WO2013047709A4 - Digital holography method and digital holography device - Google Patents

Digital holography method and digital holography device Download PDF

Info

Publication number
WO2013047709A4
WO2013047709A4 PCT/JP2012/074987 JP2012074987W WO2013047709A4 WO 2013047709 A4 WO2013047709 A4 WO 2013047709A4 JP 2012074987 W JP2012074987 W JP 2012074987W WO 2013047709 A4 WO2013047709 A4 WO 2013047709A4
Authority
WO
WIPO (PCT)
Prior art keywords
light
imaging
beam splitter
reflected
diffracted
Prior art date
Application number
PCT/JP2012/074987
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013047709A1 (en
Inventor
司 松尾
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to JP2013536410A priority Critical patent/JP5888334B2/en
Publication of WO2013047709A1 publication Critical patent/WO2013047709A1/en
Publication of WO2013047709A4 publication Critical patent/WO2013047709A4/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/088Condensers for both incident illumination and transillumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02047Interferometers characterised by particular imaging or detection techniques using digital holographic imaging, e.g. lensless phase imaging without hologram in the reference path
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0469Object light being reflected by the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0471Object light being transmitted through the object, e.g. illumination through living cells

Definitions

  • the present invention relates to digital holography capable of obtaining three-dimensional information of an object in real time by utilizing light interference.
  • Digital holography 1 does not require development processing, and a reproduced image can be obtained at the shooting site, 2) a reproduced image on an arbitrary surface can be obtained with image data of one interference fringe, 3) hologram data (of interference fringes Image data) can be easily transmitted and copied. Taking advantage of these advantages, researches aiming at three-dimensional measurement of solid, fluid, living cell, mechanical vibration and the like using digital holography technology are actively conducted.
  • FIG. 16 is a schematic view of a conventional digital holography device.
  • a half mirror 72 splits the light emitted from the light source 71 into a reference light and a light for object illumination.
  • the light for object irradiation divided by the half mirror 72 is irradiated to the object 74 through the reflection mirror 73, and the object light 75 is emitted from the object 74.
  • the object beam 75 is incident on the beam splitter 76.
  • the reference light split by the half mirror 72 is reflected by the reflection mirror 77 and enters the beam splitter 76.
  • a reproduced image of the object 74 is obtained by performing calculation processing such as Fresnel transformation with a computer (not shown) on the obtained hologram data.
  • Object light is light emitted from an object irradiated with light, and in holography, a diffraction phenomenon is used, and therefore, it means diffracted light emitted from an object.
  • the device shown in FIG. 16 is a device in transmission mode, and the transmission diffraction light is object light.
  • the transmission mode is a mode for capturing an interference fringe of reference light and diffracted light (transmission diffracted light) that is transmitted through the object when the object is irradiated with light.
  • a plane wave is generally used for the purpose of enhancing the coherency of the object light and the reference light. The same applies to digital holography, and as a light source, one emitting a plane wave such as a laser is used.
  • Phase shift interferometry is an arrangement of a piezoelectric element such as a piezo element or an element such as a SLM (Spatial Light Modulator) that can change the optical path length in the optical path of a reference beam in a two-beam interferometer.
  • This method is a method of obtaining hologram data while changing the phase of the reference light, for example, in three or more steps by this element.
  • a clear image is obtained by removing the zero-order light and the conjugate image, and high-precision measurement is possible.
  • phase shift interferometry can not be applied to a moving object because it captures an interference fringe while sequentially changing the phase of the reference light by a piezoelectric element or the like.
  • Patent Document 1 Japanese Patent No. 42945266 discloses an element that converts reference light into reference light groups having different phase values and emits the reference light, and a Mach-Zehnder interferometer that forms an image in a transmission mode using the element. The configured digital holography device is shown. As in the document, by spatially dividing and recording the interference state of the object light and the reference light, it is possible to measure the dynamic shape even with the imaging of a single image.
  • Patent Document 2 Japanese Patent Application Publication No. 2002-526815
  • a digital holography device consisting essentially of a Michelson interferometer designed to form an image in reflection mode.
  • the reflection mode is a mode in which diffracted light (reflected diffracted light) reflected and emitted from an object when the object is irradiated with light is incident as object light on an imaging surface of an imaging device to interfere with reference light.
  • light emitted from the light source is spread in the diametrical direction and enters the beam splitter.
  • the light incident on the beam splitter is split into one light passing through the beam splitter and the other light reflected by the beam splitter.
  • One of the lights is reflected by the inclined mirror, and then enters the beam splitter, is reflected by the beam splitter, and is imaged as the reference light.
  • the other light is irradiated to the sample through the objective lens, and is reflected by the sample to become object light.
  • the object light is incident on the beam splitter and transmitted through the beam splitter for imaging.
  • An off-axis hologram can be recorded by causing the reference light to interfere with the object light at a predetermined angle using the inclined mirror.
  • the same document shows a digital holography apparatus configured by a Mach-Zehnder interferometer basically designed to form an image in transmission mode.
  • the light emitted from the light source is spread in the diametrical direction and enters the beam splitter. This light is split into one light transmitted by the beam splitter and the other light reflected by the beam splitter.
  • One light is incident on the sample and transmitted through the sample to form object light.
  • Object light is collected by an objective lens, enters a beam splitter, and is reflected and imaged by a beam splitter.
  • the other light is expanded in beam diameter and reflected by the inclined mirror, and then transmitted through the beam splitter to be imaged as reference light.
  • Patent No. 4294526 Japanese Patent Publication No. 2002-526815 WO 2008/123408
  • digital holography is expected to be applied to observation and three-dimensional measurement of various objects, but there are various objects to be observed and measured.
  • objects suitable for reflection mode digital holography and transmission mode digital holography In addition, it may be better to perform both the reflection mode and the transmission mode for one object.
  • Patent Document 2 as a conventional digital holography device, there is only one device that can operate only in the reflection mode and another device that can operate only in the transmission mode, and both modes can be used. There was no digital holography device that could operate at. Therefore, when trying to perform both the reflection mode and the transmission mode for one object, it was necessary to prepare both the reflection mode device and the transmission mode device.
  • Patent Document 3 (WO2008 / 123408) is known as the only device that can perform both the reflection mode and the transmission mode.
  • FIG. 17 is a view showing a digital holography device disclosed in Patent Document 3.
  • a first optical system 110 for emitting light to an object 119 and a second optical system for guiding diffracted light emitted from the object 119 and reference light to an imaging device
  • a digital holography device including an imaging device 165 for capturing an interference image of diffracted light and reference light, and a processing device 201 for generating a three-dimensional image of an object from the interference image for each irradiation direction acquired by the imaging device 165 Is disclosed.
  • the imaging device 165 an imaging device for transmission diffraction light and an imaging device for reflection diffraction light are separately provided, and hologram data is separately acquired by the imaging device for transmission diffraction light and the imaging device for reflection diffraction light.
  • FIG. 18 is a schematic view showing the problem of the digital holography device of Patent Document 3.
  • the side of the object 119 to which light (plane wave) is irradiated to obtain diffracted light is limited to one side of the object 119.
  • It is an apparatus capable of emitting light only from one side of the object 119, and the diffracted light (reflected diffracted light) emitted from one side and reflected to one side is one side of the first objective lens 117.
  • the diffracted light (transmission diffracted light) transmitted to the other side is allowed to reach the transmission diffracted light imaging device through the other 121 of the first objective lens.
  • the reason for irradiating light only from one side of the object 119 is considered to be to simultaneously capture the interference fringes by the reflected diffraction light and the interference fringes by the transmission diffraction light.
  • the object can not but be regarded as floating in the air.
  • light is emitted while an object is placed on something like a container or pedestal, and hologram data is acquired.
  • the object S is placed on a transparent glass petri dish 81 and irradiated with light in consideration of light transmission.
  • the reflected diffracted light is captured through the petri dish 81 for the reflected diffracted light. Therefore, spherical aberration occurs under the influence of the thickness and refractive index of the petri dish 81.
  • Patent Document 3 shows how the transmission diffracted light propagates in a state different from the original state depending on the thickness and refractive index of the petri dish 81. Because of such spherical aberration, the apparatus of Patent Document 3 can not obtain hologram data with high accuracy. If the object can be kept floating in the air, it may be possible to avoid problems, but it is impossible when observing microscopic things such as bacteria, and it is soft. In the case of an object, since holding and holding it from both sides causes deformation and breakage, it is also often impossible.
  • the viewpoint in the reflection mode and the viewpoint in the transmission mode differ by 180 °. Therefore, it is not possible to observe the object in reflection mode or in transmission mode from the same side of the viewpoint.
  • the device of Patent Document 3 can not be used when it is necessary to observe an object in both the reflection mode and the transmission mode from the viewpoint on the same side for some reason.
  • the device of Patent Document 3 can not be said to be a practical device for obtaining highly accurate hologram data.
  • FIG. 19 is a schematic view of a spatial filter.
  • the spatial filter is composed of a lens 82 and a pinhole plate 83, as shown in FIG. And the like to remove the noise generated. For example, if dust adheres to or is scratched on the surface of a mirror that reflects light, the wavefront may be disturbed by scratches or dust, or interference fringes may occur due to the effects of scratches or dust It becomes impossible to obtain high-precision hologram data of only interference fringes due to light. In order to prevent this problem, it is desirable to use a spatial filter.
  • the spatial filter It is desirable to place the spatial filter as close to the object as possible in the light path of the light emitted to the object. If the spatial filter is disposed on the optical path away from the object, and an optical element such as a lens or a mirror is further disposed between the spatial filter and the object, dust on the surface of these optical elements or The effects of scratches can not be removed.
  • FIG. 17 it is conceivable to dispose a spatial filter on an optical path close to the object 119, for example, between the mirror 115 and the object 119. However, this location is also the optical path of the reflected diffraction light reflected from the object 119. If the spatial filter is disposed here, the reflected diffraction light can not pass through the pinhole of the spatial filter, so that a problem occurs in that the imaging reflection device 165 can not capture the reflected diffraction light.
  • the spatial filter In order to avoid the above problem in FIG. 17, the spatial filter must be separated to a position where the light path of the irradiation light and the light path of the reflected diffraction light are separated. Even if the position closest to the object 119 is selected, it means the position between the mirror 105 and the beam splitter 107. Even when the spatial filter is disposed at this position, optical elements such as the beam splitter 107, the second objective lens 109, the polarization beam splitter 111, and the mirror 115 exist from here to the object 119. Therefore, there is no point in placing a spatial filter. That is, using the spatial filter to obtain high-precision hologram data is substantially impossible with the device of Patent Document 3.
  • the present invention has been made to solve such problems, and it is an object of the present invention to first provide a practical digital holography method that performs both reflection mode and transmission mode.
  • a second object of the present invention is to provide a practical digital holography device capable of performing both the reflection mode and the transmission mode.
  • the third object of the present invention is to make it possible to acquire highly accurate hologram data without leaving the object in the air.
  • the fourth object of the present invention is to make it possible to acquire hologram data with higher accuracy by using a spatial filter.
  • the invention according to claim 1 of the present application is to transmit diffracted light from an object obtained by irradiating the object with light emitted from a light source and light emitted from a light source through the object.
  • the refracted diffracted light reflected from the object and emitted from the object to the first side interferes with the reference light at the imaging surface of the imaging element to acquire hologram data Performing a reflection mode to When the object is irradiated with light from the light source from the second side opposite to the first side, the transmission diffracted light transmitted and emitted to the first side and the reference light are taken on the imaging surface of the imaging device Performing a transmission mode of causing interference to acquire hologram data;
  • the step of performing the reflection mode and the step of performing the transmission mode may be alternatively selected and performed in different time zones.
  • the invention according to claim 2 does not include object information from diffracted light from an object obtained by irradiating the object with light emitted from a light source and diffracted light from an object
  • a digital holography method of acquiring hologram data by causing interference with a reference light extracted in a state on an imaging surface of an imaging device When the light from the light source is irradiated to the object from the first side, the refracted diffracted light reflected from the object and emitted from the object to the first side interferes with the reference light at the imaging surface of the imaging element to acquire hologram data Performing a reflection mode to When the object is irradiated with light from the light source from the second side opposite to the first side, the transmission diffracted light transmitted and emitted to the first side and the reference light are taken on the imaging surface of the imaging device Performing a transmission mode of causing interference to acquire hologram data;
  • the step of performing the reflection mode and the step of performing the transmission mode may be alternatively selected
  • the invention according to claim 3 is to transmit diffracted light from an object obtained by irradiating the object with light emitted from the light source and light emitted from the light source through the object.
  • a digital holography apparatus for acquiring hologram data by causing interference with a reference light obtained by guiding a light beam at the imaging surface of an imaging device,
  • a light guide system for reflected diffracted light which guides light from a light source to an object to obtain reflected diffracted light which is diffracted light emitted by reflecting light to the object;
  • An image pickup element whose position where the reflected diffracted light can be incident and whose imaging surface is located at the position where the transmitted diffracted light can be incident;
  • a reference light guide system for guiding the light from the light source to the imaging
  • the invention according to claim 4 does not include object information from diffracted light from an object obtained by irradiating the object with light emitted from a light source and diffracted light from an object
  • a digital holography apparatus for acquiring hologram data by causing interference with a reference light extracted in a state on an imaging surface of an imaging device,
  • a light guide system for reflected diffracted light which guides light from a light source to an object to obtain reflected diffracted light which is diffracted light emitted by reflecting light to the object;
  • An image pickup element whose position where the reflected diffracted light can be incident and whose imaging surface is located at the position where the transmitted diffracted light can be incident;
  • a reference light guiding system for extracting the reference light from the reflection diffraction light or the transmission dif
  • the invention according to claim 5 has a configuration in which an imaging optical system including a lens is provided on the imaging light path in the configuration according to claim 3 or 4.
  • the invention according to claim 6 is the configuration according to claim 3, 4 or 5, wherein the imaging optical system is at least a part of optical elements in the reflection mode and the transmission mode.
  • the invention according to claim 7 has a construction in which the imaging optical system is a telecentric optical system in the construction according to claim 3, 4, 5 or 6.
  • the invention according to claim 8 is the constitution according to any one of claims 3 to 7, wherein the imaging light path extends in a straight line from the object to the imaging surface.
  • the invention according to claim 9 relates to the configuration according to any one of claims 3 to 8, wherein the light guiding system for reflected diffraction light guides light to the object through the imaging light path.
  • a first spatial filter provided on the optical path to the imaging optical path and only zero or one optical path on the optical path from the first spatial filter to the imaging optical path Has a mirror
  • the light guiding system for transmitted diffracted light comprises a second spatial filter and also has zero or only one mirror on a light path from the second spatial filter to the object.
  • the invention according to claim 10 is characterized in that, in the configuration according to any one of claims 3 to 9, as the selection optical element, a first optical path disposed on a main optical path extending from the light source.
  • An optical element for selection is provided, the main optical path is branched into an optical path of the light guide system for reflected diffraction light and an optical path of the light guide system for transmission diffraction light, and the first optical element for selection is It is alternatively selected whether the light from the light source is made to travel along the light path of the light guide system for reflection diffraction light or along the light path of the light guide system for transmission diffraction light.
  • a first beam splitter is provided on the imaging light path, and the reflected diffracted light
  • the light guiding system for guiding light from the light source to the first beam splitter, and the first beam splitter divides the light guided by the light guiding system for reflected diffraction light in the reflection mode. It has a configuration that it takes a first state in which one of them is directed to the object.
  • the invention according to claim 12 is characterized in that, in the configuration according to claim 3, 5, 6, 7, 8, or 9, on the main optical path extending from the light source as the selection optical element.
  • a first selection optical element is disposed, and the main optical path is branched into an optical path of the light guiding system for the reflected diffracted light and an optical path of the light guiding system for the transmitted diffracted light,
  • the selection optical element alternatively selects whether the light from the light source is allowed to travel along the light path of the light guide system for reflected diffraction light or along the light path of the light guide system for transmission diffracted light
  • a first beam splitter is provided on the imaging optical path, the light guide system for reflected diffraction light is for guiding light from a light source to the first beam splitter, and the first beam splitter is It takes a first state in which light guided by the light guide system for reflected diffraction light is divided in the reflection mode and one of the lights is directed to the object,
  • the reference light guiding system is for guiding the other light split by the first beam splitter to the imaging surface of the imaging device without passing through the object in the reflection mode.
  • the first selection optical element is a second beam splitter, and a drive unit for changing the arrangement position of the second beam splitter is provided, and the drive unit performs the second operation in the reflection mode.
  • the second beam splitter is disposed on the main optical path in the transmission mode while the light is prevented from advancing to the optical path of the light guiding system for transmission diffraction light by setting the beam splitter at a position deviated from the main optical path. A part of the light is made to travel along the light path of the light guide system for transmission diffraction light,
  • the first beam splitter is disposed as a second selection optical element, and the first beam splitter is provided with a switching unit that changes the state of the first beam splitter.
  • the switching unit sets the first beam splitter to the first state in the reflection mode, and sets the first beam splitter to the second state in the transmission mode. And the second state is guided by the light guiding system for reflected light and reaches the first beam splitter so that the light guiding system for reflected light is also used as the light guiding system for reference light. Light is incident on the imaging surface of the imaging device without passing through the object.
  • the invention according to claim 13 is the structure according to claim 12, wherein the reference light guiding system transmits the first beam splitter in the reflection mode.
  • a beam stopper capable of being disposed on the optical path for returning the other light to the first beam splitter, and a stopper driving unit for driving the beam stopper are provided, and the stopper driving unit is in the reflection mode.
  • the beam stopper is not disposed on the optical path, and in the transmission mode, the beam stopper is disposed on the optical path.
  • the invention according to claim 14 is the configuration according to claims 3 to 12, wherein the reference light guiding system is the reflected diffracted light or the reflected diffracted light when entering the imaging surface of the imaging device.
  • an off-axis optical element for causing reference light to be incident on the imaging surface of the imaging device in a state in which a predetermined angle is given to the direction of the transmission diffracted light is provided.
  • the invention according to claim 15 is the structure according to claim 13 with respect to the direction of the reflected diffraction light or the transmission diffraction light when entering the imaging surface of the imaging device.
  • An off-axis optical element for causing reference light to be incident on the imaging surface of the imaging device in a state where a predetermined angle is given
  • the off-axis optical element includes a first off-axis mirror provided with the light guide system for reflected diffraction light on the light path in front of the first beam splitter, and the reference light guide system uses the other light as the first light
  • a second off-axis mirror provided on the light path when returning to the 1 beam splitter
  • the first off-axis mirror is provided with a drive unit, and in the reflection mode, the drive unit sets the first off-axis mirror in the first posture, and in the transmission mode, the first off-axis mirror.
  • the off-axis mirror is in the second position
  • the first posture is a posture in which the predetermined angle is not given by the first off-axis mirror
  • the second posture is a posture in which the predetermined angle is given by the first off-axis mirror
  • hologram data can be obtained for each object from reflected and transmitted diffracted light, so the state, shape, etc. of the object are examined in detail.
  • the configuration of the optical system is simplified.
  • the reference light since the reference light is guided to the imaging device without passing through the object, the reference light which is always stable can be obtained regardless of the condition of the object. Therefore, highly accurate hologram data can be acquired.
  • the invention of claim 3 or 4 since hologram data can be obtained for each object by reflected and transmitted diffracted light respectively, it is suitable for examining in detail the state, shape, etc.
  • the reflection mode and the transmission mode are separated in time, the configuration of the optical system is simplified. Further, since the reflection mode and the transmission mode can be performed by one device, it is preferable in terms of workability as well as cost merits. Furthermore, even when an object is placed in a transparent container, highly accurate hologram data can be obtained, and observation in the reflection mode and observation in the transmission mode can be performed from the same viewpoint. Further, according to the third aspect of the invention, the reference light is guided to the imaging device without passing through the object, so that the stable reference light can be obtained regardless of the condition of the object. Therefore, highly accurate hologram data can be acquired.
  • the imaging optical system shares at least a part of the optical elements, so the configuration of the optical system is simplified and the cost is reduced.
  • the imaging optical system is a telecentric optical system, so it is possible to irradiate an object with a plane wave both in the reflection mode and in the transmission mode. For this reason, the object light is not distorted, and the correction calculation becomes unnecessary.
  • the imaging optical path extends in a straight line from the object to the imaging surface, so the configuration of the optical system becomes simple, and the disturbance of the wavefront is Less.
  • the invention of claim 9 in addition to the above effect, since the spatial filter is used, more accurate hologram data can be obtained. And since the spatial filter is located on the light path closer to the object, the effect of the accuracy improvement is higher. Further, according to the invention of claim 12, in addition to the above effects, the light guide system for reflected diffracted light is also used as the reference light light guide system, so that the coherence of light is improved, and in this respect it is more accurate High hologram data can be acquired.
  • the reference light guiding system in addition to the above effect, in the reflection mode, returns the light to the first beam splitter and passes the first beam splitter to the light into the imaging device Since the light is guided, the coherence of light is further improved at this point, and more accurate hologram data can be obtained.
  • the invention of claim 14 or 15 in addition to the above-mentioned effect, since the optical element for off-axis is provided, the off-axis type operation becomes possible. Therefore, image reproduction can be performed in a state where the true image is separated from the zero-order image and the conjugate image.
  • the off-axis mirror since the off-axis mirror is provided at a position close to the imaging device, the incident position of the reference light with respect to the imaging surface of the imaging device will not be largely deviated.
  • FIG. 1 is a front schematic view of a digital holography device of a first embodiment of the present invention.
  • FIG. 5 is a front schematic view of a digital holography device of a second embodiment of the present invention.
  • FIG. 7 is a schematic view showing a second beam expander 321 and a second spatial filter 326. It is the schematic which showed typically the telecentricity of the imaging optical system 5 in the apparatus of FIG. It is the schematic which showed the control system of the digital holography apparatus of 2nd Embodiment.
  • FIG. 5 is a front schematic view of a digital holography device according to a third embodiment of the present invention. It is the figure which showed the change of the arrangement
  • FIG. 1 It is the schematic shown about operation
  • FIG. 1 It is a front schematic diagram of the digital holography apparatus of the 4th Embodiment of this invention. It is the front schematic which showed the example of the reference light extraction unit 9 in embodiment shown in FIG. It is the figure which showed the outline of the conventional digital holography apparatus. It is a figure which shows the digital holography apparatus disclosed by patent document 3.
  • FIG. It is the schematic shown about the problem of the digital holography apparatus of patent document 3.
  • FIG. It is the schematic of spatial filter.
  • FIG. 1 is a conceptual view of a digital holography method according to an embodiment of the present invention.
  • diffracted light (object light) from the object S obtained by irradiating the object S with light (plane wave) emitted from the light source 1 and light from the light source 1 as the object S
  • This is a method of acquiring hologram data by causing interference with the reference light obtained without guidance through the imaging surface of the imaging device 2.
  • One of the major feature points of this method is that, among the light irradiated to the object S, the object light (reflected diffracted light) which is reflected on the object S and proceeds to become diffracted and interferes with the reference light on the imaging surface Among the light emitted to the object S, the object light (transmission diffracted light) that travels through the object S and travels as diffracted light and the reference light interfere with each other on the imaging surface to obtain hologram data
  • the point is that it is a method of performing the transmission mode, and the point that the reflection mode and the transmission mode are performed in separate steps.
  • FIG. 1 (1) shows the reflection mode
  • FIG. 1 (2) shows the transmission mode. Either the step of the reflection mode or the step of the transmission mode may come first.
  • the point is to obtain hologram data using reflected diffraction light without using transmitted diffraction light, and obtaining hologram data using transmission diffraction light without using reflected diffraction light. Is done at different time zones, not simultaneously.
  • Another major feature of the digital holography method of the embodiment is that the manner of the light irradiation to the object S is different between the reflection mode and the transmission mode. That is, as shown in FIG. 1 (1), in the reflection mode, the object S is irradiated with the light from the light source 1 from the first side. On the other hand, as shown in FIG. 1 (2), in the transmission mode, the object S is irradiated with light from the second side opposite to the first side. Then, in the reflection mode, the diffracted light reflected to the first side is made incident on the imaging device 2, and in the transmission mode, the diffracted light transmitted to the first side is made incident to the imaging device 2. That is, the side of imaging by the imaging device 2 is the same in the reflection mode and the transmission mode.
  • FIG. 2 is a front schematic view of the digital holography device of the first embodiment. As shown in FIG.
  • the imaging device 2 is provided with an imaging surface at a position where the diffracted light and the reference light interfere with each other and the transmission diffracted light and the reference light interfere with each other.
  • the imaging element 2 is provided on the imaging light path Pi set on the first side.
  • a first beam splitter 41 is provided on the imaging light path Pi. In order to irradiate the object S with light for reflected diffraction light through the imaging light path Pi, the first beam splitter 41 is disposed in the middle of the imaging light path Pi, and light for reflected diffraction light is introduced therefrom. There is. Further, in this embodiment, an imaging optical system 5 including a lens is provided on the imaging light path Pi.
  • the imaging optical system 5 is not necessary when the imaging element 2 is relatively close to the object S and Fresnel diffraction is used (in the case of Fresnel hologram). Further, also in the case of a Fourier transform hologram (lensless Fourier transform hologram) in which the reference light is a spherical wave, the imaging optical system 5 is unnecessary. When the imaging optical system 5 is required, it is a Fraunhofer hologram (Fourier transform hologram) using a lens, or an interference image by diffracted light from the object S as an enlarged image or a reduced image. .
  • the light source 1 In order to obtain a clear hologram reproduction image, it is necessary that the object light and the reference light sufficiently interfere with each other to form interference fringes.
  • the light source 1 needs to be in phase (coherent) at a single wavelength.
  • a laser is used as the light source 1.
  • a He-Ne (helium-neon) laser having a wavelength of 632.8 nm is used.
  • the light from one light source 1 is divided and used. That is, the light emitted from the light source 1 is divided by the reference light extraction beam splitter 42, and one of the lights is used as a reference light.
  • the selection optical element is a movable mirror 43 in this embodiment.
  • the movable mirror 43 is a movable mirror, and selects whether to guide the irradiation light from the reference light extraction beam splitter 42 to the light guide system 31 for reflection diffraction light or the light guide system 32 for transmission diffraction light. It has become like.
  • this embodiment is an in-line type apparatus, and the reference light is also vertically incident on the imaging surface of the imaging device 2 like the object light.
  • the integration beam splitter 44 is disposed on the imaging light path Pi, and the reference light is reflected by the integration beam splitter 44 and vertically incident on the imaging surface of the imaging device 2.
  • the reference light guiding system 33 includes a first mirror for reference light 331 and a second mirror for reference light 332, and the beam splitter 44 for integrating the light extracted by the beam splitter for extracting reference light 42 is provided. It leads to
  • the object S is placed in a container such as a petri dish to obtain its hologram data.
  • the light source 1 is operated to first obtain hologram data in, for example, the reflection mode, and then move the movable mirror 43 to obtain the hologram data in the transmission mode.
  • Each hologram data is processed by a computer (not shown in FIG. 1) to which the imaging element 2 is connected.
  • a predetermined program (hereinafter referred to as an image reproduction program) for obtaining a reproduced image from hologram data is installed in the computer, and the reproduced image is displayed on the display by executing the image reproduction program, or the object S is displayed.
  • hologram data can be obtained for each object S by reflected and transmitted diffracted light respectively, it is suitable for examining the state and shape of the object S in detail. It becomes. For example, it can be suitably used to know both the reflectance distribution and the transmittance distribution on the surface of the object S.
  • FIG. 15 shows a complex imaging optical system using a polarization beam splitter 143 or the like.
  • the imaging optical system means an optical system on the optical path of object light from the object to the imaging device.
  • the imaging optical system 5 is simplified.
  • the fact that the imaging optical system 5 is simplified has the advantage of cost and the possibility of disturbance of the wavefront due to the use of more optical elements is reduced, so that more accurate hologram data can be obtained. It has the advantage of
  • to simultaneously perform the reflection mode and the transmission mode means that light is irradiated to the object S from one side, and the reflection diffracted light that is reflected and emerges to one side is to the other side It means that the transmitted diffracted light that has been transmitted and captured is captured by the imaging device.
  • the object S is configured to be floated and held in the air, it is not possible to obtain highly accurate hologram data.
  • the reflection mode and the transmission mode are performed separately in time, light can be emitted from the opposite side in the transmission mode, and the side to be imaged may be the same side of the object S. it can.
  • the device of the embodiment is such a device.
  • Performing the reflection mode and the transmission mode is suitable for examining in detail the state, shape, etc. of the object S as described above, but it is possible to perform this in one device, in addition to cost merits, workability Is also preferable.
  • the same thing can be done by preparing a digital holography device that performs measurement in the reflection mode and a digital holography device that performs measurement in the transmission mode.
  • the object S is taken out after the measurement is performed by the device in the reflection mode.
  • the object S is an opaque body, it is impossible to acquire hologram data in the transmission mode in the first place.
  • data acquisition can be performed in transmission mode or in reflection mode, but when reflection mode is performed on a transparent body, reflection diffraction light from the surface of the object interferes with reflection diffraction light from the back surface of the object. Interference fringes may occur, and accurate hologram data may not be obtained due to this effect. If these are considered, the merit that the mode can be arbitrarily selected with one device according to the property of the object S which is a target object is very large.
  • the point in which the reference light is guided to the imaging device 2 without passing through the object S is excellent in that a stable reference light is always obtained regardless of the condition of the object S.
  • light transmitted through the object S is taken out as reference light.
  • the reference light is changed depending on the optical physical properties of the object S, so that it is not always possible to use stable light as the reference light.
  • the reference light is guided to the imaging device 2 without passing through the object S as in the present embodiment, the reference light does not change depending on the conditions of the object S, and the reference light is always stabilized. it can.
  • the method or apparatus of the present embodiment there is a merit that quantitative data can be obtained.
  • FIG. 3 is a front schematic view of a digital holography device of a second embodiment of the present invention.
  • the digital holography device of the second embodiment includes a light guiding system 31 for reflected diffracted light that guides light from the light source 1 to the object S to obtain reflected diffracted light, and light from the light source 1 to obtain transmitted diffracted light.
  • a light guide system 32 for transmitted diffracted light that guides light to the object S a reference light light guide system 33 that guides light from the light source 1 to the imaging surface of the image sensor 2 without passing through the object S, reflected diffracted light and reference light Whether the reflected diffraction light is incident on the imaging surface of the imaging element 2 and the imaging surface of the imaging element 2 where the imaging surface is located at the interference position and the interference position of the transmission diffraction light and the reference light
  • a control system (not shown in FIG. 3) for controlling the operation of the selection optical element.
  • the light guide system 31 for reflected diffraction light is used in part as a reference light guide system.
  • the second beam splitter 45 is provided instead of the movable mirror 43 in the first embodiment.
  • a drive unit 451 is attached to the second beam splitter 45.
  • the first beam splitter 41 is provided as in the first embodiment, but the switching unit 411 is attached to the first beam splitter 41 as a drive mechanism.
  • the first beam splitter 41 and the second beam splitter 45 function as selection optical elements.
  • an optical path (hereinafter, main optical path) extending from the light source 1 can be first branched by the second beam splitter 45 after being bent 90 ° by the first mirror 46 .
  • the light guide system 31 for reflection diffracted light is disposed on the image side of the division position by the second beam splitter 45 (forward in the traveling direction of light, hereinafter the same) on the main light path.
  • the light guide system 31 for reflected and diffracted light is configured by a first beam expander 311, a second mirror 312, a first beam splitter 41, and the like.
  • the second mirror 312 bends the light expanded in width by the first beam expander 311 by 90 ° and causes the light to reach the first beam splitter 41.
  • each of the light guide systems 32 for transmission diffraction light is disposed on an optical path (hereinafter referred to as a branched optical path) Ps which is formed separately from the main optical path by positioning the second beam splitter 45 on the main optical path. It is comprised by the optical element.
  • Each optical element is the second beam expander 321, the third mirror 322, and the like.
  • the third mirror 322 bends the branched light path Ps by 90 ° to reach the position of the object S.
  • the light traveling on the branched optical path Ps divided by the second beam splitter 45 passes through the second beam expander 321, is reflected by the third mirror 322, and reaches the object S. This light passes through the object S and becomes transmission diffracted light.
  • the drive unit 451 provided in the second beam splitter 45 arranges the second beam splitter 45 on the main optical path to split the light, and a retraction position where the light is retracted from the main optical path so as not to split the light. And a mechanism for moving the second beam splitter 45 between them.
  • the second beam splitter 45 functions as a selection optical element.
  • the drive unit 451 is configured of, for example, a linear motion type stage such as a linear stage.
  • the switching unit 411 provided in the first beam splitter 41 changes the state of the first beam splitter 41 so that the first beam splitter 41 functions as a selection optical element. Specifically, in the reflection mode, the switching unit 411 is in the same state as the first beam splitter 41 in the first embodiment, that is, the light guided by the light guide system 31 for reflected diffraction light is The attitude toward the object S by reflection (hereinafter, referred to as a first state). Then, in the transmission mode, the switching unit 411 rotates the first beam splitter 41 by 90 °, reflects the light guided by the light guide system 31 for reflected diffraction light, and causes the light to enter the imaging element 2 as it is. The posture (hereinafter, referred to as a second state).
  • the switching unit 411 prevents the light from the light source 1 from being irradiated to the object S from the opposite side, and the light guiding system 31 for reflected diffraction light functions as the reference light guiding system 33 It plays two roles.
  • a switching unit 411 is configured of, for example, a rotation stage. The rotation axis is on a straight line perpendicular to the optical axis and passing through the center of the reflective surface of the first beam splitter 41 and along the reflective surface.
  • the reference light guiding system 33 guides the reference light to the imaging device 2 but guides the reference light through different paths in the transmission mode and the reflection mode.
  • the reference light guiding system 33 guides the reference light to the imaging element 2 using a part of the above-described light guide system 31 for reflected diffracted light. That is, the reference light guiding system 33 in the transmission mode is configured by the first mirror 46, the second beam splitter 45, the first beam expander 311, the second mirror 312, and the like.
  • the reference light guide system 33 is configured by a part of the light guide system 31 for reflection diffracted light, which is shared in the same manner, and the additional light guide system 34.
  • the first beam splitter 41 advances one of the split lights towards the object S.
  • the additional light guiding system 34 guides the other light split by the first beam splitter 41 to the imaging element 2.
  • the additional light guiding system 34 returns the other light to the first beam splitter 41 so as to lead through the same path as much as possible. It is made to inject into an imaging surface as a reference light.
  • the reference light guiding system 33 includes the first mirror 46, the first beam expander 311, the second mirror 312, and the first beam splitter 41; It is comprised by the additional light guide system 34.
  • the additional light guiding system 34 is configured of a fourth mirror 341, a folding mirror 342, and the like.
  • the fourth mirror 341 bends the light from the second beam splitter 45 by 90 °
  • the folding mirror 342 bends the light by 180 ° and folds it back.
  • a beam stopper 343 and a stopper driving unit 344 for driving the beam stopper 343 are provided between the fourth mirror 341 and the folding mirror 342.
  • the beam stopper 343 and the stopper driving unit 344 stop the light so as not to turn back because the additional light guiding system 34 is unnecessary in the transmission mode.
  • the first spatial filter 316 and the second spatial filter 326 are arranged in order to obtain accurate hologram data.
  • the first spatial filter 316 and the second spatial filter 326 are respectively disposed in the light guide system 31 for reflected diffraction light, the light guide system 32 for transmission diffraction light, and the reference light light guide system 33.
  • the first spatial filter 316 is disposed in the light guide system 31 for reflection diffracted light
  • the second spatial filter 326 is disposed in the light guide system 32 for transmission diffraction light.
  • the light guide system 31 for reflection diffracted light is also used as the reference light light guide system 33, eventually all of the light for transmission diffraction light, the light for reflection diffraction light, and the reference light pass through the spatial filter. become. That is, all the light incident on the imaging element 2 passes through the spatial filter. For this reason, it is extremely suitable in terms of obtaining accurate hologram data.
  • the first spatial filter 316 and the second spatial filter 326 are disposed as close as possible to the object S or the imaging device 2.
  • the first spatial filter 316 is disposed on the image side from the branch point of the branched light path Ps in the main light path, and the first spatial filter Only one second mirror 312 is disposed between 316 and the first beam splitter 41.
  • the second spatial filter 326 is disposed on the branched optical path Ps, and only one third spatial filter 326 from the second spatial filter 326 to the object S is disposed.
  • Mirror 322 is placed.
  • a spatial filter can be disposed between the second mirror 312 and the first beam splitter 41. This can further improve the accuracy of the hologram data.
  • a spatial filter can be disposed between the third mirror 322 and the object S, and in the same manner, it is possible to further improve the accuracy of the hologram data.
  • FIG. 4 is a schematic diagram showing the second beam expander 321 and the second spatial filter 326 as an example.
  • the second beam expander 321 is configured of a condensing lens 323 and a collimator lens 324.
  • the pinhole plate 325 is disposed at a condensing position by the condensing lens 323.
  • the pinholes of the pinhole plate 325 coincide with the light collecting position.
  • the second spatial filter 326 is configured by the condenser lens 323 and the pinhole plate 325. That is, the condenser lens 323 is shared by the second beam expander 321 and the second spatial filter 326.
  • Such a structure simplifies the configuration of the optical system and reduces the cost by reducing the number of parts.
  • the first spatial filter 316 implemented in the first beam expander 311.
  • the imaging optical system 5 will be described. Also in the present embodiment, the light guide system 31 for reflection diffracted light irradiates light from the side opposite to the side where the light guide system 32 for transmission diffraction light irradiates light to the object S, and the imaging optical system 5 Is provided on an imaging light path Pi that extends on the side where the light guide system 31 for reflected diffraction light emits light. That is, the reflected diffraction light and the transmission diffraction light are configured to reach the imaging surface of the imaging device 2 through the common imaging light path Pi, and the imaging optical system 5 is disposed on the common optical path.
  • the imaging optical system 5 includes an objective lens 51 disposed on the side closer to the object S, and an imaging lens 52 disposed on the side closer to the imaging device 2. Another major feature of the apparatus of the present embodiment is that the imaging optical system 5 is a telecentric optical system. Hereinafter, this point will be described with reference to FIG.
  • FIG. 5 is a schematic view schematically showing the telecentricity of the imaging optical system 5 in the apparatus of FIG.
  • a telecentric optical system generally refers to an optical system in which a chief ray is considered to be parallel to the principal axis.
  • FIG. 5 (1) shows a telecentric optical system on the image side.
  • an optical system in which the chief ray is considered to be parallel to the optical axis on both the object side and the image side is called two-side telecentric.
  • the telecentricity of the imaging optical system 5 in the present embodiment is also as shown in FIG. 5 (2), the chief ray is the optical axis both on the front side (object S side) and the rear side (image element 2 side) of the optical system It can be considered parallel to
  • the light source 1 is a laser and it is premised that a plane wave (parallel light) is incident. For this reason, combining optics that are both-side telecentric can be achieved by matching the position of the back focal point of the objective lens 51 with the position of the front focal point of the imaging lens 52 (confocal).
  • the telecentricity of the imaging optical system 5 in the present embodiment has another meaning. As shown in FIG.
