WO2013051098A1 - Method of controlling pressure-maintaining step for injection-molding machine - Google Patents

Method of controlling pressure-maintaining step for injection-molding machine Download PDF

Info

Publication number
WO2013051098A1
WO2013051098A1 PCT/JP2011/072822 JP2011072822W WO2013051098A1 WO 2013051098 A1 WO2013051098 A1 WO 2013051098A1 JP 2011072822 W JP2011072822 W JP 2011072822W WO 2013051098 A1 WO2013051098 A1 WO 2013051098A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
screw
width
holding
injection
Prior art date
Application number
PCT/JP2011/072822
Other languages
French (fr)
Japanese (ja)
Inventor
貴政 西崎
Original Assignee
東洋機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋機械金属株式会社 filed Critical 東洋機械金属株式会社
Priority to JP2013537304A priority Critical patent/JP5815040B2/en
Priority to CN201180074008.7A priority patent/CN103857516B/en
Priority to PCT/JP2011/072822 priority patent/WO2013051098A1/en
Publication of WO2013051098A1 publication Critical patent/WO2013051098A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76384Holding, dwelling

Definitions

  • the present invention relates to a pressure control method in a pressure-holding process performed immediately after injection and filling of a molten resin into a mold cavity, and occurs when molding a thin material such as a light guide plate used in a display panel such as a liquid crystal panel.
  • the present invention relates to a pressure holding process control method in an injection molding machine that can control the residual stress to be performed with high accuracy.
  • a light guide plate that uniformly emits light is used in a relatively small liquid crystal display monitor.
  • the high-pressure state is changed to the low-pressure state.
  • the pressure reduction is slow, residual stress due to the pressure remaining in the mold causes warpage or uneven thickness of the molded body.
  • the pressure reduction is too fast, excessive overshoot and hunting after reaching a predetermined pressure occur, and there is a problem that molding defects and gate clogging occur.
  • Patent Document 1 discloses that in the filling step performed before the pressure holding step, when the screw moves forward and reaches a predetermined position, the screw is returned to the set position at a set speed, so that V A method for controlling a filling process of an injection molding machine that performs pressure release immediately before -P switching (switching from speed control to pressure control) is disclosed.
  • Patent Document 2 discloses a technique in injection molding in which a screw is temporarily stopped or retracted after high-pressure high-speed injection, and pressure reduction control is performed after high-pressure high-speed injection.
  • Patent Document 1 is a technique for retracting the screw in the filling process, and a technique for controlling the pressure in the pressure holding process performed after the filling process is not disclosed, that is, the residual generated in the pressure holding process.
  • a technique for controlling the stress is not disclosed.
  • pressure reduction is performed before the pressure holding process, and it is not a technique for controlling the residual stress generated in the pressure holding process as in Patent Document 1.
  • Patent Document 2 when the screw is retracted and decompressed, the decompression control is simply performed based only on the measured value of the sensor or timer that detects the screw movement position (retracted position). Therefore, it is difficult to perform fine pressure reduction control, and it must be said that it is substantially difficult to obtain a high-quality molded product.
  • the present invention has been made in view of the above-described problems, and the pressure control in the pressure-holding step executed after the injection-filling step is performed with high accuracy, and the holding in the injection molding machine capable of molding a high-quality molded body.
  • An object of the present invention is to provide a pressure process control method.
  • the pressure holding process control method in the injection molding machine is A control method in an injection molding machine that performs an injection filling process in which a screw is advanced to inject and fill a molten resin into a cavity of a mold, and a pressure holding process by reducing the pressure by retreating the screw, After completion of injection filling in the injection filling process, switching to the pressure holding process, In the primary pressure-holding process, which is the initial stage after switching to the pressure-holding process, the primary pressure is reduced by pressure control and the screw is rapidly retracted. The pressure reduction control is performed so that the set pressure in the secondary pressure holding process performed after the next pressure holding process is reached in a short time.
  • the pressure holding process control method in the injection molding machine is In the injection filling process, the forward movement of the screw is performed by speed control, while in the pressure holding process, the backward movement of the screw is performed by pressure control, so that the switching from the injection filling process to the pressure holding process is performed. VP switching is performed.
  • the pressure holding process control method in the injection molding machine is In the primary pressure holding step in which the screw is moved backward by the pressure reduction, when the measured pressure of the primary pressure holding pressure does not reach the set pressure, the screw retracting width B when the pressure is reduced by moving the screw backward is set as follows: The following formula 1 is used to calculate, and the screw is moved backward with the receding width B calculated using the formula 1; On the other hand, when the measured pressure of the primary holding pressure reaches the set pressure in the primary pressure holding step in which the screw is retracted by the pressure reduction, the following formula 2 is used to calculate: When the mathematical formula 2 is not satisfied, The retraction width B of the screw when the screw is retreated and decompressed is calculated by the following mathematical expression 3, and the screw is retreated by the retraction width B calculated by the mathematical expression 3.
  • A Movement width (mm) of the screw moved from the time of VP switching before one shot to when the primary pressure holding process and the secondary pressure holding process are switched.
  • C Set screw retraction width (mm) before one shot a: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the measured pressure at the primary holding pressure process one shot before b: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the set pressure in the secondary holding pressure process
  • the pressure-holding process control method in the injection molding machine of the present invention after switching from the injection filling process to the pressure-holding process, in the primary pressure-holding process in the initial stage of the pressure-holding process, Since the primary holding pressure is rapidly reduced and the pressure reduction control is performed so that the primary holding pressure reaches the set pressure of the secondary holding pressure in a short time, such high-precision pressure control (holding pressure) is maintained in the holding pressure process.
  • high-precision pressure control holding pressure
  • the self-learning is performed based on the measured pressure value, and the screw retraction width is optimum based on the result obtained therefrom.
  • the waveform when the screw is retreated with the retraction width calculated by Equation 1 is represented by a solid line.
  • the waveform when the screw is retracted with the previously set screw retraction width is represented by a dotted line.
  • the speed waveform when the screw is retracted with the retraction width calculated by the mathematical formula 1 is represented by a solid line below the time axis, and the screw is retreated with the set retraction width of the screw one shot before.
  • the velocity waveform at the time is represented by a dotted line below the time axis.
  • the waveform when the screw is retreated with the retraction width calculated by Equation 1 is represented by a solid line.
  • the waveform when the screw is retracted with the previously set screw retraction width is represented by a dotted line.
  • the speed waveform when the screw is retracted with the retraction width calculated by the mathematical formula 3 is represented by a solid line below the time axis, and the screw is retracted with the set retraction width of the screw one shot before.
  • the velocity waveform at the time is represented by a dotted line below the time axis. It is a graph which shows the variable inclination of a learning coefficient. It is a graph which shows the operation
  • FIG. 1 is a front view showing an injection unit 2 configured in an injection molding machine 1.
  • a hopper 3 into which resin (pellet) that is a granular raw material is charged
  • a cylindrical heating cylinder 4 to which granular resin is supplied from the hopper 3, a screw 5 for measuring the molten resin supplied into the heating cylinder 4 and plasticized by heat, and the measured molten resin to the cavity of the mold
  • An injection nozzle 6 mounted at the tip of the heating cylinder 4 for injection filling, a metering motor 8 as a driving source for rotating the screw 5 via a timing belt 7 when kneading the molten resin in the heating cylinder 4, and the like
  • the injection motor 1 as a drive source for advancing the screw 5 via the timing belt 9 and the ball screw mechanism 10
  • the load cell 12 serving as a pressure sensor that detects the force (injection pressure) for extruding the molten resin as the screw 5 moves forward is used as a
  • FIG. 2 is a graph in which the vertical axis represents pressure and speed, and the horizontal axis represents time.
  • the injection filling process in which the screw 5 is advanced to inject and fill the molten resin into the mold cavity is shown. After being performed, the pressure holding process is performed.
  • the screw 5 whose speed is controlled in the injection filling process is switched to VP at that timing.
  • pressure control is performed instead of speed control.
  • the pressure waveform is indicated by a solid line
  • the velocity waveform is indicated by a dotted line.
  • the primary pressure holding process is performed at an initial stage switched from the injection filling process, and the secondary pressure holding process (main pressure holding process) is performed after the primary pressure holding process.
  • the control means 13 rapidly retracts the screw so that the primary pressure in the primary pressure holding process reaches the set pressure in the secondary pressure holding process in a short time. The next holding pressure is reduced.
  • step 1 the process proceeds to step 2 and the screw 5
  • step 1 the control unit 13 according to the following equation (1).
  • C Set screw retraction width (mm) before one shot a: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the measured pressure at the primary holding pressure process one shot before b: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the set pressure in the secondary holding pressure process
  • FIG. 4A shows the speed of the screw 5 on the vertical axis and the moving position of the screw 5 on the horizontal axis as the position, and when the screw 5 is moved backward by the backward width B calculated by the mathematical formula 1 in the primary pressure holding step.
  • FIG. 4B the screw 5 can be operated with an appropriate receding width B by finely
  • Step 3 when the actually measured pressure in the primary pressure holding process in Step 1 reaches the preset pressure in the secondary pressure holding process, the process proceeds to Step 3 and the control means 13 uses the following formula. It is performed by the calculation of 2.
  • A Movement width (mm) of the screw moved from the time of VP switching before one shot to when the primary pressure holding process and the secondary pressure holding process are switched.
  • step 3 the process proceeds to step 4 where the control unit calculates the backward width B of the screw 5 when the screw 5 is retracted to reduce the pressure. It is.
  • FIG. 5A shows the speed of the screw 5 on the vertical axis and the moving position of the screw 5 on the horizontal axis as the position, and when the screw 5 is retracted by the receding width B calculated by the mathematical formula 1 in the primary pressure holding step.
  • FIG. 5B shows the screw 5 on the vertical axis.
  • the pressure and velocity of the screw 5 are shown, the time is shown on the horizontal axis, and the pressure waveform when the screw 5 is retracted with the receding width B calculated by the mathematical formula 3 is shown as a solid line above the time axis, one shot before
  • the pressure waveform when the screw 5 is retracted with the set receding width C of the screw 5 is represented by a dotted line above the time axis, and the screw 5 is receded with the receding width B calculated by the mathematical formula 3
  • the velocity waveform when A solid line is shown below the axis
  • a speed waveform when the screw 5 is retracted by the set receding width C of the screw 5 one shot before is shown by a dotted line below the time axis. .
  • Step 5 (Fine adjustment by gradient method) In Step 5, even if fine adjustment of the retraction width of the screw 5 is performed in Step 2 or Step 4, if the fine adjustment is not optimal, an unstable pressure behavior is shown after switching to pressure control. There is.
  • a fine-tuning means for solving this problem a steepest descent method effective for obtaining a polar solution is used.
  • the steepest descent method is represented by the following formula.
  • the learning coefficients ⁇ and ⁇ suppress the overlearning when the constants are made variable as shown in the graph of FIG.
  • parameters are determined according to the following specifications.
  • control means calculates the receding width X (t) for each shot in the direction of f (t) ⁇ 0 according to the mathematical formula 4, and based on the calculated value for each shot.
  • the retraction width of the screw 5 is automatically adjusted.
  • FIG. 7A shows the speed of the screw 5 on the vertical axis as a speed measurement
  • the horizontal axis shows the moving position of the screw 5 as a position
  • FIG. 7B shows the pressure of the screw 5 on the vertical axis as a pressure measurement
  • the horizontal axis shows the screw 5 7C shows the speed of the screw 5 as a speed measurement
  • the horizontal axis shows the time
  • FIG. 7D shows the pressure of the screw 5 as a pressure measurement on the vertical axis
  • the waveform of the first shot (1.00 mm) is represented by a solid line
  • the waveform of the second shot (2.70 mm) is represented by a dotted line
  • the waveform of the third shot (3.38 mm) is represented by a dashed line.
  • C 1.0 mm
  • the measured VP switching pressure at the time of VP switching before 1 shot is 105 aMPa
  • the measured VP switching pressure at the time of VP switching before 1 shot is 1
  • a 39 MPa
  • b 95 MPa (105 MPa ⁇ 10 MPa (set pressure in the secondary pressure holding process))
  • step 1 when the pressure in the primary pressure-holding process reaches the set pressure in the secondary pressure-holding process, the process proceeds from step 1 to step 3 as shown in the flow of FIG. Whether or not the requirement of the mathematical formula (A / B> 0.98) is satisfied is determined by the control means 13, and when the requirement is not satisfied, fine adjustment of the retraction width of the screw 5 using the mathematical formula 3 Is done. An example of the operation when performing the fine adjustment will be described below with reference to FIG.
  • FIG. 8A shows the speed of the screw 5 as a speed measurement on the vertical axis, the moving position of the screw 5 as a position on the horizontal axis, and FIG. 8B shows the pressure of the screw 5 as a pressure measurement on the vertical axis, and the screw 5 on the horizontal axis.
  • 8C shows the speed of the screw 5 as a speed measurement
  • the horizontal axis shows the time
  • FIG. 8D shows the pressure of the screw 5 as a pressure measurement on the vertical axis
  • the horizontal axis Shows time.
  • the waveform of the first shot (5.00 mm) is represented by a solid line
  • the waveform of the second shot (4.05 mm) is represented by a dotted line
  • the waveform of the third shot (3.57 mm) is represented by a dashed line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a method of controlling a pressure-maintaining step for an injection-molding machine capable of molding a high quality molded body, pressure control in a pressure maintaining step executed after an injection step being performed with high precision. A control method in an injection molding machine in which there are performed an injection-filling step for advancing a screw and injecting molten resin to fill a die cavity and a pressure maintaining step for retracting the screw and reducing the pressure, wherein a switch is made to the pressure maintaining step after injection filling has concluded in the injection filling step, the screw is rapidly retracted by reducing a primary pressure through pressure control in a primary pressure maintaining step which is the initial stage after the switch to the pressure maintaining step has been made, and pressure reduction is controlled so that the reduced primary pressure reaches in a short time a set pressure for a secondary pressure maintaining step performed after the primary pressure maintaining step.

