WO2013051490A1 - Display control circuit, liquid crystal display device comprising display control circuit, and display control method - Google Patents

Display control circuit, liquid crystal display device comprising display control circuit, and display control method Download PDF

Info

Publication number
WO2013051490A1
WO2013051490A1 PCT/JP2012/075311 JP2012075311W WO2013051490A1 WO 2013051490 A1 WO2013051490 A1 WO 2013051490A1 JP 2012075311 W JP2012075311 W JP 2012075311W WO 2013051490 A1 WO2013051490 A1 WO 2013051490A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation value
gradation
value
current frame
combination
Prior art date
Application number
PCT/JP2012/075311
Other languages
French (fr)
Japanese (ja)
Inventor
衛 大橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013051490A1 publication Critical patent/WO2013051490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to a display control circuit for controlling display on a liquid crystal display panel based on an image signal given from the outside, a liquid crystal display device including the display control circuit, and a display control method.
  • the present invention relates to a display control circuit for performing overdrive driving that emphasizes a temporal change of a signal, a liquid crystal display device including the display control circuit, and a display control method.
  • the overdrive drive is a gradation voltage higher than the gradation voltage corresponding to the input image signal of the current frame or the input of the current frame according to the combination of the input image signal of the previous frame and the input image signal of the current frame.
  • a gradation voltage lower than the gradation voltage corresponding to the image signal is supplied to the liquid crystal display panel.
  • a gradation value corresponding to an input image signal one frame before (hereinafter referred to as “previous frame gradation value”) and a gradation value corresponding to an input image signal of the current frame (hereinafter referred to as “following frame gradation value”)
  • previous frame gradation value a gradation value corresponding to an input image signal of the current frame
  • following frame gradation value a gradation value corresponding to an input image signal of the current frame
  • write gradation voltage the gradation voltage to be supplied to the liquid crystal display panel
  • a table (hereinafter referred to as “OS table”) is held.
  • FIG. 15 is a diagram schematically showing an example of an OS table held in a conventional liquid crystal display device. Here, 256 gradation display is performed. In FIG.
  • the numerical value indicated in the leftmost column indicates the previous frame gradation value
  • the numerical value indicated in the uppermost line indicates the current frame gradation value.
  • the numerical value written at the position where each row intersects with each column corresponds to the writing gradation voltage determined based on the combination of each previous frame gradation value and each current frame gradation value.
  • a gradation value (hereinafter referred to as “writing gradation value”) is shown. For example, when the previous frame gradation value is “64” and the current frame gradation value is “128”, the writing gradation value is “166”. For example, when the previous frame gradation value is “160” and the current frame gradation value is “64”, the writing gradation value is “4”.
  • the writing gradation voltage higher than the gradation voltage corresponding to the current frame gradation value or the gradation voltage corresponding to the current frame gradation value is applied to the liquid crystal.
  • Patent Document 1 prepares a plurality of types of OS tables and responds to the difference in gradation value between two consecutive frames in 3D display.
  • the OS table to be used is selected, and the writing gradation value is determined based on the selected OS table. Thereby, the image quality in 3D display can be improved.
  • the OS table includes the number of gradations ⁇ the number of gradations (for example, 256 gradations ⁇ 256 gradations in the case of 256 gradation display). Minute data is not stored, and data smaller than this, for example, data of 16 gradations ⁇ 16 gradations is stored. For this reason, the combination of the previous frame gradation value and the current frame gradation value may not exist in the OS table. In such a case, conventionally, by using a combination of the previous frame gradation value and the current frame gradation value existing in the OS table, interpolation based on the gradation value (typically linear interpolation) is performed. The writing gradation value was determined.
  • an object of the present invention is to provide a display control circuit that enables high-quality moving image display at low cost, a liquid crystal display device including the display control circuit, and a display control method.
  • a first aspect of the present invention is a display control circuit for controlling display on a liquid crystal display panel based on an image signal given from the outside,
  • a writing gradation value used for correction for emphasizing a temporal change of the signal with respect to the image signal is given in the previous frame gradation value which is a gradation value in a frame immediately before the current frame, and in the current frame.
  • a storage unit storing a first look-up table for determination based on a combination of current frame gradation values which are gradation values of the image signal; The first look-up table is referred to, and when the combination exists in the first look-up table, the writing gradation value determined based on the combination is output, and the combination is the first look-up table.
  • the previous frame tone value and / or the current frame tone value corresponding to the combination closest to the combination and present in the first lookup table And a first gradation selection unit that outputs at least the write gradation value;
  • the previous frame gradation value and / or the current frame gradation value and the writing gradation value output from the first gradation selection unit Are converted into voltage values, and interpolation processing for obtaining the writing gradation values corresponding to the combinations not existing in the first look-up table is performed using the voltage values. And an interpolation unit.
  • the interpolation process performed by the first interpolation unit is a linear interpolation process.
  • the first gradation selection unit is closest to the previous frame gradation value when only the previous frame gradation value is not present in the first lookup table in the combination, and
  • the previous frame gradation value existing in the first look-up table and the writing gradation value determined based on a combination of the previous frame gradation value and the current frame gradation value are output. It is characterized by that.
  • the first gradation selection unit is closest to the current frame gradation value, and And outputting the current frame gradation value existing in the first look-up table and the writing gradation value determined based on a combination of the current frame gradation value and the previous frame gradation value. It is characterized by that.
  • the first gradation selection unit When the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the first lookup table, the first gradation selection unit The previous frame tone value, the current frame tone value, the previous frame tone value, and the current frame that are closest to the current frame tone value and exist in the first lookup table. The writing gradation value determined based on a combination of gradation values is output.
  • the previous frame gradation value is the current frame gradation value in a frame immediately before the current frame.
  • the storage unit further includes a second lookup table for determining a reached gradation value, which is a gradation value predicted to be reached in the display on the liquid crystal display panel, based on the combination,
  • a reached gradation value which is a gradation value predicted to be reached in the display on the liquid crystal display panel
  • the reached gradation value obtained by performing interpolation processing in a predetermined format for acquiring the reached gradation value corresponding to the combination that does not exist in the second lookup table is immediately after the current frame.
  • a second interpolating unit for setting the previous frame gradation value in the previous frame.
  • the second interpolation unit converts each of the previous frame tone value and / or the current frame tone value and the reached tone value output from the second selection unit into a voltage value, and The interpolation process for acquiring the reached gradation value corresponding to the combination that does not exist in the second look-up table is performed using a voltage value.
  • a ninth aspect of the present invention is the eighth aspect of the present invention,
  • the interpolation process performed by the second interpolation unit is a linear interpolation process.
  • the second gradation selection unit is closest to the previous frame gradation value, and Outputting the previous frame gradation value existing in the second look-up table and the reached gradation value determined based on a combination of the previous frame gradation value and the current frame gradation value. It is characterized by.
  • An eleventh aspect of the present invention is the ninth aspect of the present invention, When only the current frame tone value does not exist in the second look-up table in the combination, the second tone selecting unit is closest to the current frame tone value, and Outputting the current frame gradation value existing in the second look-up table and the reached gradation value determined based on a combination of the current frame gradation value and the previous frame gradation value. It is characterized by.
  • a twelfth aspect of the present invention is the ninth aspect of the present invention,
  • the second gradation selection unit when the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the second lookup table,
  • the reached gradation value determined based on a combination of gradation values is output.
  • a thirteenth aspect of the present invention is a liquid crystal display device, A display control circuit according to any of the first to twelfth aspects of the present invention; And a liquid crystal display panel for performing display based on the writing gradation value obtained by the display control circuit.
  • a fourteenth aspect of the present invention is a display control method for controlling display on a liquid crystal display panel based on an image signal given from the outside, A writing gradation value used for correction for emphasizing a temporal change of the signal with respect to the image signal is given in the previous frame gradation value which is a gradation value in a frame immediately before the current frame, and in the current frame.
  • a first lookup table for determining based on a combination of current frame tone values that are tone values of the image signal; Outputting the writing gradation value determined based on the first combination when the combination exists in the first lookup table; If the combination does not exist in the first lookup table, the previous frame tone value and / or the current value that is closest to the combination and that corresponds to the combination that exists in the first lookup table.
  • the first interpolation unit when there is no combination in the first look-up table, performs the writing gradation value, the previous frame gradation value, and the current frame gradation value. Are converted into voltage values, and interpolation processing is performed to acquire writing gradation values corresponding to combinations that do not exist in the first lookup table using the voltage values. Since the response speed of the liquid crystal depends on the voltage value (that is, the gradation voltage), the interpolation process using the gradation voltage is performed according to the VT characteristic of the liquid crystal when no combination exists in the first lookup table. Overdrive driving (driving for correcting the temporal change of the signal with respect to the image signal) can be performed using the gradation voltage. Therefore, a more appropriate liquid crystal response speed can be obtained as compared with the conventional technique in which overdrive driving is performed using the first look-up table having a relatively small memory capacity. Thereby, high-quality moving image display can be performed at low cost.
  • the linear interpolation process is used as the interpolation process in the first interpolation unit, so that the same effect as that of the first aspect of the present invention can be achieved with a simple process.
  • the third aspect of the present invention when only the previous frame gradation value does not exist in the first look-up table among the combinations, the first frame closest to the previous frame gradation value and the first By using the previous frame gradation value existing in the look-up table and the writing gradation value determined based on the combination of the previous frame gradation value and the current frame gradation value, The same effects as in the above aspect can be obtained.
  • the fourth aspect of the present invention when only the current frame gradation value does not exist in the first lookup table among the combinations, the value is closest to the current frame gradation value, and the first By using the current frame gradation value existing in the lookup table and the writing gradation value determined based on the combination of the current frame gradation value and the previous frame gradation value, The same effects as in the above aspect can be obtained.
  • the previous frame gradation value and the current frame gradation value forming the combination are not present in the first lookup table
  • the previous frame gradation value and the current frame gradation value are determined. Based on the combination of the previous frame tone value and the current frame tone value, and the previous frame tone value and the current frame tone value that are closest to the tone value and exist in the first lookup table.
  • the same effect as in the first aspect of the present invention can be obtained by using the current frame gradation value in the frame immediately before the current frame as the previous frame gradation value. it can.
  • the reached gradation value obtained by using the second lookup table in the previous frame is referred to as the previous frame gradation value in the current frame. Used. For this reason, it is possible to perform overdrive driving using a more accurate previous frame gradation value. As a result, the response speed of the liquid crystal is corrected more appropriately, so that the image quality of moving image display can be further improved.
  • the interpolation process when the combination does not exist in the second lookup table is performed by using the voltage value (that is, the gradation voltage). For this reason, the interpolation process is performed in consideration of the VT characteristics of the liquid crystal, so that a more accurate reached gradation value can be obtained. Since the reached gradation value obtained in this way is used for overdrive driving as the previous frame gradation value, the response speed of the liquid crystal is corrected more appropriately. Thereby, the image quality of moving image display can be further improved.
  • the voltage value that is, the gradation voltage
  • the linear interpolation process is used as the interpolation process in the second interpolation processing unit, so that the same effects as those of the eighth aspect of the present invention can be achieved with a simple process.
  • the value is closest to the previous frame gradation value, and the second By using the input tone value existing in the look-up table and the reached tone value determined based on the combination of the previous frame tone value and the current frame tone value, The same effects as in the above aspect can be obtained.
  • the value is closest to the current frame gradation value, and the second By using the current frame tone value existing in the look-up table and the reached tone value determined based on the combination of the current frame tone value and the previous frame tone value, The same effect as the aspect can be achieved.
  • the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the second lookup table
  • the previous frame gradation value and the current frame A combination of the previous frame gradation value and the current frame gradation value, and the combination of the previous frame gradation value and the current frame gradation value that is closest to the gradation value and exists in the second lookup table.
  • the liquid crystal display device can achieve the same effects as any of the first to twelfth aspects of the present invention.
  • the display control method can achieve the same effects as those of the first aspect of the present invention.
  • FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a first embodiment of the present invention. It is a block diagram for demonstrating the function structure of the timing controller IC in the said 1st Embodiment. It is a block diagram for demonstrating the detailed functional structure of the overdrive drive part in the said 1st Embodiment. It is the figure which showed typically an example of the OS table in the said 1st Embodiment. It is the figure which showed typically a part of OS table (or prediction table) in order to demonstrate the interpolation process in the 1st case in the 1st or 2nd embodiment of this invention.
  • FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain how the error voltage is eliminated in the first case in the first embodiment. It is the figure which showed typically a part of OS table (or prediction table), in order to demonstrate the interpolation process in the 2nd case in the said 1st or 2nd embodiment.
  • FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain how the error voltage is eliminated in the second case in the first embodiment. It is the figure which showed typically a part of OS table (or prediction table), in order to demonstrate the interpolation process in the 3rd case in the said 1st or 2nd embodiment.
  • FIG. 10 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain how the error voltage is eliminated in the third case in the first embodiment. It is a block diagram for demonstrating the detailed functional structure of the overdrive drive part in the said 2nd Embodiment. It is the figure which showed typically an example of the prediction table in the said 2nd Embodiment. It is the figure which showed typically an example of the OS table in the said 2nd Embodiment. It is a block diagram for demonstrating the detailed functional structure of the overdrive drive part in the said 3rd Embodiment. It is the figure which showed typically an example of the OS table currently hold
  • FIG. 6 is a diagram schematically illustrating an example of an OS table in order to explain a case where a combination of a previous frame gradation value and a current frame gradation value does not exist in the OS table in the basic study of the present invention.
  • FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain a case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in the basic study.
  • “close to the combination of the previous frame gradation value and the current frame gradation value” means that the value is close to the previous frame gradation value related to the combination, and the current frame gradation value related to the combination has a value. It means that the value is close or the value is close to the writing gradation value (or the reached gradation value) related to the combination.
  • FIG. 16 is a diagram schematically showing an example of the OS table in order to explain a case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in this basic study.
  • the previous frame gradation value and the current frame gradation value used for referring to the OS table are Gxc and Gya, respectively, and the previous frame gradation value Gxc does not exist in the OS table.
  • the writing gradation value (Gca) corresponding to the combination of the previous frame gradation value Gxc and the current frame gradation value Gya is obtained by interpolation (typically linear interpolation). Desired. Specifically, the previous frame gradation value Gxa and Gxb in the vicinity of the previous frame gradation value Gxc, the writing gradation value Gaa corresponding to the combination of the previous frame gradation value Gxa and the current frame gradation value Gya, By performing linear interpolation on the write tone values Gaa and Gba using the write tone value Gba corresponding to the combination of the previous frame tone value Gxb and the current frame tone value Gya, the write tone value Gca Is required. The writing gradation value Gca thus obtained is converted into a writing gradation voltage and applied to the liquid crystal.
  • interpolation typically linear interpolation
  • FIG. 17 schematically shows the gradation value-gradation voltage characteristics in order to explain the case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in this basic study.
  • FIG. This gradation value-gradation voltage characteristic is determined based on the VT characteristic of the liquid crystal as described above. As shown in FIG. 17, the gradation value and the gradation voltage are not in a linear relationship. More specifically, the change in the gradation voltage with respect to the change in the gradation value is large near the low gradation value and the vicinity of the high gradation value, and the change in the gradation voltage with respect to the change in the gradation value is extremely small near the middle gradation value.
  • the writing gradation value Gca obtained by linear interpolation is the center value of the writing gradation values Gaa and Gba.
  • the writing gradation voltage Vca corresponding to the writing gradation value Gca is equal to the writing gradation as shown in FIG. This is not the median value of the write gradation voltage Vaa corresponding to the value Gaa and the write gradation voltage Vba corresponding to the write gradation value Gba.
  • the gradation voltage Vba is higher than the intermediate value. The value is close to.
  • the response speed of the liquid crystal depends on the gradation voltage.
  • the writing gradation voltage Vaa corresponding to the writing gradation value Gaa and the writing are written. It is desirable to apply to the liquid crystal a writing gradation voltage (hereinafter referred to as “ideal writing voltage”, which is represented by the symbol Vid) corresponding to the center value of the writing gradation voltage Vba corresponding to the gradation value Gba. . Since the writing gradation voltage Vca shown in FIG. 17 is higher than the ideal writing voltage Vid, if the liquid crystal display panel is in the normally black mode, the writing gradation voltage Vca is applied to the liquid crystal. When applied, the display becomes brighter than expected.
  • the error voltage (“the writing gradation voltage corresponding to the writing gradation value obtained by linear interpolation based on the gradation value and the ideal writing voltage Vid” is applied to the writing gradation voltage to be applied to the liquid crystal. If a difference between the liquid crystal and the liquid crystal is generated, an appropriate liquid crystal response speed cannot be obtained. As a result, the conventional liquid crystal display device cannot sufficiently suppress deterioration in image quality when displaying moving images.
  • the first embodiment of the present invention relates to a liquid crystal display device that performs overdrive driving using an OS table.
  • FIG. 1 is a block diagram showing the overall configuration of the liquid crystal display device according to the present embodiment.
  • This liquid crystal display device includes a liquid crystal display panel 5 including a display unit 500, a control substrate 10, a source driver 300, and a gate driver 400.
  • a timing controller IC 100 as a display control circuit and a flash memory 200 as a nonvolatile memory are mounted.
  • both or one of the source driver 300 and the gate driver 400 may be included in the liquid crystal display panel 5. That is, both or one of the source driver 300 and the gate driver 400 may be monolithically formed on the glass substrate that constitutes the liquid crystal display panel 5.
  • two display modes of 2D display and 3D display are prepared, and the display unit 500 of the liquid crystal display panel 5 displays an image in 2D display or 3D display depending on the display mode. It is possible.
  • a display mode in which 2D display is to be performed is referred to as “2D mode”
  • a display mode in which 3D display is to be performed is referred to as “3D mode”. Note that it is not essential for the present invention to prepare two display modes of the 2D mode and the 3D mode, and only the 2D mode or only the 3D mode may be prepared.
  • the display unit 500 a plurality of source lines SL, a plurality of gate lines GL, and pixel forming portions provided corresponding to the intersections of the source lines SL and the gate lines GL are formed. That is, the display unit 500 includes a plurality of pixel formation units. The plurality of pixel forming portions are arranged in a matrix to form a pixel array.
  • Each pixel forming portion includes a thin film transistor 50 which is a switching element having a gate terminal connected to a gate line passing through a corresponding intersection and a source terminal connected to a source line passing through the intersection, and a drain terminal of the thin film transistor 50
  • a pixel electrode 51 connected to the common electrode 52, a common electrode 52 which is a common electrode provided in the plurality of pixel formation portions, and a common electrode 52 provided in the plurality of pixel formation portions.
  • the liquid crystal layer is sandwiched between the common electrode 52.
  • a pixel capacitor Cp is constituted by a liquid crystal capacitor formed by the pixel electrode 51 and the common electrode 52.
  • an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to reliably hold the voltage in the pixel capacitor Cp.
  • the auxiliary capacitor is not directly related to the present invention, its description and illustration are omitted. Note that only the components corresponding to one pixel formation portion are shown in the display portion 500 of FIG.
  • the timing controller IC 100 receives an image signal DAT, a timing signal TS such as a horizontal synchronization signal and a vertical synchronization signal, and a mode signal MD indicating a display mode from the outside, and performs a predetermined correction process on the image signal DAT.
  • the digital video signal DV, the source start pulse signal SSP for controlling the operation of the source driver 300, the source clock signal SCK, and the latch strobe signal LS, the gate start pulse signal GSP for controlling the operation of the gate driver 400, and A gate clock signal GCK is output. Note that immediately after the power is turned on or when the display mode is switched, the timing controller IC 100 reads data necessary for the correction processing from the flash memory 200 and writes the read data to the internal volatile memory.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the timing controller IC 100, and applies a driving video signal to each source line SL.
  • the source driver 300 sequentially holds the digital video signal DV indicating the voltage (write gradation value) to be applied to each source line SL at the timing when the pulse of the source clock signal SCK is generated.
  • the held digital video signal DV is converted into an analog voltage (write gradation voltage) at the timing when the pulse of the latch strobe signal LS is generated.
  • the converted analog voltage is simultaneously applied to all the source lines SL as a driving video signal.
  • the gate driver 400 repeats the application of the active scanning signal to each gate line GL with one frame period as a cycle based on the gate start pulse GSP and the gate clock signal GCK output from the timing controller IC100.
  • FIG. 2 is a block diagram for explaining a functional configuration of the timing controller IC 100 in the present embodiment.
  • the timing controller IC 100 includes a data reception unit 110, a data processing unit 120, a line buffer 130, a data transmission unit 140, a timing control unit 150, an SDRAM 160 as a storage unit, and an SDRAM interface unit 170.
  • the data processing unit 120 includes a gamma correction unit 121 and an overdrive drive unit 122.
  • the data receiving unit 110 receives an image signal DAT transmitted from the outside and gives it to the data processing unit 120.
  • the gamma correction unit 121 in the data processing unit 120 performs gamma correction according to the characteristics of the liquid crystal display panel 5 used. Since this gamma correction is well known to those skilled in the art, description thereof is omitted. Various known gamma corrections can be used as the gamma correction in the present embodiment.
  • the overdrive drive unit 122 in the data processing unit 120 performs correction for emphasizing the temporal change of the signal with respect to the image signal DAT on which gamma correction has been performed, and displays the writing gradation value in each pixel forming unit.
  • the gray level data WD is generated and output to the line buffer 130.
  • the overdrive drive unit 122 is given a mode signal MD indicating whether the display mode is the 2D mode or the 3D mode, and the overdrive drive unit 122 performs processing according to the display mode.
  • FIG. 3 is a block diagram for explaining a detailed configuration of the overdrive driving unit 122 in the present embodiment.
  • the overdrive driving unit 122 includes a writing tone selection unit 21 and a writing tone interpolation processing unit 22 as a first interpolation unit.
  • the writing gradation interpolation processing unit 22 includes a gradation value-voltage conversion unit 23, an interpolation calculation unit 24, and a voltage-gradation value conversion unit 25.
  • the writing gradation selection unit 21 inputs the current frame gradation value indicated by the input data (hereinafter referred to as “current frame data”) CD of the current frame to the writing gradation selection unit 21 and one frame before the current frame data.
  • the writing gradation value is determined by referring to the OS table LUT1 shown in FIG.
  • the gray scale data WD is output.
  • the OS table LUT1 corresponds to a first lookup table.
  • data for 16 gradations ⁇ 16 gradations is prepared in the OS table LUT1.
  • the numerical value indicated in the leftmost column indicates the previous frame gradation value
  • the numerical value indicated in the uppermost line indicates the current frame gradation value. Show.
  • a numerical value written at a position where each row and each column intersect indicates a writing gradation value determined based on a combination of each previous frame gradation value and each current frame gradation value.
  • the writing gradation selection unit 21 is at least the previous frame gradation value and / or the closest to the combination.
  • the current frame gradation value and the written gradation value are given to the gradation value-voltage conversion unit 23.
  • the gradation value-voltage conversion unit 23 converts each received gradation value into a voltage value and outputs it.
  • the interpolation calculation unit 24 uses the converted voltage value output from the gradation value-voltage conversion unit 23 to obtain a linear interpolation process for acquiring a writing gradation value corresponding to a combination that does not exist in the OS table LUT1.
  • the voltage value obtained by the interpolation process is output.
  • the voltage-gradation value conversion unit 25 converts the voltage value output from the interpolation calculation unit 24 into a gradation value (writing gradation value), and outputs writing gradation data WD indicating the converted gradation value.
  • the writing gradation data WD output from the writing gradation selection unit 21 is referred to as “first writing gradation data”, and is represented by a symbol WDa.
  • the writing gradation data WD output from the voltage-gradation value conversion unit 25 is referred to as “second writing gradation data” and is denoted by reference numeral WDb. Further, the writing gradation value indicated by the first writing gradation data WDa is referred to as “first writing gradation value”, and the writing gradation value indicated by the second writing gradation data WDb. This is called “second writing gradation value”.
  • the writing gradation data WD for one line output from the overdrive driving unit 122 is held.
  • the data transmission unit 140 takes out the write gradation data WD from the line buffer 130 and outputs it as a digital video signal DV.
  • the timing control unit 150 controls operations of the data reception unit 110, the data processing unit 120, and the data transmission unit 140 based on a timing signal TS transmitted from the outside, and also includes a source start pulse signal SSP, a source clock signal SCK, A latch strobe signal LS, a gate start pulse GSP, and a gate clock signal GCK are output.
  • SDRAM 160 is a volatile memory.
  • the SDRAM 160 stores data used for processing by the overdrive drive unit 122 (hereinafter referred to as “overdrive drive data”).
  • the overdrive driving data is composed of the previous frame data PD and the OS table LUT1.
  • the SDRAM interface unit 170 functions as an interface between the data processing unit 120 and the SDRAM 160 when writing data to the SDRAM 160 and reading data from the SDRAM 160.
  • the flash memory 200 is also mounted on the control board 10 on which the timing controller IC 100 is mounted.
  • the flash memory 200 stores at least an OS table LUT1 which is a part of overdrive driving data. Since the flash memory 200 is non-volatile, the contents of the OS table LUT1 will not be lost even when the power of the apparatus is turned off.
  • the timing controller IC 100 reads the OS table LUT1 from the flash memory 200 and writes it to the internal SDRAM 160 immediately after the device is turned on. Thus, by adopting a configuration in which the OS table LUT1 is written in the flash memory 200 instead of the timing controller IC 100, the contents of the OS table LUT1 can be rewritten from the outside relatively easily.
  • the overdrive drive unit 122 actually performs an operation according to the display mode, such as changing an OS table to be referred to according to the display mode, but the operation unique to the present invention is performed in the 2D mode and the 3D mode. It is common. For this reason, the operation described below is performed in, for example, the 3D mode, and the operation description for each display mode is omitted.
  • the writing gradation selection unit 21 receives the current frame data CD, and further reads the previous frame data PD stored in the SDRAM 160.
  • the current frame data CD received by the writing gradation selection unit 21 is stored in the SDRAM 160 as the previous frame data PD in the frame next to the current frame.
  • the writing gradation selection unit 21 refers to the OS table LUT1 stored in the SDRAM 160 based on the previous frame gradation value indicated by the previous frame data PD and the current frame gradation value indicated by the current frame data CD.
  • the combination of the previous frame gradation value and the current frame gradation value exists in the OS table LUT1 (hereinafter sometimes simply referred to as “there is a combination”) and does not exist (hereinafter referred to as “there is a combination”).
  • the operations are different from each other simply by “when there is no combination”.
  • the operation when a combination exists is performed as follows.
  • the write tone selection unit 21 acquires from the SDRAM 160 first write tone data WDa indicating the first write tone value corresponding to the combination of the previous frame tone value and the current frame tone value. . Then, the write gradation selection unit 21 gives the first write gradation data WDa to the line buffer 130. As described above, when the combination exists, the above-described linear interpolation processing is not performed.
  • the operation when there is no combination is specifically divided into three types of operations. That is, the operation when the previous frame gradation value does not exist and the current frame gradation value exists in the OS table LUT1 (prediction table LUT2 in the third embodiment described later) (hereinafter referred to as “first case”).
  • the operation when the previous frame gradation value exists in the OS table LUT1 and the current frame gradation value does not exist hereinafter referred to as “second case”
  • the previous frame gradation value There are three types when both of them are not present (hereinafter referred to as “third case”).
  • third case There are three types when both of them are not present. In the following, the operation when there is no combination will be described separately for the operation of the first case, the operation of the second case, and the operation of the third case.
  • FIG. 5 is a diagram schematically showing a part of the OS table LUT1 in order to explain the operation of the first case in the present embodiment.
  • a gradation value is indicated by a code whose initial is “G”
  • a gradation voltage is indicated by a code whose initial is “V”.
  • the gradation voltage indicated in parentheses on the right side or the lower side of the gradation value is a gradation voltage obtained by converting the gradation value into a voltage value for convenience of explanation.
  • the voltage does not exist in the OS table LUT1 (the same applies to FIGS. 7 and 9 described later). As shown in FIG.
  • the first frame gradation value used for referring to the OS table LUT1 is Gxc that does not exist in the OS table LUT1, and the current frame gradation value is Gya that exists in the OS table LUT1.
  • the previous frame gradation value Gxc is larger than the previous frame gradation value Gxa and smaller than Gxb.
  • the writing gradation selection unit 21 exists in the OS table LUT1
  • the previous frame gradation value Gxa having a value smaller than the previous frame gradation value Gxc and the current frame level existing in the OS table LUT1
  • the write tone value Gaa corresponding to the combination with the tone value Gya is acquired from the SDRAM 160.
  • the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc.
