나노튜브를 얻었다. 식각 시간에 따라 개구되는 구멍의 크기가 10~40nm로 제어되었으며. 말단이 개구된 실리콘 나노튜브만으로 이루어진 층의 두께는 6㎛ 이었다.5) After injecting the silicon nanotubes into the reactive ion etcher, and etched with chlorine gas (80 sccm, 80 mTorr, 35 ~ 70 seconds under RF power 150 W conditions) to the end of the opening silicon nanotubes Got it. The opening size was controlled to 10-40 nm according to the etching time. The thickness of the layer consisting only of the silicon nanotubes with the terminal openings was 6 μm.
6) 상기 실리콘 나노튜브가 형성된 기판을 반응성 이온 식각기에 투입한 후, SF6 가스(5 sccm, 5 mTorr, RF power 100 W 조건 하에서 600 초)로 기판의 뒷면에 남아있던 SiNx층을 제거하여, 기판에 복수의 홀을 형성하였다.6) The silicon nanotube formed substrate was placed in a reactive ion etcher, and the SiNx layer remaining on the back side of the substrate was removed by SF 6 gas (600 sec under 5 sccm, 5 mTorr, RF power 100 W). A plurality of holes were formed in the substrate.
한편, 본 제조예에서는 ZnO를 제거한 후에 실리콘 나노튜브의 말단을 개구시키는 과정을 수행하였으나, 필요에 따라 실리콘 나노튜브의 말단을 먼저 식각한 후, ZnO를 제거하는 과정을 수행하여 말단이 개구된 실리콘 나노튜브를 형성할 수 있다.On the other hand, in the present example, after removing ZnO, the process of opening the end of the silicon nanotube was performed, but if necessary, after etching the end of the silicon nanotube first, the process of removing ZnO was performed to open the silicon Nanotubes can be formed.
도 7은 제조예 1의 과정에서 제조된 ZnO 나노막대 어레이의 SEM 이미지이다.FIG. 7 is an SEM image of a ZnO nanorod array prepared in Preparation Example 1. FIG.
도 7을 참조하면, 본 제조예에 따라 기판 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열된 복수의 ZnO 나노막대를 제조할 수 있음을 확인할 수 있다.Referring to FIG. 7, it can be seen that a plurality of ZnO nanorods oriented in a direction upward from the substrate surface and arranged to be spaced apart from each other according to the present example.
도 8은 제조예 1의 과정에서 제조된 코어-쉘 구조의 ZnO 나노로드-실리콘 코팅막의 SEM 이미지이다.FIG. 8 is an SEM image of a core-shell structured ZnO nanorod-silicon coating film prepared in Preparation Example 1. FIG.
도 8을 참조하면, 코어 부분에 ZnO 나노로드가 위치하고, 쉘 부분에 실리콘이 ZnO 나노로드를 감싸는 형태로 코팅막을 형성하고 있음을 확인할 수 있다.Referring to FIG. 8, it can be seen that the ZnO nanorods are positioned in the core portion, and the coating layer is formed in the form of the silicon surrounding the ZnO nanorods in the shell portion.
도 9는 제조예 1의 과정에서 제조된 실리콘 나노튜브 어레이의 SEM 이미지들이다.9 are SEM images of the silicon nanotube array manufactured in Preparation Example 1. FIG.
도 9를 참조하면, 식각 시간을 35초(a), 40초(b), 55초(c) 및 70초(d)로 증가시킬수록 개구되는 구멍의 직경이 각각 약 15nm, 20~25nm, 30~40nm 및 35~40nm로 증가하는 것을 확인할 수 있다.9, as the etching time is increased to 35 seconds (a), 40 seconds (b), 55 seconds (c) and 70 seconds (d), the diameters of the openings are about 15 nm, 20 to 25 nm, respectively. It can be seen that the increase to 30 ~ 40nm and 35 ~ 40nm.