  • the objective lens 51 and the imaging lens 52 form an infinity correction optical system, and diffracted light (object light) emitted from one point of the object S is an objective lens 51. At this point, it becomes a parallel light and is incident on the imaging lens 52.
  • the telecentric infinity correction system has a great merit that the size of the image does not change even if the position of the object S is changed to adjust the focus. This is advantageous when it is desired to obtain hologram data by reflection diffraction light or transmission diffraction light from a position slightly deep from the surface of the object S.
  • the apparatus of the present embodiment is configured as a digital holographic microscope and a reproduced image is obtained while enlarging a transparent biological sample to a certain extent, there are great merits.
  • an object-side telecentric lens is adopted as the objective lens 51
  • an image-side telecentric lens is adopted as the imaging lens 52, and the focal position of the objective lens 51 on the image side and the imaging lens 52.
  • This can be achieved by arranging the object-side focal position of the object in a state of being in agreement (confocal state).
  • the object side telecentric lens and the image side telecentric lens commercially available ones can be used, so detailed description will be omitted.
  • the imaging lens 52 which is an image-side telecentric lens, constitutes an infinity correction system, it is preferable to use a lens with a large effective aperture in order to reduce light loss as much as possible.
  • the imaging device 2 is, for example, a CCD camera.
  • the CCD camera has an imaging surface of 1024 ⁇ 1024 pixels, for example.
  • the imaging element 2 is disposed such that the center of the imaging surface is located on the optical axis and the imaging surface is perpendicular to the optical axis.
  • a polarization filter 11 and a 1 ⁇ 4 wavelength plate 12 are provided on the optical path immediately after the light is emitted from the light source 1.
  • the polarizing filter 11 and the 1 ⁇ 4 wavelength plate 12 prevent return light from entering the light source 1.
  • the polarization filter 11 transmits only linearly polarized light in a specific direction.
  • the 1 ⁇ 4 wavelength plate 12 is disposed with the crystal axis shifted by 45 ° from the transmission axis (direction of linear polarization) of the polarizing filter 11, and has a function of converting linear polarization into circular polarization.
  • the light that has become circularly polarized light is irradiated to the object S or enters the imaging element 2 as a reference light, but this light is used because the first beam splitter 41 and the second beam splitter 45 are used. May come back.
  • the returned circularly polarized light is converted again into linearly polarized light by transmitting through the 1 ⁇ 4 ⁇ wavelength plate 12 again.
  • This linearly polarized light further has a phase difference of 1 ⁇ 4 wavelength, so that the polarization direction deviates by 90 ° from the light of the first linearly polarized light. Therefore, this light can not pass through the polarizing filter 11 and is blocked at the polarizing filter 11. Since the return light does not enter the light source 1, damage or the like of the light source 1 due to the return light is prevented.
  • the object S is held by an appropriate member in accordance with the property, size, and the like. For example, as described above, it is placed on a transparent container such as a petri dish or a transparent plate-like member to hold the object S, and in the case of a large object S, a clamp-like member used to hold it is used It is also possible. If the object S is a plate-like one like a substrate, it may be held by a frame-like member. In any case, the object S is held at a predetermined position with respect to the light guide system and the imaging optical system 5 by such a holding member.
  • FIG. 6 is a schematic view showing a control system of the digital holography device of the second embodiment.
  • the control system 6 for controlling the optical element for selection and the like comprises a control board 61 and a computer 63 etc. in which a switching program 62 for sending a signal to the control board 61 to switch between the reflection mode and the transmission mode is installed.
  • a general computer operating on a general-purpose OS such as a desktop personal computer is used as the computer 63 in order to provide the computer 63 also with the function of calculating the reproduction image.
  • a control board 61 is attached as its interface.
  • the switching program 62 is a program for sending a control signal for switching between the reflection mode and the transmission mode from the computer 63 to the control board 61.
  • the control board 61 drives the switching unit 411 of the first beam splitter 41, the driving unit 451 of the second beam splitter 45, and the stopper driving unit 344 of the beam stopper 343 based on the control signal sent out. Each operation signal of is transmitted.
  • the control board 61 has a storage unit such as a RAM, and a sequence control program for outputting each operation signal according to the control signal is written in the storage unit.
  • the sequence control program is executed by the switching unit 411 of the first beam splitter 41 and the driving unit 451 of the second beam splitter 45.
  • the stopper drive 344 of the beam stopper 343 is programmed to send an operation signal for the reflection mode. Further, when the transmission mode is selected in the switching program 62 and a control signal indicating that the transmission mode is to be set is transmitted, the sequence control program transmits the operation signal for the transmission mode to the switching unit 411 of the first beam splitter 41, It is programmed to be delivered to the drive 451 of the second beam splitter 45 and to the stopper drive 344 of the beam stopper 343.
  • the control board 61 When sensors for detecting the position and posture of the first beam splitter 41, the second beam splitter 45, and the beam stopper 343 are provided, and signals from the respective sensors are input to the control board 61 and used for control. It is suitable. The signal from each sensor is used to monitor whether each part is driven normally or to not send an operation signal but only check the position and attitude when performing the same mode as the previous operation. It can be used.
  • the light source 1 is turned on and off by a switch provided to a power supply (not shown). However, the light source 1 can be turned on and off by sending a signal from the computer 63 via the control board 61 as a matter of course.
  • a program (hereinafter referred to as a reproduction program) 64 for executing a predetermined calculation process for obtaining a reproduced image based on the hologram data obtained on the imaging surface of the imaging device 2 is also installed.
  • a reproduction program 64 for executing a predetermined calculation process for obtaining a reproduced image based on the hologram data obtained on the imaging surface of the imaging device 2 is also installed.
  • calculation processing for obtaining a reproduced image from hologram data various calculation formulas and techniques are well known, and arbitrary ones can be selected and applied. As an example, one using Fourier transform is shown below.
  • the reproduction plane (the plane on which the reproduced image can be formed) is parallel to the hologram plane (here, the imaging plane of the imaging device 2) and the distance is R. r is from one point on the hologram plane to one point on the reproduction plane Suppose that it is a distance.
  • x and y are coordinates on the hologram surface
  • X and Y are coordinates on the reproduction surface.
  • the complex amplitude distribution on the reproduction surface can be expressed as Equation 1 according to Kirchhoff's equation of diffraction integral.
  • g (x, y) is hologram data
  • G (X, Y) is a complex amplitude distribution of a generated image.
  • is the wavelength and k is the wave number.
  • Equation 3 is obtained by substituting the Fresnel approximation shown in equation 2 for equation 1 and substituting it.
  • Equation 4 if the integral is considered to be a Fourier transform and is transformed, Equation 4 is obtained.
  • the parenthesis of F in Equation 4 indicates that it is a Fourier transform.
  • x and y are outputs from each pixel of the imaging plane, and a discrete Fourier transform is performed to obtain a reproduced image G (X, Y).
  • a main program (not shown) for controlling the entire operation is installed in the computer 63.
  • the main program is started automatically when the device is turned on.
  • the main program displays a screen for selecting one of the reflection mode and the transmission mode on the display, and displays a button for instructing execution of main operations such as acquisition of hologram data and formation of a reproduced image. .
  • FIGS. 3 to 9. 7 to 9 are schematic diagrams showing the operation of the digital holography device of the second embodiment.
  • FIG. 7 is a diagram showing the progress of each light in the reflection mode and the transmission mode
  • FIG. 8 is a diagram schematically showing an operation flow in the reflection mode
  • FIG. 9 is an operation in the transmission mode It is the figure which showed the outline of the flow.
  • the switching program 62 is executed, and a control signal for setting the reflection mode is sent to the control board 61.
  • the control board 61 having received this control signal controls each operation signal for the reflection mode to the switching unit 411 of the first beam splitter 41, the drive unit 451 of the second beam splitter 45, and the stopper drive unit of the beam stopper 343. Send to 344.
  • the control board 61 sends an operation signal to the switching unit 411 so that the first beam splitter 41 is in the first state.
  • the first state as shown in FIG. 7A, the light incident on the first beam splitter 41 via the light guide system 31 for reflected diffraction light is reflected by the reflection surface thereof to form the object S. It is in the state of taking a posture to advance.
  • the control board 61 sends an operation signal to the drive unit 451 to retract the second beam splitter 45 from the branch position on the main optical path. That is, in the reflection mode, the light guide system 32 for transmission diffraction light is not used.
  • the control board 61 sends an operation signal to the stopper drive unit 344 to retract the beam stopper 343 from the light path. The operation of the sequence control program on the control board 61 is now complete.
  • the light source 1 is turned on to emit light.
  • the light L1 emitted from the light source 1 is incident on the first beam splitter 41 via the light guide system 31 for reflection diffraction light.
  • the light L1 is split into one light L2 that is reflected toward the object S by the reflection surface of the first beam splitter 41 and the other light L3 that passes through the first beam splitter 41 and reaches the additional light guiding system 34. Be done.
  • One light L2 is irradiated to the object S through the imaging optical system 5, and the reflected diffracted light L4 is emitted from the object S.
  • the reflected diffracted light L 4 passes through the imaging optical system 5 again and enters the first beam splitter 41, passes through the first beam splitter 41, and enters the imaging element 2.
  • the other light L 3 is reflected back to the folding mirror 342 of the additional light guiding system 34, and reenters the first beam splitter 41.
  • the light L3 is reflected by the reflection surface of the first beam splitter 41, and is incident on the imaging surface of the imaging element 2 as reference light.
  • the reflected diffracted light L4 and the reference light L3 interfere with each other on the imaging surface of the imaging device 2, and the interference fringes are imaged on the imaging surface and the hologram data is output to the computer 63. Be done.
  • the reproduction program 64 is executed on the computer 63, and the reproduction image of the object S is formed by performing the calculation processing as described above.
  • the switching program 62 sends a control signal for setting the transmission mode to the control board 61.
  • the control board 61 that has received this control signal executes a sequence control program, and switches each operation signal for the reflection mode to the switching unit 411 of the first beam splitter 41, and the driving unit 451 of the second beam splitter 45, The beam is sent to the stopper drive unit 344 of the beam stopper 343.
  • the control board 61 causes the switching unit 411 to drive the first beam splitter 41 to bring the first beam splitter 41 into the second state. In the second state, as shown in FIG.
  • the light incident on the first beam splitter 41 through the light guide system 31 for reflected diffraction light is reflected by the reflection surface and directed to the imaging device 2 It is in a state of taking a forward posture. In the second state, the orientation of the reflective surface of the first beam splitter 41 differs by 90 ° from the first state.
  • the control board 61 sends an operation signal to the drive unit 451 and arranges the second beam splitter 45 on the main optical path. That is, in the transmission mode, the light guide system 32 for transmission diffraction light and the light guide system 31 for reflection diffraction light are used.
  • control board 61 sends an operation signal to the stopper drive unit 344 and arranges the beam stopper 343 on the optical path of the additional light guiding system 34. , Block the light path. At this point, the operation of the sequence control program on the control board 61 is completed.
  • the light source 1 is operated to emit light.
  • the light emitted from the light source 1 enters the second beam splitter 45.
  • This light is split into one light L5 passing through the second beam splitter 45 and the other light L6 reflected by the reflection surface of the second beam splitter 45 and directed to the object S.
  • One light L ⁇ b> 5 is guided by the light guide system 31 for reflected diffraction light which is also used as the reference light light guiding system 33 and is incident on the first beam splitter 41.
  • the light L5 incident on the first beam splitter 41 is reflected by the reflection surface of the first beam splitter 41, travels toward the imaging device 2, and is incident on the imaging surface of the imaging device 2 as reference light.
  • the light transmitted through the first beam splitter 41 is blocked by the beam stopper 343 and does not return to the first beam splitter 41.
  • the other light L6 split by the second beam splitter 45 is irradiated to the object S through the light guide system 32 for transmission diffraction light.
  • the light passes through the object S and is emitted from the object S as transmission diffracted light L7.
  • the transmission diffracted light L 7 enters the first beam splitter 41 through the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging surface of the imaging device 2. As shown in S5 and S6 of FIG.
  • interference fringes of the reference light L5 and the transmission diffraction light L7 are formed, and the interference fringes are imaged to obtain hologram data.
  • the hologram data is similarly sent to the computer 63, and the reproduction program 64 is executed to form a reproduced image of the object S.
  • the information on the reproduced image includes amplitude information and phase information.
  • the amplitude information is suitable for observing the two-dimensional shape and contrast of the surface of the object
  • the phase information is suitable for observing the shape at the depth of the object. Therefore, when obtaining a reproduced image, sometimes only amplitude information is extracted and a two-dimensional shape or the like is mainly observed, or only phase information is extracted and a depth state is observed.
  • FIG. 10 is a schematic view showing the effect of the apparatus of the second embodiment including the telecentric imaging optical system 5.
  • FIG. 10A is shown for comparison, and is a wavefront diagram in the case of using an imaging optical system that is not telecentric.
  • FIG. 10B is a wavefront diagram in the case of using the telecentric imaging optical system 5 according to the present embodiment.
  • the telecentricity in the apparatus of the present embodiment is achieved by arranging the objective lens 51 and the imaging lens 52 constituting the infinite correction optical system in a confocal manner.
  • the plane wave Lp can be irradiated to the object S in the transmission mode.
  • the plane mode Lp when the plane mode Lp is applied to the object S as shown in FIG. 10 (A2) when passing from the transmission mode to the reflection mode, it passes through the imaging optical system 5.
  • the object S is irradiated with the light (spherical wave) Ls collected by the objective lens. In this case, due to distortion of the object light imaged by the imaging device 2, it is not possible to form a reproduced image with high accuracy.
  • the plane wave Lp is irradiated to the object S regardless of which of the reflection mode and the transmission mode is selected. Therefore, in both the transmission mode and the reflection mode, regions of the same size can be observed, and image reproduction can be performed by the same reproduction calculation means. Furthermore, since the object light is not distorted, correction calculation is not necessary, and image reproduction with variable working distance, which is a fundamental feature of digital holography, can be freely performed. Furthermore, since the optical system is a telecentric optical system, there is also an advantage that the imaging magnification does not change in image reproduction in which the working distance is variable. Note that image reproduction in which the working distance is variable means that image reproduction can be performed by focusing on an arbitrary position in the depth direction of the object.
  • both the reflection mode and the transmission mode can be performed by one unit, various observations and measurements can be performed on the object S at low cost.
  • the configuration of the optical system is simplified and only one imaging device 2 is sufficient. For this reason, the cost of one device is also reduced.
  • the object light is captured exclusively on the first side. Can. For this reason, it is possible to obtain highly accurate hologram data without forcing the object S to float in the air.
  • the imaging optical system 5 causes object light to be incident on the imaging element 2 in both the reflection mode and the transmission mode, the optical system is simplified in this point as it is shared by both modes. Contribute to reducing the cost of the device.
  • different imaging optical systems may be provided for the reflection mode and the transmission mode, and a revolver type mechanism or the like may be adopted and used alternatively.
  • the imaging optical system for the reflection mode is disposed on the imaging optical path Pi
  • the transmission mode the imaging optical system for the transmission mode is switched and disposed on the imaging optical path Pi.
  • the imaging optical system is shared in both modes, in addition to the case where all the imaging optical systems are shared, a part may be shared.
  • the imaging lens may be shared, and the objective lens may be prepared for the reflection mode and the transmission mode and switched for use.
  • the apparatus of the present embodiment has a straight imaging light path Pi. That is, object light emitted from the object S travels along a straight optical path and enters the imaging device 2.
  • This point has the following effects.
  • the optical path is a straight line, adjustment of the optical axis is easy. That is, in order to obtain highly accurate hologram data, the object S, the imaging optical system 5 and the imaging device 2 need to be precisely aligned on the optical axis, but this adjustment is easy because the optical axis is a straight line. .
  • FIG. 15 when the optical path from the object S to the imaging device 2 is complicatedly bent, many optical elements such as mirrors are required, and the cost is increased accordingly.
  • the apparatus of this embodiment uses the first spatial filter 316 and the second spatial filter 326, and both the object light and the reference light are light passing through the spatial filter. .
  • the wavefront is incident on the imaging element 2 in a state where the noise is removed.
  • This point also greatly contributes to the improvement of the accuracy of the hologram data, and the spatial filter is located on the optical path closer to the object S. For this reason, it is less likely that noise will be introduced into the wavefront due to factors after passing through the spatial filter. This point also greatly contributes to the improvement of the accuracy of the hologram data.
  • the device of the present embodiment further simplifies the optical system and enhances the coherence by making the reference light guiding system 33 common to the light guiding system for object light, as compared with the first embodiment. It is a more practical device.
  • this effect will be described.
  • the light for reflected diffraction light and the reference light are guided from the light source 1 to the first beam splitter 41 by one and the same light guiding system. Then, the light is split into the first beam splitter 41, and the light for reflected diffraction light reaches the object S, and the reference light reaches the imaging element 2 without passing through the object S by the additional light guiding system.
  • the difference in optical conditions is reduced or the difference in optical path lengths is reduced. It is easy to As a result, the coherency between the reference light and the object light can be enhanced, which helps to obtain more accurate hologram data, and a reduction in the device cost due to the reduction in the number of optical elements used is realized.
  • the additional light guiding system 34 has a similar meaning in that light is returned to the first beam splitter 41 and then incident on the imaging element 2 as reference light.
  • the light guided by the light guide system 31 for reflection diffracted light passes through the first beam splitter 41 and is incident on the image pickup element 2, and almost all the portions for guiding the reference light are reflected.
  • the light guide system 31 for diffracted light is also used. Therefore, the coherency is further enhanced, the configuration of the optical system is further simplified, and the cost reduction due to the reduction in the number of used optical elements is further realized.
  • FIG. 11 is a schematic front view of a digital holography device according to a third embodiment of the present invention.
  • the apparatus of the third embodiment enables off-axis operation in the apparatus of the second embodiment.
  • a desired image true image
  • the device shown in FIG. 11 differs from that of the second embodiment in the configuration of the reference light guiding system 33 in order to enable the off-axis system.
  • one of the mirrors constituting the reference light guiding system 33 is arranged in a state where the angle with respect to the optical axis can be changed.
  • the second mirror 312 in the second embodiment is an off-axis mirror in the light guide system 31 for reflected diffraction light that is also used as the reference light light guide system 33 in the transmission mode.
  • First off axis mirror) 317 has been changed.
  • the first off-axis mirror 317 is provided with a first off-axis drive unit 318, and the arrangement angle of the first off-axis mirror 317 with respect to the optical axis can be changed.
  • the configuration of the additional light guiding system 34 is largely changed regarding the reference light guiding system 33 in the reflection mode.
  • the additional light guiding system 34 in the third embodiment is also for returning the light transmitted through the first beam splitter 41 in the reflection mode back to the first beam splitter 41.
  • the additional light guiding system 34 is a loop in order to arrange the off-axis mirror close to the image pickup element 2 and reduce (or eliminate) the difference between the object light and the optical path length. Form an optical path of Specifically, the additional light guiding system 34 has a polarization beam splitter 345 on the light path extending from the first beam splitter 41.
  • the polarization beam splitter 345 is a beam splitter that transmits only a linear polarization component in a specific polarization direction, and reflects the other component.
  • a quarter-wave plate 346 is provided between the first beam splitter 41 and the polarization beam splitter 345.
  • the light from the light source 1 is converted to circularly polarized light by the polarization filter 11 and the 1 ⁇ 4 wavelength plate 12 immediately after. Therefore, when the light is transmitted through the 1 ⁇ 4 wavelength plate 346, the light is further linearly polarized in the direction shifted by 45 °.
  • the polarization beam splitter 345 reflects linearly polarized light in this direction and transmits other light.
  • a fifth mirror 347, a sixth mirror 348 and a second off-axis mirror 349 are provided along the optical path of the linearly polarized light reflected by the polarization beam splitter 345. The light is reflected back to the polarizing beam splitter 345 by being reflected by these mirrors.
  • the second off-axis mirror 349 is provided with a second off-axis drive unit 350.
  • a half wave plate 351 is provided between the polarization beam splitter 345 and the fifth mirror. Therefore, the light returning to the polarization beam splitter 345 has a polarization direction shifted by 90 °, and transmits without being reflected by the polarization beam splitter 345. This light is converted into circularly polarized light again by transmitting through the 1 ⁇ 4 wavelength plate 346 again, and reaches the imaging element 2 through the first beam splitter 41.
  • a beam stopper and a stopper driving unit for blocking light are provided.
  • the beam stopper can be disposed between the 1 ⁇ 4 wavelength plate 346 and the polarization beam splitter 345.
  • a beam expander 352 is disposed in the additional light guide system 34.
  • the beam expander 352 is, for example, an equal-magnification beam expander, has a pinhole inside as in the case shown in FIG. 4, and forms a spatial filter configuration. Thereby, it is possible to remove the fluctuation of the wavefront derived from the optical components such as the mirror and the wave plate immediately before the spatial filter.
  • FIG. 12 is a view showing a change in the arrangement angle of the off-axis mirror used in the third embodiment
  • FIG. 12 (1) is a schematic plan view
  • FIG. 12 (2) is a schematic perspective view. is there.
  • FIG. 12 shows, as an example, the second off-axis mirror 349 disposed in the additional light guiding system 34.
  • the second off-axis mirror 349 can be in a posture in which the angle with respect to the optical axis is not 45 ° but slightly inclined.
  • the incident angle of the reference light when entering the imaging device 2 is not the same angle as the incident angle of the object light, but a predetermined angle (hereinafter referred to as an off-axis angle with respect to the incident angle of the object light 12 (1) can be given a state given by ⁇ ).
  • the posture change of the second off-axis mirror 349 is possible in two directions. That is, as shown in FIG. 12 (2), rotation about the rotation axis A1 along a line formed by the plane formed by the optical axis before refracting and the optical axis after refracting intersects the reflecting surface, and rotation Rotation about a rotation axis A2 in a direction perpendicular to the axis A1 and along the reflecting surface.
  • rotation Rotation about a rotation axis A2 in a direction perpendicular to the axis A1 and along the reflecting surface By enabling such two rotations, it is possible to make the reference light incident with an off-axis angle ⁇ in two orthogonal directions (X and Y directions) with respect to the imaging surface of the imaging device 2.
  • the second off-axis mirror 349 may be tilted in a direction other than the direction shown in FIG. 12 to separate the image in that direction.
  • a kinematic mirror holder that can be adjusted in two directions can be used as the drive unit for each of these off-axis mirrors, and an actuator can be attached to each adjustment axis to enable control with an external signal. It can be adopted.
  • Each drive unit similarly sends an operation signal from the control board 61 to be controlled.
  • the first off-axis mirror 317 in the light guide system 31 for reflected diffraction light is used for off-axis in the transmission mode, and is used as a normal mirror in the reflection mode. Therefore, the control board 61 sends an operation signal in a posture inclined at a predetermined angle from 45 ° so that the off-axis angle ⁇ can be obtained in the transmission mode. Also, in the reflection mode, an operation signal is sent to return to the normal posture, that is, the posture of 45 ° with respect to the optical axis.
  • the term "ordinary mirror” means a mirror in which no off-axis angle is generated depending on the mirror.
  • the second off-axis mirror 349 in the additional light guide system 34 is not used in the transmission mode, it may be configured to be maintained at an inclination angle that achieves the off-axis angle ⁇ . In this case, no operation signal is sent from the control board 61. Although a mechanism for changing the angle is also unnecessary, it is preferable to be able to change the angle for adjustment or the like.
  • the configuration of the additional light guide system 34 used in the reflection mode is largely changed in the present embodiment.
  • the reason for this is to place the second off-axis mirror 349 as close to the imaging element 2 as possible and to reduce the difference in optical path length between the reference light and the object light.
  • the true image is separated from the zero-order image and the conjugate image by causing the reference light to obliquely enter the object light.
  • the oblique angle off-axis angle
  • the spatial frequency on the imaging surface of the imaging device 2 increases (that is, the interference fringes become smaller), and the image resolution of the imaging device 2 causes a clear image reproduction.
  • the off-axis angle ⁇ be as small as, for example, about 2 to 3 degrees. Because of such an off-axis angle ⁇ , the first off-axis mirror 317 and the second off-axis mirror 349 are inclined not at 45 ° with respect to the optical axis as shown in FIG. However, if it is located on the optical path away from the imaging device 2, the incident position is largely shifted on the imaging surface of the imaging device 2 even if the angle is slightly changed.
  • the reference light needs to cover the entire area of the imaging surface of the imaging device, and if a region where the reference light does not enter is formed due to the deviation of the incident position, imaging of interference fringes can not be performed in that region.
  • the first off-axis mirror 317 and the second off-axis mirror 349 function as an imaging element in order to make the reference light incident on the entire imaging surface of the imaging element 2 even at a small angle of about 2 to 3 °. It should be a mirror close to 2.
  • the folding mirror 342 of the additional light guiding system 34 may be used as an off-axis mirror, but since the folding mirror 342 is located at a distance from the imaging element 2, imaging of the imaging element 2 is performed. The deviation of the incident position of the reference light with respect to the surface increases.
  • the fourth mirror 341 on the light path in front of the folding mirror 342 as an off-axis mirror, the fourth mirror 341 reflects twice before reaching the folding mirror 342 and after reaching it. Therefore, the deviation of the reference light is doubled.
  • a folding mirror 342 at the position of the fourth mirror 341 and use it as an off-axis mirror, but this shortens the optical path length and causes reference light and object light (in this case, reflection)
  • the difference in optical path length becomes large with diffracted light. This can cause problems in terms of coherency. That is, when the difference in optical path length becomes large, it becomes difficult for the reference light and the object light to interfere due to the problem of temporal stability of the output of the light source 1.
  • a looped optical path is formed by the polarizing beam splitter 345 from the viewpoint of arranging the mirror that reflects only once at a position close to the imaging element 2 and securing the optical path length. It is preferable to arrange a mirror for this purpose.
  • the additional light guiding system 34 of the third embodiment is based on such an idea.
  • the object light and the reference light are the first.
  • the beam splitter 41 integrates. Therefore, it is "close” that the first mirror is an off-axis mirror as viewed from the first beam splitter 41 when it travels in the direction opposite to the traveling direction of light.
  • FIG. 13 is a schematic view showing the operation of the third embodiment, and a view comparing the progress of each light in the reflection mode and the transmission mode.
  • an operation signal for the reflection mode is sent from the control board 61 to each part to be controlled. That is, as shown in FIG. 13A, the second beam splitter 45 is retracted from the main optical path, and the first beam splitter 41 is brought into the first state. Further, the beam stopper (not shown) in the additional light guiding system 34 retracts from the light path, and the additional light guiding system 34 is opened. Since the first off-axis mirror 317 is used as a normal mirror, the attitude of 45 ° with respect to the optical axis is maintained.
  • the light L 1 emitted from the light source 1 is converted to circularly polarized light by passing through the polarizing filter 11 and the 1 ⁇ 4 wavelength plate 12, and is incident on the first beam splitter 41 through the light guide system 31 for reflection diffraction light. Do.
  • This light L1 is split into the light L2 reflected by the first beam splitter 41 and the light L3 transmitted as shown in FIG. 13 (A).
  • the light L 2 reflected by the first beam splitter 41 is irradiated to the object S via the imaging optical system 5.
  • the irradiated light L2 is reflected by the object S and becomes object light (reflected diffracted light) L4.
  • the object light (reflected diffracted light) L4 is incident on the first beam splitter 41 through the imaging optical system 5, transmitted through the first beam splitter 41, and incident on the imaging surface of the imaging device 2.
  • the light L 3 transmitted through the first beam splitter 41 is incident on the additional light guiding system 34. Since this light L 3 is circularly polarized light, it is converted into linearly polarized light having a specific polarization component by the 1 ⁇ 4 wavelength plate 346, and the linearly polarized light L 3 enters the polarization beam splitter 345.
  • the polarization beam splitter 345 reflects only the light of the polarization of the specific component converted by the quarter-wave plate 346. Therefore, as shown in FIG. 13A, the light beam L3 is reflected by the polarization beam splitter 345 and is incident on the half-wave plate 351, and the linearly polarized light is 90 ° different in polarization direction from the linearly polarized light. It is converted to light.
  • the light L3 which is linearly polarized light which is different by 90 ° passes through the fifth mirror 347, the sixth mirror 348, and the beam expander 352, and then is reflected by the second off-axis mirror 349 to return to the polarizing beam splitter 345. At this time, since the second off-axis mirror 349 is slightly inclined not at 45 ° with respect to the optical axis, the light L3 reflected by the off-axis mirror is not parallel to the optical axis but at a slight angle. Proceed with holding
  • the light L 3 reaching the polarization beam splitter 345 in such an angle state is transmitted through the polarization beam splitter 345 because the direction of the linear polarization is converted by 90 ° by the half-wave plate 351. Then, the light L 3 is converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 346, is reflected by the first beam splitter 41, and then enters the imaging surface of the imaging device 2 as reference light. At this time, since the light beam passes through the second off-axis mirror 349, as shown in FIG. 12, the reference light L3 is incident on the object light (reflected diffracted light) L4 with the off-axis angle ⁇ .
  • the object light (reflected diffracted light) L4 and the reference light L3 interfere with each other to form interference fringes, and the interference fringes are imaged on the imaging surface.
  • hologram data in the reflection mode can be obtained.
  • the light reflected by the second off-axis mirror 349 travels in a state of being at an angle to the optical axis as described above, and passes through the polarization beam splitter 345 and the quarter wavelength plate 346.
  • the angle with respect to the optical axis is very small, there is no problem in light control in the polarization beam splitter 345 or the quarter-wave plate 346.
  • an operation signal for the reflection mode is sent from the control board 61 to each part to be controlled. That is, as shown in FIG. 13B, the first beam splitter 41 is rotated by 90 ° to be in the second state. In addition, the second beam splitter 45 moves on the main optical path, and a beam stopper (not shown) in the additional light guiding system 34 is disposed on the optical path. In addition, an operation signal is sent to the drive unit of the first off-axis mirror 317, and the first off-axis mirror 317 is tilted at a predetermined angle from the attitude of 45 ° with respect to the optical axis. The light emitted from the light source 1 is similarly converted to circularly polarized light and then enters the second beam splitter 45.
  • a part of the light beam is reflected by the second beam splitter 45, and the light L5 for transmission diffraction light travels to the branched light path Ps, and the light transmission system 32 for transmission diffraction light makes the object S It is irradiated.
  • This light L5 passes through the object S to become object light (transmission diffracted light) L6, passes through the imaging optical system 5, enters the first beam splitter 41, passes through the first beam splitter 41, and passes through the imaging element 2 To the imaging surface of the
  • the light L7 transmitted through the second beam splitter 45 without being reflected by the second beam splitter 45 is guided by the light guiding system 31 for reflected and diffracted light, which is also used as the reference light guiding system 33,
  • the light reaches the beam splitter 41, is reflected by the first beam splitter 41, and is incident on the imaging surface of the imaging device 2 as reference light.
  • the reference light L7 is incident on the object light L6 with the off-axis angle ⁇ .
  • the reference light L7 and the object light L6 interfere with each other to form interference fringes, and the interference fringes are imaged on the imaging surface to obtain hologram data. Then, the reproduced image of the object S is formed by similarly calculating the hologram data.
  • the digital holography device of the third embodiment when the hologram data is calculated and the image is reproduced, the true image is formed separately from the zero-order image and the conjugate image, so that the clearer true image is obtained. You can get Therefore, it is more preferable to calculate the distance between a certain point on the object S and a certain point or to observe the state of the object S.
  • the first off-axis mirror 317 and the second off-axis mirror 349 are provided in the vicinity of the imaging device 2, the incident position of the reference light with respect to the imaging surface of the imaging device 2 is largely shifted. Absent.
  • an optical element other than a mirror as the off-axis means.
  • an optical element having a function of bending an optical path such as a prism, can be placed on the optical path of the reference light to achieve off-axis.
  • phase shift element is provided in the reference light guide system 33.
  • the phase shift element is an element capable of changing the optical path length of a piezoelectric element such as a piezoelectric element or an SLM as described above.
  • the phase shift element for reflection mode is disposed in the additional light guiding system 34, and the phase shift element for transmission mode is guided to the reflection diffracted light in the second embodiment.
  • the optical system 31 (however, except for the optical path between the object S and the first beam splitter 41. For example, the position between the second mirror 312 and the first beam splitter 41). .
  • the phase shift element in the light guide system 31 for reflected diffraction light is retracted from the light path in the reflection mode.
  • hologram data can not be substantially obtained.
  • the apparatus of the first and second embodiments (in-line apparatus) and the apparatus of the third embodiment (off-axis apparatus) hologram data can be obtained even if the object S moves. That is, the reproduced image can be obtained as a moving image. This point is also a merit of the device of each embodiment.
  • FIG. 14 is a front schematic view of the digital holography device of the fourth embodiment of the present invention.
  • a light guide system 31 for reflected diffracted light and a light guide system 32 for transmitted diffracted light are provided.
  • These light guide systems 31 and 32 are substantially the same as the second embodiment shown in FIG.
  • the fourth embodiment is largely different from the second embodiment in that the reference light guiding system 33 extracts the reference light from the object light and guides the reference light to the imaging device 2.
  • the reference light guiding system 33 is disposed on the optical path between the first beam splitter 41 and the imaging device 2.
  • the reference light guiding system 33 is provided as an element of one unit 9.
  • the unit 9 is a unit that extracts the reference light from the object light and guides the object light to the imaging device 2 while guiding the object light to the imaging device 2 (hereinafter referred to as a reference light extraction unit).
  • a spatial frequency filtering method is adopted.
  • a portion where the wave front (amplitude or phase) changes according to the shape, surface condition, etc. of the object is a portion where the spatial frequency is high.
  • the part where the wave front is changing according to the shape, surface condition, etc. of the object is a part that can represent the shape, surface condition of the object by reproducing the image as described above. It can be said that it is a part that contains
  • diffracted light emitted from a region where the refractive index is sufficiently uniform can be treated as similar to light not passing through the object because the spatial frequency is low.
  • light that can express object information is light having a high spatial frequency, and if it is removed from the object light, light (that is, reference light) that does not include object information can be extracted.
  • light that is, reference light
  • the reference light extraction unit 9 shown in FIG. 14 is a unit that performs such extraction.
  • FIG. 15 is a schematic front view showing an example of the reference light extraction unit 9 in the embodiment shown in FIG.
  • the reference light extraction unit 9 shown in FIG. 15 (1) comprises a separation element 91 for separating object light to advance along two different optical axes, and an extraction lens for collecting light for extraction of reference light.
  • a spatial frequency filter 93 disposed at a condensing position by the extraction lens 92, and a collimator lens 94 for converting each light into parallel light and integrating them are provided.
  • the separating element 91 for example, a diffraction grating can be used as disclosed in JP-A-10-141912, or a polarization beam splitter can be used as disclosed in JP-A-2006-292939. .
  • the object light is separated into zero-order diffracted light and first-order diffracted light by the separation element 91.
  • the extraction lens 92 condenses the zeroth-order diffracted light and the first-order diffracted light, but the spatial frequency filter 93 includes an aperture 931 provided at a position on the optical axis where the zero-order diffracted light is condensed; And a pinhole 932 provided at a position on the optical axis where the next diffracted light is collected.
  • the aperture 931 allows the object light (0th-order diffracted light) to pass therethrough without selecting the spatial frequency because it is sufficiently large.
  • the pinhole 932 is sufficiently small, only low frequencies are allowed to pass. Therefore, the first-order diffracted light does not include object information. These lights are integrated while being converted back to parallel light by the collimator lens 94 as shown in FIG. 15 (1), and are superimposed on the imaging surface of the imaging device 2.
  • the object light is split into two polarized lights whose polarization directions differ by 90 °.
  • the two polarized lights are referred to as a first polarized light and a second polarized light
  • the first and second two polarized lights are similarly collected by the extraction lens 92 and reach the spatial frequency filter 93.
  • the structure of the spatial frequency filter 93 is the same as the above, and a sufficiently large aperture 931 is formed on the optical axis of the first polarized light, and a sufficiently small pinhole 932 is formed on the optical axis of the second polarized light. Be done.
  • the first polarized light passes through the aperture 931 as it is without filtering by spatial frequency, and enters the imaging element 2 as object light.
  • the second polarized light passes through the pinhole 932 in a state where the high spatial frequency component is removed, and becomes the reference light. This light is returned to parallel light together with the first polarized light (object light) by the collimator lens 94 and integrated into the first polarized light.
  • a polarization beam splitter is used as the separation element 91 as indicated by a dotted line in FIG. 15A
  • a half wave plate 95 is provided on the emission side of the pinhole 932 of the spatial frequency filter 93. This is to match the polarization state of the reference light to the object light and to improve the coherence.
  • the dispersive element 91 As long as it can separate object light along two optical axes, it may be other than the two examples described above.
  • the example shown in FIG. 15 (2) is one of these, and is an example using a normal beam splitter.
  • the object light is split into two by a separation element 91 (beam splitter), and an extraction lens 92, a spatial frequency filter 93, and a collimator lens 94 are provided on one optical axis.
  • the spatial frequency filter 93 Since the spatial frequency filter 93 is largely deviated from the other optical axis, an opening for object light is not necessary, and one light separated by the separation element 91 having only the pinhole 932 is When passing through the spatial frequency filter 93, high spatial frequency components are removed to become reference light, and collimated light is returned to parallel light by the collimator lens 94. Then, the beam is integrated with the other light (object light) by the integration beam splitter 96 and is incident on the imaging device 2.
  • the transmission mode and the reflection mode are switched by switching the two shutters. That is, as shown in FIG. 14, the first shutter 319 is provided on the main optical path P, and the second shutter 327 is provided on the branched optical path Ps. In the transmissive mode, the first shutter 319 is closed and the second shutter 327 is opened. In the reflective mode, the first shutter 319 is opened and the second shutter 327 is closed.
  • the reference light is incident on the imaging device 2 in the off-axis state with respect to the object light, but in the example shown in FIG. 15 (2), it is incident in the in-line state.
  • a driving mechanism is attached to the mirror 97 disposed between the collie meter lens 94 and the integration beam splitter 96 to make an off-axis mirror. good.
  • the fourth embodiment is the same as the above-described embodiment except for the structure for obtaining the reference light.
  • the reflection mode and the transmission mode can be performed separately, which is suitable for examining the state, shape, etc. of an object in detail, and the configuration of the optical system is simplified. In the optical system shown in FIG.
  • a mirror is disposed instead of the integration beam splitter 96.
  • the object light may be folded downward, the integration beam splitter may be disposed instead of the mirror 97, and the imaging element 2 may be disposed at a position where the optical axis is linearly extended from the spatial frequency filter 93.
  • the configuration of the imaging optical system 5 is appropriately changed depending on the type of hologram as described above.
  • the imaging optical system 5 may not be provided.
  • the reference light guiding system 33 includes a lens that makes the reference light a spherical wave and causes the light to be incident on the imaging surface of the imaging device 2.
  • the imaging optical system 5 includes the objective lens 51 and the imaging lens 52. However, this is an example, and there may be one lens. Even when two or more lenses are used, an image may be formed on the imaging surface like an image hologram, but this is not essential, so one lens may not be called the imaging lens 52. , And may be called like a first objective lens and a second objective lens.
  • the direction in which the light for reflected diffracted light enters the object S and the direction in which the light for transmitted diffracted light enters the object S differ by 180 °.
  • this is not an essential requirement in the present invention.
  • light for reflected diffraction light may be obliquely incident on the optical axis, or for transmission diffraction light Light may be incident obliquely to the optical axis. Therefore, if the first side is considered as the first quadrant and the second quadrant in consideration of orthogonal coordinates with the position of the object S as the origin, the "second side" means the third quadrant and the fourth quadrant. It turns out that.
  • the light reflected by the first beam splitter 41 reaches the object S in the reflection mode, and the light reflected by the first beam splitter 41 in the transmission mode reaches the image sensor 2 as the reference light.
  • This configuration is not an essential condition in the present invention, and other configurations may be possible. That is, the light transmitted through the first beam splitter 41 may reach the object in the reflection mode, and the light transmitted through the first beam splitter may reach the imaging device as the reference light in the transmission mode.
  • the reflection mode in the second embodiment shown in FIG. 3, the folding mirror is placed at the position where the object S is placed, and the object is placed at the position where the fourth mirror 341 is placed.
  • the imaging element In the transmission mode, the imaging element is placed at the position of the fourth mirror 341 without changing the position of the object as in the case of FIG. 3, and the first beam splitter is similarly turned 90 °. Even in this way, the implementation of the present invention is possible. However, since the imaging optical path from the object to the imaging element is bent by 90 ° at the first beam splitter 41, it is inferior to the above embodiments in terms of the ease of optical axis adjustment and the accuracy of hologram data obtained. .
  • the “first state” and the “second state” of the first beam splitter 41 need to be understood in a broad sense. is there.
  • a configuration may be considered in which two beam splitters functioning as the first beam splitter are prepared, and are selectively used for the reflection mode and the transmission mode.
  • FIG. 7A a beam splitter in which the reflecting surface extends obliquely from the upper left to the lower right and a beam splitter in which the reflecting surface extends from the lower left to the upper right as shown in FIG. 7B.
  • switching is performed on the optical path by an appropriate switching mechanism. Such a configuration is also within the concept of "first state" and "second state”.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Holo Graphy (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