Description

射出成形機における保圧工程制御方法Pressure holding process control method in injection molding machine
 本発明は、溶融樹脂を金型のキャビティへ射出充填したその直後に行われる保圧工程における圧力制御方法に関し、液晶パネル等の表示パネルに採用される導光板等の薄物を成形する際に発生する残留応力を高精度で制御することができる射出成形機における保圧工程制御方法に関する。 The present invention relates to a pressure control method in a pressure-holding process performed immediately after injection and filling of a molten resin into a mold cavity, and occurs when molding a thin material such as a light guide plate used in a display panel such as a liquid crystal panel. The present invention relates to a pressure holding process control method in an injection molding machine that can control the residual stress to be performed with high accuracy.
 近年、比較的小型化された液晶の表示モニターには、光を均一に面発光する導光板が採用されている。こうした導光板等の肉厚の薄い板材を成形する場合や、高精度な成形が要求される精密成形においては、キャビティへ溶融樹脂を充填した後に生ずる残留応力を排除するため、高圧状態から低圧状態に急減圧を行うことが要求されており、例えば、減圧が遅い場合には、金型内に残る圧力による残留応力よって、成形体にそりや肉厚の不均一が発生してしまう。また、減圧が速すぎると、所定圧力に到達した後の過度なオーバーシュートやハンチングが発生してしまい、成形不良やゲートの詰まりが起きてしまうという問題があった。 In recent years, a light guide plate that uniformly emits light is used in a relatively small liquid crystal display monitor. When molding thin plate materials such as light guide plates, or in precision molding where high-precision molding is required, in order to eliminate the residual stress that occurs after filling the cavity with molten resin, the high-pressure state is changed to the low-pressure state. For example, when the pressure reduction is slow, residual stress due to the pressure remaining in the mold causes warpage or uneven thickness of the molded body. In addition, if the pressure reduction is too fast, excessive overshoot and hunting after reaching a predetermined pressure occur, and there is a problem that molding defects and gate clogging occur.
 上記技術に関連するものとして特許文献1には、保圧工程前に行われる充填工程において、スクリューが前進して所定の位置に到達したら、該スクリューを設定位置まで設定速度で戻すことにより、V-P切換え(速度制御から圧力制御への切換え)直前に圧抜きを行う射出成形機の充填工程制御方法が開示されている。また、特許文献2には、射出成形において、高圧高速射出後にスクリューを一旦停止又は後退させて、高圧高速射出後に減圧制御を行う技術が開示されている。 As related to the above technique, Patent Document 1 discloses that in the filling step performed before the pressure holding step, when the screw moves forward and reaches a predetermined position, the screw is returned to the set position at a set speed, so that V A method for controlling a filling process of an injection molding machine that performs pressure release immediately before -P switching (switching from speed control to pressure control) is disclosed. Patent Document 2 discloses a technique in injection molding in which a screw is temporarily stopped or retracted after high-pressure high-speed injection, and pressure reduction control is performed after high-pressure high-speed injection.
特許第3404652号公報Japanese Patent No. 34044652 特開昭59-165634号公報JP 59-165634 A
 特許文献1の技術は、充填工程において、スクリューを後退させる技術であり、充填工程後に行われる保圧工程において圧力を制御しようという技術は開示されてはなく、すなわち、保圧工程で発生する残留応力を制御しようという技術については開示されていない。また、特許文献2の技術においては、保圧工程前に減圧を行おうというものであり、特許文献1と同様に保圧工程で発生する残留応力を制御しようという技術ではない。また、特許文献2では、スクリューを後退して減圧するときには、単に、スクリューの移動位置(後退位置)を検出するセンサやタイマの計測値のみに基づいて減圧制御を行っているものであることから、細やかな減圧制御を行うことは難しく、高品質な成形品を得ることは実質困難であると言わざるを得ない。 The technique of Patent Document 1 is a technique for retracting the screw in the filling process, and a technique for controlling the pressure in the pressure holding process performed after the filling process is not disclosed, that is, the residual generated in the pressure holding process. A technique for controlling the stress is not disclosed. Further, in the technique of Patent Document 2, pressure reduction is performed before the pressure holding process, and it is not a technique for controlling the residual stress generated in the pressure holding process as in Patent Document 1. Further, in Patent Document 2, when the screw is retracted and decompressed, the decompression control is simply performed based only on the measured value of the sensor or timer that detects the screw movement position (retracted position). Therefore, it is difficult to perform fine pressure reduction control, and it must be said that it is substantially difficult to obtain a high-quality molded product.
 本発明は、上記課題に鑑みてなされたものであり、射出充填工程後に実行される保圧工程における圧力制御を高精度で行い、高品質な成形体を成形することができる射出成形機における保圧工程制御方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and the pressure control in the pressure-holding step executed after the injection-filling step is performed with high accuracy, and the holding in the injection molding machine capable of molding a high-quality molded body. An object of the present invention is to provide a pressure process control method.
 射出成形機における保圧工程制御方法は、
 スクリューを前進させ金型のキャビティへ溶融樹脂を射出充填する射出充填工程と、前記スクリューを後退させ減圧による保圧工程とを行う射出成形機における制御方法であって、
 前記射出充填工程の射出充填完了後に前記保圧工程に切換え、
 該保圧工程に切換後の初期段階である1次保圧工程で、圧力制御により1次保圧力を減圧して前記スクリューを急速に後退させ、該減圧された1次保圧力が、前記1次保圧工程後に行なわれる2次保圧工程の設定圧力に短時間で達するよう減圧制御されることを特徴とする。
The pressure holding process control method in the injection molding machine is
A control method in an injection molding machine that performs an injection filling process in which a screw is advanced to inject and fill a molten resin into a cavity of a mold, and a pressure holding process by reducing the pressure by retreating the screw,
After completion of injection filling in the injection filling process, switching to the pressure holding process,
In the primary pressure-holding process, which is the initial stage after switching to the pressure-holding process, the primary pressure is reduced by pressure control and the screw is rapidly retracted. The pressure reduction control is performed so that the set pressure in the secondary pressure holding process performed after the next pressure holding process is reached in a short time.
 射出成形機における保圧工程制御方法は、
 前記射出充填工程では前記スクリューの前進運動が速度制御で行われる一方で、前記保圧工程では前記スクリューの後退運動が圧力制御で行われるよう、前記射出充填工程から前記保圧工程への切換えでV-P切換えを行うことを特徴とする。
The pressure holding process control method in the injection molding machine is
In the injection filling process, the forward movement of the screw is performed by speed control, while in the pressure holding process, the backward movement of the screw is performed by pressure control, so that the switching from the injection filling process to the pressure holding process is performed. VP switching is performed.
 射出成形機における保圧工程制御方法は、
 前記減圧によりスクリューを後退させる1次保圧工程にて、前記1次保圧力の実測圧力が前記設定圧力に到達しないときには、前記スクリューを後退させ減圧を行う際の該スクリューの後退幅Bを、下記の数1の数式で算出し、該数1の数式で算出した後退幅Bで前記スクリューを後退させ、
 他方、前記減圧によりスクリューを後退させる1次保圧工程にて、前記1次保圧力の実測圧力が前記設定圧力に到達したときには、下記の数2の数式で演算し、
 前記数2の数式を満たさないときには、
 前記スクリューを後退させ減圧を行う際の該スクリューの後退幅Bを、下記の数3の数式で算出し、該数3の数式で算出した後退幅Bで前記スクリューを後退させることを特徴とする。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 A:1ショット前のV-P切換時から、1次保圧工程と2次保圧工程とが切換えられた時までに移動されるスクリューの移動幅(mm)
 C:1ショット前の設定されたスクリューの後退幅(mm)
 a:1ショット前のV-P切換時の実測されたV-P切換圧と1ショット前の1次保圧工程の実測圧力との差圧(MPa)
 b:1ショット前のV-P切換時の実測されたV-P切換圧と2次保圧工程における設定圧力との差圧(MPa)
The pressure holding process control method in the injection molding machine is
In the primary pressure holding step in which the screw is moved backward by the pressure reduction, when the measured pressure of the primary pressure holding pressure does not reach the set pressure, the screw retracting width B when the pressure is reduced by moving the screw backward is set as follows: The following formula 1 is used to calculate, and the screw is moved backward with the receding width B calculated using the formula 1;
On the other hand, when the measured pressure of the primary holding pressure reaches the set pressure in the primary pressure holding step in which the screw is retracted by the pressure reduction, the following formula 2 is used to calculate:
When the mathematical formula 2 is not satisfied,
The retraction width B of the screw when the screw is retreated and decompressed is calculated by the following mathematical expression 3, and the screw is retreated by the retraction width B calculated by the mathematical expression 3. .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
A: Movement width (mm) of the screw moved from the time of VP switching before one shot to when the primary pressure holding process and the secondary pressure holding process are switched.
C: Set screw retraction width (mm) before one shot
a: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the measured pressure at the primary holding pressure process one shot before
b: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the set pressure in the secondary holding pressure process
 射出成形機における保圧工程制御方法は、
 前記数2の数式を満たすときには、