  • the write gradation value Gba corresponding to the combination of the previous frame gradation value Gxb having a large value and the current frame gradation value Gya existing in the OS table LUT1 is acquired from the SDRAM 160.
  • the writing gradation selection unit 21 acquires the previous frame gradation values Gxa and Gxb from the SDRAM 160 in addition to the writing gradation values Gaa and Gba acquired as described above. Then, the write tone selection unit 21 writes the write tone values Gaa and Gba and the previous frame tone values Gxa and Gxb acquired from the SDRAM 160, and the previous frame tone value Gxc that does not exist in the OS table LUT1. This is given to the gradation value-voltage conversion unit 23 in the gradation interpolation processing unit 22.
  • the gradation value-voltage conversion unit 23 converts the writing gradation values Gaa, Gba and the previous frame gradation values Gxa, Gxb, Gxc received from the writing gradation selection unit 21 into voltage values and outputs them. .
  • the gradation voltages obtained by converting the writing gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc received from the writing gradation selection unit 21 into voltage values are Vaa. , Vba, Vxa, Vxb, and Vxc.
  • the gradation voltage obtained by converting the previous frame gradation value into the voltage value is referred to as “previous frame gradation voltage”.
  • the interpolation calculation unit 24 receives the writing gradation voltages Vaa and Vba and the previous frame gradation voltages Vxa, Vxb, and Vxc from the gradation value-voltage conversion unit 23, and performs the writing step by linear interpolation processing using them.
  • a regulated voltage Vvca is generated and output.
  • the linear interpolation processing in the first case is performed based on the following equation (1).
  • Vvca Vaa + (Vba ⁇ Vaa) ⁇ (Vxc ⁇ Vxa) / (Vxb ⁇ Vxa) ... (1)
  • the voltage-gradation value conversion unit 25 receives the write gradation voltage Vvca from the interpolation calculation unit 24, converts it into a gradation value (second writing gradation value), and outputs the second writing step. Second write gradation data WDb indicating a tone value is applied to the line buffer 130. As described above, the operation of the first case in the overdrive drive unit 122 is performed.
  • FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain the operation of the first case in the present embodiment.
  • the conventional liquid crystal display device performs linear interpolation processing using the writing gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc, and performs the linear interpolation.
  • the writing gradation value Gca obtained by the interpolation processing is converted into the writing gradation voltage Vgca by the source driver 300 and applied to the liquid crystal.
  • the writing gradation voltage Vgca obtained by the linear interpolation processing based on the gradation value in the conventional liquid crystal display device does not become the above-described ideal writing voltage Vid. For this reason, in the conventional liquid crystal display device, an error voltage is generated in the first case.
  • the liquid crystal display device according to the present embodiment has a writing scale obtained by converting the writing gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb and Gxc into voltage values, respectively.
  • the linear interpolation processing based on the above equation (1) is performed using the adjustment voltages Vaa, Vba and the previous frame gradation voltages Vxa, Vxb, Vxc, and the writing gradation voltage Vvca obtained by the linear interpolation processing is gradation
  • the gradation value is converted again into the writing gradation voltage Vvca in the source driver 300 and applied to the liquid crystal.
  • the write gradation voltage Vvca obtained by the linear interpolation process is a value corresponding to the ideal write voltage Vid described above.
  • FIG. 7 is a diagram schematically showing a part of the OS table LUT1 in order to explain the operation of the second case in the present embodiment.
  • the OS table LUT1 there are written data corresponding to combinations of the previous frame gradation value Gxa, the current frame gradation values Gya and Gyb, and the previous frame gradation value Gxa and the current frame gradation value Gya.
  • the previous frame gradation value used for referring to the OS table LUT1 is Gxa existing in the OS table LUT1
  • the current frame gradation value is Gyc not existing in the OS table LUT1.
  • the operation will be described.
  • the current frame gradation value Gyc is larger than the current frame gradation value Gya and smaller than Gyb.
  • the writing gradation selection unit 21 performs the previous frame existing in the OS table LUT1.
  • the current frame whose value is smaller than the current frame tone value Gyc among the two current frame tone values that are present in the OS table LUT1 and closest to the current frame tone value Gyc.
  • the write gradation value Gaa corresponding to the combination with the gradation value Gya is acquired from the SDRAM 160.
  • a write tone value Gab corresponding to a combination with the current frame tone value Gyb having a value larger than the current frame tone value Gyc among the tone values is acquired from the SDRAM 160.
  • the writing gradation selection unit 21 acquires the current frame gradation values Gya and Gyb corresponding to them from the SDRAM 160 in addition to the writing gradation values Gaa and Gab acquired as described above. Then, the writing gradation selection unit 21 writes the writing gradation values Gaa and Gab and the current frame gradation values Gya and Gyb acquired from the SDRAM 160 and the current frame gradation value Gyc that does not exist in the OS table LUT1. This is given to the gradation value-voltage conversion unit 23 in the gradation interpolation processing unit 22.
  • the gradation value-voltage conversion unit 23 converts the writing gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc received from the writing gradation selection unit 21 into voltage values and outputs them. .
  • the gradation voltages obtained by converting the writing gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc received from the writing gradation selection unit 21 into voltage values are Vaa. , Vab, Vya, Vyb, and Vyc.
  • a gradation voltage obtained by converting a current frame gradation value into a voltage value is referred to as a “current frame gradation voltage”.
  • the interpolation calculation unit 24 receives the write gradation voltages Vaa and Vab and the current frame gradation voltages Vya, Vyb, and Vyc from the gradation value-voltage conversion unit 23, and performs a write step by linear interpolation processing using them.
  • a regulated voltage Vvac is generated and output.
  • the linear interpolation processing in the first case is performed based on the following equation (2).
  • Vvac Vaa + (Vab ⁇ Vaa) ⁇ (Vyc ⁇ Vya) / (Vyb ⁇ Vya) ...
  • the voltage-gradation value conversion unit 25 receives the writing gradation voltage Vvac from the interpolation calculation unit 24, converts it into a gradation value (second writing gradation value), and outputs the second writing step. Second write gradation data WDb indicating a tone value is applied to the line buffer 130. As described above, the operation of the second case in the overdrive drive unit 122 is performed.
  • FIG. 8 is a diagram schematically showing the gradation value-gradation voltage characteristics for explaining the operation of the second case in the present embodiment.
  • the conventional liquid crystal display device performs linear interpolation processing using the write tone values Gaa, Gab and the current frame tone values Gya, Gyb, Gyc,
  • the writing gradation value Gac obtained by the interpolation processing is converted into the writing gradation voltage Vgac by the source driver 300 and applied to the liquid crystal. Since the response speed of the liquid crystal depends on the gradation voltage, the writing gradation voltage Vgac obtained by the linear interpolation processing based on the gradation value in the conventional liquid crystal display device does not become the above-described ideal writing voltage Vid.
  • the liquid crystal display device has a writing scale obtained by converting the writing gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc into voltage values.
  • the linear interpolation processing based on the above equation (2) is performed using the adjustment voltages Vaa, Vab and the current frame gradation voltages Vya, Vyb, Vyc, and the writing gradation voltage Vvac obtained by the linear interpolation processing is converted into gradation.
  • the tone value is converted again into the writing tone voltage Vvac in the source driver 300 and applied to the liquid crystal. In this way, since the linear interpolation process in the present embodiment is performed based on the voltage value, the write gradation voltage Vvac obtained by the linear interpolation process becomes a value corresponding to the ideal write voltage Vid described above.
  • FIG. 9 is a diagram schematically showing a part of the OS table LUT1 in order to explain the operation of the third case in the present embodiment.
  • the OS table LUT1 corresponds to combinations of previous frame gradation values Gxa and Gxb, current frame gradation values Gya and Gyb, previous frame gradation values Gxa, and current frame gradation values Gya.
  • the gradation value Gab corresponding to the combination of the previous frame gradation value Gxa and the current frame gradation value Gyb, and the previous frame gradation value Gxb and the current frame gradation value Gya
  • a writing gradation value Gba to be performed and a writing gradation value Gbb corresponding to a combination of the previous frame gradation value Gxb and the current frame gradation value Gyb.
  • the previous frame gradation value Gxa is smaller than Gxb
  • the current frame gradation value Gya is smaller than Gyb
  • the writing gradation value Gaa is smaller than Gab and Gba
  • the writing gradation value Gbb is smaller than Gab and Gba.
  • the previous frame gradation value used for referring to the OS table LUT1 is Gxc that does not exist in the OS table LUT1
  • the current frame gradation value is Gyc that does not exist in the OS table LUT1.
  • the previous frame gradation value Gxc is larger than the previous frame gradation value Gxa and smaller than Gxb
  • the current frame gradation value Gyc is larger than the current frame gradation value Gya and smaller than Gyb.
  • the writing gradation selection unit 21 exists in the OS table LUT1
  • the previous frame gradation value Gxa which is smaller than the previous frame gradation value Gxc, of the two previous frame gradation values closest to the previous frame gradation value Gxc, and exists in the OS table LUT1
  • the value Gaa is obtained from the SDRAM 160.
  • the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc.
  • the previous frame tone value Gxa having a smaller value and the current frame tone value Gyc of the two current frame tone values closest to the current frame tone value Gyc that are present in the OS table LUT1 The write gradation value Gab corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160.
  • the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc.
  • the previous frame tone value Gxb having a large value and the current frame tone value Gyc of the two current frame tone values closest to the current frame tone value Gyc that are present in the OS table LUT1 The write gradation value Gba corresponding to the combination with the current frame gradation value Gya having a small value is acquired from the SDRAM 160.
  • the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc.
  • the previous frame tone value Gxb having a large value and the current frame tone value Gyc of the two current frame tone values closest to the current frame tone value Gyc that are present in the OS table LUT1 The write gradation value Gbb corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160.
  • the writing tone selection unit 21 adds the previous frame tone values Gxa, Gxb, and the current frame tone values corresponding thereto. Gya and Gyb are acquired from the SDRAM 160. Then, the writing gradation selection unit 21 writes the writing gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, the current frame gradation values Gya, Gyb acquired from the SDRAM 160, and the OS table. The previous frame gradation value Gxc and the current frame gradation value Gyc that do not exist in the LUT 1 are supplied to the gradation value-voltage conversion unit 23 in the writing gradation interpolation processing unit 22.
  • the gradation value-voltage conversion unit 23 receives the writing gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, Gxc, and the current frame gradation value received from the writing gradation selection unit 21.
  • Each of Gya, Gyb, and Gyc is converted into a voltage value and output.
  • the write tone values Gaa, Gab, Gba, Gbb, the previous frame tone values Gxa, Gxb, Gxc, and the current frame tone values Gya, Gyb, Gyc received from the write tone selecting unit 21 are obtained.
  • the gradation voltages obtained by converting into voltage values are indicated by Vaa, Vab, Vba, Vbb, Vxa, Vxb, Vxc, Vya, Vyb, and Vyc, respectively.
  • the interpolation calculation unit 24 receives the write gradation voltages Vaa, Vab, Vba, Vbb, the previous frame gradation voltages Vxa, Vxb, Vxc, and the current frame gradation voltages Vya, Vyb, Vyc from the gradation value-voltage conversion unit 23. , And generates and outputs a write gradation voltage Vvc by linear interpolation processing using them.
  • a pattern for generating a write gradation voltage Vvc using a write gradation voltage Vvca and a write gradation voltage Vvcb described later and a write gradation
  • the interpolation calculation unit 24 generates the write gradation voltage Vvca based on the above equation (1), and The write gradation voltage Vvcb is generated based on the following equation (3).
  • Vvcb Vab + (Vbb ⁇ Vab) ⁇ (Vxc ⁇ Vxa) / (Vxb ⁇ Vxa) ... (3)
  • the interpolation calculation unit 24 uses the writing gradation voltages Vvca and Vvcb generated based on the expressions (1) and (3), respectively, to write the writing gradation based on the following expression (4).
  • Vvc Vvca + (Vvcb ⁇ Vvca) ⁇ (Vyc ⁇ Vya) / (Vyb ⁇ Vya) (4)
  • the interpolation calculation unit 24 generates the write gradation voltage Vvac based on the above equation (2).
  • the write gradation voltage Vvbc is generated based on the following equation (5).
  • Vvbc Vba + (Vbb ⁇ Vba) ⁇ (Vyc ⁇ Vya) / (Vyb ⁇ Vya) ... (5)
  • the interpolation calculation unit 24 uses the writing gradation voltages Vvac and Vvbc generated based on the expressions (2) and (5), respectively, to write the writing gradation based on the following expression (6).
  • Vvc Vvac + (Vvbc ⁇ Vvac) ⁇ (Vxc ⁇ Vxa) / (Vxb ⁇ Vxa) (6)
  • Equation (1) is respectively used for a pattern for generating the write gradation voltage Vvc using the write gradation voltages Vvca and Vvcb and a pattern for generating the write gradation voltage Vvc using the write gradation voltages Vvac and Vvbc.
  • the writing gradation voltage Vvc obtained based on 4) and Equation (6) has the same value.
  • the voltage-gradation value conversion unit 25 receives the writing gradation voltage writing gradation voltage Vvc from the interpolation operation unit 24, converts it into a gradation value (second writing gradation value), Second write gradation data WDb indicating a write gradation value of 2 is applied to the line buffer 130. As described above, the operation of the third case in the overdrive drive unit 122 is performed.
  • FIG. 10 is a diagram schematically showing the gradation value-gradation voltage characteristics in order to explain the operation of the third case in the present embodiment.
  • the write gradation voltage Vvc is obtained by a pattern for generating the write gradation voltage Vvc using the write gradation voltages Vvca and Vvcb.
  • the same explanation holds true for a pattern in which the write gradation voltage Vvc is generated using Vvbc.
  • the conventional liquid crystal display device has the write tone values Gaa, Gab, Gba, Gbb, the previous frame tone values Gxa, Gxb, Gxc, and the current frame tone value Gya.
  • the writing gradation value Gc obtained by the linear interpolation processing is converted into writing gradation voltage Vgc by the source driver 300 and applied to the liquid crystal. Since the response speed of the liquid crystal depends on the gradation voltage, the writing gradation voltage Vgc obtained by the linear interpolation processing based on the gradation value in the conventional liquid crystal display device does not become the above-described ideal writing voltage Vid. For this reason, an error voltage is generated in the third case in the conventional liquid crystal display device.
  • the liquid crystal display device has the write tone values Gaa, Gab, Gba, Gbb, the previous frame tone values Gxa, Gxb, Gxc, and the current frame tone value.
  • Write gradation voltages Vaa, Vab, Vba, Vbb, previous frame gradation voltages Vxa, Vxb, Vxc which are obtained by converting gradation voltages obtained by converting Gya, Gyb, Gyc to voltage values, respectively
  • the linear interpolation processing based on the above equations (1), (3), and (4) is performed, and the writing gradation voltages obtained by the linear interpolation processing Vvc is converted into a gradation value, and the gradation value is converted again into the writing gradation voltage Vvc in the source driver 300 and applied to the liquid crystal.
  • the overdrive driving unit 122 sets the first write gradation value, the previous frame gradation value, and the current frame gradation value to voltage values.
  • Linear interpolation processing is performed using the converted gradation voltage, previous frame gradation voltage, and current frame gradation voltage.
  • the overdrive driving unit 122 converts the writing gradation voltage obtained by the linear interpolation processing into the second writing gradation value, and performs the second writing indicating the second writing gradation value.
  • the gradation data WDb is output.
  • the response speed of the liquid crystal depends on the gradation voltage
  • an ideal writing gradation voltage corresponding to the VT characteristic of the liquid crystal is obtained by performing linear interpolation processing using the gradation voltage as in this embodiment. be able to. Therefore, a more appropriate liquid crystal response speed can be obtained as compared with a conventional liquid crystal display device that performs overdrive driving using an OS table that requires a relatively small memory capacity. Thereby, high-quality moving image display can be performed at low cost.
  • the linear interpolation process is used as the interpolation process, the above-described effects can be achieved with a simple process.
  • the gradation value closest to the previous frame gradation value and / or the current frame gradation value and the first writing gradation corresponding to them are used for the interpolation process, the gradation value other than the closest gradation value and the first written gradation value corresponding thereto may also be used for the interpolation process.
  • Second Embodiment> The second embodiment of the present invention predicts the arrival gradation of the previous frame gradation value in the first embodiment. Since the present embodiment has the same configuration and the like as those of the first embodiment except for the configuration and operation of the overdrive drive unit, the description of the common part is omitted. In addition, among the constituent elements of the present embodiment, the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 11 is a block diagram for explaining a detailed configuration of the overdrive driving unit 122 in the present embodiment.
  • the overdrive drive unit 122 in the present embodiment is the same as the configuration in the first embodiment described above, as the reached gradation selection unit 31 as the second gradation selection unit and the second interpolation unit.
  • the arrival gradation interpolation processing unit 32 is added.
  • the reached gradation interpolation processing unit 32 includes an interpolation calculation unit 24.
  • the interpolation calculation unit 24 in the reached gradation interpolation processing unit 32 and the interpolation calculation unit 24 in the writing gradation interpolation processing unit 22 have the same functions. However, hereinafter, the interpolation calculation unit 24 in the reached gradation interpolation processing unit 32 is referred to as a “prediction interpolation calculation unit” for convenience.
  • LUT2 of a lookup table (hereinafter referred to as “prediction table”) is stored.
  • the prediction table LUT2 corresponds to a second lookup table.
  • FIG. 12 is a diagram schematically illustrating an example of the prediction table LUT2 in the present embodiment.
  • data for 16 gradations ⁇ 16 gradations are prepared in the prediction table LUT2.
  • the numerical value indicated in the leftmost column indicates the previous frame gradation value
  • the numerical value indicated in the uppermost line indicates the current frame gradation value.
  • the numerical value written at the position where each row and each column intersect indicates the reached gradation value determined based on the combination of each previous frame gradation value and each current frame gradation value. For example, when the previous frame gradation value is “64” and the current frame gradation value is “128”, the reached gradation value is “128”. For example, when the previous frame gradation value is “128” and the current frame gradation value is “8”, the reached gradation value is “17”. Thus, the reached gradation value stored in the prediction table is the same as or larger than the current frame gradation value.
  • the prediction table LUT2 is stored in, for example, the flash memory 200, and the timing controller IC 100 reads the prediction table LUT2 from the flash memory 200 immediately after the apparatus is turned on, and writes it into the internal SDRAM 160.
  • the arrival gradation selection unit 31 refers to the prediction table LUT2 shown in FIG. 12 on the basis of the previous frame gradation value indicated by the previous frame data PD and the current frame gradation value indicated by the current frame data CD.
  • the gradation value is determined, and the reached gradation data RD indicating the gradation value is written in the SDRAM 160 as the previous frame data PD in the next frame.
  • the reached gradation selection unit 31 closes the previous frame gradation value and / or the current frame gradation value closest to the combination.
  • the frame gradation value and the reached gradation value are given to the prediction interpolation calculation unit 24 in the reached gradation interpolation processing unit 32.
  • the prediction interpolation calculation unit 24 uses the previous frame gradation value and / or the current frame gradation value and the arrival gradation value received from the arrival gradation selection unit 31 to correspond to combinations that do not exist in the prediction table LUT2.
  • a linear interpolation process for obtaining the reached gradation value is performed, and the reached gradation data RD indicating the reached gradation value obtained by the interpolation process is written in the SDRAM 160 as the previous frame data PD in the next frame.
  • the reaching gradation data RD written from the reaching gradation selecting unit 31 to the SDRAM 160 is referred to as “first reaching gradation data”, and is represented by a symbol RDa.
  • the reached gradation data RD written to the SDRAM 160 from the reached gradation interpolation processing unit 32 (prediction interpolation calculation unit 24) is referred to as “second reached gradation data”, and is represented by the symbol RDb.
  • the arrival gradation value indicated by the first arrival gradation data RDa is referred to as “first arrival gradation value”
  • the arrival gradation value indicated by the second arrival gradation data RDb is referred to as “first arrival gradation value”. This is referred to as “2 reached gradation value”.
  • the previous frame gradation value indicated by the previous frame data PD received by the writing gradation selection unit 21 is the reached gradation value obtained in the previous frame. That is, the previous frame gradation value used when the writing gradation selection unit 21 refers to the OS table LUT1 is the current frame gradation value in the previous frame in the first embodiment, but in the present embodiment, The obtained gradation value is obtained.
  • the contents shown in FIG. 13 are used as the OS table LUT1 in the present embodiment, for example. This content is different from the OS table LUT1 shown in FIG. 4 in the first embodiment. Also in this embodiment, data for 16 gradations ⁇ 16 gradations are prepared in the OS table LUT1.
  • the reached gradation selection unit 31 receives the current frame data CD, and further reads the previous frame data PD stored in the SDRAM 160. Then, the reached gradation selection unit 31 refers to the prediction table LUT2 stored in the SDRAM 160 based on the previous frame gradation value indicated by the previous frame data PD and the current frame gradation value indicated by the current frame data CD.
  • the combination of the previous frame gradation value and the current frame gradation value exists in the prediction table LUT2 (hereinafter, sometimes simply referred to as “there is a combination”) and does not exist (hereinafter referred to as “there is a combination”).
  • the operations are different from each other simply by “when there is no combination”.
  • the operation when a combination exists is performed as follows.
  • the reached tone selection unit 31 acquires from the SDRAM 160 first reached tone data RDa indicating the first reached tone value corresponding to the combination of the previous frame tone value and the current frame tone value. Then, the reached gradation selection unit 31 writes the first reached gradation data RDa in the SDRAM 160 as the previous frame data PD in the next frame.
  • the arrival gradation The selection unit 31 includes a previous frame level that is present in the prediction table LUT2 and has a value smaller than the previous frame gradation value Gxc among the two previous frame gradation values closest to the previous frame gradation value Gxc.
  • a predicted gradation value Gaa corresponding to a combination of the key value Gxa and the current frame gradation value Gya existing in the prediction table LUT2 is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc.
  • the reached gradation value Gba corresponding to the combination of the previous frame gradation value Gxb having a large value and the current frame gradation value Gya existing in the prediction table LUT2 is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 acquires the previous frame gradation values Gxa and Gxb from the SDRAM 160 in addition to the reached gradation values Gaa and Gba acquired as described above. Then, the reached gradation selection unit 31 uses the prediction gradation values Gaa and Gba and the previous frame gradation values Gxa and Gxb acquired from the SDRAM 160, and the previous frame gradation value Gxc that does not exist in the prediction table LUT2, as a prediction interpolation calculation. Part 24 is given.
  • the prediction interpolation calculation unit 24 performs a known linear interpolation process on the reached gradation value using the reached gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc, thereby performing the second arrival. Generate tone values. Thereafter, the prediction interpolation calculation unit 24 writes the second arrival gradation data RD indicating the second arrival gradation value into the SDRAM 160 as the previous frame data PD in the next frame.
  • the reached gradation selection unit 31 also includes two previous frame gradation values Gxa existing in the prediction table LUT2 and two current frame gradations present in the prediction table LUT2 and closest to the current frame gradation value Gyc.
  • the reached gradation value Gab corresponding to the combination with the current frame gradation value Gyb having a value larger than the current frame gradation value Gyc is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 acquires the current frame gradation values Gya and Gyb from the SDRAM 160 in addition to the reached gradation values Gaa and Gab acquired as described above. Then, the reached gradation selection unit 31 uses the write gradation values Gaa and Gab and the current frame gradation values Gya and Gyb acquired from the SDRAM 160 and the current frame gradation value Gyc that does not exist in the prediction table LUT2 for prediction interpolation. It gives to the calculating part 24.
  • the prediction interpolation calculation unit 24 performs a known linear interpolation process on the reached gradation value using the reached gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc, thereby obtaining the second arrival value. Generate tone values.
  • the subsequent operation is the same as in the first case.
  • the arrival gradation The selection unit 31 includes a previous frame level that is present in the prediction table LUT2 and has a value smaller than the previous frame gradation value Gxc among the two previous frame gradation values closest to the previous frame gradation value Gxc.
  • the current frame level having a value smaller than the current frame tone value Gyc, out of the two current frame tone values present in the prediction table LUT2 and closest to the current frame tone value Gyc.
  • the reached gradation value Gaa corresponding to the combination with the tone value Gya is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. Is smaller than the current frame tone value Gyc of two current frame tone values that are present in the prediction table LUT2 and are closest to the current frame tone value Gyc.
  • the reached gradation value Gab corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. Is greater than the current frame tone value Gyc of the two current frame tone values that are present in the prediction table LUT2 and are closest to the current frame tone value Gyc.
  • the reached gradation value Gba corresponding to the combination with the current frame gradation value Gya having a small value is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. Is greater than the current frame tone value Gyc of the two current frame tone values that are present in the prediction table LUT2 and are closest to the current frame tone value Gyc.
  • the reached gradation value Gbb corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160.
  • the reached gradation selection unit 31 includes the previous frame gradation values Gxa, Gxb and the current frame gradation values Gya, Gyb is acquired from the SDRAM 160. Then, the reached gradation selection unit 31 stores the reached gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, the current frame gradation values Gya, Gyb acquired from the SDRAM 160, and the prediction table LUT2. The pre-existing previous frame gradation value Gxc and the current frame gradation value Gyc are supplied to the prediction interpolation calculation unit 24.
  • the prediction interpolation calculation unit 24 uses the reached gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, Gxc, and the current frame gradation values Gya, Gyb, Gyc to achieve the reached gradation values.
  • the second reached gradation value is generated by performing a known linear interpolation process for the above. The subsequent operation is the same as in the first case.
  • the reached gradation data RD indicating the reached gradation value is written in the SDRAM 160 as the previous frame data PD in the next frame.
  • the reached gradation value obtained by using the prediction table LUT2 in the previous frame is used for referring to the OS table LUT1 as the previous frame gradation value in the current frame. Therefore, overdrive driving can be performed using the previous frame gradation value with higher accuracy than in the first embodiment. As a result, the response speed of the liquid crystal is corrected more appropriately, so that the image quality of the moving image display can be further improved.
  • the tone value closest to the previous frame tone value and / or the current frame tone value, and the first reached tone value corresponding to them. are used for the interpolation process, but a gradation value other than the closest gradation value and the first reached gradation value corresponding to the gradation value may also be used for the interpolation process (a third value described later). The same applies to the embodiment).
  • the third embodiment of the present invention performs linear interpolation processing using voltage values when there is no combination in the prediction table LUT2 in the second embodiment. Since the present embodiment has the same configuration and the like as the second embodiment except for the configuration and operation of the reached gradation interpolation processing unit 32, the description of the common portion is omitted. In addition, among the components of the present embodiment, the same elements as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 14 is a block diagram for explaining a detailed configuration of the reached gradation interpolation processing unit 32 in the overdrive driving unit 122 in the present embodiment.
  • the reached gradation interpolation processing unit 32 in the overdrive drive unit 122 in this embodiment includes a gradation value-voltage conversion unit 23 and a voltage in the preceding stage and the subsequent stage of the prediction interpolation calculation unit 24, respectively.
  • a tone value conversion unit 25 is added.
  • the gradation value-voltage conversion unit 23 and the voltage-gradation value conversion unit 25 in the reached gradation interpolation processing unit 32 are respectively the gradation value-voltage conversion unit 23 and the voltage- in the writing gradation interpolation processing unit 22.
  • gradation value conversion unit 25 It has the same function as the gradation value conversion unit 25.
  • the gradation value-voltage conversion unit 23 and the voltage-gradation value conversion unit 25 in the reached gradation interpolation processing unit 32 will be referred to as “prediction gradation value-voltage conversion unit” and “prediction This is called a “voltage-gradation value converter”.
  • the prediction gradation value-voltage conversion unit 23 receives the arrival gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc from the arrival gradation selection unit 31, and supplies them to the first embodiment. Similarly to the gradation value-voltage conversion unit 23 in FIG. Thereby, the reached gradation voltages Vaa, Vba and the previous frame gradation voltages Vxa, Vxb, Vxc are obtained.
  • “reached gradation voltage” refers to a gradation voltage obtained by converting the reached gradation value into a voltage value.
  • the prediction interpolation calculation unit 24 receives the reached gradation voltages Vaa and Vba and the previous frame gradation voltages Vxa, Vxb, and Vxc from the prediction gradation value-voltage conversion unit 23, and The reached gradation voltage Vvca is generated and output based on the above equation (1).
  • the prediction voltage-gradation value conversion unit 25 receives the reached gradation voltage Vvca from the prediction interpolation calculation unit 24, and converts it to the gradation in the same manner as the voltage-gradation value conversion unit 25 in the first embodiment. Value (second reached gradation value). Then, the prediction voltage-gradation value conversion unit 25 writes the second arrival gradation data RD indicating the second arrival gradation value into the SDRAM 160 as the previous frame data PD in the next frame.