[Problem] To provide a practical digital holography method and digital holography device having both a reflection mode and a transmission mode, and to enable the acquisition of high-precision holographic data without necessitating that the subject be made to float in mid-air. [Solution] Diffracted light from a subject (S), which is obtained by irradiating the subject (S) with light from a light source (1), and reference light, which does not include information about the subject, are made to interfere with each other on the imaging surface of an imaging element (2) to acquire hologram data. In the reflection mode, the subject (S) is irradiated with light from a first side by means of a reflection-diffraction light guiding system (31), while in the transmission mode, the subject (S) is irradiated with light from a second side, which is the opposite side from the first side, by means of a transmission-diffraction light guiding system (32). The reflection mode and the transmission mode are selected alternatively by a optical element that serves as a selector.

Description

デジタルホログラフィ方法及びデジタルホログラフィ装置Digital holography method and digital holography device
 本発明は、光の干渉を利用することにより、物体の3次元情報をリアルタイムで得ることができるデジタルホログラフィに関する。 The present invention relates to digital holography capable of obtaining three-dimensional information of an object in real time by utilizing light interference.
 従来の2次元画像処理では検出が困難な、物体の欠け、凹み、膨らみ、反りなどの欠陥の検出や機械振動の計測に必要となる3次元情報を記録・検出できる技術が必要とされている。さらに、例えば生体細胞のような動体について、3次元情報をリアルタイムに取得したいというニーズもある。かかる3次元情報を記録・検出できる技術として、ホログラフィがある。従来は、高解像度写真乾板に3次元情報を記録し、それを現像・再生する過程が必要であり、記録から再生まで長時間を要する上に、動体の3次元情報を得ることは困難であった。 There is a need for a technology that can record and detect three-dimensional information required for detection of defects such as chipping, dents, bulges, and warps and measurement of mechanical vibration, which are difficult to detect with conventional two-dimensional image processing. . Furthermore, there is also a need to acquire three-dimensional information in real time for a moving body such as a living cell. Holography is a technique capable of recording and detecting such three-dimensional information. Conventionally, three-dimensional information is recorded on a high-resolution photographic plate, and a process of developing and reproducing it is necessary. It takes a long time from recording to reproduction, and it is difficult to obtain three-dimensional information of a moving body. The
 近年は、コンピュータの高速化、記憶装置の大容量化、CCDなどの撮像素子の高解像・高画素化などエレクトロニクス技術の進化をホログラフィに導入することにより高速に計測ができるデジタルホログラフィが提案されている。この技術は、撮像素子で干渉縞を撮像し、その干渉縞の画像データに対してコンピュータにより光の回折現象に基づく数値計算処理を施すことで、物体の3次元像をコンピュータ上で再生する技術である。
 デジタルホログラフィは、1)現像処理が不要で、撮影現場で再生像が得られる、2)一つの干渉縞の画像データで任意の面での再生像が得られる、3)ホログラムデータ(干渉縞の画像データ)を容易に伝送、複製できる、などの利点を有する。これらの利点を活かし、デジタルホログラフィ技術を用いて、固体、流体、生体細胞、機械振動などの3次元計測を目指す研究が盛んになされている。
In recent years, digital holography has been proposed that can be measured at high speed by introducing to the holography the evolution of electronics technology, such as speeding up of computers, increasing the capacity of storage devices, and increasing the resolution and pixels of imaging devices such as CCDs. ing. In this technology, interference fringes are imaged by an imaging device, and a computer performs numerical calculation processing based on the light diffraction phenomenon on the image data of the interference fringes to reproduce a three-dimensional image of an object on the computer. It is.
Digital holography 1) does not require development processing, and a reproduced image can be obtained at the shooting site, 2) a reproduced image on an arbitrary surface can be obtained with image data of one interference fringe, 3) hologram data (of interference fringes Image data) can be easily transmitted and copied. Taking advantage of these advantages, researches aiming at three-dimensional measurement of solid, fluid, living cell, mechanical vibration and the like using digital holography technology are actively conducted.
 図16は、従来のデジタルホログラフィ装置の概略を示した図である。このデジタルホログラフィ装置は、光源71から放出された光をハーフミラー72で参照光と物体照射用の光とに分割する。ハーフミラー72で分割された物体照射用の光は、反射ミラー73を介して物体74に照射され、物体74から物体光75が出射する。物体光75は、ビームスプリッタ76に入射する。一方、ハーフミラー72で分割された参照光は、反射ミラー77に反射してビームスプリッタ76に入射する。
 そして、ビームスプリッタ76を透過した物体光とビームスプリッタ76で反射した参照光とが同時にCCDカメラ78の撮像面に入射することにより、物体光と参照光とが重ね合わされて生じた干渉縞が撮像され、ホログラムデータが得られる。得られたホログラムデータを図示しないコンピュータでフレネル変換等の計算処理を行うことにより、物体74の再生像が得られる。
FIG. 16 is a schematic view of a conventional digital holography device. In the digital holography device, a half mirror 72 splits the light emitted from the light source 71 into a reference light and a light for object illumination. The light for object irradiation divided by the half mirror 72 is irradiated to the object 74 through the reflection mirror 73, and the object light 75 is emitted from the object 74. The object beam 75 is incident on the beam splitter 76. On the other hand, the reference light split by the half mirror 72 is reflected by the reflection mirror 77 and enters the beam splitter 76.
Then, when the object light transmitted through the beam splitter 76 and the reference light reflected by the beam splitter 76 simultaneously enter the imaging surface of the CCD camera 78, the interference fringes generated by overlapping the object light and the reference light are captured. And hologram data is obtained. A reproduced image of the object 74 is obtained by performing calculation processing such as Fresnel transformation with a computer (not shown) on the obtained hologram data.
 なお、物体光とは、光が照射された物体から出射する光であり、ホログラフィでは回折現象を利用するので、物体から出射する回折光を意味する。図16に示す装置は、透過モードの装置であり、透過回折光が物体光である。透過モードとは、物体に光が照射された際に物体を透過して出てくる回折光(透過回折光)と参照光との干渉縞を撮像するモードである。
 ホログラフィでは、一般的に、物体光と参照光の可干渉性を高くするなどの理由から平面波が用いられる。デジタルホログラフィでも同様であり、光源としてはレーザのような平面波を放出するものが用いられる。
Object light is light emitted from an object irradiated with light, and in holography, a diffraction phenomenon is used, and therefore, it means diffracted light emitted from an object. The device shown in FIG. 16 is a device in transmission mode, and the transmission diffraction light is object light. The transmission mode is a mode for capturing an interference fringe of reference light and diffracted light (transmission diffracted light) that is transmitted through the object when the object is irradiated with light.
In holography, a plane wave is generally used for the purpose of enhancing the coherency of the object light and the reference light. The same applies to digital holography, and as a light source, one emitting a plane wave such as a laser is used.
 従来のデジタルホログラフィ装置の多くは、インライン式と呼ばれる装置であり、撮像素子の解像度限界を考慮し、物体光と同様に参照光も撮像面に対して垂直に入射させることによってホログラムデータを得ている。そのため、ホログラムデータを計算処理して得られる再生像には、0次像や共役像が重なり、鮮明な再生像を得ることが困難となっている。
 そこで、位相シフト干渉法を用いたデジタルホログラフィ装置が提案されている。位相シフト干渉法とは、二光束干渉計において、参照光の光路中にピエゾ素子などの圧電素子またはSLM(Spatial Light Modulator,空間光変調器)などの光路長を変化させることができる素子を配置し、この素子により参照光の位相を例えば3段階以上に変化させながらホログラムデータを得る手法である。かかる位相シフト干渉法を用いたデジタルホログラフィ装置では、0次光や共役像が除去されることで鮮明な像が得られ、高精度の計測が可能である。
 しかしながら、位相シフト干渉法は、参照光の位相を圧電素子等によって順次変えながら干渉縞を撮像するため、動く物体には適用することができなかった。
 特許文献1(特許第4294526号公報)には、参照光を互いに位相値の異なる参照光群に変換して出射する素子、およびその素子を用いた透過モードで画像を形成するマッハツェンダー干渉計で構成されたデジタルホログラフィ装置が示されている。同文献のように、物体光と参照光の干渉状態を空間的に分割して記録することで、単一画像の撮像でも動的形状の測定が可能である。
Many conventional digital holography devices are devices called in-line type, and hologram data is obtained by making the reference beam perpendicularly incident on the imaging plane as well as the object beam, in consideration of the resolution limit of the imaging device. There is. Therefore, the zero-order image and the conjugate image overlap with the reproduced image obtained by calculation processing of the hologram data, making it difficult to obtain a clear reproduced image.
Therefore, digital holography devices using phase shift interferometry have been proposed. Phase shift interferometry is an arrangement of a piezoelectric element such as a piezo element or an element such as a SLM (Spatial Light Modulator) that can change the optical path length in the optical path of a reference beam in a two-beam interferometer. This method is a method of obtaining hologram data while changing the phase of the reference light, for example, in three or more steps by this element. In the digital holography device using such phase shift interferometry, a clear image is obtained by removing the zero-order light and the conjugate image, and high-precision measurement is possible.
However, phase shift interferometry can not be applied to a moving object because it captures an interference fringe while sequentially changing the phase of the reference light by a piezoelectric element or the like.
Patent Document 1 (Japanese Patent No. 4294526) discloses an element that converts reference light into reference light groups having different phase values and emits the reference light, and a Mach-Zehnder interferometer that forms an image in a transmission mode using the element. The configured digital holography device is shown. As in the document, by spatially dividing and recording the interference state of the object light and the reference light, it is possible to measure the dynamic shape even with the imaging of a single image.
 また、特許文献2(特表2002-526815号公報)には、オフアクシス・デジタルホログラフィの原理を応用し、単一干渉縞画像を撮像してそこから物体の振幅像と位相像を求める方法が開示されている。この方法でも、単一画像の撮像でよいため、物体が動いているとしても形状の測定が可能(動的形状の測定が可能)となる。
 同文献には、基本的に反射モードで画像を形成するように設計したマイケルソン干渉計で構成されたデジタルホログラフィ装置が示されている。反射モードとは、物体に光を照射した際に物体に反射して出射する回折光(反射回折光)を物体光として撮像素子の撮像面に入射させ、参照光と干渉させるモードである。
Further, in Patent Document 2 (Japanese Patent Application Publication No. 2002-526815), there is a method of imaging a single interference fringe image and obtaining an amplitude image and a phase image of an object by applying the principle of off-axis digital holography. It is disclosed. In this method as well, since it is sufficient to capture a single image, it is possible to measure the shape even if the object is moving (to measure the dynamic shape).
The document shows a digital holography device consisting essentially of a Michelson interferometer designed to form an image in reflection mode. The reflection mode is a mode in which diffracted light (reflected diffracted light) reflected and emitted from an object when the object is irradiated with light is incident as object light on an imaging surface of an imaging device to interfere with reference light.
 同文献の図2Bに示すように、光源から放出された光は、直径方向に広げられてビームスプリッタに入射する。ビームスプリッタに入射した光は、ビームスプリッタを透過する一方の光と、ビームスプリッタで反射する他方の光とに分割される。一方の光は、傾いたミラーで反射した後、ビームスプリッタに入射し、ビームスプリッタで反射して参照光として撮像される。上記他方の光は、対物レンズを介してサンプルに照射され、サンプルで反射して物体光となる。この物体光は、ビームスプリッタに入射し、ビームスプリッタを透過して撮像される。上記傾いたミラーを用いて、参照光を物体光に対して所定の角度を持たせた状態にして干渉させることによって、オフアクシス・ホログラムを記録することができる。 As shown in FIG. 2B of the document, light emitted from the light source is spread in the diametrical direction and enters the beam splitter. The light incident on the beam splitter is split into one light passing through the beam splitter and the other light reflected by the beam splitter. One of the lights is reflected by the inclined mirror, and then enters the beam splitter, is reflected by the beam splitter, and is imaged as the reference light. The other light is irradiated to the sample through the objective lens, and is reflected by the sample to become object light. The object light is incident on the beam splitter and transmitted through the beam splitter for imaging. An off-axis hologram can be recorded by causing the reference light to interfere with the object light at a predetermined angle using the inclined mirror.
 また、同文献には、基本的に透過モードで画像を形成するよう設計したマッハツェンダー干渉計で構成されたデジタルホログラフィ装置が示されている。同文献の図2Cに示すように、光源から放出された光は、直径方向に広げられてビームスプリッタに入射する。この光は、ビームスプリッタを透過した一方の光と、ビームスプリッタで反射した他方の光とに分割される。一方の光は、サンプルに入射してサンプルを透過し、物体光を形成する。物体光は対物レンズで集光され、ビームスプリッタに入射し、ビームスプリッタで反射して撮像される。一方、他方の光は、ビーム径が広げられ、傾いたミラーで反射した後、ビームスプリッタを透過して参照光として撮像される。 Also, the same document shows a digital holography apparatus configured by a Mach-Zehnder interferometer basically designed to form an image in transmission mode. As shown in FIG. 2C of the document, the light emitted from the light source is spread in the diametrical direction and enters the beam splitter. This light is split into one light transmitted by the beam splitter and the other light reflected by the beam splitter. One light is incident on the sample and transmitted through the sample to form object light. Object light is collected by an objective lens, enters a beam splitter, and is reflected and imaged by a beam splitter. On the other hand, the other light is expanded in beam diameter and reflected by the inclined mirror, and then transmitted through the beam splitter to be imaged as reference light.
特許第4294526号公報Patent No. 4294526 特表2002-526815号公報Japanese Patent Publication No. 2002-526815 WO2008/123408号公報WO 2008/123408
 前述したように、デジタルホログラフィは、各種物体の観察や3次元計測に応用が期待されているが、観察や計測の対象となる物体は様々である。したがって、物体には、反射モードのデジタルホログラフィが適したものと、透過モードのデジタルホログラフィが適したものとが存在する。また、一つの物体に対して、反射モードと透過モードとの双方を行った方が良い場合もある。
 しかしながら、特許文献2に見られるように、従来のデジタルホログラフィ装置としては、反射モードでのみ動作可能な装置と、透過モードでのみ動作可能な装置のいずれかしか存在しておらず、双方のモードで動作可能なデジタルホログラフィ装置は存在しなかった。したがって、一つの物体について反射モードと透過モードとの両方を行おうとした場合、反射モードの装置と透過モードの装置との双方を準備する必要があった。
As described above, digital holography is expected to be applied to observation and three-dimensional measurement of various objects, but there are various objects to be observed and measured. Thus, there are objects suitable for reflection mode digital holography and transmission mode digital holography. In addition, it may be better to perform both the reflection mode and the transmission mode for one object.
However, as seen in Patent Document 2, as a conventional digital holography device, there is only one device that can operate only in the reflection mode and another device that can operate only in the transmission mode, and both modes can be used. There was no digital holography device that could operate at. Therefore, when trying to perform both the reflection mode and the transmission mode for one object, it was necessary to prepare both the reflection mode device and the transmission mode device.
 反射モードと透過モードとの両方が行える装置を唯一開示したものとして、特許文献3(WO2008/123408号公報)が知られている。図17は、特許文献3に開示されたデジタルホログラフィ装置を示す図である。図17に示すように、特許文献3には、物体119に対して光を照射する第1光学系110と、物体119から出射する回折光と参照光とを撮像装置に導く第2光学系と、回折光と参照光との干渉像を撮像する撮像装置165と、撮像装置165によって取得された照射方向ごとの干渉像から物体の3次元画像を生成する処理装置201とを含む、デジタルホログラフィ装置が開示されている。撮像装置165には、透過回折光用撮像装置と反射回折光用撮像装置とが個別に設けられており、透過回折光用撮像装置及び反射回折光用撮像装置によってホログラムデータを個別に取得する。 Patent Document 3 (WO2008 / 123408) is known as the only device that can perform both the reflection mode and the transmission mode. FIG. 17 is a view showing a digital holography device disclosed in Patent Document 3. As shown in FIG. As shown in FIG. 17, in Patent Document 3, a first optical system 110 for emitting light to an object 119, and a second optical system for guiding diffracted light emitted from the object 119 and reference light to an imaging device A digital holography device including an imaging device 165 for capturing an interference image of diffracted light and reference light, and a processing device 201 for generating a three-dimensional image of an object from the interference image for each irradiation direction acquired by the imaging device 165 Is disclosed. In the imaging device 165, an imaging device for transmission diffraction light and an imaging device for reflection diffraction light are separately provided, and hologram data is separately acquired by the imaging device for transmission diffraction light and the imaging device for reflection diffraction light.
 しかしながら、特許文献3に示すデジタルホログラフィ装置には、以下の問題があった。
 図18は、特許文献3のデジタルホログラフィ装置の問題点について示した概略図である。図18(1)に示すように、特許文献3のデジタルホログラフィ装置では、回折光を得るために物体119に光(平面波)を照射する側は、物体119の一方の側に限られている。物体119の一方の側からのみ光を照射することが可能な装置であり、一方の側から光を照射して一方の側に反射した回折光(反射回折光)を第1対物レンズの一方117を経て反射回折光用撮像装置に到達させ、他方の側に透過した回折光(透過回折光)を第1対物レンズの他方121を経て透過回折光用撮像装置に到達させる。このように、物体119の一方の側からのみ光を照射するようにしているのは、反射回折光による干渉縞と透過回折光による干渉縞とを同時に撮像するためであると考えられる。
However, the digital holography device disclosed in Patent Document 3 has the following problems.
FIG. 18 is a schematic view showing the problem of the digital holography device of Patent Document 3. As shown in FIG. As shown in FIG. 18 (1), in the digital holography device of Patent Document 3, the side of the object 119 to which light (plane wave) is irradiated to obtain diffracted light is limited to one side of the object 119. It is an apparatus capable of emitting light only from one side of the object 119, and the diffracted light (reflected diffracted light) emitted from one side and reflected to one side is one side of the first objective lens 117. And the diffracted light (transmission diffracted light) transmitted to the other side is allowed to reach the transmission diffracted light imaging device through the other 121 of the first objective lens. As described above, the reason for irradiating light only from one side of the object 119 is considered to be to simultaneously capture the interference fringes by the reflected diffraction light and the interference fringes by the transmission diffraction light.
 図17から理解する限り、物体は宙に浮いたような状態であると観念せざるを得ない。しかし、現実には、何か容器や台のようなものの上に物体を置いた状態で光を照射し、ホログラムデータを取得する。例えば、図18(2)に示すように、透光性を考慮し、透明なガラス製のシャーレ81に物体Sを置いて光照射する。
 この場合、透過回折光については問題ないが、反射回折光についてはシャーレ81を通して反射回折光を捉えることになる。このため、シャーレ81の厚みや屈折率の影響を受け、球面収差が発生してしまう。図18(2)中に、透過回折光がシャーレ81の厚みや屈折率により本来の状態と異なる状態で伝搬する様子を示す。このような球面収差のため、特許文献3の装置では、精度の高いホログラムデータを得ることができない。物体が宙に浮かせた状態で保持できるものであれば、問題が生じないようにすることができるかもしれないが、細菌のような微細なものを観察する場合には不可能であるし、柔らかな物の場合、両側から挟み込んで保持するようにすると変形や破損が生じるので、やはり不可能な場合が多い。
As can be understood from FIG. 17, the object can not but be regarded as floating in the air. However, in reality, light is emitted while an object is placed on something like a container or pedestal, and hologram data is acquired. For example, as shown in FIG. 18 (2), the object S is placed on a transparent glass petri dish 81 and irradiated with light in consideration of light transmission.
In this case, although there is no problem with the transmitted diffracted light, the reflected diffracted light is captured through the petri dish 81 for the reflected diffracted light. Therefore, spherical aberration occurs under the influence of the thickness and refractive index of the petri dish 81. FIG. 18B shows how the transmission diffracted light propagates in a state different from the original state depending on the thickness and refractive index of the petri dish 81. Because of such spherical aberration, the apparatus of Patent Document 3 can not obtain hologram data with high accuracy. If the object can be kept floating in the air, it may be possible to avoid problems, but it is impossible when observing microscopic things such as bacteria, and it is soft. In the case of an object, since holding and holding it from both sides causes deformation and breakage, it is also often impossible.
 また、特許文献3の構成では、上記の通り、反射モードでの視点と透過モードでの視点とは180°異なる。したがって、同じ側の視点から物体を反射モードで観察したり透過モードで観察したりすることはできない。何らかの理由で同じ側の視点から物体を反射モードと透過モードの双方で観察する必要がある場合、特許文献3の装置は使用できない。
 このように、特許文献3の装置は、精度の高いホログラムデータを得るには実用的な装置であるとは言い難い。
In the configuration of Patent Document 3, as described above, the viewpoint in the reflection mode and the viewpoint in the transmission mode differ by 180 °. Therefore, it is not possible to observe the object in reflection mode or in transmission mode from the same side of the viewpoint. The device of Patent Document 3 can not be used when it is necessary to observe an object in both the reflection mode and the transmission mode from the viewpoint on the same side for some reason.
Thus, the device of Patent Document 3 can not be said to be a practical device for obtaining highly accurate hologram data.
 また、精度の高いホログラムデータを得るには、物体に光照射されるレーザ光の光路上にスペイシャルフィルタを置くことが望ましい。図19は、スペイシャルフィルタの概略図である。
 スペイシャルフィルタは、図19に示すように、レンズ82とピンホール板83とで構成され、レンズ82の集光位置にピンホール板83のピンホールを配置することにより、ゴミや光学素子の傷などにより発生するノイズを除去するものである。例えば光を反射するミラーの表面にゴミが付着していたり傷がついていたりすると、傷やゴミによって波面が乱れたり、傷やゴミの影響による干渉縞が発生したりすることがあり、本来の物体光による干渉縞のみの精度の高いホログラムデータを得ることができなくなる。この問題を防止するため、スペイシャルフィルタを用いることが望ましい。
Also, in order to obtain highly accurate hologram data, it is desirable to place a spatial filter on the optical path of the laser beam irradiated to the object. FIG. 19 is a schematic view of a spatial filter.
The spatial filter is composed of a lens 82 and a pinhole plate 83, as shown in FIG. And the like to remove the noise generated. For example, if dust adheres to or is scratched on the surface of a mirror that reflects light, the wavefront may be disturbed by scratches or dust, or interference fringes may occur due to the effects of scratches or dust It becomes impossible to obtain high-precision hologram data of only interference fringes due to light. In order to prevent this problem, it is desirable to use a spatial filter.
 スペイシャルフィルタは、物体に照射される光の光路において、なるべく物体に近い場所に配置することが望ましい。仮に、物体から離れた光路上にスペイシャルフィルタが配置されており、スペイシャルフィルタと物体との間にさらにレンズやミラーなどの光学素子が配置されていると、これら光学素子の表面のゴミやキズによる影響は除去できないことになる。
 ここで、図17(特許文献3)において物体119に近い光路上、例えばミラー115と物体119との間にスペイシャルフィルタを配置することが考えられる。しかしながら、この場所は、物体119から反射してくる反射回折光の光路上でもある。ここにスペイシャルフィルタを配置すると、反射回折光はスペイシャルフィルタのピンホールを通過することができないため、反射回折光を撮像装置165によって撮像することができないという問題が起きる。
It is desirable to place the spatial filter as close to the object as possible in the light path of the light emitted to the object. If the spatial filter is disposed on the optical path away from the object, and an optical element such as a lens or a mirror is further disposed between the spatial filter and the object, dust on the surface of these optical elements or The effects of scratches can not be removed.
Here, in FIG. 17 (patent document 3), it is conceivable to dispose a spatial filter on an optical path close to the object 119, for example, between the mirror 115 and the object 119. However, this location is also the optical path of the reflected diffraction light reflected from the object 119. If the spatial filter is disposed here, the reflected diffraction light can not pass through the pinhole of the spatial filter, so that a problem occurs in that the imaging reflection device 165 can not capture the reflected diffraction light.
 図17において上記問題を回避するには、照射光の光路と反射回折光の光路とが分離された位置までスペイシャルフィルタを離さなければならない。物体119に最も近い位置を選んだとしても、ミラー105とビームスプリッタ107の間の位置ということになる。この位置にスペイシャルフィルタを配置したとしても、ここから物体119までは、ビームスプリッタ107、第2対物レンズ109、偏光ビームスプリッタ111、ミラー115等の光学素子が存在している。したがって、スペイシャルフィルタを配置する意味がない。つまり、スペイシャルフィルタを使用して精度の高いホログラムデータを得ることは、特許文献3の装置では実質的に不可能である。 In order to avoid the above problem in FIG. 17, the spatial filter must be separated to a position where the light path of the irradiation light and the light path of the reflected diffraction light are separated. Even if the position closest to the object 119 is selected, it means the position between the mirror 105 and the beam splitter 107. Even when the spatial filter is disposed at this position, optical elements such as the beam splitter 107, the second objective lens 109, the polarization beam splitter 111, and the mirror 115 exist from here to the object 119. Therefore, there is no point in placing a spatial filter. That is, using the spatial filter to obtain high-precision hologram data is substantially impossible with the device of Patent Document 3.
 本発明は、このような課題を解決するためになされたものであり、第一に、反射モードと透過モードとの双方を行う実用的なデジタルホログラフィ方法を提供することを目的とするものである。
 また、本発明は、第二に、反射モードと透過モードとの双方を行うことが可能な実用的なデジタルホログラフィ装置を提供することを目的としている。
 また、本発明は、第三に、物体を宙に浮いた状態にしなくとも精度の高いホログラムデータが取得できるようにすることを目的としている。
 また、本発明は、第四に、スペイシャルフィルタを使用することでさらに精度の高いホログラムデータを取得できるようにすることを目的としている。
The present invention has been made to solve such problems, and it is an object of the present invention to first provide a practical digital holography method that performs both reflection mode and transmission mode. .
A second object of the present invention is to provide a practical digital holography device capable of performing both the reflection mode and the transmission mode.
The third object of the present invention is to make it possible to acquire highly accurate hologram data without leaving the object in the air.
The fourth object of the present invention is to make it possible to acquire hologram data with higher accuracy by using a spatial filter.
 上記課題を解決するため、本願の請求項1記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
 光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
 光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
 前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであるという構成を有する。
 また、上記課題を解決するため、請求項2記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
 光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
 光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
 前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであるという構成を有する。
 また、上記課題を解決するため、請求項3記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
 光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
 光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
 反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
 光源からの光を物体を経ずに撮像素子の撮像面に導く参照光導光系とを備えており、
 撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
 前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
 前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
 前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されているという構成を有する。
 また、上記課題を解決するため、請求項4記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
 光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
 光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
 反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
 反射回折光又は透過回折光から物体情報を含まない状態で参照光を抽出して撮像素子の撮像面に導く参照光導光系とを備えており、
 撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
 前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
 前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
 前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されているという構成を有する。
 また、上記課題を解決するため、請求項5記載の発明は、前記請求項3又は4の構成において、前記撮像光路上には、レンズを含む撮像光学系が設けられているという構成を有する。
 また、上記課題を解決するため、請求項6記載の発明は、前記請求項3、4又は5の構成において、前記撮像光学系は、前記反射モードと前記透過モードとで少なくとも一部の光学素子を共用するものであるという構成を有する。
 また、上記課題を解決するため、請求項7記載の発明は、前記請求項3、4、5又は6の構成において、前記撮像光学系は、テレセントリックな光学系であるという構成を有する。
 また、上記課題を解決するため、請求項8記載の発明は、前記請求項3乃至7いずれかの構成において、前記撮像光路は、前記物体から前記撮像面に一直線に延びるものであるという構成を有する。
 また、上記課題を解決するため、請求項9記載の発明は、請求項3乃至8いずれかの構成において、前記反射回折光用導光系は、前記撮像光路を通って光を前記物体に導くものであって、前記撮像光路に達するまでの光路上に第1のスペイシャルフィルタを備えているとともに第1のスペイシャルフィルタから前記撮像光路に達するまでの光路上に0個又は1個のみのミラーを備えており、
 前記透過回折光用導光系は、第2のスペイシャルフィルタを備えているとともに第2のスペイシャルフィルタから前記物体に達するまでの光路上に0個又は1個のみのミラーを備えているという構成を有する。
 また、上記課題を解決するため、請求項10記載の発明は、前記請求項3乃至9いずれかの構成において、前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであるという構成を有する。
 また、上記課題を解決するため、請求項11記載の発明は、前記請求項3乃至10いずれかの構成において、前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであるという構成を有する。
 また、上記課題を解決するため、請求項12記載の発明は、前記請求項3,5,6,7,8又は9の構成において、前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであり、
 前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであり、
 前記参照光導光系は、反射モードの際に前記第1のビームスプリッタで分割された他方の光を前記物体を経ずに前記撮像素子の撮像面に導くものであり、
 前記第1の選択用光学素子は、第2のビームスプリッタであって、第2のビームスプリッタの配置位置を変更する駆動部が設けられており、駆動部は、反射モードの際には第2のビームスプリッタを主光路から外れた位置として光が前記透過回折光用導光系の光路に進まないようにするとともに、透過モードの際には第2のビームスプリッタを主光路上に配置して光の一部が前記透過回折光用導光系の光路に沿って進むようにするものであり、
 前記第1のビームスプリッタは第2の選択用光学素子として配置されており、前記第1のビームスプリッタには前記第1のビームスプリッタの状態を変更する切替部が設けられており、
 前記切替部は、反射モードの際には前記第1のビームスプリッタを前記第1の状態とするものであり、透過モードの際には、前記第1のビームスプリッタを第2の状態とするものであり、該第2の状態は、前記反射回折光用導光系が前記参照光導光系として兼用されるよう、前記反射回折光用導光系で導かれて前記第1のビームスプリッタに達した光が前記物体を経ずに前記撮像素子の撮像面に入射する状態であるという構成を有する。
 また、上記課題を解決するため、請求項13記載の発明は、前記請求項12の構成において、前記参照光導光系は、反射モードの際、前記第1のビームスプリッタを透過した前記他方の光が前記第1のビームスプリッタを経て前記撮像素子の撮像面に入射するよう該他方の光を前記第1のビームスプリッタに戻すものであり、
 該他方の光を前記第1のビームスプリッタに戻す光路上に配置されることが可能なビームストッパと、ビームストッパを駆動するストッパ駆動部とが設けられており、ストッパ駆動部は、反射モードの際にはビームストッパを光路上に配置せず、透過モードの際にはビームストッパを光路上に配置するものであるという構成を有する。
 また、上記課題を解決するため、請求項14記載の発明は、前記請求項3乃至12の構成において、前記参照光導光系は、前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子を備えているという構成を有する。
 また、上記課題を解決するため、請求項15記載の発明は、前記請求項13の構成において、前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子が設けられており、
 オフアクシス用光学素子は、前記反射回折光用導光系が前記第1のビームスプリッタの手前の光路上に備える第1オフアクシス用ミラーと、前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す際の光路上に備えた第2オフアクシス用ミラーであり、
 第1オフアクシス用ミラーには駆動部が設けられており、この駆動部は、反射モードの際には該第1オフアクシス用ミラーを第1の姿勢とし、透過モードの際には該第1オフアクシス用ミラーを第2の姿勢とするものであり、
第1の姿勢は、該第1オフアクシス用ミラーによっては前記所定の角度が付与されない姿勢であり、第2の姿勢は、該第1オフアクシス用ミラーによって前記所定の角度が付与される姿勢であるという構成を有する。
 また、上記課題を解決するため、請求項16記載の発明は、前記請求項15の構成において、前記第1のビームスプリッタから前記光源に向けて光の進行方向とは逆向きに光路をたどった際、前記第1オフアクシス用ミラーは最初のミラーであり、
 前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す光路上において前記第1のビームスプリッタから光の進行方向とは逆向きにたどった際、前記第2オフアクシス用ミラーは最初のミラーであるという構成を有する。
In order to solve the above problems, the invention according to claim 1 of the present application is to transmit diffracted light from an object obtained by irradiating the object with light emitted from a light source and light emitted from a light source through the object. A digital holography method for acquiring hologram data by causing interference with a reference light obtained by guiding the light without using the light from the reference light and obtaining the hologram data.
When the light from the light source is irradiated to the object from the first side, the refracted diffracted light reflected from the object and emitted from the object to the first side interferes with the reference light at the imaging surface of the imaging element to acquire hologram data Performing a reflection mode to
When the object is irradiated with light from the light source from the second side opposite to the first side, the transmission diffracted light transmitted and emitted to the first side and the reference light are taken on the imaging surface of the imaging device Performing a transmission mode of causing interference to acquire hologram data;
The step of performing the reflection mode and the step of performing the transmission mode may be alternatively selected and performed in different time zones.
Further, in order to solve the above problems, the invention according to claim 2 does not include object information from diffracted light from an object obtained by irradiating the object with light emitted from a light source and diffracted light from an object A digital holography method of acquiring hologram data by causing interference with a reference light extracted in a state on an imaging surface of an imaging device,
When the light from the light source is irradiated to the object from the first side, the refracted diffracted light reflected from the object and emitted from the object to the first side interferes with the reference light at the imaging surface of the imaging element to acquire hologram data Performing a reflection mode to
When the object is irradiated with light from the light source from the second side opposite to the first side, the transmission diffracted light transmitted and emitted to the first side and the reference light are taken on the imaging surface of the imaging device Performing a transmission mode of causing interference to acquire hologram data;
The step of performing the reflection mode and the step of performing the transmission mode may be alternatively selected and performed in different time zones.
Further, in order to solve the above-mentioned problems, the invention according to claim 3 is to transmit diffracted light from an object obtained by irradiating the object with light emitted from the light source and light emitted from the light source through the object. A digital holography apparatus for acquiring hologram data by causing interference with a reference light obtained by guiding a light beam at the imaging surface of an imaging device,
A light guide system for reflected diffracted light, which guides light from a light source to an object to obtain reflected diffracted light which is diffracted light emitted by reflecting light to the object;
A light guiding system for transmitting diffracted light that guides light from a light source to the object to obtain transmitted diffracted light that is diffracted light that is emitted by transmitting light through the object;
An image pickup element whose position where the reflected diffracted light can be incident and whose imaging surface is located at the position where the transmitted diffracted light can be incident;
And a reference light guide system for guiding the light from the light source to the imaging surface of the imaging device without passing through the object,
A selection optical element is provided to select alternatively whether the reflection diffracted light is made incident on the imaging surface of the imaging device to make the reflection mode or the transmission diffraction light made to make the transmission mode,
The light guide system for reflected diffraction light irradiates light from the light source to the object from a first side,
The light guide system for transmission diffraction light irradiates the light from the light source to the object from the second side opposite to the first side,
The imaging optical path, which is an optical path from the object to the imaging surface of the imaging device, is configured to be set on the first side of the object.
Further, in order to solve the above problems, the invention according to claim 4 does not include object information from diffracted light from an object obtained by irradiating the object with light emitted from a light source and diffracted light from an object A digital holography apparatus for acquiring hologram data by causing interference with a reference light extracted in a state on an imaging surface of an imaging device,
A light guide system for reflected diffracted light, which guides light from a light source to an object to obtain reflected diffracted light which is diffracted light emitted by reflecting light to the object;
A light guiding system for transmitting diffracted light that guides light from a light source to the object to obtain transmitted diffracted light that is diffracted light that is emitted by transmitting light through the object;
An image pickup element whose position where the reflected diffracted light can be incident and whose imaging surface is located at the position where the transmitted diffracted light can be incident;
And a reference light guiding system for extracting the reference light from the reflection diffraction light or the transmission diffraction light without including the object information and guiding the reference light to the imaging surface of the imaging device,
A selection optical element is provided to select alternatively whether the reflection diffracted light is made incident on the imaging surface of the imaging device to make the reflection mode or the transmission diffraction light made to make the transmission mode,
The light guide system for reflected diffraction light irradiates light from the light source to the object from a first side,
The light guide system for transmission diffraction light irradiates the light from the light source to the object from the second side opposite to the first side,
The imaging optical path, which is an optical path from the object to the imaging surface of the imaging device, is configured to be set on the first side of the object.
Furthermore, in order to solve the above-mentioned problems, the invention according to claim 5 has a configuration in which an imaging optical system including a lens is provided on the imaging light path in the configuration according to claim 3 or 4.
In order to solve the above problems, the invention according to claim 6 is the configuration according to claim 3, 4 or 5, wherein the imaging optical system is at least a part of optical elements in the reflection mode and the transmission mode. Are shared.
Further, in order to solve the above-mentioned problems, the invention according to claim 7 has a construction in which the imaging optical system is a telecentric optical system in the construction according to claim 3, 4, 5 or 6.
In order to solve the above problems, the invention according to claim 8 is the constitution according to any one of claims 3 to 7, wherein the imaging light path extends in a straight line from the object to the imaging surface. Have.
Further, in order to solve the above-mentioned problems, the invention according to claim 9 relates to the configuration according to any one of claims 3 to 8, wherein the light guiding system for reflected diffraction light guides light to the object through the imaging light path. A first spatial filter provided on the optical path to the imaging optical path and only zero or one optical path on the optical path from the first spatial filter to the imaging optical path Has a mirror,
The light guiding system for transmitted diffracted light comprises a second spatial filter and also has zero or only one mirror on a light path from the second spatial filter to the object. It has composition.
Further, in order to solve the above-mentioned problems, the invention according to claim 10 is characterized in that, in the configuration according to any one of claims 3 to 9, as the selection optical element, a first optical path disposed on a main optical path extending from the light source. An optical element for selection is provided, the main optical path is branched into an optical path of the light guide system for reflected diffraction light and an optical path of the light guide system for transmission diffraction light, and the first optical element for selection is It is alternatively selected whether the light from the light source is made to travel along the light path of the light guide system for reflection diffraction light or along the light path of the light guide system for transmission diffraction light. Have.
In order to solve the above-mentioned subject, in the invention according to claim 11, in the configuration according to any one of claims 3 to 10, a first beam splitter is provided on the imaging light path, and the reflected diffracted light The light guiding system for guiding light from the light source to the first beam splitter, and the first beam splitter divides the light guided by the light guiding system for reflected diffraction light in the reflection mode. It has a configuration that it takes a first state in which one of them is directed to the object.
Further, in order to solve the above-mentioned problems, the invention according to claim 12 is characterized in that, in the configuration according to claim 3, 5, 6, 7, 8, or 9, on the main optical path extending from the light source as the selection optical element. A first selection optical element is disposed, and the main optical path is branched into an optical path of the light guiding system for the reflected diffracted light and an optical path of the light guiding system for the transmitted diffracted light, The selection optical element alternatively selects whether the light from the light source is allowed to travel along the light path of the light guide system for reflected diffraction light or along the light path of the light guide system for transmission diffracted light To be
A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffraction light is for guiding light from a light source to the first beam splitter, and the first beam splitter is It takes a first state in which light guided by the light guide system for reflected diffraction light is divided in the reflection mode and one of the lights is directed to the object,
The reference light guiding system is for guiding the other light split by the first beam splitter to the imaging surface of the imaging device without passing through the object in the reflection mode.
The first selection optical element is a second beam splitter, and a drive unit for changing the arrangement position of the second beam splitter is provided, and the drive unit performs the second operation in the reflection mode. The second beam splitter is disposed on the main optical path in the transmission mode while the light is prevented from advancing to the optical path of the light guiding system for transmission diffraction light by setting the beam splitter at a position deviated from the main optical path. A part of the light is made to travel along the light path of the light guide system for transmission diffraction light,
The first beam splitter is disposed as a second selection optical element, and the first beam splitter is provided with a switching unit that changes the state of the first beam splitter.
The switching unit sets the first beam splitter to the first state in the reflection mode, and sets the first beam splitter to the second state in the transmission mode. And the second state is guided by the light guiding system for reflected light and reaches the first beam splitter so that the light guiding system for reflected light is also used as the light guiding system for reference light. Light is incident on the imaging surface of the imaging device without passing through the object.
In order to solve the above problems, the invention according to claim 13 is the structure according to claim 12, wherein the reference light guiding system transmits the first beam splitter in the reflection mode. Is for returning the other light to the first beam splitter so as to be incident on the imaging surface of the imaging element through the first beam splitter,
A beam stopper capable of being disposed on the optical path for returning the other light to the first beam splitter, and a stopper driving unit for driving the beam stopper are provided, and the stopper driving unit is in the reflection mode. In this case, the beam stopper is not disposed on the optical path, and in the transmission mode, the beam stopper is disposed on the optical path.
Further, in order to solve the above problems, the invention according to claim 14 is the configuration according to claims 3 to 12, wherein the reference light guiding system is the reflected diffracted light or the reflected diffracted light when entering the imaging surface of the imaging device. An off-axis optical element for causing reference light to be incident on the imaging surface of the imaging device in a state in which a predetermined angle is given to the direction of the transmission diffracted light is provided.
In order to solve the above problems, the invention according to claim 15 is the structure according to claim 13 with respect to the direction of the reflected diffraction light or the transmission diffraction light when entering the imaging surface of the imaging device. An off-axis optical element is provided for causing reference light to be incident on the imaging surface of the imaging device in a state where a predetermined angle is given,
The off-axis optical element includes a first off-axis mirror provided with the light guide system for reflected diffraction light on the light path in front of the first beam splitter, and the reference light guide system uses the other light as the first light A second off-axis mirror provided on the light path when returning to the 1 beam splitter,
The first off-axis mirror is provided with a drive unit, and in the reflection mode, the drive unit sets the first off-axis mirror in the first posture, and in the transmission mode, the first off-axis mirror. The off-axis mirror is in the second position,
The first posture is a posture in which the predetermined angle is not given by the first off-axis mirror, and the second posture is a posture in which the predetermined angle is given by the first off-axis mirror There is a configuration that there is.
Further, in order to solve the above problems, the invention according to claim 16 follows the optical path from the first beam splitter toward the light source in the configuration according to claim 15 in the direction opposite to the traveling direction of light. Said first off axis mirror is the first mirror,
When the reference light guiding system traces the other light back to the first beam splitter from the first beam splitter in the direction opposite to the light traveling direction, the second off-axis mirror It has a configuration of being the first mirror.
 以下に説明する通り、本願の請求項1又は2記載の発明によれば、一つの物体について反射回折光と透過回折光とでそれぞれホログラムデータが得られるので、物体の状態や形状等を詳しく調べるのに適したものとなる。この際、反射モードと透過モードとを時間的に分けて行うので、光学系の構成が簡略化される。また、請求項1記載の発明によれば、参照光を物体を経ずに撮像素子に導くので、物体の条件によらず常に安定した参照光が得られる。このため、精度の高いホログラムデータが取得できる。
 また、請求項3又は4記載の発明によれば、一つの物体について反射回折光と透過回折光とでそれぞれホログラムデータを得ることができるので、物体の状態や形状等を詳しく調べるのに適したものとなる。この際、反射モードと透過モードとを時間的に分けて行うので、光学系の構成が簡略化される。また、反射モードと透過モードとを一つの装置で行うことができるので、コスト上のメリットに加え、作業性の点でも好適である。さらに、透明な容器に物体を置いた状態でも精度の高いホログラムデータを得ることができ、同じ側の視点で反射モードでの観察と透過モードでの観察が行える。また、請求項3記載の発明によれば、参照光を物体を経ずに撮像素子に導くので、物体の条件によらず常に安定した参照光が得られる。このため、精度の高いホログラムデータが取得できる。
 また、請求項6記載の発明によれば、上記効果に加え、撮像光学系が少なくとも一部の光学素子を共用しているので、光学系の構成が簡略化され、コストが安くなる。
 また、請求項7記載の発明によれば、上記効果に加え、撮像光学系がテレセントリックな光学系であるので、反射モードにおいても透過モードにおいても物体に対して平面波を照射することができる。このため、物体光が歪められず、補正計算が不要となる。
 また、請求項8記載の発明によれば、上記効果に加え、前記撮像光路は、前記物体から前記撮像面に一直線に延びるものであるので、光学系の構成もシンプルになり、波面の乱れが少なくなる。このため、より精度の高いホログラムデータの取得に貢献でき、コストも安価となる。
 また、請求項9記載の発明によれば、上記効果に加え、スペイシャルフィルタを使用しているので、より精度の高いホログラムデータが得られる。そして、スペイシャルフィルタは物体に対してより近い光路上に位置しているので、精度向上の効果がより高くなっている。
 また、請求項12記載の発明によれば、上記効果に加え、反射回折光用導光系が参照光導光系に兼用されているので、光の可干渉性が向上し、この点でより精度の高いホログラムデータが取得できる。
 また、請求項13記載の発明によれば、上記効果に加え、参照光導光系は、反射モードの際、第1のビームスプリッタに光を戻して第1のビームスプリッタを経て光を撮像素子に導くので、この点で光の可干渉性がさらに向上し、より精度の高いホログラムデータが取得できる。
 また、請求項14又は15記載の発明によれば、上記効果に加え、オフアクシス用光学素子が設けられているので、オフアクシス式の動作が可能となる。このため、真像を0次像やと共役像から分離した状態で像再生が行える。
 また、請求項16記載の発明によれば、オフアクシス用ミラーが撮像素子に近いところに設けられているので、撮像素子の撮像面に対する参照光の入射位置が大きくずれてしまうことがない。
As described below, according to the invention of claim 1 or 2 of the present application, hologram data can be obtained for each object from reflected and transmitted diffracted light, so the state, shape, etc. of the object are examined in detail. Would be suitable for At this time, since the reflection mode and the transmission mode are separated in time, the configuration of the optical system is simplified. Further, according to the first aspect of the present invention, since the reference light is guided to the imaging device without passing through the object, the reference light which is always stable can be obtained regardless of the condition of the object. Therefore, highly accurate hologram data can be acquired.
Further, according to the invention of claim 3 or 4, since hologram data can be obtained for each object by reflected and transmitted diffracted light respectively, it is suitable for examining in detail the state, shape, etc. of the object. It becomes a thing. At this time, since the reflection mode and the transmission mode are separated in time, the configuration of the optical system is simplified. Further, since the reflection mode and the transmission mode can be performed by one device, it is preferable in terms of workability as well as cost merits. Furthermore, even when an object is placed in a transparent container, highly accurate hologram data can be obtained, and observation in the reflection mode and observation in the transmission mode can be performed from the same viewpoint. Further, according to the third aspect of the invention, the reference light is guided to the imaging device without passing through the object, so that the stable reference light can be obtained regardless of the condition of the object. Therefore, highly accurate hologram data can be acquired.
Further, according to the sixth aspect of the invention, in addition to the above effects, the imaging optical system shares at least a part of the optical elements, so the configuration of the optical system is simplified and the cost is reduced.
According to the seventh aspect of the invention, in addition to the above effects, the imaging optical system is a telecentric optical system, so it is possible to irradiate an object with a plane wave both in the reflection mode and in the transmission mode. For this reason, the object light is not distorted, and the correction calculation becomes unnecessary.
Further, according to the invention of claim 8, in addition to the above effect, the imaging optical path extends in a straight line from the object to the imaging surface, so the configuration of the optical system becomes simple, and the disturbance of the wavefront is Less. For this reason, it can contribute to acquisition of hologram data with higher accuracy, and the cost also becomes cheaper.
According to the invention of claim 9, in addition to the above effect, since the spatial filter is used, more accurate hologram data can be obtained. And since the spatial filter is located on the light path closer to the object, the effect of the accuracy improvement is higher.
Further, according to the invention of claim 12, in addition to the above effects, the light guide system for reflected diffracted light is also used as the reference light light guide system, so that the coherence of light is improved, and in this respect it is more accurate High hologram data can be acquired.
Further, according to the invention of claim 13, in addition to the above effect, in the reflection mode, the reference light guiding system returns the light to the first beam splitter and passes the first beam splitter to the light into the imaging device Since the light is guided, the coherence of light is further improved at this point, and more accurate hologram data can be obtained.
Further, according to the invention of claim 14 or 15, in addition to the above-mentioned effect, since the optical element for off-axis is provided, the off-axis type operation becomes possible. Therefore, image reproduction can be performed in a state where the true image is separated from the zero-order image and the conjugate image.
Further, according to the invention of claim 16, since the off-axis mirror is provided at a position close to the imaging device, the incident position of the reference light with respect to the imaging surface of the imaging device will not be largely deviated.