 ショット数をk、前記実測圧力が前記2次保圧工程の設定圧力に到達した時の時間をt、時間tでスクリューの後退する後退幅をX(t)、時間tにおける射出速度をV(t)、時間tにおける射出圧力P(t)、任意に決定する学習係数をα、β、評価関数f(t)=αV(t)+βP(t)として、
 該評価関数を用い、下記数4の数式によりf(t)≒0になる方向に後退幅X(t)を1ショット毎に算出し、該1ショット毎の算出値に基づき前記スクリューの後退幅を自動調整することを特徴とする。
Figure JPOXMLDOC01-appb-M000008
The pressure holding process control method in the injection molding machine is
When satisfying the mathematical formula of Equation 2,
The number of shots is k, the time when the measured pressure reaches the set pressure in the secondary pressure holding process is t, the retreating width of the screw retreating at time t is X (t), and the injection speed at time t is V ( t), injection pressure P (t) at time t, learning coefficients arbitrarily determined as α, β, and evaluation function f (t) = αV (t) + βP (t),
Using this evaluation function, the receding width X (t) is calculated for each shot in the direction of f (t) ≈0 by the following equation (4), and the receding width of the screw is calculated based on the calculated value for each shot. Is automatically adjusted.
Figure JPOXMLDOC01-appb-M000008
 本発明の射出成形機における保圧工程制御方法によれば、射出充填工程から保圧工程に切換えられた後、保圧工程の初期段階の1次保圧工程にて、スクリューを後退させるための1次保圧力を急速に減圧し、当該1次保圧力が、2次保圧工程の設定圧力に短時間で到達するよう減圧制御を行うから、保圧工程におけるこうした高精度な圧力制御(保圧工程で発生する残留応力の制御)により、高品質な成形品を製造(薄肉成形品の肉厚を均一に成形)することが可能となる。 According to the pressure-holding process control method in the injection molding machine of the present invention, after switching from the injection filling process to the pressure-holding process, in the primary pressure-holding process in the initial stage of the pressure-holding process, Since the primary holding pressure is rapidly reduced and the pressure reduction control is performed so that the primary holding pressure reaches the set pressure of the secondary holding pressure in a short time, such high-precision pressure control (holding pressure) is maintained in the holding pressure process. By controlling the residual stress generated in the pressing step), it is possible to manufacture a high-quality molded product (thinly mold the thickness of the thin molded product).
 さらに、1次保圧力の実測圧力値及び前記数式を用いて、スクリューの減圧制御を行うに際し、前記実測圧力値に基づき自己学習をさせ、それから得られた結果から、スクリューの後退幅が最適な後退幅になるよう自動調整(微調整)をして減圧制御を行う。よって、保圧工程において細やかな圧力制御が可能となり、製造される成形品の品質を向上することが可能となる。 Furthermore, when performing the pressure reduction control of the screw using the measured pressure value of the primary holding pressure and the above mathematical formula, the self-learning is performed based on the measured pressure value, and the screw retraction width is optimum based on the result obtained therefrom. Reduce pressure by performing automatic adjustment (fine adjustment) to set the retreat width. Therefore, fine pressure control is possible in the pressure-holding step, and the quality of the manufactured molded product can be improved.
射出成形機の射出ユニットを示す概略構成図である。It is a schematic block diagram which shows the injection unit of an injection molding machine. 射出成形機の射出ユニットの射出充填工程及び保圧工程を示すグラフである。It is a graph which shows the injection filling process and pressure holding process of the injection unit of an injection molding machine. 1次保圧工程にてスクリューの後退幅を調整するときの動作を示すフローチャートである。It is a flowchart which shows operation | movement when adjusting the retreat width | variety of a screw in a primary pressure holding process. スクリューの後退幅が小さ過ぎる場合において、当該後退幅を大きくするために数1の数式を適用してスクリューの後退幅を調整するときの1次保圧工程の動作を示す説明図であり、縦軸にスクリューの速度、横軸にスクリューの移動位置を位置として表し、1次保圧工程において、数1の数式で算出した後退幅でスクリューを後退させたときの波形を実線で表し、1ショット前の設定されたスクリューの後退幅でスクリューを後退させたときの波形を点線で表したものである。It is explanatory drawing which shows operation | movement of the primary pressure holding | maintenance process at the time of adjusting the backward movement width of a screw, applying Formula 1 in order to enlarge the said backward movement width when the backward movement width of a screw is too small, The axis represents the speed of the screw and the horizontal axis represents the moving position of the screw as the position. In the primary pressure-holding process, the waveform when the screw is retreated with the retraction width calculated by Equation 1 is represented by a solid line. The waveform when the screw is retracted with the previously set screw retraction width is represented by a dotted line. スクリューの後退幅が小さ過ぎる場合において、当該後退幅を大きくするために数1の数式を適用してスクリューの後退幅を調整するときの1次保圧工程の動作を示す説明図であり、縦軸にスクリューの圧力及び速度を表し、横軸に時間を表し、数1の数式で算出した後退幅でスクリューを後退させたときの圧力の波形を時間軸より上側にて実線で表し、1ショット前の設定されたスクリューの後退幅でスクリューを後退させたときの圧力の波形を時間軸より上側にて点線で表している。また、数1の数式で算出した後退幅でスクリューを後退させたときの速度の波形を時間軸より下側にて実線で表し、1ショット前の設定されたスクリューの後退幅でスクリューを後退させたときの速度の波形を時間軸より下側にて点線で表したものである。It is explanatory drawing which shows operation | movement of the primary pressure holding | maintenance process at the time of adjusting the backward movement width of a screw, applying Formula 1 in order to enlarge the said backward movement width when the backward movement width of a screw is too small, The axis represents the pressure and speed of the screw, the axis represents the time, the axis represents the time, and the pressure waveform when the screw is retracted with the receding width calculated by Equation 1 is represented by a solid line above the time axis. The waveform of the pressure when the screw is retreated with the previously set retreat width of the screw is represented by a dotted line above the time axis. In addition, the speed waveform when the screw is retracted with the retraction width calculated by the mathematical formula 1 is represented by a solid line below the time axis, and the screw is retreated with the set retraction width of the screw one shot before. The velocity waveform at the time is represented by a dotted line below the time axis. スクリューの後退幅が大き過ぎる場合において、当該後退幅を小さくするために数3の数式を適用してスクリューの後退幅を調整するときの1次保圧工程の動作を示す説明図であり、縦軸にスクリューの速度、横軸にスクリューの移動位置を位置として表し、1次保圧工程において、数1の数式で算出した後退幅でスクリューを後退させたときの波形を実線で表し、1ショット前の設定されたスクリューの後退幅でスクリューを後退させたときの波形を点線で表したものである。It is explanatory drawing which shows operation | movement of the primary pressure holding | maintenance process at the time of adjusting the backward movement width of a screw, applying Formula 3 in order to make the said backward movement width small, when the backward movement width of a screw is too large, The axis represents the speed of the screw and the horizontal axis represents the moving position of the screw as the position. In the primary pressure-holding process, the waveform when the screw is retreated with the retraction width calculated by Equation 1 is represented by a solid line. The waveform when the screw is retracted with the previously set screw retraction width is represented by a dotted line. スクリューの後退幅が大き過ぎる場合において、当該後退幅を小さくするために数3の数式を適用してスクリューの後退幅を調整するときの1次保圧工程の動作を示す説明図であり、縦軸にスクリューの圧力及び速度を表し、横軸に時間を表し、数3の数式で算出した後退幅でスクリューを後退させたときの圧力の波形を時間軸より上側にて実線で表し、1ショット前の設定されたスクリューの後退幅でスクリューを後退させたときの圧力の波形を時間軸より上側にて点線で表している。また、数3の数式で算出した後退幅でスクリューを後退させたときの速度の波形を時間軸より下側にて実線で表し、1ショット前の設定されたスクリューの後退幅でスクリューを後退させたときの速度の波形を時間軸より下側にて点線で表したものである。It is explanatory drawing which shows operation | movement of the primary pressure holding | maintenance process at the time of adjusting the backward movement width of a screw, applying Formula 3 in order to make the said backward movement width small, when the backward movement width of a screw is too large, The axis represents the pressure and speed of the screw, the axis represents the time, the axis represents the time, and the pressure waveform when the screw is retracted with the receding width calculated by Equation 3 is represented by a solid line above the time axis. The waveform of the pressure when the screw is retreated with the previously set retreat width of the screw is represented by a dotted line above the time axis. Also, the speed waveform when the screw is retracted with the retraction width calculated by the mathematical formula 3 is represented by a solid line below the time axis, and the screw is retracted with the set retraction width of the screw one shot before. The velocity waveform at the time is represented by a dotted line below the time axis. 学習係数の可変傾斜を示すグラフである。It is a graph which shows the variable inclination of a learning coefficient. 数1の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの速度を速度測定として示し、横軸にスクリューの移動位置を位置として示している。It is a graph which shows the operation | movement when adjusting numerical formula 1 of Formula, and adjusting the retreat width | variety of a screw, The speed of a screw is shown as speed measurement on the vertical axis | shaft, and the moving position of the screw is shown on the horizontal axis as a position. 