  • the prediction gradation value-voltage conversion unit 23 receives the arrival gradation values Gaa and Gab and the current frame gradation values Gya, Gyb, and Gyc from the arrival gradation selection unit 31, and supplies them to the first embodiment. Similarly to the gradation value-voltage conversion unit 23 in FIG. Thereby, the reached gradation voltages Vaa, Vab and the current frame gradation voltages Vya, Vyb, Vyc are obtained.
  • the prediction interpolation calculation unit 24 receives the reached gradation voltages Vaa and Vab and the current frame gradation voltages Vya, Vyb, and Vyc from the prediction gradation value-voltage conversion unit 23, and Based on the above equation (2), the reached gradation voltage Vvac is generated and output.
  • the prediction voltage-gradation value conversion unit 25 receives the reached gradation voltage Vvac from the prediction interpolation calculation unit 24, and converts it to the gradation in the same manner as the voltage-gradation value conversion unit 25 in the first embodiment. Value (second reached gradation value). The subsequent operation is the same as in the first case.
  • the prediction gradation value-voltage conversion unit 23 receives the arrival gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, Gxc, and the current frame gradation value Gya, from the arrival gradation selection unit 31. Gyb and Gyc are received and converted into voltage values in the same manner as the gradation value-voltage conversion unit 23 in the first embodiment. Thus, the reached gradation voltages Vaa, Vab, Vba, Vbb, the previous frame gradation voltages Vxa, Vxb, Vxc, and the current frame gradation voltages Vya, Vyb, Vyc are obtained.
  • the prediction interpolation calculation unit 24 receives the reached gradation voltages Vaa, Vab, Vba, Vbb and the previous frame gradation voltages Vxa, Vxb, Vxc from the prediction gradation value-voltage conversion unit 23. , And current frame gray scale voltages Vya, Vyb, Vyc. Then, the prediction interpolation calculation unit 24 generates the write gradation voltage Vvc based on the above (4) using the reached gradation voltages Vvca and Vvcb obtained based on the above (1) and the expression (3), respectively. Or, using the reached gradation voltages Vvac and Vvbc obtained respectively based on the above equations (2) and (5), the write gradation voltage Vvc is generated based on the above equation (6). Output.
  • the prediction voltage-gradation value conversion unit 25 receives the reached gradation voltage Vvc from the prediction interpolation calculation unit 24, and converts it to the gradation in the same manner as the voltage-gradation value conversion unit 25 in the first embodiment. Value (second reached gradation value). The subsequent operation is the same as in the first case.
  • the above error voltage does not occur for the same reason as the operation of the first to third cases in the first embodiment.
  • the details are omitted because the writing gradation value and the writing gradation voltage are respectively replaced with the reaching gradation value and the reaching gradation voltage in the description of the first embodiment.
  • the linear interpolation process when the combination does not exist in the prediction table LUT2 is performed by using the gradation voltage. For this reason, since the linear interpolation process is performed in consideration of the VT characteristics of the liquid crystal, an accurate reached gradation value can be obtained as compared with the second embodiment. Since the reached gradation value obtained in this manner is used for overdrive driving as the previous frame gradation value, the response speed of the liquid crystal is corrected more appropriately than in the second embodiment. Thereby, the image quality of moving image display can be further improved.
  • the contents of the lookup tables shown in FIGS. 4, 12, and 13 are merely examples, and the lookup tables used in the present invention are not limited to the contents.
  • the writing gradation interpolation processing unit 22 and the reached gradation interpolation processing unit 24 are separate components, but may be realized as a single component. good.
  • linear interpolation processing is used as interpolation processing, but other interpolation processing may be used.
  • the above-described embodiments can be variously modified and implemented without departing from the spirit of the present invention.
  • the present invention it is possible to provide a display control circuit that enables high-quality moving image display at low cost, a liquid crystal display device including the display control circuit, and a display control method.
  • the present invention can be applied to a display control circuit for performing overdrive driving that emphasizes a temporal change of a signal with respect to an image signal, a liquid crystal display device including the display control circuit, and a display control method.
  • Liquid crystal display panel 21 Writing gradation selection section (first gradation selection section) 22... Write gradation interpolation processing unit (first interpolation unit) 23 ... gradation value-voltage conversion unit 24 ... interpolation calculation unit 25 ... voltage-gradation value conversion unit 31 ... reached gradation selection unit (second gradation selection unit) 32 .. reached gradation interpolation processing unit (second interpolation unit) 100 ... Timing controller IC (display control circuit) 122: Overdrive drive unit 160: SDRAM (storage unit) LUT1 ... OS table (first lookup table) LUT2 ... Prediction table (second lookup table) CD ... current frame data PD ... previous frame data WDa ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Provided is a display control circuit with which it is possible to display high image quality motion video inexpensively. An overdrive drive unit (122) comprises a write gradation selection unit (21) and a write gradation interpolation processing unit (22). The write gradation selection unit (21) acquires a first write gradation value and outputs first write gradation data (RDa) from SDRAM (160) when a combination of a prior frame gradation value and a current frame gradation value is present in an OS table (LUT1) and supplies the prior frame gradation value and/or the current frame gradation value which is/are nearest to the combination and the first write gradation value to the write gradation interpolation processing unit (22) when the combination is not present in the OS table (LUT1). The write gradation interpolation processing unit (22) converts the received gradation value to a voltage value, carries out a linear interpolation process using the voltage value, converts the obtained voltage value to a second write gradation value, and outputs second write gradation data (RDb).

Description

表示制御回路、それを備えた液晶表示装置、および表示制御方法Display control circuit, liquid crystal display device including the same, and display control method
 本発明は、外部から与えられる画像信号に基づき、液晶表示パネルでの表示を制御するための表示制御回路、それを備えた液晶表示装置、および表示制御方法に関し、より詳細には、画像信号に対して信号の時間的変化を強調するオーバードライブ駆動を行うための表示制御回路、それを備えた液晶表示装置、および表示制御方法に関する。 The present invention relates to a display control circuit for controlling display on a liquid crystal display panel based on an image signal given from the outside, a liquid crystal display device including the display control circuit, and a display control method. The present invention relates to a display control circuit for performing overdrive driving that emphasizes a temporal change of a signal, a liquid crystal display device including the display control circuit, and a display control method.
 近年、パソコンおよびテレビ等のディスプレイについて軽量化および薄型化が強く要求されているので、そのようなディスプレイに、軽量化および薄型化が容易な液晶表示装置の採用が急速に進んでいる。ところが、液晶は応答速度が遅いので、液晶表示装置での動画表示に際して十分な画質が得られないことがある。そこで、液晶の応答速度の低さに起因する動画表示時の画質低下を抑制するために、従来より、オーバードライブ駆動(またはオーバーシュート駆動)と呼ばれる駆動方式が採用されている。オーバードライブ駆動とは、1フレーム前の入力画像信号と現フレームの入力画像信号との組み合わせに応じて、現フレームの入力画像信号に対応する階調電圧よりも高い階調電圧または現フレームの入力画像信号に対応する階調電圧よりも低い階調電圧を液晶表示パネルに供給する駆動方式である。このようなオーバードライブ駆動を採用することにより、液晶表示パネルにおいて階調電圧に対応する輝度に到達するまでの時間が短縮されるので、動画表示の際の画質低下が抑制される。 In recent years, there has been a strong demand for weight reduction and thinning of displays such as personal computers and televisions, and therefore liquid crystal display devices that are easy to be lightened and thinned are rapidly being adopted for such displays. However, since the response speed of the liquid crystal is slow, sufficient image quality may not be obtained when displaying a moving image on the liquid crystal display device. Therefore, in order to suppress the deterioration of the image quality at the time of moving image display due to the low response speed of the liquid crystal, a driving method called overdrive driving (or overshoot driving) has been conventionally employed. The overdrive drive is a gradation voltage higher than the gradation voltage corresponding to the input image signal of the current frame or the input of the current frame according to the combination of the input image signal of the previous frame and the input image signal of the current frame. In this driving method, a gradation voltage lower than the gradation voltage corresponding to the image signal is supplied to the liquid crystal display panel. By adopting such overdrive driving, the time required to reach the luminance corresponding to the gradation voltage in the liquid crystal display panel is shortened, so that the deterioration in image quality when displaying a moving image is suppressed.
 オーバードライブ駆動を採用する液晶表示装置では、1フレーム前の入力画像信号に対応する階調値(以下「前フレーム階調値」という)と現フレームの入力画像信号に対応する階調値(以下「現フレーム階調値」という)との組み合わせに基づいて、液晶表示パネルに供給すべき階調電圧(以下「書込階調電圧」という)が決定されるよう、オーバードライブ駆動用のルックアップテーブル(以下「OSテーブル」という)が保持されている。図15は、従来の液晶表示装置に保持されているOSテーブルの一例を模式的に示した図である。ここでは、256階調の階調表示が行われるものとする。図15において、最も左の列に記されている数値は前フレーム階調値を示し、最も上の行に記されている数値は現フレーム階調値を示している。そして、各行と各列とが交差する位置に記されている数値は、各前フレーム階調値と各現フレーム階調値との組み合わせに基づいて決定される、書込階調電圧に対応する階調値(以下「書込階調値」という)を示している。例えば、前フレーム階調値が「64」で現フレーム階調値が「128」である場合、書込階調値は「166」となる。また、例えば、前フレーム階調値が「160」で現フレーム階調値が「64」である場合、書込階調値は「4」となる。このように、OSテーブルに格納されているデータに基づいて、現フレーム階調値に対応する階調電圧よりも高い書込階調電圧、または現フレーム階調値に対応する階調電圧よりも低い書込階調電圧が液晶に印加される。 In a liquid crystal display device adopting overdrive driving, a gradation value corresponding to an input image signal one frame before (hereinafter referred to as “previous frame gradation value”) and a gradation value corresponding to an input image signal of the current frame (hereinafter referred to as “following frame gradation value”) Lookup for overdrive drive so that the gradation voltage to be supplied to the liquid crystal display panel (hereinafter referred to as “write gradation voltage”) is determined based on the combination with “current frame gradation value”) A table (hereinafter referred to as “OS table”) is held. FIG. 15 is a diagram schematically showing an example of an OS table held in a conventional liquid crystal display device. Here, 256 gradation display is performed. In FIG. 15, the numerical value indicated in the leftmost column indicates the previous frame gradation value, and the numerical value indicated in the uppermost line indicates the current frame gradation value. The numerical value written at the position where each row intersects with each column corresponds to the writing gradation voltage determined based on the combination of each previous frame gradation value and each current frame gradation value. A gradation value (hereinafter referred to as “writing gradation value”) is shown. For example, when the previous frame gradation value is “64” and the current frame gradation value is “128”, the writing gradation value is “166”. For example, when the previous frame gradation value is “160” and the current frame gradation value is “64”, the writing gradation value is “4”. As described above, based on the data stored in the OS table, the writing gradation voltage higher than the gradation voltage corresponding to the current frame gradation value or the gradation voltage corresponding to the current frame gradation value. A low writing gradation voltage is applied to the liquid crystal.
 ところで、近年、2次元表示(以下「2D表示」という)および3次元表示(以下「3D表示」という)の2つの表示モードで画像表示が可能な液晶表示装置の開発が顕著である。このような液晶表示装置での3D表示においては、たとえ表示画像が静止画であっても、視聴者の左目と右目とで視差が生じるようにするために、動画表示時と同様に液晶が駆動される。このため、3D表示時には、表示画像が静止画であってもオーバードライブ駆動が行われる。このように、2D表示および3D表示の2つの表示モードで画像表示が可能な液晶表示装置においては特に、オーバードライブ駆動が重要な役割を果たしている。なお、本明細書における以下の「動画表示」には、3D表示時における静止画表示も含まれるものとする。 Incidentally, in recent years, development of a liquid crystal display device capable of displaying an image in two display modes of two-dimensional display (hereinafter referred to as “2D display”) and three-dimensional display (hereinafter referred to as “3D display”) is remarkable. In 3D display on such a liquid crystal display device, even if the display image is a still image, the liquid crystal is driven in the same way as when displaying a moving image so that parallax occurs between the viewer's left eye and right eye. Is done. For this reason, during 3D display, overdrive driving is performed even if the display image is a still image. As described above, overdrive driving plays an important role particularly in a liquid crystal display device capable of displaying an image in two display modes of 2D display and 3D display. The following “moving image display” in this specification includes still image display during 3D display.
 オーバードライブ駆動を採用する液晶表示装置について、特許文献1に開示された発明では、複数種類のOSテーブルを用意しておき、3D表示における連続する2つのフレーム間での階調値の差に応じて用いるべきOSテーブルを選択し、選択したOSテーブルに基づいて書込階調値を決定することが行われている。これにより、3D表示における画質を向上することができる。 Regarding the liquid crystal display device that employs overdrive driving, the invention disclosed in Patent Document 1 prepares a plurality of types of OS tables and responds to the difference in gradation value between two consecutive frames in 3D display. The OS table to be used is selected, and the writing gradation value is determined based on the selected OS table. Thereby, the image quality in 3D display can be improved.
 ところで、一般に、メモリ容量を削減して低コスト化を図るために、OSテーブルには、階調数×階調数(例えば256階調の階調表示であれば256階調×256階調)分のデータは格納されておらず、これよりも少ないデータ、例えば16階調×16階調分のデータが格納されている。このため、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブル中に存在しない場合がある。このような場合、従来は、OSテーブル中に存在する前フレーム階調値と現フレーム階調値との組み合わせを用いて、階調値に基づく補間(典型的には線形補間)を行うことにより、書込階調値を決定していた。 By the way, generally, in order to reduce the memory capacity and reduce the cost, the OS table includes the number of gradations × the number of gradations (for example, 256 gradations × 256 gradations in the case of 256 gradation display). Minute data is not stored, and data smaller than this, for example, data of 16 gradations × 16 gradations is stored. For this reason, the combination of the previous frame gradation value and the current frame gradation value may not exist in the OS table. In such a case, conventionally, by using a combination of the previous frame gradation value and the current frame gradation value existing in the OS table, interpolation based on the gradation value (typically linear interpolation) is performed. The writing gradation value was determined.
日本の特開2011-90079号公報Japanese Unexamined Patent Publication No. 2011-90079
 しかし、液晶のVT(Voltage-Transmittance)特性から、階調値と階調電圧とは線形な関係にない。さらに、液晶の応答速度は階調電圧(書込階調電圧)に依存する。このため、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブル中に存在しない場合に上述のように階調値に基づく補間により書込階調値を決定したとしても、この書込階調値からは所望の書込階調電圧が得られず、結果として適切な液晶の応答速度が得られなくなる。したがって、動画表示の際の画質低下を十分に抑制できない。これは、上記特許文献1に開示された発明でも同様である。 However, from the VT (Voltage-Transmittance) characteristic of the liquid crystal, the gradation value and the gradation voltage are not in a linear relationship. Furthermore, the response speed of the liquid crystal depends on the gradation voltage (writing gradation voltage). For this reason, even if the writing gradation value is determined by interpolation based on the gradation value as described above when the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table, this writing A desired writing gradation voltage cannot be obtained from the embedded gradation value, and as a result, an appropriate liquid crystal response speed cannot be obtained. Therefore, it is not possible to sufficiently suppress image quality degradation when displaying moving images. The same applies to the invention disclosed in Patent Document 1.
 そこで、本発明は、低コストで高画質の動画表示を可能とする表示制御回路、それを備えた液晶表示装置、および表示制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a display control circuit that enables high-quality moving image display at low cost, a liquid crystal display device including the display control circuit, and a display control method.
 本発明の第1の局面は、外部から与えられる画像信号に基づき、液晶表示パネルでの表示を制御するための表示制御回路であって、
 前記画像信号に対して信号の時間的変化を強調する補正に用いられる書込階調値を、現フレームの直前のフレームにおける階調値である前フレーム階調値、および前記現フレームにおいて与えられる前記画像信号の階調値である現フレーム階調値の組み合わせに基づいて決定するための第1のルックアップテーブルを記憶した記憶部と、
 前記第1のルックアップテーブルを参照し、前記組み合わせが前記第1のルックアップテーブルに存在する場合には当該組み合わせに基づいて決定される前記書込階調値を出力し、前記組み合わせが前記第1のルックアップテーブルに存在しない場合には、当該組み合わせに最も近く、かつ、当該第1のルックアップテーブルに存在する前記組み合わせに対応する前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とを少なくとも出力する第1の階調選択部と、
 前記組み合わせが前記第1のルックアップテーブルに存在しない場合に、前記第1の階調選択部から出力された前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とのそれぞれを電圧値に変換し、当該電圧値を用いて、前記第1のルックアップテーブルに存在しない前記組み合わせに対応する前記書込階調値を取得するための補間処理を行う第1の補間部とを備えることを特徴とする。
A first aspect of the present invention is a display control circuit for controlling display on a liquid crystal display panel based on an image signal given from the outside,
A writing gradation value used for correction for emphasizing a temporal change of the signal with respect to the image signal is given in the previous frame gradation value which is a gradation value in a frame immediately before the current frame, and in the current frame. A storage unit storing a first look-up table for determination based on a combination of current frame gradation values which are gradation values of the image signal;
The first look-up table is referred to, and when the combination exists in the first look-up table, the writing gradation value determined based on the combination is output, and the combination is the first look-up table. If not present in one lookup table, the previous frame tone value and / or the current frame tone value corresponding to the combination closest to the combination and present in the first lookup table And a first gradation selection unit that outputs at least the write gradation value;
When the combination does not exist in the first lookup table, the previous frame gradation value and / or the current frame gradation value and the writing gradation value output from the first gradation selection unit Are converted into voltage values, and interpolation processing for obtaining the writing gradation values corresponding to the combinations not existing in the first look-up table is performed using the voltage values. And an interpolation unit.
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1の補間部が行う前記補間処理は、線形補間処理であることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention,
The interpolation process performed by the first interpolation unit is a linear interpolation process.
 本発明の第3の局面は、本発明の第2の局面において、
 前記第1の階調選択部は、前記組み合わせのうち、前記前フレーム階調値のみが前記第1のルックアップテーブルに存在しない場合には、当該前フレーム階調値に最も値が近く、かつ、前記第1のルックアップテーブルに存在する前記前フレーム階調値と、当該前フレーム階調値および前記現フレーム階調値の組み合わせに基づいて決定される前記書込階調値とを出力することを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention,
The first gradation selection unit is closest to the previous frame gradation value when only the previous frame gradation value is not present in the first lookup table in the combination, and The previous frame gradation value existing in the first look-up table and the writing gradation value determined based on a combination of the previous frame gradation value and the current frame gradation value are output. It is characterized by that.
 本発明の第4の局面は、本発明の第2の局面において、
 前記第1の階調選択部は、前記組み合わせのうち、前記現フレーム階調値のみが前記第1のルックアップテーブルに存在しない場合には、当該現フレーム階調値に最も値が近く、かつ、前記第1のルックアップテーブルに存在する前記現フレーム階調値と、当該現フレーム階調値および前記前フレーム階調値の組み合わせに基づいて決定される前記書込階調値とを出力することを特徴とする。
According to a fourth aspect of the present invention, in the second aspect of the present invention,
When only the current frame gradation value does not exist in the first lookup table, the first gradation selection unit is closest to the current frame gradation value, and And outputting the current frame gradation value existing in the first look-up table and the writing gradation value determined based on a combination of the current frame gradation value and the previous frame gradation value. It is characterized by that.
 本発明の第5の局面は、本発明の第2の局面において、
 前記第1の階調選択部は、前記組み合わせを構成する前記前フレーム階調値および前記現フレーム階調値が前記第1のルックアップテーブルに存在しない場合には、当該前フレーム階調値および当該現フレーム階調値にそれぞれ最も値が近く、かつ、前記第1のルックアップテーブルに存在する前記前フレーム階調値および前記現フレーム階調値と、当該前フレーム階調値および当該現フレーム階調値の組み合わせに基づいて決定される前記書込階調値とを出力することを特徴とする。
According to a fifth aspect of the present invention, in the second aspect of the present invention,
When the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the first lookup table, the first gradation selection unit The previous frame tone value, the current frame tone value, the previous frame tone value, and the current frame that are closest to the current frame tone value and exist in the first lookup table. The writing gradation value determined based on a combination of gradation values is output.
 本発明の第6の局面は、本発明の第1の局面において、
 前記前フレーム階調値は、前記現フレームの直前のフレームにおける前記現フレーム階調値であることを特徴とする。
According to a sixth aspect of the present invention, in the first aspect of the present invention,
The previous frame gradation value is the current frame gradation value in a frame immediately before the current frame.
 本発明の第7の局面は、本発明の第1の局面において、
 前記記憶部は、前記液晶表示パネルでの表示において到達すると予測される階調値である到達階調値を、前記組み合わせに基づいて決定するための第2のルックアップテーブルをさらに含み、
 前記第2のルックアップテーブルを参照し、前記組み合わせが当該第2のルックアップテーブルに存在する場合には、前記到達階調値を、前記現フレームの直後のフレームにおける前記前フレーム階調値とし、前記組み合わせが前記第2のルックアップテーブルに存在しない場合には、当該組み合わせに最も近く、かつ、当該第2のルックアップテーブルに存在する前記組み合わせに対応する前記前フレーム階調値および/または前記現フレーム階調値と前記到達階調値とを少なくとも出力する第2の階調選択部と、
 前記組み合わせが前記第2のルックアップテーブルに存在しない場合に、前記第2の選択部から出力された前記前フレーム階調値および/または前記現フレーム階調値と前記到達階調値とに基づいて、前記第2のルックアップテーブルに存在しない前記組み合わせに対応する前記到達階調値を取得するための所定の形式での補間処理を行って得られる到達階調値を、前記現フレームの直後のフレームにおける前記前フレーム階調値とする第2の補間部とをさらに備えることを特徴とする。
According to a seventh aspect of the present invention, in the first aspect of the present invention,
The storage unit further includes a second lookup table for determining a reached gradation value, which is a gradation value predicted to be reached in the display on the liquid crystal display panel, based on the combination,
When the second lookup table is referred to and the combination exists in the second lookup table, the reached gradation value is set as the previous frame gradation value in the frame immediately after the current frame. , If the combination does not exist in the second lookup table, the previous frame tone value that is closest to the combination and that corresponds to the combination present in the second lookup table and / or A second gradation selection unit that outputs at least the current frame gradation value and the reached gradation value;
When the combination does not exist in the second look-up table, based on the previous frame gradation value and / or the current frame gradation value and the reached gradation value output from the second selection unit. Then, the reached gradation value obtained by performing interpolation processing in a predetermined format for acquiring the reached gradation value corresponding to the combination that does not exist in the second lookup table is immediately after the current frame. And a second interpolating unit for setting the previous frame gradation value in the previous frame.
 本発明の第8の局面は、本発明の第7の局面において、
 前記第2の補間部は、前記第2の選択部から出力された前記前フレーム階調値および/または前記現フレーム階調値と前記到達階調値とのそれぞれを電圧値に変換し、当該電圧値を用いて、前記第2のルックアップテーブルに存在しない前記組み合わせに対応する前記到達階調値を取得するための前記補間処理を行うことを特徴とする。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
The second interpolation unit converts each of the previous frame tone value and / or the current frame tone value and the reached tone value output from the second selection unit into a voltage value, and The interpolation process for acquiring the reached gradation value corresponding to the combination that does not exist in the second look-up table is performed using a voltage value.
 本発明の第9の局面は、本発明の第8の局面において、
 前記第2の補間部が行う前記補間処理は、線形補間処理であることを特徴とする。
A ninth aspect of the present invention is the eighth aspect of the present invention,
The interpolation process performed by the second interpolation unit is a linear interpolation process.
 本発明の第10の局面は、本発明の第9の局面において、
 前記第2の階調選択部は、前記組み合わせのうち、前記前フレーム階調値のみが前記第2のルックアップテーブルに存在しない場合には、当該前フレーム階調値に最も値が近く、かつ、前記第2のルックアップテーブルに存在する前記前フレーム階調値と、当該前フレーム階調値および前記現フレーム階調値の組み合わせに基づいて決定される前記到達階調値とを出力することを特徴とする。
According to a tenth aspect of the present invention, in a ninth aspect of the present invention,
When only the previous frame gradation value does not exist in the second lookup table in the combination, the second gradation selection unit is closest to the previous frame gradation value, and Outputting the previous frame gradation value existing in the second look-up table and the reached gradation value determined based on a combination of the previous frame gradation value and the current frame gradation value. It is characterized by.
 本発明の第11の局面は、本発明の第9の局面において、
 前記第2の階調選択部は、前記組み合わせのうち、前記現フレーム階調値のみが前記第2のルックアップテーブルに存在しない場合には、当該現フレーム階調値に最も値が近く、かつ、前記第2のルックアップテーブルに存在する前記現フレーム階調値と、当該現フレーム階調値および前記前フレーム階調値の組み合わせに基づいて決定される前記到達階調値とを出力することを特徴とする。
An eleventh aspect of the present invention is the ninth aspect of the present invention,
When only the current frame tone value does not exist in the second look-up table in the combination, the second tone selecting unit is closest to the current frame tone value, and Outputting the current frame gradation value existing in the second look-up table and the reached gradation value determined based on a combination of the current frame gradation value and the previous frame gradation value. It is characterized by.
 本発明の第12の局面は、本発明の第9の局面において、
 前記第2の階調選択部は、前記組み合わせを構成する前記前フレーム階調値および前記現フレーム階調値が前記第2のルックアップテーブルに存在しない場合には、当該前フレーム階調値および当該現フレーム階調値にそれぞれ最も値が近く、かつ、前記第2のルックアップテーブルに存在する前記前フレーム階調値および前記現フレーム階調値と、当該前フレーム階調値および当該現フレーム階調値の組み合わせに基づいて決定される前記到達階調値とを出力することを特徴とする。
A twelfth aspect of the present invention is the ninth aspect of the present invention,
The second gradation selection unit, when the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the second lookup table, The previous frame gradation value, the current frame gradation value, the previous frame gradation value, and the current frame that are closest to the current frame gradation value and exist in the second lookup table. The reached gradation value determined based on a combination of gradation values is output.
 本発明の第13の局面は、液晶表示装置であって、
 本発明の第1の局面から第12の局面までのいずれかに係る表示制御回路と、
 前記表示制御回路で得られた前記書込階調値に基づく表示を行うための前記液晶表示パネルとを備えることを特徴とする。
A thirteenth aspect of the present invention is a liquid crystal display device,
A display control circuit according to any of the first to twelfth aspects of the present invention;
And a liquid crystal display panel for performing display based on the writing gradation value obtained by the display control circuit.
 本発明の第14の局面は、外部から与えられる画像信号に基づき、液晶表示パネルでの表示を制御するための表示制御方法であって、
 前記画像信号に対して信号の時間的変化を強調する補正に用いられる書込階調値を、現フレームの直前のフレームにおける階調値である前フレーム階調値、および前記現フレームにおいて与えられる前記画像信号の階調値である現フレーム階調値の組み合わせに基づいて決定するための第1のルックアップテーブルを参照するステップと、
 前記組み合わせが前記第1のルックアップテーブルに存在する場合に、当該第組み合わせに基づいて決定される前記書込階調値を出力するステップと、
 前記組み合わせが前記第1のルックアップテーブルに存在しない場合に、当該組み合わせに最も近く、かつ、当該第1のルックアップテーブルに存在する前記組み合わせに対応する前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とを少なくとも出力するステップと、
 前記組み合わせが前記第1のルックアップテーブルに存在しない場合に出力された前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とのそれぞれを電圧値に変換し、当該電圧値を用いて、前記第1のルックアップテーブルに存在しない前記組み合わせに対応する前記書込階調値を取得するための補間処理を行うステップとを備えることを特徴とする。
A fourteenth aspect of the present invention is a display control method for controlling display on a liquid crystal display panel based on an image signal given from the outside,
A writing gradation value used for correction for emphasizing a temporal change of the signal with respect to the image signal is given in the previous frame gradation value which is a gradation value in a frame immediately before the current frame, and in the current frame. Referring to a first lookup table for determining based on a combination of current frame tone values that are tone values of the image signal;
Outputting the writing gradation value determined based on the first combination when the combination exists in the first lookup table;
If the combination does not exist in the first lookup table, the previous frame tone value and / or the current value that is closest to the combination and that corresponds to the combination that exists in the first lookup table. Outputting at least a frame gradation value and the writing gradation value;
Converting each of the previous frame gradation value and / or the current frame gradation value and the writing gradation value output when the combination does not exist in the first lookup table into a voltage value; Performing interpolation processing for obtaining the writing gradation value corresponding to the combination that does not exist in the first lookup table using the voltage value.