本発明の実施形態に係るデジタルホログラフィ方法を概念的に示した図である。It is the figure which showed the digital holography method concerning the embodiment of the present invention notionally. 本発明の第1の実施形態のデジタルホログラフィ装置の正面概略図である。FIG. 1 is a front schematic view of a digital holography device of a first embodiment of the present invention. 本発明の第2の実施形態のデジタルホログラフィ装置の正面概略図である。FIG. 5 is a front schematic view of a digital holography device of a second embodiment of the present invention. 第2のビームエキスパンダ321と第2のスペイシャルフィルタ326について示した概略図である。FIG. 7 is a schematic view showing a second beam expander 321 and a second spatial filter 326. 図3の装置における撮像光学系5のテレセントリック性について模式的に示した概略図である。It is the schematic which showed typically the telecentricity of the imaging optical system 5 in the apparatus of FIG. 第2の実施形態のデジタルホログラフィ装置の制御系を示した概略図である。It is the schematic which showed the control system of the digital holography apparatus of 2nd Embodiment. 第2の実施形態の装置の動作について示した概略図であり、反射モードと透過モードとにおける各光の進行状況について対比して示した図である。It is the schematic shown about the operation | movement of the apparatus of 2nd Embodiment, and is the figure shown contrasting about the advancing condition of each light in reflective mode and transmissive mode. 反射モードでの動作フローの概略を示した図である。It is the figure which showed the outline of the operation flow in reflective mode. 透過モードでの動作フローの概略を示した図である。It is the figure which showed the outline of the operation flow in transparent mode. 第2の実施形態の装置がテレセントリックな撮像光学系5を備えていることの効果を示した概略図である。It is the schematic which showed the effect that the apparatus of 2nd Embodiment is equipped with the telecentric imaging optical system 5. FIG. 本発明の第3の実施形態に係るデジタルホログラフィ装置の正面概略図である。FIG. 5 is a front schematic view of a digital holography device according to a third embodiment of the present invention. 第3の実施形態で用いられているオフアクシス用ミラーの配置角度の変化を示した図である。It is the figure which showed the change of the arrangement | positioning angle of the mirror for off-axis used in 3rd Embodiment. 第3の実施形態の装置の動作について示した概略図であり、反射モードと透過モードとにおける各光の進行状況について対比して示した図である。It is the schematic shown about operation | movement of the apparatus of 3rd Embodiment, and is the figure shown contrasting about the advancing condition of each light in reflective mode and transmissive mode. 本発明の第4の実施形態のデジタルホログラフィ装置の正面概略図である。It is a front schematic diagram of the digital holography apparatus of the 4th Embodiment of this invention. 図14に示す実施形態における参照光抽出ユニット9の例を示した正面概略図である。It is the front schematic which showed the example of the reference light extraction unit 9 in embodiment shown in FIG. 従来のデジタルホログラフィ装置の概略を示した図である。It is the figure which showed the outline of the conventional digital holography apparatus. 特許文献3に開示されたデジタルホログラフィ装置を示す図である。It is a figure which shows the digital holography apparatus disclosed by patent document 3. FIG. 特許文献3のデジタルホログラフィ装置の問題点について示した概略図である。It is the schematic shown about the problem of the digital holography apparatus of patent document 3. FIG. スペイシャルフィルタの概略図である。It is the schematic of spatial filter.
 次に、本発明を実施するための形態(以下、実施形態)について説明する。
 図1は、本発明の実施形態に係るデジタルホログラフィ方法を概念的に示した図である。実施形態に係るデジタルホログラフィ方法は、光源1から放出された光(平面波)を物体Sに照射して得られた物体Sからの回折光(物体光)と、光源1からの光を物体Sを経ることなく導いて得られた参照光とを撮像素子2の撮像面で干渉させてホログラムデータを取得する方法である。
Next, modes (hereinafter, embodiments) for carrying out the present invention will be described.
FIG. 1 is a conceptual view of a digital holography method according to an embodiment of the present invention. In the digital holography method according to the embodiment, diffracted light (object light) from the object S obtained by irradiating the object S with light (plane wave) emitted from the light source 1 and light from the light source 1 as the object S This is a method of acquiring hologram data by causing interference with the reference light obtained without guidance through the imaging surface of the imaging device 2.
 この方法の大きな特徴点の一つは、物体Sに照射された光のうち物体Sに反射して回折となって進む物体光(反射回折光)と参照光とを撮像面で干渉させてホログラムデータを得る反射モードと、物体Sに照射された光のうち物体Sを透過して回折光となって進む物体光(透過回折光)と参照光とを撮像面で干渉させてホログラムデータを得る透過モードとを行う方法となっている点であり、反射モードと透過モードとが別々のステップで行われる点である。図1(1)が反射モードを示し、図1(2)が透過モードを示す。
 反射モードのステップと透過モードのステップは、どちらが先でも良い。要は、透過回折光は使用せずに反射回折光を使用してホログラムデータを得るステップと、反射回折光は使用せずに透過回折光を使用してホログラムデータを得るステップとがあり、これらが同時ではなく別々の時間帯に行われるということである。
One of the major feature points of this method is that, among the light irradiated to the object S, the object light (reflected diffracted light) which is reflected on the object S and proceeds to become diffracted and interferes with the reference light on the imaging surface Among the light emitted to the object S, the object light (transmission diffracted light) that travels through the object S and travels as diffracted light and the reference light interfere with each other on the imaging surface to obtain hologram data The point is that it is a method of performing the transmission mode, and the point that the reflection mode and the transmission mode are performed in separate steps. FIG. 1 (1) shows the reflection mode, and FIG. 1 (2) shows the transmission mode.
Either the step of the reflection mode or the step of the transmission mode may come first. The point is to obtain hologram data using reflected diffraction light without using transmitted diffraction light, and obtaining hologram data using transmission diffraction light without using reflected diffraction light. Is done at different time zones, not simultaneously.
 実施形態のデジタルホログラフィ方法の別の大きな特徴点は、反射モードと透過モードとでは、物体Sに対する光の照射の仕方が異なるということである。すなわち、図1(1)に示すように、反射モードでは光源1からの光を第1の側から物体Sに照射する。一方、図1(2)に示すように、透過モードでは第1の側とは反対側の第2の側から物体Sに光を照射する。そして、反射モードでは第1の側に反射してきた回折光を撮像素子2に入射させ、透過モードでも第1の側に透過してきた回折光を撮像素子2に入射させる。すなわち、撮像素子2による撮像の側は反射モードでも透過モードでも同じである。 Another major feature of the digital holography method of the embodiment is that the manner of the light irradiation to the object S is different between the reflection mode and the transmission mode. That is, as shown in FIG. 1 (1), in the reflection mode, the object S is irradiated with the light from the light source 1 from the first side. On the other hand, as shown in FIG. 1 (2), in the transmission mode, the object S is irradiated with light from the second side opposite to the first side. Then, in the reflection mode, the diffracted light reflected to the first side is made incident on the imaging device 2, and in the transmission mode, the diffracted light transmitted to the first side is made incident to the imaging device 2. That is, the side of imaging by the imaging device 2 is the same in the reflection mode and the transmission mode.
 次に、上記実施形態のデジタルホログラフィ方法の実施に使用される各実施形態のデジタルホログラフィ装置について説明する。まず、第1の実施形態のデジタルホログラフィ装置について説明する。図2は、第1の実施形態のデジタルホログラフィ装置の正面概略図である。
 図2に示すように、第1の実施形態のデジタルホログラフィ装置は、反射回折光を得るために光源1からの光を物体Sまで導く反射回折光用導光系31と、透過回折光を得るために光源1からの光を物体Sまで導く透過回折光用導光系32と、光源1からの光を物体Sを経ずに撮像素子2の撮像面に導く参照光導光系33と、反射回折光と参照光とが干渉する位置であるとともに透過回折光と参照光とが干渉する位置に撮像面が位置する撮像素子2とを備えている。そして、この装置には、撮像素子2の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられている。
Next, the digital holography apparatus of each embodiment used to implement the digital holography method of the above embodiment will be described. First, the digital holography device of the first embodiment will be described. FIG. 2 is a front schematic view of the digital holography device of the first embodiment.
As shown in FIG. 2, in the digital holography device of the first embodiment, a light guide system 31 for reflected diffracted light that guides light from a light source 1 to an object S to obtain reflected diffracted light, and transmitted diffracted light And a reference light guiding system 33 for guiding the light from the light source 1 to the imaging surface of the image sensor 2 without passing through the object S, and a reflection The imaging device 2 is provided with an imaging surface at a position where the diffracted light and the reference light interfere with each other and the transmission diffracted light and the reference light interfere with each other. Then, in this device, there is a selection optical element which selects alternatively whether the reflection diffracted light is made incident on the imaging surface of the imaging device 2 to make the reflection mode or the transmission diffraction light made to make the transmission mode. It is provided.
 前述したように、反射モードでも透過モードでも、物体光は同じ第1の側に出射する。したがって、撮像素子2はこの第1の側に設定された撮像光路Pi上に設けられている。撮像光路Pi上には、第1のビームスプリッタ41が設けられている。反射回折光用の光は撮像光路Piを通って物体Sに照射するため、撮像光路Piの途中に第1のビームスプリッタ41を配置し、そこから反射回折光用の光を導入するようにしている。
 また、この実施形態では、レンズを含む撮像光学系5が撮像光路Pi上に設けられている。撮像光学系5は、撮像素子2が物体Sに比較的近い位置にありフレネル回折を利用する場合(フレネルホログラムの場合)には不要である。また、参照光を球面波としたフーリエ変換ホログラム(レンズレスフーリエ変換ホログラム)の場合も撮像光学系5は不要である。撮像光学系5が必要になる場合としては、レンズを用いてフラウンホーファーホログラム(フーリエ変換ホログラム)とする場合や、物体Sからの回折光による干渉像を拡大像又は縮小像とする場合などである。
As described above, in the reflection mode or the transmission mode, the object light is emitted to the same first side. Therefore, the imaging element 2 is provided on the imaging light path Pi set on the first side. A first beam splitter 41 is provided on the imaging light path Pi. In order to irradiate the object S with light for reflected diffraction light through the imaging light path Pi, the first beam splitter 41 is disposed in the middle of the imaging light path Pi, and light for reflected diffraction light is introduced therefrom. There is.
Further, in this embodiment, an imaging optical system 5 including a lens is provided on the imaging light path Pi. The imaging optical system 5 is not necessary when the imaging element 2 is relatively close to the object S and Fresnel diffraction is used (in the case of Fresnel hologram). Further, also in the case of a Fourier transform hologram (lensless Fourier transform hologram) in which the reference light is a spherical wave, the imaging optical system 5 is unnecessary. When the imaging optical system 5 is required, it is a Fraunhofer hologram (Fourier transform hologram) using a lens, or an interference image by diffracted light from the object S as an enlarged image or a reduced image. .
 鮮明なホログラム再生像を得るには、物体光と参照光とが十分に干渉して干渉縞が形成されることが必要である。このためには、光源1は単一波長で位相がそろっている(コヒーレントである)ことが必要である。このため、光源1としてはレーザが用いられる。例えば波長が632.8nmのHe-Ne(ヘリウムネオン)レーザが用いられる。
 物体光用と参照光用とで別々の光源を使用することも原理的には可能であるが、別々の光源を使用すると波長や位相を十分にそろえることが非常に難しい。このため、一つの光源1からの光を分割して使用している。すなわち、光源1から放出された光を参照光取り出し用ビームスプリッタ42で分け、一方を参照光として使用している。
In order to obtain a clear hologram reproduction image, it is necessary that the object light and the reference light sufficiently interfere with each other to form interference fringes. For this purpose, the light source 1 needs to be in phase (coherent) at a single wavelength. For this reason, a laser is used as the light source 1. For example, a He-Ne (helium-neon) laser having a wavelength of 632.8 nm is used.
Although it is possible in principle to use separate light sources for the object light and the reference light, it is very difficult to sufficiently align the wavelength and phase when using separate light sources. For this reason, the light from one light source 1 is divided and used. That is, the light emitted from the light source 1 is divided by the reference light extraction beam splitter 42, and one of the lights is used as a reference light.
 選択用光学素子は、この実施形態では可動ミラー43である。可動ミラー43は、移動可能なミラーであり、参照光用取り出し用ビームスプリッタ42からの照射光を反射回折光用導光系31に導くか透過回折光用導光系32に導くかを選択するようになっている。
 なお、この実施形態はインライン式の装置であり、参照光も物体光と同様に撮像素子2の撮像面に垂直に入射させるものである。図1に示すように、撮像光路Pi上には統合用ビームスプリッタ44が配置されており、参照光は統合用ビームスプリッタ44に反射して撮像素子2の撮像面に垂直に入射するようになっている。なお、参照光導光系33は、参照光用第1ミラー331と、参照光用第2ミラー332とから構成されており、参照光取り出し用ビームスプリッタ42で取り出された光を統合用ビームスプリッタ44に導くものとなっている。
The selection optical element is a movable mirror 43 in this embodiment. The movable mirror 43 is a movable mirror, and selects whether to guide the irradiation light from the reference light extraction beam splitter 42 to the light guide system 31 for reflection diffraction light or the light guide system 32 for transmission diffraction light. It has become like.
Note that this embodiment is an in-line type apparatus, and the reference light is also vertically incident on the imaging surface of the imaging device 2 like the object light. As shown in FIG. 1, the integration beam splitter 44 is disposed on the imaging light path Pi, and the reference light is reflected by the integration beam splitter 44 and vertically incident on the imaging surface of the imaging device 2. ing. The reference light guiding system 33 includes a first mirror for reference light 331 and a second mirror for reference light 332, and the beam splitter 44 for integrating the light extracted by the beam splitter for extracting reference light 42 is provided. It leads to
 実施形態の方法及び装置においては、シャーレのような容器に物体Sを置いてそのホログラムデータを得る。光源1を動作させ、最初に例えば反射モードでホログラムデータを得た後、可動ミラー43を移動させて透過モードでホログラムデータを得る。それぞれのホログラムデータは、撮像素子2が接続されたコンピュータ(図1中不図示)で処理される。コンピュータには、ホログラムデータから再生像を得るための所定のプログラム(以下、像再生プログラム)がインストールされており、像再生プログラムを実行することによってディスプレイ上に再生像を表示したり、物体S上の特定の箇所の距離を計測したり、または物体Sの反射率分布や透過率分布を表示したりことが可能となる。
 このような実施形態の方法及び装置によれば、一つの物体Sについて反射回折光と透過回折光とでそれぞれホログラムデータが得られるので、物体Sの状態や形状等を詳しく調べるのに適したものとなる。例えば、物体Sの表面の反射率分布と透過率分布との双方を知るのに好適に利用できる。
In the method and apparatus of the embodiment, the object S is placed in a container such as a petri dish to obtain its hologram data. The light source 1 is operated to first obtain hologram data in, for example, the reflection mode, and then move the movable mirror 43 to obtain the hologram data in the transmission mode. Each hologram data is processed by a computer (not shown in FIG. 1) to which the imaging element 2 is connected. A predetermined program (hereinafter referred to as an image reproduction program) for obtaining a reproduced image from hologram data is installed in the computer, and the reproduced image is displayed on the display by executing the image reproduction program, or the object S is displayed. It is possible to measure the distance of a specific part of or to display the reflectance distribution or transmittance distribution of the object S.
According to the method and apparatus of such an embodiment, since hologram data can be obtained for each object S by reflected and transmitted diffracted light respectively, it is suitable for examining the state and shape of the object S in detail. It becomes. For example, it can be suitably used to know both the reflectance distribution and the transmittance distribution on the surface of the object S.
 この際、実施形態の方法および装置では、反射モードと透過モードとを時間的に分けて行うので、光学系の構成が簡略化される。図15のような構成でも反射回折光によるホログラムデータと透過回折光によるホログラムデータとを得ることができるが、図15の構成では、反射回折光と透過回折光とが同時に物体から出てきてしまうので、これを分離してそれぞれの撮像素子に入射させる必要がある。このため、複雑な撮像光学系5が必要なる。事実、図15は、偏光ビームスプリッタ143等を使用した複雑な撮像光学系となっている。なお、撮像光学系とは、物体から撮像素子に至る物体光の光路上の光学系という意味である。
 一方、本実施形態の方法又は装置によれば、反射モードと透過モードとを時間的に分離して行うので、光学的な分離は不要である。このため、撮像光学系5がシンプルになる。撮像光学系5がシンプルになるということは、コスト面での優位性に加え、より多くの光学素子を使うことによる波面の乱れの可能性が少なくなるため、より精度の高いホログラムデータが得られるという優位性がある。
At this time, in the method and apparatus of the embodiment, since the reflection mode and the transmission mode are separated in time, the configuration of the optical system is simplified. Even with the configuration as shown in FIG. 15, the hologram data by the reflection diffraction light and the hologram data by the transmission diffraction light can be obtained. However, in the configuration of FIG. 15, the reflection diffraction light and the transmission diffraction light simultaneously come out of the object. Therefore, it is necessary to separate them and make them incident on the respective imaging elements. For this reason, a complex imaging optical system 5 is required. In fact, FIG. 15 shows a complex imaging optical system using a polarization beam splitter 143 or the like. The imaging optical system means an optical system on the optical path of object light from the object to the imaging device.
On the other hand, according to the method or apparatus of the present embodiment, since the reflection mode and the transmission mode are separated temporally, optical separation is unnecessary. Therefore, the imaging optical system 5 is simplified. The fact that the imaging optical system 5 is simplified has the advantage of cost and the possibility of disturbance of the wavefront due to the use of more optical elements is reduced, so that more accurate hologram data can be obtained. It has the advantage of
 また、図15のように反射モードと透過モードとを同時に行うということは、光を一方の側から物体Sに照射し、一方の側に反射して出てくる反射回折光と他方の側に透過して出てくる透過回折光とをそれぞれ撮像素子で捉えるということになる。この場合、前述したように、物体Sを空中に浮かせて保持するような構成にしなければ、精度の高いホログラムデータを得ることができない。しかし、反射モードと透過モードとを時間的に別々に行う場合、透過モードの際には逆側から光を照射するようにすることができ、撮像する側を物体Sの同じ側とすることができる。このため、シャーレのような容器に物体Sを置いた状態でも精度の高いホログラムデータを得ることができ、また同じ側の視点から反射モードでの観察と透過モードでの観察が行える。実施形態の装置は、このような装置となっている。 Further, as shown in FIG. 15, to simultaneously perform the reflection mode and the transmission mode means that light is irradiated to the object S from one side, and the reflection diffracted light that is reflected and emerges to one side is to the other side It means that the transmitted diffracted light that has been transmitted and captured is captured by the imaging device. In this case, as described above, unless the object S is configured to be floated and held in the air, it is not possible to obtain highly accurate hologram data. However, when the reflection mode and the transmission mode are performed separately in time, light can be emitted from the opposite side in the transmission mode, and the side to be imaged may be the same side of the object S. it can. Therefore, even when the object S is placed in a container such as a petri dish, high-precision hologram data can be obtained, and observation in the reflection mode and observation in the transmission mode can be performed from the same viewpoint. The device of the embodiment is such a device.
 反射モードと透過モードとを行うことは、前述したように物体Sの状態や形状等を詳しく調べるのに適しているが、これが一つの装置で行えることは、コスト上のメリットの他、作業性の点でも好適である。反射モードで測定を行うデジタルホログラフィ装置と透過モードで測定を行うデジタルホログラフィ装置とを用意すれば同様のことが可能であるが、この場合、反射モードの装置で測定を行った後に物体Sを取り出し、透過モードの装置にセットして測定を行わなければならず、煩雑である。本実施形態の装置によれば、このような問題はない。
 また一般的に言えば、物体Sが不透明体である場合には、そもそも透過モードでのホログラムデータの取得はできない。透明体の場合、透過モードでも反射モードでもデータ取得はできるが、反射モードを透明体に対して行った場合、物体の表面からの反射回折光と物体の裏面からの反射回折光とが干渉して干渉縞が生じてしまう場合があり、この影響で正確なホログラムデータが得られないことがある。これらを考えると、対象物である物体Sの性状に応じて一台の装置でモードを任意に選ぶことができるメリットは、非常に大きい。
Performing the reflection mode and the transmission mode is suitable for examining in detail the state, shape, etc. of the object S as described above, but it is possible to perform this in one device, in addition to cost merits, workability Is also preferable. The same thing can be done by preparing a digital holography device that performs measurement in the reflection mode and a digital holography device that performs measurement in the transmission mode. In this case, the object S is taken out after the measurement is performed by the device in the reflection mode. , It has to be set in the transmission mode device to perform measurement, which is complicated. According to the apparatus of this embodiment, there is no such problem.
Generally speaking, when the object S is an opaque body, it is impossible to acquire hologram data in the transmission mode in the first place. In the case of a transparent body, data acquisition can be performed in transmission mode or in reflection mode, but when reflection mode is performed on a transparent body, reflection diffraction light from the surface of the object interferes with reflection diffraction light from the back surface of the object. Interference fringes may occur, and accurate hologram data may not be obtained due to this effect. If these are considered, the merit that the mode can be arbitrarily selected with one device according to the property of the object S which is a target object is very large.
 また、参照光を物体Sを経ずに撮像素子2に導いている点は、物体Sの条件によらず常に安定した参照光を得るという点で優れている。図15では、物体Sを透過した光を取り出して参照光としている。このように、物体Sへの光照射→物体光→撮像素子2という物体光のルートと同じルートで参照光を撮像素子2に入射させることも不可能ではない。しかしながら、このようにすると、物体Sの光学的な物性によって参照光が変化してしまうため、常に安定した光を参照光として使用することができない。一方、本実施形態のように、物体Sを経ないで参照光を撮像素子2に導くようにすれば、物体Sの条件によって変化することはなく、参照光を常に安定したものとすることができる。例えば、物体Sからの光透過率を測定する場合、本実施形態の方法又は装置によれば、定量性を持ったデータが得られるメリットがある。 Further, the point in which the reference light is guided to the imaging device 2 without passing through the object S is excellent in that a stable reference light is always obtained regardless of the condition of the object S. In FIG. 15, light transmitted through the object S is taken out as reference light. As described above, it is not impossible to make the reference light incident on the imaging element 2 along the same route as that of the object light such as light irradiation on the object S → object light → imaging element 2. However, in such a case, the reference light is changed depending on the optical physical properties of the object S, so that it is not always possible to use stable light as the reference light. On the other hand, if the reference light is guided to the imaging device 2 without passing through the object S as in the present embodiment, the reference light does not change depending on the conditions of the object S, and the reference light is always stabilized. it can. For example, when measuring the light transmittance from the object S, according to the method or apparatus of the present embodiment, there is a merit that quantitative data can be obtained.
 次に、より実用性を高めた第2の実施形態のデジタルホログラフィ装置について以下に説明する。図3は、本発明の第2の実施形態のデジタルホログラフィ装置の正面概略図である。
 第2の実施形態のデジタルホログラフィ装置は、反射回折光を得るために光源1からの光を物体Sまで導く反射回折光用導光系31と、透過回折光を得るために光源1からの光を物体Sまで導く透過回折光用導光系32と、光源1からの光を物体Sを経ずに撮像素子2の撮像面に導く参照光導光系33と、反射回折光と参照光とが干渉する位置であるとともに透過回折光と参照光とが干渉する位置に撮像面が位置する撮像素子2と、撮像素子2の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを選択する選択用光学素子と、選択用光学素子の動作を制御する制御系(図3中不図示)とを備えている。
Next, the digital holography device of the second embodiment with further enhanced practicality will be described below. FIG. 3 is a front schematic view of a digital holography device of a second embodiment of the present invention.
The digital holography device of the second embodiment includes a light guiding system 31 for reflected diffracted light that guides light from the light source 1 to the object S to obtain reflected diffracted light, and light from the light source 1 to obtain transmitted diffracted light. A light guide system 32 for transmitted diffracted light that guides light to the object S, a reference light light guide system 33 that guides light from the light source 1 to the imaging surface of the image sensor 2 without passing through the object S, reflected diffracted light and reference light Whether the reflected diffraction light is incident on the imaging surface of the imaging element 2 and the imaging surface of the imaging element 2 where the imaging surface is located at the interference position and the interference position of the transmission diffraction light and the reference light And a control system (not shown in FIG. 3) for controlling the operation of the selection optical element.
 第2の実施形態は、装置の実用性を高めるため、反射回折光用導光系31を参照光導光系として一部兼用したものである。具体的に説明すると、第2の実施形態では、第1の実施形態における可動ミラー43に変えて第2のビームスプリッタ45を設けている。第2のビームスプリッタ45には、駆動部451が付設されている。また、第1の実施形態と同様に第1のビームスプリッタ41が設けられているが、第1のビームスプリッタ41には、駆動機構として切替部411が付設されている。これら第1のビームスプリッタ41と第2のビームスプリッタ45は、選択用光学素子として機能するようになっている。 In the second embodiment, in order to enhance the practicability of the apparatus, the light guide system 31 for reflected diffraction light is used in part as a reference light guide system. Specifically, in the second embodiment, the second beam splitter 45 is provided instead of the movable mirror 43 in the first embodiment. A drive unit 451 is attached to the second beam splitter 45. The first beam splitter 41 is provided as in the first embodiment, but the switching unit 411 is attached to the first beam splitter 41 as a drive mechanism. The first beam splitter 41 and the second beam splitter 45 function as selection optical elements.
 図3に示すように、光源1から延びる光路(以下、主光路)は、第1のミラー46で90°折り曲げられた後、まず、第2のビームスプリッタ45で分岐し得るようになっている。反射回折光用導光系31は、主光路上であって、第2のビームスプリッタ45による分割位置の像側(光の進行方向における前方、以下同じ)に配置されている。図1に示すように、反射回折光用導光系31は、第1のビームエキスパンダ311と、第2のミラー312と、第1のビームスプリッタ41等で構成されている。第2のミラー312は、第1のビームエキスパンダ311で幅が広げられた光を90°曲げて第1のビームスプリッタ41に到達させるものである。 As shown in FIG. 3, an optical path (hereinafter, main optical path) extending from the light source 1 can be first branched by the second beam splitter 45 after being bent 90 ° by the first mirror 46 . The light guide system 31 for reflection diffracted light is disposed on the image side of the division position by the second beam splitter 45 (forward in the traveling direction of light, hereinafter the same) on the main light path. As shown in FIG. 1, the light guide system 31 for reflected and diffracted light is configured by a first beam expander 311, a second mirror 312, a first beam splitter 41, and the like. The second mirror 312 bends the light expanded in width by the first beam expander 311 by 90 ° and causes the light to reach the first beam splitter 41.
 また、透過回折光用導光系32は、この第2のビームスプリッタ45が主光路上に位置することにより主光路から分かれて形成される光路(以下、分岐光路)Ps上に配置された各光学素子によって構成されている。各光学素子とは、第2のビームエキスパンダ321や第3のミラー322などである。
 第3のミラー322は、分岐光路Psを90°曲げて物体Sの位置に達するようにしている。第2のビームスプリッタ45で分かれた分岐光路Ps上を進む光は、第2のビームエキスパンダ321を経て第3のミラー322に反射し、物体Sに達するようになっている。この光が物体Sを透過して透過回折光となる。
 第2のビームスプリッタ45に設けられた駆動部451は、第2のビームスプリッタ45を主光路上に配置して光を分割する分割位置と、光を分割しないよう主光路から退避させた退避位置との間で第2のビームスプリッタ45を移動させる機構である。これにより、第2のビームスプリッタ45は選択用光学素子として機能する。駆動部451は、例えばリニアステージなどの直動式のステージで構成される。
Further, each of the light guide systems 32 for transmission diffraction light is disposed on an optical path (hereinafter referred to as a branched optical path) Ps which is formed separately from the main optical path by positioning the second beam splitter 45 on the main optical path. It is comprised by the optical element. Each optical element is the second beam expander 321, the third mirror 322, and the like.
The third mirror 322 bends the branched light path Ps by 90 ° to reach the position of the object S. The light traveling on the branched optical path Ps divided by the second beam splitter 45 passes through the second beam expander 321, is reflected by the third mirror 322, and reaches the object S. This light passes through the object S and becomes transmission diffracted light.
The drive unit 451 provided in the second beam splitter 45 arranges the second beam splitter 45 on the main optical path to split the light, and a retraction position where the light is retracted from the main optical path so as not to split the light. And a mechanism for moving the second beam splitter 45 between them. Thus, the second beam splitter 45 functions as a selection optical element. The drive unit 451 is configured of, for example, a linear motion type stage such as a linear stage.
 第1のビームスプリッタ41に設けられた切替部411は、第1のビームスプリッタ41が選択用光学素子として機能するよう第1のビームスプリッタ41の状態を変更するものである。具体的には、切替部411は、反射モードの際には第1のビームスプリッタ41を第1の実施形態の場合の同じ状態、すなわち、反射回折光用導光系31によって導かれた光が反射して物体Sに向かう姿勢(以下、第1の状態という)とする。そして、切替部411は、透過モードの際には、第1のビームスプリッタ41を90°回転させ、反射回折光用導光系31で導かれた光を反射させてそのまま撮像素子2に入射させる姿勢(以下、第2の状態という)とするものである。すなわち、切替部411は、透過モードの際には、光源1からの光が逆側から物体Sに照射されないようにするとともに、反射回折光用導光系31が参照光導光系33として機能するようにする二つの役割を果たしている。このような切替部411は、例えば回転ステージで構成される。回転軸は、光軸に対して垂直で且つ第1のビームスプリッタ41の反射面の中心を通り反射面に沿った直線上である。 The switching unit 411 provided in the first beam splitter 41 changes the state of the first beam splitter 41 so that the first beam splitter 41 functions as a selection optical element. Specifically, in the reflection mode, the switching unit 411 is in the same state as the first beam splitter 41 in the first embodiment, that is, the light guided by the light guide system 31 for reflected diffraction light is The attitude toward the object S by reflection (hereinafter, referred to as a first state). Then, in the transmission mode, the switching unit 411 rotates the first beam splitter 41 by 90 °, reflects the light guided by the light guide system 31 for reflected diffraction light, and causes the light to enter the imaging element 2 as it is. The posture (hereinafter, referred to as a second state). That is, in the transmission mode, the switching unit 411 prevents the light from the light source 1 from being irradiated to the object S from the opposite side, and the light guiding system 31 for reflected diffraction light functions as the reference light guiding system 33 It plays two roles. Such a switching unit 411 is configured of, for example, a rotation stage. The rotation axis is on a straight line perpendicular to the optical axis and passing through the center of the reflective surface of the first beam splitter 41 and along the reflective surface.
 上記説明から解る通り、参照光導光系33は、参照光を撮像素子2まで導くものであるが、透過モードと反射モードで異なる経路で参照光を導くものとなっている。参照光導光系33は、透過モードでは、上述した反射回折光用導光系31の一部を使用して参照光を撮像素子2まで導くものとなっている。すなわち、透過モードにおける参照光導光系33は、第1のミラー46と、第2のビームスプリッタ45と、第1のビームエキスパンダ311と、第2のミラー312等によって構成されている。
 反射モードにおいては、参照光導光系33は、同様に共用する反射回折光用導光系31の一部と、追加導光系34とによって構成される。反射モードにおいては、第1のビームスプリッタ41は、分割した光の一方を物体Sに向けて進ませる。追加導光系34は、第1のビームスプリッタ41が分割した他方の光を撮像素子2まで導くものである。本実施形態では、なるべく同一の経路を通って導くようにするため、追加導光系34は、他方の光を第1のビームスプリッタ41に戻し、第1のビームスプリッタ41を経て撮像素子2の撮像面に参照光として入射させるようにしている。
As can be understood from the above description, the reference light guiding system 33 guides the reference light to the imaging device 2 but guides the reference light through different paths in the transmission mode and the reflection mode. In the transmission mode, the reference light guiding system 33 guides the reference light to the imaging element 2 using a part of the above-described light guide system 31 for reflected diffracted light. That is, the reference light guiding system 33 in the transmission mode is configured by the first mirror 46, the second beam splitter 45, the first beam expander 311, the second mirror 312, and the like.
In the reflection mode, the reference light guide system 33 is configured by a part of the light guide system 31 for reflection diffracted light, which is shared in the same manner, and the additional light guide system 34. In the reflection mode, the first beam splitter 41 advances one of the split lights towards the object S. The additional light guiding system 34 guides the other light split by the first beam splitter 41 to the imaging element 2. In the present embodiment, the additional light guiding system 34 returns the other light to the first beam splitter 41 so as to lead through the same path as much as possible. It is made to inject into an imaging surface as a reference light.
 より具体的に説明すると、反射モードにおいては、参照光導光系33は、第1のミラー46と、第1のビームエキスパンダ311と、第2のミラー312と、第1のビームスプリッタ41と、追加導光系34とによって構成される。追加導光系34は、第4のミラー341と、折り返しミラー342等によって構成されている。第4のミラー341は、第2のビームスプリッタ45からの光を90°折り曲げるものであり、折り返しミラー342は光を180°曲げて折り返すものである。
 第4のミラー341と折り返しミラー342との間には、ビームストッパ343と、ビームストッパ343を駆動するストッパ駆動部344とが設けられている。ビームストッパ343及びストッパ駆動部344は、透過モードの際には追加導光系34は不要であるので、光をストップさせて折り返さないようにするものである。
More specifically, in the reflection mode, the reference light guiding system 33 includes the first mirror 46, the first beam expander 311, the second mirror 312, and the first beam splitter 41; It is comprised by the additional light guide system 34. The additional light guiding system 34 is configured of a fourth mirror 341, a folding mirror 342, and the like. The fourth mirror 341 bends the light from the second beam splitter 45 by 90 °, and the folding mirror 342 bends the light by 180 ° and folds it back.
A beam stopper 343 and a stopper driving unit 344 for driving the beam stopper 343 are provided between the fourth mirror 341 and the folding mirror 342. The beam stopper 343 and the stopper driving unit 344 stop the light so as not to turn back because the additional light guiding system 34 is unnecessary in the transmission mode.
 本実施形態のデジタルホログラフィ装置は、精度の良いホログラムデータを得るため、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326を配置している。第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326は、反射回折光用導光系31、透過回折光用導光系32及び参照光導光系33にそれぞれ配置されている。
 具体的に説明すると、反射回折光用導光系31に第1のスペイシャルフィルタ316が配置され、透過回折光用導光系32に第2のスペイシャルフィルタ326が配置されている。反射回折光用導光系31は、参照光導光系33に兼用されているので、結局、透過回折光用の光、反射回折光用の光、参照光のすべてがスペイシャルフィルタを経由することになる。すなわち、撮像素子2に入射する光はすべてスペイシャルフィルタを経由したものである。このため、精度の良いホログラムデータを得る点で極めて好適となっている。
In the digital holography device of this embodiment, the first spatial filter 316 and the second spatial filter 326 are arranged in order to obtain accurate hologram data. The first spatial filter 316 and the second spatial filter 326 are respectively disposed in the light guide system 31 for reflected diffraction light, the light guide system 32 for transmission diffraction light, and the reference light light guide system 33.
Specifically, the first spatial filter 316 is disposed in the light guide system 31 for reflection diffracted light, and the second spatial filter 326 is disposed in the light guide system 32 for transmission diffraction light. Since the light guide system 31 for reflection diffracted light is also used as the reference light light guide system 33, eventually all of the light for transmission diffraction light, the light for reflection diffraction light, and the reference light pass through the spatial filter. become. That is, all the light incident on the imaging element 2 passes through the spatial filter. For this reason, it is extremely suitable in terms of obtaining accurate hologram data.
 本実施形態では、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326を物体S又は撮像素子2になるべく近い位置に配置している。具体的に説明すると、反射回折光用導光系31においては、第1のスペイシャルフィルタ316は、主光路において分岐光路Psの分岐点から像側に配置されており、第1のスペイシャルフィルタ316と第1のビームスプリッタ41との間には、1個のみの第2のミラー312が配置された状態となっている。透過回折光用導光系32においては、第2のスペイシャルフィルタ326は分岐光路Ps上に配置されており、第2のスペイシャルフィルタ326から物体Sまでの間には1個のみの第3のミラー322が配置された状態となっている。 In the present embodiment, the first spatial filter 316 and the second spatial filter 326 are disposed as close as possible to the object S or the imaging device 2. Specifically, in the light guide system 31 for reflection diffracted light, the first spatial filter 316 is disposed on the image side from the branch point of the branched light path Ps in the main light path, and the first spatial filter Only one second mirror 312 is disposed between 316 and the first beam splitter 41. In the light guide system 32 for transmission diffraction light, the second spatial filter 326 is disposed on the branched optical path Ps, and only one third spatial filter 326 from the second spatial filter 326 to the object S is disposed. Mirror 322 is placed.
 このように、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326から物体S又は撮像素子2までの間に配置されるミラーの数を最小限にすることで、ミラーのキズやミラーに付着したゴミの影響でホログラムデータの精度が低下するのを抑制することができる。
 なお、反射回折光用導光系31において、スペイシャルフィルタを第2のミラー312と第1のビームスプリッタ41との間に配置することができる。このようにすると、ホログラムデータの精度をさらに向上させることができる。透過回折光用導光系32においては、スペイシャルフィルタを第3のミラー322と物体Sとの間に配置することができ、同様にホログラムデータのさらなる精度向上を可能にする。
As described above, by minimizing the number of mirrors disposed between the first spatial filter 316 and the second spatial filter 326 to the object S or the imaging device 2, it is possible to reduce the number of scratches and mirrors of the mirror. It is possible to suppress the decrease in the accuracy of the hologram data due to the influence of attached dust.
In the light guide system 31 for reflected diffraction light, a spatial filter can be disposed between the second mirror 312 and the first beam splitter 41. This can further improve the accuracy of the hologram data. In the light guide system 32 for transmission diffraction light, a spatial filter can be disposed between the third mirror 322 and the object S, and in the same manner, it is possible to further improve the accuracy of the hologram data.
 また、本実施形態では、光学系の構成を簡素化するため、ビームエキスパンダとスペイシャルフィルタとで光学素子を一部兼用した構成としている。すなわち、第1のスペイシャルフィルタ316は第1のビームエキスパンダ311において実現されており、第2のスペイシャルフィルタ326は、第2のビームエキスパンダ321において実現されている。具体的な構造について、図4を使用して説明する。図4は、一例として、第2のビームエキスパンダ321と第2のスペイシャルフィルタ326について示した概略図である。
 図4に示すように、第2のビームエキスパンダ321は、集光レンズ323と、コリメータレンズ324とによって構成されている。集光レンズ323の像側の焦点f1の位置にコリメータレンズ324の物側の焦点f2を合わせておき、コリメータレンズ324として口径の大きなものを用いることで、図4に示すように、ビーム径が大きくされた平行光が出射する。
Further, in the present embodiment, in order to simplify the configuration of the optical system, the beam expander and the spatial filter share a part of the optical element. That is, the first spatial filter 316 is realized in the first beam expander 311, and the second spatial filter 326 is realized in the second beam expander 321. A specific structure will be described using FIG. FIG. 4 is a schematic diagram showing the second beam expander 321 and the second spatial filter 326 as an example.
As shown in FIG. 4, the second beam expander 321 is configured of a condensing lens 323 and a collimator lens 324. By setting the focal point f2 on the object side of the collimator lens 324 to the position of the focal point f1 on the image side of the condenser lens 323 and using a large aperture as the collimator lens 324, as shown in FIG. The enlarged parallel light is emitted.
 そして、本実施形態では、集光レンズ323による集光位置にピンホール板325が配置されている。ピンホール板325のピンホールは集光位置に一致している。図4から解るように、集光レンズ323とピンホール板325によって第2のスペイシャルフィルタ326が構成されている。すなわち、集光レンズ323が第2のビームエキスパンダ321と第2のスペイシャルフィルタ326に兼用されている。このような構造であるため、光学系の構成が簡素化され、部品点数の削減によるコストダウンが図られている。第1のビームエキスパンダ311内に実現された第1のスペイシャルフィルタ316についても同様の構造である。 Then, in the present embodiment, the pinhole plate 325 is disposed at a condensing position by the condensing lens 323. The pinholes of the pinhole plate 325 coincide with the light collecting position. As can be understood from FIG. 4, the second spatial filter 326 is configured by the condenser lens 323 and the pinhole plate 325. That is, the condenser lens 323 is shared by the second beam expander 321 and the second spatial filter 326. Such a structure simplifies the configuration of the optical system and reduces the cost by reducing the number of parts. The same is true for the first spatial filter 316 implemented in the first beam expander 311.
 次に、撮像光学系5について説明する。
 本実施形態においても、反射回折光用導光系31は、透過回折光用導光系32が光を物体Sに照射する側とは反対側から光を照射するものであり、撮像光学系5は、反射回折光用導光系31が光を照射する側において延びる撮像光路Pi上に設けられている。すなわち、反射回折光と透過回折光とは、共通の撮像光路Piを経て撮像素子2の撮像面に至るよう構成されており、撮像光学系5は、この共通の光路上に配置されている。
 撮像光学系5は、物体Sに近い側に配置された対物レンズ51と、撮像素子2に近い側に配置された結像レンズ52によって構成されている。本実施形態の装置の別の大きな特徴点は、この撮像光学系5がテレセントリックな光学系となっている点である。以下、この点について図5を使用して説明する。
Next, the imaging optical system 5 will be described.
Also in the present embodiment, the light guide system 31 for reflection diffracted light irradiates light from the side opposite to the side where the light guide system 32 for transmission diffraction light irradiates light to the object S, and the imaging optical system 5 Is provided on an imaging light path Pi that extends on the side where the light guide system 31 for reflected diffraction light emits light. That is, the reflected diffraction light and the transmission diffraction light are configured to reach the imaging surface of the imaging device 2 through the common imaging light path Pi, and the imaging optical system 5 is disposed on the common optical path.
The imaging optical system 5 includes an objective lens 51 disposed on the side closer to the object S, and an imaging lens 52 disposed on the side closer to the imaging device 2. Another major feature of the apparatus of the present embodiment is that the imaging optical system 5 is a telecentric optical system. Hereinafter, this point will be described with reference to FIG.
 図5は、図3の装置における撮像光学系5のテレセントリック性について模式的に示した概略図である。テレセントリックな光学系とは、一般的には、主光線が主軸と平行であるとみなせる光学系をいう。図5(1)には像側でテレセントリックな光学系が示されている。特に、物側及び像側の双方において主光線が光軸に平行であるとみなせる光学系は、両側テレセントリックと呼ばれる。 FIG. 5 is a schematic view schematically showing the telecentricity of the imaging optical system 5 in the apparatus of FIG. A telecentric optical system generally refers to an optical system in which a chief ray is considered to be parallel to the principal axis. FIG. 5 (1) shows a telecentric optical system on the image side. In particular, an optical system in which the chief ray is considered to be parallel to the optical axis on both the object side and the image side is called two-side telecentric.
 本実施形態における撮像光学系5のテレセントリック性も、図5(2)に示すように、光学系の前側(物体S側)と後側(撮像素子2側)との双方において主光線が光軸に平行であるとみなせることである。本実施形態では、光源1はレーザであって平面波(平行光)が入射することが前提になっている。このため、両側テレセントリックである結合光学系は、対物レンズ51の後側焦点の位置と結像レンズ52の前側焦点の位置を一致させること(コンフォーカルにすること)によって達成できる。
 本実施形態における撮像光学系5のテレセントリック性とは、もう一つ意味がある。それは、図5(3)に示すように、対物レンズ51と結像レンズ52とが無限遠補正光学系となっており、物体Sの一点から出た回折光(物体光)は、対物レンズ51で平行光となって結像レンズ52に入射するようになっている点である。
 テレセントリック性を持つ無限遠補正系では、物体Sの位置を変えてピント調節をしても像の大きさが変化しないという大きなメリットがある。これは、物体Sの表面から少し深い位置からの反射回折光ないし透過回折光でホログラムデータを得たい場合にメリットがある。例えば、本実施形態の装置をデジタルホログラフィック顕微鏡として構成し、ある程度透明な生体試料を拡大しながら再生像を得るような場合、大きなメリットがある。
The telecentricity of the imaging optical system 5 in the present embodiment is also as shown in FIG. 5 (2), the chief ray is the optical axis both on the front side (object S side) and the rear side (image element 2 side) of the optical system It can be considered parallel to In the present embodiment, the light source 1 is a laser and it is premised that a plane wave (parallel light) is incident. For this reason, combining optics that are both-side telecentric can be achieved by matching the position of the back focal point of the objective lens 51 with the position of the front focal point of the imaging lens 52 (confocal).
The telecentricity of the imaging optical system 5 in the present embodiment has another meaning. As shown in FIG. 5 (3), the objective lens 51 and the imaging lens 52 form an infinity correction optical system, and diffracted light (object light) emitted from one point of the object S is an objective lens 51. At this point, it becomes a parallel light and is incident on the imaging lens 52.
The telecentric infinity correction system has a great merit that the size of the image does not change even if the position of the object S is changed to adjust the focus. This is advantageous when it is desired to obtain hologram data by reflection diffraction light or transmission diffraction light from a position slightly deep from the surface of the object S. For example, when the apparatus of the present embodiment is configured as a digital holographic microscope and a reproduced image is obtained while enlarging a transparent biological sample to a certain extent, there are great merits.
 このような撮像光学系5としては、物側テレセントリックレンズを対物レンズ51として採用し、像側テレセントリックレンズを結像レンズ52として採用するともに、対物レンズ51の像側の焦点位置と結像レンズ52の物側焦点位置を一致させた状態(コンフォーカルな状態)で配置することで達成できる。物側テレセントリックレンズや像側テレセントリックレンズについては、市販のものを使用できるので、詳細な説明は割愛する。なお、像側テレセントリックレンズである結像レンズ52は、無限遠補正系を構成するものであるので、光のロスをなるべく少なくするため、有効口径の大きいものを使用することが好ましい。 As such an imaging optical system 5, an object-side telecentric lens is adopted as the objective lens 51, and an image-side telecentric lens is adopted as the imaging lens 52, and the focal position of the objective lens 51 on the image side and the imaging lens 52. This can be achieved by arranging the object-side focal position of the object in a state of being in agreement (confocal state). As for the object side telecentric lens and the image side telecentric lens, commercially available ones can be used, so detailed description will be omitted. Since the imaging lens 52, which is an image-side telecentric lens, constitutes an infinity correction system, it is preferable to use a lens with a large effective aperture in order to reduce light loss as much as possible.
 撮像素子2は、例えばCCDカメラである。CCDカメラは、例えば1024×1024画素の撮像面を備えている。撮像素子2は、撮像面の中心が光軸上に位置し、撮像面が光軸に対して垂直となるよう配置されている。
 なお、光源1から光が出た直後の光路上には、偏光フィルタ11と1/4波長板12が設けられている。偏光フィルタ11と1/4波長板12は、光源1に戻り光が入射するのを防止するものである。
 偏光フィルタ11は、特定の方向の直線偏光の光のみを透過させるものである。1/4波長板12は、偏光フィルタ11の透過軸(直線偏光の方向)から45°だけ結晶軸をずらして配置されており、直線偏光を円偏光に変換する機能を持っている。円偏光となった光は、物体Sに照射されたり参照光として撮像素子2に入射したりするが、第1のビームスプリッタ41や第2のビームスプリッタ45を使用している関係で、この光が戻ってくることがある。戻ってきた円偏光の光は、再度1/4λ波長板12を透過することで再び直線偏光の光に変換される。この直線偏光の光は、さらに1/4波長の位相差が生ずるので、最初の直線偏光の光とは90°偏光方向がずれることになる。このため、この光は偏光フィルタ11を透過することができず、偏光フィルタ11のところで遮蔽される。戻り光が光源1に入射することがないので、戻り光による光源1の破損等が防止される。
The imaging device 2 is, for example, a CCD camera. The CCD camera has an imaging surface of 1024 × 1024 pixels, for example. The imaging element 2 is disposed such that the center of the imaging surface is located on the optical axis and the imaging surface is perpendicular to the optical axis.
A polarization filter 11 and a 1⁄4 wavelength plate 12 are provided on the optical path immediately after the light is emitted from the light source 1. The polarizing filter 11 and the 1⁄4 wavelength plate 12 prevent return light from entering the light source 1.
The polarization filter 11 transmits only linearly polarized light in a specific direction. The 1⁄4 wavelength plate 12 is disposed with the crystal axis shifted by 45 ° from the transmission axis (direction of linear polarization) of the polarizing filter 11, and has a function of converting linear polarization into circular polarization. The light that has become circularly polarized light is irradiated to the object S or enters the imaging element 2 as a reference light, but this light is used because the first beam splitter 41 and the second beam splitter 45 are used. May come back. The returned circularly polarized light is converted again into linearly polarized light by transmitting through the 1⁄4 λ wavelength plate 12 again. This linearly polarized light further has a phase difference of 1⁄4 wavelength, so that the polarization direction deviates by 90 ° from the light of the first linearly polarized light. Therefore, this light can not pass through the polarizing filter 11 and is blocked at the polarizing filter 11. Since the return light does not enter the light source 1, damage or the like of the light source 1 due to the return light is prevented.
 また、物体Sの保持について説明すると、物体Sは、その性状や大きさ等に応じて適宜の部材で保持される。例えば、前述したようにシャーレのような透明な容器や透明なプレート状の部材の上に置いて物体Sを保持する他、大きい物体Sの場合には、挟み込んで保持するクランプ状の部材が使用されることもある。物体Sが基板のような板状のものであれば、枠状の部材で保持することもある。いずれにしても、このような保持部材により物体Sは導光系や撮像光学系5に対して所定位置に保持される。 Further, to describe holding of the object S, the object S is held by an appropriate member in accordance with the property, size, and the like. For example, as described above, it is placed on a transparent container such as a petri dish or a transparent plate-like member to hold the object S, and in the case of a large object S, a clamp-like member used to hold it is used It is also possible. If the object S is a plate-like one like a substrate, it may be held by a frame-like member. In any case, the object S is held at a predetermined position with respect to the light guide system and the imaging optical system 5 by such a holding member.
 次に、装置の制御系について図6を使用して説明する。図6は、第2の実施形態のデジタルホログラフィ装置の制御系を示した概略図である。
 選択用光学素子などを制御する制御系6は、制御ボード61と、反射モードと透過モードとを切り替えるために制御ボード61に信号を送る切替プログラム62がインストールされたコンピュータ63等で構成されている。
 本実施形態では、コンピュータ63に再生像の計算処理の機能も持たせるため、コンピュータ63として、デスクトップパソコンのような汎用OS上で動作する一般的なコンピュータを用いている。そして、各部の制御を可能にするため、そのインターフェースとして制御ボード61を付設している。切替プログラム62は、反射モードと透過モードとを切り替えるための制御信号をコンピュータ63から制御ボード61に送出するプログラムである。
Next, a control system of the apparatus will be described using FIG. FIG. 6 is a schematic view showing a control system of the digital holography device of the second embodiment.
The control system 6 for controlling the optical element for selection and the like comprises a control board 61 and a computer 63 etc. in which a switching program 62 for sending a signal to the control board 61 to switch between the reflection mode and the transmission mode is installed. .
In this embodiment, a general computer operating on a general-purpose OS such as a desktop personal computer is used as the computer 63 in order to provide the computer 63 also with the function of calculating the reproduction image. And in order to enable control of each part, a control board 61 is attached as its interface. The switching program 62 is a program for sending a control signal for switching between the reflection mode and the transmission mode from the computer 63 to the control board 61.
 制御ボード61には、送出された制御信号に基づいて、第1のビームスプリッタ41の切替部411、第2のビームスプリッタ45の駆動部451、およびビームストッパ343のストッパ駆動部344を駆動するための各動作信号を送出するようになっている。制御ボード61は、RAMのような記憶部を有しており、この記憶部には制御信号にしたがって各動作信号を出力するシーケンス制御プログラムが書き込まれている。
 切替プログラム62において反射モードが選択され、反射モードとする旨の制御信号が送出されると、シーケンス制御プログラムは、第1のビームスプリッタ41の切替部411、第2のビームスプリッタ45の駆動部451、およびビームストッパ343のストッパ駆動部344に反射モード用の動作信号を送るようプログラミングされている。また、切替プログラム62において透過モードが選択され、透過モードとする旨の制御信号が送出されると、シーケンス制御ブログラムは、透過モード用の動作信号を第1のビームスプリッタ41の切替部411、第2のビームスプリッタ45の駆動部451、およびビームストッパ343のストッパ駆動部344に送出するようプログラミングされている。
The control board 61 drives the switching unit 411 of the first beam splitter 41, the driving unit 451 of the second beam splitter 45, and the stopper driving unit 344 of the beam stopper 343 based on the control signal sent out. Each operation signal of is transmitted. The control board 61 has a storage unit such as a RAM, and a sequence control program for outputting each operation signal according to the control signal is written in the storage unit.
When the reflection mode is selected in the switching program 62 and a control signal indicating that the reflection mode is to be set is transmitted, the sequence control program is executed by the switching unit 411 of the first beam splitter 41 and the driving unit 451 of the second beam splitter 45. And the stopper drive 344 of the beam stopper 343 is programmed to send an operation signal for the reflection mode. Further, when the transmission mode is selected in the switching program 62 and a control signal indicating that the transmission mode is to be set is transmitted, the sequence control program transmits the operation signal for the transmission mode to the switching unit 411 of the first beam splitter 41, It is programmed to be delivered to the drive 451 of the second beam splitter 45 and to the stopper drive 344 of the beam stopper 343.
 なお、第1のビームスプリッタ41、第2のビームスプリッタ45、ビームストッパ343について、それぞれの位置や姿勢を検出するセンサを設け、各センサからの信号を制御ボード61に入力して制御に用いると好適である。各センサからの信号は、各部が正常に駆動されているかを監視したり、前回の動作と同じモードを行う際には位置や姿勢を確認するだけで動作信号を送らないようにしたりするのに使用され得る。
 また、光源1については、不図示の電源に設けられたスイッチでオンオフするようになっている。但し、光源1のオンオフについてもコンピュータ63から制御ボード61を介して信号を送ることで行うことも勿論可能である。
When sensors for detecting the position and posture of the first beam splitter 41, the second beam splitter 45, and the beam stopper 343 are provided, and signals from the respective sensors are input to the control board 61 and used for control. It is suitable. The signal from each sensor is used to monitor whether each part is driven normally or to not send an operation signal but only check the position and attitude when performing the same mode as the previous operation. It can be used.
The light source 1 is turned on and off by a switch provided to a power supply (not shown). However, the light source 1 can be turned on and off by sending a signal from the computer 63 via the control board 61 as a matter of course.
 上記コンピュータ63には、撮像素子2の撮像面で得られたホログラムデータに基づいて再生像を得るための所定の計算処理を実行するプログラム(以下、再生プログラム)64もインストールされている。
 ホログラムデータから再生像を得る計算処理については、種々の計算式や技術が周知となっており、任意のものを選択して適用することができる。一例として、フーリエ変換を利用したものを以下に示す。
In the computer 63, a program (hereinafter referred to as a reproduction program) 64 for executing a predetermined calculation process for obtaining a reproduced image based on the hologram data obtained on the imaging surface of the imaging device 2 is also installed.
With regard to calculation processing for obtaining a reproduced image from hologram data, various calculation formulas and techniques are well known, and arbitrary ones can be selected and applied. As an example, one using Fourier transform is shown below.
 再生面(再生像ができる平面)はホログラム面(ここでは撮像素子2の撮像面)と平行であってその距離はRであるとし、rはホログラム面上の一点から再生面上の一点までの距離であるとする。x,yはホログラム面上の座標、X,Yを再生面上の座標である。
 再生面での複素振幅分布は、キルヒホッフの回折積分の式に従い、式1のように表せる。g(x、y)はホログラムデータ、G(X,Y)は生成像の複素振幅分布である。
Figure JPOXMLDOC01-appb-M000001