<제조예 2><Manufacture example 2>
상기 제조예 1에서 단계 6)의 과정 전에 기판 상에 에폭시 수지를 코팅한 것을 제외하고는, 상기 제조예 1과 동일한 방법을 수행하였다.Except for coating the epoxy resin on the substrate before the process of step 6) in Preparation Example 1, the same method as in Preparation Example 1 was carried out.
도 10은 제조예 2의 과정에서 제조된 에폭시 수지가 코팅된 실리콘 나노튜브 에레이의 SEM 이미지이다.FIG. 10 is an SEM image of an epoxy resin-coated silicon nanotube array prepared in Preparation Example 2. FIG.
도 10을 참조하면, 에폭시 수지가 실리콘 나노튜브의 이격 공간을 메우면서 코팅되어 있는 것을 확인할 수 있다.Referring to Figure 10, it can be seen that the epoxy resin is coated while filling the separation space of the silicon nanotubes.
<제조예 3><Manufacture example 3>
ZnO 나노막대의 상단(top) 부분의 형상제어를 위하여, 상기 단계 2)에서 190 mM의 1,3-다이아미노프로페인(1,3-DAP)을 0.025M 질산염 아연(Zinc nitrate)과 0.025M 메틴아민(metheneamine)이 용해된 수용액에 첨가한 것을 제외하고는, 상기 제조예 1과 동일한 과정을 수행하였다.In order to control the shape of the top portion of the ZnO nanorod, in step 2), 190 mM of 1,3-diaminopropane (1,3-DAP) was added with 0.025M zinc nitrate and 0.025M. The same procedure as in Preparation Example 1 was performed except that methamine was added to the aqueous solution in which metheneamine was dissolved.
도 11은 제조예 3의 과정에서 제조된 ZnO 나노막대의 SEM 이미지이다.FIG. 11 is an SEM image of ZnO nanorods prepared in Preparation Example 3. FIG.
도 11을 참조하면, 본 제조예에 따라 제조된 ZnO 나노막대는 그 끝이 점점 가늘어지는 콘 형상을 가짐을 확인할 수 있다.Referring to FIG. 11, it can be seen that the ZnO nanorods prepared according to the present Preparation Example have a cone shape in which the ends thereof become thinner.
<분석예 1><Analysis Example 1>
제조예 1에서 제조된 분리막의 안정성 및 투과 특성을 고찰하기 위해 기체투과 실험을 수행하였다.Gas permeation experiment was performed to investigate the stability and permeation characteristics of the separator prepared in Preparation Example 1.
기체투과 실험에서 사용된 기체는 H2, He, N2, O2, CH4, CO2, SF6이며, 상온 및 0.5bar의 압력 하에서 투과도 및 각 기체의 선택도를 측정하였다. 60nm 직경을 가지는 실린더 형태 기공에서 기체는 크누센 흐름을 따르기에 이상적인 크누센 흐름에서 예측된 기체의 투과도와 실험에서 측정된 기체의 투과도를 비교해 보았다.Gases used in the gas permeation experiment were H 2 , He, N 2 , O 2 , CH 4 , CO 2 , SF 6 , and permeability and selectivity of each gas were measured under normal temperature and pressure of 0.5 bar. The gas permeability of a 60 nm diameter cylinder was compared with the gas permeability predicted in the Knudsen flow, which is ideal for following the Knudsen flow.