 本発明の第1の局面によれば、第1のルックアップテーブルに組み合わせが存在しない場合に、第1の補間部は、書込階調値、前フレーム階調値、および現フレーム階調値のそれぞれを電圧値に変換し、当該電圧値を用いて、第1のルックアップテーブルに存在しない組み合わせに対応する書込階調値を取得するための補間処理を行う。液晶の応答速度は電圧値(すなわち階調電圧)に依存するので、第1のルックアップテーブルに組み合わせが存在しない場合に階調電圧を用いた補間処理を行うことにより、液晶のVT特性に応じた階調電圧を用いてオーバードライブ駆動(画像信号に対して信号の時間的変化を強調する補正を行う駆動)を行うことができる。このため、必要とされるメモリ容量が比較的小さい第1のルックアップテーブルを用いてオーバードライブ駆動を行う従来技術に比べて、より適切な液晶の応答速度が得られる。これにより、低コストで高画質の動画表示を行うことができる。 According to the first aspect of the present invention, when there is no combination in the first look-up table, the first interpolation unit performs the writing gradation value, the previous frame gradation value, and the current frame gradation value. Are converted into voltage values, and interpolation processing is performed to acquire writing gradation values corresponding to combinations that do not exist in the first lookup table using the voltage values. Since the response speed of the liquid crystal depends on the voltage value (that is, the gradation voltage), the interpolation process using the gradation voltage is performed according to the VT characteristic of the liquid crystal when no combination exists in the first lookup table. Overdrive driving (driving for correcting the temporal change of the signal with respect to the image signal) can be performed using the gradation voltage. Therefore, a more appropriate liquid crystal response speed can be obtained as compared with the conventional technique in which overdrive driving is performed using the first look-up table having a relatively small memory capacity. Thereby, high-quality moving image display can be performed at low cost.
 本発明の第2の局面によれば、第1の補間部における補間処理として線形補間処理が用いられるので、簡易な処理で本発明の第1の局面と同様の効果を奏することができる。 According to the second aspect of the present invention, the linear interpolation process is used as the interpolation process in the first interpolation unit, so that the same effect as that of the first aspect of the present invention can be achieved with a simple process.
 本発明の第3の局面によれば、組み合わせのうち、前フレーム階調値のみが第1のルックアップテーブルに存在しない場合に、当該前フレーム階調値に最も値が近く、かつ、第1のルックアップテーブルに存在する前フレーム階調値と、当該前フレーム階調値および現フレーム階調値の組み合わせに基づいて決定される書込階調値とを用いることにより、本発明の第2の局面と同様の効果を奏することができる。 According to the third aspect of the present invention, when only the previous frame gradation value does not exist in the first look-up table among the combinations, the first frame closest to the previous frame gradation value and the first By using the previous frame gradation value existing in the look-up table and the writing gradation value determined based on the combination of the previous frame gradation value and the current frame gradation value, The same effects as in the above aspect can be obtained.
 本発明の第4の局面によれば、組み合わせのうち、現フレーム階調値のみが第1のルックアップテーブルに存在しない場合に、当該現フレーム階調値に最も値が近く、かつ、第1のルックアップテーブルに存在する現フレーム階調値と、当該現フレーム階調値および前フレーム階調値の組み合わせに基づいて決定される書込階調値とを用いることにより、本発明の第2の局面と同様の効果を奏することができる。 According to the fourth aspect of the present invention, when only the current frame gradation value does not exist in the first lookup table among the combinations, the value is closest to the current frame gradation value, and the first By using the current frame gradation value existing in the lookup table and the writing gradation value determined based on the combination of the current frame gradation value and the previous frame gradation value, The same effects as in the above aspect can be obtained.
 本発明の第5の局面によれば、組み合わせを構成する前フレーム階調値および現フレーム階調値が第1のルックアップテーブルに存在しない場合に、当該前フレーム階調値および当該現フレーム階調値にそれぞれ最も値が近く、かつ、第1のルックアップテーブルに存在する前フレーム階調値および現フレーム階調値と、当該前フレーム階調値および当該現フレーム階調値の組み合わせに基づいて決定される書込階調値とを用いることにより、本発明の第2の局面と同様の効果を奏することができる。 According to the fifth aspect of the present invention, when the previous frame gradation value and the current frame gradation value forming the combination are not present in the first lookup table, the previous frame gradation value and the current frame gradation value are determined. Based on the combination of the previous frame tone value and the current frame tone value, and the previous frame tone value and the current frame tone value that are closest to the tone value and exist in the first lookup table. By using the writing gradation value determined in this manner, the same effect as in the second aspect of the present invention can be obtained.
 本発明の第6の局面によれば、前フレーム階調値として、現フレームの直前のフレームにおける現フレーム階調値を用いることにより、本発明の第1の局面と同様の効果を奏することができる。 According to the sixth aspect of the present invention, the same effect as in the first aspect of the present invention can be obtained by using the current frame gradation value in the frame immediately before the current frame as the previous frame gradation value. it can.
 本発明の第7の局面によれば、前フレームにおいて第2のルックアップテーブルを用いて得られた到達階調値が、現フレームにおける前フレーム階調値として第1のルックアップテーブルの参照に用いられる。このため、より精度の高い前フレーム階調値を用いてオーバードライブ駆動を行うことができる。これにより、液晶の応答速度がより適切に補正されるので、動画表示の画質をさらに高めることができる。 According to the seventh aspect of the present invention, the reached gradation value obtained by using the second lookup table in the previous frame is referred to as the previous frame gradation value in the current frame. Used. For this reason, it is possible to perform overdrive driving using a more accurate previous frame gradation value. As a result, the response speed of the liquid crystal is corrected more appropriately, so that the image quality of moving image display can be further improved.
 本発明の第8の局面によれば、組み合わせが第2のルックアップテーブルに存在しない場合の補間処理が、電圧値(すなわち階調電圧)を用いることにより行われる。このため、液晶のVT特性を考慮して補間処理が行われるので、より正確な到達階調値が得られる。このようにして得られる到達階調値が前フレーム階調値としてオーバードライブ駆動に用いられるので、液晶の応答速度がより適切に補正される。これにより、動画表示の画質をさらに高めることができる。 According to the eighth aspect of the present invention, the interpolation process when the combination does not exist in the second lookup table is performed by using the voltage value (that is, the gradation voltage). For this reason, the interpolation process is performed in consideration of the VT characteristics of the liquid crystal, so that a more accurate reached gradation value can be obtained. Since the reached gradation value obtained in this way is used for overdrive driving as the previous frame gradation value, the response speed of the liquid crystal is corrected more appropriately. Thereby, the image quality of moving image display can be further improved.
 本発明の第9の局面によれば、第2の補間処理部における補間処理として線形補間処理が用いられるので、簡易な処理で本発明の第8の局面と同様の効果を奏することができる。 According to the ninth aspect of the present invention, the linear interpolation process is used as the interpolation process in the second interpolation processing unit, so that the same effects as those of the eighth aspect of the present invention can be achieved with a simple process.
 本発明の第10の局面によれば、組み合わせのうち、前フレーム階調値のみが第2のルックアップテーブルに存在しない場合に、当該前フレーム階調値に最も値が近く、かつ、第2のルックアップテーブルに存在する前記の入力階調値と、当該前フレーム階調値および現フレーム階調値の組み合わせに基づいて決定される到達階調値とを用いることにより、本発明の第9の局面と同様の効果を奏することができる。 According to the tenth aspect of the present invention, when only the previous frame gradation value does not exist in the second lookup table among the combinations, the value is closest to the previous frame gradation value, and the second By using the input tone value existing in the look-up table and the reached tone value determined based on the combination of the previous frame tone value and the current frame tone value, The same effects as in the above aspect can be obtained.
 本発明の第11の局面によれば、組み合わせのうち、現フレーム階調値のみが第2のルックアップテーブルに存在しない場合に、当該現フレーム階調値に最も値が近く、かつ、第2のルックアップテーブルに存在する現フレーム階調値と、当該現フレーム階調値および前フレーム階調値の組み合わせに基づいて決定される到達階調値とを用いることにより、本発明の第9の局面と同様の効果を奏することができる。 According to the eleventh aspect of the present invention, when only the current frame gradation value does not exist in the second lookup table among the combinations, the value is closest to the current frame gradation value, and the second By using the current frame tone value existing in the look-up table and the reached tone value determined based on the combination of the current frame tone value and the previous frame tone value, The same effect as the aspect can be achieved.
 本発明の第12の局面によれば、組み合わせを構成する前フレーム階調値および現フレーム階調値が第2のルックアップテーブルに存在しない場合には、当該前フレーム階調値および当該現フレーム階調値にそれぞれ最も値が近く、かつ、第2のルックアップテーブルに存在する前フレーム階調値および現フレーム階調値と、当該前フレーム階調値および当該現フレーム階調値の組み合わせに基づいて決定される到達階調値とを用いることにより、本発明の第9の局面と同様の効果を奏することができる。 According to the twelfth aspect of the present invention, when the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the second lookup table, the previous frame gradation value and the current frame A combination of the previous frame gradation value and the current frame gradation value, and the combination of the previous frame gradation value and the current frame gradation value that is closest to the gradation value and exists in the second lookup table. By using the reached gradation value determined based on this, the same effect as that of the ninth aspect of the present invention can be obtained.
 本発明の第13の局面によれば、液晶表示装置において、本発明の第1の局面から第12の局面までのいずれかと同様の効果を奏することができる。 According to the thirteenth aspect of the present invention, the liquid crystal display device can achieve the same effects as any of the first to twelfth aspects of the present invention.
 本発明の第14の局面によれば、表示制御方法において、本発明の第1の局面と同様の効果を奏することができる。 According to the fourteenth aspect of the present invention, the display control method can achieve the same effects as those of the first aspect of the present invention.
本発明の第1の実施形態に係る液晶表示装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a first embodiment of the present invention. 上記第1の実施形態おけるタイミングコントローラICの機能構成を説明するためのブロック図である。It is a block diagram for demonstrating the function structure of the timing controller IC in the said 1st Embodiment. 上記第1の実施形態におけるオーバードライブ駆動部の詳細な機能構成を説明するためのブロック図である。It is a block diagram for demonstrating the detailed functional structure of the overdrive drive part in the said 1st Embodiment. 上記第1の実施形態におけるOSテーブルの一例を模式的に示した図である。It is the figure which showed typically an example of the OS table in the said 1st Embodiment. 本発明の第1または第2の実施形態における第1のケースでの補間処理を説明するために、OSテーブル(または予測テーブル)の一部を模式的に示した図である。It is the figure which showed typically a part of OS table (or prediction table) in order to demonstrate the interpolation process in the 1st case in the 1st or 2nd embodiment of this invention. 上記第1の実施形態における第1のケースで誤差電圧が解消される様子を説明するために、階調値-階調電圧特性を模式的に示した図である。FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain how the error voltage is eliminated in the first case in the first embodiment. 上記第1または第2の実施形態における第2のケースでの補間処理を説明するために、OSテーブル(または予測テーブル)の一部を模式的に示した図である。It is the figure which showed typically a part of OS table (or prediction table), in order to demonstrate the interpolation process in the 2nd case in the said 1st or 2nd embodiment. 上記第1の実施形態における第2のケースで誤差電圧が解消される様子を説明するために、階調値-階調電圧特性を模式的に示した図である。FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain how the error voltage is eliminated in the second case in the first embodiment. 上記第1または第2の実施形態における第3のケースでの補間処理を説明するために、OSテーブル(または予測テーブル)の一部を模式的に示した図である。It is the figure which showed typically a part of OS table (or prediction table), in order to demonstrate the interpolation process in the 3rd case in the said 1st or 2nd embodiment. 上記第1の実施形態における第3のケースで誤差電圧が解消される様子を説明するために、階調値-階調電圧特性を模式的に示した図である。FIG. 10 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain how the error voltage is eliminated in the third case in the first embodiment. 上記第2の実施形態におけるオーバードライブ駆動部の詳細な機能構成を説明するためのブロック図である。It is a block diagram for demonstrating the detailed functional structure of the overdrive drive part in the said 2nd Embodiment. 上記第2の実施形態における予測テーブルの一例を模式的に示した図である。It is the figure which showed typically an example of the prediction table in the said 2nd Embodiment. 上記第2の実施形態におけるOSテーブルの一例を模式的に示した図である。It is the figure which showed typically an example of the OS table in the said 2nd Embodiment. 上記第3の実施形態におけるオーバードライブ駆動部の詳細な機能構成を説明するためのブロック図である。It is a block diagram for demonstrating the detailed functional structure of the overdrive drive part in the said 3rd Embodiment. 従来の液晶表示装置に保持されているOSテーブルの一例を模式的に示した図である。It is the figure which showed typically an example of the OS table currently hold | maintained at the conventional liquid crystal display device. 本発明の基礎検討において、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルに存在しない場合について説明するために、OSテーブルの一例を模式的に示した図である。FIG. 6 is a diagram schematically illustrating an example of an OS table in order to explain a case where a combination of a previous frame gradation value and a current frame gradation value does not exist in the OS table in the basic study of the present invention. 上記基礎検討において、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルに存在しない場合について説明するために、階調値-階調電圧特性を模式的に示した図である。FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain a case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in the basic study.
 本発明の実施形態について説明する前に、上記課題を解決すべく本願発明者によりなされた基礎検討について説明する。なお、本発明の基礎検討および後述の各実施形態における液晶表示装置では、256階調による表示が行われるものとする。また、本明細書中で、「ルックアップテーブル(OSテーブルおよび予測テーブル)に前フレーム階調値と現フレーム階調値との組み合わせが存在しない」とは、ルックアップテーブルに前フレーム階調値のみが存在しないこと、ルックアップテーブルに現フレーム階調値のみが存在しないこと、またはルックアップテーブルに前フレーム階調値および前フレーム階調値の双方が存在しないことを指す。また、「前フレーム階調値と現フレーム階調値との組み合わせに近い」とは、当該組み合わせに係る前フレーム階調値に値が近いこと、当該組み合わせに係る現フレーム階調値に値が近いこと、または当該組み合わせに係る書込階調値(あるいは到達階調値)に値が近いことを指す。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing an embodiment of the present invention, a basic study made by the present inventor to solve the above problems will be described. In the basic examination of the present invention and the liquid crystal display device in each embodiment described later, display with 256 gradations is performed. Further, in this specification, “the combination of the previous frame gradation value and the current frame gradation value does not exist in the lookup table (OS table and prediction table)” means that the previous frame gradation value is in the lookup table. This means that only the current frame gradation value does not exist in the lookup table, or that both the previous frame gradation value and the previous frame gradation value do not exist in the lookup table. Also, “close to the combination of the previous frame gradation value and the current frame gradation value” means that the value is close to the previous frame gradation value related to the combination, and the current frame gradation value related to the combination has a value. It means that the value is close or the value is close to the writing gradation value (or the reached gradation value) related to the combination.
 <0.基礎検討>
 本発明の基礎検討では、従来の液晶表示装置において、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルに存在しない場合について考える。図16は、本基礎検討において、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルに存在しない場合について説明するために、OSテーブルの一例を模式的に示した図である。ここでは、OSテーブルの参照に用いる前フレーム階調値および現フレーム階調値がそれぞれGxcおよびGyaであり、前フレーム階調値GxcはOSテーブルに存在しないものとする。この場合、従来の液晶表示装置では、前フレーム階調値Gxcと現フレーム階調値Gyaとの組み合わせに対応する書込階調値(Gcaとする)は補間(典型的には線形補間)により求められる。具体的には、前フレーム階調値Gxcの近傍の前フレーム階調値GxaおよびGxbと、前フレーム階調値Gxaおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gaaと、前フレーム階調値Gxbおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gbaとを用いて書込階調値GaaおよびGbaに関する線形補間を行うことにより、書込階調値Gcaが求められる。このようにして得られた書込階調値Gcaは、書込階調電圧に変換されて液晶に印加される。
<0. Basic study>
In the basic study of the present invention, the case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in the conventional liquid crystal display device will be considered. FIG. 16 is a diagram schematically showing an example of the OS table in order to explain a case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in this basic study. Here, it is assumed that the previous frame gradation value and the current frame gradation value used for referring to the OS table are Gxc and Gya, respectively, and the previous frame gradation value Gxc does not exist in the OS table. In this case, in the conventional liquid crystal display device, the writing gradation value (Gca) corresponding to the combination of the previous frame gradation value Gxc and the current frame gradation value Gya is obtained by interpolation (typically linear interpolation). Desired. Specifically, the previous frame gradation value Gxa and Gxb in the vicinity of the previous frame gradation value Gxc, the writing gradation value Gaa corresponding to the combination of the previous frame gradation value Gxa and the current frame gradation value Gya, By performing linear interpolation on the write tone values Gaa and Gba using the write tone value Gba corresponding to the combination of the previous frame tone value Gxb and the current frame tone value Gya, the write tone value Gca Is required. The writing gradation value Gca thus obtained is converted into a writing gradation voltage and applied to the liquid crystal.
 図17は、本基礎検討において、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルに存在しない場合について説明するために、階調値-階調電圧特性を模式的に示した図である。この階調値-階調電圧特性は、上述のように液晶のVT特性に基づいて決定される。図17に示すように、階調値と階調電圧とは線形な関係にない。詳細には、低階調値付近および高階調値付近では階調値の変化に対する階調電圧の変化が大きく、中階調値付近では階調値の変化に対する階調電圧の変化が極めて小さい。 FIG. 17 schematically shows the gradation value-gradation voltage characteristics in order to explain the case where the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table in this basic study. FIG. This gradation value-gradation voltage characteristic is determined based on the VT characteristic of the liquid crystal as described above. As shown in FIG. 17, the gradation value and the gradation voltage are not in a linear relationship. More specifically, the change in the gradation voltage with respect to the change in the gradation value is large near the low gradation value and the vicinity of the high gradation value, and the change in the gradation voltage with respect to the change in the gradation value is extremely small near the middle gradation value.
 線形補間により得られた書込階調値Gcaは、書込階調値GaaとGbaとの中央の値になっている。ところが、上述のように階調値と階調電圧とは線形な関係にないので、図17に示すように、書込階調値Gcaに対応する書込階調電圧Vcaは、書込階調値Gaaに対応する書込階調電圧Vaaと書込階調値Gbaに対応する書込階調電圧Vbaとの中央値とはならず、本例では、当該中間の値よりも階調電圧Vbaに近い値となっている。上述のように液晶の応答速度は階調電圧に依存するので、オーバードライブ駆動において上記組み合わせがOSテーブルに存在しない場合に、書込階調値Gaaに対応する書込階調電圧Vaaと書込階調値Gbaに対応する書込階調電圧Vbaとの中央の値に相当する書込階調電圧(以下「理想書込電圧」といい、符号Vidで表す)を液晶に印加することが望ましい。図17に示す書込階調電圧Vcaは、理想書込電圧Vidよりも高い値になっているので、液晶表示パネルがノーマリブラックモードであるとすると、当該書込階調電圧Vcaが液晶に印加されることで想定よりも明るい表示になってしまう。このように、液晶に印加すべき書込階調電圧について、誤差電圧(「階調値に基づく線形補間により得られた書込階調値に対応する書込階調電圧と理想書込電圧Vidとの差」をいう)が生じると、適切な液晶の応答速度が得られない。その結果、従来の液晶表示装置では、動画表示の際の画質低下を十分に抑制できない。 The writing gradation value Gca obtained by linear interpolation is the center value of the writing gradation values Gaa and Gba. However, since the gradation value and the gradation voltage are not in a linear relationship as described above, the writing gradation voltage Vca corresponding to the writing gradation value Gca is equal to the writing gradation as shown in FIG. This is not the median value of the write gradation voltage Vaa corresponding to the value Gaa and the write gradation voltage Vba corresponding to the write gradation value Gba. In this example, the gradation voltage Vba is higher than the intermediate value. The value is close to. As described above, the response speed of the liquid crystal depends on the gradation voltage. Therefore, when the combination does not exist in the OS table in overdrive driving, the writing gradation voltage Vaa corresponding to the writing gradation value Gaa and the writing are written. It is desirable to apply to the liquid crystal a writing gradation voltage (hereinafter referred to as “ideal writing voltage”, which is represented by the symbol Vid) corresponding to the center value of the writing gradation voltage Vba corresponding to the gradation value Gba. . Since the writing gradation voltage Vca shown in FIG. 17 is higher than the ideal writing voltage Vid, if the liquid crystal display panel is in the normally black mode, the writing gradation voltage Vca is applied to the liquid crystal. When applied, the display becomes brighter than expected. Thus, the error voltage (“the writing gradation voltage corresponding to the writing gradation value obtained by linear interpolation based on the gradation value and the ideal writing voltage Vid” is applied to the writing gradation voltage to be applied to the liquid crystal. If a difference between the liquid crystal and the liquid crystal is generated, an appropriate liquid crystal response speed cannot be obtained. As a result, the conventional liquid crystal display device cannot sufficiently suppress deterioration in image quality when displaying moving images.
 以上の基礎検討に基づき本願発明者によりなされた本発明の第1~第3の実施形態について、以下、添付図面を参照しながら説明する。 The first to third embodiments of the present invention made by the inventors of the present application based on the above basic examination will be described below with reference to the accompanying drawings.
 <1.第1の実施形態>
 本発明の第1の実施形態は、OSテーブルを用いてオーバードライブ駆動を行う液晶表示装置に係るものである。
<1. First Embodiment>
The first embodiment of the present invention relates to a liquid crystal display device that performs overdrive driving using an OS table.
 <1.1 全体構成および動作概要>
 図1は、本実施形態に係る液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、表示部500を含む液晶表示パネル5、コントロール基板10、ソースドライバ300、およびゲートドライバ400により構成されている。コントロール基板10には、表示制御回路としてのタイミングコントローラIC100、および不揮発性メモリであるフラッシュメモリ200が搭載されている。なお、ソースドライバ300およびゲートドライバ400の双方または一方が液晶表示パネル5内に含まれていても良い。すなわち、ソースドライバ300およびゲートドライバ400の双方または一方が、液晶表示パネル5を構成するガラス基板上にモノリシックに形成されていても良い。
<1.1 Overall configuration and operation overview>
FIG. 1 is a block diagram showing the overall configuration of the liquid crystal display device according to the present embodiment. This liquid crystal display device includes a liquid crystal display panel 5 including a display unit 500, a control substrate 10, a source driver 300, and a gate driver 400. On the control board 10, a timing controller IC 100 as a display control circuit and a flash memory 200 as a nonvolatile memory are mounted. Note that both or one of the source driver 300 and the gate driver 400 may be included in the liquid crystal display panel 5. That is, both or one of the source driver 300 and the gate driver 400 may be monolithically formed on the glass substrate that constitutes the liquid crystal display panel 5.
 本実施形態に係る液晶表示装置では、2D表示および3D表示の2つの表示モードが用意されており、液晶表示パネル5の表示部500は表示モードに応じて2D表示または3D表示で画像を表示することが可能になっている。以下では、2D表示が行われるべき表示モードのことを「2Dモード」といい、3D表示が行われるべき表示モードのことを「3Dモード」という。なお、2Dモードおよび3Dモードの2つの表示モードを用意することは本発明にとって必須ではなく、2Dモードのみ、または3Dモードのみが用意されていても良い。 In the liquid crystal display device according to the present embodiment, two display modes of 2D display and 3D display are prepared, and the display unit 500 of the liquid crystal display panel 5 displays an image in 2D display or 3D display depending on the display mode. It is possible. Hereinafter, a display mode in which 2D display is to be performed is referred to as “2D mode”, and a display mode in which 3D display is to be performed is referred to as “3D mode”. Note that it is not essential for the present invention to prepare two display modes of the 2D mode and the 3D mode, and only the 2D mode or only the 3D mode may be prepared.
 表示部500には、複数本のソースラインSL、複数本のゲートラインGL、およびソースラインSLとゲートラインGLとの各交差点に対応して設けられた画素形成部が形成されている。すなわち、表示部500には複数個の画素形成部が含まれている。これらの複数個の画素形成部は、マトリクス状に配置されることにより画素アレイを構成している。各画素形成部は、対応する交差点を通過するゲートラインにゲート端子が接続されると共に当該交差点を通過するソースラインにソース端子が接続されたスイッチング素子である薄膜トランジスタ50と、当該薄膜トランジスタ50のドレイン端子に接続された画素電極51と、上記複数個の画素形成部に共通的に設けられた対向電極である共通電極52と、上記複数個の画素形成部に共通的に設けられ、画素電極51と共通電極52との間に挟持された液晶層とからなっている。そして、画素電極51および共通電極52により形成される液晶容量により画素容量Cpが構成されている。なお通常、画素容量Cpに確実に電圧を保持すべく、液晶容量に並列に補助容量が設けられるが、補助容量は本発明には直接に関係しないのでその説明および図示を省略する。なお、図1の表示部500内には、1つの画素形成部に対応する構成要素のみを示している。 In the display unit 500, a plurality of source lines SL, a plurality of gate lines GL, and pixel forming portions provided corresponding to the intersections of the source lines SL and the gate lines GL are formed. That is, the display unit 500 includes a plurality of pixel formation units. The plurality of pixel forming portions are arranged in a matrix to form a pixel array. Each pixel forming portion includes a thin film transistor 50 which is a switching element having a gate terminal connected to a gate line passing through a corresponding intersection and a source terminal connected to a source line passing through the intersection, and a drain terminal of the thin film transistor 50 A pixel electrode 51 connected to the common electrode 52, a common electrode 52 which is a common electrode provided in the plurality of pixel formation portions, and a common electrode 52 provided in the plurality of pixel formation portions. The liquid crystal layer is sandwiched between the common electrode 52. A pixel capacitor Cp is constituted by a liquid crystal capacitor formed by the pixel electrode 51 and the common electrode 52. Normally, an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to reliably hold the voltage in the pixel capacitor Cp. However, since the auxiliary capacitor is not directly related to the present invention, its description and illustration are omitted. Note that only the components corresponding to one pixel formation portion are shown in the display portion 500 of FIG.
 タイミングコントローラIC100は、画像信号DAT、水平同期信号および垂直同期信号等のタイミング信号TS、および表示モードを示すモード信号MDを外部から受け取り、画像信号DATに対して所定の補正処理を施した後、デジタル映像信号DVと、ソースドライバ300の動作を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSと、ゲートドライバ400の動作を制御するためのゲートスタートパルス信号GSPおよびゲートクロック信号GCKとを出力する。なお、電源投入直後または表示モードの切替が行われる際には、タイミングコントローラIC100は、補正処理に必要なデータをフラッシュメモリ200から読み出し、その読み出したデータを内部の揮発性メモリに書き込む。 The timing controller IC 100 receives an image signal DAT, a timing signal TS such as a horizontal synchronization signal and a vertical synchronization signal, and a mode signal MD indicating a display mode from the outside, and performs a predetermined correction process on the image signal DAT. The digital video signal DV, the source start pulse signal SSP for controlling the operation of the source driver 300, the source clock signal SCK, and the latch strobe signal LS, the gate start pulse signal GSP for controlling the operation of the gate driver 400, and A gate clock signal GCK is output. Note that immediately after the power is turned on or when the display mode is switched, the timing controller IC 100 reads data necessary for the correction processing from the flash memory 200 and writes the read data to the internal volatile memory.
 ソースドライバ300は、タイミングコントローラIC100から出力されるデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースラインSLに駆動用映像信号を印加する。このとき、ソースドライバ300では、ソースクロック信号SCKのパルスが発生するタイミングで、各ソースラインSLに印加すべき電圧(書込階調値)を示すデジタル映像信号DVが順次に保持される。そして、ラッチストローブ信号LSのパルスが発生するタイミングで、上記保持されたデジタル映像信号DVがアナログ電圧(書込階調電圧)に変換される。その変換されたアナログ電圧は、駆動用映像信号として全てのソースラインSLに一斉に印加される。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the timing controller IC 100, and applies a driving video signal to each source line SL. At this time, the source driver 300 sequentially holds the digital video signal DV indicating the voltage (write gradation value) to be applied to each source line SL at the timing when the pulse of the source clock signal SCK is generated. The held digital video signal DV is converted into an analog voltage (write gradation voltage) at the timing when the pulse of the latch strobe signal LS is generated. The converted analog voltage is simultaneously applied to all the source lines SL as a driving video signal.
 ゲートドライバ400は、タイミングコントローラIC100から出力されるゲートスタートパルスGSPおよびゲートクロック信号GCKに基づいて、アクティブな走査信号の各ゲートラインGLへの印加を1フレーム期間を周期として繰り返す。 The gate driver 400 repeats the application of the active scanning signal to each gate line GL with one frame period as a cycle based on the gate start pulse GSP and the gate clock signal GCK output from the timing controller IC100.