 式1において、λは波長、kは波数である。式1に対し、式2に示すフレネル近似を適用して代入すると、式3が得られる。
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

 式3において、積分をフーリエ変換であるとみなして変形すると、式4が得られる。
Figure JPOXMLDOC01-appb-M000004

 式4においてFのカッコ内はフーリエ変換であることを示す。xやyは、撮像面の各ピクセルからの出力であり、離散フーリエ変換をすることで再生像G(X,Y)が得られる。
The reproduction plane (the plane on which the reproduced image can be formed) is parallel to the hologram plane (here, the imaging plane of the imaging device 2) and the distance is R. r is from one point on the hologram plane to one point on the reproduction plane Suppose that it is a distance. x and y are coordinates on the hologram surface, and X and Y are coordinates on the reproduction surface.
The complex amplitude distribution on the reproduction surface can be expressed as Equation 1 according to Kirchhoff's equation of diffraction integral. g (x, y) is hologram data, and G (X, Y) is a complex amplitude distribution of a generated image.
Figure JPOXMLDOC01-appb-M000001

In Equation 1, λ is the wavelength and k is the wave number. Equation 3 is obtained by substituting the Fresnel approximation shown in equation 2 for equation 1 and substituting it.
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

In Equation 3, if the integral is considered to be a Fourier transform and is transformed, Equation 4 is obtained.
Figure JPOXMLDOC01-appb-M000004