数1の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの圧力を圧力測定として示し、横軸にスクリューの移動位置を位置として示している。It is a graph which shows the operation | movement when adjusting numerical formula 1 of Formula, and adjusting the retreat width | variety of a screw, The pressure of a screw is shown as a pressure measurement on the vertical axis | shaft, and the moving position of the screw is shown on the horizontal axis | shaft as a position. 数1の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの速度を速度測定として示し、横軸に時間を示している。It is a graph which shows operation | movement when adjusting numerical formula 1 of Formula, and adjusting the retreat width | variety of a screw, the speed of a screw is shown as speed measurement on the vertical axis | shaft, and the time is shown on the horizontal axis. 数1の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの圧力を圧力測定として示し、横軸に時間を示している。It is a graph which shows the operation | movement when adjusting numerical formula 1 of Formula, and adjusting the retreat width | variety of a screw, The pressure of a screw is shown as a pressure measurement on the vertical axis | shaft, and the time is shown on the horizontal axis. 数3の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの速度を速度測定として示し、横軸にスクリューの移動位置を位置として示している。It is a graph which shows operation | movement when adjusting numerical formula of Formula 3 and adjusting the retreat width | variety of a screw, The speed of a screw is shown as speed measurement on the vertical axis | shaft, and the moving position of the screw is shown on the horizontal axis as a position. 数3の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの圧力を圧力測定として示し、横軸にスクリューの移動位置を位置として示している。It is a graph which shows the operation | movement when adjusting numerical formula 3 of Formula, and adjusting the retreat width | variety of a screw, The pressure of a screw is shown as a pressure measurement on the vertical axis | shaft, and the moving position of the screw is shown on the horizontal axis | shaft as a position. 数3の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの速度を速度測定として示し、横軸に時間を示している。It is a graph which shows the operation | movement when adjusting numerical formula of Formula 3 and adjusting the retreat width | variety of a screw, The speed of a screw is shown as speed measurement on the vertical axis | shaft, and the time is shown on the horizontal axis. 数3の数式を適用してスクリューの後退幅を調整するときの動作を示すグラフであり、縦軸にスクリューの圧力を圧力測定として示し、横軸に時間を示している。It is a graph which shows the operation | movement when adjusting the retraction width | variety of a screw by applying several 3 Formula, the pressure of a screw is shown as a pressure measurement on the vertical axis | shaft, and the time is shown on the horizontal axis.
 以下、本発明の実施形態を図1~図8により以下に説明する。もちろん、本発明は、その発明の趣旨に反しない範囲で、実施形態において説明した以外の構成のものに対しても容易に適用可能なことは説明を要するまでもない。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. Of course, it goes without saying that the present invention can be easily applied to configurations other than those described in the embodiments without departing from the spirit of the invention.
 図1は射出成形機1に構成される射出ユニット2を示す正面図であり、同図に示すように、射出ユニット2には、粒状の原料である樹脂(ペレット)が投入されるホッパ3、このホッパ3から粒状の樹脂が供給される筒型の加熱シリンダ4、加熱シリンダ4内に供給され熱で可塑化された溶融樹脂を計量するスクリュー5、計量された溶融樹脂を金型のキャビティへ射出充填する加熱シリンダ4先端に装着された射出ノズル6、加熱シリンダ4内で溶融樹脂の混練等を行うときにタイミングベルト7を介してスクリュー5を回転させる駆動源としての計量用モータ8、計量された溶融樹脂を射出ノズル6先端から射出するに際し、タイミングベルト9、ボールネジ機構10を介してスクリュー5を前進させる駆動源としての射出用モータ11、スクリュー5の前進等に伴い溶融樹脂を押出す力(射出圧力)を反力として検出する圧力センサたるロードセル12、後述する数式1~4の演算処理など射出成形機1全体の各種制御を行う制御手段13、射出成形機1の実測値等の各種数値、前記数式等が格納される記憶手段14等が構成されている。 FIG. 1 is a front view showing an injection unit 2 configured in an injection molding machine 1. As shown in FIG. 1, a hopper 3 into which resin (pellet) that is a granular raw material is charged, A cylindrical heating cylinder 4 to which granular resin is supplied from the hopper 3, a screw 5 for measuring the molten resin supplied into the heating cylinder 4 and plasticized by heat, and the measured molten resin to the cavity of the mold An injection nozzle 6 mounted at the tip of the heating cylinder 4 for injection filling, a metering motor 8 as a driving source for rotating the screw 5 via a timing belt 7 when kneading the molten resin in the heating cylinder 4, and the like When injecting the molten resin from the tip of the injection nozzle 6, the injection motor 1 as a drive source for advancing the screw 5 via the timing belt 9 and the ball screw mechanism 10 The load cell 12 serving as a pressure sensor that detects the force (injection pressure) for extruding the molten resin as the screw 5 moves forward is used as a reaction force. The control means 13, various numerical values such as actually measured values of the injection molding machine 1, storage means 14 in which the mathematical formulas and the like are stored are configured.
 次に、本実施形態の射出成形機1の保圧工程について以下説明する。図2では、縦軸に圧力及び速度を、横軸に時間を表したグラフであり、同図に示すように、スクリュー5を前進させ金型のキャビティへ溶融樹脂を射出充填する射出充填工程が行われた後、保圧工程が行われるようになっており、射出充填工程で速度制御されていたスクリュー5は、射出充填工程が完了すると、そのタイミングでV-P切換えが行なわれ、保圧工程では速度制御ではなく圧力制御が行われる。なお、図2では、圧力の波形を実線で、速度の波形を点線で表している。 Next, the pressure holding process of the injection molding machine 1 of the present embodiment will be described below. FIG. 2 is a graph in which the vertical axis represents pressure and speed, and the horizontal axis represents time. As shown in FIG. 2, the injection filling process in which the screw 5 is advanced to inject and fill the molten resin into the mold cavity is shown. After being performed, the pressure holding process is performed. When the injection filling process is completed, the screw 5 whose speed is controlled in the injection filling process is switched to VP at that timing. In the process, pressure control is performed instead of speed control. In FIG. 2, the pressure waveform is indicated by a solid line, and the velocity waveform is indicated by a dotted line.
 保圧工程は、射出充填工程から切換えられた初期段階に1次保圧工程を行い、当該1次保圧工程の後には、2次保圧工程(本保圧工程)を行うようになっており、1次保圧工程の1次保圧力が、2次保圧工程の設定圧力に短時間で到達するよう、制御手段13が、1次保圧工程において、スクリューを急速に後退させ、1次保圧力の減圧制御を行う。 In the pressure holding process, the primary pressure holding process is performed at an initial stage switched from the injection filling process, and the secondary pressure holding process (main pressure holding process) is performed after the primary pressure holding process. In the primary pressure holding process, the control means 13 rapidly retracts the screw so that the primary pressure in the primary pressure holding process reaches the set pressure in the secondary pressure holding process in a short time. The next holding pressure is reduced.
 ここで、前記1次保圧工程について、図3~図5によりさらに説明する。1次保圧工程でスクリュー5の後退により減圧を行なうときの、スクリュー5の後退幅Bの調整は、図3のフローチャートに示した動作順で行われる。射出成形機1の稼動により、実測された1次保圧工程の実測圧力が、予め設定された2次保圧工程の設定圧力に到達しないときには(ステップ1)、ステップ2に移行し、スクリュー5を後退させ減圧を行う際のスクリュー5の後退幅Bが、制御手段13によって、下記数式1の計算で行なわれる。 Here, the primary pressure holding step will be further described with reference to FIGS. The adjustment of the backward width B of the screw 5 when the pressure is reduced by the backward movement of the screw 5 in the primary pressure-holding step is performed in the operation order shown in the flowchart of FIG. When the measured actual pressure in the primary pressure holding process does not reach the preset pressure in the secondary pressure holding process due to the operation of the injection molding machine 1 (step 1), the process proceeds to step 2 and the screw 5 The backward width B of the screw 5 when the pressure is reduced by retreating is calculated by the control unit 13 according to the following equation (1).
Figure JPOXMLDOC01-appb-M000009
 C:1ショット前の設定されたスクリューの後退幅(mm)
 a:1ショット前のV-P切換時の実測されたV-P切換圧と1ショット前の1次保圧工程の実測圧力との差圧(MPa)
 b:1ショット前のV-P切換時の実測されたV-P切換圧と2次保圧工程における設定圧力との差圧(MPa)
Figure JPOXMLDOC01-appb-M000009
C: Set screw retraction width (mm) before one shot
a: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the measured pressure at the primary holding pressure process one shot before
b: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the set pressure in the secondary holding pressure process