 以上のようにして、各ソースラインSLに駆動用映像信号が印加され、各ゲートラインGLにアクティブな走査信号が印加されることにより、外部から送信された画像信号DATに基づく画像が液晶表示パネル5の表示部500に表示される。 As described above, when the driving video signal is applied to each source line SL and the active scanning signal is applied to each gate line GL, an image based on the image signal DAT transmitted from the outside is displayed on the liquid crystal display panel. 5 on the display unit 500.
 <1.2 タイミングコントローラICの構成>
 図2は、本実施形態におけるタイミングコントローラIC100の機能構成を説明するためのブロック図である。タイミングコントローラIC100は、データ受信部110、データ処理部120、ラインバッファ130、データ送信部140、タイミング制御部150、記憶部としてのSDRAM160、およびSDRAMインターフェース部170により構成されている。データ処理部120には、ガンマ補正部121およびオーバードライブ駆動部122が含まれている。
<1.2 Configuration of timing controller IC>
FIG. 2 is a block diagram for explaining a functional configuration of the timing controller IC 100 in the present embodiment. The timing controller IC 100 includes a data reception unit 110, a data processing unit 120, a line buffer 130, a data transmission unit 140, a timing control unit 150, an SDRAM 160 as a storage unit, and an SDRAM interface unit 170. The data processing unit 120 includes a gamma correction unit 121 and an overdrive drive unit 122.
 データ受信部110は、外部から送信される画像信号DATを受け取り、それをデータ処理部120に与える。 The data receiving unit 110 receives an image signal DAT transmitted from the outside and gives it to the data processing unit 120.
 データ処理部120内のガンマ補正部121は、使用される液晶表示パネル5の特性に応じてガンマ補正を行う。なお、このガンマ補正は当業者にとって周知であるのでその説明を省略する。本実施形態におけるガンマ補正としては、公知の種々のガンマ補正を用いることができる。 The gamma correction unit 121 in the data processing unit 120 performs gamma correction according to the characteristics of the liquid crystal display panel 5 used. Since this gamma correction is well known to those skilled in the art, description thereof is omitted. Various known gamma corrections can be used as the gamma correction in the present embodiment.
 データ処理部120内のオーバードライブ駆動部122は、ガンマ補正が施された画像信号DATに対して信号の時間的変化を強調する補正を行い、各画素形成部における書込階調値を示す書込階調データWDを生成し、それをラインバッファ130に出力する。なお、オーバードライブ駆動部122には、表示モードが2Dモードであるのか3Dモードであるのかを示すモード信号MDが与えられ、オーバードライブ駆動部122は表示モードに応じた処理を行う。 The overdrive drive unit 122 in the data processing unit 120 performs correction for emphasizing the temporal change of the signal with respect to the image signal DAT on which gamma correction has been performed, and displays the writing gradation value in each pixel forming unit. The gray level data WD is generated and output to the line buffer 130. The overdrive drive unit 122 is given a mode signal MD indicating whether the display mode is the 2D mode or the 3D mode, and the overdrive drive unit 122 performs processing according to the display mode.
 図3は、本実施形態におけるオーバードライブ駆動部122の詳細な構成を説明するためのブロック図である。図3に示すように、オーバードライブ駆動部122は、書込階調選択部21および第1の補間部としての書込階調補間処理部22により構成されている。書込階調補間処理部22には、階調値-電圧変換部23、補間演算部24、および電圧-階調値変換部25が含まれている。書込階調選択部21は、当該書込階調選択部21への現フレームの入力データ(以下「現フレームデータ」という)CDが示す現フレーム階調値、および現フレームデータの1フレーム前の入力データ(以下「前フレームデータ」という)PDが示す前フレーム階調値に基づいて、例えば図4に示すOSテーブルLUT1を参照することにより書込階調値を決定し、それを示す書込階調データWDを出力する。OSテーブルLUT1は第1のルックアップテーブルに相当する。ここで、メモリ容量の削減のために、OSテーブルLUT1には16階調×16階調分のデータが用意されている。図4において(後述の図12でも同様である)、最も左の列に記されている数値は前フレーム階調値を示し、最も上の行に記されている数値は現フレーム階調値を示している。そして、各行と各列とが交差する位置に記されている数値は、各前フレーム階調値と各現フレーム階調値との組み合わせに基づいて決定される書込階調値を示している。ただし、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルLUT1に存在しない場合には、書込階調選択部21は少なくとも、当該組み合わせに最も近い、前フレーム階調値および/または現フレーム階調値と書込階調値とを階調値-電圧変換部23に与える。階調値-電圧変換部23は、受け取った各階調値を電圧値に変換し出力する。補間演算部24は、階調値-電圧変換部23から出力された変換後の電圧値を用いて、OSテーブルLUT1に存在しない組み合わせに対応する書込階調値を取得するための線形補間処理を行い、当該補間処理により得られる電圧値を出力する。電圧-階調値変換部25は、補間演算部24から出力された電圧値を階調値(書込階調値)に変換し、それを示す書込階調データWDを出力する。以下では、書込階調選択部21から出力される書込階調データWDのことを「第1の書込階調データ」といい、符号WDaで表す。また、電圧-階調値変換部25から出力される書込階調データWDのことを「第2の書込階調データ」といい、符号WDbで表す。さらに、第1の書込階調データWDaが示す書込階調値のことを「第1の書込階調値」といい、第2の書込階調データWDbが示す書込階調値のことを「第2の書込階調値」という。 FIG. 3 is a block diagram for explaining a detailed configuration of the overdrive driving unit 122 in the present embodiment. As shown in FIG. 3, the overdrive driving unit 122 includes a writing tone selection unit 21 and a writing tone interpolation processing unit 22 as a first interpolation unit. The writing gradation interpolation processing unit 22 includes a gradation value-voltage conversion unit 23, an interpolation calculation unit 24, and a voltage-gradation value conversion unit 25. The writing gradation selection unit 21 inputs the current frame gradation value indicated by the input data (hereinafter referred to as “current frame data”) CD of the current frame to the writing gradation selection unit 21 and one frame before the current frame data. 4, based on the previous frame gradation value indicated by PD (hereinafter referred to as “previous frame data”) PD, for example, the writing gradation value is determined by referring to the OS table LUT1 shown in FIG. The gray scale data WD is output. The OS table LUT1 corresponds to a first lookup table. Here, in order to reduce the memory capacity, data for 16 gradations × 16 gradations is prepared in the OS table LUT1. In FIG. 4 (the same applies to FIG. 12 to be described later), the numerical value indicated in the leftmost column indicates the previous frame gradation value, and the numerical value indicated in the uppermost line indicates the current frame gradation value. Show. A numerical value written at a position where each row and each column intersect indicates a writing gradation value determined based on a combination of each previous frame gradation value and each current frame gradation value. . However, when the combination of the previous frame gradation value and the current frame gradation value does not exist in the OS table LUT1, the writing gradation selection unit 21 is at least the previous frame gradation value and / or the closest to the combination. Alternatively, the current frame gradation value and the written gradation value are given to the gradation value-voltage conversion unit 23. The gradation value-voltage conversion unit 23 converts each received gradation value into a voltage value and outputs it. The interpolation calculation unit 24 uses the converted voltage value output from the gradation value-voltage conversion unit 23 to obtain a linear interpolation process for acquiring a writing gradation value corresponding to a combination that does not exist in the OS table LUT1. The voltage value obtained by the interpolation process is output. The voltage-gradation value conversion unit 25 converts the voltage value output from the interpolation calculation unit 24 into a gradation value (writing gradation value), and outputs writing gradation data WD indicating the converted gradation value. Hereinafter, the writing gradation data WD output from the writing gradation selection unit 21 is referred to as “first writing gradation data”, and is represented by a symbol WDa. The writing gradation data WD output from the voltage-gradation value conversion unit 25 is referred to as “second writing gradation data” and is denoted by reference numeral WDb. Further, the writing gradation value indicated by the first writing gradation data WDa is referred to as “first writing gradation value”, and the writing gradation value indicated by the second writing gradation data WDb. This is called “second writing gradation value”.
 ラインバッファ130には、オーバードライブ駆動部122から出力された1ライン分の書込階調データWDが保持される。 In the line buffer 130, the writing gradation data WD for one line output from the overdrive driving unit 122 is held.
 データ送信部140は、ラインバッファ130から書込階調データWDを取り出し、それをデジタル映像信号DVとして出力する。 The data transmission unit 140 takes out the write gradation data WD from the line buffer 130 and outputs it as a digital video signal DV.
 タイミング制御部150は、外部から送信されるタイミング信号TSに基づき、データ受信部110、データ処理部120、およびデータ送信部140の動作を制御すると共に、ソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルスGSP、およびゲートクロック信号GCKを出力する。 The timing control unit 150 controls operations of the data reception unit 110, the data processing unit 120, and the data transmission unit 140 based on a timing signal TS transmitted from the outside, and also includes a source start pulse signal SSP, a source clock signal SCK, A latch strobe signal LS, a gate start pulse GSP, and a gate clock signal GCK are output.
 SDRAM160は揮発性メモリである。SDRAM160には、オーバードライブ駆動部122による処理に用いられるデータ(以下「オーバードライブ駆動用データ」という)が格納されている。オーバードライブ駆動用データは、前フレームデータPDおよびOSテーブルLUT1で構成されている。 SDRAM 160 is a volatile memory. The SDRAM 160 stores data used for processing by the overdrive drive unit 122 (hereinafter referred to as “overdrive drive data”). The overdrive driving data is composed of the previous frame data PD and the OS table LUT1.
 SDRAMインターフェース部170は、SDRAM160へのデータの書き込みおよびSDRAM160からもデータの読み出しに際して、データ処理部120とSDRAM160との間のインターフェースとして機能する。 The SDRAM interface unit 170 functions as an interface between the data processing unit 120 and the SDRAM 160 when writing data to the SDRAM 160 and reading data from the SDRAM 160.
 タイミングコントローラIC100が搭載されたコントロール基板10には、フラッシュメモリ200も搭載されている。フラッシュメモリ200には、オーバードライブ駆動用データの一部であるOSテーブルLUT1が少なくとも格納されている。フラッシュメモリ200は不揮発性であるので、装置の電源がオフ状態にされてもOSテーブルLUT1の内容が消失することはない。タイミングコントローラIC100は、装置の電源投入直後に、OSテーブルLUT1をフラッシュメモリ200から読み出し、それを内部のSDRAM160に書き込む。このようにタイミングコントローラIC100ではなくフラッシュメモリ200にOSテーブルLUT1を書き込んでおく構成とすることにより、OSテーブルLUT1の内容を比較的容易に外部から書き換えることが可能になる。 The flash memory 200 is also mounted on the control board 10 on which the timing controller IC 100 is mounted. The flash memory 200 stores at least an OS table LUT1 which is a part of overdrive driving data. Since the flash memory 200 is non-volatile, the contents of the OS table LUT1 will not be lost even when the power of the apparatus is turned off. The timing controller IC 100 reads the OS table LUT1 from the flash memory 200 and writes it to the internal SDRAM 160 immediately after the device is turned on. Thus, by adopting a configuration in which the OS table LUT1 is written in the flash memory 200 instead of the timing controller IC 100, the contents of the OS table LUT1 can be rewritten from the outside relatively easily.
 <1.3 動作>
 次に、本実施形態におけるオーバードライブ駆動部122の動作について説明する。なお、オーバードライブ駆動部122は実際には、表示モードに応じて参照すべきOSテーブルを変更する等、表示モードに応じた動作を行うが、本願発明特有の動作については2Dモードおよび3Dモードで共通するものである。このため、以下で説明する動作は例えば3Dモードで行われるものとし、表示モード別の動作説明は省略する。書込階調選択部21は、現フレームデータCDを受け取り、さらに、SDRAM160に格納された前フレームデータPDを読み出す。なお、このときに書込階調選択部21が受け取る現フレームデータCDは、現フレームの次のフレームにおける前フレームデータPDとしてSDRAM160に格納される。そして、書込階調選択部21は、前フレームデータPDが示す前フレーム階調値および現フレームデータCDが示す現フレーム階調値に基づいてSDRAM160に格納されたOSテーブルLUT1を参照する。その後、本実施形態では、前フレーム階調値と現フレーム階調値との組み合わせがOSテーブルLUT1に存在する場合(以下単に「組み合わせが存在する場合」ということがある)と存在しない場合(以下単に「組み合わせが存在しない場合」ということがある)とで、互いに異なる動作が行われる。
<1.3 Operation>
Next, the operation of the overdrive drive unit 122 in this embodiment will be described. Note that the overdrive drive unit 122 actually performs an operation according to the display mode, such as changing an OS table to be referred to according to the display mode, but the operation unique to the present invention is performed in the 2D mode and the 3D mode. It is common. For this reason, the operation described below is performed in, for example, the 3D mode, and the operation description for each display mode is omitted. The writing gradation selection unit 21 receives the current frame data CD, and further reads the previous frame data PD stored in the SDRAM 160. At this time, the current frame data CD received by the writing gradation selection unit 21 is stored in the SDRAM 160 as the previous frame data PD in the frame next to the current frame. Then, the writing gradation selection unit 21 refers to the OS table LUT1 stored in the SDRAM 160 based on the previous frame gradation value indicated by the previous frame data PD and the current frame gradation value indicated by the current frame data CD. Thereafter, in the present embodiment, the combination of the previous frame gradation value and the current frame gradation value exists in the OS table LUT1 (hereinafter sometimes simply referred to as “there is a combination”) and does not exist (hereinafter referred to as “there is a combination”). The operations are different from each other simply by “when there is no combination”.
 <1.3.1 組み合わせが存在する場合の動作>
 組み合わせが存在する場合の動作は、以下のように行われる。書込階調選択部21は、前フレーム階調値と現フレーム階調値との組み合わせに応じた第1の書込階調値を示す第1の書込階調データWDaをSDRAM160から取得する。そして、書込階調選択部21は、第1の書込階調データWDaをラインバッファ130に与える。このように、組み合わせが存在する場合には、上述の線形補間処理は行われない。
<1.3.1 Operation when a combination exists>
The operation when a combination exists is performed as follows. The write tone selection unit 21 acquires from the SDRAM 160 first write tone data WDa indicating the first write tone value corresponding to the combination of the previous frame tone value and the current frame tone value. . Then, the write gradation selection unit 21 gives the first write gradation data WDa to the line buffer 130. As described above, when the combination exists, the above-described linear interpolation processing is not performed.
 <1.3.2 組み合わせが存在しない場合の動作>
 組み合わせが存在しない場合の動作は、具体的には3種類の動作に分けられる。すなわち、OSテーブルLUT1(後述の第3の実施形態では予測テーブルLUT2)に前フレーム階調値が存在せず、現フレーム階調値が存在する場合(以下「第1のケース」という)の動作と、OSテーブルLUT1に、前フレーム階調値が存在し、現フレーム階調値が存在しない場合(以下「第2のケース」という)の動作と、前フレーム階調値および現フレーム階調値の双方が存在しない場合(以下「第3のケース」という)との3種類がある。以下では、組み合わせが存在しない場合の動作について、第1のケースの動作、第2のケースの動作、および第3のケースの動作に分けて説明する。
<1.3.2 Operation when no combination exists>
The operation when there is no combination is specifically divided into three types of operations. That is, the operation when the previous frame gradation value does not exist and the current frame gradation value exists in the OS table LUT1 (prediction table LUT2 in the third embodiment described later) (hereinafter referred to as “first case”). The operation when the previous frame gradation value exists in the OS table LUT1 and the current frame gradation value does not exist (hereinafter referred to as “second case”), the previous frame gradation value, and the current frame gradation value. There are three types when both of them are not present (hereinafter referred to as “third case”). In the following, the operation when there is no combination will be described separately for the operation of the first case, the operation of the second case, and the operation of the third case.
 <1.3.2.1 第1のケースの動作>
 図5は、本実施形態における第1のケースの動作を説明するために、OSテーブルLUT1の一部を模式的に示した図である。ここで、頭文字が“G”である符号により階調値を示し、頭文字が“V”である符号により階調電圧を示している。また、階調値の右側または下側に括弧書で示される階調電圧は、当該階調値を電圧値に変換して得られる階調電圧を説明の便宜上示したものであり、当該階調電圧はOSテーブルLUT1には存在しない(後述の図7および図9でも同様である)。図5に示すように、OSテーブルLUT1には、前フレーム階調値GxaおよびGxbと、現フレーム階調値Gyaと、前フレーム階調値Gxaおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gaaと、前フレーム階調値Gxbおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gbaとが存在している。前フレーム階調値GxaはGxbよりも小さく、書込階調値GaaはGbaよりも小さいとする。このような前提において、OSテーブルLUT1の参照に用いられる前フレーム階調値がOSテーブルLUT1に存在しないGxcであり、現フレーム階調値がOSテーブルLUT1に存在するGyaである第1のケースの動作について説明する。なお、前フレーム階調値Gxcは、前フレーム階調値Gxaよりも大きくGxbよりも小さい。
<1.3.2.1 Operation in First Case>
FIG. 5 is a diagram schematically showing a part of the OS table LUT1 in order to explain the operation of the first case in the present embodiment. Here, a gradation value is indicated by a code whose initial is “G”, and a gradation voltage is indicated by a code whose initial is “V”. The gradation voltage indicated in parentheses on the right side or the lower side of the gradation value is a gradation voltage obtained by converting the gradation value into a voltage value for convenience of explanation. The voltage does not exist in the OS table LUT1 (the same applies to FIGS. 7 and 9 described later). As shown in FIG. 5, in the OS table LUT1, there are written in correspondence with the previous frame gradation values Gxa and Gxb, the current frame gradation value Gya, and the combination of the previous frame gradation value Gxa and the current frame gradation value Gya. There is a built-in gradation value Gaa and a writing gradation value Gba corresponding to a combination of the previous frame gradation value Gxb and the current frame gradation value Gya. It is assumed that the previous frame gradation value Gxa is smaller than Gxb and the writing gradation value Gaa is smaller than Gba. Under such a premise, the first frame gradation value used for referring to the OS table LUT1 is Gxc that does not exist in the OS table LUT1, and the current frame gradation value is Gya that exists in the OS table LUT1. The operation will be described. The previous frame gradation value Gxc is larger than the previous frame gradation value Gxa and smaller than Gxb.
 前フレーム階調値Gxcと現フレーム階調値Gyaとの組み合わせに対応する書込階調値がOSテーブルLUT1に存在しないので、書込階調選択部21は、OSテーブルLUT1に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が小さい前フレーム階調値GxaとOSテーブルLUT1に存在する現フレーム階調値Gyaとの組み合わせに対応する書込階調値GaaをSDRAM160から取得する。書込階調選択部21は同様に、OSテーブルLUT1に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が大きい前フレーム階調値Gxbと、OSテーブルLUT1に存在する現フレーム階調値Gyaとの組み合わせに対応する書込階調値GbaをSDRAM160から取得する。 Since the writing gradation value corresponding to the combination of the previous frame gradation value Gxc and the current frame gradation value Gya does not exist in the OS table LUT1, the writing gradation selection unit 21 exists in the OS table LUT1, and Of the two previous frame gradation values closest to the previous frame gradation value Gxc, the previous frame gradation value Gxa having a value smaller than the previous frame gradation value Gxc and the current frame level existing in the OS table LUT1 The write tone value Gaa corresponding to the combination with the tone value Gya is acquired from the SDRAM 160. Similarly, the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc. The write gradation value Gba corresponding to the combination of the previous frame gradation value Gxb having a large value and the current frame gradation value Gya existing in the OS table LUT1 is acquired from the SDRAM 160.
 書込階調選択部21は、上述のようにして取得した書込階調値Gaa、Gbaに加えて、それらに対応する前フレーム階調値Gxa、GxbをSDRAM160から取得する。そして、書込階調選択部21は、SDRAM160から取得した書込階調値Gaa、Gbaおよび前フレーム階調値Gxa、Gxbと、OSテーブルLUT1に存在しない前フレーム階調値Gxcとを書込階調補間処理部22内の階調値-電圧変換部23に与える。 The writing gradation selection unit 21 acquires the previous frame gradation values Gxa and Gxb from the SDRAM 160 in addition to the writing gradation values Gaa and Gba acquired as described above. Then, the write tone selection unit 21 writes the write tone values Gaa and Gba and the previous frame tone values Gxa and Gxb acquired from the SDRAM 160, and the previous frame tone value Gxc that does not exist in the OS table LUT1. This is given to the gradation value-voltage conversion unit 23 in the gradation interpolation processing unit 22.
 階調値-電圧変換部23は、書込階調選択部21から受け取った書込階調値Gaa、Gba、および前フレーム階調値Gxa、Gxb、Gxcのそれぞれを電圧値に変換し出力する。図5では、書込階調選択部21から受け取った書込階調値Gaa、Gba、および前フレーム階調値Gxa、Gxb、Gxcを電圧値に変換することにより得られる階調電圧をそれぞれVaa、Vba、Vxa、Vxb、およびVxcで示している。以下では、前フレーム階調値を電圧値に変換して得られる階調電圧のことを「前フレーム階調電圧」という。 The gradation value-voltage conversion unit 23 converts the writing gradation values Gaa, Gba and the previous frame gradation values Gxa, Gxb, Gxc received from the writing gradation selection unit 21 into voltage values and outputs them. . In FIG. 5, the gradation voltages obtained by converting the writing gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc received from the writing gradation selection unit 21 into voltage values are Vaa. , Vba, Vxa, Vxb, and Vxc. Hereinafter, the gradation voltage obtained by converting the previous frame gradation value into the voltage value is referred to as “previous frame gradation voltage”.
 補間演算部24は、階調値-電圧変換部23から書込階調電圧Vaa、Vba、および前フレーム階調電圧Vxa、Vxb、Vxcを受け取り、それらを用いた線形補間処理により、書込階調電圧Vvcaを生成し出力する。ここで、第1のケースの線形補間処理は、下記の式(1)に基づいて行われる。
  Vvca=Vaa+(Vba-Vaa)×(Vxc-Vxa)/(Vxb-Vxa)
                                    …(1)
The interpolation calculation unit 24 receives the writing gradation voltages Vaa and Vba and the previous frame gradation voltages Vxa, Vxb, and Vxc from the gradation value-voltage conversion unit 23, and performs the writing step by linear interpolation processing using them. A regulated voltage Vvca is generated and output. Here, the linear interpolation processing in the first case is performed based on the following equation (1).
Vvca = Vaa + (Vba−Vaa) × (Vxc−Vxa) / (Vxb−Vxa)
... (1)
 電圧-階調値変換部25は、補間演算部24から書込階調電圧Vvcaを受け取り、それを階調値(第2の書込階調値)に変換し、当該第2の書込階調値を示す第2の書込階調データWDbをラインバッファ130に与える。以上のようにして、オーバードライブ駆動部122における第1のケースの動作が行われる。 The voltage-gradation value conversion unit 25 receives the write gradation voltage Vvca from the interpolation calculation unit 24, converts it into a gradation value (second writing gradation value), and outputs the second writing step. Second write gradation data WDb indicating a tone value is applied to the line buffer 130. As described above, the operation of the first case in the overdrive drive unit 122 is performed.
 図6は、本実施形態における第1のケースの動作を説明するために、階調値-階調電圧特性を模式的に示した図である。図6に示すように、従来の液晶表示装置は第1のケースにおいて、書込階調値Gaa、Gba、および前フレーム階調値Gxa、Gxb、Gxcを用いて線形補間処理を行い、当該線形補間処理により得られた書込階調値Gcaをソースドライバ300において書込階調電圧Vgcaに変換して液晶に印加する。液晶の応答速度は階調電圧に依存するので、従来の液晶表示装置において階調値に基づく線形補間処理により得られる書込階調電圧Vgcaは上述の理想書込電圧Vidとはならない。このため、従来の液晶表示装置では第1のケースにおいて誤差電圧が生じる。これに対して、本実施形態に係る液晶表示装置は第1のケースにおいて、書込階調値Gaa、Gba、および前フレーム階調値Gxa、Gxb、Gxcをそれぞれ電圧値に変換した書込階調電圧Vaa、Vba、および前フレーム階調電圧Vxa、Vxb、Vxcを用いて上記式(1)に基づく線形補間処理を行い、当該線形補間処理により得られた書込階調電圧Vvcaを階調値に変換し、当該階調値をソースドライバ300において再度書込階調電圧Vvcaに変換して液晶に印加する。このようにして、本実施形態における線形補間処理は電圧値に基づいて行われるので、当該線形補間処理により得られる書込階調電圧Vvcaは上述の理想書込電圧Vidに相当する値となる。 FIG. 6 is a diagram schematically showing gradation value-gradation voltage characteristics in order to explain the operation of the first case in the present embodiment. As shown in FIG. 6, in the first case, the conventional liquid crystal display device performs linear interpolation processing using the writing gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc, and performs the linear interpolation. The writing gradation value Gca obtained by the interpolation processing is converted into the writing gradation voltage Vgca by the source driver 300 and applied to the liquid crystal. Since the response speed of the liquid crystal depends on the gradation voltage, the writing gradation voltage Vgca obtained by the linear interpolation processing based on the gradation value in the conventional liquid crystal display device does not become the above-described ideal writing voltage Vid. For this reason, in the conventional liquid crystal display device, an error voltage is generated in the first case. On the other hand, in the first case, the liquid crystal display device according to the present embodiment has a writing scale obtained by converting the writing gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb and Gxc into voltage values, respectively. The linear interpolation processing based on the above equation (1) is performed using the adjustment voltages Vaa, Vba and the previous frame gradation voltages Vxa, Vxb, Vxc, and the writing gradation voltage Vvca obtained by the linear interpolation processing is gradation The gradation value is converted again into the writing gradation voltage Vvca in the source driver 300 and applied to the liquid crystal. In this way, since the linear interpolation process in the present embodiment is performed based on the voltage value, the write gradation voltage Vvca obtained by the linear interpolation process is a value corresponding to the ideal write voltage Vid described above.
 <1.3.2.2 第2のケースの動作>
 図7は、本実施形態における第2のケースの動作を説明するために、OSテーブルLUT1の一部を模式的に示した図である。図7に示すように、OSテーブルLUT1には、前フレーム階調値Gxaと、現フレーム階調値GyaおよびGybと、前フレーム階調値Gxaおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gaaと、前フレーム階調値Gxaおよび現フレーム階調値Gybの組み合わせに対応する階調値Gabとが存在している。現フレーム階調値GyaはGybよりも小さく、書込階調値GaaはGabよりも小さいとする。このような前提において、OSテーブルLUT1の参照に用いられる前フレーム階調値がOSテーブルLUT1に存在するGxaであり、現フレーム階調値がOSテーブルLUT1に存在しないGycである第1のケースの動作について説明する。なお、現フレーム階調値Gycは、現フレーム階調値Gyaよりも大きくGybよりも小さい。
<1.3.2.2 Operation of Second Case>
FIG. 7 is a diagram schematically showing a part of the OS table LUT1 in order to explain the operation of the second case in the present embodiment. As shown in FIG. 7, in the OS table LUT1, there are written data corresponding to combinations of the previous frame gradation value Gxa, the current frame gradation values Gya and Gyb, and the previous frame gradation value Gxa and the current frame gradation value Gya. There is a gray level value Gaa and a gray level value Gab corresponding to a combination of the previous frame gray level value Gxa and the current frame gray level value Gyb. It is assumed that the current frame gradation value Gya is smaller than Gyb and the writing gradation value Gaa is smaller than Gab. Under such a premise, in the first case, the previous frame gradation value used for referring to the OS table LUT1 is Gxa existing in the OS table LUT1, and the current frame gradation value is Gyc not existing in the OS table LUT1. The operation will be described. The current frame gradation value Gyc is larger than the current frame gradation value Gya and smaller than Gyb.
 前フレーム階調値Gxaと現フレーム階調値Gycとの組み合わせに対応する書込階調値がOSテーブルLUT1に存在しないので、書込階調選択部21は、OSテーブルLUT1に存在する前フレーム階調値Gxaと、OSテーブルLUT1に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が小さい現フレーム階調値Gyaとの組み合わせに対応する書込階調値GaaをSDRAM160から取得する。書込階調選択部21は同様に、OSテーブルLUT1に存在する前フレーム階調値Gxaと、OSテーブルLUT1に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が大きい現フレーム階調値Gybとの組み合わせに対応する書込階調値GabをSDRAM160から取得する。 Since the writing gradation value corresponding to the combination of the previous frame gradation value Gxa and the current frame gradation value Gyc does not exist in the OS table LUT1, the writing gradation selection unit 21 performs the previous frame existing in the OS table LUT1. The current frame whose value is smaller than the current frame tone value Gyc among the two current frame tone values that are present in the OS table LUT1 and closest to the current frame tone value Gyc. The write gradation value Gaa corresponding to the combination with the gradation value Gya is acquired from the SDRAM 160. Similarly, the write tone selection unit 21 and the two previous frame tone values Gxa existing in the OS table LUT1 and two current frame steps present in the OS table LUT1 and closest to the current frame tone value Gyc. A write tone value Gab corresponding to a combination with the current frame tone value Gyb having a value larger than the current frame tone value Gyc among the tone values is acquired from the SDRAM 160.