The parenthesis of F in Equation 4 indicates that it is a Fourier transform. x and y are outputs from each pixel of the imaging plane, and a discrete Fourier transform is performed to obtain a reproduced image G (X, Y).
 また、コンピュータ63には、全体の動作を制御するメインプログラム(不図示)がインストールされている。メインプログラムは、装置がオンされると自動で起動するものである。メインプログラムは、反射モードと透過モードとのいずれかを選ぶ画面をディスプレイに表示したり、ホログラムデータの取得及び再生像の形成というメインの動作の実行を指令するボタンを表示したりするものである。 In addition, a main program (not shown) for controlling the entire operation is installed in the computer 63. The main program is started automatically when the device is turned on. The main program displays a screen for selecting one of the reflection mode and the transmission mode on the display, and displays a button for instructing execution of main operations such as acquisition of hologram data and formation of a reproduced image. .
 次に、上記第2の実施形態のデジタルホログラフィ装置の動作について、図3~図9に基づいて以下に説明する。図7~図9は、第2の実施形態のデジタルホログラフィ装置の動作について示した概略図である。このうち、図7は反射モードと透過モードとにおける各光の進行状況について対比して示した図、図8は反射モードでの動作フローの概略を示した図、図9は透過モードでの動作フローの概略を示した図である。
 まず、ホログラムデータを取得する対象である物体Sを保持部材によって所定位置に配置して保持する。この状態で、装置の電源をオンし、メインプログラムを起動させる。コンピュータ63のディスプレイ上には、反射モードと透過モードのいずれを選択するかの画面が表示されるので、入力部によっていずれかを選択する。
Next, the operation of the digital holography device of the second embodiment will be described below based on FIGS. 3 to 9. 7 to 9 are schematic diagrams showing the operation of the digital holography device of the second embodiment. Among them, FIG. 7 is a diagram showing the progress of each light in the reflection mode and the transmission mode, FIG. 8 is a diagram schematically showing an operation flow in the reflection mode, and FIG. 9 is an operation in the transmission mode It is the figure which showed the outline of the flow.
First, an object S for which hologram data is to be acquired is disposed and held at a predetermined position by the holding member. In this state, the power of the device is turned on to start the main program. A screen for selecting either the reflection mode or the transmission mode is displayed on the display of the computer 63, so either is selected by the input unit.
 例えば、反射モードを選択すると、切替プログラム62が実行され、反射モードとする制御信号が制御ボード61に送出される。この制御信号を受けた制御ボード61は、反射モード用の各動作信号を第1のビームスプリッタ41の切替部411と、第2のビームスプリッタ45の駆動部451と、ビームストッパ343のストッパ駆動部344に送出する。
 具体的に説明すると、制御ボード61は、まず、図8のS1に示すように、切替部411に動作信号を送り、第1のビームスプリッタ41が第1の状態となるようにする。第1の状態とは、図7(A)に示すように、反射回折光用導光系31を介して第1のビームスプリッタ41に入射した光が、その反射面で反射して物体Sに向けて進む姿勢を取る状態である。
For example, when the reflection mode is selected, the switching program 62 is executed, and a control signal for setting the reflection mode is sent to the control board 61. The control board 61 having received this control signal controls each operation signal for the reflection mode to the switching unit 411 of the first beam splitter 41, the drive unit 451 of the second beam splitter 45, and the stopper drive unit of the beam stopper 343. Send to 344.
Specifically, as shown in S1 of FIG. 8, the control board 61 sends an operation signal to the switching unit 411 so that the first beam splitter 41 is in the first state. In the first state, as shown in FIG. 7A, the light incident on the first beam splitter 41 via the light guide system 31 for reflected diffraction light is reflected by the reflection surface thereof to form the object S. It is in the state of taking a posture to advance.
 次に、制御ボード61は、図8のS2および図7(A)に示すように、駆動部451に動作信号を送り、第2のビームスプリッタ45を主光路上の分岐位置から退避させる。すなわち、反射モードでは、透過回折光用導光系32は使用しない。
 その次に、図8のS3および図7(A)に示すように、制御ボード61は、ストッパ駆動部344に動作信号を送り、ビームストッパ343を光路から退避させる。
 これで制御ボード61上のシーケンス制御プログラムの動作は終了である。
Next, as shown in S2 of FIG. 8 and FIG. 7A, the control board 61 sends an operation signal to the drive unit 451 to retract the second beam splitter 45 from the branch position on the main optical path. That is, in the reflection mode, the light guide system 32 for transmission diffraction light is not used.
Next, as shown in S3 of FIG. 8 and FIG. 7A, the control board 61 sends an operation signal to the stopper drive unit 344 to retract the beam stopper 343 from the light path.
The operation of the sequence control program on the control board 61 is now complete.
 次に、図8のS4に示すように、光源1の電源をオンにして光を放出させる。光源1から放出された光L1は、反射回折光用導光系31を介して第1のビームスプリッタ41に入射する。光L1は、第1のビームスプリッタ41の反射面により物体Sに向けて反射する一方の光L2と、第1のビームスプリッタ41を透過して追加導光系34に達する他方の光L3に分割される。
 一方の光L2は、撮像光学系5を介して物体Sに照射され、物体Sからは反射回折光L4が出射する。反射回折光L4は、再び撮像光学系5を経て第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2に入射する。
 他方の光L3は、追加導光系34の折り返しミラー342に反射して戻り、第1のビームスプリッタ41に再入射する。そして、この光L3は、第1のビームスプリッタ41の反射面で反射し、参照光として撮像素子2の撮像面に入射する。
 そして、図8のS5,S6に示すように、撮像素子2の撮像面では反射回折光L4と参照光L3とが干渉し、この干渉縞が撮像面で撮像されてホログラムデータがコンピュータ63に出力される。ホログラムデータが出力されると、コンピュータ63上で再生プログラム64が実行され、上述したような計算処理を行うことで物体Sの再生像が形成される。
Next, as shown in S4 of FIG. 8, the light source 1 is turned on to emit light. The light L1 emitted from the light source 1 is incident on the first beam splitter 41 via the light guide system 31 for reflection diffraction light. The light L1 is split into one light L2 that is reflected toward the object S by the reflection surface of the first beam splitter 41 and the other light L3 that passes through the first beam splitter 41 and reaches the additional light guiding system 34. Be done.
One light L2 is irradiated to the object S through the imaging optical system 5, and the reflected diffracted light L4 is emitted from the object S. The reflected diffracted light L 4 passes through the imaging optical system 5 again and enters the first beam splitter 41, passes through the first beam splitter 41, and enters the imaging element 2.
The other light L 3 is reflected back to the folding mirror 342 of the additional light guiding system 34, and reenters the first beam splitter 41. Then, the light L3 is reflected by the reflection surface of the first beam splitter 41, and is incident on the imaging surface of the imaging element 2 as reference light.
Then, as shown by S5 and S6 in FIG. 8, the reflected diffracted light L4 and the reference light L3 interfere with each other on the imaging surface of the imaging device 2, and the interference fringes are imaged on the imaging surface and the hologram data is output to the computer 63. Be done. When the hologram data is output, the reproduction program 64 is executed on the computer 63, and the reproduction image of the object S is formed by performing the calculation processing as described above.
 また、コンピュータ63上で透過モードが選択されると、切替プログラム62は透過モードとする制御信号を制御ボード61に送出する。この制御信号を受けた制御ボード61は、シーケンス制御プログラムを実行し、反射モード用の各動作信号を第1のビームスプリッタ41の切替部411と、第2のビームスプリッタ45の駆動部451と、ビームストッパ343のストッパ駆動部344に送出する。
 具体的に説明すると、図9のS1に示すように、制御ボード61は、上記切替部411によって、第1のビームスプリッタ41を駆動し、第1のビームスプリッタ41を第2の状態とする。第2の状態は、図7(B)に示すように、反射回折光用導光系31を介して第1のビームスプリッタ41に入射した光が反射面で反射して撮像素子2に向けて進む姿勢を取る状態である。第2の状態は、第1のビームスプリッタ41の反射面の向きが第1の状態とは90°異なる。
 次に、図9のS2および図7(B)に示すように、制御ボード61は、上記駆動部451に動作信号を送り、第2のビームスプリッタ45を主光路上に配置する。すなわち透過モードでは、透過回折光用導光系32および反射回折光用導光系31を使用する。
 その次に、図9のS3および図7(B)に示すように、制御ボード61は、上記ストッパ駆動部344に動作信号を送り、ビームストッパ343を追加導光系34の光路上に配置し、光路を遮断する。
 これで、制御ボード61上のシーケンス制御プログラムの動作は終了である。
When the transmission mode is selected on the computer 63, the switching program 62 sends a control signal for setting the transmission mode to the control board 61. The control board 61 that has received this control signal executes a sequence control program, and switches each operation signal for the reflection mode to the switching unit 411 of the first beam splitter 41, and the driving unit 451 of the second beam splitter 45, The beam is sent to the stopper drive unit 344 of the beam stopper 343.
Specifically, as shown in S1 of FIG. 9, the control board 61 causes the switching unit 411 to drive the first beam splitter 41 to bring the first beam splitter 41 into the second state. In the second state, as shown in FIG. 7B, the light incident on the first beam splitter 41 through the light guide system 31 for reflected diffraction light is reflected by the reflection surface and directed to the imaging device 2 It is in a state of taking a forward posture. In the second state, the orientation of the reflective surface of the first beam splitter 41 differs by 90 ° from the first state.
Next, as shown in S2 of FIG. 9 and FIG. 7B, the control board 61 sends an operation signal to the drive unit 451 and arranges the second beam splitter 45 on the main optical path. That is, in the transmission mode, the light guide system 32 for transmission diffraction light and the light guide system 31 for reflection diffraction light are used.
Next, as shown in S3 of FIG. 9 and FIG. 7B, the control board 61 sends an operation signal to the stopper drive unit 344 and arranges the beam stopper 343 on the optical path of the additional light guiding system 34. , Block the light path.
At this point, the operation of the sequence control program on the control board 61 is completed.
 次に、図9のS4に示すように、光源1を動作させ光を放出させる。光源1から放出された光は、第2のビームスプリッタ45に入射する。この光は、第2のビームスプリッタ45を透過する一方の光L5と、第2のビームスプリッタ45の反射面で反射して物体Sに向う他方の光L6とに分岐される。一方の光L5は、参照光導光系33に兼用された反射回折光用導光系31により導かれ、第1のビームスプリッタ41に入射する。第1のビームスプリッタ41に入射した光L5は、第1のビームスプリッタ41の反射面で反射して撮像素子2に向かい、参照光として撮像素子2の撮像面に入射する。なお、第1のビームスプリッタ41を透過した光は、ビームストッパ343により遮蔽され、第1のビームスプリッタ41には戻らない。
 第2のビームスプリッタ45で分割された他方の光L6は、透過回折光用導光系32を介して物体Sに照射される。光は物体Sを透過し、透過回折光L7となって該物体Sから放射される。透過回折光L7は、撮像光学系5を介して第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2の撮像面に入射する。
 図9のS5,S6に示すように、撮像素子2の撮像面では、参照光L5と透過回折光L7との干渉縞が形成され、この干渉縞が撮像されてホログラムデータが得られる。ホログラムデータは、同様にコンピュータ63に送られ、再生プログラム64が実行されて物体Sの再生像が形成される。
Next, as shown in S4 of FIG. 9, the light source 1 is operated to emit light. The light emitted from the light source 1 enters the second beam splitter 45. This light is split into one light L5 passing through the second beam splitter 45 and the other light L6 reflected by the reflection surface of the second beam splitter 45 and directed to the object S. One light L <b> 5 is guided by the light guide system 31 for reflected diffraction light which is also used as the reference light light guiding system 33 and is incident on the first beam splitter 41. The light L5 incident on the first beam splitter 41 is reflected by the reflection surface of the first beam splitter 41, travels toward the imaging device 2, and is incident on the imaging surface of the imaging device 2 as reference light. The light transmitted through the first beam splitter 41 is blocked by the beam stopper 343 and does not return to the first beam splitter 41.
The other light L6 split by the second beam splitter 45 is irradiated to the object S through the light guide system 32 for transmission diffraction light. The light passes through the object S and is emitted from the object S as transmission diffracted light L7. The transmission diffracted light L 7 enters the first beam splitter 41 through the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging surface of the imaging device 2.
As shown in S5 and S6 of FIG. 9, on the imaging surface of the imaging device 2, interference fringes of the reference light L5 and the transmission diffraction light L7 are formed, and the interference fringes are imaged to obtain hologram data. The hologram data is similarly sent to the computer 63, and the reproduction program 64 is executed to form a reproduced image of the object S.
 上記したように、反射モード及び透過モードを順次行って像が再生されるが、再生像の情報には、振幅情報と位相情報とが含まれる。一般的に言えば、振幅情報は物体の表面の2次元的な形状やコントラストを観察するのに適しており、位相情報は物体の奥行きにおける形状を観察するのに適している。したがって、再生像を得る際、振幅情報のみを取り出して2次元的な形状等を主に観察したり、位相情報のみを取り出して奥行き状態の観察をしたりすることがある。 As described above, although the reflection mode and the transmission mode are sequentially performed to reproduce the image, the information on the reproduced image includes amplitude information and phase information. Generally speaking, the amplitude information is suitable for observing the two-dimensional shape and contrast of the surface of the object, and the phase information is suitable for observing the shape at the depth of the object. Therefore, when obtaining a reproduced image, sometimes only amplitude information is extracted and a two-dimensional shape or the like is mainly observed, or only phase information is extracted and a depth state is observed.
 上記本実施形態の装置の動作において、撮像光学系5がテレセントリックなものであることは、精度の高いホログラムデータを得る観点において顕著な効果を有している。以下、この点について、図10を使用して説明する。
 図10は、第2の実施形態の装置がテレセントリックな撮像光学系5を備えていることの効果を示した概略図である。図10(A)は比較のため示したもので、テレセントリックではない撮像光学系を使用した場合の波面図である。図10(B)は、本実施形態のもので、テレセントリックな撮像光学系5を使用した場合の波面図である。
In the operation of the apparatus of the present embodiment, the fact that the imaging optical system 5 is telecentric has a remarkable effect from the viewpoint of obtaining high-precision hologram data. Hereinafter, this point will be described with reference to FIG.
FIG. 10 is a schematic view showing the effect of the apparatus of the second embodiment including the telecentric imaging optical system 5. FIG. 10A is shown for comparison, and is a wavefront diagram in the case of using an imaging optical system that is not telecentric. FIG. 10B is a wavefront diagram in the case of using the telecentric imaging optical system 5 according to the present embodiment.
 本実施形態の装置におけるテレセントリック性は、無限補正光学系を構成する対物レンズ51と結像レンズ52とをコンフォーカルに配置することで達成されている。図10(A1)に示すように、一般的な有限補正光学系を使用すると、透過モードでは、物体Sに対して平面波Lpを照射することができる。ところが、有限補正光学系では、透過モードから反射モードに切替えた場合に、図10(A2)に示すように、平面波Lpを物体Sに照射しようとしても、撮像光学系5を経ることになるため、対物レンズにより集光された光(球面波)Lsが物体Sに照射されることになってしまう。この場合、撮像素子2に撮像される物体光が歪められることに起因して、精度良く再生像を形成することができない。 The telecentricity in the apparatus of the present embodiment is achieved by arranging the objective lens 51 and the imaging lens 52 constituting the infinite correction optical system in a confocal manner. As shown in FIG. 10 (A1), when a general finite correction optical system is used, the plane wave Lp can be irradiated to the object S in the transmission mode. However, in the finite correction optical system, when the plane mode Lp is applied to the object S as shown in FIG. 10 (A2) when passing from the transmission mode to the reflection mode, it passes through the imaging optical system 5. The object S is irradiated with the light (spherical wave) Ls collected by the objective lens. In this case, due to distortion of the object light imaged by the imaging device 2, it is not possible to form a reproduced image with high accuracy.
 また、図10(A2)に示すように球面波Lsが物体Sに照射されると、透過モードの際と比較して視野が変化してしまう。また、デジタルホログラフィは、光軸上の任意位置での再生像を計算できるため、原理的に作動距離を可変とできる特徴を持つが、比較例の光学系では、物体光が歪められているため、作動距離の変化に対して視野も変化してしまう。この視野の変化を抑えたい場合、別途補正計算が必要となる。
 これに対して、図10(B)に示す本実施形態のように、無限補正光学系を使用し、結像レンズ52と対物レンズ51とをコンフォーカルな光学配置とすれば、テレセントリックな光学系となることから、反射モードおよび透過モードの何れを選択した場合でも、物体Sに対して平面波Lpが照射される(図10(B1)(B2))。なお、コンフォーカルとは、前述したように、対物レンズ51の像側の焦点と結像レンズ52の物側の焦点とが一致しているということである。
In addition, as shown in FIG. 10 (A2), when the object S is irradiated with the spherical wave Ls, the field of view changes as compared with the transmission mode. Also, digital holography has the feature that the working distance can be changed in principle because the reproduced image can be calculated at an arbitrary position on the optical axis, but in the optical system of the comparative example, the object light is distorted. The field of view also changes as the working distance changes. In order to suppress the change in the visual field, a correction calculation is separately required.
On the other hand, as in the present embodiment shown in FIG. 10B, if an infinite correction optical system is used and the imaging lens 52 and the objective lens 51 have a confocal optical arrangement, a telecentric optical system Thus, the plane wave Lp is emitted to the object S regardless of whether the reflection mode or the transmission mode is selected (Fig. 10 (B1) (B2)). Confocal means that the focal point on the image side of the objective lens 51 and the focal point on the object side of the imaging lens 52 coincide with each other as described above.
 このように、本実施形態によれば、反射モードおよび透過モードの何れを選択した場合でも物体Sに対して平面波Lpが照射される。したがって、透過モードおよび反射モードのいずれも同サイズの領域を観察対象とでき、また同一の再生計算手段により像再生できる。さらに、物体光が歪められないために、補正計算が不要となり、デジタルホログラフィの原理的特徴である、作動距離を可変とした像再生も自由に行える。さらに、テレセントリックな光学系であるため、作動距離を可変とした像再生において結像倍率が変化しないというメリットもある。なお、作動距離を可変とした像再生とは、物体の奥行き方向で任意の位置にピントを合わせて像再生が行えるということである。 Thus, according to the present embodiment, the plane wave Lp is irradiated to the object S regardless of which of the reflection mode and the transmission mode is selected. Therefore, in both the transmission mode and the reflection mode, regions of the same size can be observed, and image reproduction can be performed by the same reproduction calculation means. Furthermore, since the object light is not distorted, correction calculation is not necessary, and image reproduction with variable working distance, which is a fundamental feature of digital holography, can be freely performed. Furthermore, since the optical system is a telecentric optical system, there is also an advantage that the imaging magnification does not change in image reproduction in which the working distance is variable. Note that image reproduction in which the working distance is variable means that image reproduction can be performed by focusing on an arbitrary position in the depth direction of the object.
 本実施形態のデジタルホログラフィ装置においても、反射モードと透過モードの双方のモードが一台で行えるので、物体Sに対して多様な観察や計測を低コストに行うことができる。加えて、反射回折光と透過回折光とが時間的に分離されて撮像素子2に入射するので、光学系の構成が簡略化される上、撮像素子2も一個で済む。このため、一台の装置のコストも安くなる。
 また、反射回折光用の光が物体Sの第1の側から照射され、透過回折光用の光が反対の第2の側から照射されるので、第1の側で専ら物体光を捉えることができる。このため、物体Sを無理に空中に浮いた状態にすることなく精度の高いホログラムデータを得ることができる。
 また、撮像光学系5は、反射モードにおいても透過モードにおいても物体光を撮像素子2に入射させるものであるが、両モードで共用されるものであるため、この点でも光学系の構成が簡略化され、装置のコストを低減するのに貢献している。
Also in the digital holography device of this embodiment, since both the reflection mode and the transmission mode can be performed by one unit, various observations and measurements can be performed on the object S at low cost. In addition, since the reflection diffraction light and the transmission diffraction light are temporally separated and enter the imaging device 2, the configuration of the optical system is simplified and only one imaging device 2 is sufficient. For this reason, the cost of one device is also reduced.
In addition, since light for reflected diffraction light is irradiated from the first side of the object S and light for transmission diffraction light is irradiated from the opposite second side, the object light is captured exclusively on the first side. Can. For this reason, it is possible to obtain highly accurate hologram data without forcing the object S to float in the air.
Further, although the imaging optical system 5 causes object light to be incident on the imaging element 2 in both the reflection mode and the transmission mode, the optical system is simplified in this point as it is shared by both modes. Contribute to reducing the cost of the device.
 なお、本発明を実施する上では、反射モード用と透過モード用とで別々の撮像光学系を設け、リボルバ式の機構等を採用して択一的に使用するようにしても良い。反射モードの際には反射モード用の撮像光学系を撮像光路Pi上に配置し、透過モードの際には透過モード用の撮像光学系を撮像光路Pi上に切り替えて配置する。
 また、両モードで撮像光学系を共用する場合でも、全部を共用する場合の他、一部を共用しても良い。例えば、結像レンズは共用とし、対物レンズを反射モード用と透過モード用に用意して切り替えて使うようにしても良い。
In the present invention, different imaging optical systems may be provided for the reflection mode and the transmission mode, and a revolver type mechanism or the like may be adopted and used alternatively. In the reflection mode, the imaging optical system for the reflection mode is disposed on the imaging optical path Pi, and in the transmission mode, the imaging optical system for the transmission mode is switched and disposed on the imaging optical path Pi.
Further, even in the case where the imaging optical system is shared in both modes, in addition to the case where all the imaging optical systems are shared, a part may be shared. For example, the imaging lens may be shared, and the objective lens may be prepared for the reflection mode and the transmission mode and switched for use.
 また、図15の装置と比べると、本実施形態の装置は、撮像光路Piが一直線となっている。すなわち、物体Sから出た物体光は、一直線上の光路を進んで撮像素子2に入射する。この点は、以下のような効果がある。
 まず、光路が一直線であるため、光軸の調整が容易である。すなわち、精度の高いホログラムデータを得るには、物体S、撮像光学系5及び撮像素子2が精度良く光軸上に並ぶ必要があるが、光軸が一直線であるため、この調整が容易である。
 また、図15のように、物体Sから撮像素子2までの光路が複雑に屈曲したものであると、ミラー等の光学素子が多く必要になり、その分だけコストがアップする。本実施形態によれば、そのようなコストアップはない。
 さらに、光路が複雑に屈曲していると、ミラー等の光学素子による波面の乱れが生じやすいが、本実施形態ではこのような問題はない。この点でも精度の高いホログラムデータの取得が可能となっている。
Further, as compared with the apparatus of FIG. 15, the apparatus of the present embodiment has a straight imaging light path Pi. That is, object light emitted from the object S travels along a straight optical path and enters the imaging device 2. This point has the following effects.
First, since the optical path is a straight line, adjustment of the optical axis is easy. That is, in order to obtain highly accurate hologram data, the object S, the imaging optical system 5 and the imaging device 2 need to be precisely aligned on the optical axis, but this adjustment is easy because the optical axis is a straight line. .
Further, as shown in FIG. 15, when the optical path from the object S to the imaging device 2 is complicatedly bent, many optical elements such as mirrors are required, and the cost is increased accordingly. According to the present embodiment, there is no such cost increase.
Furthermore, when the optical path is bent in a complicated manner, the disturbance of the wavefront due to an optical element such as a mirror is likely to occur, but such a problem does not occur in this embodiment. This point also makes it possible to obtain hologram data with high accuracy.
 また、本実施形態の装置は、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326を使用しており、物体光及び参照光のいずれもがスペイシャルフィルタを経由した光となっている。このため、ノイズが除去された状態で波面が撮像素子2に入射する。この点も、ホログラムデータの精度向上に大きく貢献している上、スペイシャルフィルタは物体Sに対してより近い光路上に位置している。このため、スペイシャルフィルタを経由した後の要因によってノイズが波面に紛れ込んでしまう可能性が小さくなっている。この点も、ホログラムデータの精度向上に大きく貢献している。 Further, the apparatus of this embodiment uses the first spatial filter 316 and the second spatial filter 326, and both the object light and the reference light are light passing through the spatial filter. . For this reason, the wavefront is incident on the imaging element 2 in a state where the noise is removed. This point also greatly contributes to the improvement of the accuracy of the hologram data, and the spatial filter is located on the optical path closer to the object S. For this reason, it is less likely that noise will be introduced into the wavefront due to factors after passing through the spatial filter. This point also greatly contributes to the improvement of the accuracy of the hologram data.
 また、本実施形態の装置は、第1の実施形態と比較すると、参照光導光系33を物体光用の導光系と共通化することで、さらに光学系を簡略化し、可干渉性を高めており、より実用的な装置となっている。以下、この効果について説明する。
 まず、反射モードの際には、反射回折光用の光と参照光とは、光源1から第1のビームスプリッタ41までは全く同一の導光系によって導かれる。そして、第1のビームスプリッタ41に分かれて反射回折光用の光は物体Sに達し、参照光は追加導光系34によって物体Sを経ることなく撮像素子2に達する。
 このように、なるべく導光系を共用しながら物体光と参照光とが撮像素子2に入射するようにした構成であると、光学的な条件の差を小さくしたり光路長の差を少なくしたりすることが容易である。このため、参照光と物体光との可干渉性を高めることができ、より精度の高いホログラムデータを得るのに役立つとともに、光学素子の使用数の削減による装置コストの低下が実現される。追加導光系34は、光を折り返して第1のビームスプリッタ41に戻してそこから撮像素子2に参照光として入射させている点も、同様の意味がある。
 また、透過モードでは、反射回折光用導光系31によって導かれた光が第1のビームスプリッタ41を経て撮像素子2に入射しており、参照光の導光用のほぼ全ての部分が反射回折光用導光系31を兼用している。このため、可干渉性がさらに高まり、光学系の構成がより簡略化され、光学素子の使用数の低減によるコストダウンがさらに実現されている。
Further, the device of the present embodiment further simplifies the optical system and enhances the coherence by making the reference light guiding system 33 common to the light guiding system for object light, as compared with the first embodiment. It is a more practical device. Hereinafter, this effect will be described.
First, in the reflection mode, the light for reflected diffraction light and the reference light are guided from the light source 1 to the first beam splitter 41 by one and the same light guiding system. Then, the light is split into the first beam splitter 41, and the light for reflected diffraction light reaches the object S, and the reference light reaches the imaging element 2 without passing through the object S by the additional light guiding system.
As described above, in the configuration in which the object light and the reference light are made incident on the imaging element 2 while sharing the light guide system as much as possible, the difference in optical conditions is reduced or the difference in optical path lengths is reduced. It is easy to As a result, the coherency between the reference light and the object light can be enhanced, which helps to obtain more accurate hologram data, and a reduction in the device cost due to the reduction in the number of optical elements used is realized. The additional light guiding system 34 has a similar meaning in that light is returned to the first beam splitter 41 and then incident on the imaging element 2 as reference light.
Further, in the transmission mode, the light guided by the light guide system 31 for reflection diffracted light passes through the first beam splitter 41 and is incident on the image pickup element 2, and almost all the portions for guiding the reference light are reflected. The light guide system 31 for diffracted light is also used. Therefore, the coherency is further enhanced, the configuration of the optical system is further simplified, and the cost reduction due to the reduction in the number of used optical elements is further realized.
 次に、本発明の第3の実施形態のデジタルホログラフィ装置について説明する。
 図11は、本発明の第3の実施形態に係るデジタルホログラフィ装置の正面概略図である。第3の実施形態の装置は、第2の実施形態の装置においてオフアクシス式による動作を可能としたものである。オフアクシス式は、物体光と参照光とが角度をもって入射するので、像再生時において所望の像(真像)が共役像や0次像(参照光による像)から分離して形成され、像が重なることを防ぐことができるという利点がある。
 図11に示す装置は、オフアクシス式を可能にするため、参照光導光系33の構成が第2の実施形態と異なっている。すなわち、参照光導光系33を構成するミラーの一つが、光軸に対する角度が変更可能な状態で配置されている。
 具体的に説明すると、透過モードの際に参照光導光系33に兼用される反射回折光用導光系31のうち、第2の実施形態における第2のミラー312がオフアクシス用ミラー(以下、第1オフアクシス用ミラー)317に変更されている。第1オフアクス用ミラー317には、第1オフアクシス用駆動部318が設けられており、第1オフアクシス用ミラー317の光軸に対する配置角度を変更可能としている。
Next, a digital holography device of a third embodiment of the present invention will be described.
FIG. 11 is a schematic front view of a digital holography device according to a third embodiment of the present invention. The apparatus of the third embodiment enables off-axis operation in the apparatus of the second embodiment. In the off-axis type, since the object light and the reference light are incident at an angle, a desired image (true image) is formed separately from the conjugate image or the zero-order image (image by the reference light) at the time of image reproduction. Has the advantage of being able to prevent overlapping.
The device shown in FIG. 11 differs from that of the second embodiment in the configuration of the reference light guiding system 33 in order to enable the off-axis system. That is, one of the mirrors constituting the reference light guiding system 33 is arranged in a state where the angle with respect to the optical axis can be changed.
Specifically, the second mirror 312 in the second embodiment is an off-axis mirror in the light guide system 31 for reflected diffraction light that is also used as the reference light light guide system 33 in the transmission mode. First off axis mirror) 317 has been changed. The first off-axis mirror 317 is provided with a first off-axis drive unit 318, and the arrangement angle of the first off-axis mirror 317 with respect to the optical axis can be changed.
 また、反射モードの際の参照光導光系33については、追加導光系34の構成が大きく変更されている。第3の実施形態における追加導光系34も、反射モード時に第1のビームスプリッタ41を透過した光を折り返して第1のビームスプリッタ41に戻すものである。第3の実施形態では、オフアクシス用ミラーを撮像素子2に対して近い位置に配置するとともに、物体光と光路長の差を少なく(または無いように)するため、追加導光系34はループ状の光路を形成するものとなっている。
 具体的に説明すると、追加導光系34は、第1のビームスプリッタ41から延びる光路上に、偏光ビームスプリッタ345を有している。偏光ビームスプリッタ345は、特定の偏光方向の直線偏光成分のみを透過し、他の成分は反射するビームスプリッタである。第1のビームスプリッタ41と偏光ビームスプリッタ345の間には、1/4波長板346が設けられている。
Further, the configuration of the additional light guiding system 34 is largely changed regarding the reference light guiding system 33 in the reflection mode. The additional light guiding system 34 in the third embodiment is also for returning the light transmitted through the first beam splitter 41 in the reflection mode back to the first beam splitter 41. In the third embodiment, the additional light guiding system 34 is a loop in order to arrange the off-axis mirror close to the image pickup element 2 and reduce (or eliminate) the difference between the object light and the optical path length. Form an optical path of
Specifically, the additional light guiding system 34 has a polarization beam splitter 345 on the light path extending from the first beam splitter 41. The polarization beam splitter 345 is a beam splitter that transmits only a linear polarization component in a specific polarization direction, and reflects the other component. A quarter-wave plate 346 is provided between the first beam splitter 41 and the polarization beam splitter 345.
 前述したように、光源1からの光は、直後の偏光フィルタ11及び1/4波長板12により円偏光に変換されている。このため、1/4波長板346を透過すると、光はさらに45°ずれた方向の直線偏光となる。偏光ビームスプリッタ345は、この方向の直線偏光の光を反射し、他の光を透過するものとなっている。
 そして、偏光ビームスプリッタ345で反射した直線偏光の光の光路に沿って、第5のミラー347、第6のミラー348及び第2オフアクシス用ミラー349が設けられている。これらミラーに反射することで、光は偏光ビームスプリッタ345に戻るようになっている。第2オフアクシス用ミラー349には、第2オフアクシス用駆動部350が設けられている。
 偏光ビームスプリッタ345と第5のミラーとの間には、1/2波長板351が設けられている。したがって、偏光ビームスプリッタ345に戻る光は90°ずれた偏光方向になっており、偏光ビームスプリッタ345に反射せずに透過する。この光は、1/4波長板346を再度透過することにより再び円偏光に変換され、第1のビームスプリッタ41を経て撮像素子2に達するようになっている。
As described above, the light from the light source 1 is converted to circularly polarized light by the polarization filter 11 and the 1⁄4 wavelength plate 12 immediately after. Therefore, when the light is transmitted through the 1⁄4 wavelength plate 346, the light is further linearly polarized in the direction shifted by 45 °. The polarization beam splitter 345 reflects linearly polarized light in this direction and transmits other light.
A fifth mirror 347, a sixth mirror 348 and a second off-axis mirror 349 are provided along the optical path of the linearly polarized light reflected by the polarization beam splitter 345. The light is reflected back to the polarizing beam splitter 345 by being reflected by these mirrors. The second off-axis mirror 349 is provided with a second off-axis drive unit 350.
A half wave plate 351 is provided between the polarization beam splitter 345 and the fifth mirror. Therefore, the light returning to the polarization beam splitter 345 has a polarization direction shifted by 90 °, and transmits without being reflected by the polarization beam splitter 345. This light is converted into circularly polarized light again by transmitting through the 1⁄4 wavelength plate 346 again, and reaches the imaging element 2 through the first beam splitter 41.
 なお、この実施形態においても、透過モードでは追加導光系34は使用しないので、光を遮断するビームストッパ及びストッパ駆動部が設けられている。これらビームストッパ及びストッパ駆動部の図示は省略されているが、例えば、1/4波長板346と偏光ビームスプリッタ345の間にビームストッパを配置することができる。
 また、追加導光系34には、ビームエキスパンダ352が配置されている。このビームエキスパンダ352は、例えば等倍のビームエキスパンダであり、図4に示すものと同様に内部にピンホールを持ち、スペイシャルフィルタ構成を成す。これにより、スペイシャルフィルタ直前までのミラーや波長板などの光学部品に由来する波面の揺らぎを除去できる。
Also in this embodiment, since the additional light guiding system 34 is not used in the transmission mode, a beam stopper and a stopper driving unit for blocking light are provided. Although illustration of the beam stopper and the stopper driving unit is omitted, for example, the beam stopper can be disposed between the 1⁄4 wavelength plate 346 and the polarization beam splitter 345.
Further, a beam expander 352 is disposed in the additional light guide system 34. The beam expander 352 is, for example, an equal-magnification beam expander, has a pinhole inside as in the case shown in FIG. 4, and forms a spatial filter configuration. Thereby, it is possible to remove the fluctuation of the wavefront derived from the optical components such as the mirror and the wave plate immediately before the spatial filter.
 図12を参照しながら、オフアクシス用ミラーについてさらに詳説する。図12は、第3の実施形態で用いられているオフアクシス用ミラーの配置角度の変化を示した図であり、図12(1)は平面概略図、図12(2)は斜視概略図である。図12には、一例として、追加導光系34に配置された第2オフアクシス用ミラー349について示している。
 図9に示すように、第2オフアクシス用ミラー349は、光軸に対する角度が45°ではなく僅かに傾いた姿勢を取り得るようになっている。この結果、撮像素子2に入射する際の参照光の入射角度は、物体光の入射角度と同じ角度ではなく、物体光の入射角度に対して所定の角度(以下、オフアクシス角と呼び、図12(1)にθで示す)が付与された状態にできるようになっている。
The off-axis mirror will be further described in detail with reference to FIG. FIG. 12 is a view showing a change in the arrangement angle of the off-axis mirror used in the third embodiment, and FIG. 12 (1) is a schematic plan view, and FIG. 12 (2) is a schematic perspective view. is there. FIG. 12 shows, as an example, the second off-axis mirror 349 disposed in the additional light guiding system 34.
As shown in FIG. 9, the second off-axis mirror 349 can be in a posture in which the angle with respect to the optical axis is not 45 ° but slightly inclined. As a result, the incident angle of the reference light when entering the imaging device 2 is not the same angle as the incident angle of the object light, but a predetermined angle (hereinafter referred to as an off-axis angle with respect to the incident angle of the object light 12 (1) can be given a state given by θ).
 本実施形態では、第2オフアクシス用ミラー349の姿勢変化は、二つの方向で可能となっている。すなわち、図12(2)に示すように、屈折する前の光軸と屈折した後の光軸が成す平面が反射面に交差してできる線に沿った回転軸A1の回りの回転と、回転軸A1に対して垂直な方向であって反射面に沿った方向の回転軸A2の回りの回転である。このような二つの回転ができるようにすることで、撮像素子2の撮像面に対し、直交する二つの方向(XY方向)においてオフアクシス角θを付けて参照光を入射させることができる。いずれの方向にオフアクシス角θを付けるかは、どの方向に真像を0次像や共役像から分離したいかであり、操作者の任意である。図12に示す方向以外の方向に第2オフアクシス用ミラー349を傾け、その方向に像を分離する場合もあり得る。
 このような各オフアクシス用ミラーの駆動部としては、2方向での調整が可能なキネマティックミラーホルダーを使用できるし、各調整軸にアクチュエータを付設して外部信号による制御を可能とした構成を採用することができる。各駆動部は、同様に制御ボード61から動作信号が送られて制御されるようにする。
In the present embodiment, the posture change of the second off-axis mirror 349 is possible in two directions. That is, as shown in FIG. 12 (2), rotation about the rotation axis A1 along a line formed by the plane formed by the optical axis before refracting and the optical axis after refracting intersects the reflecting surface, and rotation Rotation about a rotation axis A2 in a direction perpendicular to the axis A1 and along the reflecting surface. By enabling such two rotations, it is possible to make the reference light incident with an off-axis angle θ in two orthogonal directions (X and Y directions) with respect to the imaging surface of the imaging device 2. It is up to the operator to decide in which direction the true image is to be separated from the zero-order image or the conjugate image in which direction the off-axis angle θ is to be applied. The second off-axis mirror 349 may be tilted in a direction other than the direction shown in FIG. 12 to separate the image in that direction.
A kinematic mirror holder that can be adjusted in two directions can be used as the drive unit for each of these off-axis mirrors, and an actuator can be attached to each adjustment axis to enable control with an external signal. It can be adopted. Each drive unit similarly sends an operation signal from the control board 61 to be controlled.
 反射回折光用導光系31内の第1オフアクシス用ミラー317は、透過モードの際にオフアクシス用として使用されるものであり、反射モードの際には通常のミラーとして使用される。したがって、制御ボード61は、透過モードの際にはオフアクシス角θが得られるように45°から所定角度傾いた姿勢する動作信号を送る。また、反射モード時には、通常の姿勢すなわち光軸に対して45°の姿勢に戻すよう動作信号を送る。なお、「通常のミラー」とは、そのミラーによってはオフアクシス角が発生しない状態のミラーという意味である。
 追加導光系34内の第2オフアクシス用ミラー349は、透過モード時には使用しないので、オフアクシス角θを達成する傾斜角に維持した構成とすることもできる。この場合には、制御ボード61から動作信号は送られない。角度変更のための機構も不要ということになるが、調整等のため角度変更できるようにすることが好ましい。
The first off-axis mirror 317 in the light guide system 31 for reflected diffraction light is used for off-axis in the transmission mode, and is used as a normal mirror in the reflection mode. Therefore, the control board 61 sends an operation signal in a posture inclined at a predetermined angle from 45 ° so that the off-axis angle θ can be obtained in the transmission mode. Also, in the reflection mode, an operation signal is sent to return to the normal posture, that is, the posture of 45 ° with respect to the optical axis. The term "ordinary mirror" means a mirror in which no off-axis angle is generated depending on the mirror.
Since the second off-axis mirror 349 in the additional light guide system 34 is not used in the transmission mode, it may be configured to be maintained at an inclination angle that achieves the off-axis angle θ. In this case, no operation signal is sent from the control board 61. Although a mechanism for changing the angle is also unnecessary, it is preferable to be able to change the angle for adjustment or the like.
 上記したように、反射モード時に使用される追加導光系34の構成は、本実施形態では大きく変更されている。この理由は、第2オフアクシス用ミラー349を撮像素子2になるべく近い位置に置きたいためと、参照光と物体光との光路長差を少なくするためである。
 オフアクシス式では、参照光を物体光に対して斜めに入射させることで真像を0次像や共役像から分離するものである。しかしながら、斜めの角度(オフアクシス角)が大きくなると、撮像素子2の撮像面における空間周波数が高くなり(すなわち、干渉縞が細かくなり)、撮像素子2の解像度の影響を受けて鮮明な像再生ができなくなってしまう。このため、オフアクシス角θは、例えば2~3°度程度の小さいものであることが好ましい。
 このようなオフアクシス角θのため、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349は、図12に示すように光軸に対して45°ではなく斜めの姿勢とされるのであるが、撮像素子2から離れた光路上に位置していると、僅かに角度を変化させただけでも撮像素子2の撮像面では大きく入射位置がずれてしまう。参照光は、撮像素子の撮像面の全域をカバーする必要があり、入射位置のずれによって参照光が入射しない領域ができてしまうと、その部分では干渉縞の撮像ができなくなってしまう。したがって、2~3°程度の小さい角度であっても、参照光を撮像素子2の撮像面の全域に入射させるため、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349は、撮像素子2に対して近い位置のミラーとすべきである。