60nm의 기공을 가지는 실리콘 나노튜브의 경우 He의 투과도는 크누센 흐름으로 예상한 값 2.8×106 barrer 에 비해 실제 2.1×108 barrer로 이론값에 비해 100배 빠른 투과도를 보였다.In the case of silicon nanotubes with pores of 60 nm, the transmittance of He was 2.1 × 10 8 barrer, which is 100 times faster than the theoretical value, compared to 2.8 × 10 6 barrer, which is expected by Knudsen flow.
특성비교를 위해, 기공의 크기가 각각 50nm 및 100nm인 트렉에칭된 폴리카보네이트 분리막 및 기공의 크기가 100nm인 알루미늄 옥사이드 분리막으로 동일한 실험을 진행하였다.In order to compare the characteristics, the same experiment was carried out with a trench-etched polycarbonate separator having pore sizes of 50 nm and 100 nm, and an aluminum oxide separator having pore sizes of 100 nm, respectively.
50nm 폴리카보네이트 분리막은 이론값 4.5×105 barrer 및 실험값 1.7×106 barrer로 이론값에 비해 4배 빠른 투과도를 보였다. 한편, 100nm 폴리카보네이트 분리막은 이론값 2.5×106 barrer 및 실험값 2.0×106 barrer를, 100nm 알루미늄 옥사이드 분리막은 이론값 4.2×107 barrer 및 실험값 6.7×107 barrer를 보여 거의 비슷한 투과도를 나타내었다.The 50nm polycarbonate separator showed 4.5x10 5 barrer of theoretical value and 1.7 × 10 6 barrer of experimental value, which showed 4 times faster transmission than theoretical value. On the other hand, 100nm polycarbonate membrane showed almost similar permeability with theoretical value 2.5 × 10 6 barrer and experimental value 2.0 × 10 6 barrer, and 100nm aluminum oxide membrane showed theoretical value 4.2 × 10 7 barrer and experimental value 6.7 × 10 7 barrer. .
<분석예 2><Analysis Example 2>
제조예 1에서 제조된 분리막을 이용하여 유기물이 혼합된 수처리 공정에 적용하기에 앞서 초순수의 투과특성을 살펴보았다.Using the separator prepared in Preparation Example 1, the permeation characteristics of ultrapure water were examined before being applied to a water treatment process in which organic materials were mixed.
N2를 이용해 탱크의 물을 1bar의 압력으로 가압하고, 이를 분리막이 장착되어 있는 Dead-end 시스템에 적용하여 분리막을 통해 나오는 물의 투과도를 측정하였다. 분리막 표면의 물리화학적 특성에 따른 효과를 비교하기 위해 Hagen-poisuille 모델을 사용하여 기공을 통해 나오는 물의 투과도를 예측하여 실험값과 비교해 보았다.The water in the tank was pressurized with a pressure of 1 bar using N 2 , and this was applied to a dead-end system equipped with a separator to measure the permeability of water coming through the separator. In order to compare the effects of the physicochemical properties of the membrane surface, the permeability of water through the pores was predicted using the Hagen-poisuille model and compared with the experimental data.
60nm의 기공 직경을 갖는 실리콘 나노튜브의 분리막의 경우, 이론값은 476LMH인 것에 비해 실험값은 6,600LMH로 약 13배 빠른 투과도를 보였다.In the case of the membrane of the silicon nanotube having a pore diameter of 60nm, the experimental value was 6,600LMH, which was about 13 times faster than the theoretical value of 476LMH.
또한, 분석예 1과 동일하게 폴리카보네이트 분리막 및 알루미늄 옥사이드 분리막을 사용하여 특성 비교를 수행하였다.In the same manner as in Example 1, a polycarbonate separator and an aluminum oxide separator were used to compare properties.