 書込階調選択部21は、上述のようにして取得した書込階調値Gaa、Gabに加えて、それらに対応する現フレーム階調値Gya、GybをSDRAM160から取得する。そして、書込階調選択部21は、SDRAM160から取得した書込階調値Gaa、Gabおよび現フレーム階調値Gya、Gybと、OSテーブルLUT1に存在しない現フレーム階調値Gycとを書込階調補間処理部22内の階調値-電圧変換部23に与える。 The writing gradation selection unit 21 acquires the current frame gradation values Gya and Gyb corresponding to them from the SDRAM 160 in addition to the writing gradation values Gaa and Gab acquired as described above. Then, the writing gradation selection unit 21 writes the writing gradation values Gaa and Gab and the current frame gradation values Gya and Gyb acquired from the SDRAM 160 and the current frame gradation value Gyc that does not exist in the OS table LUT1. This is given to the gradation value-voltage conversion unit 23 in the gradation interpolation processing unit 22.
 階調値-電圧変換部23は、書込階調選択部21から受け取った書込階調値Gaa、Gab、および現フレーム階調値Gya、Gyb、Gycのそれぞれを電圧値に変換し出力する。図7では、書込階調選択部21から受け取った書込階調値Gaa、Gab、および現フレーム階調値Gya、Gyb、Gycを電圧値に変換することにより得られる階調電圧をそれぞれVaa、Vab、Vya、Vyb、およびVycで示している。以下では、現フレーム階調値を電圧値に変換して得られる階調電圧のことを「現フレーム階調電圧」という。 The gradation value-voltage conversion unit 23 converts the writing gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc received from the writing gradation selection unit 21 into voltage values and outputs them. . In FIG. 7, the gradation voltages obtained by converting the writing gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc received from the writing gradation selection unit 21 into voltage values are Vaa. , Vab, Vya, Vyb, and Vyc. Hereinafter, a gradation voltage obtained by converting a current frame gradation value into a voltage value is referred to as a “current frame gradation voltage”.
 補間演算部24は、階調値-電圧変換部23から書込階調電圧Vaa、Vab、および現フレーム階調電圧Vya、Vyb、Vycを受け取り、それらを用いた線形補間処理により、書込階調電圧Vvacを生成し出力する。ここで、第1のケースの線形補間処理は、下記の式(2)に基づいて行われる。
  Vvac=Vaa+(Vab-Vaa)×(Vyc-Vya)/(Vyb-Vya)
                                    …(2)
The interpolation calculation unit 24 receives the write gradation voltages Vaa and Vab and the current frame gradation voltages Vya, Vyb, and Vyc from the gradation value-voltage conversion unit 23, and performs a write step by linear interpolation processing using them. A regulated voltage Vvac is generated and output. Here, the linear interpolation processing in the first case is performed based on the following equation (2).
Vvac = Vaa + (Vab−Vaa) × (Vyc−Vya) / (Vyb−Vya)
... (2)
 電圧-階調値変換部25は、補間演算部24から書込階調電圧Vvacを受け取り、それを階調値(第2の書込階調値)に変換し、当該第2の書込階調値を示す第2の書込階調データWDbをラインバッファ130に与える。以上のようにして、オーバードライブ駆動部122における第2のケースの動作が行われる。 The voltage-gradation value conversion unit 25 receives the writing gradation voltage Vvac from the interpolation calculation unit 24, converts it into a gradation value (second writing gradation value), and outputs the second writing step. Second write gradation data WDb indicating a tone value is applied to the line buffer 130. As described above, the operation of the second case in the overdrive drive unit 122 is performed.
 図8は、本実施形態における第2のケースの動作を説明するために、階調値-階調電圧特性を模式的に示した図である。図8に示すように、従来の液晶表示装置は第2のケースにおいて、書込階調値Gaa、Gab、および現フレーム階調値Gya、Gyb、Gycを用いて線形補間処理を行い、当該線形補間処理により得られた書込階調値Gacをソースドライバ300で書込階調電圧Vgacに変換して液晶に印加する。液晶の応答速度は階調電圧に依存するので、従来の液晶表示装置において階調値に基づく線形補間処理により得られる書込階調電圧Vgacは上述の理想書込電圧Vidとはならない。このため、従来の液晶表示装置では第1のケースにおいて誤差電圧が生じる。これに対して、本実施形態に係る液晶表示装置は第1のケースにおいて、書込階調値Gaa、Gab、および現フレーム階調値Gya、Gyb、Gycをそれぞれ電圧値に変換した書込階調電圧Vaa、Vab、および現フレーム階調電圧Vya、Vyb、Vycを用いて上記式(2)に基づく線形補間処理を行い、当該線形補間処理により得られた書込階調電圧Vvacを階調値に変換し、当該階調値をソースドライバ300において再度書込階調電圧Vvacに変換して液晶に印加する。このようにして、本実施形態における線形補間処理は電圧値に基づいて行われるので、当該線形補間処理により得られる書込階調電圧Vvacは上述の理想書込電圧Vidに相当する値となる。 FIG. 8 is a diagram schematically showing the gradation value-gradation voltage characteristics for explaining the operation of the second case in the present embodiment. As shown in FIG. 8, in the second case, the conventional liquid crystal display device performs linear interpolation processing using the write tone values Gaa, Gab and the current frame tone values Gya, Gyb, Gyc, The writing gradation value Gac obtained by the interpolation processing is converted into the writing gradation voltage Vgac by the source driver 300 and applied to the liquid crystal. Since the response speed of the liquid crystal depends on the gradation voltage, the writing gradation voltage Vgac obtained by the linear interpolation processing based on the gradation value in the conventional liquid crystal display device does not become the above-described ideal writing voltage Vid. For this reason, in the conventional liquid crystal display device, an error voltage is generated in the first case. On the other hand, in the first case, the liquid crystal display device according to the present embodiment has a writing scale obtained by converting the writing gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc into voltage values. The linear interpolation processing based on the above equation (2) is performed using the adjustment voltages Vaa, Vab and the current frame gradation voltages Vya, Vyb, Vyc, and the writing gradation voltage Vvac obtained by the linear interpolation processing is converted into gradation. The tone value is converted again into the writing tone voltage Vvac in the source driver 300 and applied to the liquid crystal. In this way, since the linear interpolation process in the present embodiment is performed based on the voltage value, the write gradation voltage Vvac obtained by the linear interpolation process becomes a value corresponding to the ideal write voltage Vid described above.
 <1.3.2.3 第3のケースの動作>
 図9は、本実施形態における第3のケースの動作を説明するために、OSテーブルLUT1の一部を模式的に示した図である。図9に示すように、OSテーブルLUT1には、前フレーム階調値GxaおよびGxbと、現フレーム階調値GyaおよびGybと、前フレーム階調値Gxaおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gaaと、前フレーム階調値Gxaおよび現フレーム階調値Gybの組み合わせに対応する階調値Gabと、前フレーム階調値Gxbおよび現フレーム階調値Gyaの組み合わせに対応する書込階調値Gbaと、前フレーム階調値Gxbおよび現フレーム階調値Gybの組み合わせに対応する書込階調値Gbbとが存在している。前フレーム階調値GxaはGxbよりも小さく、現フレーム階調値GyaはGybよりも小さく、書込階調値GaaはGabおよびGbaよりも小さく、書込階調値GbbはGabおよびGbaよりも大きいものとする。このような前提において、OSテーブルLUT1の参照に用いられる前フレーム階調値がOSテーブルLUT1に存しないGxcであり、現フレーム階調値がOSテーブルLUT1に存在しないGycである第3のケースの動作について説明する。なお、前フレーム階調値Gxcは、前フレーム階調値Gxaよりも大きくGxbよりも小さい。また、現フレーム階調値Gycは、現フレーム階調値Gyaよりも大きくGybよりも小さい。
<1.3.2.3 Operation in the third case>
FIG. 9 is a diagram schematically showing a part of the OS table LUT1 in order to explain the operation of the third case in the present embodiment. As shown in FIG. 9, the OS table LUT1 corresponds to combinations of previous frame gradation values Gxa and Gxb, current frame gradation values Gya and Gyb, previous frame gradation values Gxa, and current frame gradation values Gya. Corresponding to the combination of the writing gradation value Gaa to be performed, the gradation value Gab corresponding to the combination of the previous frame gradation value Gxa and the current frame gradation value Gyb, and the previous frame gradation value Gxb and the current frame gradation value Gya There exists a writing gradation value Gba to be performed and a writing gradation value Gbb corresponding to a combination of the previous frame gradation value Gxb and the current frame gradation value Gyb. The previous frame gradation value Gxa is smaller than Gxb, the current frame gradation value Gya is smaller than Gyb, the writing gradation value Gaa is smaller than Gab and Gba, and the writing gradation value Gbb is smaller than Gab and Gba. Let it be big. Under such a premise, in the third case, the previous frame gradation value used for referring to the OS table LUT1 is Gxc that does not exist in the OS table LUT1, and the current frame gradation value is Gyc that does not exist in the OS table LUT1. The operation will be described. The previous frame gradation value Gxc is larger than the previous frame gradation value Gxa and smaller than Gxb. The current frame gradation value Gyc is larger than the current frame gradation value Gya and smaller than Gyb.
 前フレーム階調値Gxcと現フレーム階調値Gycとの組み合わせに対応する書込階調値がOSテーブルLUT1に存在しないので、書込階調選択部21は、OSテーブルLUT1に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が小さい前フレーム階調値Gxaと、OSテーブルLUT1に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が小さい現フレーム階調値Gyaとの組み合わせに対応する書込階調値GaaをSDRAM160から取得する。書込階調選択部21は同様に、OSテーブルLUT1に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が小さい前フレーム階調値Gxaと、OSテーブルLUT1に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が大きい現フレーム階調値Gybとの組み合わせに対応する書込階調値GabをSDRAM160から取得する。書込階調選択部21は同様に、OSテーブルLUT1に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が大きい前フレーム階調値Gxbと、OSテーブルLUT1に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が小さい現フレーム階調値Gyaとの組み合わせに対応する書込階調値GbaをSDRAM160から取得する。書込階調選択部21は同様に、OSテーブルLUT1に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が大きい前フレーム階調値Gxbと、OSテーブルLUT1に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が大きい現フレーム階調値Gybとの組み合わせに対応する書込階調値GbbをSDRAM160から取得する。 Since the writing gradation value corresponding to the combination of the previous frame gradation value Gxc and the current frame gradation value Gyc does not exist in the OS table LUT1, the writing gradation selection unit 21 exists in the OS table LUT1, and The previous frame gradation value Gxa, which is smaller than the previous frame gradation value Gxc, of the two previous frame gradation values closest to the previous frame gradation value Gxc, and exists in the OS table LUT1, and The writing gradation corresponding to the combination with the current frame gradation value Gya that is smaller than the current frame gradation value Gyc, out of the two current frame gradation values closest to the current frame gradation value Gyc The value Gaa is obtained from the SDRAM 160. Similarly, the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc. The previous frame tone value Gxa having a smaller value and the current frame tone value Gyc of the two current frame tone values closest to the current frame tone value Gyc that are present in the OS table LUT1 The write gradation value Gab corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160. Similarly, the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc. The previous frame tone value Gxb having a large value and the current frame tone value Gyc of the two current frame tone values closest to the current frame tone value Gyc that are present in the OS table LUT1 The write gradation value Gba corresponding to the combination with the current frame gradation value Gya having a small value is acquired from the SDRAM 160. Similarly, the write tone selection unit 21 is present in the OS table LUT1 and is more than the previous frame tone value Gxc of the two previous frame tone values closest to the previous frame tone value Gxc. The previous frame tone value Gxb having a large value and the current frame tone value Gyc of the two current frame tone values closest to the current frame tone value Gyc that are present in the OS table LUT1 The write gradation value Gbb corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160.
 書込階調選択部21は、上述のようにして取得した書込階調値Gaa、Gab、Gba、Gbbに加えて、それらに対応する前フレーム階調値Gxa、Gxbおよび現フレーム階調値Gya、GybをSDRAM160から取得する。そして、書込階調選択部21は、SDRAM160から取得した書込階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、および現フレーム階調値Gya、Gybと、OSテーブルLUT1に存在しない前フレーム階調値Gxcおよび現フレーム階調値Gycとを書込階調補間処理部22内の階調値-電圧変換部23に与える。 In addition to the writing tone values Gaa, Gab, Gba, and Gbb acquired as described above, the writing tone selection unit 21 adds the previous frame tone values Gxa, Gxb, and the current frame tone values corresponding thereto. Gya and Gyb are acquired from the SDRAM 160. Then, the writing gradation selection unit 21 writes the writing gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, the current frame gradation values Gya, Gyb acquired from the SDRAM 160, and the OS table. The previous frame gradation value Gxc and the current frame gradation value Gyc that do not exist in the LUT 1 are supplied to the gradation value-voltage conversion unit 23 in the writing gradation interpolation processing unit 22.
 階調値-電圧変換部23は、書込階調選択部21から受け取った書込階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、Gxc、および現フレーム階調値Gya、Gyb、Gycのそれぞれを電圧値に変換し出力する。図9では、書込階調選択部21から受け取った書込階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、Gxc、および現フレーム階調値Gya、Gyb、Gycを電圧値に変換することにより得られる階調電圧をそれぞれVaa、Vab、Vba、Vbb、Vxa、Vxb、Vxc、Vya、Vyb、およびVycで示している。 The gradation value-voltage conversion unit 23 receives the writing gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, Gxc, and the current frame gradation value received from the writing gradation selection unit 21. Each of Gya, Gyb, and Gyc is converted into a voltage value and output. In FIG. 9, the write tone values Gaa, Gab, Gba, Gbb, the previous frame tone values Gxa, Gxb, Gxc, and the current frame tone values Gya, Gyb, Gyc received from the write tone selecting unit 21 are obtained. The gradation voltages obtained by converting into voltage values are indicated by Vaa, Vab, Vba, Vbb, Vxa, Vxb, Vxc, Vya, Vyb, and Vyc, respectively.
 補間演算部24は、階調値-電圧変換部23から書込階調電圧Vaa、Vab、Vba、Vbb、前フレーム階調電圧Vxa、Vxb、Vxc、および現フレーム階調電圧Vya、Vyb、Vycを受け取り、それらを用いた線形補間処理により、書込階調電圧Vvcを生成し出力する。ここで、第3のケースの動作における線形補間処理には、書込階調電圧Vvcaおよび後述の書込階調電圧Vvcbを用いて書込階調電圧Vvcを生成するパターンと、書込階調電圧Vvacおよび後述の書込階調電圧Vvbcを用いて書込階調電圧Vvcを生成するパターンとの2通りのパターンがある。 The interpolation calculation unit 24 receives the write gradation voltages Vaa, Vab, Vba, Vbb, the previous frame gradation voltages Vxa, Vxb, Vxc, and the current frame gradation voltages Vya, Vyb, Vyc from the gradation value-voltage conversion unit 23. , And generates and outputs a write gradation voltage Vvc by linear interpolation processing using them. Here, in the linear interpolation process in the operation of the third case, a pattern for generating a write gradation voltage Vvc using a write gradation voltage Vvca and a write gradation voltage Vvcb described later, and a write gradation There are two patterns: a pattern for generating a write gradation voltage Vvc using a voltage Vvac and a write gradation voltage Vvbc described later.
 まず、書込階調電圧VvcaおよびVvcbを用いて書込階調電圧Vvcを生成するパターンでは、補間演算部24は、上記式(1)に基づいて書込階調電圧Vvcaを生成すると共に、下記の式(3)に基づいて書込階調電圧Vvcbを生成する。
  Vvcb=Vab+(Vbb-Vab)×(Vxc-Vxa)/(Vxb-Vxa)
                                    …(3)
First, in the pattern in which the write gradation voltage Vvc is generated using the write gradation voltages Vvca and Vvcb, the interpolation calculation unit 24 generates the write gradation voltage Vvca based on the above equation (1), and The write gradation voltage Vvcb is generated based on the following equation (3).
Vvcb = Vab + (Vbb−Vab) × (Vxc−Vxa) / (Vxb−Vxa)
... (3)
 そして、補間演算部24は、上記式(1)および式(3)に基づいてそれぞれ生成された書込階調電圧VvcaおよびVvcbを用いて、下記の式(4)に基づいて書込階調電圧Vvcを生成し出力する。
  Vvc=Vvca+(Vvcb-Vvca)
          ×(Vyc-Vya)/(Vyb-Vya) …(4)
Then, the interpolation calculation unit 24 uses the writing gradation voltages Vvca and Vvcb generated based on the expressions (1) and (3), respectively, to write the writing gradation based on the following expression (4). Generate and output voltage Vvc.
Vvc = Vvca + (Vvcb−Vvca)
× (Vyc−Vya) / (Vyb−Vya) (4)
 一方、書込階調電圧VvacおよびVvbcを用いて書込階調電圧Vvcを生成するパターンでは、補間演算部24は、上記式(2)に基づいて書込階調電圧Vvacを生成すると共に、下記の式(5)に基づいて書込階調電圧Vvbcを生成する。
  Vvbc=Vba+(Vbb-Vba)×(Vyc-Vya)/(Vyb-Vya)
                                    …(5)
On the other hand, in the pattern in which the write gradation voltage Vvc is generated using the write gradation voltages Vvac and Vvbc, the interpolation calculation unit 24 generates the write gradation voltage Vvac based on the above equation (2). The write gradation voltage Vvbc is generated based on the following equation (5).
Vvbc = Vba + (Vbb−Vba) × (Vyc−Vya) / (Vyb−Vya)
... (5)
 そして、補間演算部24は、上記式(2)および式(5)に基づいてそれぞれ生成された書込階調電圧VvacおよびVvbcを用いて、下記の式(6)に基づいて書込階調電圧Vvcを生成し出力する。
  Vvc=Vvac+(Vvbc-Vvac)
          ×(Vxc-Vxa)/(Vxb-Vxa) …(6)
Then, the interpolation calculation unit 24 uses the writing gradation voltages Vvac and Vvbc generated based on the expressions (2) and (5), respectively, to write the writing gradation based on the following expression (6). Generate and output voltage Vvc.
Vvc = Vvac + (Vvbc−Vvac)
× (Vxc−Vxa) / (Vxb−Vxa) (6)
 なお、書込階調電圧VvcaおよびVvcbを用いて書込階調電圧Vvcを生成するパターンおよび書込階調電圧VvacおよびVvbcを用いて書込階調電圧Vvcを生成するパターンでそれぞれ上記式(4)および式(6)に基づいて得られる書込階調電圧Vvcは、互いに同じ値になる。 It should be noted that the above-described equations (1) are respectively used for a pattern for generating the write gradation voltage Vvc using the write gradation voltages Vvca and Vvcb and a pattern for generating the write gradation voltage Vvc using the write gradation voltages Vvac and Vvbc. The writing gradation voltage Vvc obtained based on 4) and Equation (6) has the same value.
 電圧-階調値変換部25は、補間演算部24から書込階調電圧書込階調電圧Vvcを受け取り、それを階調値(第2の書込階調値)に変換し、当該第2の書込階調値を示す第2の書込階調データWDbをラインバッファ130に与える。以上のようにして、オーバードライブ駆動部122における第3のケースの動作が行われる。 The voltage-gradation value conversion unit 25 receives the writing gradation voltage writing gradation voltage Vvc from the interpolation operation unit 24, converts it into a gradation value (second writing gradation value), Second write gradation data WDb indicating a write gradation value of 2 is applied to the line buffer 130. As described above, the operation of the third case in the overdrive drive unit 122 is performed.
 図10は、本実施形態における第3のケースの動作を説明するために、階調値-階調電圧特性を模式的に示した図である。なお、ここでは、書込階調電圧VvcaおよびVvcbを用いて書込階調電圧Vvcを生成するパターンにより書込階調電圧Vvcが得られるものして説明するが、書込階調電圧VvacおよびVvbcを用いて書込階調電圧Vvcを生成するパターンでも同様の説明が成り立つ。図10に示すように、従来の液晶表示装置は第3のケースにおいて、書込階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、Gxc、および現フレーム階調値Gya、Gyb、Gycを用いて線形補間処理を行い、当該線形補間処理により得られた書込階調値Gcをソースドライバ300において書込階調電圧Vgcに変換して液晶に印加する。液晶の応答速度は階調電圧に依存するので、従来の液晶表示装置において階調値に基づく線形補間処理により得られる書込階調電圧Vgcは上述の理想書込電圧Vidとはならない。このため、従来の液晶表示装置では第3のケースにおいて誤差電圧が生じる。これに対して、本実施形態に係る液晶表示装置は第3のケースにおいて、書込階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、Gxc、および現フレーム階調値Gya、Gyb、Gycを電圧値に変換することにより得られる階調電圧をそれぞれ電圧値に変換した書込階調電圧Vaa、Vab、Vba、Vbb、前フレーム階調電圧Vxa、Vxb、Vxc、および現フレーム階調電圧Vya、Vyb、Vycを用いて上記式(1)、式(3)、および式(4)に基づく線形補間処理を行い、当該線形補間処理により得られた書込階調電圧Vvcを階調値に変換し、当該階調値をソースドライバ300において再度書込階調電圧Vvcに変換して液晶に印加する。このようにして、本実施形態における線形補間処理は電圧値に基づいて行われるので、当該線形補間処理により得られる書込階調電圧Vvcは上述の理想書込電圧Vidに相当する値となる。 FIG. 10 is a diagram schematically showing the gradation value-gradation voltage characteristics in order to explain the operation of the third case in the present embodiment. Here, description will be made assuming that the write gradation voltage Vvc is obtained by a pattern for generating the write gradation voltage Vvc using the write gradation voltages Vvca and Vvcb. The same explanation holds true for a pattern in which the write gradation voltage Vvc is generated using Vvbc. As shown in FIG. 10, in the third case, the conventional liquid crystal display device has the write tone values Gaa, Gab, Gba, Gbb, the previous frame tone values Gxa, Gxb, Gxc, and the current frame tone value Gya. , Gyb, and Gyc are used to perform linear interpolation processing, and the writing gradation value Gc obtained by the linear interpolation processing is converted into writing gradation voltage Vgc by the source driver 300 and applied to the liquid crystal. Since the response speed of the liquid crystal depends on the gradation voltage, the writing gradation voltage Vgc obtained by the linear interpolation processing based on the gradation value in the conventional liquid crystal display device does not become the above-described ideal writing voltage Vid. For this reason, an error voltage is generated in the third case in the conventional liquid crystal display device. On the other hand, in the third case, the liquid crystal display device according to the present embodiment has the write tone values Gaa, Gab, Gba, Gbb, the previous frame tone values Gxa, Gxb, Gxc, and the current frame tone value. Write gradation voltages Vaa, Vab, Vba, Vbb, previous frame gradation voltages Vxa, Vxb, Vxc, which are obtained by converting gradation voltages obtained by converting Gya, Gyb, Gyc to voltage values, respectively, and Using the current frame gradation voltages Vya, Vyb, and Vyc, the linear interpolation processing based on the above equations (1), (3), and (4) is performed, and the writing gradation voltages obtained by the linear interpolation processing Vvc is converted into a gradation value, and the gradation value is converted again into the writing gradation voltage Vvc in the source driver 300 and applied to the liquid crystal. In this way, since the linear interpolation process in the present embodiment is performed based on the voltage value, the writing gradation voltage Vvc obtained by the linear interpolation process becomes a value corresponding to the above-described ideal writing voltage Vid.
 <1.4 効果>
 本実施形態によれば、OSテーブルLUT1に組み合わせが存在しない場合に、オーバードライブ駆動部122は、第1の書込階調値、前フレーム階調値、および現フレーム階調値それぞれ電圧値に変換した階調電圧、前フレーム階調電圧、および現フレーム階調電圧を用いて線形補間処理を行う。そして、オーバードライブ駆動部122は、線形補間処理により得られた書込階調電圧を第2の書込階調値に変換し、当該第2の書込階調値を示す第2の書込階調データWDbを出力する。液晶の応答速度は階調電圧に依存するので、本実施形態のように階調電圧を用いて線形補間処理を行うことにより、液晶のVT特性に応じた理想的な書込階調電圧を得ることができる。このため、必要とされるメモリ容量が比較的小さいOSテーブルを用いてオーバードライブ駆動を行う従来の液晶表示装置に比べて、より適切な液晶の応答速度が得られる。これにより、低コストで高画質の動画表示を行うことができる。
<1.4 Effect>
According to the present embodiment, when there is no combination in the OS table LUT1, the overdrive driving unit 122 sets the first write gradation value, the previous frame gradation value, and the current frame gradation value to voltage values. Linear interpolation processing is performed using the converted gradation voltage, previous frame gradation voltage, and current frame gradation voltage. Then, the overdrive driving unit 122 converts the writing gradation voltage obtained by the linear interpolation processing into the second writing gradation value, and performs the second writing indicating the second writing gradation value. The gradation data WDb is output. Since the response speed of the liquid crystal depends on the gradation voltage, an ideal writing gradation voltage corresponding to the VT characteristic of the liquid crystal is obtained by performing linear interpolation processing using the gradation voltage as in this embodiment. be able to. Therefore, a more appropriate liquid crystal response speed can be obtained as compared with a conventional liquid crystal display device that performs overdrive driving using an OS table that requires a relatively small memory capacity. Thereby, high-quality moving image display can be performed at low cost.
 また、本実施形態によれば、補間処理として線形補間処理が用いられるので、簡易な処理で上述の効果を奏することができる。 Further, according to the present embodiment, since the linear interpolation process is used as the interpolation process, the above-described effects can be achieved with a simple process.
 なお、本実施形態における上記第1~第3のケースでは、前フレーム階調値および/または現フレーム階調値に最も値が近い階調値と、それらに対応する第1の書込階調値とを補間処理に用いているが、当該最も値が近い階調値以外の階調値およびそれに対応する第1の書込階調値をも当該補間処理に用いても良い。 In the first to third cases in the present embodiment, the gradation value closest to the previous frame gradation value and / or the current frame gradation value and the first writing gradation corresponding to them. Although the value is used for the interpolation process, the gradation value other than the closest gradation value and the first written gradation value corresponding thereto may also be used for the interpolation process.
 <2.第2の実施形態>
 本発明の第2の実施形態は、上記第1の実施形態において前フレーム階調値の到達階調を予測するものである。なお、本実施形態は、オーバードライブ駆動部の構成および動作を除き上記第1の実施形態と構成等が共通するので、当該共通部分についての説明を省略する。また、本実施形態の構成要素のうちの上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。
<2. Second Embodiment>
The second embodiment of the present invention predicts the arrival gradation of the previous frame gradation value in the first embodiment. Since the present embodiment has the same configuration and the like as those of the first embodiment except for the configuration and operation of the overdrive drive unit, the description of the common part is omitted. In addition, among the constituent elements of the present embodiment, the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <2.1 オーバードライブ駆動部の構成>
 図11は、本実施形態におけるオーバードライブ駆動部122の詳細な構成を説明するためのブロック図である。図11に示すように、本実施形態におけるオーバードライブ駆動部122は、上記第1の実施形態における構成に、第2の階調選択部としての到達階調選択部31および第2の補間部としての到達階調補間処理部32を追加したものである。到達階調補間処理部32には補間演算部24が含まれている。なお、到達階調補間処理部32内の補間演算部24と書込階調補間処理部22内の補間演算部24とは、互いに同じ機能を有している。ただし、以下では到達階調補間処理部32内の補間演算部24のことを便宜上「予測用補間演算部」という。
<2.1 Configuration of Overdrive Drive Unit>
FIG. 11 is a block diagram for explaining a detailed configuration of the overdrive driving unit 122 in the present embodiment. As shown in FIG. 11, the overdrive drive unit 122 in the present embodiment is the same as the configuration in the first embodiment described above, as the reached gradation selection unit 31 as the second gradation selection unit and the second interpolation unit. The arrival gradation interpolation processing unit 32 is added. The reached gradation interpolation processing unit 32 includes an interpolation calculation unit 24. The interpolation calculation unit 24 in the reached gradation interpolation processing unit 32 and the interpolation calculation unit 24 in the writing gradation interpolation processing unit 22 have the same functions. However, hereinafter, the interpolation calculation unit 24 in the reached gradation interpolation processing unit 32 is referred to as a “prediction interpolation calculation unit” for convenience.