 そして、数1の数式で算出した後退幅Bでスクリュー5が後退されることにより、1次保圧工程の1次保圧力が急速に減圧される。なお、数1の数式で算出した後退幅Bでスクリュー5が後退されるときの後退幅Bの微調整(後退幅Bが小さ過ぎる場合)について、図4A、図4Bに基づきここでさらに説明する。図4Aは、縦軸にスクリュー5の速度、横軸にスクリュー5の移動位置を位置として表し、1次保圧工程において、数1の数式で算出した後退幅Bでスクリュー5を後退させたときの波形を実線で表し、1ショット前の設定されたスクリュー5の後退幅Cでスクリュー5を後退させたときの波形を点線で表したものであり、また、図4Bは、縦軸にスクリュー5の圧力及び速度を表し、横軸に時間を表し、数1の数式で算出した後退幅Bでスクリュー5を後退させたときの圧力の波形を時間軸より上側にて実線で表し、1ショット前の設定されたスクリュー5の後退幅Cでスクリュー5を後退させたときの圧力の波形を時間軸より上側にて点線で表し、また、数1の数式で算出した後退幅Bでスクリュー5を後退させたときの速度の波形を時間軸より下側にて実線で表し、1ショット前の設定されたスクリュー5の後退幅Cでスクリュー5を後退させたときの速度の波形を時間軸より下側にて点線で表したものである。そして、図4Bに示されているように、数1の数式で算出した後退幅に基づき、スクリュー5の後退幅を微調整することで、スクリュー5を適切な後退幅Bで動作させることができる。 Then, the primary holding pressure in the primary holding pressure process is rapidly reduced by the screw 5 being retracted by the retreating width B calculated by the mathematical formula 1. The fine adjustment of the retraction width B (when the retraction width B is too small) when the screw 5 is retreated with the retraction width B calculated by the mathematical formula 1 will be further described here with reference to FIGS. 4A and 4B. . FIG. 4A shows the speed of the screw 5 on the vertical axis and the moving position of the screw 5 on the horizontal axis as the position, and when the screw 5 is moved backward by the backward width B calculated by the mathematical formula 1 in the primary pressure holding step. Is represented by a solid line, and the waveform when the screw 5 is retreated by the set retreat width C of the screw 5 one shot before is represented by a dotted line. FIG. The pressure and speed are shown, the time is shown on the horizontal axis, and the pressure waveform when the screw 5 is retracted with the receding width B calculated by the mathematical formula 1 is shown as a solid line above the time axis, one shot before The pressure waveform when the screw 5 is retracted with the set receding width C of the screw 5 is represented by a dotted line above the time axis, and the screw 5 is retracted with the receding width B calculated by the mathematical formula 1 The velocity waveform when A solid line is shown below the axis, and a velocity waveform when the screw 5 is retracted by the set retreat width C of the screw 5 one shot before is shown by a dotted line below the time axis. . Then, as shown in FIG. 4B, the screw 5 can be operated with an appropriate receding width B by finely adjusting the receding width of the screw 5 based on the receding width calculated by the mathematical expression of Formula 1. .
 また、ステップ1にて、実測された1次保圧工程の実測圧力が、予め設定された2次保圧工程の設定圧力に到達したときには、ステップ3に移行し、制御手段13によって、下記数式2の計算で行なわれる。 Further, when the actually measured pressure in the primary pressure holding process in Step 1 reaches the preset pressure in the secondary pressure holding process, the process proceeds to Step 3 and the control means 13 uses the following formula. It is performed by the calculation of 2.
Figure JPOXMLDOC01-appb-M000010
 A:1ショット前のV-P切換時から、1次保圧工程と2次保圧工程とが切換えられた時までに移動されるスクリューの移動幅(mm)
Figure JPOXMLDOC01-appb-M000010
A: Movement width (mm) of the screw moved from the time of VP switching before one shot to when the primary pressure holding process and the secondary pressure holding process are switched.
 そして、数2の数式を満たさないときには(ステップ3)、ステップ4に移行し、スクリュー5を後退させ減圧を行う際のスクリュー5の後退幅Bが、制御手段によって、下記数式3の計算で行なわれる。 When the mathematical expression 2 is not satisfied (step 3), the process proceeds to step 4 where the control unit calculates the backward width B of the screw 5 when the screw 5 is retracted to reduce the pressure. It is.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そして、数3の数式で算出した後退幅Bでスクリュー5が後退されることにより、1次保圧工程の1次保圧力が急速に減圧される。なお、数3の数式で算出した後退幅Bでスクリュー5が後退されるときの後退幅Bの微調整(後退幅Bが大き過ぎる場合)について、図5A、図5Bに基づきここでさらに説明する。図5Aは、縦軸にスクリュー5の速度、横軸にスクリュー5の移動位置を位置として表し、1次保圧工程において、数1の数式で算出した後退幅Bでスクリュー5を後退させたときの波形を実線で表し、1ショット前の設定されたスクリュー5の後退幅Cでスクリュー5を後退させたときの波形を点線で表したものであり、また、図5Bは、縦軸にスクリュー5の圧力及び速度を表し、横軸に時間を表し、数3の数式で算出した後退幅Bでスクリュー5を後退させたときの圧力の波形を時間軸より上側にて実線で表し、1ショット前の設定されたスクリュー5の後退幅Cでスクリュー5を後退させたときの圧力の波形を時間軸より上側にて点線で表し、また、数3の数式で算出した後退幅Bでスクリュー5を後退させたときの速度の波形を時間軸より下側にて実線で表し、1ショット前の設定されたスクリュー5の後退幅Cでスクリュー5を後退させたときの速度の波形を時間軸より下側にて点線で表したものである。そして、図5Bに示されているように、数3の数式で算出した後退幅に基づき、スクリュー5の後退幅を微調整することで、スクリュー5を適切な後退幅Bで動作させることができる。 Then, the primary holding pressure in the primary holding pressure process is rapidly reduced by the screw 5 being retracted by the retreating width B calculated by the mathematical expression of Formula 3. Note that fine adjustment of the retraction width B (when the retraction width B is too large) when the screw 5 is retreated with the retraction width B calculated by the mathematical formula 3 is further described here with reference to FIGS. 5A and 5B. . FIG. 5A shows the speed of the screw 5 on the vertical axis and the moving position of the screw 5 on the horizontal axis as the position, and when the screw 5 is retracted by the receding width B calculated by the mathematical formula 1 in the primary pressure holding step. Is represented by a solid line, and the waveform when the screw 5 is retreated by the set retreat width C of the screw 5 one shot before is represented by a dotted line. FIG. 5B shows the screw 5 on the vertical axis. The pressure and velocity of the screw 5 are shown, the time is shown on the horizontal axis, and the pressure waveform when the screw 5 is retracted with the receding width B calculated by the mathematical formula 3 is shown as a solid line above the time axis, one shot before The pressure waveform when the screw 5 is retracted with the set receding width C of the screw 5 is represented by a dotted line above the time axis, and the screw 5 is receded with the receding width B calculated by the mathematical formula 3 The velocity waveform when A solid line is shown below the axis, and a speed waveform when the screw 5 is retracted by the set receding width C of the screw 5 one shot before is shown by a dotted line below the time axis. . Then, as shown in FIG. 5B, the screw 5 can be operated with an appropriate backward width B by finely adjusting the backward width of the screw 5 based on the backward width calculated by the mathematical formula 3 .
 また、ステップ3にて、数2の数式を満たすときには、ステップ5に移行する。 Further, when satisfying the mathematical expression 2 in Step 3, the process proceeds to Step 5.
(勾配法による微調整)
 ステップ5では、ステップ2やステップ4でスクリュー5の後退幅の微調整を行なったとしても、当該微調整が最適で無い場合には、圧力制御に切り替った後に不安定な圧力挙動を示す事がある。この問題を解消するための微調整手段として、極所解を求めるのに有効な最急降下法を用いる。ここでは最急降下法は下記の式で表すものとする。
(Fine adjustment by gradient method)
In Step 5, even if fine adjustment of the retraction width of the screw 5 is performed in Step 2 or Step 4, if the fine adjustment is not optimal, an unstable pressure behavior is shown after switching to pressure control. There is. As a fine-tuning means for solving this problem, a steepest descent method effective for obtaining a polar solution is used. Here, the steepest descent method is represented by the following formula.
Figure JPOXMLDOC01-appb-M000012
  k:ショット数
  t:実測圧力が2次保圧工程の設定圧力に到達した時の時間
  X(t):時間tでスクリューの後退する後退幅
  f(t):この仕様で用いられる評価値で、後退幅の調整量を出力する。
 ここでは、評価関数として下記関数を用意する。
  f(t)=αV(t)+βP(t)
  V(t):時間tにおける射出速度
  P(t):時間tにおける射出圧力
  α、β:任意に決定する学習係数
 そして、上記の評価関数を用い、f(t)≒0になる方向に後退幅X(t)を1ショット毎に更新すると数4の式になる。
Figure JPOXMLDOC01-appb-M000012
k: Number of shots t: Time when the measured pressure reaches the set pressure of the secondary pressure holding process X (t): Retreating width of the screw retreating at time t f (t): Evaluation value used in this specification Outputs the adjustment amount of the receding width.
Here, the following functions are prepared as evaluation functions.
f (t) = αV (t) + βP (t)
V (t): injection speed at time t P (t): injection pressure at time t α, β: learning coefficient to be arbitrarily determined And, using the above evaluation function, retreat in the direction of f (t) ≈0 When the width X (t) is updated for each shot, Equation 4 is obtained.
Figure JPOXMLDOC01-appb-M000013
 この時、学習係数α,βは、図6のグラフのように定数を可変にして、極所解に近似した場合の過学習を抑制する。
 なお、ここでは下記の仕様でパラメータを決定する。
Figure JPOXMLDOC01-appb-M000013
At this time, the learning coefficients α and β suppress the overlearning when the constants are made variable as shown in the graph of FIG.
Here, parameters are determined according to the following specifications.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、上記評価関数を用い、制御手段により、数4の数式によりf(t)≒0になる方向に後退幅X(t)を1ショット毎に算出され、該1ショット毎の算出値に基づき前記スクリュー5の後退幅が自動調整される。 Then, using the above evaluation function, the control means calculates the receding width X (t) for each shot in the direction of f (t) ≈0 according to the mathematical formula 4, and based on the calculated value for each shot. The retraction width of the screw 5 is automatically adjusted.
 次に、数1の数式により後退幅Bを微調整するときの動作の一例について図7により説明する。図7Aは縦軸にスクリュー5の速度を速度測定として示し、横軸にスクリュー5の移動位置を位置として示し、図7Bは縦軸にスクリュー5の圧力を圧力測定として示し、横軸にスクリュー5の移動位置を位置として示し、図7Cは縦軸にスクリュー5の速度を速度測定として示し、横軸に時間を示し、図7Dは縦軸にスクリュー5の圧力を圧力測定として示し、横軸に時間を示している。図7A~図7Dにおいて、1ショット目(1.00mm)の波形は実線で、2ショット目(2.70mm)の波形は点線で、3ショット目(3.38mm)の波形は一点鎖線で表している。そして、1ショット目のスクリュー5の後退幅を1mmに、2次保圧工程の設定圧力に相当する目標圧力を10MPaとして、射出成形機1を稼動して成形を行う。すると、図7Bから、1mmの位置で圧力が約66MPaであることから、1ショット目では、目標圧力に到達していない。そのため、スクリュー5の後退幅が大きくなるよう調整するため、前記数1の数式(B=Cb/0.9a)が用いられる。 Next, an example of the operation when the receding width B is finely adjusted using the mathematical formula 1 will be described with reference to FIG. 7A shows the speed of the screw 5 on the vertical axis as a speed measurement, the horizontal axis shows the moving position of the screw 5 as a position, FIG. 7B shows the pressure of the screw 5 on the vertical axis as a pressure measurement, and the horizontal axis shows the screw 5 7C shows the speed of the screw 5 as a speed measurement, the horizontal axis shows the time, FIG. 7D shows the pressure of the screw 5 as a pressure measurement on the vertical axis, and the horizontal axis Shows time. 7A to 7D, the waveform of the first shot (1.00 mm) is represented by a solid line, the waveform of the second shot (2.70 mm) is represented by a dotted line, and the waveform of the third shot (3.38 mm) is represented by a dashed line. ing. Then, the injection molding machine 1 is operated to perform molding by setting the receding width of the screw 5 in the first shot to 1 mm and the target pressure corresponding to the set pressure in the secondary pressure holding process to 10 MPa. Then, from FIG. 7B, since the pressure is about 66 MPa at the position of 1 mm, the target pressure is not reached in the first shot. Therefore, in order to adjust the retraction width of the screw 5 to be large, the mathematical formula (B = Cb / 0.9a) of the formula 1 is used.
 ここで、C=1.0mm、1ショット前のV-P切換時の実測されたV-P切換圧が105aMPa、1ショット前のV-P切換時の実測されたV-P切換圧と1ショット前の1次保圧工程の実測圧力との差圧(MPa)が、105MPa-66MPa=39MPaにて、a=39MPa、b=95MPa(105MPa-10MPa(2次保圧工程の設定圧力))であるから、
B=Cb/0.9a=(1.0×95)/(0.9×39)≒2.70mm
よって、2ショット目は、B=2.70mm、目標圧力を10MPaで成形を行なう。
Here, C = 1.0 mm, the measured VP switching pressure at the time of VP switching before 1 shot is 105 aMPa, and the measured VP switching pressure at the time of VP switching before 1 shot is 1 The differential pressure (MPa) from the measured pressure in the primary pressure holding process before the shot is 105 MPa−66 MPa = 39 MPa, a = 39 MPa, b = 95 MPa (105 MPa−10 MPa (set pressure in the secondary pressure holding process)) Because
B = Cb / 0.9a = (1.0 × 95) / (0.9 × 39) ≈2.70 mm
Therefore, in the second shot, molding is performed with B = 2.70 mm and a target pressure of 10 MPa.
 そして、その結果、B=2.70mmのときには、圧力が約20.7MPaであり、目標圧力である10MPaに達することができなかったときには、目標圧力である10MPaに到達するよう、再度、数1の数式(B=Cb/0.9a)を用い、
C=2.7mm、1ショット前のV-P切換時の実測されたV-P切換圧が105aMPa、図7Bに示されているように、2ショット目の2.70mmの位置で圧力が20.7MPaであることから、1ショット前のV-P切換時の実測されたV-P切換圧と1ショット前の1次保圧工程の実測圧力との差圧(MPa)が、105MPa-20.7MPa=84.3MPaであり、a=84.3MPa、b=95MPa(105MPa-10MPa(2次保圧工程の設定圧力))であるから、
B=Cb/0.9a=(2.7×95)/(0.9×84.3)≒3.38mmにより、
3ショット目は、B=3.38mm、目標圧力10MPaで成形され、B=3.38mmのときには、結果、圧力が12.2 MPaになるが、当該12.2 MPa(1次保圧工程の圧力)が、目標圧力(2次保圧工程の設定圧力)に達しないため、数1の数式を用いたスクリュー5の後退幅の微調整を行いながら収束する。
As a result, when B = 2.70 mm, the pressure is about 20.7 MPa, and when it cannot reach the target pressure of 10 MPa, the equation 1 is again applied so as to reach the target pressure of 10 MPa. Using the formula (B = Cb / 0.9a)
C = 2.7 mm, the actually measured VP switching pressure at the time of VP switching before one shot is 105 aMPa, and as shown in FIG. 7B, the pressure is 20 at the position of 2.70 mm in the second shot. Since the pressure is 0.7 MPa, the differential pressure (MPa) between the measured VP switching pressure at the time of VP switching one shot before and the measured pressure in the primary pressure holding process one shot before is 105 MPa-20. Since 7 MPa = 84.3 MPa, a = 84.3 MPa, b = 95 MPa (105 MPa-10 MPa (set pressure in the secondary pressure holding process)),
B = Cb / 0.9a = (2.7 × 95) / (0.9 × 84.3) ≈3.38 mm
The third shot is molded at B = 3.38 mm and a target pressure of 10 MPa. When B = 3.38 mm, the pressure is 12.2 MPa as a result, but this 12.2 MPa (in the primary pressure holding step). Since the pressure does not reach the target pressure (set pressure in the secondary pressure holding process), the pressure converges while performing the fine adjustment of the retraction width of the screw 5 using the mathematical formula 1.
 他方、1次保圧工程の圧力が2次保圧工程の設定圧力に達するときには、図3のフローにも示されているように、ステップ1からステップ3へと移行されることとなり、数2の数式(A/B>0.98)の要件を満たしているか否かの判断が制御手段13によりなされ、当該要件を満たさないときには、数3の数式を用いたスクリュー5の後退幅の微調整が行われる。当該微調整を行なうときの動作の一例について図8により以下に説明する。 On the other hand, when the pressure in the primary pressure-holding process reaches the set pressure in the secondary pressure-holding process, the process proceeds from step 1 to step 3 as shown in the flow of FIG. Whether or not the requirement of the mathematical formula (A / B> 0.98) is satisfied is determined by the control means 13, and when the requirement is not satisfied, fine adjustment of the retraction width of the screw 5 using the mathematical formula 3 Is done. An example of the operation when performing the fine adjustment will be described below with reference to FIG.
 図8Aは縦軸にスクリュー5の速度を速度測定として示し、横軸にスクリュー5の移動位置を位置として示し、図8Bは縦軸にスクリュー5の圧力を圧力測定として示し、横軸にスクリュー5の移動位置を位置として示し、図8Cは縦軸にスクリュー5の速度を速度測定として示し、横軸に時間を示し、図8Dは縦軸にスクリュー5の圧力を圧力測定として示し、横軸に時間を示している。図8A~図8Dにおいて、1ショット目(5.00mm)の波形は実線で、2ショット目(4.05mm)の波形は点線で、3ショット目(3.57mm)の波形は一点鎖線で表している。そして、例えば、1ショット目のスクリューの後退幅を5.00mmに、2次保圧工程の設定圧力に相当する目標圧力を10MPaとして成形が行われときに、1次保圧工程の1次保圧力が2次保圧工程の設定圧力に到達させるためには、後退幅Bを4.01mmで到達することになるのだが、1ショット目では、B=5.00、A=3.97であるため、数2の数式(A/B>0.98)の要件を満たさないことから、スクリュー5の後退幅が小さくなるよう調整するため、前記数3の数式(B=A/0.99)が用いられる。 8A shows the speed of the screw 5 as a speed measurement on the vertical axis, the moving position of the screw 5 as a position on the horizontal axis, and FIG. 8B shows the pressure of the screw 5 as a pressure measurement on the vertical axis, and the screw 5 on the horizontal axis. 8C shows the speed of the screw 5 as a speed measurement, the horizontal axis shows the time, FIG. 8D shows the pressure of the screw 5 as a pressure measurement on the vertical axis, and the horizontal axis Shows time. 8A to 8D, the waveform of the first shot (5.00 mm) is represented by a solid line, the waveform of the second shot (4.05 mm) is represented by a dotted line, and the waveform of the third shot (3.57 mm) is represented by a dashed line. ing. Then, for example, when molding is performed with the receding width of the screw in the first shot set to 5.00 mm and the target pressure corresponding to the set pressure of the secondary pressure holding process to 10 MPa, the primary pressure holding process of the primary pressure holding process is performed. In order for the pressure to reach the set pressure of the secondary pressure holding process, the receding width B is reached at 4.01 mm, but in the first shot, B = 5.00 and A = 3.97 Therefore, since the requirement of the mathematical formula 2 (A / B> 0.98) is not satisfied, in order to adjust the retraction width of the screw 5 to be small, the mathematical formula 3 (B = A / 0.99) is used. ) Is used.
 そして、数3の数式(B=A/0.99)、後退幅B=4.05mm、目標圧力を10MPaで2ショット目の成形を行なうと、1次保圧工程の1次保圧力が2次保圧工程の設定圧力に達するときの後退幅Bが3.53mmとなるため、数3の数式(B=A/0.99)で再び計算を行なう。 Then, when the second shot is molded with the mathematical formula (B = A / 0.99), the receding width B = 4.05 mm, the target pressure of 10 MPa, the primary holding pressure in the primary holding step is 2. Since the receding width B when reaching the set pressure in the next pressure-holding step is 3.53 mm, the calculation is performed again using the mathematical formula (B = A / 0.99) of Equation 3.
 その結果、B=3.57mmになるから、3ショット目では、B=3.57mm、目標圧力を10MPaで成形し、後退幅Bが3.57mmで、1次保圧工程の1次保圧力が2次保圧工程の設定圧力(目標圧力)である10MPaに達すると、数3の数式を用いたスクリュー5の後退幅の微調整は終了される。 As a result, since B = 3.57 mm, in the third shot, B = 3.57 mm, the target pressure is molded at 10 MPa, the receding width B is 3.57 mm, and the primary holding pressure in the primary holding step. When the pressure reaches 10 MPa, which is the set pressure (target pressure) in the secondary pressure-holding step, the fine adjustment of the retreat width of the screw 5 using the mathematical formula 3 is finished.
 1 射出成形機
 2 射出ユニット
 3 ホッパ
 4 加熱シリンダ
 5 スクリュー
 6 射出ノズル
 7 タイミングベルト
 8 計量用モータ
 9 タイミングベルト
 10 ボールネジ機構
 11 射出用モータ
 12 ロードセル
 13 制御手段
 14 記憶手段
DESCRIPTION OF SYMBOLS 1 Injection molding machine 2 Injection unit 3 Hopper 4 Heating cylinder 5 Screw 6 Injection nozzle 7 Timing belt 8 Metering motor 9 Timing belt 10 Ball screw mechanism 11 Injection motor 12 Load cell 13 Control means 14 Storage means

Claims (4)

  1.  スクリューを前進させ金型のキャビティへ溶融樹脂を射出充填する射出充填工程と、前記スクリューを後退させ減圧による保圧工程とを行う射出成形機における制御方法であって、
     前記射出充填工程の射出充填完了後に前記保圧工程に切換え、
     該保圧工程に切換後の初期段階である1次保圧工程で、圧力制御により1次保圧力を減圧して前記スクリューを急速に後退させ、該減圧された1次保圧力が、前記1次保圧工程後に行なわれる2次保圧工程の設定圧力に短時間で達するよう減圧制御されることを特徴とする射出成形機における保圧工程制御方法。
    A control method in an injection molding machine that performs an injection filling process in which a screw is advanced to inject and fill a molten resin into a cavity of a mold, and a pressure holding process by reducing the pressure by retreating the screw,
    After completion of injection filling in the injection filling process, switching to the pressure holding process,
    In the primary pressure-holding process, which is the initial stage after switching to the pressure-holding process, the primary pressure is reduced by pressure control and the screw is rapidly retracted. A pressure-holding process control method in an injection molding machine, wherein pressure reduction control is performed so as to reach a set pressure in a secondary pressure-holding process performed after the next pressure-holding process in a short time.
  2.  前記射出充填工程では前記スクリューの前進運動が速度制御で行われる一方で、前記保圧工程では前記スクリューの後退運動が圧力制御で行われるよう、前記射出充填工程から前記保圧工程への切換えでV-P切換えを行うことを特徴とする請求項1に記載の射出成形機における保圧工程制御方法。 In the injection filling process, the forward movement of the screw is performed by speed control, while in the pressure holding process, the backward movement of the screw is performed by pressure control, so that the switching from the injection filling process to the pressure holding process is performed. 2. The pressure holding process control method in an injection molding machine according to claim 1, wherein VP switching is performed.
  3.  前記減圧によりスクリューを後退させる1次保圧工程にて、前記1次保圧力の実測圧力が前記設定圧力に到達しないときには、前記スクリューを後退させ減圧を行う際の該スクリューの後退幅Bを、下記の数1の数式で算出し、該数1の数式で算出した後退幅Bで前記スクリューを後退させ、
     他方、前記減圧によりスクリューを後退させる1次保圧工程にて、前記1次保圧力の実測圧力が前記設定圧力に到達したときには、下記の数2の数式で演算し、
     前記数2の数式を満たさないときには、
     前記スクリューを後退させ減圧を行う際の該スクリューの後退幅Bを、下記の数3の数式で算出し、該数3の数式で算出した後退幅Bで前記スクリューを後退させることを特徴とする請求項2に記載の射出成形機における保圧工程制御方法。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     A:1ショット前のV-P切換時から、1次保圧工程と2次保圧工程とが切換えられた時までに移動されるスクリューの移動幅(mm)
     C:1ショット前の設定されたスクリューの後退幅(mm)
     a:1ショット前のV-P切換時の実測されたV-P切換圧と1ショット前の1次保圧工程の実測圧力との差圧(MPa)
     b:1ショット前のV-P切換時の実測されたV-P切換圧と2次保圧工程における設定圧力との差圧(MPa)
    In the primary pressure holding step in which the screw is moved backward by the pressure reduction, when the measured pressure of the primary pressure holding pressure does not reach the set pressure, the screw backward width B when the pressure is reduced by moving the screw backward is set as follows: The following formula 1 is used to calculate, and the screw is moved backward with the receding width B calculated using the formula 1;
    On the other hand, when the measured pressure of the primary holding pressure reaches the set pressure in the primary pressure holding step in which the screw is retracted by the pressure reduction, the following formula 2 is used to calculate:
    When the mathematical formula 2 is not satisfied,
    The retraction width B of the screw when the screw is retreated and decompressed is calculated by the following mathematical expression 3, and the screw is retreated by the retraction width B calculated by the mathematical expression 3. The pressure holding process control method in the injection molding machine according to claim 2.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    A: Movement width (mm) of the screw moved from the time of VP switching before one shot to when the primary pressure holding process and the secondary pressure holding process are switched.
    C: Set screw retraction width (mm) before one shot
    a: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the measured pressure at the primary holding pressure process one shot before
    b: Differential pressure (MPa) between the measured VP switching pressure at the time of VP switching before one shot and the set pressure in the secondary holding pressure process
  4.  前記数2の数式を満たすときには、
     ショット数をk、前記実測圧力が前記2次保圧工程の設定圧力に到達した時の時間をt、時間tでスクリューの後退する後退幅をX(t)、時間tにおける射出速度をV(t)、時間tにおける射出圧力P(t)、任意に決定する学習係数をα、β、評価関数f(t)=αV(t)+βP(t)として、
     該評価関数を用い、下記数4の数式によりf(t)≒0になる方向に後退幅X(t)を1ショット毎に算出し、該1ショット毎の算出値に基づき前記スクリューの後退幅を自動調整することを特徴とする請求項3に記載の射出成形機における保圧工程制御方法。
    Figure JPOXMLDOC01-appb-M000004
     
    When satisfying the mathematical formula of Equation 2,
    The number of shots is k, the time when the measured pressure reaches the set pressure in the secondary pressure holding process is t, the retreat width of the screw retreat at time t is X (t), and the injection speed at time t is V ( t), injection pressure P (t) at time t, learning coefficients arbitrarily determined as α, β, and evaluation function f (t) = αV (t) + βP (t),
    Using this evaluation function, the receding width X (t) is calculated for each shot in the direction of f (t) ≈0 by the following equation (4), and the receding width of the screw is calculated based on the calculated value for each shot. The pressure holding process control method for an injection molding machine according to claim 3, wherein the pressure is automatically adjusted.
    Figure JPOXMLDOC01-appb-M000004
PCT/JP2011/072822 2011-10-04 2011-10-04 Method of controlling pressure-maintaining step for injection-molding machine WO2013051098A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013537304A JP5815040B2 (en) 2011-10-04 2011-10-04 Pressure holding process control method in injection molding machine
CN201180074008.7A CN103857516B (en) 2011-10-04 2011-10-04 Pressurize operation control method in injection (mo(u)lding) machine
PCT/JP2011/072822 WO2013051098A1 (en) 2011-10-04 2011-10-04 Method of controlling pressure-maintaining step for injection-molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072822 WO2013051098A1 (en) 2011-10-04 2011-10-04 Method of controlling pressure-maintaining step for injection-molding machine

Publications (1)

Publication Number Publication Date
WO2013051098A1 true WO2013051098A1 (en) 2013-04-11

Family

ID=48043290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072822 WO2013051098A1 (en) 2011-10-04 2011-10-04 Method of controlling pressure-maintaining step for injection-molding machine

Country Status (3)

Country Link
JP (1) JP5815040B2 (en)
CN (1) CN103857516B (en)
WO (1) WO2013051098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069626A (en) * 2016-10-31 2018-05-10 住友重機械工業株式会社 Injection molding machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105922498B (en) * 2016-05-11 2018-04-27 李爱冰 A kind of injection molding process of glass light guide plate
JP6797723B2 (en) * 2017-03-07 2020-12-09 住友重機械工業株式会社 Injection molding machine
CN107310118B (en) * 2017-07-26 2020-04-10 华域视觉科技(上海)有限公司 Switching method from speed control to pressure control in injection molding process and injection mold

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634926A (en) * 1986-06-26 1988-01-09 Japan Steel Works Ltd:The Control of injection molder
JPH06278172A (en) * 1993-03-25 1994-10-04 Toyo Mach & Metal Co Ltd Injection control method in servomotor driving injection molding machine
JPH11309761A (en) * 1998-04-30 1999-11-09 Nippon Zeon Co Ltd Manufacture of light guide plate
JP2001079909A (en) * 1999-09-10 2001-03-27 Sumitomo Heavy Ind Ltd Injection unit and its control
JP2002254488A (en) * 2001-02-28 2002-09-11 Sumitomo Heavy Ind Ltd Injection molding machine and control method therefor
JP2003326573A (en) * 2002-05-16 2003-11-19 Sumitomo Heavy Ind Ltd Control device for injection molding machine and control method
JP2005313409A (en) * 2004-04-28 2005-11-10 Japan Steel Works Ltd:The Injection molding machine and hold pressure changeover control method thereof
JP2006334929A (en) * 2005-06-02 2006-12-14 Fanuc Ltd Device for controlling injection molding machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634926A (en) * 1986-06-26 1988-01-09 Japan Steel Works Ltd:The Control of injection molder
JPH06278172A (en) * 1993-03-25 1994-10-04 Toyo Mach & Metal Co Ltd Injection control method in servomotor driving injection molding machine
JPH11309761A (en) * 1998-04-30 1999-11-09 Nippon Zeon Co Ltd Manufacture of light guide plate
JP2001079909A (en) * 1999-09-10 2001-03-27 Sumitomo Heavy Ind Ltd Injection unit and its control
JP2002254488A (en) * 2001-02-28 2002-09-11 Sumitomo Heavy Ind Ltd Injection molding machine and control method therefor
JP2003326573A (en) * 2002-05-16 2003-11-19 Sumitomo Heavy Ind Ltd Control device for injection molding machine and control method
JP2005313409A (en) * 2004-04-28 2005-11-10 Japan Steel Works Ltd:The Injection molding machine and hold pressure changeover control method thereof
JP2006334929A (en) * 2005-06-02 2006-12-14 Fanuc Ltd Device for controlling injection molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069626A (en) * 2016-10-31 2018-05-10 住友重機械工業株式会社 Injection molding machine

Also Published As

Publication number Publication date
JPWO2013051098A1 (en) 2015-03-30
JP5815040B2 (en) 2015-11-17
CN103857516A (en) 2014-06-11
CN103857516B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
US9296144B2 (en) Molding method of injection molding machine
JP5290388B2 (en) Thin-walled molding method
JP5815040B2 (en) Pressure holding process control method in injection molding machine
WO2012017887A1 (en) Automatic operation method for injection molding machine
JP5011050B2 (en) Injection molding method
JP5529629B2 (en) Injection molding machine
JP5808850B1 (en) Mold clamping apparatus, molding apparatus and molding method
JP5806374B2 (en) Automatic operation method of injection molding machine
US11958225B2 (en) Injection molding method
JP2627047B2 (en) Injection molding machine molding condition setting method
JPH07299850A (en) Injection molding method
JP2011240602A (en) Injection molding method and device thereof
JP7504788B2 (en) Injection molding machine
KR102277106B1 (en) Apparatus and method for controlling injection molding machine
JP5735292B2 (en) Injection molding machine and control method of injection molding machine
JP4724096B2 (en) Control method of injection molding machine
KR20170048776A (en) Method for controlling injection molding machine
JP2010188706A (en) Injection molding machine, molding and injection molding method
WO2022210979A1 (en) Control device for injection molding machine, injection molding machine, and control method
JP2022104268A (en) Injection molding machine
JP6293198B2 (en) Thin-walled molding method
JP2023059073A (en) injection molding method
JP4248504B2 (en) Injection control method and injection apparatus for injection molding machine
TWI508842B (en) Forming method of thin-walled molded article
JP2023086409A (en) Control device for injection molding machine and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873563

Country of ref document: EP

Kind code of ref document: A1