50nm의 기공 직경을 가지는 폴리카보네이트 분리막에서 이론값은 74LMH, 실험값은 505LMH로 이론값에 비해 6배 가량 빠른 투과도를 보였고, 100nm의 직경에서는 이론값이 1,190LMH, 실험값이 1,200LMH로 거의 유사한 값을 보였다.In the polycarbonate membrane having a pore diameter of 50 nm, the theoretical value was 74 LMH and the experimental value was 505 LMH, which showed 6 times faster permeability than the theoretical value. Seemed.
한편, 100nm의 기공 직경을 갖는 알루미늄 옥사이드 분리막은 이론값 1,650LMH, 실험값 2,682LMH로 1.5배 빠른 투과도를 보였다.Meanwhile, the aluminum oxide separator having a pore diameter of 100 nm showed 1.5 times faster transmittance with a theoretical value of 1,650 LMH and an experimental value of 2,682 LMH.
상기 분석예 1 및 2로부터 나노튜브가 갖는 실린더 형태의 기공은 유체의 흐름을 원활하게 하여 투과도를 향상시킬 수 있으며, 종래의 고분자 분리막과는 달리 실리콘 분리막을 사용하는 경우에는 실리콘 나노튜브의 표면 특성이 유체의 흐름에 영향을 주어 투과도를 더욱 향상시킬 있음을 확인할 수 있다.The cylinder-shaped pores of the nanotubes from the analytical examples 1 and 2 can improve the permeability by smoothly flowing the fluid, and unlike the conventional polymer membrane, when using the silicon separator, the surface characteristics of the silicon nanotubes It can be confirmed that the permeability can be further improved by affecting the flow of the fluid.
따라서, 본 발명의 분리막에 따르면 기존의 공정보다 낮은 압력에서 향상된 투과효율을 기대할 수 있다. 또한, 수처리 시 가압 압력을 낮출 수 있으므로 운전에 필요한 에너지 비용을 절감할 수 있으며, 동일한 수처리량을 기준으로 종래의 분리막보다 설비 규모를 축소할 수 있다. 또한, 실리콘과 같은 무기물은 화학적 및 물리적 자극에도 저항성이 강하므로 분리막의 교체주기를 증가시킬 수 있어 효율적인 운영이 가능한 장점이 있다.Therefore, according to the separator of the present invention can be expected to improve the permeation efficiency at a lower pressure than the conventional process. In addition, since the pressurized pressure can be lowered during water treatment, energy cost required for operation can be reduced, and the size of the facility can be reduced compared to a conventional separator based on the same amount of water treatment. In addition, since inorganic materials such as silicon are resistant to chemical and physical stimuli, it is possible to increase the replacement cycle of the separator and thus have an advantage of enabling efficient operation.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.As mentioned above, although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various modifications and changes may be made by those skilled in the art within the spirit and scope of the present invention. You can change it.
[부호의 설명][Description of the code]
100: 기판 110: 나노막대100: substrate 110: nanorod
120: 금속나노튜브 122: 튜브형 금속막120: metal nanotube 122: tubular metal film
130: 금속나노튜브 어레이130: metal nanotube array

Claims (16)

  1. 복수의 홀을 구비한 기판; 및A substrate having a plurality of holes; And
    상기 기판 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열되며, 말단이 개구된 복수의 금속나노튜브를 포함하는 분리막.And a plurality of metal nanotubes oriented in an upward direction from the surface of the substrate and arranged to be spaced apart from each other and having open ends.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속나노튜브는 실리콘, 게르마늄, 주석, 알루미늄, 아연, 은, 금 및 백금 중에서 선택되는 어느 하나 또는 둘 이상의 합금을 포함하는 분리막.The metal nanotube is a separator comprising any one or two or more alloys selected from silicon, germanium, tin, aluminum, zinc, silver, gold and platinum.
  3. 제1항에 있어서,The method of claim 1,
    상기 금속나노튜브의 표면은 친수성 또는 소수성을 갖는 분리막.Separation membrane having a surface of the metal nanotube having a hydrophilic or hydrophobic.
  4. 제1항에 있어서,The method of claim 1,
    상기 금속나노튜브의 길이가 300nm 내지 20㎛인 분리막.Separation membrane of the metal nanotube length of 300nm to 20㎛.
  5. 제1항에 있어서,The method of claim 1,
    상기 금속나노튜브의 두께가 10nm 내지 150nm인 분리막.Separation membrane of the metal nanotube thickness is 10nm to 150nm.
  6. 제1항에 있어서,The method of claim 1,
    상기 금속나노튜브의 내부 직경이 10nm 내지 200nm인 분리막.Separation membrane of the inner diameter of the metal nanotubes from 10nm to 200nm.
  7. 제1항에 있어서,The method of claim 1,
    상기 금속나노튜브의 상부 형상은 콘(cone)형인 분리막.The upper shape of the metal nanotube is a cone (cone) separation membrane.
  8. 제1항에 있어서,The method of claim 1,
    상기 복수의 금속나노튜브의 이격 공간 중 적어도 일부 공간을 메우는 고분자 수지층을 더 포함하는 분리막.Separation membrane further comprising a polymer resin layer to fill at least a portion of the spaced space of the plurality of metal nanotubes.
  9. 기판 상에 상기 기판 표면으로부터 상부 방향으로 배향되고, 서로 이격되어 배열된 복수의 나노막대를 형성하는 단계;Forming a plurality of nanorods oriented upwardly from the substrate surface and arranged spaced apart from each other on a substrate;
    상기 나노막대 상에 금속을 코팅하여 상기 나노막대를 감싸는 튜브형 금속막을 형성하는 단계;Coating a metal on the nanorods to form a tubular metal layer surrounding the nanorods;
    상기 나노막대 및 상기 튜브형 금속막의 상단을 식각하여 말단이 개구된 금속나노튜브를 형성하는 단계; 및Etching the upper ends of the nanorods and the tubular metal film to form metal nanotubes having open ends; And
    상기 기판에 복수의 홀을 형성하는 단계를 포함하는 분리막 제조방법.Separator manufacturing method comprising the step of forming a plurality of holes in the substrate.
  10. 제9항에 있어서,The method of claim 9,
    상기 나노막대는 금속산화물로 이루어진 것인 분리막 제조방법.The nanorod is a separation membrane manufacturing method consisting of a metal oxide.
  11. 제10항에 있어서,The method of claim 10,
    상기 금속산화물 나노막대는 수열 합성법에 의해 형성되는 분리막 제조방법.The metal oxide nanorods are formed by a hydrothermal synthesis method.
  12. 제9항에 있어서,The method of claim 9,
    상기 금속의 코팅은 금속 전구체 가스를 이용하는 기상 증착법에 의해 수행되는 분리막 제조방법.The coating of the metal is a separation membrane manufacturing method performed by vapor deposition using a metal precursor gas.
  13. 제12항에 있어서,The method of claim 12,
    상기 금속 전구체 가스는 도펀트 전구체 가스를 더 포함하는 분리막 제조방법.The metal precursor gas further comprises a dopant precursor gas.
  14. 제9항에 있어서,The method of claim 9,
    상기 나노막대는 건식 식각법 또는 습식 식각법에 의해 식각되는 분리막 제조방법.The nanorod is a separation membrane manufacturing method that is etched by a dry etching method or a wet etching method.
  15. 제9항에 있어서,The method of claim 9,
    상기 튜브형 금속막의 상단은 건식 식각법에 의해 식각되는 분리막 제조방법.The top of the tubular metal film is a separator manufacturing method which is etched by a dry etching method.
  16. 제9항에 있어서,The method of claim 9,
    상기 튜브형 금속막의 상단을 식각하기 전에, 상기 기판 상에 고분자 수지를 코팅하는 단계를 더 포함하는 분리막 제조방법.Before etching the upper end of the tubular metal film, the method of manufacturing a separator further comprising coating a polymer resin on the substrate.
PCT/KR2012/008090 2011-10-06 2012-10-05 Membrane comprising metal nanotubes, and method for manufacturing same WO2013051892A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110101819A KR101367561B1 (en) 2011-10-06 2011-10-06 Water-treatment membrane including metal nanotube and method for fabricating the same
KR10-2011-0101819 2011-10-06

Publications (2)

Publication Number Publication Date
WO2013051892A2 true WO2013051892A2 (en) 2013-04-11
WO2013051892A3 WO2013051892A3 (en) 2013-05-30

Family

ID=48044315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008090 WO2013051892A2 (en) 2011-10-06 2012-10-05 Membrane comprising metal nanotubes, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101367561B1 (en)
WO (1) WO2013051892A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091002B1 (en) * 2019-02-19 2020-03-19 경희대학교 산학협력단 Method for etching of zinc oxide, method for producing zinc oxide membrane, method for gas seprating membrane and zinc oxide film and metal organic composite gas seprating membrane obtained based on the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079472A (en) * 2009-12-31 2011-07-07 삼성전자주식회사 Anode comprising metal nanotube, lithium battery comprising anode, and preparation method thereof
US20110186506A1 (en) * 2010-04-02 2011-08-04 NanOasis Asymmetric nanotube containing membranes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093018A (en) * 2004-03-18 2005-09-23 한국과학기술연구원 Efficient 3-d nanostructured membranes
KR100703032B1 (en) * 2005-08-29 2007-04-06 강릉대학교산학협력단 Nano porous photocatalytic membrane, method of manufacturing the same, water treatment purification system and air purification system using the nano porous photocatalytic membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079472A (en) * 2009-12-31 2011-07-07 삼성전자주식회사 Anode comprising metal nanotube, lithium battery comprising anode, and preparation method thereof
US20110186506A1 (en) * 2010-04-02 2011-08-04 NanOasis Asymmetric nanotube containing membranes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARC WIRTZ. ET AL.: 'Template synthesized gold nanotube membranes for chemical separations and sensing' ANALYST vol. 12, no. 7, 2002, pages 871 - 879 *
W. LEE. ET AL.: 'Metal Membranes with Hierarchically Organized Nanotube Arrays' CHEM. MATER. vol. 17, no. 13, 2005, pages 3325 - 3327 *

Also Published As

Publication number Publication date
KR20130037425A (en) 2013-04-16
WO2013051892A3 (en) 2013-05-30
KR101367561B1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2014175517A1 (en) Composite separation film comprising graphene oxide coating layer and manufacturing method therefor
Zhao et al. Two‐dimensional material membranes: an emerging platform for controllable mass transport applications
US10500546B2 (en) Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
WO2012074203A2 (en) Microfluidic filter using carbon nanotube 3d network and preparation method thereof
JP5136999B2 (en) Pattern substrate manufacturing method, pattern transfer body, pattern medium for magnetic recording, and polymer thin film
US7534470B2 (en) Surface and composition enhancements to high aspect ratio C-MEMS
WO2011105822A2 (en) Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process
KR20090105946A (en) Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
WO2016200118A1 (en) Nano channel structure and method of manufacturing same
TW201026596A (en) Methods for selective permeation of self-assembled block copolymers with metal oxides, methods for forming metal oxide structures, and semiconductor structures including same
KR101928980B1 (en) Carbon Nanotube Membrane Having Regular Pores and Method for Manufacturing the Same
US20160054659A1 (en) Method for manufacturing a suspended single carbon nanowire and piled nano-electrode pairs
CN116190211B (en) Method for transferring two-dimensional material based on nano microcavity structure substrate
WO2013051892A2 (en) Membrane comprising metal nanotubes, and method for manufacturing same
WO2012144728A2 (en) Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof
US20110148008A1 (en) Micro-nano imprint mould and imprinting process
WO2016089055A1 (en) Nano separation membrane structure and method for manufacturing same
KR20100037717A (en) Micropatterning method of thin p3ht films via plasma enhanced polymer transfer printing and manufacturing method of otfts having the p3ht micropatterned thin film as an active layer
US12002861B2 (en) Method of forming conductive contacts on graphene
WO2019164066A1 (en) Electrode structure, manufacturing method therefor, and electrochemical element comprising same
WO2018070612A1 (en) Ion diode membrane comprising branch form of nanopores and method for manufacturing same
Xu et al. Fabrication of submillimeter-sized single-crystalline graphene arrays by a commercial printing-assisted CVD method
US11174166B2 (en) Methods for forming porous nanotube fabrics
KR101448922B1 (en) CNT structure for water treatment, preparing thereof and Reverse osmosis membrane using the same
CN112041261B (en) Method for producing a sequencing unit for sequencing biochemical material and sequencing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838339

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12838339

Country of ref document: EP

Kind code of ref document: A2