 ところで、SDRAM160にさらに、前フレーム階調値と現フレーム階調値との組み合わせに基づいて、液晶表示パネル5での表示において到達すると予測される階調値である到達階調値を決定するためのルックアップテーブル(以下「予測テーブル」という)LUT2が格納されている。予測テーブルLUT2は第2のルックアップテーブルに相当する。図12は、本実施形態における予測テーブルLUT2の一例を模式的に示した図である。ここで、メモリ容量の削減のために、予測テーブルLUT2には16階調×16階調分のデータが用意されている。図12において、最も左の列に記されている数値は前フレーム階調値を示し、最も上の行に記されている数値は現フレーム階調値を示している。そして、各行と各列とが交差する位置に記されている数値は、各前フレーム階調値と各現フレーム階調値との組み合わせに基づいて決定される到達階調値を示している。例えば、前フレーム階調値が「64」で現フレーム階調値が「128」である場合、到達階調値は「128」となる。また、例えば、前フレーム階調値が「128」で現フレーム階調値が「8」である場合、到達階調値は「17」となる。このように、予測テーブルに格納されている到達階調値は、現フレーム階調値と同じかまたは大きい値となっている。なお、予測テーブルLUT2は例えばフラッシュメモリ200に格納されており、タイミングコントローラIC100が装置の電源投入直後に予測テーブルLUT2をフラッシュメモリ200から読み出し、それを内部のSDRAM160に書き込むようになっている。 By the way, in order to determine the reached gradation value that is predicted to reach the SDRAM 160 in the display on the liquid crystal display panel 5 based on the combination of the previous frame gradation value and the current frame gradation value. LUT2 of a lookup table (hereinafter referred to as “prediction table”) is stored. The prediction table LUT2 corresponds to a second lookup table. FIG. 12 is a diagram schematically illustrating an example of the prediction table LUT2 in the present embodiment. Here, in order to reduce the memory capacity, data for 16 gradations × 16 gradations are prepared in the prediction table LUT2. In FIG. 12, the numerical value indicated in the leftmost column indicates the previous frame gradation value, and the numerical value indicated in the uppermost line indicates the current frame gradation value. The numerical value written at the position where each row and each column intersect indicates the reached gradation value determined based on the combination of each previous frame gradation value and each current frame gradation value. For example, when the previous frame gradation value is “64” and the current frame gradation value is “128”, the reached gradation value is “128”. For example, when the previous frame gradation value is “128” and the current frame gradation value is “8”, the reached gradation value is “17”. Thus, the reached gradation value stored in the prediction table is the same as or larger than the current frame gradation value. Note that the prediction table LUT2 is stored in, for example, the flash memory 200, and the timing controller IC 100 reads the prediction table LUT2 from the flash memory 200 immediately after the apparatus is turned on, and writes it into the internal SDRAM 160.
 到達階調選択部31は、前フレームデータPDが示す前フレーム階調値、および現フレームデータCDが示す現フレーム階調値に基づいて、上記図12に示す予測テーブルLUT2を参照することにより到達階調値を決定し、それを示す到達階調データRDを次フレームにおける前フレームデータPDとしてSDRAM160に書き込む。ただし、前フレーム階調値と現フレーム階調値との組み合わせが予測テーブルLUT2に存在しない場合には、到達階調選択部31は、当該組み合わせに最も近い、前フレーム階調値および/または現フレーム階調値と到達階調値とを、到達階調補間処理部32内の予測用補間演算部24に与える。予測用補間演算部24は、到達階調選択部31から受け取った前フレーム階調値および/または現フレーム階調値と到達階調値とを用いて、予測テーブルLUT2に存在しない組み合わせに対応する到達階調値を取得するための線形補間処理を行い、当該補間処理により得られる到達階調値を示す到達階調データRDを次フレームにおける前フレームデータPDとしてSDRAM160に書き込む。以下では、到達階調選択部31からSDRAM160に書き込まれる到達階調データRDのことを「第1の到達階調データ」といい、符号RDaで表す。また、到達階調補間処理部32(予測用補間演算部24)からSDRAM160に書き込まれる到達階調データRDのことを「第2の到達階調データ」といい、符号RDbで表す。さらに、第1の到達階調データRDaが示す到達階調値のことを「第1の到達階調値」といい、第2の到達階調データRDbが示す到達階調値のことを「第2の到達階調値」という。 The arrival gradation selection unit 31 refers to the prediction table LUT2 shown in FIG. 12 on the basis of the previous frame gradation value indicated by the previous frame data PD and the current frame gradation value indicated by the current frame data CD. The gradation value is determined, and the reached gradation data RD indicating the gradation value is written in the SDRAM 160 as the previous frame data PD in the next frame. However, when the combination of the previous frame gradation value and the current frame gradation value does not exist in the prediction table LUT2, the reached gradation selection unit 31 closes the previous frame gradation value and / or the current frame gradation value closest to the combination. The frame gradation value and the reached gradation value are given to the prediction interpolation calculation unit 24 in the reached gradation interpolation processing unit 32. The prediction interpolation calculation unit 24 uses the previous frame gradation value and / or the current frame gradation value and the arrival gradation value received from the arrival gradation selection unit 31 to correspond to combinations that do not exist in the prediction table LUT2. A linear interpolation process for obtaining the reached gradation value is performed, and the reached gradation data RD indicating the reached gradation value obtained by the interpolation process is written in the SDRAM 160 as the previous frame data PD in the next frame. Hereinafter, the reaching gradation data RD written from the reaching gradation selecting unit 31 to the SDRAM 160 is referred to as “first reaching gradation data”, and is represented by a symbol RDa. Further, the reached gradation data RD written to the SDRAM 160 from the reached gradation interpolation processing unit 32 (prediction interpolation calculation unit 24) is referred to as “second reached gradation data”, and is represented by the symbol RDb. Furthermore, the arrival gradation value indicated by the first arrival gradation data RDa is referred to as “first arrival gradation value”, and the arrival gradation value indicated by the second arrival gradation data RDb is referred to as “first arrival gradation value”. This is referred to as “2 reached gradation value”.
 本実施形態では、予測テーブルLUT2を用いることにより、書込階調選択部21が受け取る前フレームデータPDが示す前フレーム階調値は、前フレームにおいて得られた到達階調値となる。すなわち、書込階調選択部21がOSテーブルLUT1の参照時に用いる前フレーム階調値は、上記第1の実施形態では前フレームにおける現フレーム階調値であるが、本実施形態では前フレームに得られた到達階調値となっている。これに合わせて、本実施形態におけるOSテーブルLUT1としては例えば図13に示す内容のものが用いられる。なお、この内容は、上記第1の実施形態において図4に示したOSテーブルLUT1と異なっている。また、本実施形態においても、OSテーブルLUT1には16階調×16階調分のデータが用意されている。 In the present embodiment, by using the prediction table LUT2, the previous frame gradation value indicated by the previous frame data PD received by the writing gradation selection unit 21 is the reached gradation value obtained in the previous frame. That is, the previous frame gradation value used when the writing gradation selection unit 21 refers to the OS table LUT1 is the current frame gradation value in the previous frame in the first embodiment, but in the present embodiment, The obtained gradation value is obtained. In accordance with this, the contents shown in FIG. 13 are used as the OS table LUT1 in the present embodiment, for example. This content is different from the OS table LUT1 shown in FIG. 4 in the first embodiment. Also in this embodiment, data for 16 gradations × 16 gradations are prepared in the OS table LUT1.
 <2.2 動作>
 次に、本実施形態におけるオーバードライブ駆動部122の動作について説明する。ただし、書込階調選択部21および書込階調補間処理部22の動作については上記第1の実施形態と同様であるので、その説明を省略する。到達階調選択部31は、現フレームデータCDを受け取り、さらに、SDRAM160に格納された前フレームデータPDを読み出す。そして、到達階調選択部31は、前フレームデータPDが示す前フレーム階調値および現フレームデータCDが示す現フレーム階調値に基づいてSDRAM160に格納された予測テーブルLUT2を参照する。その後、本実施形態では、前フレーム階調値と現フレーム階調値との組み合わせが予測テーブルLUT2に存在する場合(以下単に「組み合わせが存在する場合」ということがある)と存在しない場合(以下単に「組み合わせが存在しない場合」ということがある)とで、互いに異なる動作が行われる。
<2.2 Operation>
Next, the operation of the overdrive drive unit 122 in this embodiment will be described. However, since the operations of the writing gradation selection unit 21 and the writing gradation interpolation processing unit 22 are the same as those in the first embodiment, description thereof will be omitted. The reached gradation selection unit 31 receives the current frame data CD, and further reads the previous frame data PD stored in the SDRAM 160. Then, the reached gradation selection unit 31 refers to the prediction table LUT2 stored in the SDRAM 160 based on the previous frame gradation value indicated by the previous frame data PD and the current frame gradation value indicated by the current frame data CD. Thereafter, in the present embodiment, the combination of the previous frame gradation value and the current frame gradation value exists in the prediction table LUT2 (hereinafter, sometimes simply referred to as “there is a combination”) and does not exist (hereinafter referred to as “there is a combination”). The operations are different from each other simply by “when there is no combination”.
 <2.2.1 組み合わせが存在する場合の動作>
 組み合わせが存在する場合の動作は、以下のように行われる。到達階調選択部31は、前フレーム階調値と現フレーム階調値との組み合わせに応じた第1の到達階調値を示す第1の到達階調データRDaをSDRAM160から取得する。そして、到達階調選択部31は、第1の到達階調データRDaを次フレームにおける前フレームデータPDとしてSDRAM160に書き込む。
<2.2.1 Operation when a combination exists>
The operation when a combination exists is performed as follows. The reached tone selection unit 31 acquires from the SDRAM 160 first reached tone data RDa indicating the first reached tone value corresponding to the combination of the previous frame tone value and the current frame tone value. Then, the reached gradation selection unit 31 writes the first reached gradation data RDa in the SDRAM 160 as the previous frame data PD in the next frame.
 <2.2.2 組み合わせが存在しない場合の動作>
 本実施形態における組み合わせが存在しない場合の動作は、上記第1の実施形態と同様に第1のケースの動作、第2のケースの動作、および第3のケースの動作に分けられる。本実施形態における第1のケースの動作、第2のケースの動作、および第3のケースの動作説明では、図5、図7、および図9に示すOSテーブルLUT1が予測テーブルLUT2であるものとして、これらの図5、図7、および図9を適宜参照する。なお、各階調値および階調電圧を表す符号は上記第1の実施形態と同じものを用いる。
<2.2.2 Operation when no combination exists>
The operation when there is no combination in the present embodiment is divided into the operation of the first case, the operation of the second case, and the operation of the third case, as in the first embodiment. In the operation of the first case, the operation of the second case, and the operation of the third case in the present embodiment, it is assumed that the OS table LUT1 shown in FIGS. 5, 7, and 9 is the prediction table LUT2. These FIGS. 5, 7, and 9 will be referred to as appropriate. Note that the same reference numerals as those in the first embodiment are used for the gradation values and gradation voltages.
 <2.2.2.1 第1のケースの動作>
 第1のケースの動作では、図5に示すように、前フレーム階調値Gxcと現フレーム階調値Gyaとの組み合わせに対応する到達階調値が予測テーブルLUT2に存在しないので、到達階調選択部31は、予測テーブルLUT2に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が小さい前フレーム階調値Gxaと予測テーブルLUT2に存在する現フレーム階調値Gyaとの組み合わせに対応する予測階調値GaaをSDRAM160から取得する。到達階調選択部31は同様に、予測テーブルLUT2に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が大きい前フレーム階調値Gxbと、予測テーブルLUT2に存在する現フレーム階調値Gyaとの組み合わせに対応する到達階調値GbaをSDRAM160から取得する。
<2.2.2.1 Operation in First Case>
In the operation of the first case, as shown in FIG. 5, since the arrival gradation value corresponding to the combination of the previous frame gradation value Gxc and the current frame gradation value Gya does not exist in the prediction table LUT2, the arrival gradation The selection unit 31 includes a previous frame level that is present in the prediction table LUT2 and has a value smaller than the previous frame gradation value Gxc among the two previous frame gradation values closest to the previous frame gradation value Gxc. A predicted gradation value Gaa corresponding to a combination of the key value Gxa and the current frame gradation value Gya existing in the prediction table LUT2 is acquired from the SDRAM 160. Similarly, the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. The reached gradation value Gba corresponding to the combination of the previous frame gradation value Gxb having a large value and the current frame gradation value Gya existing in the prediction table LUT2 is acquired from the SDRAM 160.
 到達階調選択部31は、上述のようにして取得した到達階調値Gaa、Gbaに加えて、それらに対応する前フレーム階調値Gxa、GxbをSDRAM160から取得する。そして、到達階調選択部31は、SDRAM160から取得した予測階調値Gaa、Gbaおよび前フレーム階調値Gxa、Gxbと、予測テーブルLUT2に存在しない前フレーム階調値Gxcとを予測用補間演算部24に与える。 The reached gradation selection unit 31 acquires the previous frame gradation values Gxa and Gxb from the SDRAM 160 in addition to the reached gradation values Gaa and Gba acquired as described above. Then, the reached gradation selection unit 31 uses the prediction gradation values Gaa and Gba and the previous frame gradation values Gxa and Gxb acquired from the SDRAM 160, and the previous frame gradation value Gxc that does not exist in the prediction table LUT2, as a prediction interpolation calculation. Part 24 is given.
 予測用補間演算部24は、到達階調値Gaa、Gba、および前フレーム階調値Gxa、Gxb、Gxcを用いて、到達階調値に関する公知の線形補間処理を行うことにより、第2の到達階調値を生成する。その後、予測用補間演算部24は第2の到達階調値を示す第2の到達階調データRDを次フレームにおける前フレームデータPDとしてSDRAM160に書き込む。 The prediction interpolation calculation unit 24 performs a known linear interpolation process on the reached gradation value using the reached gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc, thereby performing the second arrival. Generate tone values. Thereafter, the prediction interpolation calculation unit 24 writes the second arrival gradation data RD indicating the second arrival gradation value into the SDRAM 160 as the previous frame data PD in the next frame.
 <2.2.2.2 第2のケースの動作>
 第2のケースの動作では、図7に示すように、前フレーム階調値Gxaと現フレーム階調値Gycとの組み合わせに対応する到達階調値が予測テーブルLUT2に存在しないので、到達階調選択部31は、予測テーブルLUT2に存在する前フレーム階調値Gxaと、予測テーブルLUT2に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が小さい現フレーム階調値Gyaとの組み合わせに対応する到達階調値GaaをSDRAM160から取得する。到達階調選択部31は同様に、予測テーブルLUT2に存在する前フレーム階調値Gxaと、予測テーブルLUT2に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が大きい現フレーム階調値Gybとの組み合わせに対応する到達階調値GabをSDRAM160から取得する。
<2.2.2.2 Second Case Operation>
In the operation of the second case, as shown in FIG. 7, since the arrival gradation value corresponding to the combination of the previous frame gradation value Gxa and the current frame gradation value Gyc does not exist in the prediction table LUT2, the arrival gradation The selection unit 31 selects the previous frame gradation value Gxa that exists in the prediction table LUT2 and the current frame gradation value that is present in the prediction table LUT2 and has the closest value to the current frame gradation value Gyc. The reached gradation value Gaa corresponding to the combination with the current frame gradation value Gya that is smaller than the current frame gradation value Gyc is acquired from the SDRAM 160. Similarly, the reached gradation selection unit 31 also includes two previous frame gradation values Gxa existing in the prediction table LUT2 and two current frame gradations present in the prediction table LUT2 and closest to the current frame gradation value Gyc. The reached gradation value Gab corresponding to the combination with the current frame gradation value Gyb having a value larger than the current frame gradation value Gyc is acquired from the SDRAM 160.
 到達階調選択部31は、上述のようにして取得した到達階調値Gaa、Gabに加えて、それらに対応する現フレーム階調値Gya、GybをSDRAM160から取得する。そして、到達階調選択部31は、SDRAM160から取得した書込階調値Gaa、Gabおよび現フレーム階調値Gya、Gybと、予測テーブルLUT2に存在しない現フレーム階調値Gycとを予測用補間演算部24に与える。 The reached gradation selection unit 31 acquires the current frame gradation values Gya and Gyb from the SDRAM 160 in addition to the reached gradation values Gaa and Gab acquired as described above. Then, the reached gradation selection unit 31 uses the write gradation values Gaa and Gab and the current frame gradation values Gya and Gyb acquired from the SDRAM 160 and the current frame gradation value Gyc that does not exist in the prediction table LUT2 for prediction interpolation. It gives to the calculating part 24.
 予測用補間演算部24は、到達階調値Gaa、Gab、および現フレーム階調値Gya、Gyb、Gycを用いて、到達階調値に関する公知の線形補間処理を行うことにより、第2の到達階調値を生成する。その後の動作は第1のケースと同様である。 The prediction interpolation calculation unit 24 performs a known linear interpolation process on the reached gradation value using the reached gradation values Gaa, Gab and the current frame gradation values Gya, Gyb, Gyc, thereby obtaining the second arrival value. Generate tone values. The subsequent operation is the same as in the first case.
 <2.2.2.3 第3のケースの動作>
 第3のケースの動作では、図9に示すように、前フレーム階調値Gxcと現フレーム階調値Gycとの組み合わせに対応する到達階調値が予測テーブルLUT2に存在しないので、到達階調選択部31は、予測テーブルLUT2に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が小さい前フレーム階調値Gxaと、予測テーブルLUT2に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が小さい現フレーム階調値Gyaとの組み合わせに対応する到達階調値GaaをSDRAM160から取得する。到達階調選択部31は同様に、予測テーブルLUT2に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が小さい前フレーム階調値Gxaと、予測テーブルLUT2に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が大きい現フレーム階調値Gybとの組み合わせに対応する到達階調値GabをSDRAM160から取得する。到達階調選択部31は同様に、予測テーブルLUT2に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が大きい前フレーム階調値Gxbと、予測テーブルLUT2に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が小さい現フレーム階調値Gyaとの組み合わせに対応する到達階調値GbaをSDRAM160から取得する。到達階調選択部31は同様に、予測テーブルLUT2に存在し、かつ、前フレーム階調値Gxcに最も値が近い2つの前フレーム階調値のうちの当該前フレーム階調値Gxcよりも値が大きい前フレーム階調値Gxbと、予測テーブルLUT2に存在し、かつ、現フレーム階調値Gycに最も値が近い2つの現フレーム階調値のうちの当該現フレーム階調値Gycよりも値が大きい現フレーム階調値Gybとの組み合わせに対応する到達階調値GbbをSDRAM160から取得する。
<2.2.2.3 Operation in the third case>
In the operation of the third case, as shown in FIG. 9, since the arrival gradation value corresponding to the combination of the previous frame gradation value Gxc and the current frame gradation value Gyc does not exist in the prediction table LUT2, the arrival gradation The selection unit 31 includes a previous frame level that is present in the prediction table LUT2 and has a value smaller than the previous frame gradation value Gxc among the two previous frame gradation values closest to the previous frame gradation value Gxc. The current frame level having a value smaller than the current frame tone value Gyc, out of the two current frame tone values present in the prediction table LUT2 and closest to the current frame tone value Gyc. The reached gradation value Gaa corresponding to the combination with the tone value Gya is acquired from the SDRAM 160. Similarly, the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. Is smaller than the current frame tone value Gyc of two current frame tone values that are present in the prediction table LUT2 and are closest to the current frame tone value Gyc. The reached gradation value Gab corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160. Similarly, the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. Is greater than the current frame tone value Gyc of the two current frame tone values that are present in the prediction table LUT2 and are closest to the current frame tone value Gyc. The reached gradation value Gba corresponding to the combination with the current frame gradation value Gya having a small value is acquired from the SDRAM 160. Similarly, the reached gradation selection unit 31 is present in the prediction table LUT2 and has a value greater than the previous frame gradation value Gxc of the two previous frame gradation values closest to the previous frame gradation value Gxc. Is greater than the current frame tone value Gyc of the two current frame tone values that are present in the prediction table LUT2 and are closest to the current frame tone value Gyc. The reached gradation value Gbb corresponding to the combination with the current frame gradation value Gyb having a large value is acquired from the SDRAM 160.
 到達階調選択部31は、上述のようにして取得した到達階調値Gaa、Gab、Gba、Gbbに加えて、それらに対応する前フレーム階調値Gxa、Gxbおよび現フレーム階調値Gya、GybをSDRAM160から取得する。そして、到達階調選択部31は、SDRAM160から取得した到達階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、および現フレーム階調値Gya、Gybと、予測テーブルLUT2に存在しない前フレーム階調値Gxcおよび現フレーム階調値Gycとを予測用補間演算部24に与える。 In addition to the reached gradation values Gaa, Gab, Gba, and Gbb acquired as described above, the reached gradation selection unit 31 includes the previous frame gradation values Gxa, Gxb and the current frame gradation values Gya, Gyb is acquired from the SDRAM 160. Then, the reached gradation selection unit 31 stores the reached gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, the current frame gradation values Gya, Gyb acquired from the SDRAM 160, and the prediction table LUT2. The pre-existing previous frame gradation value Gxc and the current frame gradation value Gyc are supplied to the prediction interpolation calculation unit 24.
 予測用補間演算部24は、到達階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、Gxc、および現フレーム階調値Gya、Gyb、Gycを用いて、到達階調値に関する公知の線形補間処理を行うことにより、第2の到達階調値を生成する。その後の動作は第1のケースと同様である。 The prediction interpolation calculation unit 24 uses the reached gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, Gxc, and the current frame gradation values Gya, Gyb, Gyc to achieve the reached gradation values. The second reached gradation value is generated by performing a known linear interpolation process for the above. The subsequent operation is the same as in the first case.
 以上のようにして、到達階調値を示す到達階調データRDが次フレームにおける前フレームデータPDとしてSDRAM160に書き込まれる。 As described above, the reached gradation data RD indicating the reached gradation value is written in the SDRAM 160 as the previous frame data PD in the next frame.
 <2.3 効果>
 本実施形態によれば、前フレームにおいて予測テーブルLUT2を用いて得られた到達階調値が、現フレームにおける前フレーム階調値としてOSテーブルLUT1の参照に用いられる。このため、上記第1の実施形態によりも精度の高い前フレーム階調値を用いてオーバードライブ駆動を行うことができる。これにより、液晶の応答速度がより適切に補正されるので、動画表示の画質をさらに高めることができる。
<2.3 Effects>
According to the present embodiment, the reached gradation value obtained by using the prediction table LUT2 in the previous frame is used for referring to the OS table LUT1 as the previous frame gradation value in the current frame. Therefore, overdrive driving can be performed using the previous frame gradation value with higher accuracy than in the first embodiment. As a result, the response speed of the liquid crystal is corrected more appropriately, so that the image quality of the moving image display can be further improved.
 なお、本実施形態における上記第1~第3のケースでは、前フレーム階調値および/または現フレーム階調値に最も値が近い階調値と、それらに対応する第1の到達階調値とを補間処理に用いているが、当該最も値が近い階調値以外の階調値およびそれに対応する第1の到達階調値をも当該補間処理に用いても良い(後述の第3の実施形態でも同様である)。 In the first to third cases in the present embodiment, the tone value closest to the previous frame tone value and / or the current frame tone value, and the first reached tone value corresponding to them. Are used for the interpolation process, but a gradation value other than the closest gradation value and the first reached gradation value corresponding to the gradation value may also be used for the interpolation process (a third value described later). The same applies to the embodiment).
 <3.第3の実施形態>
 本発明の第3の実施形態は、上記第2の実施形態において、予測テーブルLUT2に組み合わせがない場合に電圧値を用いた線形補間処理を行うものである。なお、本実施形態は、到達階調補間処理部32の構成および動作を除き上記第2の実施形態と構成等が共通するので、当該共通部分についての説明を省略する。また、本実施形態の構成要素のうちの上記第2の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。
<3. Third Embodiment>
The third embodiment of the present invention performs linear interpolation processing using voltage values when there is no combination in the prediction table LUT2 in the second embodiment. Since the present embodiment has the same configuration and the like as the second embodiment except for the configuration and operation of the reached gradation interpolation processing unit 32, the description of the common portion is omitted. In addition, among the components of the present embodiment, the same elements as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <3.1 到達階調補間処理部の構成>
 図14は、本実施形態におけるオーバードライブ駆動部122のうち、特に到達階調補間処理部32の詳細な構成を説明するためのブロック図である。図14に示すように、本実施形態におけるオーバードライブ駆動部122内の到達階調補間処理部32には、予測用補間演算部24の前段および後段にそれぞれ階調値-電圧変換部23および電圧-階調値変換部25を追加したものである。到達階調補間処理部32内の階調値-電圧変換部23および電圧-階調値変換部25はそれぞれ、書込階調補間処理部22内の階調値-電圧変換部23および電圧-階調値変換部25と同じ機能を有している。ただし、以下では到達階調補間処理部32内の階調値-電圧変換部23および電圧-階調値変換部25のことを便宜上それぞれ「予測用階調値-電圧変換部」および「予測用電圧-階調値変換部」という。
<3.1 Configuration of Reaching Tone Interpolation Processing Unit>
FIG. 14 is a block diagram for explaining a detailed configuration of the reached gradation interpolation processing unit 32 in the overdrive driving unit 122 in the present embodiment. As shown in FIG. 14, the reached gradation interpolation processing unit 32 in the overdrive drive unit 122 in this embodiment includes a gradation value-voltage conversion unit 23 and a voltage in the preceding stage and the subsequent stage of the prediction interpolation calculation unit 24, respectively. A tone value conversion unit 25 is added. The gradation value-voltage conversion unit 23 and the voltage-gradation value conversion unit 25 in the reached gradation interpolation processing unit 32 are respectively the gradation value-voltage conversion unit 23 and the voltage- in the writing gradation interpolation processing unit 22. It has the same function as the gradation value conversion unit 25. However, in the following, the gradation value-voltage conversion unit 23 and the voltage-gradation value conversion unit 25 in the reached gradation interpolation processing unit 32 will be referred to as “prediction gradation value-voltage conversion unit” and “prediction This is called a “voltage-gradation value converter”.
 <3.2 動作>
 次に、本実施形態におけるオーバードライブ駆動部122の動作のうち特に、組み合わせが存在しない場合の到達階調補間処理部32内の動作について、第1のケースの動作、第2のケースの動作、および第3のケースの動作について説明する。なお、組み合わせが存在する場合の動作は上記第2の実施形態と同様であるので説明を省略する。また、第1のケースの動作、第2のケースの動作、および第3のケースの動作についても、上記第2の実施形態と共通する部分については適宜説明を省略する。
<3.2 Operation>
Next, the operation of the first case, the operation of the second case, among the operations of the overdrive driving unit 122 in the present embodiment, particularly the operations in the reached gradation interpolation processing unit 32 when there is no combination, The operation of the third case will be described. The operation when there is a combination is the same as that in the second embodiment, and a description thereof will be omitted. Also, with regard to the operation of the first case, the operation of the second case, and the operation of the third case, description of portions common to the second embodiment will be omitted as appropriate.
 <3.2.1 第1のケースの動作>
 予測用階調値-電圧変換部23は、到達階調選択部31から到達階調値Gaa、Gba、および前フレーム階調値Gxa、Gxb、Gxcを受け取り、それらを、上記第1の実施形態における階調値-電圧変換部23と同様に電圧値に変換する。これにより、到達階調電圧Vaa、Vba、および前フレーム階調電圧Vxa、Vxb、Vxcが得られる。ここで、「到達階調電圧」とは、到達階調値を電圧値に変換して得られる階調電圧のことをいう。
<3.2.1 Operation in the first case>
The prediction gradation value-voltage conversion unit 23 receives the arrival gradation values Gaa and Gba and the previous frame gradation values Gxa, Gxb, and Gxc from the arrival gradation selection unit 31, and supplies them to the first embodiment. Similarly to the gradation value-voltage conversion unit 23 in FIG. Thereby, the reached gradation voltages Vaa, Vba and the previous frame gradation voltages Vxa, Vxb, Vxc are obtained. Here, “reached gradation voltage” refers to a gradation voltage obtained by converting the reached gradation value into a voltage value.