As described above, the configuration of the additional light guide system 34 used in the reflection mode is largely changed in the present embodiment. The reason for this is to place the second off-axis mirror 349 as close to the imaging element 2 as possible and to reduce the difference in optical path length between the reference light and the object light.
In the off-axis method, the true image is separated from the zero-order image and the conjugate image by causing the reference light to obliquely enter the object light. However, as the oblique angle (off-axis angle) increases, the spatial frequency on the imaging surface of the imaging device 2 increases (that is, the interference fringes become smaller), and the image resolution of the imaging device 2 causes a clear image reproduction. Will not be able to Therefore, it is preferable that the off-axis angle θ be as small as, for example, about 2 to 3 degrees.
Because of such an off-axis angle θ, the first off-axis mirror 317 and the second off-axis mirror 349 are inclined not at 45 ° with respect to the optical axis as shown in FIG. However, if it is located on the optical path away from the imaging device 2, the incident position is largely shifted on the imaging surface of the imaging device 2 even if the angle is slightly changed. The reference light needs to cover the entire area of the imaging surface of the imaging device, and if a region where the reference light does not enter is formed due to the deviation of the incident position, imaging of interference fringes can not be performed in that region. Therefore, the first off-axis mirror 317 and the second off-axis mirror 349 function as an imaging element in order to make the reference light incident on the entire imaging surface of the imaging element 2 even at a small angle of about 2 to 3 °. It should be a mirror close to 2.
 図3に示す第2の実施形態の構成で言うと、追加導光系34の折り返しミラー342をオフアクシス用ミラーとしても良いが、撮像素子2から離れた位置にあるため、撮像素子2の撮像面に対する参照光の入射位置のずれが大きくなってしまう。折り返しミラー342の手前の光路上にある第4のミラー341をオフアクシス用ミラーとすることが考えられるが、第4のミラー341は、折り返しミラー342に達する前と達した後とで2回反射するため、参照光のずれは2倍になってしまう。
 さらに、第4のミラー341の位置に折り返しミラー342を設け、これをオフアクシス用ミラーとすることも考えられるが、こうすると、光路長が短くなり、参照光と物体光(この場合には反射回折光)とで光路長の差が大きくなる。このため、可干渉性の点で問題が生じ得る。すなわち、光路長の差が大きくなると、光源1の出力の時間的な安定性の問題から、参照光と物体光とが干渉しにくくなる。
In the configuration of the second embodiment shown in FIG. 3, the folding mirror 342 of the additional light guiding system 34 may be used as an off-axis mirror, but since the folding mirror 342 is located at a distance from the imaging element 2, imaging of the imaging element 2 is performed. The deviation of the incident position of the reference light with respect to the surface increases. Although it is conceivable to use the fourth mirror 341 on the light path in front of the folding mirror 342 as an off-axis mirror, the fourth mirror 341 reflects twice before reaching the folding mirror 342 and after reaching it. Therefore, the deviation of the reference light is doubled.
Furthermore, it is conceivable to provide a folding mirror 342 at the position of the fourth mirror 341 and use it as an off-axis mirror, but this shortens the optical path length and causes reference light and object light (in this case, reflection) The difference in optical path length becomes large with diffracted light. This can cause problems in terms of coherency. That is, when the difference in optical path length becomes large, it becomes difficult for the reference light and the object light to interfere due to the problem of temporal stability of the output of the light source 1.
 これらの点を考慮すると、一回だけ反射するミラーを撮像素子2に近い位置に配置して光路長を確保する観点から、偏光ビームスプリッタ345でループ状の光路を形成し、その一角にオフアクシス用ミラーを配置するのが好適である。第3の実施形態の追加導光系34は、このような考えに基づいている。
 なお、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349の配置位置における「近い」ということについて補足して説明すると、本実施形態の構成では、物体光と参照光とは第1のビームスプリッタ41で統合される。したがって、光の進行方向とは逆向きにたどった際に第1のビームスプリッタ41から見て最初のミラーがオフアクシス用ミラーとなっているということが、「近い」ということである。
Taking these points into consideration, a looped optical path is formed by the polarizing beam splitter 345 from the viewpoint of arranging the mirror that reflects only once at a position close to the imaging element 2 and securing the optical path length. It is preferable to arrange a mirror for this purpose. The additional light guiding system 34 of the third embodiment is based on such an idea.
In addition, to supplementarily explain “close” at the arrangement position of the first off-axis mirror 317 and the second off-axis mirror 349, in the configuration of this embodiment, the object light and the reference light are the first. The beam splitter 41 integrates. Therefore, it is "close" that the first mirror is an off-axis mirror as viewed from the first beam splitter 41 when it travels in the direction opposite to the traveling direction of light.
 図11に示す第3のデジタルホログラフィ装置の動作について、図13を参照しながら説明する。図13は、第3の実施形態の動作について示した概略図であり、反射モードと透過モードとにおける各光の進行状況について対比して示した図である。
 まず、反射モードが選択された場合、制御ボード61から反射モード用の動作信号が各部に送られて制御される。すなわち、図13(A)に示すように、第2のビームスプリッタ45が主光路上から退避させられ、第1のビームスプリッタ41が第1の状態とされる。また、追加導光系34内のビームストッパ(不図示)が光路から退避して追加導光系34が開放される。なお、第1オフアクシス用ミラー317は、通常のミラーとして使用されるため、光軸に対して45°の姿勢が維持される。
The operation of the third digital holography device shown in FIG. 11 will be described with reference to FIG. FIG. 13 is a schematic view showing the operation of the third embodiment, and a view comparing the progress of each light in the reflection mode and the transmission mode.
First, when the reflection mode is selected, an operation signal for the reflection mode is sent from the control board 61 to each part to be controlled. That is, as shown in FIG. 13A, the second beam splitter 45 is retracted from the main optical path, and the first beam splitter 41 is brought into the first state. Further, the beam stopper (not shown) in the additional light guiding system 34 retracts from the light path, and the additional light guiding system 34 is opened. Since the first off-axis mirror 317 is used as a normal mirror, the attitude of 45 ° with respect to the optical axis is maintained.
 光源1から放出された光L1は、偏光フィルタ11及び1/4波長板12を経ることで円偏光の光とされ、反射回折光用導光系31を介して第1のビームスプリッタ41に入射する。この光L1は、図13(A)に示すように、第1のビームスプリッタ41に反射した光L2と透過した光L3に分割される。第1のビームスプリッタ41で反射した光L2は、撮像光学系5を介して物体Sに照射される。照射された光L2は、物体Sに反射して物体光(反射回折光)L4となる。物体光(反射回折光)L4は、撮像光学系5を介して、第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2の撮像面に入射する。
 一方、第1のビームスプリッタ41を透過した光L3は、追加導光系34に入射する。この光L3は、円偏光の光であるので、1/4波長板346によって特定の偏光成分を有する直線偏光の光に変換され、直線偏光となった光L3が偏光ビームスプリッタ345に入射する。
The light L 1 emitted from the light source 1 is converted to circularly polarized light by passing through the polarizing filter 11 and the 1⁄4 wavelength plate 12, and is incident on the first beam splitter 41 through the light guide system 31 for reflection diffraction light. Do. This light L1 is split into the light L2 reflected by the first beam splitter 41 and the light L3 transmitted as shown in FIG. 13 (A). The light L 2 reflected by the first beam splitter 41 is irradiated to the object S via the imaging optical system 5. The irradiated light L2 is reflected by the object S and becomes object light (reflected diffracted light) L4. The object light (reflected diffracted light) L4 is incident on the first beam splitter 41 through the imaging optical system 5, transmitted through the first beam splitter 41, and incident on the imaging surface of the imaging device 2.
On the other hand, the light L 3 transmitted through the first beam splitter 41 is incident on the additional light guiding system 34. Since this light L 3 is circularly polarized light, it is converted into linearly polarized light having a specific polarization component by the 1⁄4 wavelength plate 346, and the linearly polarized light L 3 enters the polarization beam splitter 345.
 この偏光ビームスプリッタ345は、1/4波長板346によって変換された上記特定の成分の偏光の光のみを反射する。よって、図13(A)に示すように、光L3は、偏光ビームスプリッタ345によって反射され、1/2波長板351に入射して、上記直線偏光の光と偏光方向が90°異なる直線偏光の光に変換される。90°異なる直線偏光とされた光L3は、第5のミラー347、第6のミラー348、ビームエキスパンダ352を経た後、第2オフアクシス用ミラー349で反射して偏光ビームスプリッタ345に戻る。この際、第2オフアクシス用ミラー349は光軸に対して45°ではなく僅かに傾けられているため、オフアクシス用ミラーに反射した光L3は、光軸に対して平行ではなく僅かに角度を持った状態で進む。 The polarization beam splitter 345 reflects only the light of the polarization of the specific component converted by the quarter-wave plate 346. Therefore, as shown in FIG. 13A, the light beam L3 is reflected by the polarization beam splitter 345 and is incident on the half-wave plate 351, and the linearly polarized light is 90 ° different in polarization direction from the linearly polarized light. It is converted to light. The light L3 which is linearly polarized light which is different by 90 ° passes through the fifth mirror 347, the sixth mirror 348, and the beam expander 352, and then is reflected by the second off-axis mirror 349 to return to the polarizing beam splitter 345. At this time, since the second off-axis mirror 349 is slightly inclined not at 45 ° with respect to the optical axis, the light L3 reflected by the off-axis mirror is not parallel to the optical axis but at a slight angle. Proceed with holding
 このように角度を持った状態で偏光ビームスプリッタ345に達した光L3は、1/2波長板351により直線偏光の方向が90°変換されているので、偏光ビームスプリッタ345を透過する。そして、この光L3は、1/4波長板346によって円偏光に変換され、第1のビームスプリッタ41に反射した後、撮像素子2の撮像面に参照光として入射する。この際、第2オフアクシス用ミラー349を経ているため、図12に示すように、参照光L3は物体光(反射回折光)L4に対してオフアクシス角θが付いた状態で入射する。撮像素子2の撮像面では、物体光(反射回折光)L4と参照光L3とが干渉して干渉縞が形成され、この干渉縞が撮像面で撮像される。これにより反射モードでのホログラムデータが得られる。
 なお、第2オフアクシス用ミラー349で反射した光は、上記のように光軸に対して角度を持った状態で進行して偏光ビームスプリッタ345や1/4波長板346を透過することになるが、光軸に対する角度は非常に小さいものなので、偏光ビームスプリッタ345や1/4波長板346における光制御の点で問題になることはない。
The light L 3 reaching the polarization beam splitter 345 in such an angle state is transmitted through the polarization beam splitter 345 because the direction of the linear polarization is converted by 90 ° by the half-wave plate 351. Then, the light L 3 is converted into circularly polarized light by the 1⁄4 wavelength plate 346, is reflected by the first beam splitter 41, and then enters the imaging surface of the imaging device 2 as reference light. At this time, since the light beam passes through the second off-axis mirror 349, as shown in FIG. 12, the reference light L3 is incident on the object light (reflected diffracted light) L4 with the off-axis angle θ. On the imaging surface of the imaging element 2, the object light (reflected diffracted light) L4 and the reference light L3 interfere with each other to form interference fringes, and the interference fringes are imaged on the imaging surface. Thereby, hologram data in the reflection mode can be obtained.
The light reflected by the second off-axis mirror 349 travels in a state of being at an angle to the optical axis as described above, and passes through the polarization beam splitter 345 and the quarter wavelength plate 346. However, since the angle with respect to the optical axis is very small, there is no problem in light control in the polarization beam splitter 345 or the quarter-wave plate 346.
 透過モードが選択された場合は、制御ボード61から反射モード用の動作信号が各部に送られて制御される。すなわち、図13(B)に示すように、第1のビームスプリッタ41は90°回転して第2の状態となる。また、第2のビームスプリッタ45が主光路上に移動し、追加導光系34内のビームストッパ(不図示)を光路上に配置する。また、第1オフアクシス用ミラー317の駆動部に動作信号が送られ、第1オフアクシス用ミラー317は光軸に対して45°の姿勢から所定角度傾けられる。
 光源1から放出された光は、同様に円偏光の光に変換された後、第2のビームスプリッタ45に入射する。図13(B)に示すように、第2のビームスプリッタ45でその一部が反射して透過回折光用の光L5として分岐光路Psに進み、透過回折光用導光系32によって物体Sに照射される。この光L5は、物体Sを透過して物体光(透過回折光)L6となり、撮像光学系5を経て第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2の撮像面に入射する。
When the transmission mode is selected, an operation signal for the reflection mode is sent from the control board 61 to each part to be controlled. That is, as shown in FIG. 13B, the first beam splitter 41 is rotated by 90 ° to be in the second state. In addition, the second beam splitter 45 moves on the main optical path, and a beam stopper (not shown) in the additional light guiding system 34 is disposed on the optical path. In addition, an operation signal is sent to the drive unit of the first off-axis mirror 317, and the first off-axis mirror 317 is tilted at a predetermined angle from the attitude of 45 ° with respect to the optical axis.
The light emitted from the light source 1 is similarly converted to circularly polarized light and then enters the second beam splitter 45. As shown in FIG. 13B, a part of the light beam is reflected by the second beam splitter 45, and the light L5 for transmission diffraction light travels to the branched light path Ps, and the light transmission system 32 for transmission diffraction light makes the object S It is irradiated. This light L5 passes through the object S to become object light (transmission diffracted light) L6, passes through the imaging optical system 5, enters the first beam splitter 41, passes through the first beam splitter 41, and passes through the imaging element 2 To the imaging surface of the
 一方、第2のビームスプリッタ45で反射することなく第2のビームスプリッタ45を透過した光L7は、参照光導光系33に兼用される反射回折光用導光系31によって導かれ、第1のビームスプリッタ41に達し、第1のビームスプリッタ41で反射して撮像素子2の撮像面に参照光として入射する。この際、第1オフアクシス用ミラー317が所定角度傾けられているため、参照光L7は物体光L6に対してオフアクシス角θが付いた状態で入射する。
 撮像素子2の撮像面では、参照光L7と物体光L6とが干渉して干渉縞が形成され、この干渉縞が撮像面において撮像され、ホログラムデータが得られる。そして、ホログラムデータを同様に計算処理することで物体Sの再生像が形成される。
On the other hand, the light L7 transmitted through the second beam splitter 45 without being reflected by the second beam splitter 45 is guided by the light guiding system 31 for reflected and diffracted light, which is also used as the reference light guiding system 33, The light reaches the beam splitter 41, is reflected by the first beam splitter 41, and is incident on the imaging surface of the imaging device 2 as reference light. At this time, since the first off-axis mirror 317 is tilted at a predetermined angle, the reference light L7 is incident on the object light L6 with the off-axis angle θ.
In the imaging surface of the imaging element 2, the reference light L7 and the object light L6 interfere with each other to form interference fringes, and the interference fringes are imaged on the imaging surface to obtain hologram data. Then, the reproduced image of the object S is formed by similarly calculating the hologram data.
 この第3の実施形態のデジタルホログラフィ装置によれば、ホログラムデータを計算処理して像を再生した際、真像が0次像や共役像から分離して形成されるので、より鮮明な真像を得ることができる。このため、物体S上のある点とある点との距離を計算したり、物体Sの状態を観察したりする場合、より好適となる。
 また、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349が撮像素子2に近いところに設けられているので、撮像素子2の撮像面に対する参照光の入射位置が大きくずれてしまう問題がない。その一方、参照光の光路長と物体光の光路長とが十分に一致するように工夫しているので、光源1の出力の時間的な変動によらず精度の高いホログラムデータが得られる。「十分に一致する」とは、光路長に差があっても可干渉性の点で問題が無い範囲であるという意味である。
 オフアクシス用ミラーを使用してオフアクシス式の装置とすることは、第1の実施形態の装置においても可能である。第1の実施形態の場合、参照光用第2ミラー332をオフアクシス用ミラーに変更することになる。このように、オフアクシス手段としては、撮像素子2に達する参照光の光路上に一つのオフアクシス用ミラーがあれば足りる。
 また、オフアクシス手段としては、ミラー以外の光学素子を用いることも原理的には可能である。例えば、プリズムのような光路を曲げる機能を有する光学素子を参照光の光路上に配置することでオフアクシスとすることができる。
According to the digital holography device of the third embodiment, when the hologram data is calculated and the image is reproduced, the true image is formed separately from the zero-order image and the conjugate image, so that the clearer true image is obtained. You can get Therefore, it is more preferable to calculate the distance between a certain point on the object S and a certain point or to observe the state of the object S.
In addition, since the first off-axis mirror 317 and the second off-axis mirror 349 are provided in the vicinity of the imaging device 2, the incident position of the reference light with respect to the imaging surface of the imaging device 2 is largely shifted. Absent. On the other hand, since the optical path length of the reference light and the optical path length of the object light are sufficiently matched, highly accurate hologram data can be obtained regardless of the temporal fluctuation of the output of the light source 1. "Sufficiently matched" means that even if there is a difference in optical path length, there is no problem in terms of coherence.
The use of an off-axis mirror as an off-axis device is also possible in the device of the first embodiment. In the case of the first embodiment, the reference light second mirror 332 is changed to an off-axis mirror. Thus, as the off-axis means, it is sufficient if there is one off-axis mirror on the optical path of the reference light reaching the imaging device 2.
Also, it is possible in principle to use an optical element other than a mirror as the off-axis means. For example, an optical element having a function of bending an optical path, such as a prism, can be placed on the optical path of the reference light to achieve off-axis.
 また、オフアクシス以外の構成として、第1の実施形態の装置や第2の実施形態の装置において、位相シフト法により真像を0次像や共役像から分離するようにすることも可能である。この場合は、参照光導光系33内に位相シフト素子を設けることになる。位相シフト素子としては、前述したようにピエゾ素子などの圧電素子やSLMなどの光路長を変化させることができる素子である。位相シフト素子を配置する場所は、例えば第2の実施形態であれば、反射モード用の位相シフト素子を追加導光系34内に配置し、透過モード用の位相シフト素子を反射回折光用導光系31内(但し、物体Sと第1のビームスプリッタ41の間の光路上は除く。例えば、第2のミラー312と第1のビームスプリッタ41の間の位置)に配置するということになる。反射回折光用導光系31内の位相シフト素子は、反射モードの際には光路から退避させるようにする。
 なお、位相シフト法を採用すると、前述したように、物体Sが動くものの場合は実質的にホログラムデータを得ることができない。一方、第1第2の実施形態の装置(インライン式装置)や第3の実施形態の装置(オフアクシス式装置)では、物体Sが動くものであってもホログラムデータを得ることができる。つまり、再生像を動画として得ることができる。この点も各実施形態の装置のメリットである。
Further, as a configuration other than off-axis, in the device of the first embodiment or the device of the second embodiment, it is also possible to separate the true image from the zero-order image and the conjugate image by the phase shift method. . In this case, a phase shift element is provided in the reference light guide system 33. The phase shift element is an element capable of changing the optical path length of a piezoelectric element such as a piezoelectric element or an SLM as described above. In the second embodiment, for example, the phase shift element for reflection mode is disposed in the additional light guiding system 34, and the phase shift element for transmission mode is guided to the reflection diffracted light in the second embodiment. It is arranged in the optical system 31 (however, except for the optical path between the object S and the first beam splitter 41. For example, the position between the second mirror 312 and the first beam splitter 41). . The phase shift element in the light guide system 31 for reflected diffraction light is retracted from the light path in the reflection mode.
When the phase shift method is adopted, as described above, when the object S moves, hologram data can not be substantially obtained. On the other hand, in the apparatus of the first and second embodiments (in-line apparatus) and the apparatus of the third embodiment (off-axis apparatus), hologram data can be obtained even if the object S moves. That is, the reproduced image can be obtained as a moving image. This point is also a merit of the device of each embodiment.
 次に、参照光導光系の構成が異なる第4の実施形態について説明する。図14は、本発明の第4の実施形態のデジタルホログラフィ装置の正面概略図である。
 図14に示すように、この第4の実施形態のデジタルホログラフィ装置においても、反射回折光用導光系31と、透過回折光用導光系32とが設けられている。これらの導光系31,32は、図3に示す第2の実施形態とほぼ同様である。この第4の実施形態が第2の実施形態と大きく異なるのは、参照光導光系33が、参照光を物体光から抽出して撮像素子2に導くものとなっている点である。
Next, a fourth embodiment in which the configuration of the reference light guide system is different will be described. FIG. 14 is a front schematic view of the digital holography device of the fourth embodiment of the present invention.
As shown in FIG. 14, also in the digital holography device of the fourth embodiment, a light guide system 31 for reflected diffracted light and a light guide system 32 for transmitted diffracted light are provided. These light guide systems 31 and 32 are substantially the same as the second embodiment shown in FIG. The fourth embodiment is largely different from the second embodiment in that the reference light guiding system 33 extracts the reference light from the object light and guides the reference light to the imaging device 2.
 具体的に説明すると、図14に示すように、この実施形態では、参照光導光系33は、第1のビームスプリッタ41と撮像素子2との間の光路上に配置されている。参照光導光系33は、一つのユニット9の要素として設けられている。このユニット9は、物体光を撮像素子2に導きつつ、物体光から参照光を抽出して撮像素子2に導くユニットである(以下、参照光抽出ユニット呼ぶ)。 Specifically, as shown in FIG. 14, in this embodiment, the reference light guiding system 33 is disposed on the optical path between the first beam splitter 41 and the imaging device 2. The reference light guiding system 33 is provided as an element of one unit 9. The unit 9 is a unit that extracts the reference light from the object light and guides the object light to the imaging device 2 while guiding the object light to the imaging device 2 (hereinafter referred to as a reference light extraction unit).
 物体光から参照光を抽出する手法としては、空間周波数フィルタリングの手法が採用される。物体光のうち、物体の形状や表面状態等に応じて波面(振幅又は位相)が変化している部分は、空間周波数が高い部分である。そのように物体の形状や表面状態等に応じて波面が変化している部分というのは、前述したように像を再生することで物体の形状や表面状態を表現し得る部分であり、物体情報を含んだ部分であると言える。一方、物体光のうち、屈折率が十分に一様な領域から出た回折光は、空間周波数が低く、物体を経ない光と同様であると扱える。つまり、物体光のうち、物体情報を表現し得る光というのは空間周波数が高い光であり、それを物体光から除去すれば、物体情報を含まない光(即ち、参照光)が抽出できる。これは、スペイシャルフィルタと同様の原理である。図14に示す参照光抽出ユニット9は、このような抽出を行うユニットとなっている。 As a method of extracting the reference light from the object light, a spatial frequency filtering method is adopted. In the object light, a portion where the wave front (amplitude or phase) changes according to the shape, surface condition, etc. of the object is a portion where the spatial frequency is high. The part where the wave front is changing according to the shape, surface condition, etc. of the object is a part that can represent the shape, surface condition of the object by reproducing the image as described above. It can be said that it is a part that contains On the other hand, in the object light, diffracted light emitted from a region where the refractive index is sufficiently uniform can be treated as similar to light not passing through the object because the spatial frequency is low. That is, among object light, light that can express object information is light having a high spatial frequency, and if it is removed from the object light, light (that is, reference light) that does not include object information can be extracted. This is the same principle as the spatial filter. The reference light extraction unit 9 shown in FIG. 14 is a unit that performs such extraction.
 このような参照光抽出ユニット9については、幾つかの異なる光学系が考えられる。このうち、図15には、二つの異なる例が示されている。図15は、図14に示す実施形態における参照光抽出ユニット9の例を示した正面概略図である。
 図15(1)に示す参照光抽出ユニット9は、物体光を分離して二つの異なる光軸に沿って進ませる分離素子91と、参照光の抽出のために光を集光する抽出用レンズ92と、抽出用レンズ92による集光位置に配置された空間周波数フィルタ93と、各光を平行光に戻して統合するコリメータレンズ94等を備えたものとなっている。
 分離素子91としては、例えば特開平10-141912号公報が開示するように回折格子を使用したり、または特開2006-292939号公報が開示するように偏光ビームスプリッタを使用したりすることができる。
Several different optical systems are conceivable for such a reference light extraction unit 9. Among these, two different examples are shown in FIG. FIG. 15 is a schematic front view showing an example of the reference light extraction unit 9 in the embodiment shown in FIG.
The reference light extraction unit 9 shown in FIG. 15 (1) comprises a separation element 91 for separating object light to advance along two different optical axes, and an extraction lens for collecting light for extraction of reference light. A spatial frequency filter 93 disposed at a condensing position by the extraction lens 92, and a collimator lens 94 for converting each light into parallel light and integrating them are provided.
As the separating element 91, for example, a diffraction grating can be used as disclosed in JP-A-10-141912, or a polarization beam splitter can be used as disclosed in JP-A-2006-292939. .
 分離素子91として回折格子が使用される場合を例にすると、物体光は分離素子91により0次回折光と1次回折光に分離される。抽出用レンズ92は、0次光回折光、1次回折光をそれぞれ集光するが、空間周波数フィルタ93は、0次回折光が集光される光軸上の位置に設けられた開口931と、1次回折光が集光される光軸上の位置に設けられたピンホール932とを有する。開口931は、十分に大きいために物体光(0次回折光)について空間周波数を選択せずにそのまま通過させる。一方、ピンホール932は十分に小さいものであるため、低い周波数のみ通過させる。このため、1次回折光は物体情報を含まないものとなる。これらの光は、図15(1)に示すようにコリメータレンズ94により平行光に戻されながら統合され、撮像素子2の撮像面において重ね合わされる。 In the case where a diffraction grating is used as the separation element 91, for example, the object light is separated into zero-order diffracted light and first-order diffracted light by the separation element 91. The extraction lens 92 condenses the zeroth-order diffracted light and the first-order diffracted light, but the spatial frequency filter 93 includes an aperture 931 provided at a position on the optical axis where the zero-order diffracted light is condensed; And a pinhole 932 provided at a position on the optical axis where the next diffracted light is collected. The aperture 931 allows the object light (0th-order diffracted light) to pass therethrough without selecting the spatial frequency because it is sufficiently large. On the other hand, since the pinhole 932 is sufficiently small, only low frequencies are allowed to pass. Therefore, the first-order diffracted light does not include object information. These lights are integrated while being converted back to parallel light by the collimator lens 94 as shown in FIG. 15 (1), and are superimposed on the imaging surface of the imaging device 2.
 分離素子91として偏光ビームスプリッタが使用される場合、物体光は、偏光方向が90°異なる二つの偏光光に分離される。便宜上、二つの偏光光を第一偏光光と第二偏光光と呼ぶと、第一第二の二つの偏光光は同様に抽出用レンズ92でそれぞれ集光され、空間周波数フィルタ93に達する。空間周波数フィルタ93の構造は上記と同様であり、第一偏光光の光軸上には十分に大きな開口931が形成され、第二偏光光の光軸上には十分に小さなピンホール932が形成される。第一偏光光は空間周波数によるフィルタリングがされずにそのまま開口931を通過し、物体光として撮像素子2に入射する。その一方、第二偏光光については空間周波数の高い成分が除去された状態でピンホール932を通過し、参照光となる。この光は、コリメータレンズ94により第一偏光光(物体光)とともに平行光に戻されて第一偏光光に統合される。尚、図15(1)中に点線で示すように、分離素子91として偏光ビームスプリッタを使用する場合、空間周波数フィルタ93のピンホール932の出射側に、1/2波長板95が設けられる。参照光の偏光状態を物体光に一致させ、可干渉性を高めるためである。 When a polarization beam splitter is used as the separation element 91, the object light is split into two polarized lights whose polarization directions differ by 90 °. For convenience, when the two polarized lights are referred to as a first polarized light and a second polarized light, the first and second two polarized lights are similarly collected by the extraction lens 92 and reach the spatial frequency filter 93. The structure of the spatial frequency filter 93 is the same as the above, and a sufficiently large aperture 931 is formed on the optical axis of the first polarized light, and a sufficiently small pinhole 932 is formed on the optical axis of the second polarized light. Be done. The first polarized light passes through the aperture 931 as it is without filtering by spatial frequency, and enters the imaging element 2 as object light. On the other hand, the second polarized light passes through the pinhole 932 in a state where the high spatial frequency component is removed, and becomes the reference light. This light is returned to parallel light together with the first polarized light (object light) by the collimator lens 94 and integrated into the first polarized light. When a polarization beam splitter is used as the separation element 91 as indicated by a dotted line in FIG. 15A, a half wave plate 95 is provided on the emission side of the pinhole 932 of the spatial frequency filter 93. This is to match the polarization state of the reference light to the object light and to improve the coherence.
 分散素子91としては、物体光を二つの光軸に沿って分離できるものであれば、上述した二つの例以外のものであっても良い。図15(2)に示す例はこのうちの一つであり、通常のビームスプリッタを使用した例となっている。分離素子91(ビームスプリッタ)で物体光を二つに分離し、一方の光軸上に抽出用レンズ92と、空間周波数フィルタ93と、コリメータレンズ94とを設けた構成となっている。空間周波数フィルタ93は、他方の光軸から大きく外れているため、物体光のための開口は不要であり、ピンホール932のみを有する構造となっている分離素子91で分離された一方の光は、空間周波数フィルタ93を通過する際に空間周波数の高い成分が除去されて参照光となり、コリメータレンズ94で平行光に戻される。そして、統合用ビームスプリッタ96で他方の光(物体光)と統合され、撮像素子2に入射する。 As the dispersive element 91, as long as it can separate object light along two optical axes, it may be other than the two examples described above. The example shown in FIG. 15 (2) is one of these, and is an example using a normal beam splitter. The object light is split into two by a separation element 91 (beam splitter), and an extraction lens 92, a spatial frequency filter 93, and a collimator lens 94 are provided on one optical axis. Since the spatial frequency filter 93 is largely deviated from the other optical axis, an opening for object light is not necessary, and one light separated by the separation element 91 having only the pinhole 932 is When passing through the spatial frequency filter 93, high spatial frequency components are removed to become reference light, and collimated light is returned to parallel light by the collimator lens 94. Then, the beam is integrated with the other light (object light) by the integration beam splitter 96 and is incident on the imaging device 2.
 第4の実施形態では、図3に示す第2の実施形態と異なり、反射回折光用導光系31が参照光導光系に兼用されていないので、第2のビームスプリッタ45を駆動するのではなく、二つのシャッタの切替によって透過モードと反射モードとを切り替えている。即ち、図14に示すように、主光路P上には第一のシャッタ319が設けられ、分岐光路Ps上には第二のシャッタ327が設けられている。透過モードの際には、第一のシャッタ319は閉じられ、第二のシャッタ327が開けられる。反射モードの際には、第一のシャッタ319が開けられ、第二のシャッタ327は閉じられる。 In the fourth embodiment, unlike the second embodiment shown in FIG. 3, since the light guide system 31 for reflected diffraction light is not used also as the reference light guide system, if the second beam splitter 45 is driven, Instead, the transmission mode and the reflection mode are switched by switching the two shutters. That is, as shown in FIG. 14, the first shutter 319 is provided on the main optical path P, and the second shutter 327 is provided on the branched optical path Ps. In the transmissive mode, the first shutter 319 is closed and the second shutter 327 is opened. In the reflective mode, the first shutter 319 is opened and the second shutter 327 is closed.
 尚、図15(1)に示す例では、参照光は物体光に対してオフアクシスの状態で撮像素子2に入射するが、図15(2)に示す例では、インラインの状態で入射する。図15(2)に示す例でオフアクシスの状態にしたい場合、コリーメータレンズ94と統合用ビームスプリッタ96との間に配置されたミラー97に駆動機構を付設してオフアクシス用ミラーとすれば良い。
 上記第4の実施形態においても、参照光を得る構造が異なるのみで、他は前述した実施形態と同様である。反射モードと透過モードとを別々に行うことができ、物体の状態や形状等を詳しく調べるのに好適なものとなり、光学系の構成が簡略化される。
 尚、図15(2)に示す光学系において、物体光と参照光の光路長が異なることが可干渉性等の点で問題になる場合には、統合用ビームスプリッタ96に代えてミラーを配置して物体光を下方に折り返し、ミラー97に代えて統合用ビームスプリッタを配置し、空間周波数フィルタ93から光軸を直線的に延ばした位置に撮像素子2を配置するようにすれば良い。
In the example shown in FIG. 15 (1), the reference light is incident on the imaging device 2 in the off-axis state with respect to the object light, but in the example shown in FIG. 15 (2), it is incident in the in-line state. In the example shown in FIG. 15 (2), when it is desired to set the off-axis state, a driving mechanism is attached to the mirror 97 disposed between the collie meter lens 94 and the integration beam splitter 96 to make an off-axis mirror. good.
The fourth embodiment is the same as the above-described embodiment except for the structure for obtaining the reference light. The reflection mode and the transmission mode can be performed separately, which is suitable for examining the state, shape, etc. of an object in detail, and the configuration of the optical system is simplified.
In the optical system shown in FIG. 15 (2), when it is a problem in terms of coherence, etc. that the optical path lengths of the object light and the reference light are different, a mirror is disposed instead of the integration beam splitter 96. The object light may be folded downward, the integration beam splitter may be disposed instead of the mirror 97, and the imaging element 2 may be disposed at a position where the optical axis is linearly extended from the spatial frequency filter 93.
 上述した各実施形態において、撮像光学系5は、前述したようにホログラムのタイプによって適宜構成が変更される。フレネル回折を利用するフレネルホログラムの場合やレンズレスフーリエ変換ホログラムとする場合には、撮像光学系5が設けられない場合もある。レンズレスフーリエ変換ホログラムの場合、参照光導光系33は、参照光を球面波にして撮像素子2の撮像面に入射させるレンズを含むことになる。
 また、上記各実施形態において、撮像光学系5は、対物レンズ51と結像レンズ52とを有するものであったが、これは一例であり、レンズが一つの場合もある。レンズを二つ以上用いる場合であっても、イメージホログラムのように撮像面上に像を結ぶ場合もあるが、これは必須ではないから、一方のレンズが結像レンズ52と呼べない場合もあり、第1対物レンズ、第2対物レンズのように呼ばれることもある。
In each of the embodiments described above, the configuration of the imaging optical system 5 is appropriately changed depending on the type of hologram as described above. In the case of a Fresnel hologram utilizing Fresnel diffraction or in the case of a lensless Fourier transform hologram, the imaging optical system 5 may not be provided. In the case of a lensless Fourier transform hologram, the reference light guiding system 33 includes a lens that makes the reference light a spherical wave and causes the light to be incident on the imaging surface of the imaging device 2.
In each of the above embodiments, the imaging optical system 5 includes the objective lens 51 and the imaging lens 52. However, this is an example, and there may be one lens. Even when two or more lenses are used, an image may be formed on the imaging surface like an image hologram, but this is not essential, so one lens may not be called the imaging lens 52. , And may be called like a first objective lens and a second objective lens.
 上記各実施形態の装置では、反射回折光用の光が物体Sに入射する向きと透過回折光用の光が物体Sに入射する向きは180°異なっている。しかしながら、これは本発明において必須の要件ではない。物体Sから撮像素子2に至る直線状の撮像光路Piの光軸を基準にして考えた場合、反射回折光用の光を光軸に対して斜めに入射させる場合もあるし、透過回折光用の光を光軸に対して斜めに入射させる場合もある。したがって、物体Sの位置を原点とした直交座標で考え、「第1の側」をその第1象限及び第2象限とした場合、「第2の側」とはその第3象限及び第4象限ということになる。 In the apparatus of each of the above embodiments, the direction in which the light for reflected diffracted light enters the object S and the direction in which the light for transmitted diffracted light enters the object S differ by 180 °. However, this is not an essential requirement in the present invention. When considered on the basis of the optical axis of the linear imaging light path Pi from the object S to the imaging element 2, light for reflected diffraction light may be obliquely incident on the optical axis, or for transmission diffraction light Light may be incident obliquely to the optical axis. Therefore, if the first side is considered as the first quadrant and the second quadrant in consideration of orthogonal coordinates with the position of the object S as the origin, the "second side" means the third quadrant and the fourth quadrant. It turns out that.
 また、上記各実施形態では、反射モード時には第1のビームスプリッタ41で反射した光が物体Sに達し、透過モード時には第1のビームスプリッタ41で反射した光が参照光として撮像素子2に達した。この構成は、本発明において必須の条件ではなく、他の構成もあり得る。すなわち、反射モード時に第1のビームスプリッタ41を透過した光が物体に達し、透過モード時には第1のビームスプリッタを透過した光が参照光として撮像素子に達するようにしても良い。具体的には、反射モードでは、図3に示す第2の実施形態において物体Sが置かれている位置に折り返しミラーを置き、第4のミラー341が置かれている位置に物体を置く。透過モードの際には、物体の位置は図3の場合と変えずに第4のミラー341の位置に撮像素子を置き、第1のビームスプリッタを同様に90°向きを変える。このようにしても、本発明の実施は可能である。但し、物体から撮像素子に至る撮像光路が第1のビームスプリッタ41のところで90°折れ曲がった状態になるので、光軸調整の容易さや得られるホログラムデータの精度といった点では、上記各実施形態に劣る。 In the above embodiments, the light reflected by the first beam splitter 41 reaches the object S in the reflection mode, and the light reflected by the first beam splitter 41 in the transmission mode reaches the image sensor 2 as the reference light. . This configuration is not an essential condition in the present invention, and other configurations may be possible. That is, the light transmitted through the first beam splitter 41 may reach the object in the reflection mode, and the light transmitted through the first beam splitter may reach the imaging device as the reference light in the transmission mode. Specifically, in the reflection mode, in the second embodiment shown in FIG. 3, the folding mirror is placed at the position where the object S is placed, and the object is placed at the position where the fourth mirror 341 is placed. In the transmission mode, the imaging element is placed at the position of the fourth mirror 341 without changing the position of the object as in the case of FIG. 3, and the first beam splitter is similarly turned 90 °. Even in this way, the implementation of the present invention is possible. However, since the imaging optical path from the object to the imaging element is bent by 90 ° at the first beam splitter 41, it is inferior to the above embodiments in terms of the ease of optical axis adjustment and the accuracy of hologram data obtained. .
 上記の点に関連するが、第2の実施形態や第3の実施形態において、第1のビームスプリッタ41についての「第1の状態」や「第2の状態」は広義に解される必要がある。例えば、第1のビームスプリッタとして機能するビームスプリッタを二つ用意し、反射モード用と透過モード用とで使い分ける構成も考えられる。図7(A)に示すように反射面が斜め左上から斜め右下に延びる姿勢のビームスプリッタと、図7(B)に示すように反射面が斜め左下から斜め右上に延びるビームスプリッタとを用意し、適宜の切替機構で光路上に切り替えて配置する構成が考えられる。このような構成も、「第1の状態」及び「第2の状態」の概念の範囲内である。 Although related to the above points, in the second embodiment and the third embodiment, the “first state” and the “second state” of the first beam splitter 41 need to be understood in a broad sense. is there. For example, a configuration may be considered in which two beam splitters functioning as the first beam splitter are prepared, and are selectively used for the reflection mode and the transmission mode. As shown in FIG. 7A, a beam splitter in which the reflecting surface extends obliquely from the upper left to the lower right and a beam splitter in which the reflecting surface extends from the lower left to the upper right as shown in FIG. 7B. It is possible to consider a configuration in which switching is performed on the optical path by an appropriate switching mechanism. Such a configuration is also within the concept of "first state" and "second state".
1 光源
2 撮像素子
31 反射回折光用導光系
32 透過回折光用導光系
33 参照光導光系
34 追加導光系
41 第1のビームスプリッタ
45 第2のビームスプリッタ
5 撮像光学系
6 制御系
61 制御ボード
62 切替プログラム
63 コンピュータ
DESCRIPTION OF SYMBOLS 1 light source 2 imaging element 31 light guiding system 32 for reflected diffraction light light guiding system 33 for transmission diffraction light reference light guiding system 34 additional light guiding system 41 first beam splitter 45 second beam splitter 5 imaging optical system 6 control system 61 control board 62 switching program 63 computer

Claims (16)

  1.  光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
     光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
     光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
     前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであることを特徴とするデジタルホログラフィ方法。
    Interference between the diffracted light from the object obtained by irradiating the light emitted from the light source to the object and the reference light obtained by guiding the light emitted from the light source without passing through the object on the imaging surface of the imaging device Digital holography method for acquiring hologram data by
    When the light from the light source is irradiated to the object from the first side, the refracted diffracted light reflected from the object and emitted from the object to the first side interferes with the reference light at the imaging surface of the imaging element to acquire hologram data Performing a reflection mode to
    When the object is irradiated with light from the light source from the second side opposite to the first side, the transmission diffracted light transmitted and emitted to the first side and the reference light are taken on the imaging surface of the imaging device Performing a transmission mode of causing interference to acquire hologram data;
    A digital holography method characterized in that the step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
  2.  光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
     光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
     光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
     前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであることを特徴とするデジタルホログラフィ方法。
    Interference of the diffracted light from the object obtained by irradiating the object with the light emitted from the light source and the reference light extracted without the object information from the diffracted light from the object on the imaging surface of the imaging device A digital holography method for acquiring hologram data, comprising:
    When the light from the light source is irradiated to the object from the first side, the refracted diffracted light reflected from the object and emitted from the object to the first side interferes with the reference light at the imaging surface of the imaging element to acquire hologram data Performing a reflection mode to
    When the object is irradiated with light from the light source from the second side opposite to the first side, the transmission diffracted light transmitted and emitted to the first side and the reference light are taken on the imaging surface of the imaging device Performing a transmission mode of causing interference to acquire hologram data;
    A digital holography method characterized in that the step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
  3.  光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
     光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
     光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
     反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
     光源からの光を物体を経ずに撮像素子の撮像面に導く参照光導光系とを備えており、
     撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
     前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
     前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
     前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されていることを特徴とするデジタルホログラフィ装置。
    Interference between the diffracted light from the object obtained by irradiating the light emitted from the light source to the object and the reference light obtained by guiding the light emitted from the light source without passing through the object on the imaging surface of the imaging device A digital holography device for acquiring hologram data by
    A light guide system for reflected diffracted light, which guides light from a light source to an object to obtain reflected diffracted light which is diffracted light emitted by reflecting light to the object;
    A light guiding system for transmitting diffracted light that guides light from a light source to the object to obtain transmitted diffracted light that is diffracted light that is emitted by transmitting light through the object;
    An image pickup element whose position where the reflected diffracted light can be incident and whose imaging surface is located at the position where the transmitted diffracted light can be incident;
    And a reference light guide system for guiding the light from the light source to the imaging surface of the imaging device without passing through the object,
    A selection optical element is provided to select alternatively whether the reflection diffracted light is made incident on the imaging surface of the imaging device to make the reflection mode or the transmission diffraction light made to make the transmission mode,
    The light guide system for reflected diffraction light irradiates light from the light source to the object from a first side,
    The light guide system for transmission diffraction light irradiates the light from the light source to the object from the second side opposite to the first side,
    A digital holography device characterized in that an imaging optical path which is an optical path from the object to an imaging surface of the imaging element is set on a first side of the object.
  4.  光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
     光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
     光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
     反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
     反射回折光又は透過回折光から物体情報を含まない状態で参照光を抽出して撮像素子の撮像面に導く参照光導光系とを備えており、
     撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
     前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
     前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
     前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されていることを特徴とするデジタルホログラフィ装置。
    Interference of the diffracted light from the object obtained by irradiating the object with the light emitted from the light source and the reference light extracted without the object information from the diffracted light from the object on the imaging surface of the imaging device A digital holography apparatus for acquiring hologram data, comprising:
    A light guide system for reflected diffracted light, which guides light from a light source to an object to obtain reflected diffracted light which is diffracted light emitted by reflecting light to the object;
    A light guiding system for transmitting diffracted light that guides light from a light source to the object to obtain transmitted diffracted light that is diffracted light that is emitted by transmitting light through the object;
    An image pickup element whose position where the reflected diffracted light can be incident and whose imaging surface is located at the position where the transmitted diffracted light can be incident;
    And a reference light guiding system for extracting the reference light from the reflection diffraction light or the transmission diffraction light without including the object information and guiding the reference light to the imaging surface of the imaging device,
    A selection optical element is provided to select alternatively whether the reflection diffracted light is made incident on the imaging surface of the imaging device to make the reflection mode or the transmission diffraction light made to make the transmission mode,
    The light guide system for reflected diffraction light irradiates light from the light source to the object from a first side,
    The light guide system for transmission diffraction light irradiates the light from the light source to the object from the second side opposite to the first side,
    A digital holography device characterized in that an imaging optical path which is an optical path from the object to an imaging surface of the imaging element is set on a first side of the object.
  5.  前記撮像光路上には、レンズを含む撮像光学系が設けられていることを特徴とする請求項3又は4記載のデジタルホログラフィ装置。 5. The digital holography device according to claim 3, wherein an imaging optical system including a lens is provided on the imaging light path.
  6.  前記撮像光学系は、前記反射モードと前記透過モードとで少なくとも一部の光学素子を共用するものであることを特徴とする請求項5記載のデジタルホログラフィ装置。 The digital holography device according to claim 5, wherein the imaging optical system shares at least a part of optical elements in the reflection mode and the transmission mode.
  7.  前記撮像光学系は、テレセントリックな光学系であることを特徴とする請求項3、4、5又は6記載のデジタルホログラフィ装置。 7. The digital holography device according to claim 3, wherein the imaging optical system is a telecentric optical system.
  8.  前記撮像光路は、前記物体から前記撮像面に一直線に延びるものであることを特徴とする請求項3乃至7いずれかに記載のデジタルホログラフィ装置。 The digital holography device according to any one of claims 3 to 7, wherein the imaging light path extends from the object to the imaging surface in a straight line.
  9.  前記反射回折光用導光系は、前記撮像光路を通って光を前記物体に導くものであって、前記撮像光路に達するまでの光路上に第1のスペイシャルフィルタを備えているとともに第1のスペイシャルフィルタから前記撮像光路に達するまでの光路上に0個又は1個のみのミラーを備えており、
     前記透過回折光用導光系は、第2のスペイシャルフィルタを備えているとともに第2のスペイシャルフィルタから前記物体に達するまでの光路上に0個又は1個のみのミラーを備えていることを特徴とする請求項3乃至8いずれかに記載のデジタルホログラフィ装置。
    The light guide system for reflected diffraction light is for guiding light to the object through the imaging light path, and is provided with a first spatial filter on the light path until reaching the imaging light path. And 0 or only one mirror on the optical path from the spatial filter to the imaging optical path,
    The light guide system for transmission diffracted light comprises a second spatial filter and has zero or only one mirror on a light path from the second spatial filter to the object. The digital holography device according to any one of claims 3 to 8, wherein
  10.  前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであることを特徴とする請求項3乃至9いずれかに記載のデジタルホログラフィ装置。 As the selection optical element, a first selection optical element disposed on a main optical path extending from the light source is provided, and the main optical path is an optical path of the light guide system for reflected diffraction light and the transmission diffraction light The first selection optical element advances light along the light path of the light guide system for reflected diffraction light or the light guide for transmission diffraction light. 10. The digital holography device according to any one of claims 3 to 9, wherein selection is made as to whether to proceed along the optical path of the system.
  11.  前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであることを特徴とする請求項3乃至10いずれかに記載のデジタルホログラフィ装置。 A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffraction light is for guiding light from a light source to the first beam splitter, and the first beam splitter is The light guide system according to any one of claims 3 to 10, wherein in the reflection mode, the light guided by the light guide system for reflected diffraction light is divided and one of the lights is directed to the object. Digital holography device described in.
  12.  前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであり、
     前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであり、
     前記参照光導光系は、反射モードの際に前記第1のビームスプリッタで分割された他方の光を前記物体を経ずに前記撮像素子の撮像面に導くものであり、
     前記第1の選択用光学素子は、第2のビームスプリッタであって、第2のビームスプリッタの配置位置を変更する駆動部が設けられており、駆動部は、反射モードの際には第2のビームスプリッタを主光路から外れた位置として光が前記透過回折光用導光系の光路に進まないようにするとともに、透過モードの際には第2のビームスプリッタを主光路上に配置して光の一部が前記透過回折光用導光系の光路に沿って進むようにするものであり、
     前記第1のビームスプリッタは第2の選択用光学素子として配置されており、前記第1のビームスプリッタには前記第1のビームスプリッタの状態を変更する切替部が設けられており、
     前記切替部は、反射モードの際には前記第1のビームスプリッタを前記第1の状態とするものであり、透過モードの際には、前記第1のビームスプリッタを第2の状態とするものであり、該第2の状態は、前記反射回折光用導光系が前記参照光導光系として兼用されるよう、前記反射回折光用導光系で導かれて前記第1のビームスプリッタに達した光が前記物体を経ずに前記撮像素子の撮像面に入射する状態であることを特徴とする請求項3,5,6,7,8又は9記載のデジタルホログラフィ装置。
    As the selection optical element, a first selection optical element disposed on a main optical path extending from the light source is provided, and the main optical path is an optical path of the light guide system for reflected diffraction light and the transmission diffraction light The first selection optical element advances light along the light path of the light guide system for reflected diffraction light or the light guide for transmission diffraction light. It chooses whether to advance along the optical path of the system,
    A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffraction light is for guiding light from a light source to the first beam splitter, and the first beam splitter is It takes a first state in which light guided by the light guide system for reflected diffraction light is divided in the reflection mode and one of the lights is directed to the object,
    The reference light guiding system is for guiding the other light split by the first beam splitter to the imaging surface of the imaging device without passing through the object in the reflection mode.
    The first selection optical element is a second beam splitter, and a drive unit for changing the arrangement position of the second beam splitter is provided, and the drive unit performs the second operation in the reflection mode. The second beam splitter is disposed on the main optical path in the transmission mode while the light is prevented from advancing to the optical path of the light guiding system for transmission diffraction light by setting the beam splitter at a position deviated from the main optical path. A part of the light is made to travel along the light path of the light guide system for transmission diffraction light,
    The first beam splitter is disposed as a second selection optical element, and the first beam splitter is provided with a switching unit that changes the state of the first beam splitter.
    The switching unit sets the first beam splitter to the first state in the reflection mode, and sets the first beam splitter to the second state in the transmission mode. And the second state is guided by the light guiding system for reflected light and reaches the first beam splitter so that the light guiding system for reflected light is also used as the light guiding system for reference light. 10. The digital holography device according to claim 3, wherein the incident light enters the imaging surface of the imaging device without passing through the object.
  13.  前記参照光導光系は、反射モードの際、前記第1のビームスプリッタを透過した前記他方の光が前記第1のビームスプリッタを経て前記撮像素子の撮像面に入射するよう該他方の光を前記第1のビームスプリッタに戻すものであり、
     該他方の光を前記第1のビームスプリッタに戻す光路上に配置されることが可能なビームストッパと、ビームストッパを駆動するストッパ駆動部とが設けられており、ストッパ駆動部は、反射モードの際にはビームストッパを光路上に配置せず、透過モードの際にはビームストッパを光路上に配置するものであることを特徴とする請求項12記載のデジタルホログラフィ装置。
    The reference light guiding system is configured such that, in the reflection mode, the other light transmitted through the first beam splitter passes through the first beam splitter and is incident on an imaging surface of the imaging device. Returning to the first beam splitter,
    A beam stopper capable of being disposed on the optical path for returning the other light to the first beam splitter, and a stopper driving unit for driving the beam stopper are provided, and the stopper driving unit is in the reflection mode. 13. The digital holography apparatus according to claim 12, wherein the beam stopper is not disposed on the optical path in the case of the light source, and the beam stopper is disposed on the optical path in the transmission mode.
  14.  前記参照光導光系は、前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子を備えていることを特徴とする請求項3乃至12いずれかに記載のデジタルホログラフィ装置。 The reference light guiding system is an imaging surface of the imaging device with reference light in a state where a predetermined angle is given to the direction of the reflected diffraction light or the transmission diffraction light when entering the imaging surface of the imaging device. The digital holography device according to any one of claims 3 to 12, further comprising an off-axis optical element to be incident on the light source.
  15.  前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子が設けられており、
     オフアクシス用光学素子は、前記反射回折光用導光系が前記第1のビームスプリッタの手前の光路上に備える第1オフアクシス用ミラーと、前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す際の光路上に備えた第2オフアクシス用ミラーであり、
     第1オフアクシス用ミラーには駆動部が設けられており、この駆動部は、反射モードの際には該第1オフアクシス用ミラーを第1の姿勢とし、透過モードの際には該第1オフアクシス用ミラーを第2の姿勢とするものであり、
     第1の姿勢は、該第1オフアクシス用ミラーによっては前記所定の角度が付与されない姿勢であり、第2の姿勢は、該第1オフアクシス用ミラーによって前記所定の角度が付与される姿勢であることを特徴とする請求項13記載のデジタルホログラフィ装置。
    Off-axis optical system for causing reference light to be incident on the imaging surface of the imaging device in a state where a predetermined angle is given to the direction of the reflected diffraction light or transmission diffraction light when entering the imaging surface of the imaging device An element is provided,
    The off-axis optical element includes a first off-axis mirror provided with the light guide system for reflected diffraction light on the light path in front of the first beam splitter, and the reference light guide system uses the other light as the first light A second off-axis mirror provided on the light path when returning to the 1 beam splitter,
    The first off-axis mirror is provided with a drive unit, and in the reflection mode, the drive unit sets the first off-axis mirror in the first posture, and in the transmission mode, the first off-axis mirror. The off-axis mirror is in the second position,
    The first posture is a posture in which the predetermined angle is not given by the first off-axis mirror, and the second posture is a posture in which the predetermined angle is given by the first off-axis mirror The digital holography device according to claim 13, characterized in that
  16.  前記第1のビームスプリッタから前記光源に向けて光の進行方向とは逆向きに光路をたどった際、前記第1オフアクシス用ミラーは最初のミラーであり、
     前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す光路上において前記第1のビームスプリッタから光の進行方向とは逆向きにたどった際、前記第2オフアクシス用ミラーは最初のミラーであることを特徴とする請求項15記載のデジタルホログラフィ装置。
    The first off-axis mirror is the first mirror when the light path is traced from the first beam splitter toward the light source in the direction opposite to the light traveling direction,
    When the reference light guiding system traces the other light back to the first beam splitter from the first beam splitter in the direction opposite to the light traveling direction, the second off-axis mirror 16. A digital holography device according to claim 15, characterized in that it is the first mirror.
PCT/JP2012/074987 2011-09-30 2012-09-27 Digital holography method and digital holography device WO2013047709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536410A JP5888334B2 (en) 2011-09-30 2012-09-27 Digital holography method and digital holography apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011215952 2011-09-30
JP2011-215952 2011-09-30

Publications (2)

Publication Number Publication Date
WO2013047709A1 WO2013047709A1 (en) 2013-04-04
WO2013047709A4 true WO2013047709A4 (en) 2013-08-29

Family

ID=47995736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074987 WO2013047709A1 (en) 2011-09-30 2012-09-27 Digital holography method and digital holography device

Country Status (2)

Country Link
JP (2) JP5888334B2 (en)
WO (1) WO2013047709A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170411B2 (en) * 2013-10-11 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Scanning optical microscope
JP6176054B2 (en) * 2013-10-19 2017-08-09 ウシオ電機株式会社 Droplet flow observation method and droplet flow observation apparatus
WO2015064088A1 (en) * 2013-10-28 2015-05-07 公立大学法人兵庫県立大学 Holographic microscope and data processing method for high-resolution hologram image
JPWO2017006369A1 (en) * 2015-07-07 2018-04-19 オリンパス株式会社 Digital holographic imaging device and illumination device
CN105066908B (en) * 2015-08-12 2017-06-09 北京航空航天大学 A kind of digital hologram three-dimensional Shape measure device based on multi-wavelength and multi-polarization state
KR101902348B1 (en) * 2017-04-13 2018-09-28 연세대학교 산학협력단 Digital holography system using a MLCC actuator
CN107463081B (en) * 2017-06-16 2020-01-17 重庆理工大学 Three-dimensional real-time microscopic imaging detection system using digital holographic technology
KR101990009B1 (en) 2017-08-25 2019-09-30 주식회사 내일해 An Improved Holographic Reconstruction Apparatus and Method
KR102150110B1 (en) * 2018-12-12 2020-08-31 주식회사 내일해 Method for generating 3d shape information of an object
KR102222859B1 (en) * 2019-06-11 2021-03-04 주식회사 내일해 An Improved Holographic Reconstruction Apparatus and Method
CN110360949B (en) * 2019-07-19 2020-10-20 东北大学 Multifunctional holographic interference measurement system
WO2021095419A1 (en) * 2019-11-15 2021-05-20 富士フイルム株式会社 Information processing device, method for operating information processing device, and program for operating information processing device
JP6809626B1 (en) 2020-04-08 2021-01-06 信越半導体株式会社 DIC defect shape measurement method and polishing method for silicon wafers
CN111811394B (en) * 2020-06-02 2021-11-05 上海大学 Dynamic three-wavelength digital holographic measurement method based on 3CCD or 3CMOS
KR102552799B1 (en) 2021-11-08 2023-07-06 오츠카덴시가부시끼가이샤 Optical measuring method and optical measuring system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230983B2 (en) * 1996-01-12 2001-11-19 富士写真光機株式会社 Subject position adjustment method for lightwave interference device
US6262818B1 (en) * 1998-10-07 2001-07-17 Institute Of Applied Optics, Swiss Federal Institute Of Technology Method for simultaneous amplitude and quantitative phase contrast imaging by numerical reconstruction of digital holograms
JP4294526B2 (en) * 2004-03-26 2009-07-15 独立行政法人科学技術振興機構 Digital holography apparatus and image reproduction method using digital holography
JP2008209722A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Method for producing multiple-exposure hologram and multiple-exposure hologram
US7633631B2 (en) * 2007-04-04 2009-12-15 Nikon Corporation Three-dimensional microscope and method for obtaining three-dimensional image
EP2063260A1 (en) * 2007-11-19 2009-05-27 Lambda-X Fourier transform deflectometry system and method
JP2010145843A (en) * 2008-12-19 2010-07-01 Nippon Soken Inc Interference image recording device and method for adjusting optical system in interference image recording device
JP2010223775A (en) * 2009-03-24 2010-10-07 Olympus Corp Interferometer
JP2011043555A (en) * 2009-08-19 2011-03-03 Olympus Corp Objective optical system for microscope, and microscope having objective optical system for microscope and variable power optical system
US9207638B2 (en) * 2009-10-08 2015-12-08 Universite Libre De Bruxelles Off-axis interferometer
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same
JP2012202777A (en) * 2011-03-24 2012-10-22 Nikon Corp Observation device and observation method

Also Published As

Publication number Publication date
JPWO2013047709A1 (en) 2015-03-26
JP5888334B2 (en) 2016-03-22
JP2016027407A (en) 2016-02-18
JP6079839B2 (en) 2017-02-15
WO2013047709A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP6079839B2 (en) Digital holography method and digital holography apparatus
EP2828614B1 (en) Portable interferometric device
EP3125015B1 (en) Focusing apparatus and method
JP6033798B2 (en) System and method for illumination phase control in fluorescence microscopy
EP3102982B1 (en) Digital holographic device
US20160305761A1 (en) System and a method for quantitative sample imaging using off-axis interferometry with extended field of view or faster frame rate
JP2013513823A (en) Method and system for microscope imaging with high-speed three-dimensional structured illumination
US6404544B1 (en) Wavelength multiplexed quantitative differential interference contrast microscopy
US20220291495A1 (en) Multi-focal light-sheet structured illumination fluorescence microscopy system
US6433876B1 (en) Multiple wavelength or multiple shear distance quantitative differential interference contrast microscopy
JP3943620B2 (en) Differential interference microscope
JP5106369B2 (en) Optical device
JP5107547B2 (en) Interferometric surface shape measuring device
US10545458B2 (en) Optical sectioning using a phase pinhole
JP4739806B2 (en) Light beam measuring apparatus and method
JP6759658B2 (en) Digital holography equipment
US20230259069A1 (en) A Module for Generating an Interference Pattern for Producing a Digital Holographic Image, a Related Method, and a Digital Holographic Microscope
JP2005532596A (en) Optical microscope capable of rapid three-dimensional modulation of observation point position
JP6670476B2 (en) Detector
JP4072190B2 (en) Differential interference microscope
JP6724473B2 (en) Digital holography device
Jung et al. Wide field of view high-resolution digital holographic microscope using digital micromirror device
Tang et al. Modular digital holographic microscopy
JP2014010019A (en) Interference measurement
JP5181403B2 (en) Interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2013536410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 12836898

Country of ref document: EP

Kind code of ref document: A1