 予測用補間演算部24は、上記第2の実施形態と異なり、予測用階調値-電圧変換部23から到達階調電圧Vaa、Vba、および前フレーム階調電圧Vxa、Vxb、Vxcを受け取り、上記式(1)に基づいて到達階調電圧Vvcaを生成し出力する。 Unlike the second embodiment, the prediction interpolation calculation unit 24 receives the reached gradation voltages Vaa and Vba and the previous frame gradation voltages Vxa, Vxb, and Vxc from the prediction gradation value-voltage conversion unit 23, and The reached gradation voltage Vvca is generated and output based on the above equation (1).
 予測用電圧-階調値変換部25は、予測用補間演算部24から到達階調電圧Vvcaを受け取り、それを、上記第1の実施形態における電圧-階調値変換部25と同様に階調値(第2の到達階調値)に変換する。そして、予測用電圧-階調値変換部25は、第2の到達階調値を示す第2の到達階調データRDを次フレームにおける前フレームデータPDとしてSDRAM160に書き込む。 The prediction voltage-gradation value conversion unit 25 receives the reached gradation voltage Vvca from the prediction interpolation calculation unit 24, and converts it to the gradation in the same manner as the voltage-gradation value conversion unit 25 in the first embodiment. Value (second reached gradation value). Then, the prediction voltage-gradation value conversion unit 25 writes the second arrival gradation data RD indicating the second arrival gradation value into the SDRAM 160 as the previous frame data PD in the next frame.
 <3.2.2 第2のケースの動作>
 予測用階調値-電圧変換部23は、到達階調選択部31から到達階調値Gaa、Gab、および現フレーム階調値Gya、Gyb、Gycを受け取り、それらを、上記第1の実施形態における階調値-電圧変換部23と同様に電圧値に変換する。これにより、到達階調電圧Vaa、Vab、および現フレーム階調電圧Vya、Vyb、Vycが得られる。
<3.2.2 Operation in the second case>
The prediction gradation value-voltage conversion unit 23 receives the arrival gradation values Gaa and Gab and the current frame gradation values Gya, Gyb, and Gyc from the arrival gradation selection unit 31, and supplies them to the first embodiment. Similarly to the gradation value-voltage conversion unit 23 in FIG. Thereby, the reached gradation voltages Vaa, Vab and the current frame gradation voltages Vya, Vyb, Vyc are obtained.
 予測用補間演算部24は、上記第2の実施形態と異なり、予測用階調値-電圧変換部23から到達階調電圧Vaa、Vab、および現フレーム階調電圧Vya、Vyb、Vycを受け取り、上記式(2)に基づいて到達階調電圧Vvacを生成し出力する。 Unlike the second embodiment, the prediction interpolation calculation unit 24 receives the reached gradation voltages Vaa and Vab and the current frame gradation voltages Vya, Vyb, and Vyc from the prediction gradation value-voltage conversion unit 23, and Based on the above equation (2), the reached gradation voltage Vvac is generated and output.
 予測用電圧-階調値変換部25は、予測用補間演算部24から到達階調電圧Vvacを受け取り、それを、上記第1の実施形態における電圧-階調値変換部25と同様に階調値(第2の到達階調値)に変換する。その後の動作は第1のケースと同様である。 The prediction voltage-gradation value conversion unit 25 receives the reached gradation voltage Vvac from the prediction interpolation calculation unit 24, and converts it to the gradation in the same manner as the voltage-gradation value conversion unit 25 in the first embodiment. Value (second reached gradation value). The subsequent operation is the same as in the first case.
 <3.2.3 第3のケースの動作>
 予測用階調値-電圧変換部23は、到達階調選択部31から到達階調値Gaa、Gab、Gba、Gbb、前フレーム階調値Gxa、Gxb、Gxc、および現フレーム階調値Gya、Gyb、Gycを受け取り、それらを、上記第1の実施形態における階調値-電圧変換部23と同様に電圧値に変換する。これにより、到達階調電圧Vaa、Vab、Vba、Vbb、前フレーム階調電圧Vxa、Vxb、Vxc、および現フレーム階調電圧Vya、Vyb、Vycが得られる。
<3.2.3 Operation in the third case>
The prediction gradation value-voltage conversion unit 23 receives the arrival gradation values Gaa, Gab, Gba, Gbb, the previous frame gradation values Gxa, Gxb, Gxc, and the current frame gradation value Gya, from the arrival gradation selection unit 31. Gyb and Gyc are received and converted into voltage values in the same manner as the gradation value-voltage conversion unit 23 in the first embodiment. Thus, the reached gradation voltages Vaa, Vab, Vba, Vbb, the previous frame gradation voltages Vxa, Vxb, Vxc, and the current frame gradation voltages Vya, Vyb, Vyc are obtained.
 予測用補間演算部24は、上記第2の実施形態と異なり、予測用階調値-電圧変換部23から到達階調電圧Vaa、Vab、Vba、Vbb、前フレーム階調電圧Vxa、Vxb、Vxc、および現フレーム階調電圧Vya、Vyb、Vycを受け取る。そして、予測用補間演算部24は、上記(1)および式(3)に基づいてそれぞれ得られる到達階調電圧VvcaおよびVvcbを用い、上記(4)に基づいて書込階調電圧Vvcを生成し出力するか、または、上記式(2)および式(5)に基づいてそれぞれ得られる到達階調電圧VvacおよびVvbcを用い、上記式(6)に基づいて書込階調電圧Vvcを生成し出力する。 Unlike the second embodiment, the prediction interpolation calculation unit 24 receives the reached gradation voltages Vaa, Vab, Vba, Vbb and the previous frame gradation voltages Vxa, Vxb, Vxc from the prediction gradation value-voltage conversion unit 23. , And current frame gray scale voltages Vya, Vyb, Vyc. Then, the prediction interpolation calculation unit 24 generates the write gradation voltage Vvc based on the above (4) using the reached gradation voltages Vvca and Vvcb obtained based on the above (1) and the expression (3), respectively. Or, using the reached gradation voltages Vvac and Vvbc obtained respectively based on the above equations (2) and (5), the write gradation voltage Vvc is generated based on the above equation (6). Output.
 予測用電圧-階調値変換部25は、予測用補間演算部24から到達階調電圧Vvcを受け取り、それを、上記第1の実施形態における電圧-階調値変換部25と同様に階調値(第2の到達階調値)に変換する。その後の動作は第1のケースと同様である。 The prediction voltage-gradation value conversion unit 25 receives the reached gradation voltage Vvc from the prediction interpolation calculation unit 24, and converts it to the gradation in the same manner as the voltage-gradation value conversion unit 25 in the first embodiment. Value (second reached gradation value). The subsequent operation is the same as in the first case.
 なお、本実施形態における第1~第3のケースの動作において、上記第1の実施形態における第1~第3のケースの動作と同様の理由から上述の誤差電圧が生じない。ただし、その詳細は、上記第1の実施形態における説明で書込階調値および書込階調電圧を到達階調値および到達階調電圧にそれぞれ置き換えたものなので、説明を省略する。 In the operation of the first to third cases in the present embodiment, the above error voltage does not occur for the same reason as the operation of the first to third cases in the first embodiment. However, the details are omitted because the writing gradation value and the writing gradation voltage are respectively replaced with the reaching gradation value and the reaching gradation voltage in the description of the first embodiment.
 <3.3 効果>
 本実施形態によれば、組み合わせが予測テーブルLUT2に存在しない場合の線形補間処理が、階調電圧を用いることにより行われる。このため、液晶のVT特性を考慮して線形補間処理が行われるので、上記第2の実施形態よりも正確な到達階調値が得られる。このようにして得られる到達階調値が前フレーム階調値としてオーバードライブ駆動に用いられるので、液晶の応答速度が、上記第2の実施形態に比べてより適切に補正される。これにより、動画表示の画質をさらに高めることができる。
<3.3 Effects>
According to the present embodiment, the linear interpolation process when the combination does not exist in the prediction table LUT2 is performed by using the gradation voltage. For this reason, since the linear interpolation process is performed in consideration of the VT characteristics of the liquid crystal, an accurate reached gradation value can be obtained as compared with the second embodiment. Since the reached gradation value obtained in this manner is used for overdrive driving as the previous frame gradation value, the response speed of the liquid crystal is corrected more appropriately than in the second embodiment. Thereby, the image quality of moving image display can be further improved.
 <4.その他>
 上記図4、図12、図13に示したルックアップテーブルの内容は単なる一例であり、本発明に用いるルックアップテーブルは当該内容に限定されるものではない。また、上記第2および第3の実施形態では、書込階調補間処理部22と到達階調補間処理部24とを別個の構成要素としているが、これらを1つの構成要素として実現しても良い。また、上記各実施形態では、補間処理として線形補間処理を用いているが、他の補間処理を用いても良い。その他、本発明の趣旨を逸脱しない範囲で上記各実施形態を種々変形して実施することができる。
<4. Other>
The contents of the lookup tables shown in FIGS. 4, 12, and 13 are merely examples, and the lookup tables used in the present invention are not limited to the contents. In the second and third embodiments, the writing gradation interpolation processing unit 22 and the reached gradation interpolation processing unit 24 are separate components, but may be realized as a single component. good. In each of the above embodiments, linear interpolation processing is used as interpolation processing, but other interpolation processing may be used. In addition, the above-described embodiments can be variously modified and implemented without departing from the spirit of the present invention.
 以上により、本発明によれば、低コストで高画質の動画表示を可能とする表示制御回路、それを備えた液晶表示装置、および表示制御方法を提供することができる。 As described above, according to the present invention, it is possible to provide a display control circuit that enables high-quality moving image display at low cost, a liquid crystal display device including the display control circuit, and a display control method.
 本発明は、画像信号に対して信号の時間的変化を強調するオーバードライブ駆動を行うための表示制御回路、それを備えた液晶表示装置、および表示制御方法に適用することができる。 The present invention can be applied to a display control circuit for performing overdrive driving that emphasizes a temporal change of a signal with respect to an image signal, a liquid crystal display device including the display control circuit, and a display control method.
5…液晶表示パネル
21…書込階調選択部(第1の階調選択部)
22…書込階調補間処理部(第1の補間部)
23…階調値-電圧変換部
24…補間演算部
25…電圧-階調値変換部
31…到達階調選択部(第2の階調選択部)
32…到達階調補間処理部(第2の補間部)
100…タイミングコントローラIC(表示制御回路)
122…オーバードライブ駆動部
160…SDRAM(記憶部)
LUT1…OSテーブル(第1のルックアップテーブル)
LUT2…予測テーブル(第2のルックアップテーブル)
CD…現フレームデータ
PD…前フレームデータ
WDa…第1の書込階調データ
WDb…第2の書込階調データ
RDa…第1の到達階調データ
RDb…第2の到達階調データ
Gxa,Gxb,Gxc…前フレーム階調値
Gya,Gyb,Gyc…現フレーム階調値
Gaa,Gab,Gba,Gbb,Gca,Gac,Gcb,Gc…書込階調値、到達階調値
Vxa,Vxb,Vxc…前フレーム階調電圧
Vya,Vyb,Vyc…現フレーム階調電圧
Vaa,Vab,Vba,Vbb,Vca,Vgca,Vgac,Vgc,Vvca,Vvac,Vvcb,Vvbc,Vvc,Vid…書込階調電圧、到達階調電圧
5. Liquid crystal display panel 21. Writing gradation selection section (first gradation selection section)
22... Write gradation interpolation processing unit (first interpolation unit)
23 ... gradation value-voltage conversion unit 24 ... interpolation calculation unit 25 ... voltage-gradation value conversion unit 31 ... reached gradation selection unit (second gradation selection unit)
32 .. reached gradation interpolation processing unit (second interpolation unit)
100 ... Timing controller IC (display control circuit)
122: Overdrive drive unit 160: SDRAM (storage unit)
LUT1 ... OS table (first lookup table)
LUT2 ... Prediction table (second lookup table)
CD ... current frame data PD ... previous frame data WDa ... first writing gradation data WDb ... second writing gradation data RDa ... first reaching gradation data RDb ... second reaching gradation data Gxa, Gxb, Gxc: previous frame gradation values Gya, Gyb, Gyc: current frame gradation values Gaa, Gab, Gba, Gbb, Gca, Gac, Gcb, Gc: write gradation values, reached gradation values Vxa, Vxb, Vxc: previous frame gradation voltage Vya, Vyb, Vyc: current frame gradation voltage Vaa, Vab, Vba, Vbb, Vca, Vgca, Vgac, Vgc, Vvca, Vvac, Vvcb, Vvbc, Vvc, Vid ... writing gradation Voltage, ultimate gradation voltage

Claims (14)

  1.  外部から与えられる画像信号に基づき、液晶表示パネルでの表示を制御するための表示制御回路であって、
     前記画像信号に対して信号の時間的変化を強調する補正に用いられる書込階調値を、現フレームの直前のフレームにおける階調値である前フレーム階調値、および前記現フレームにおいて与えられる前記画像信号の階調値である現フレーム階調値の組み合わせに基づいて決定するための第1のルックアップテーブルを記憶した記憶部と、
     前記第1のルックアップテーブルを参照し、前記組み合わせが前記第1のルックアップテーブルに存在する場合には当該組み合わせに基づいて決定される前記書込階調値を出力し、前記組み合わせが前記第1のルックアップテーブルに存在しない場合には、当該組み合わせに最も近く、かつ、当該第1のルックアップテーブルに存在する前記組み合わせに対応する前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とを少なくとも出力する第1の階調選択部と、
     前記組み合わせが前記第1のルックアップテーブルに存在しない場合に、前記第1の階調選択部から出力された前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とのそれぞれを電圧値に変換し、当該電圧値を用いて、前記第1のルックアップテーブルに存在しない前記組み合わせに対応する前記書込階調値を取得するための補間処理を行う第1の補間部とを備えることを特徴とする、表示制御回路。
    A display control circuit for controlling display on a liquid crystal display panel based on an image signal given from the outside,
    A writing gradation value used for correction for emphasizing a temporal change of the signal with respect to the image signal is given in the previous frame gradation value which is a gradation value in a frame immediately before the current frame, and in the current frame. A storage unit storing a first look-up table for determination based on a combination of current frame gradation values which are gradation values of the image signal;
    The first look-up table is referred to, and when the combination exists in the first look-up table, the writing gradation value determined based on the combination is output, and the combination is the first look-up table. If not present in one lookup table, the previous frame tone value and / or the current frame tone value corresponding to the combination closest to the combination and present in the first lookup table And a first gradation selection unit that outputs at least the write gradation value;
    When the combination does not exist in the first lookup table, the previous frame gradation value and / or the current frame gradation value and the writing gradation value output from the first gradation selection unit Are converted into voltage values, and interpolation processing for obtaining the writing gradation values corresponding to the combinations not existing in the first look-up table is performed using the voltage values. A display control circuit comprising an interpolation unit.
  2.  前記第1の補間部が行う前記補間処理は、線形補間処理であることを特徴とする、請求項1に記載の表示制御回路。 The display control circuit according to claim 1, wherein the interpolation process performed by the first interpolation unit is a linear interpolation process.
  3.  前記第1の階調選択部は、前記組み合わせのうち、前記前フレーム階調値のみが前記第1のルックアップテーブルに存在しない場合には、当該前フレーム階調値に最も値が近く、かつ、前記第1のルックアップテーブルに存在する前記前フレーム階調値と、当該前フレーム階調値および前記現フレーム階調値の組み合わせに基づいて決定される前記書込階調値とを出力することを特徴とする、請求項2に記載の表示制御回路。 The first gradation selection unit is closest to the previous frame gradation value when only the previous frame gradation value is not present in the first lookup table in the combination, and The previous frame gradation value existing in the first look-up table and the writing gradation value determined based on a combination of the previous frame gradation value and the current frame gradation value are output. The display control circuit according to claim 2, wherein:
  4.  前記第1の階調選択部は、前記組み合わせのうち、前記現フレーム階調値のみが前記第1のルックアップテーブルに存在しない場合には、当該現フレーム階調値に最も値が近く、かつ、前記第1のルックアップテーブルに存在する前記現フレーム階調値と、当該現フレーム階調値および前記前フレーム階調値の組み合わせに基づいて決定される前記書込階調値とを出力することを特徴とする、請求項2に記載の表示制御回路。 When only the current frame gradation value does not exist in the first lookup table, the first gradation selection unit is closest to the current frame gradation value, and And outputting the current frame gradation value existing in the first look-up table and the writing gradation value determined based on a combination of the current frame gradation value and the previous frame gradation value. The display control circuit according to claim 2, wherein:
  5.  前記第1の階調選択部は、前記組み合わせを構成する前記前フレーム階調値および前記現フレーム階調値が前記第1のルックアップテーブルに存在しない場合には、当該前フレーム階調値および当該現フレーム階調値にそれぞれ最も値が近く、かつ、前記第1のルックアップテーブルに存在する前記前フレーム階調値および前記現フレーム階調値と、当該前フレーム階調値および当該現フレーム階調値の組み合わせに基づいて決定される前記書込階調値とを出力することを特徴とする、請求項2に記載の表示制御回路。 When the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the first lookup table, the first gradation selection unit The previous frame tone value, the current frame tone value, the previous frame tone value, and the current frame that are closest to the current frame tone value and exist in the first lookup table. The display control circuit according to claim 2, wherein the writing gradation value determined based on a combination of gradation values is output.
  6.  前記前フレーム階調値は、前記現フレームの直前のフレームにおける前記現フレーム階調値であることを特徴とする、請求項1に記載の表示制御回路。 The display control circuit according to claim 1, wherein the previous frame gradation value is the current frame gradation value in a frame immediately before the current frame.
  7.  前記記憶部は、前記液晶表示パネルでの表示において到達すると予測される階調値である到達階調値を、前記組み合わせに基づいて決定するための第2のルックアップテーブルをさらに含み、
     前記第2のルックアップテーブルを参照し、前記組み合わせが当該第2のルックアップテーブルに存在する場合には、前記到達階調値を、前記現フレームの直後のフレームにおける前記前フレーム階調値とし、前記組み合わせが前記第2のルックアップテーブルに存在しない場合には、当該組み合わせに最も近く、かつ、当該第2のルックアップテーブルに存在する前記組み合わせに対応する前記前フレーム階調値および/または前記現フレーム階調値と前記到達階調値とを少なくとも出力する第2の階調選択部と、
     前記組み合わせが前記第2のルックアップテーブルに存在しない場合に、前記第2の選択部から出力された前記前フレーム階調値および/または前記現フレーム階調値と前記到達階調値とに基づいて、前記第2のルックアップテーブルに存在しない前記組み合わせに対応する前記到達階調値を取得するための所定の形式での補間処理を行って得られる前記到達階調値を、前記現フレームの直後のフレームにおける前記前フレーム階調値とする第2の補間部とをさらに備えることを特徴とする、請求項1に記載の表示制御回路。
    The storage unit further includes a second lookup table for determining a reached gradation value, which is a gradation value predicted to be reached in the display on the liquid crystal display panel, based on the combination,
    When the second lookup table is referred to and the combination exists in the second lookup table, the reached gradation value is set as the previous frame gradation value in the frame immediately after the current frame. , If the combination does not exist in the second lookup table, the previous frame tone value that is closest to the combination and that corresponds to the combination present in the second lookup table and / or A second gradation selection unit that outputs at least the current frame gradation value and the reached gradation value;
    When the combination does not exist in the second look-up table, based on the previous frame gradation value and / or the current frame gradation value and the reached gradation value output from the second selection unit. Thus, the reached gradation value obtained by performing interpolation processing in a predetermined format for acquiring the reached gradation value corresponding to the combination that does not exist in the second lookup table is determined as the current frame. The display control circuit according to claim 1, further comprising: a second interpolation unit that sets the previous frame gradation value in the immediately following frame.
  8.  前記第2の補間部は、前記第2の選択部から出力された前記前フレーム階調値および/または前記現フレーム階調値と前記到達階調値とのそれぞれを電圧値に変換し、当該電圧値を用いて、前記第2のルックアップテーブルに存在しない前記組み合わせに対応する前記到達階調値を取得するための前記補間処理を行うことを特徴とする、請求項7に記載の表示制御回路。 The second interpolation unit converts each of the previous frame tone value and / or the current frame tone value and the reached tone value output from the second selection unit into a voltage value, and 8. The display control according to claim 7, wherein the interpolation processing for acquiring the reached gradation value corresponding to the combination that does not exist in the second look-up table is performed using a voltage value. 9. circuit.
  9.  前記第2の補間部が行う前記補間処理は、線形補間処理であることを特徴とする、請求項8に記載の表示制御回路。 The display control circuit according to claim 8, wherein the interpolation processing performed by the second interpolation unit is linear interpolation processing.
  10.  前記第2の階調選択部は、前記組み合わせのうち、前記前フレーム階調値のみが前記第2のルックアップテーブルに存在しない場合には、当該前フレーム階調値に最も値が近く、かつ、前記第2のルックアップテーブルに存在する前記前フレーム階調値と、当該前フレーム階調値および前記現フレーム階調値の組み合わせに基づいて決定される前記到達階調値とを出力することを特徴とする、請求項9に記載の表示制御回路。 When only the previous frame gradation value does not exist in the second lookup table in the combination, the second gradation selection unit is closest to the previous frame gradation value, and Outputting the previous frame gradation value existing in the second look-up table and the reached gradation value determined based on a combination of the previous frame gradation value and the current frame gradation value. The display control circuit according to claim 9, wherein:
  11.  前記第2の階調選択部は、前記組み合わせのうち、前記現フレーム階調値のみが前記第2のルックアップテーブルに存在しない場合には、当該現フレーム階調値に最も値が近く、かつ、前記第2のルックアップテーブルに存在する前記現フレーム階調値と、当該現フレーム階調値および前記前フレーム階調値の組み合わせに基づいて決定される前記到達階調値とを出力することを特徴とする、請求項9に記載の表示制御回路。 When only the current frame tone value does not exist in the second look-up table in the combination, the second tone selecting unit is closest to the current frame tone value, and Outputting the current frame gradation value existing in the second look-up table and the reached gradation value determined based on a combination of the current frame gradation value and the previous frame gradation value. The display control circuit according to claim 9, wherein:
  12.  前記第2の階調選択部は、前記組み合わせを構成する前記前フレーム階調値および前記現フレーム階調値が前記第2のルックアップテーブルに存在しない場合には、当該前フレーム階調値および当該現フレーム階調値にそれぞれ最も値が近く、かつ、前記第2のルックアップテーブルに存在する前記前フレーム階調値および前記現フレーム階調値と、当該前フレーム階調値および当該現フレーム階調値の組み合わせに基づいて決定される前記到達階調値とを出力することを特徴とする、請求項9に記載の表示制御回路。 The second gradation selection unit, when the previous frame gradation value and the current frame gradation value constituting the combination do not exist in the second lookup table, The previous frame gradation value, the current frame gradation value, the previous frame gradation value, and the current frame that are closest to the current frame gradation value and exist in the second lookup table. The display control circuit according to claim 9, wherein the reached gradation value determined based on a combination of gradation values is output.
  13.  請求項1から12までのいずれか1項に記載の表示制御回路と、
     前記表示制御回路で得られた前記書込階調値に基づく表示を行うための前記液晶表示パネルとを備えることを特徴とする、液晶表示装置。
    A display control circuit according to any one of claims 1 to 12,
    A liquid crystal display device comprising: the liquid crystal display panel for performing display based on the writing gradation value obtained by the display control circuit.
  14.  外部から与えられる画像信号に基づき、液晶表示パネルでの表示を制御するための表示制御方法であって、
     前記画像信号に対して信号の時間的変化を強調する補正に用いられる書込階調値を、現フレームの直前のフレームにおける階調値である前フレーム階調値、および前記現フレームにおいて与えられる前記画像信号の階調値である現フレーム階調値の組み合わせに基づいて決定するための第1のルックアップテーブルを参照するステップと、
     前記組み合わせが前記第1のルックアップテーブルに存在する場合に、当該第組み合わせに基づいて決定される前記書込階調値を出力するステップと、
     前記組み合わせが前記第1のルックアップテーブルに存在しない場合に、当該組み合わせに最も近く、かつ、当該第1のルックアップテーブルに存在する前記組み合わせに対応する前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とを少なくとも出力するステップと、
     前記組み合わせが前記第1のルックアップテーブルに存在しない場合に出力された前記前フレーム階調値および/または前記現フレーム階調値と前記書込階調値とのそれぞれを電圧値に変換し、当該電圧値を用いて、前記第1のルックアップテーブルに存在しない前記組み合わせに対応する前記書込階調値を取得するための補間処理を行うステップとを備えることを特徴とする、表示制御方法。
    A display control method for controlling display on a liquid crystal display panel based on an image signal given from outside,
    A writing gradation value used for correction for emphasizing a temporal change of the signal with respect to the image signal is given in the previous frame gradation value which is a gradation value in a frame immediately before the current frame, and in the current frame. Referring to a first lookup table for determining based on a combination of current frame tone values that are tone values of the image signal;
    Outputting the writing gradation value determined based on the first combination when the combination exists in the first lookup table;
    If the combination does not exist in the first lookup table, the previous frame tone value and / or the current value that is closest to the combination and that corresponds to the combination that exists in the first lookup table. Outputting at least a frame gradation value and the writing gradation value;
    Converting each of the previous frame gradation value and / or the current frame gradation value and the writing gradation value output when the combination does not exist in the first lookup table into a voltage value; And a step of performing an interpolation process for obtaining the writing gradation value corresponding to the combination that does not exist in the first look-up table using the voltage value. .
PCT/JP2012/075311 2011-10-06 2012-10-01 Display control circuit, liquid crystal display device comprising display control circuit, and display control method WO2013051490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011221570 2011-10-06
JP2011-221570 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051490A1 true WO2013051490A1 (en) 2013-04-11

Family

ID=48043649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075311 WO2013051490A1 (en) 2011-10-06 2012-10-01 Display control circuit, liquid crystal display device comprising display control circuit, and display control method

Country Status (1)

Country Link
WO (1) WO2013051490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096895A (en) * 2015-09-21 2015-11-25 北京集创北方科技有限公司 Digital image data processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246312A (en) * 2002-12-19 2004-09-02 Sharp Corp Liquid crystal display device
JP2007178561A (en) * 2005-12-27 2007-07-12 Sharp Corp Display apparatus and drive method thereof
JP2008096875A (en) * 2006-10-16 2008-04-24 Infovision Optoelectronics Holdings Ltd Driving circuit for active matrix type liquid crystal display device and active matrix type liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246312A (en) * 2002-12-19 2004-09-02 Sharp Corp Liquid crystal display device
JP2007178561A (en) * 2005-12-27 2007-07-12 Sharp Corp Display apparatus and drive method thereof
JP2008096875A (en) * 2006-10-16 2008-04-24 Infovision Optoelectronics Holdings Ltd Driving circuit for active matrix type liquid crystal display device and active matrix type liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096895A (en) * 2015-09-21 2015-11-25 北京集创北方科技有限公司 Digital image data processing method

Similar Documents

Publication Publication Date Title
JP4638182B2 (en) LIQUID CRYSTAL DISPLAY DEVICE, METHOD FOR DRIVING THE SAME AND DEVICE THEREOF
US8217875B2 (en) Signal processing device for liquid crystal display panel and liquid crystal display including the signal processing device
JP5253899B2 (en) Display control circuit, liquid crystal display device including the same, and display control method
US20080309600A1 (en) Display apparatus and method for driving the same
JP5639751B2 (en) Liquid crystal display device and driving method thereof
JP5050691B2 (en) Image processing apparatus, image processing method, and computer program
JP4228931B2 (en) Liquid crystal panel driving apparatus and driving method, and liquid crystal projector using the same
US9214117B2 (en) Display control circuit, liquid crystal display apparatus having the same, and display control method
JP2008009434A (en) Display device, and drive device and driving method therefor
JP4523348B2 (en) Display device and driving method thereof
JP4671715B2 (en) Display device and driving method thereof
KR101230302B1 (en) Liquid crystal display and method of modifying image signals for liquid crystal display
JP4515503B2 (en) Driving method of liquid crystal display device
KR101872944B1 (en) Method of driving display panel and display apparatus for performing the method
JP4902116B2 (en) Liquid crystal display
JP2007333770A (en) Electrooptical device, driving circuit for electrooptical device, and driving method of electrooptical device, and electronic device
JP2008304763A (en) Display device
WO2013051490A1 (en) Display control circuit, liquid crystal display device comprising display control circuit, and display control method
US8102342B2 (en) Display apparatus including a driver using a lookup table
KR101030546B1 (en) Curcuit and method for over driving liquid crystal display device
JP2007171367A (en) Liquid crystal display device
US20170140730A1 (en) Multi-voltage Generator and Liquid Crystal Display
JP4884381B2 (en) Display device
JP5391475B2 (en) Signal processing device, liquid crystal display device including the same, and driving method of the liquid crystal display device
EP1914710B1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP