WO2013047709A1 - Digital holography method and digital holography device - Google Patents

Digital holography method and digital holography device Download PDF

Info

Publication number
WO2013047709A1
WO2013047709A1 PCT/JP2012/074987 JP2012074987W WO2013047709A1 WO 2013047709 A1 WO2013047709 A1 WO 2013047709A1 JP 2012074987 W JP2012074987 W JP 2012074987W WO 2013047709 A1 WO2013047709 A1 WO 2013047709A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffracted light
beam splitter
optical path
imaging
Prior art date
Application number
PCT/JP2012/074987
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013047709A4 (en
Inventor
司 松尾
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to JP2013536410A priority Critical patent/JP5888334B2/en
Publication of WO2013047709A1 publication Critical patent/WO2013047709A1/en
Publication of WO2013047709A4 publication Critical patent/WO2013047709A4/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/088Condensers for both incident illumination and transillumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02047Interferometers characterised by particular imaging or detection techniques using digital holographic imaging, e.g. lensless phase imaging without hologram in the reference path
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0469Object light being reflected by the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0471Object light being transmitted through the object, e.g. illumination through living cells

Definitions

  • the present invention relates to a digital holography capable of obtaining three-dimensional information of an object in real time by using light interference.
  • FIG. 16 is a diagram showing an outline of a conventional digital holography device.
  • this digital holography device light emitted from a light source 71 is split by a half mirror 72 into reference light and light for object irradiation.
  • the object irradiation light divided by the half mirror 72 is applied to the object 74 through the reflection mirror 73, and the object light 75 is emitted from the object 74.
  • the object light 75 enters the beam splitter 76.
  • the reference light divided by the half mirror 72 is reflected by the reflection mirror 77 and enters the beam splitter 76.
  • the object light transmitted through the beam splitter 76 and the reference light reflected by the beam splitter 76 are simultaneously incident on the imaging surface of the CCD camera 78, so that interference fringes generated by superimposing the object light and the reference light are imaged.
  • hologram data is obtained.
  • a reconstructed image of the object 74 is obtained by performing calculation processing such as Fresnel transformation on the obtained hologram data by a computer (not shown).
  • object light is light emitted from an object irradiated with light, and means diffraction light emitted from an object because holography uses a diffraction phenomenon.
  • the apparatus shown in FIG. 16 is an apparatus in a transmission mode, and the transmitted diffracted light is object light.
  • the transmission mode is a mode in which an interference fringe between diffracted light (transmitted diffracted light) transmitted through the object and emitted when the object is irradiated with light and the reference light is imaged.
  • a plane wave is generally used for reasons such as increasing the coherence between object light and reference light.
  • a light source that emits a plane wave such as a laser is used.
  • the phase shift interferometry is a two-beam interferometer in which a piezoelectric element such as a piezo element or an element capable of changing an optical path length such as a spatial light modulator (SLM) is arranged in the optical path of reference light.
  • SLM spatial light modulator
  • the hologram data is obtained while changing the phase of the reference light in, for example, three or more stages.
  • a clear image can be obtained by removing the 0th-order light and the conjugate image, and high-precision measurement is possible.
  • Patent Document 1 Japanese Patent No. 42945266 discloses an element that converts reference light into reference light groups having different phase values and emits the light, and a Mach-Zehnder interferometer that forms an image in a transmission mode using the element. A constructed digital holography device is shown. As described in this document, the dynamic shape can be measured even when a single image is captured by spatially dividing and recording the interference state between the object beam and the reference beam.
  • Patent Document 2 Japanese Patent Publication No. 2002-526815 discloses a method of applying a principle of off-axis digital holography, taking a single interference fringe image, and obtaining an amplitude image and a phase image of the object therefrom. It is disclosed. Even with this method, since it is sufficient to capture a single image, the shape can be measured even when the object is moving (dynamic shape can be measured).
  • This document shows a digital holography device composed of a Michelson interferometer that is basically designed to form an image in reflection mode.
  • the reflection mode is a mode in which diffracted light (reflected diffracted light) reflected and emitted from an object when the object is irradiated with light is incident on the imaging surface of the image sensor as object light and interferes with reference light.
  • the light emitted from the light source is spread in the diameter direction and enters the beam splitter.
  • the light incident on the beam splitter is divided into one light that passes through the beam splitter and the other light that is reflected by the beam splitter.
  • One light is reflected by the tilted mirror, then enters the beam splitter, is reflected by the beam splitter, and is imaged as reference light.
  • the other light is applied to the sample through the objective lens, and is reflected by the sample to become object light.
  • This object light is incident on the beam splitter and is transmitted through the beam splitter to be imaged.
  • An off-axis hologram can be recorded by using the tilted mirror and causing the reference light to interfere with the object light at a predetermined angle.
  • this document shows a digital holography device composed of a Mach-Zehnder interferometer that is basically designed to form an image in a transmission mode.
  • the light emitted from the light source is spread in the diameter direction and enters the beam splitter. This light is divided into one light transmitted through the beam splitter and the other light reflected by the beam splitter.
  • One light enters the sample, passes through the sample, and forms object light.
  • the object light is collected by the objective lens, enters the beam splitter, is reflected by the beam splitter, and is imaged.
  • the other light is expanded in beam diameter, reflected by an inclined mirror, and then transmitted through a beam splitter and imaged as reference light.
  • digital holography is expected to be applied to observation of various objects and three-dimensional measurement, but there are various objects to be observed and measured. Therefore, there are objects suitable for reflection mode digital holography and those suitable for transmission mode digital holography. In some cases, it is better to perform both the reflection mode and the transmission mode for one object.
  • Patent Document 2 there are only conventional digital holography devices that can operate only in the reflection mode and devices that can operate only in the transmission mode. There was no digital holography device that could be operated on. Therefore, in order to perform both the reflection mode and the transmission mode for one object, it is necessary to prepare both the reflection mode device and the transmission mode device.
  • Patent Document 3 (WO 2008/123408) is known as the only device that can perform both the reflection mode and the transmission mode.
  • FIG. 17 is a diagram showing a digital holography device disclosed in Patent Document 3.
  • Patent Document 3 discloses a first optical system 110 that irradiates light to an object 119, a second optical system that guides diffracted light and reference light emitted from the object 119 to an imaging device, and A digital holography apparatus including: an imaging device 165 that captures an interference image between the diffracted light and the reference light; and a processing device 201 that generates a three-dimensional image of the object from the interference image for each irradiation direction acquired by the imaging device 165 Is disclosed.
  • the imaging device 165 is provided with an imaging device for transmitted diffracted light and an imaging device for reflected diffracted light separately, and hologram data is individually acquired by the imaging device for transmitted diffracted light and the imaging device for reflected diffracted light.
  • FIG. 18 is a schematic diagram showing problems of the digital holography device of Patent Document 3.
  • the side on which the object 119 is irradiated with light (plane wave) to obtain diffracted light is limited to one side of the object 119.
  • This is a device that can irradiate light only from one side of the object 119, and diffracted light (reflected diffracted light) reflected from one side by irradiating light from one side is one 117 of the first objective lens.
  • the diffracted light (transmitted diffracted light) transmitted to the other side is made to reach the transmitted diffracted light imaging device via the other 121 of the first objective lens.
  • the reason why the light is irradiated only from one side of the object 119 is considered to be because the interference fringes by the reflected diffracted light and the interference fringes by the transmitted diffracted light are simultaneously imaged.
  • FIG. 17 As far as can be understood from FIG. 17, it must be considered that the object is in a state of floating in the air.
  • light is irradiated with an object placed on something like a container or a table, and hologram data is acquired.
  • the object S is placed on a transparent glass petri dish 81 and irradiated with light.
  • the reflected diffracted light is captured through the petri dish 81 with respect to the reflected diffracted light.
  • spherical aberration occurs due to the influence of the thickness and refractive index of the petri dish 81.
  • Patent Document 3 shows a state in which transmitted diffracted light propagates in a state different from the original state depending on the thickness and refractive index of the petri dish 81. Due to such spherical aberration, the apparatus of Patent Document 3 cannot obtain highly accurate hologram data. If the object can be held in the air, it may be possible to prevent problems, but it is not possible when observing minute objects such as bacteria, and soft. In the case of a thin object, if it is held between both sides, it will be deformed or damaged, so it is often impossible.
  • Patent Document 3 In the configuration of Patent Document 3, as described above, the viewpoint in the reflection mode and the viewpoint in the transmission mode differ by 180 °. Therefore, the object cannot be observed in the reflection mode or the transmission mode from the same viewpoint. When it is necessary to observe an object in both the reflection mode and the transmission mode from the viewpoint on the same side for some reason, the apparatus of Patent Document 3 cannot be used. As described above, it is difficult to say that the device of Patent Document 3 is a practical device for obtaining highly accurate hologram data.
  • FIG. 19 is a schematic diagram of a spatial filter.
  • the spatial filter includes a lens 82 and a pinhole plate 83, and the pinhole of the pinhole plate 83 is disposed at the light condensing position of the lens 82, so that dust and scratches on the optical element can be obtained.
  • the noise generated by the above is removed. For example, if dust is attached or scratched on the mirror surface that reflects light, the wave surface may be disturbed by the scratch or dust, or interference fringes may be generated due to the effect of the scratch or dust. It becomes impossible to obtain hologram data with high accuracy only by interference fringes due to light. In order to prevent this problem, it is desirable to use a spatial filter.
  • the spatial filter is disposed as close to the object as possible in the optical path of the light applied to the object. If a spatial filter is arranged on the optical path away from the object, and if an optical element such as a lens or a mirror is further arranged between the spatial filter and the object, dust or dirt on the surface of these optical elements will be removed. The effect of scratches cannot be removed.
  • FIG. 17 Patent Document 3
  • the spatial filter in order to avoid the above problem, the spatial filter must be separated to the position where the optical path of the irradiation light and the optical path of the reflected diffracted light are separated. Even if the position closest to the object 119 is selected, the position is between the mirror 105 and the beam splitter 107. Even if the spatial filter is arranged at this position, the optical elements such as the beam splitter 107, the second objective lens 109, the polarization beam splitter 111, and the mirror 115 exist from here to the object 119. Therefore, there is no point in arranging a spatial filter. That is, it is practically impossible with the apparatus of Patent Document 3 to obtain highly accurate hologram data using a spatial filter.
  • the present invention has been made to solve such problems, and firstly, it is an object of the present invention to provide a practical digital holography method for performing both the reflection mode and the transmission mode. .
  • a second object of the present invention is to provide a practical digital holography device capable of performing both the reflection mode and the transmission mode.
  • a third object of the present invention is to make it possible to acquire highly accurate hologram data without placing an object in the air.
  • a fourth object of the present invention is to make it possible to acquire hologram data with higher accuracy by using a spatial filter.
  • the invention according to claim 1 of the present application passes the object through the object with the diffracted light from the object obtained by irradiating the object with the light emitted from the light source and the light emitted from the light source.
  • a digital holography method for acquiring hologram data by causing interference on the imaging surface of an imaging device with reference light obtained by guiding without any problem When the object from the first side is irradiated with the light from the light source, the reflected diffracted light reflected from the object to the first side and emitted is interfered with the reference light on the image pickup surface of the image pickup device to obtain hologram data.
  • the invention described in claim 2 does not include object information from diffracted light from an object obtained by irradiating an object with light emitted from a light source and diffracted light from the object.
  • a digital holography method for acquiring hologram data by causing interference with an imaging surface of an imaging device with reference light extracted in a state, When the object from the first side is irradiated with the light from the light source, the reflected diffracted light reflected from the object to the first side and emitted is interfered with the reference light on the image pickup surface of the image pickup device to obtain hologram data.
  • the transmitted diffracted light that is transmitted through and emitted from the first side and the reference light are reflected on the imaging surface of the image sensor.
  • the step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
  • the invention described in claim 3 is such that the diffracted light from the object obtained by irradiating the object with the light emitted from the light source and the light emitted from the light source through the object.
  • a digital holography device that obtains hologram data by causing interference on the imaging surface of the imaging device with reference light obtained by guiding without
  • a light guide system for reflected diffracted light that guides light from the light source to the object in order to obtain reflected diffracted light that is diffracted light that is reflected and emitted from the object
  • a light guide system for transmitted diffracted light that guides light from the light source to the object in order to obtain transmitted diffracted light that is diffracted light that is transmitted through and emitted from the object
  • a reference light guide system that guides light from the light source to the imaging surface of the image sensor without passing through an object, There is provided a selection optical element for selectively selecting whether to enter the reflection mode by entering the reflected diffracted light on the imaging surface of the image sensor or to enter the transmission mode by entering the transmitted diffracted light.
  • the light guide system for reflected diffracted light irradiates light from the light source to the object from the first side
  • the light guide system for transmitted diffracted light irradiates the object with light from the light source from a second side opposite to the first side
  • An imaging optical path which is an optical path from the object to the imaging surface of the imaging element, is set on the first side of the object.
  • the invention described in claim 4 does not include object information from diffracted light from an object obtained by irradiating an object with light emitted from a light source and diffracted light from the object.
  • a digital holography device for acquiring hologram data by causing interference with an imaging surface of an imaging element with reference light extracted in a state, A light guide system for reflected diffracted light that guides light from the light source to the object in order to obtain reflected diffracted light that is diffracted light that is reflected and emitted from the object; A light guide system for transmitted diffracted light that guides light from the light source to the object in order to obtain transmitted diffracted light that is diffracted light that is transmitted through and emitted from the object; An imaging device in which the imaging surface is located at a position where the reflected diffracted light can be incident and at which the transmitted diffracted light can be incident; A reference light guide system that extracts reference light from reflected diffracted light or transmitted diffracted light without including object information and guides it to the imaging surface of the image sensor, There is provided a selection optical element for selectively selecting whether to enter the reflection mode by entering the reflected diffracted light on the imaging surface of the image sensor or to enter the transmission mode by entering the transmitted diffr
  • the light guide system for reflected diffracted light irradiates light from the light source to the object from the first side
  • the light guide system for transmitted diffracted light irradiates the object with light from the light source from a second side opposite to the first side
  • An imaging optical path which is an optical path from the object to the imaging surface of the imaging element, is set on the first side of the object.
  • the invention described in claim 5 has a configuration in which, in the configuration of claim 3 or 4, an imaging optical system including a lens is provided on the imaging optical path.
  • the invention according to claim 6 is the configuration according to claim 3, 4 or 5, wherein the imaging optical system includes at least a part of the optical elements in the reflection mode and the transmission mode. Are shared.
  • the invention described in claim 7 has a configuration in which, in the configuration of claim 3, 4, 5 or 6, the imaging optical system is a telecentric optical system.
  • the invention according to claim 8 is the structure according to any one of claims 3 to 7, wherein the imaging optical path extends straight from the object to the imaging surface.
  • the light guide system for reflected diffracted light guides light to the object through the imaging optical path.
  • a first spatial filter is provided on the optical path until reaching the imaging optical path, and zero or only one is provided on the optical path from the first spatial filter to the imaging optical path.
  • the light guide system for transmitted diffracted light includes a second spatial filter, and includes zero or only one mirror on the optical path from the second spatial filter to the object. It has a configuration.
  • the invention according to claim 10 is the configuration according to any one of claims 3 to 9, wherein the selection optical element is a first optical element disposed on a main optical path extending from the light source.
  • a selection optical element, and a main optical path is branched into an optical path of the reflected diffracted light guide system and an optical path of the transmitted diffracted light guide system, and the first selection optical element is: A configuration that selectively selects whether the light from the light source travels along the optical path of the reflected diffracted light guide system or the optical path of the transmitted diffracted light guide system
  • the invention according to claim 11 is the structure according to any one of claims 3 to 10, wherein a first beam splitter is provided on the imaging optical path, and the reflected diffracted light is provided.
  • the light guide system guides light from the light source to the first beam splitter, and the first beam splitter splits the light guided by the reflected diffracted light guide system in the reflection mode.
  • the invention according to claim 12 is the main optical path extending from the light source as the selection optical element in the configuration of claim 3, 5, 6, 7, 8, or 9. And a main optical path is branched into an optical path of the reflected diffracted light guide system and an optical path of the transmitted diffracted light guide system.
  • the optical element for selection alternatively selects whether the light from the light source travels along the optical path of the light guide system for reflected diffracted light or the light path of the light guide system for transmitted diffracted light Is what A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffracted light guides light from a light source to the first beam splitter, and the first beam splitter is Taking a first state in which the light guided by the light guide system for reflected diffracted light in the reflection mode is divided and one of the lights is directed to the object;
  • the reference light guide system guides the other light divided by the first beam splitter in the reflection mode to the imaging surface of the imaging element without passing through the object,
  • the first optical element for selection is a second beam splitter, and is provided with a drive unit for changing the arrangement position of the second beam splitter, and the drive unit is a second beam splitter in the reflection mode.
  • the second beam splitter is arranged on the main optical path in the transmission mode. A part of the light is allowed to travel along an optical path of the light guide system for transmitted diffraction light,
  • the first beam splitter is arranged as a second optical element for selection, and the first beam splitter is provided with a switching unit for changing the state of the first beam splitter,
  • the switching unit sets the first beam splitter to the first state in the reflection mode, and sets the first beam splitter to the second state in the transmission mode.
  • the second state is guided by the reflected diffracted light guiding system and reaches the first beam splitter so that the reflected diffracted light guiding system is also used as the reference light guiding system.
  • the invention according to claim 13 is the configuration according to claim 12, wherein the reference light guide system transmits the other light transmitted through the first beam splitter in the reflection mode. Returns the other light to the first beam splitter so as to enter the imaging surface of the imaging device via the first beam splitter, A beam stopper that can be disposed on an optical path for returning the other light to the first beam splitter, and a stopper driving unit that drives the beam stopper are provided. In some cases, the beam stopper is not disposed on the optical path, and in the transmission mode, the beam stopper is disposed on the optical path.
  • the reference light guide system has the reflected diffracted light or the incident light incident on the imaging surface of the imaging element.
  • An off-axis optical element is provided that allows reference light to enter the imaging surface of the imaging element in a state where a predetermined angle is given to the direction of the transmitted diffracted light.
  • the invention according to claim 15 is directed to the direction of the reflected diffracted light or transmitted diffracted light when entering the imaging surface of the image sensor in the configuration of claim 13.
  • An off-axis optical element that makes reference light incident on the imaging surface of the imaging element in a state where a predetermined angle is given,
  • the off-axis optical element includes a first off-axis mirror provided on the optical path in front of the first beam splitter by the reflected diffracted light guiding system, and the reference light guiding system configured to transmit the other light.
  • a second off-axis mirror provided on the optical path when returning to the first beam splitter;
  • the first off-axis mirror is provided with a drive unit.
  • the drive unit sets the first off-axis mirror in the first posture in the reflection mode and the first off-axis mirror in the transmission mode.
  • the off-axis mirror is in the second position
  • the first posture is a posture in which the predetermined angle is not given by the first off-axis mirror
  • the second posture is a posture in which the predetermined angle is given by the first off-axis mirror. It has a configuration that there is.
  • the optical path is traced in the direction opposite to the traveling direction of light from the first beam splitter toward the light source.
  • the first off-axis mirror is the first mirror;
  • the second off-axis mirror is The first mirror is configured.
  • hologram data can be obtained for each object using reflected diffracted light and transmitted diffracted light, it is suitable for examining the state and shape of the object in detail. It will be a thing. At this time, since the reflection mode and the transmission mode are performed separately in time, the configuration of the optical system is simplified. In addition, since the reflection mode and the transmission mode can be performed by one apparatus, it is preferable in terms of workability in addition to the merit in cost. Furthermore, highly accurate hologram data can be obtained even when an object is placed on a transparent container, and observation in the reflection mode and observation in the transmission mode can be performed from the same viewpoint.
  • the reference light is guided to the image sensor without passing through the object, stable reference light can always be obtained regardless of the condition of the object. For this reason, highly accurate hologram data can be acquired.
  • the imaging optical system shares at least a part of the optical elements, the configuration of the optical system is simplified and the cost is reduced.
  • the imaging optical system is a telecentric optical system, it is possible to irradiate the object with plane waves in both the reflection mode and the transmission mode. For this reason, the object light is not distorted and correction calculation is not required.
  • the imaging optical path extends straight from the object to the imaging surface, so that the configuration of the optical system is simplified, and the wave front is disturbed. Less. For this reason, it can contribute to acquisition of hologram data with higher accuracy, and the cost is also low.
  • the ninth aspect of the invention in addition to the above effect, since a spatial filter is used, more accurate hologram data can be obtained. Since the spatial filter is located on the optical path closer to the object, the effect of improving accuracy is higher.
  • the reflected diffracted light guiding system is also used as the reference light guiding system, so that the coherence of light is improved and more accurate in this respect.
  • the reference light guide system returns light to the first beam splitter and passes the light to the image sensor through the first beam splitter in the reflection mode. Therefore, the coherence of light is further improved in this respect, and more accurate hologram data can be acquired.
  • an off-axis operation is possible because the off-axis optical element is provided. Therefore, image reproduction can be performed with the true image separated from the zero-order image and the conjugate image.
  • the off-axis mirror is provided near the image pickup device, the incident position of the reference light on the image pickup surface of the image pickup device is not greatly shifted.
  • FIG. 1 is a schematic front view of a digital holography device according to a first embodiment of the present invention. It is the front schematic of the digital holography device of the 2nd Embodiment of this invention.
  • FIG. 6 is a schematic diagram showing a second beam expander 321 and a second spatial filter 326. It is the schematic which showed typically about the telecentricity of the imaging optical system 5 in the apparatus of FIG. It is the schematic which showed the control system of the digital holography apparatus of 2nd Embodiment. It is the schematic shown about operation
  • FIG. It is the front schematic which showed the example of the reference light extraction unit 9 in embodiment shown in FIG. It is the figure which showed the outline of the conventional digital holography apparatus. It is a figure which shows the digital holography apparatus disclosed by patent document 3. FIG. It is the schematic shown about the problem of the digital holography apparatus of patent document 3. FIG. It is the schematic of a spatial filter.
  • FIG. 1 is a diagram conceptually illustrating a digital holography method according to an embodiment of the present invention.
  • diffracted light (object light) from the object S obtained by irradiating the object S with light (plane wave) emitted from the light source 1 and light from the light source 1 are transmitted to the object S.
  • This is a method of acquiring hologram data by causing interference between the reference light obtained without passing through the imaging surface of the imaging device 2.
  • the object light (reflected diffracted light) that travels as a diffraction reflected from the object S out of the light irradiated to the object S interferes with the reference light on the imaging surface to generate a hologram.
  • Hologram data is obtained by causing the imaging surface to interfere with the reflection mode for obtaining data and the object light (transmitted diffracted light) that travels as diffracted light through the object S among the light irradiated to the object S and the reference light.
  • the transmission mode is a method in which the reflection mode and the transmission mode are performed in separate steps.
  • FIG. 1 (1) shows the reflection mode
  • FIG. 1 (2) shows the transmission mode. Either the reflection mode step or the transmission mode step may be first.
  • Another major feature of the digital holography method of the embodiment is that the way of irradiating the object S with light differs between the reflection mode and the transmission mode. That is, as shown in FIG. 1A, in the reflection mode, the object S is irradiated with light from the light source 1 from the first side. On the other hand, as shown in FIG. 1B, in the transmission mode, the object S is irradiated with light from the second side opposite to the first side. In the reflection mode, the diffracted light reflected on the first side is incident on the image sensor 2, and in the transmission mode, the diffracted light transmitted on the first side is incident on the image sensor 2. That is, the image pickup side by the image pickup device 2 is the same in the reflection mode and the transmission mode.
  • FIG. 2 is a schematic front view of the digital holography device according to the first embodiment.
  • the digital holography device according to the first embodiment obtains a reflected diffracted light guiding system 31 that guides light from the light source 1 to an object S and obtains transmitted diffracted light in order to obtain reflected diffracted light.
  • a light guide system 32 for transmitted diffracted light that guides light from the light source 1 to the object S
  • a reference light guide system 33 that guides light from the light source 1 to the imaging surface of the image sensor 2 without passing through the object S
  • reflection The imaging device 2 is provided with an imaging surface located at a position where the diffracted light and the reference light interfere with each other and the transmitted diffracted light and the reference light interfere with each other.
  • the image pickup device 2 is provided on the image pickup optical path Pi set on the first side.
  • a first beam splitter 41 is provided on the imaging optical path Pi. Since the light for reflected diffracted light irradiates the object S through the imaging optical path Pi, the first beam splitter 41 is disposed in the middle of the imaging optical path Pi, and the light for reflected diffracted light is introduced from there. Yes.
  • the imaging optical system 5 including a lens is provided on the imaging optical path Pi.
  • the imaging optical system 5 is not necessary when the imaging device 2 is located relatively close to the object S and uses Fresnel diffraction (in the case of a Fresnel hologram). Further, the imaging optical system 5 is not necessary in the case of a Fourier transform hologram (lensless Fourier transform hologram) in which the reference light is a spherical wave. The imaging optical system 5 is necessary when a lens is used to form a Fraunhofer hologram (Fourier transform hologram), or when an interference image due to diffracted light from the object S is enlarged or reduced. .
  • the light source 1 In order to obtain a clear hologram reproduction image, it is necessary that the object beam and the reference beam sufficiently interfere to form interference fringes.
  • the light source 1 needs to be in phase with a single wavelength (coherent).
  • a laser is used as the light source 1.
  • a He—Ne (helium neon) laser having a wavelength of 632.8 nm is used.
  • the light from one light source 1 is divided and used. That is, the light emitted from the light source 1 is divided by the reference light extraction beam splitter 42, and one is used as the reference light.
  • the optical element for selection is a movable mirror 43 in this embodiment.
  • the movable mirror 43 is a movable mirror and selects whether to guide the irradiation light from the reference beam extraction beam splitter 42 to the reflected diffracted light guide system 31 or to the transmitted diffracted light guide system 32. It is like that.
  • this embodiment is an in-line apparatus, and the reference light is incident on the imaging surface of the imaging device 2 perpendicularly in the same manner as the object light.
  • an integration beam splitter 44 is disposed on the imaging optical path Pi, and the reference light is reflected by the integration beam splitter 44 and enters the imaging surface of the imaging device 2 perpendicularly.
  • the reference light guide system 33 includes a reference light first mirror 331 and a reference light second mirror 332, and integrates the light extracted by the reference light extraction beam splitter 42. It has led to
  • the hologram S is obtained by placing the object S in a container such as a petri dish.
  • the movable mirror 43 is moved to obtain hologram data in the transmission mode.
  • Each hologram data is processed by a computer (not shown in FIG. 1) to which the image sensor 2 is connected.
  • a predetermined program (hereinafter referred to as an image reproduction program) for obtaining a reproduction image from hologram data is installed in the computer, and the reproduction image is displayed on the display by executing the image reproduction program. It is possible to measure the distance of a specific location or to display the reflectance distribution or transmittance distribution of the object S.
  • hologram data can be obtained for each object S using reflected diffracted light and transmitted diffracted light. It becomes. For example, it can be suitably used to know both the reflectance distribution and the transmittance distribution on the surface of the object S.
  • FIG. 15 shows a complicated imaging optical system using the polarization beam splitter 143 and the like.
  • the imaging optical system means an optical system on the optical path of object light from the object to the imaging device.
  • the imaging optical system 5 becomes simple.
  • the fact that the imaging optical system 5 is simple means that, in addition to cost advantages, the possibility of wavefront disturbance due to the use of more optical elements is reduced, so that more accurate hologram data can be obtained. There is an advantage.
  • simultaneously performing the reflection mode and the transmission mode as shown in FIG. 15 means that the object S is irradiated with light from one side and reflected and reflected on one side and reflected on the other side. This means that the transmitted diffracted light that passes through is captured by the image sensor.
  • high-accuracy hologram data cannot be obtained unless the object S is suspended and held in the air.
  • the reflection mode and the transmission mode are performed separately in time, the light can be irradiated from the opposite side in the transmission mode, and the imaging side can be the same side of the object S. it can. Therefore, highly accurate hologram data can be obtained even when the object S is placed in a container such as a petri dish, and observation in the reflection mode and observation in the transmission mode can be performed from the same side viewpoint.
  • the device of the embodiment is such a device.
  • Performing the reflection mode and the transmission mode is suitable for examining the state and shape of the object S in detail as described above.
  • the fact that this can be performed with one apparatus is not only cost-effective but also workable. This is also suitable.
  • a digital holography device that performs measurement in the reflection mode and a digital holography device that performs measurement in the transmission mode are prepared, the same can be achieved.
  • the object S is taken out after measurement is performed using the device in the reflection mode.
  • the measurement must be performed by setting the device in a transmission mode. According to the apparatus of this embodiment, there is no such problem.
  • hologram data cannot be acquired in the transmission mode.
  • the point that the reference light is guided to the image sensor 2 without passing through the object S is excellent in that a stable reference light is always obtained regardless of the conditions of the object S.
  • the light transmitted through the object S is taken out and used as reference light.
  • the reference light changes depending on the optical properties of the object S, so that stable light cannot always be used as the reference light.
  • the reference light is guided to the image sensor 2 without passing through the object S as in the present embodiment, the reference light is always stable without changing depending on the conditions of the object S. it can. For example, when measuring the light transmittance from the object S, according to the method or apparatus of this embodiment, there is an advantage that data having quantitativeness can be obtained.
  • FIG. 3 is a schematic front view of a digital holography device according to a second embodiment of the present invention.
  • the digital holography device of the second embodiment includes a light guide system 31 for reflected diffracted light that guides light from the light source 1 to the object S to obtain reflected diffracted light, and light from the light source 1 to obtain transmitted diffracted light.
  • the imaging device 2 in which the imaging surface is located at a position where the transmitted diffracted light and the reference light interfere with each other, and the reflected diffracted light is incident on the imaging surface of the imaging device 2 to enter the reflection mode or the transmitted diffracted light.
  • a control system (not shown in FIG. 3) for controlling the operation of the selection optical element.
  • the light guide system 31 for reflected diffracted light is partially used as a reference light guide system in order to improve the practicality of the apparatus.
  • a second beam splitter 45 is provided in place of the movable mirror 43 in the first embodiment.
  • a drive unit 451 is attached to the second beam splitter 45.
  • the first beam splitter 41 is provided as in the first embodiment, but the first beam splitter 41 is provided with a switching unit 411 as a drive mechanism.
  • the first beam splitter 41 and the second beam splitter 45 function as a selection optical element.
  • the optical path extending from the light source 1 (hereinafter, the main optical path) can be branched by the second beam splitter 45 after being bent by 90 ° by the first mirror 46.
  • the light guide system 31 for reflected diffracted light is arranged on the main optical path and on the image side of the division position by the second beam splitter 45 (forward in the light traveling direction, hereinafter the same).
  • the light guide system 31 for reflected diffracted light includes a first beam expander 311, a second mirror 312, a first beam splitter 41, and the like.
  • the second mirror 312 bends the light whose width is widened by the first beam expander 311 by 90 ° and reaches the first beam splitter 41.
  • the light guide system 32 for transmitted diffracted light is arranged on each optical path (hereinafter referred to as a branched optical path) Ps formed separately from the main optical path by the second beam splitter 45 being positioned on the main optical path. It is comprised by the optical element.
  • Each optical element is the second beam expander 321, the third mirror 322, or the like.
  • the third mirror 322 bends the branched optical path Ps by 90 ° to reach the position of the object S.
  • the light traveling on the branched optical path Ps divided by the second beam splitter 45 is reflected by the third mirror 322 via the second beam expander 321 and reaches the object S. This light passes through the object S and becomes transmitted diffracted light.
  • the drive unit 451 provided in the second beam splitter 45 includes a division position where the second beam splitter 45 is arranged on the main optical path to divide the light, and a retraction position where the light is retreated from the main optical path so as not to divide the light. Is a mechanism for moving the second beam splitter 45 between the two. Thereby, the second beam splitter 45 functions as a selection optical element.
  • the drive unit 451 is configured with a linear motion stage such as a linear stage, for example.
  • the switching unit 411 provided in the first beam splitter 41 changes the state of the first beam splitter 41 so that the first beam splitter 41 functions as a selection optical element. Specifically, in the reflection mode, the switching unit 411 causes the first beam splitter 41 to be in the same state as in the first embodiment, that is, the light guided by the reflected diffracted light guide system 31. It is assumed that the posture is reflected toward the object S (hereinafter referred to as a first state). Then, in the transmission mode, the switching unit 411 rotates the first beam splitter 41 by 90 °, reflects the light guided by the reflected diffracted light guiding system 31, and directly enters the imaging element 2. It is a posture (hereinafter referred to as a second state).
  • the switching unit 411 prevents the light from the light source 1 from irradiating the object S from the opposite side in the transmission mode, and the reflected diffraction light guide system 31 functions as the reference light guide system 33. It plays two roles.
  • a switching part 411 is comprised with a rotation stage, for example.
  • the rotation axis is on a straight line that is perpendicular to the optical axis and passes through the center of the reflection surface of the first beam splitter 41 along the reflection surface.
  • the reference light guide system 33 guides the reference light to the imaging device 2, but guides the reference light through different paths in the transmission mode and the reflection mode.
  • the reference light guide system 33 guides the reference light to the image sensor 2 by using a part of the above-described reflected diffracted light guide system 31. That is, the reference light guide system 33 in the transmission mode includes the first mirror 46, the second beam splitter 45, the first beam expander 311, the second mirror 312, and the like.
  • the reference light guide system 33 is configured by a part of the shared reflection-diffracted light guide system 31 and the additional light guide system 34.
  • the first beam splitter 41 advances one of the divided lights toward the object S.
  • the additional light guide system 34 guides the other light split by the first beam splitter 41 to the image sensor 2.
  • the additional light guide system 34 returns the other light to the first beam splitter 41 and guides the imaging element 2 through the first beam splitter 41 in order to guide it through the same path as much as possible.
  • the light is incident on the imaging surface as reference light.
  • the reference light guide system 33 includes the first mirror 46, the first beam expander 311, the second mirror 312, the first beam splitter 41, And an additional light guide system 34.
  • the additional light guide system 34 includes a fourth mirror 341, a folding mirror 342, and the like.
  • the fourth mirror 341 folds the light from the second beam splitter 45 by 90 °
  • the folding mirror 342 folds the light by bending 180 °.
  • a beam stopper 343 and a stopper driving unit 344 that drives the beam stopper 343 are provided between the fourth mirror 341 and the folding mirror 342.
  • the beam stopper 343 and the stopper driving unit 344 do not need the additional light guide system 34 in the transmission mode, and thus stop the light so that it does not return.
  • a first spatial filter 316 and a second spatial filter 326 are arranged in order to obtain highly accurate hologram data.
  • the first spatial filter 316 and the second spatial filter 326 are disposed in the reflected diffracted light guide system 31, the transmitted diffracted light guide system 32, and the reference light guide system 33, respectively. More specifically, a first spatial filter 316 is disposed in the light guide system 31 for reflected diffracted light, and a second spatial filter 326 is disposed in the light guide system 32 for transmitted diffracted light. Since the reflected diffracted light guide system 31 is also used as the reference light guide system 33, all of the transmitted diffracted light, reflected diffracted light, and reference light all pass through the spatial filter. become. That is, all the light incident on the image pickup device 2 passes through the spatial filter. For this reason, it is extremely suitable in terms of obtaining accurate hologram data.
  • the first spatial filter 316 and the second spatial filter 326 are arranged as close as possible to the object S or the image sensor 2.
  • the first spatial filter 316 is arranged on the image side from the branch point of the branch optical path Ps in the main optical path, and the first spatial filter Only one second mirror 312 is arranged between 316 and the first beam splitter 41.
  • the second spatial filter 326 is disposed on the branch optical path Ps, and only one third filter is provided between the second spatial filter 326 and the object S.
  • the mirror 322 is arranged.
  • a spatial filter can be disposed between the second mirror 312 and the first beam splitter 41. In this way, the accuracy of hologram data can be further improved.
  • a spatial filter can be disposed between the third mirror 322 and the object S, and the accuracy of hologram data can be further improved.
  • the beam expander and the spatial filter are configured to partially use the optical element. That is, the first spatial filter 316 is realized by the first beam expander 311, and the second spatial filter 326 is realized by the second beam expander 321.
  • FIG. 4 is a schematic diagram showing the second beam expander 321 and the second spatial filter 326 as an example.
  • the second beam expander 321 includes a condenser lens 323 and a collimator lens 324.
  • the pinhole board 325 is arrange
  • FIG. The pinhole of the pinhole plate 325 coincides with the light collecting position.
  • the second spatial filter 326 is configured by the condenser lens 323 and the pinhole plate 325. That is, the condensing lens 323 is also used as the second beam expander 321 and the second spatial filter 326. With such a structure, the configuration of the optical system is simplified, and the cost is reduced by reducing the number of parts.
  • the first spatial filter 316 realized in the first beam expander 311 has the same structure.
  • the imaging optical system 5 will be described. Also in the present embodiment, the reflected diffracted light guide system 31 irradiates light from the side opposite to the side where the transmitted diffracted light guide system 32 irradiates the object S with light, and the imaging optical system 5 Is provided on the imaging optical path Pi that extends on the light irradiation side of the light guide system 31 for reflected diffracted light. That is, the reflected diffracted light and the transmitted diffracted light are configured to reach the image pickup surface of the image pickup device 2 via a common image pickup optical path Pi, and the image pickup optical system 5 is disposed on this common optical path.
  • the imaging optical system 5 includes an objective lens 51 arranged on the side close to the object S and an imaging lens 52 arranged on the side close to the imaging element 2. Another major feature of the apparatus of this embodiment is that the imaging optical system 5 is a telecentric optical system. Hereinafter, this point will be described with reference to FIG.
  • FIG. 5 is a schematic diagram schematically showing the telecentricity of the imaging optical system 5 in the apparatus of FIG.
  • a telecentric optical system generally refers to an optical system in which the principal ray can be regarded as being parallel to the principal axis.
  • FIG. 5A shows an optical system telecentric on the image side.
  • an optical system in which the principal ray can be considered parallel to the optical axis on both the object side and the image side is called double-sided telecentric.
  • the telecentricity of the imaging optical system 5 in the present embodiment is such that, as shown in FIG. 5 (2), the principal ray is the optical axis on both the front side (object S side) and the rear side (imaging element 2 side) of the optical system. It can be regarded as parallel to.
  • the light source 1 is a laser, and it is assumed that plane waves (parallel light) are incident. For this reason, a coupling optical system that is telecentric on both sides can be achieved by making the position of the rear focal point of the objective lens 51 coincide with the position of the front focal point of the imaging lens 52 (confocal).
  • the telecentricity of the imaging optical system 5 in this embodiment has another meaning. As shown in FIG.
  • the objective lens 51 and the imaging lens 52 are an infinite correction optical system, and the diffracted light (object light) emitted from one point of the object S is the objective lens 51.
  • the light beam becomes parallel light and enters the imaging lens 52.
  • the infinity correction system having telecentricity has a great advantage that the size of the image does not change even when the position of the object S is changed and the focus is adjusted. This is advantageous when it is desired to obtain hologram data with reflected or transmitted diffracted light from a position slightly deeper than the surface of the object S.
  • the apparatus of the present embodiment is configured as a digital holographic microscope and a reproduced image is obtained while enlarging a biological sample that is transparent to some extent, there is a great advantage.
  • an object side telecentric lens is adopted as the objective lens 51
  • an image side telecentric lens is adopted as the imaging lens 52
  • the focal position on the image side of the objective lens 51 and the imaging lens 52 are adopted. This can be achieved by arranging in a state where the object side focal position of the lens is matched (confocal state).
  • the object-side telecentric lens and the image-side telecentric lens commercially available lenses can be used, and detailed description thereof is omitted.
  • the imaging lens 52 which is an image-side telecentric lens, constitutes an infinity correction system. Therefore, it is preferable to use a lens having a large effective aperture in order to reduce light loss as much as possible.
  • the image sensor 2 is a CCD camera, for example.
  • the CCD camera has an imaging surface of 1024 ⁇ 1024 pixels, for example.
  • the imaging element 2 is arranged such that the center of the imaging surface is located on the optical axis and the imaging surface is perpendicular to the optical axis.
  • a polarizing filter 11 and a quarter wavelength plate 12 are provided on the optical path immediately after the light is emitted from the light source 1.
  • the polarizing filter 11 and the quarter wavelength plate 12 prevent the light from returning to the light source 1 and entering.
  • the polarizing filter 11 transmits only linearly polarized light in a specific direction.
  • the quarter-wave plate 12 is arranged by shifting the crystal axis by 45 ° from the transmission axis (direction of linearly polarized light) of the polarizing filter 11 and has a function of converting linearly polarized light into circularly polarized light.
  • the circularly polarized light is irradiated onto the object S or incident on the image sensor 2 as reference light. May come back.
  • the returned circularly polarized light is again converted to linearly polarized light by passing through the 1 ⁇ 4 ⁇ wavelength plate 12 again. Since this linearly polarized light has a phase difference of 1 ⁇ 4 wavelength, the polarization direction is shifted by 90 ° from the first linearly polarized light. For this reason, this light cannot pass through the polarizing filter 11 and is blocked at the polarizing filter 11. Since the return light does not enter the light source 1, damage to the light source 1 due to the return light is prevented.
  • the object S is held by an appropriate member in accordance with its properties and size.
  • the object S is held on a transparent container such as a petri dish or a transparent plate-like member, and in the case of a large object S, a clamp-like member that is sandwiched and held is used. Sometimes it is done.
  • the object S is a plate-like object such as a substrate, it may be held by a frame-shaped member. In any case, the object S is held at a predetermined position with respect to the light guide system and the imaging optical system 5 by such a holding member.
  • FIG. 6 is a schematic diagram illustrating a control system of the digital holography device according to the second embodiment.
  • the control system 6 that controls the optical elements for selection and the like includes a control board 61 and a computer 63 in which a switching program 62 that sends a signal to the control board 61 to switch between the reflection mode and the transmission mode is installed.
  • the computer 63 is also provided with a calculation function of a reproduced image, a general computer that operates on a general-purpose OS such as a desktop personal computer is used as the computer 63.
  • the control board 61 is attached as the interface.
  • the switching program 62 is a program for sending a control signal for switching between the reflection mode and the transmission mode from the computer 63 to the control board 61.
  • the control board 61 drives the switching unit 411 of the first beam splitter 41, the driving unit 451 of the second beam splitter 45, and the stopper driving unit 344 of the beam stopper 343 based on the transmitted control signal. Each operation signal is sent out.
  • the control board 61 has a storage unit such as a RAM, and a sequence control program for outputting each operation signal in accordance with the control signal is written in the storage unit.
  • the sequence control program reads the switching unit 411 of the first beam splitter 41 and the driving unit 451 of the second beam splitter 45. And an operation signal for the reflection mode is programmed to be sent to the stopper driving unit 344 of the beam stopper 343.
  • the sequence control program sends the operation signal for the transmission mode to the switching unit 411 of the first beam splitter 41, It is programmed to send to the drive unit 451 of the second beam splitter 45 and the stopper drive unit 344 of the beam stopper 343.
  • the first beam splitter 41, the second beam splitter 45, and the beam stopper 343 are provided with sensors for detecting their positions and postures, and signals from the sensors are input to the control board 61 and used for control. Is preferred.
  • the signal from each sensor is used to monitor whether each unit is operating normally, or to check the position and orientation when performing the same mode as the previous operation, so that no operation signal is sent. Can be used.
  • the light source 1 is turned on and off by a switch provided in a power source (not shown). However, the light source 1 can be turned on / off by sending a signal from the computer 63 via the control board 61.
  • the computer 63 is also installed with a program (hereinafter referred to as a reproduction program) 64 that executes a predetermined calculation process for obtaining a reproduction image based on hologram data obtained on the imaging surface of the image sensor 2.
  • a reproduction program 64 executes a predetermined calculation process for obtaining a reproduction image based on hologram data obtained on the imaging surface of the image sensor 2.
  • Various calculation formulas and techniques are known for calculation processing for obtaining a reproduced image from hologram data, and any one can be selected and applied. As an example, one using the Fourier transform is shown below.
  • the reproduction plane (plane on which a reproduction image can be generated) is parallel to the hologram plane (here, the imaging plane of the image sensor 2), and the distance is R, and r is a point on the reproduction plane to a point on the reproduction plane.
  • x and y are coordinates on the hologram surface
  • X and Y are coordinates on the reproduction surface.
  • the complex amplitude distribution on the reproduction surface can be expressed as Equation 1 according to Kirchhoff's diffraction integral equation.
  • g (x, y) is hologram data
  • G (X, Y) is a complex amplitude distribution of the generated image.
  • is the wavelength and k is the wave number.
  • Equation 3 when the integral is regarded as Fourier transform and transformed, Equation 4 is obtained.
  • Equation 4 when the integral is regarded as Fourier transform and transformed, Equation 4 is obtained.
  • Equation 4 the parentheses of F indicate Fourier transform.
  • x and y are outputs from each pixel on the imaging surface, and a reproduced image G (X, Y) is obtained by performing a discrete Fourier transform.
  • the computer 63 is installed with a main program (not shown) for controlling the overall operation.
  • the main program is automatically started when the apparatus is turned on.
  • the main program displays a screen for selecting either the reflection mode or the transmission mode on the display, or displays buttons for instructing execution of main operations such as acquisition of hologram data and formation of a reproduced image. .
  • FIGS. 7 to 9 are schematic views showing the operation of the digital holography device of the second embodiment.
  • FIG. 7 is a diagram showing a comparison of the progress of each light in the reflection mode and the transmission mode
  • FIG. 8 is a diagram showing an outline of the operation flow in the reflection mode
  • FIG. 9 is an operation in the transmission mode. It is the figure which showed the outline of the flow.
  • the switching program 62 is executed, and a control signal for setting the reflection mode is sent to the control board 61.
  • the control board 61 sends the operation signals for the reflection mode to the switching unit 411 of the first beam splitter 41, the driving unit 451 of the second beam splitter 45, and the stopper driving unit of the beam stopper 343. 344.
  • the control board 61 first sends an operation signal to the switching unit 411 so that the first beam splitter 41 is in the first state.
  • the first state as shown in FIG. 7A, light incident on the first beam splitter 41 via the light guide system 31 for reflected diffracted light is reflected by the reflecting surface and is reflected on the object S. It is in a state of taking an attitude of moving forward.
  • the control board 61 sends an operation signal to the drive unit 451 to retract the second beam splitter 45 from the branch position on the main optical path. That is, in the reflection mode, the light guide system 32 for transmitted diffracted light is not used.
  • the control board 61 sends an operation signal to the stopper driving unit 344 to retract the beam stopper 343 from the optical path. This completes the operation of the sequence control program on the control board 61.
  • the light source 1 is turned on to emit light.
  • the light L1 emitted from the light source 1 enters the first beam splitter 41 through the light guide system 31 for reflected diffracted light.
  • the light L1 is divided into one light L2 reflected toward the object S by the reflecting surface of the first beam splitter 41 and the other light L3 that passes through the first beam splitter 41 and reaches the additional light guide system 34. Is done.
  • One light L2 is applied to the object S via the imaging optical system 5, and reflected diffracted light L4 is emitted from the object S.
  • the reflected diffracted light L4 enters the first beam splitter 41 again through the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging device 2.
  • the other light L3 is reflected by the folding mirror 342 of the additional light guide system 34 and returns to the first beam splitter 41.
  • the light L3 is reflected by the reflection surface of the first beam splitter 41 and enters the imaging surface of the imaging device 2 as reference light.
  • the reflected diffracted light L4 and the reference light L3 interfere with each other on the image pickup surface of the image pickup device 2, and the interference fringes are picked up on the image pickup surface and the hologram data is output to the computer 63. Is done.
  • a reproduction program 64 is executed on the computer 63, and a reproduction image of the object S is formed by performing the calculation process as described above.
  • the switching program 62 sends a control signal for setting the transmission mode to the control board 61.
  • the control board 61 executes a sequence control program, and sends each operation signal for the reflection mode to the switching unit 411 of the first beam splitter 41, the drive unit 451 of the second beam splitter 45, The beam is sent to the stopper driving unit 344 of the beam stopper 343.
  • the control board 61 drives the first beam splitter 41 by the switching unit 411 to place the first beam splitter 41 in the second state. In the second state, as shown in FIG.
  • the control board 61 sends an operation signal to the drive unit 451 and arranges the second beam splitter 45 on the main optical path. That is, in the transmission mode, the light guide system 32 for transmitted diffracted light and the light guide system 31 for reflected diffracted light are used.
  • control board 61 sends an operation signal to the stopper driving unit 344, and places the beam stopper 343 on the optical path of the additional light guide system 34. , Block the light path. This completes the operation of the sequence control program on the control board 61.
  • the light source 1 is operated to emit light.
  • the light emitted from the light source 1 enters the second beam splitter 45.
  • This light is branched into one light L5 that is transmitted through the second beam splitter 45 and the other light L6 that is reflected by the reflecting surface of the second beam splitter 45 and is directed toward the object S.
  • One light L ⁇ b> 5 is guided by the reflected diffracted light guiding system 31 that is also used as the reference light guiding system 33, and enters the first beam splitter 41.
  • the light L5 incident on the first beam splitter 41 is reflected by the reflection surface of the first beam splitter 41, travels toward the image sensor 2, and enters the image surface of the image sensor 2 as reference light.
  • the light transmitted through the first beam splitter 41 is shielded by the beam stopper 343 and does not return to the first beam splitter 41.
  • the other light L6 divided by the second beam splitter 45 is irradiated onto the object S through the light guide system 32 for transmitted diffracted light.
  • the light passes through the object S and is emitted from the object S as transmitted diffracted light L7.
  • the transmitted diffracted light L7 enters the first beam splitter 41 via the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging surface of the imaging device 2.
  • S5 and S6 in FIG. 9 on the imaging surface of the imaging device 2, an interference fringe between the reference light L5 and the transmitted diffracted light L7 is formed, and this interference fringe is imaged to obtain hologram data.
  • the hologram data is sent to the computer 63, and the reproduction program 64 is executed to form a reproduction image of the object S.
  • the image is reproduced by sequentially performing the reflection mode and the transmission mode, but the information of the reproduction image includes amplitude information and phase information.
  • the amplitude information is suitable for observing the two-dimensional shape and contrast of the surface of the object
  • the phase information is suitable for observing the shape at the depth of the object. Therefore, when obtaining a reproduced image, there are cases where only the amplitude information is extracted and the two-dimensional shape is mainly observed, or only the phase information is extracted and the depth state is observed.
  • FIG. 10 is a schematic diagram showing the effect of the device of the second embodiment including the telecentric imaging optical system 5.
  • FIG. 10A is shown for comparison, and is a wavefront diagram when an imaging optical system that is not telecentric is used.
  • FIG. 10B is a wavefront diagram when the telecentric imaging optical system 5 is used in the present embodiment.
  • the telecentricity in the apparatus of this embodiment is achieved by arranging the objective lens 51 and the imaging lens 52 constituting the infinite correction optical system confocally.
  • the plane wave Lp can be applied to the object S in the transmission mode.
  • the object S is irradiated with the plane wave Lp as shown in FIG.
  • the object S is irradiated with light (spherical wave) Ls collected by the objective lens. In this case, a reproduced image cannot be formed with high accuracy because the object light imaged by the image sensor 2 is distorted.
  • the field of view changes as compared with the transmission mode.
  • digital holography has the feature that the working distance can be changed in principle because it can calculate a reconstructed image at an arbitrary position on the optical axis, but the object light is distorted in the optical system of the comparative example.
  • the field of view also changes with changes in working distance. In order to suppress this change in the visual field, a separate correction calculation is required.
  • an infinite correction optical system is used and the imaging lens 52 and the objective lens 51 have a confocal optical arrangement as in this embodiment shown in FIG. 10B, a telecentric optical system is used.
  • the plane wave Lp is irradiated to the object S (FIGS. 10B1 and 10B2).
  • confocal means that the focal point on the image side of the objective lens 51 is coincident with the focal point on the object side of the imaging lens 52 as described above.
  • the plane wave Lp is irradiated to the object S regardless of whether the reflection mode or the transmission mode is selected. Therefore, in both the transmission mode and the reflection mode, a region having the same size can be set as an observation target, and an image can be reproduced by the same reproduction calculation means. Further, since the object light is not distorted, correction calculation is not required, and image reproduction with a variable working distance, which is a principle feature of digital holography, can be performed freely. Furthermore, since it is a telecentric optical system, there is also an advantage that the imaging magnification does not change during image reproduction with a variable working distance. Note that image reproduction with variable working distance means that image reproduction can be performed by focusing on an arbitrary position in the depth direction of the object.
  • both the reflection mode and the transmission mode can be performed by one unit, various observations and measurements on the object S can be performed at low cost.
  • the configuration of the optical system is simplified and only one image sensor 2 is required. For this reason, the cost of one apparatus is also reduced.
  • the light for reflected diffracted light is irradiated from the first side of the object S and the light for transmitted diffracted light is irradiated from the opposite second side, the object light is exclusively captured on the first side. Can do. Therefore, highly accurate hologram data can be obtained without forcing the object S to float in the air.
  • the imaging optical system 5 makes object light incident on the imaging device 2 in both the reflection mode and the transmission mode.
  • the configuration of the optical system is also simple in this respect. And contributes to reducing the cost of the apparatus.
  • imaging optical systems may be provided for the reflection mode and the transmission mode, and a revolver type mechanism or the like may be adopted and used alternatively.
  • the imaging optical system for the reflection mode is arranged on the imaging optical path Pi
  • the transmission mode the imaging optical system for the transmission mode is switched and arranged on the imaging optical path Pi.
  • a part of the imaging optical system may be shared in addition to the case of sharing the whole.
  • the imaging lens may be shared, and the objective lens may be prepared for the reflection mode and the transmission mode and used by switching.
  • the imaging optical path Pi of the apparatus of the present embodiment is a straight line. That is, the object light emitted from the object S travels on a straight optical path and enters the image sensor 2.
  • This point has the following effects.
  • the optical path is straight, it is easy to adjust the optical axis. That is, in order to obtain hologram data with high accuracy, the object S, the imaging optical system 5 and the imaging element 2 need to be aligned on the optical axis with high accuracy, but this adjustment is easy because the optical axis is straight. . Further, as shown in FIG.
  • the apparatus uses the first spatial filter 316 and the second spatial filter 326, and both the object light and the reference light are light that has passed through the spatial filter. .
  • the wavefront enters the image sensor 2 with the noise removed.
  • the spatial filter is located on the optical path closer to the object S. For this reason, the possibility that noise is mixed into the wavefront due to factors after passing through the spatial filter is reduced. This point also contributes greatly to improving the accuracy of hologram data.
  • the apparatus of the present embodiment further simplifies the optical system and enhances coherence by sharing the reference light guide system 33 with the object light guide system. It is a more practical device.
  • this effect will be described.
  • the light for reflected diffracted light and the reference light are guided from the light source 1 to the first beam splitter 41 by the same light guide system.
  • the light for reflected diffracted light reaches the object S by being divided into the first beam splitter 41, and the reference light reaches the image sensor 2 without passing through the object S by the additional light guide system 34.
  • the additional light guide system 34 has the same meaning in that the light is folded back and returned to the first beam splitter 41 so as to enter the imaging device 2 as reference light therefrom.
  • the light guided by the reflected diffracted light guiding system 31 is incident on the image sensor 2 through the first beam splitter 41, and almost all the light for guiding the reference light is reflected.
  • the light guide system 31 for diffracted light is also used. For this reason, the coherence is further enhanced, the configuration of the optical system is further simplified, and cost reduction is further realized by reducing the number of optical elements used.
  • FIG. 11 is a schematic front view of a digital holography device according to a third embodiment of the present invention.
  • the apparatus according to the third embodiment enables an off-axis operation in the apparatus according to the second embodiment.
  • a desired image true image
  • the zero-order image image by the reference light
  • the apparatus shown in FIG. 11 differs from the second embodiment in the configuration of the reference light guide system 33 in order to enable an off-axis type.
  • one of the mirrors constituting the reference light guide system 33 is arranged in a state where the angle with respect to the optical axis can be changed.
  • the second mirror 312 in the second embodiment is an off-axis mirror (hereinafter, referred to as “off-axis mirror”).
  • the first off-axis mirror) 317 is changed.
  • the first off-axis mirror 317 is provided with a first off-axis driving unit 318, and the arrangement angle of the first off-axis mirror 317 with respect to the optical axis can be changed.
  • the additional light guide system 34 in the third embodiment is also configured to return the light transmitted through the first beam splitter 41 and return it to the first beam splitter 41 in the reflection mode.
  • the additional light guide system 34 is a loop in order to dispose the off-axis mirror at a position close to the image sensor 2 and reduce (or eliminate) the difference between the object light and the optical path length.
  • the optical path is formed. More specifically, the additional light guide system 34 has a polarization beam splitter 345 on the optical path extending from the first beam splitter 41.
  • the polarization beam splitter 345 is a beam splitter that transmits only a linearly polarized light component in a specific polarization direction and reflects other components.
  • a quarter wavelength plate 346 is provided between the first beam splitter 41 and the polarization beam splitter 345.
  • the light from the light source 1 is converted into circularly polarized light by the polarizing filter 11 and the quarter wavelength plate 12 immediately after that. For this reason, when the light passes through the quarter-wave plate 346, the light becomes linearly polarized light in a direction further shifted by 45 °.
  • the polarization beam splitter 345 reflects linearly polarized light in this direction and transmits other light.
  • a fifth mirror 347, a sixth mirror 348, and a second off-axis mirror 349 are provided along the optical path of linearly polarized light reflected by the polarization beam splitter 345. The light returns to the polarization beam splitter 345 by being reflected by these mirrors.
  • the second off-axis mirror 349 is provided with a second off-axis driving unit 350.
  • a half-wave plate 351 is provided between the polarization beam splitter 345 and the fifth mirror. Therefore, the light returning to the polarization beam splitter 345 has a polarization direction shifted by 90 ° and is transmitted without being reflected by the polarization beam splitter 345. This light is again converted into circularly polarized light by passing through the quarter-wave plate 346 again, and reaches the image sensor 2 via the first beam splitter 41.
  • a beam stopper and a stopper driving unit for blocking light are provided.
  • a beam stopper can be disposed between the quarter-wave plate 346 and the polarization beam splitter 345.
  • a beam expander 352 is disposed in the additional light guide system 34.
  • the beam expander 352 is, for example, an equal magnification beam expander, and has a pinhole inside as in the case shown in FIG. 4 to form a spatial filter configuration. Thereby, the fluctuation of the wavefront originating from optical components such as a mirror and a wave plate up to just before the spatial filter can be removed.
  • FIG. 12 is a diagram showing a change in the arrangement angle of the off-axis mirror used in the third embodiment.
  • FIG. 12 (1) is a schematic plan view
  • FIG. 12 (2) is a schematic perspective view. is there.
  • FIG. 12 shows a second off-axis mirror 349 arranged in the additional light guide system 34 as an example. As shown in FIG. 9, the second off-axis mirror 349 can take a slightly inclined posture with respect to the optical axis instead of 45 °.
  • the incident angle of the reference light when entering the imaging device 2 is not the same angle as the incident angle of the object light, but a predetermined angle (hereinafter referred to as an off-axis angle) with respect to the incident angle of the object light. 12 (1) is indicated by ⁇ ).
  • the posture of the second off-axis mirror 349 can be changed in two directions. That is, as shown in FIG. 12 (2), the rotation around the rotation axis A1 along the line formed by the plane formed by the optical axis before refracting and the optical axis after refracting intersecting the reflecting surface, The rotation about the rotation axis A2 in the direction perpendicular to the axis A1 and along the reflecting surface.
  • the reference light can be incident on the imaging surface of the imaging device 2 with an off-axis angle ⁇ in two orthogonal directions (XY directions).
  • the direction in which the off-axis angle ⁇ is given depends on which direction the true image is desired to be separated from the zero-order image and the conjugate image, and is arbitrary by the operator.
  • the second off-axis mirror 349 may be tilted in a direction other than the direction shown in FIG. 12 to separate the image in that direction.
  • a drive unit for each off-axis mirror a kinematic mirror holder that can be adjusted in two directions can be used, and an actuator can be attached to each adjustment shaft to enable control by an external signal. Can be adopted.
  • each drive unit is controlled by an operation signal sent from the control board 61.
  • the first off-axis mirror 317 in the light guide system 31 for reflected diffracted light is used for off-axis in the transmission mode, and is used as a normal mirror in the reflection mode. Therefore, the control board 61 sends an operation signal that is tilted at a predetermined angle from 45 ° so that the off-axis angle ⁇ is obtained in the transmission mode. In the reflection mode, an operation signal is sent to return to a normal attitude, that is, an attitude of 45 ° with respect to the optical axis.
  • “normal mirror” means a mirror in a state where an off-axis angle does not occur depending on the mirror.
  • the second off-axis mirror 349 in the additional light guide system 34 is not used in the transmission mode, the second off-axis mirror 349 can be configured to maintain an inclination angle that achieves the off-axis angle ⁇ . In this case, no operation signal is sent from the control board 61. Although a mechanism for changing the angle is not necessary, it is preferable that the angle can be changed for adjustment or the like.
  • the configuration of the additional light guide system 34 used in the reflection mode is greatly changed in this embodiment.
  • the reason for this is to place the second off-axis mirror 349 as close as possible to the image sensor 2 and to reduce the optical path length difference between the reference light and the object light.
  • the true image is separated from the zero-order image and the conjugate image by causing the reference light to enter the object light obliquely.
  • the oblique angle off-axis angle
  • the spatial frequency on the imaging surface of the image sensor 2 increases (that is, the interference fringes become finer), and a clear image reproduction is affected by the resolution of the image sensor 2. Will not be able to.
  • the off-axis angle ⁇ is preferably as small as about 2 to 3 °. Because of such an off-axis angle ⁇ , the first off-axis mirror 317 and the second off-axis mirror 349 are not inclined at 45 ° with respect to the optical axis as shown in FIG. However, if it is located on the optical path away from the image sensor 2, the incident position is greatly shifted on the imaging surface of the image sensor 2 even if the angle is slightly changed.
  • the reference light needs to cover the entire image pickup surface of the image pickup device, and if a region where the reference light does not enter is formed due to a shift in the incident position, it becomes impossible to pick up the interference fringes at that portion. Therefore, the first off-axis mirror 317 and the second off-axis mirror 349 are provided so that the reference light is incident on the entire imaging surface of the imaging device 2 even at a small angle of about 2 to 3 °.
  • the mirror should be close to 2.
  • the folding mirror 342 of the additional light guide system 34 may be an off-axis mirror, but is located away from the image sensor 2, so that the image of the image sensor 2 is captured.
  • the deviation of the incident position of the reference light with respect to the surface becomes large.
  • the fourth mirror 341 on the optical path in front of the folding mirror 342 is an off-axis mirror, the fourth mirror 341 reflects twice before reaching the folding mirror 342 and after reaching it. For this reason, the deviation of the reference light is doubled.
  • a folding mirror 342 is provided at the position of the fourth mirror 341, and this is used as an off-axis mirror.
  • the difference in the optical path length between the diffracted light and the light becomes large. For this reason, a problem may arise in terms of coherence. That is, when the difference in the optical path length increases, the reference light and the object light are less likely to interfere due to the problem of temporal stability of the output of the light source 1.
  • a polarization beam splitter 345 forms a loop-shaped optical path, and off-axis is formed at one corner thereof. It is preferable to arrange a mirror for use.
  • the additional light guide system 34 of the third embodiment is based on such an idea.
  • a supplementary explanation will be given of the fact that the first off-axis mirror 317 and the second off-axis mirror 349 are “close” at the position where the first off-axis mirror 317 and the second off-axis mirror 349 are arranged. They are integrated by the beam splitter 41. Therefore, it is “near” that the first mirror viewed from the first beam splitter 41 is an off-axis mirror when traced in the direction opposite to the light traveling direction.
  • FIG. 13 is a schematic diagram illustrating the operation of the third embodiment, and is a diagram comparing the progress of each light in the reflection mode and the transmission mode.
  • an operation signal for the reflection mode is sent from the control board 61 to each unit and controlled. That is, as shown in FIG. 13A, the second beam splitter 45 is retracted from the main optical path, and the first beam splitter 41 is set to the first state. Further, a beam stopper (not shown) in the additional light guide system 34 is retracted from the optical path, and the additional light guide system 34 is opened.
  • the first off-axis mirror 317 is used as a normal mirror, and therefore maintains a 45 ° attitude with respect to the optical axis.
  • the light L1 emitted from the light source 1 passes through the polarizing filter 11 and the quarter-wave plate 12 to become circularly polarized light, and enters the first beam splitter 41 via the light guide system 31 for reflected diffracted light.
  • the light L1 is split into light L2 reflected by the first beam splitter 41 and light L3 transmitted.
  • the light L ⁇ b> 2 reflected by the first beam splitter 41 is applied to the object S through the imaging optical system 5.
  • the irradiated light L2 is reflected by the object S to become object light (reflected diffracted light) L4.
  • the object light (reflected diffracted light) L4 enters the first beam splitter 41 via the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging surface of the imaging device 2.
  • the light L3 that has passed through the first beam splitter 41 is incident on the additional light guide system 34. Since the light L3 is circularly polarized light, it is converted into linearly polarized light having a specific polarization component by the quarter wavelength plate 346, and the linearly polarized light L3 enters the polarization beam splitter 345.
  • the polarization beam splitter 345 reflects only the polarized light of the specific component converted by the quarter wavelength plate 346. Therefore, as shown in FIG. 13A, the light L3 is reflected by the polarization beam splitter 345, enters the half-wave plate 351, and is linearly polarized light whose polarization direction is 90 ° different from that of the linearly polarized light. Converted to light.
  • the light L3 having a linearly polarized light different by 90 ° passes through the fifth mirror 347, the sixth mirror 348, and the beam expander 352, and then is reflected by the second off-axis mirror 349 and returns to the polarization beam splitter 345.
  • the second off-axis mirror 349 is slightly inclined with respect to the optical axis instead of 45 °, the light L3 reflected by the off-axis mirror is not parallel to the optical axis but slightly at an angle. Proceed with the.
  • the light L3 that has reached the polarization beam splitter 345 with an angle in this manner is transmitted through the polarization beam splitter 345 because the direction of linearly polarized light is converted by 90 ° by the half-wave plate 351.
  • the light L3 is converted into circularly polarized light by the quarter-wave plate 346, reflected by the first beam splitter 41, and then incident on the imaging surface of the imaging device 2 as reference light.
  • the reference light L3 is incident on the object light (reflected diffracted light) L4 with an off-axis angle ⁇ as shown in FIG.
  • the object light (reflected diffracted light) L4 and the reference light L3 interfere to form an interference fringe, and the interference fringe is imaged on the imaging surface.
  • hologram data in the reflection mode is obtained.
  • the light reflected by the second off-axis mirror 349 travels with an angle with respect to the optical axis as described above and passes through the polarization beam splitter 345 and the quarter-wave plate 346.
  • the angle with respect to the optical axis is very small, there is no problem in terms of light control in the polarizing beam splitter 345 and the quarter wavelength plate 346.
  • an operation signal for the reflection mode is sent from the control board 61 to each unit and controlled. That is, as shown in FIG. 13B, the first beam splitter 41 is rotated by 90 ° to be in the second state. Further, the second beam splitter 45 moves on the main optical path, and a beam stopper (not shown) in the additional light guide system 34 is arranged on the optical path. Further, an operation signal is sent to the drive unit of the first off-axis mirror 317, and the first off-axis mirror 317 is tilted by a predetermined angle with respect to the optical axis from an attitude of 45 °. Similarly, the light emitted from the light source 1 is converted into circularly polarized light and then enters the second beam splitter 45.
  • a part of the light is reflected by the second beam splitter 45 and proceeds to the branch optical path Ps as the light L5 for transmitted diffracted light, and is transmitted to the object S by the light guide system 32 for transmitted diffracted light. Irradiated.
  • the light L5 passes through the object S to become object light (transmission diffracted light) L6, enters the first beam splitter 41 through the imaging optical system 5, passes through the first beam splitter 41, and passes through the imaging element 2. Is incident on the imaging surface.
  • the light L7 that has passed through the second beam splitter 45 without being reflected by the second beam splitter 45 is guided by the reflected diffracted light guiding system 31 that also serves as the reference light guiding system 33, and the first L It reaches the beam splitter 41, is reflected by the first beam splitter 41, and enters the imaging surface of the imaging device 2 as reference light.
  • the reference light L7 since the first off-axis mirror 317 is tilted by a predetermined angle, the reference light L7 is incident on the object light L6 with an off-axis angle ⁇ .
  • the reference light L7 and the object light L6 interfere with each other to form an interference fringe, and the interference fringe is imaged on the imaging surface to obtain hologram data. Then, a reproduced image of the object S is formed by similarly calculating the hologram data.
  • the digital holography device of the third embodiment when the hologram data is calculated and the image is reproduced, the true image is formed separately from the zero-order image and the conjugate image. Can be obtained. For this reason, it is more suitable when calculating the distance between a certain point on the object S or observing the state of the object S.
  • the first off-axis mirror 317 and the second off-axis mirror 349 are provided in the vicinity of the image sensor 2, there is a problem that the incident position of the reference light with respect to the imaging surface of the image sensor 2 is greatly shifted. Absent.
  • an optical element other than the mirror as the off-axis means.
  • an optical element having a function of bending an optical path such as a prism can be placed on the optical path of the reference light so as to be off-axis.
  • the true image can be separated from the zero-order image and the conjugate image by the phase shift method in the device of the first embodiment and the device of the second embodiment.
  • a phase shift element is provided in the reference light guide system 33.
  • the phase shift element is a piezoelectric element such as a piezoelectric element or an element that can change the optical path length such as an SLM.
  • the phase shift element is disposed in the additional light guide system 34, and the phase shift element for the transmission mode is guided for the reflected diffracted light. It is arranged in the optical system 31 (however, excluding on the optical path between the object S and the first beam splitter 41.
  • the position between the second mirror 312 and the first beam splitter 41). The phase shift element in the light guide system 31 for reflected diffracted light is retracted from the optical path in the reflection mode.
  • the phase shift method is employed, as described above, the hologram data cannot be obtained substantially in the case where the object S moves.
  • the apparatus of the first and second embodiments (in-line apparatus) and the apparatus of the third embodiment (off-axis apparatus) hologram data can be obtained even if the object S moves. That is, a reproduced image can be obtained as a moving image. This is also a merit of the apparatus of each embodiment.
  • FIG. 14 is a schematic front view of a digital holography device according to a fourth embodiment of the present invention.
  • a reflected diffracted light guide system 31 and a transmitted diffracted light guide system 32 are provided.
  • These light guide systems 31 and 32 are substantially the same as those of the second embodiment shown in FIG.
  • the fourth embodiment is greatly different from the second embodiment in that the reference light guide system 33 extracts the reference light from the object light and guides it to the image sensor 2.
  • the reference light guide system 33 is disposed on the optical path between the first beam splitter 41 and the imaging device 2.
  • the reference light guide system 33 is provided as an element of one unit 9.
  • This unit 9 is a unit that extracts the reference light from the object light and guides it to the image sensor 2 while guiding the object light to the image sensor 2 (hereinafter referred to as a reference light extraction unit).
  • a spatial frequency filtering method is adopted.
  • a portion where the wavefront (amplitude or phase) changes according to the shape, surface state, etc. of the object is a portion having a high spatial frequency.
  • the part where the wavefront changes according to the shape and surface state of the object is the part that can represent the shape and surface state of the object by reproducing the image as described above. It can be said that it is a part including.
  • diffracted light emitted from a region where the refractive index is sufficiently uniform can be treated as having the same spatial frequency as the light that does not pass through the object.
  • light that can represent object information among object light is light having a high spatial frequency, and light that does not include object information (that is, reference light) can be extracted by removing it from the object light.
  • object information that is, reference light
  • the reference light extraction unit 9 shown in FIG. 14 is a unit that performs such extraction.
  • FIG. 15 is a schematic front view showing an example of the reference light extraction unit 9 in the embodiment shown in FIG.
  • the reference light extraction unit 9 shown in FIG. 15A includes a separation element 91 that separates object light and advances it along two different optical axes, and an extraction lens that condenses the light for extracting the reference light. 92, a spatial frequency filter 93 disposed at a condensing position by the extraction lens 92, and a collimator lens 94 for converting the respective lights back into parallel light and integrating them.
  • the separating element 91 for example, a diffraction grating can be used as disclosed in JP-A-10-141912, or a polarizing beam splitter can be used as disclosed in JP-A-2006-292939. .
  • the object light is separated into zero-order diffracted light and first-order diffracted light by the separation element 91.
  • the extraction lens 92 condenses the 0th-order diffracted light and the 1st-order diffracted light, respectively, while the spatial frequency filter 93 has an opening 931 provided at a position on the optical axis where the 0th-order diffracted light is collected, and 1 And a pinhole 932 provided at a position on the optical axis where the next diffracted light is collected. Since the opening 931 is sufficiently large, the object light (0th-order diffracted light) is allowed to pass through as it is without selecting a spatial frequency.
  • the pinhole 932 is sufficiently small, only a low frequency is allowed to pass through. For this reason, the first-order diffracted light does not include object information. As shown in FIG. 15 (1), these lights are integrated while being returned to parallel light by a collimator lens 94, and are superimposed on the imaging surface of the imaging device 2.
  • the object light is separated into two polarized lights having polarization directions different by 90 °.
  • first polarized light and second polarized light the two polarized lights are called first polarized light and second polarized light
  • the first and second polarized lights are similarly condensed by the extraction lens 92 and reach the spatial frequency filter 93.
  • the structure of the spatial frequency filter 93 is the same as described above.
  • a sufficiently large opening 931 is formed on the optical axis of the first polarized light, and a sufficiently small pin hole 932 is formed on the optical axis of the second polarized light. Is done.
  • the first polarized light passes through the opening 931 without being filtered by the spatial frequency, and enters the image sensor 2 as object light.
  • the second polarized light passes through the pinhole 932 in a state where a component having a high spatial frequency is removed, and becomes the reference light.
  • This light is returned to parallel light together with the first polarized light (object light) by the collimator lens 94 and integrated into the first polarized light.
  • a dotted line in FIG. 15 (1) when a polarizing beam splitter is used as the separating element 91, a half-wave plate 95 is provided on the exit side of the pinhole 932 of the spatial frequency filter 93. This is to make the polarization state of the reference light coincide with the object light and to enhance the coherence.
  • the dispersion element 91 may be other than the two examples described above as long as the object light can be separated along the two optical axes.
  • the example shown in FIG. 15 (2) is one of them, and is an example using a normal beam splitter.
  • the object light is separated into two by a separation element 91 (beam splitter), and an extraction lens 92, a spatial frequency filter 93, and a collimator lens 94 are provided on one optical axis.
  • the spatial frequency filter 93 Since the spatial frequency filter 93 is greatly deviated from the other optical axis, an opening for object light is unnecessary, and one light separated by the separation element 91 having a structure having only the pinhole 932 is When passing through the spatial frequency filter 93, a component having a high spatial frequency is removed to become reference light, which is returned to parallel light by the collimator lens 94. Then, it is integrated with the other light (object light) by the integrating beam splitter 96 and enters the image sensor 2.
  • the reflected diffracted light guiding system 31 is not used as the reference light guiding system, so that the second beam splitter 45 is not driven. Instead, the transmission mode and the reflection mode are switched by switching between the two shutters. That is, as shown in FIG. 14, a first shutter 319 is provided on the main optical path P, and a second shutter 327 is provided on the branch optical path Ps. In the transmission mode, the first shutter 319 is closed and the second shutter 327 is opened. In the reflection mode, the first shutter 319 is opened and the second shutter 327 is closed.
  • the reference light is incident on the image sensor 2 in an off-axis state with respect to the object light.
  • the reference light is incident in an in-line state.
  • a mirror 97 disposed between the collimator lens 94 and the integrating beam splitter 96 is attached with a drive mechanism to form an off-axis mirror. good.
  • the fourth embodiment is the same as the above-described embodiment except that the structure for obtaining the reference light is different.
  • the reflection mode and the transmission mode can be performed separately, which is suitable for examining the state and shape of the object in detail, and the configuration of the optical system is simplified.
  • a mirror is disposed instead of the integrating beam splitter 96. Then, the object light may be folded back, an integration beam splitter may be disposed in place of the mirror 97, and the image sensor 2 may be disposed at a position where the optical axis is linearly extended from the spatial frequency filter 93.
  • the configuration of the imaging optical system 5 is appropriately changed depending on the type of hologram as described above.
  • the imaging optical system 5 may not be provided.
  • the reference light guide system 33 includes a lens that makes the reference light a spherical wave and enters the imaging surface of the imaging device 2.
  • the imaging optical system 5 includes the objective lens 51 and the imaging lens 52. However, this is an example, and there may be one lens. Even when two or more lenses are used, an image may be formed on the imaging surface like an image hologram. However, since this is not essential, one lens may not be called the imaging lens 52. , Sometimes referred to as the first objective lens and the second objective lens.
  • the direction in which the reflected diffracted light enters the object S and the direction in which the transmitted diffracted light enters the object S are different by 180 °.
  • the reflected diffracted light may be incident obliquely with respect to the optical axis, or the transmitted diffracted light may be used. May be incident obliquely with respect to the optical axis. Accordingly, when the orthogonal coordinates with the position of the object S as the origin are considered and the “first side” is the first and second quadrants, the “second side” is the third and fourth quadrants. It turns out that.
  • the light reflected by the first beam splitter 41 reaches the object S in the reflection mode, and the light reflected by the first beam splitter 41 reaches the image sensor 2 as reference light in the transmission mode.
  • This configuration is not an essential condition in the present invention, and there may be other configurations. That is, the light transmitted through the first beam splitter 41 in the reflection mode may reach the object, and the light transmitted through the first beam splitter in the transmission mode may reach the image sensor as reference light.
  • the folding mirror is placed at the position where the object S is placed in the second embodiment shown in FIG. 3, and the object is placed at the position where the fourth mirror 341 is placed.
  • the image sensor In the transmission mode, the image sensor is placed at the position of the fourth mirror 341 without changing the position of the object in the case of FIG. 3, and the first beam splitter is similarly turned 90 °. Even in this way, the present invention can be implemented. However, since the imaging optical path from the object to the imaging device is bent by 90 ° at the first beam splitter 41, it is inferior to the above embodiments in terms of ease of optical axis adjustment and accuracy of the obtained hologram data. .
  • the “first state” and “second state” of the first beam splitter 41 need to be understood in a broad sense. is there.
  • a configuration in which two beam splitters functioning as the first beam splitter are prepared and used separately for the reflection mode and the transmission mode can be considered.
  • a beam splitter having a posture in which the reflecting surface extends obliquely from the upper left to the lower right and a beam splitter in which the reflecting surface extends obliquely from the lower left to the upper right are prepared as shown in FIG.
  • a configuration in which the light source is switched on the optical path by an appropriate switching mechanism can be considered.
  • Such a configuration is also within the concept of the “first state” and the “second state”.

Abstract

[Problem] To provide a practical digital holography method and digital holography device having both a reflection mode and a transmission mode, and to enable the acquisition of high-precision holographic data without necessitating that the subject be made to float in mid-air. [Solution] Diffracted light from a subject (S), which is obtained by irradiating the subject (S) with light from a light source (1), and reference light, which does not include information about the subject, are made to interfere with each other on the imaging surface of an imaging element (2) to acquire hologram data. In the reflection mode, the subject (S) is irradiated with light from a first side by means of a reflection-diffraction light guiding system (31), while in the transmission mode, the subject (S) is irradiated with light from a second side, which is the opposite side from the first side, by means of a transmission-diffraction light guiding system (32). The reflection mode and the transmission mode are selected alternatively by a optical element that serves as a selector.

Description

デジタルホログラフィ方法及びデジタルホログラフィ装置Digital holography method and digital holography apparatus
 本発明は、光の干渉を利用することにより、物体の3次元情報をリアルタイムで得ることができるデジタルホログラフィに関する。 The present invention relates to a digital holography capable of obtaining three-dimensional information of an object in real time by using light interference.
 従来の2次元画像処理では検出が困難な、物体の欠け、凹み、膨らみ、反りなどの欠陥の検出や機械振動の計測に必要となる3次元情報を記録・検出できる技術が必要とされている。さらに、例えば生体細胞のような動体について、3次元情報をリアルタイムに取得したいというニーズもある。かかる3次元情報を記録・検出できる技術として、ホログラフィがある。従来は、高解像度写真乾板に3次元情報を記録し、それを現像・再生する過程が必要であり、記録から再生まで長時間を要する上に、動体の3次元情報を得ることは困難であった。 There is a need for a technique capable of recording and detecting three-dimensional information necessary for detection of defects such as chipping, dents, bulges, warping, and the like that are difficult to detect by conventional two-dimensional image processing and measurement of mechanical vibration. . Furthermore, there is a need to acquire three-dimensional information in real time for moving objects such as living cells. There is holography as a technique that can record and detect such three-dimensional information. Conventionally, a process of recording three-dimensional information on a high-resolution photographic plate and developing / reproducing it is required. It takes a long time from recording to reproduction, and it is difficult to obtain three-dimensional information of a moving object. It was.
 近年は、コンピュータの高速化、記憶装置の大容量化、CCDなどの撮像素子の高解像・高画素化などエレクトロニクス技術の進化をホログラフィに導入することにより高速に計測ができるデジタルホログラフィが提案されている。この技術は、撮像素子で干渉縞を撮像し、その干渉縞の画像データに対してコンピュータにより光の回折現象に基づく数値計算処理を施すことで、物体の3次元像をコンピュータ上で再生する技術である。
 デジタルホログラフィは、1)現像処理が不要で、撮影現場で再生像が得られる、2)一つの干渉縞の画像データで任意の面での再生像が得られる、3)ホログラムデータ(干渉縞の画像データ)を容易に伝送、複製できる、などの利点を有する。これらの利点を活かし、デジタルホログラフィ技術を用いて、固体、流体、生体細胞、機械振動などの3次元計測を目指す研究が盛んになされている。
In recent years, digital holography has been proposed that enables high-speed measurement by introducing advances in electronics technology such as higher computer speeds, larger storage capacities, and higher resolution and higher pixel imaging devices such as CCDs. ing. In this technique, an interference fringe is imaged by an image sensor, and a numerical calculation process based on a light diffraction phenomenon is performed on the image data of the interference fringe by a computer, thereby reproducing a three-dimensional image of the object on the computer. It is.
In digital holography, 1) development processing is not required, and a reproduced image can be obtained at the shooting site. 2) a reproduced image can be obtained on an arbitrary surface with one interference fringe image data. 3) hologram data (of interference fringes) Image data) can be easily transmitted and copied. Taking advantage of these advantages, research aimed at three-dimensional measurement of solids, fluids, living cells, mechanical vibrations, and the like using digital holography technology has been actively conducted.
 図16は、従来のデジタルホログラフィ装置の概略を示した図である。このデジタルホログラフィ装置は、光源71から放出された光をハーフミラー72で参照光と物体照射用の光とに分割する。ハーフミラー72で分割された物体照射用の光は、反射ミラー73を介して物体74に照射され、物体74から物体光75が出射する。物体光75は、ビームスプリッタ76に入射する。一方、ハーフミラー72で分割された参照光は、反射ミラー77に反射してビームスプリッタ76に入射する。
 そして、ビームスプリッタ76を透過した物体光とビームスプリッタ76で反射した参照光とが同時にCCDカメラ78の撮像面に入射することにより、物体光と参照光とが重ね合わされて生じた干渉縞が撮像され、ホログラムデータが得られる。得られたホログラムデータを図示しないコンピュータでフレネル変換等の計算処理を行うことにより、物体74の再生像が得られる。
FIG. 16 is a diagram showing an outline of a conventional digital holography device. In this digital holography device, light emitted from a light source 71 is split by a half mirror 72 into reference light and light for object irradiation. The object irradiation light divided by the half mirror 72 is applied to the object 74 through the reflection mirror 73, and the object light 75 is emitted from the object 74. The object light 75 enters the beam splitter 76. On the other hand, the reference light divided by the half mirror 72 is reflected by the reflection mirror 77 and enters the beam splitter 76.
Then, the object light transmitted through the beam splitter 76 and the reference light reflected by the beam splitter 76 are simultaneously incident on the imaging surface of the CCD camera 78, so that interference fringes generated by superimposing the object light and the reference light are imaged. Then, hologram data is obtained. A reconstructed image of the object 74 is obtained by performing calculation processing such as Fresnel transformation on the obtained hologram data by a computer (not shown).
 なお、物体光とは、光が照射された物体から出射する光であり、ホログラフィでは回折現象を利用するので、物体から出射する回折光を意味する。図16に示す装置は、透過モードの装置であり、透過回折光が物体光である。透過モードとは、物体に光が照射された際に物体を透過して出てくる回折光(透過回折光)と参照光との干渉縞を撮像するモードである。
 ホログラフィでは、一般的に、物体光と参照光の可干渉性を高くするなどの理由から平面波が用いられる。デジタルホログラフィでも同様であり、光源としてはレーザのような平面波を放出するものが用いられる。
Note that object light is light emitted from an object irradiated with light, and means diffraction light emitted from an object because holography uses a diffraction phenomenon. The apparatus shown in FIG. 16 is an apparatus in a transmission mode, and the transmitted diffracted light is object light. The transmission mode is a mode in which an interference fringe between diffracted light (transmitted diffracted light) transmitted through the object and emitted when the object is irradiated with light and the reference light is imaged.
In holography, a plane wave is generally used for reasons such as increasing the coherence between object light and reference light. The same applies to digital holography, and a light source that emits a plane wave such as a laser is used.
 従来のデジタルホログラフィ装置の多くは、インライン式と呼ばれる装置であり、撮像素子の解像度限界を考慮し、物体光と同様に参照光も撮像面に対して垂直に入射させることによってホログラムデータを得ている。そのため、ホログラムデータを計算処理して得られる再生像には、0次像や共役像が重なり、鮮明な再生像を得ることが困難となっている。
 そこで、位相シフト干渉法を用いたデジタルホログラフィ装置が提案されている。位相シフト干渉法とは、二光束干渉計において、参照光の光路中にピエゾ素子などの圧電素子またはSLM(Spatial Light Modulator,空間光変調器)などの光路長を変化させることができる素子を配置し、この素子により参照光の位相を例えば3段階以上に変化させながらホログラムデータを得る手法である。かかる位相シフト干渉法を用いたデジタルホログラフィ装置では、0次光や共役像が除去されることで鮮明な像が得られ、高精度の計測が可能である。
 しかしながら、位相シフト干渉法は、参照光の位相を圧電素子等によって順次変えながら干渉縞を撮像するため、動く物体には適用することができなかった。
 特許文献1(特許第4294526号公報)には、参照光を互いに位相値の異なる参照光群に変換して出射する素子、およびその素子を用いた透過モードで画像を形成するマッハツェンダー干渉計で構成されたデジタルホログラフィ装置が示されている。同文献のように、物体光と参照光の干渉状態を空間的に分割して記録することで、単一画像の撮像でも動的形状の測定が可能である。
Many of the conventional digital holography devices are in-line devices, and take hologram data into consideration by making the reference light incident perpendicular to the imaging surface in the same way as the object light in consideration of the resolution limit of the image sensor. Yes. For this reason, the reproduced image obtained by calculating the hologram data is overlapped with a zero-order image or a conjugate image, making it difficult to obtain a clear reproduced image.
Therefore, a digital holography device using a phase shift interferometry has been proposed. The phase shift interferometry is a two-beam interferometer in which a piezoelectric element such as a piezo element or an element capable of changing an optical path length such as a spatial light modulator (SLM) is arranged in the optical path of reference light. In this method, the hologram data is obtained while changing the phase of the reference light in, for example, three or more stages. In a digital holography apparatus using such a phase shift interferometry, a clear image can be obtained by removing the 0th-order light and the conjugate image, and high-precision measurement is possible.
However, the phase shift interferometry cannot be applied to a moving object because it captures interference fringes while sequentially changing the phase of the reference light with a piezoelectric element or the like.
Patent Document 1 (Japanese Patent No. 4294526) discloses an element that converts reference light into reference light groups having different phase values and emits the light, and a Mach-Zehnder interferometer that forms an image in a transmission mode using the element. A constructed digital holography device is shown. As described in this document, the dynamic shape can be measured even when a single image is captured by spatially dividing and recording the interference state between the object beam and the reference beam.
 また、特許文献2(特表2002-526815号公報)には、オフアクシス・デジタルホログラフィの原理を応用し、単一干渉縞画像を撮像してそこから物体の振幅像と位相像を求める方法が開示されている。この方法でも、単一画像の撮像でよいため、物体が動いているとしても形状の測定が可能(動的形状の測定が可能)となる。
 同文献には、基本的に反射モードで画像を形成するように設計したマイケルソン干渉計で構成されたデジタルホログラフィ装置が示されている。反射モードとは、物体に光を照射した際に物体に反射して出射する回折光(反射回折光)を物体光として撮像素子の撮像面に入射させ、参照光と干渉させるモードである。
Further, Patent Document 2 (Japanese Patent Publication No. 2002-526815) discloses a method of applying a principle of off-axis digital holography, taking a single interference fringe image, and obtaining an amplitude image and a phase image of the object therefrom. It is disclosed. Even with this method, since it is sufficient to capture a single image, the shape can be measured even when the object is moving (dynamic shape can be measured).
This document shows a digital holography device composed of a Michelson interferometer that is basically designed to form an image in reflection mode. The reflection mode is a mode in which diffracted light (reflected diffracted light) reflected and emitted from an object when the object is irradiated with light is incident on the imaging surface of the image sensor as object light and interferes with reference light.
 同文献の図2Bに示すように、光源から放出された光は、直径方向に広げられてビームスプリッタに入射する。ビームスプリッタに入射した光は、ビームスプリッタを透過する一方の光と、ビームスプリッタで反射する他方の光とに分割される。一方の光は、傾いたミラーで反射した後、ビームスプリッタに入射し、ビームスプリッタで反射して参照光として撮像される。上記他方の光は、対物レンズを介してサンプルに照射され、サンプルで反射して物体光となる。この物体光は、ビームスプリッタに入射し、ビームスプリッタを透過して撮像される。上記傾いたミラーを用いて、参照光を物体光に対して所定の角度を持たせた状態にして干渉させることによって、オフアクシス・ホログラムを記録することができる。 As shown in FIG. 2B, the light emitted from the light source is spread in the diameter direction and enters the beam splitter. The light incident on the beam splitter is divided into one light that passes through the beam splitter and the other light that is reflected by the beam splitter. One light is reflected by the tilted mirror, then enters the beam splitter, is reflected by the beam splitter, and is imaged as reference light. The other light is applied to the sample through the objective lens, and is reflected by the sample to become object light. This object light is incident on the beam splitter and is transmitted through the beam splitter to be imaged. An off-axis hologram can be recorded by using the tilted mirror and causing the reference light to interfere with the object light at a predetermined angle.
 また、同文献には、基本的に透過モードで画像を形成するよう設計したマッハツェンダー干渉計で構成されたデジタルホログラフィ装置が示されている。同文献の図2Cに示すように、光源から放出された光は、直径方向に広げられてビームスプリッタに入射する。この光は、ビームスプリッタを透過した一方の光と、ビームスプリッタで反射した他方の光とに分割される。一方の光は、サンプルに入射してサンプルを透過し、物体光を形成する。物体光は対物レンズで集光され、ビームスプリッタに入射し、ビームスプリッタで反射して撮像される。一方、他方の光は、ビーム径が広げられ、傾いたミラーで反射した後、ビームスプリッタを透過して参照光として撮像される。 Also, this document shows a digital holography device composed of a Mach-Zehnder interferometer that is basically designed to form an image in a transmission mode. As shown in FIG. 2C of the same document, the light emitted from the light source is spread in the diameter direction and enters the beam splitter. This light is divided into one light transmitted through the beam splitter and the other light reflected by the beam splitter. One light enters the sample, passes through the sample, and forms object light. The object light is collected by the objective lens, enters the beam splitter, is reflected by the beam splitter, and is imaged. On the other hand, the other light is expanded in beam diameter, reflected by an inclined mirror, and then transmitted through a beam splitter and imaged as reference light.
特許第4294526号公報Japanese Patent No. 4294526 特表2002-526815号公報Special Table 2002-526815 WO2008/123408号公報WO2008 / 123408 publication
 前述したように、デジタルホログラフィは、各種物体の観察や3次元計測に応用が期待されているが、観察や計測の対象となる物体は様々である。したがって、物体には、反射モードのデジタルホログラフィが適したものと、透過モードのデジタルホログラフィが適したものとが存在する。また、一つの物体に対して、反射モードと透過モードとの双方を行った方が良い場合もある。
 しかしながら、特許文献2に見られるように、従来のデジタルホログラフィ装置としては、反射モードでのみ動作可能な装置と、透過モードでのみ動作可能な装置のいずれかしか存在しておらず、双方のモードで動作可能なデジタルホログラフィ装置は存在しなかった。したがって、一つの物体について反射モードと透過モードとの両方を行おうとした場合、反射モードの装置と透過モードの装置との双方を準備する必要があった。
As described above, digital holography is expected to be applied to observation of various objects and three-dimensional measurement, but there are various objects to be observed and measured. Therefore, there are objects suitable for reflection mode digital holography and those suitable for transmission mode digital holography. In some cases, it is better to perform both the reflection mode and the transmission mode for one object.
However, as seen in Patent Document 2, there are only conventional digital holography devices that can operate only in the reflection mode and devices that can operate only in the transmission mode. There was no digital holography device that could be operated on. Therefore, in order to perform both the reflection mode and the transmission mode for one object, it is necessary to prepare both the reflection mode device and the transmission mode device.
 反射モードと透過モードとの両方が行える装置を唯一開示したものとして、特許文献3(WO2008/123408号公報)が知られている。図17は、特許文献3に開示されたデジタルホログラフィ装置を示す図である。図17に示すように、特許文献3には、物体119に対して光を照射する第1光学系110と、物体119から出射する回折光と参照光とを撮像装置に導く第2光学系と、回折光と参照光との干渉像を撮像する撮像装置165と、撮像装置165によって取得された照射方向ごとの干渉像から物体の3次元画像を生成する処理装置201とを含む、デジタルホログラフィ装置が開示されている。撮像装置165には、透過回折光用撮像装置と反射回折光用撮像装置とが個別に設けられており、透過回折光用撮像装置及び反射回折光用撮像装置によってホログラムデータを個別に取得する。 Patent Document 3 (WO 2008/123408) is known as the only device that can perform both the reflection mode and the transmission mode. FIG. 17 is a diagram showing a digital holography device disclosed in Patent Document 3. As shown in FIG. As shown in FIG. 17, Patent Document 3 discloses a first optical system 110 that irradiates light to an object 119, a second optical system that guides diffracted light and reference light emitted from the object 119 to an imaging device, and A digital holography apparatus including: an imaging device 165 that captures an interference image between the diffracted light and the reference light; and a processing device 201 that generates a three-dimensional image of the object from the interference image for each irradiation direction acquired by the imaging device 165 Is disclosed. The imaging device 165 is provided with an imaging device for transmitted diffracted light and an imaging device for reflected diffracted light separately, and hologram data is individually acquired by the imaging device for transmitted diffracted light and the imaging device for reflected diffracted light.
 しかしながら、特許文献3に示すデジタルホログラフィ装置には、以下の問題があった。
 図18は、特許文献3のデジタルホログラフィ装置の問題点について示した概略図である。図18(1)に示すように、特許文献3のデジタルホログラフィ装置では、回折光を得るために物体119に光(平面波)を照射する側は、物体119の一方の側に限られている。物体119の一方の側からのみ光を照射することが可能な装置であり、一方の側から光を照射して一方の側に反射した回折光(反射回折光)を第1対物レンズの一方117を経て反射回折光用撮像装置に到達させ、他方の側に透過した回折光(透過回折光)を第1対物レンズの他方121を経て透過回折光用撮像装置に到達させる。このように、物体119の一方の側からのみ光を照射するようにしているのは、反射回折光による干渉縞と透過回折光による干渉縞とを同時に撮像するためであると考えられる。
However, the digital holography device disclosed in Patent Document 3 has the following problems.
FIG. 18 is a schematic diagram showing problems of the digital holography device of Patent Document 3. As shown in FIG. 18 (1), in the digital holography device of Patent Document 3, the side on which the object 119 is irradiated with light (plane wave) to obtain diffracted light is limited to one side of the object 119. This is a device that can irradiate light only from one side of the object 119, and diffracted light (reflected diffracted light) reflected from one side by irradiating light from one side is one 117 of the first objective lens. The diffracted light (transmitted diffracted light) transmitted to the other side is made to reach the transmitted diffracted light imaging device via the other 121 of the first objective lens. As described above, the reason why the light is irradiated only from one side of the object 119 is considered to be because the interference fringes by the reflected diffracted light and the interference fringes by the transmitted diffracted light are simultaneously imaged.
 図17から理解する限り、物体は宙に浮いたような状態であると観念せざるを得ない。しかし、現実には、何か容器や台のようなものの上に物体を置いた状態で光を照射し、ホログラムデータを取得する。例えば、図18(2)に示すように、透光性を考慮し、透明なガラス製のシャーレ81に物体Sを置いて光照射する。
 この場合、透過回折光については問題ないが、反射回折光についてはシャーレ81を通して反射回折光を捉えることになる。このため、シャーレ81の厚みや屈折率の影響を受け、球面収差が発生してしまう。図18(2)中に、透過回折光がシャーレ81の厚みや屈折率により本来の状態と異なる状態で伝搬する様子を示す。このような球面収差のため、特許文献3の装置では、精度の高いホログラムデータを得ることができない。物体が宙に浮かせた状態で保持できるものであれば、問題が生じないようにすることができるかもしれないが、細菌のような微細なものを観察する場合には不可能であるし、柔らかな物の場合、両側から挟み込んで保持するようにすると変形や破損が生じるので、やはり不可能な場合が多い。
As far as can be understood from FIG. 17, it must be considered that the object is in a state of floating in the air. However, in reality, light is irradiated with an object placed on something like a container or a table, and hologram data is acquired. For example, as shown in FIG. 18B, in consideration of translucency, the object S is placed on a transparent glass petri dish 81 and irradiated with light.
In this case, there is no problem with the transmitted diffracted light, but the reflected diffracted light is captured through the petri dish 81 with respect to the reflected diffracted light. For this reason, spherical aberration occurs due to the influence of the thickness and refractive index of the petri dish 81. FIG. 18B shows a state in which transmitted diffracted light propagates in a state different from the original state depending on the thickness and refractive index of the petri dish 81. Due to such spherical aberration, the apparatus of Patent Document 3 cannot obtain highly accurate hologram data. If the object can be held in the air, it may be possible to prevent problems, but it is not possible when observing minute objects such as bacteria, and soft. In the case of a thin object, if it is held between both sides, it will be deformed or damaged, so it is often impossible.
 また、特許文献3の構成では、上記の通り、反射モードでの視点と透過モードでの視点とは180°異なる。したがって、同じ側の視点から物体を反射モードで観察したり透過モードで観察したりすることはできない。何らかの理由で同じ側の視点から物体を反射モードと透過モードの双方で観察する必要がある場合、特許文献3の装置は使用できない。
 このように、特許文献3の装置は、精度の高いホログラムデータを得るには実用的な装置であるとは言い難い。
In the configuration of Patent Document 3, as described above, the viewpoint in the reflection mode and the viewpoint in the transmission mode differ by 180 °. Therefore, the object cannot be observed in the reflection mode or the transmission mode from the same viewpoint. When it is necessary to observe an object in both the reflection mode and the transmission mode from the viewpoint on the same side for some reason, the apparatus of Patent Document 3 cannot be used.
As described above, it is difficult to say that the device of Patent Document 3 is a practical device for obtaining highly accurate hologram data.
 また、精度の高いホログラムデータを得るには、物体に光照射されるレーザ光の光路上にスペイシャルフィルタを置くことが望ましい。図19は、スペイシャルフィルタの概略図である。
 スペイシャルフィルタは、図19に示すように、レンズ82とピンホール板83とで構成され、レンズ82の集光位置にピンホール板83のピンホールを配置することにより、ゴミや光学素子の傷などにより発生するノイズを除去するものである。例えば光を反射するミラーの表面にゴミが付着していたり傷がついていたりすると、傷やゴミによって波面が乱れたり、傷やゴミの影響による干渉縞が発生したりすることがあり、本来の物体光による干渉縞のみの精度の高いホログラムデータを得ることができなくなる。この問題を防止するため、スペイシャルフィルタを用いることが望ましい。
In order to obtain hologram data with high accuracy, it is desirable to place a spatial filter on the optical path of the laser beam irradiated to the object. FIG. 19 is a schematic diagram of a spatial filter.
As shown in FIG. 19, the spatial filter includes a lens 82 and a pinhole plate 83, and the pinhole of the pinhole plate 83 is disposed at the light condensing position of the lens 82, so that dust and scratches on the optical element can be obtained. The noise generated by the above is removed. For example, if dust is attached or scratched on the mirror surface that reflects light, the wave surface may be disturbed by the scratch or dust, or interference fringes may be generated due to the effect of the scratch or dust. It becomes impossible to obtain hologram data with high accuracy only by interference fringes due to light. In order to prevent this problem, it is desirable to use a spatial filter.
 スペイシャルフィルタは、物体に照射される光の光路において、なるべく物体に近い場所に配置することが望ましい。仮に、物体から離れた光路上にスペイシャルフィルタが配置されており、スペイシャルフィルタと物体との間にさらにレンズやミラーなどの光学素子が配置されていると、これら光学素子の表面のゴミやキズによる影響は除去できないことになる。
 ここで、図17(特許文献3)において物体119に近い光路上、例えばミラー115と物体119との間にスペイシャルフィルタを配置することが考えられる。しかしながら、この場所は、物体119から反射してくる反射回折光の光路上でもある。ここにスペイシャルフィルタを配置すると、反射回折光はスペイシャルフィルタのピンホールを通過することができないため、反射回折光を撮像装置165によって撮像することができないという問題が起きる。
It is desirable that the spatial filter is disposed as close to the object as possible in the optical path of the light applied to the object. If a spatial filter is arranged on the optical path away from the object, and if an optical element such as a lens or a mirror is further arranged between the spatial filter and the object, dust or dirt on the surface of these optical elements will be removed. The effect of scratches cannot be removed.
Here, in FIG. 17 (Patent Document 3), it is conceivable to arrange a spatial filter on the optical path close to the object 119, for example, between the mirror 115 and the object 119. However, this place is also on the optical path of the reflected diffracted light reflected from the object 119. If the spatial filter is disposed here, the reflected diffracted light cannot pass through the pinhole of the spatial filter, and thus there is a problem that the reflected diffracted light cannot be imaged by the imaging device 165.
 図17において上記問題を回避するには、照射光の光路と反射回折光の光路とが分離された位置までスペイシャルフィルタを離さなければならない。物体119に最も近い位置を選んだとしても、ミラー105とビームスプリッタ107の間の位置ということになる。この位置にスペイシャルフィルタを配置したとしても、ここから物体119までは、ビームスプリッタ107、第2対物レンズ109、偏光ビームスプリッタ111、ミラー115等の光学素子が存在している。したがって、スペイシャルフィルタを配置する意味がない。つまり、スペイシャルフィルタを使用して精度の高いホログラムデータを得ることは、特許文献3の装置では実質的に不可能である。 In FIG. 17, in order to avoid the above problem, the spatial filter must be separated to the position where the optical path of the irradiation light and the optical path of the reflected diffracted light are separated. Even if the position closest to the object 119 is selected, the position is between the mirror 105 and the beam splitter 107. Even if the spatial filter is arranged at this position, the optical elements such as the beam splitter 107, the second objective lens 109, the polarization beam splitter 111, and the mirror 115 exist from here to the object 119. Therefore, there is no point in arranging a spatial filter. That is, it is practically impossible with the apparatus of Patent Document 3 to obtain highly accurate hologram data using a spatial filter.
 本発明は、このような課題を解決するためになされたものであり、第一に、反射モードと透過モードとの双方を行う実用的なデジタルホログラフィ方法を提供することを目的とするものである。
 また、本発明は、第二に、反射モードと透過モードとの双方を行うことが可能な実用的なデジタルホログラフィ装置を提供することを目的としている。
 また、本発明は、第三に、物体を宙に浮いた状態にしなくとも精度の高いホログラムデータが取得できるようにすることを目的としている。
 また、本発明は、第四に、スペイシャルフィルタを使用することでさらに精度の高いホログラムデータを取得できるようにすることを目的としている。
The present invention has been made to solve such problems, and firstly, it is an object of the present invention to provide a practical digital holography method for performing both the reflection mode and the transmission mode. .
A second object of the present invention is to provide a practical digital holography device capable of performing both the reflection mode and the transmission mode.
A third object of the present invention is to make it possible to acquire highly accurate hologram data without placing an object in the air.
A fourth object of the present invention is to make it possible to acquire hologram data with higher accuracy by using a spatial filter.
 上記課題を解決するため、本願の請求項1記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
 光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
 光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
 前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであるという構成を有する。
 また、上記課題を解決するため、請求項2記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
 光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
 光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
 前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであるという構成を有する。
 また、上記課題を解決するため、請求項3記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
 光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
 光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
 反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
 光源からの光を物体を経ずに撮像素子の撮像面に導く参照光導光系とを備えており、
 撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
 前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
 前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
 前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されているという構成を有する。
 また、上記課題を解決するため、請求項4記載の発明は、光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
 光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
 光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
 反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
 反射回折光又は透過回折光から物体情報を含まない状態で参照光を抽出して撮像素子の撮像面に導く参照光導光系とを備えており、
 撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
 前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
 前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
 前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されているという構成を有する。
 また、上記課題を解決するため、請求項5記載の発明は、前記請求項3又は4の構成において、前記撮像光路上には、レンズを含む撮像光学系が設けられているという構成を有する。
 また、上記課題を解決するため、請求項6記載の発明は、前記請求項3、4又は5の構成において、前記撮像光学系は、前記反射モードと前記透過モードとで少なくとも一部の光学素子を共用するものであるという構成を有する。
 また、上記課題を解決するため、請求項7記載の発明は、前記請求項3、4、5又は6の構成において、前記撮像光学系は、テレセントリックな光学系であるという構成を有する。
 また、上記課題を解決するため、請求項8記載の発明は、前記請求項3乃至7いずれかの構成において、前記撮像光路は、前記物体から前記撮像面に一直線に延びるものであるという構成を有する。
 また、上記課題を解決するため、請求項9記載の発明は、請求項3乃至8いずれかの構成において、前記反射回折光用導光系は、前記撮像光路を通って光を前記物体に導くものであって、前記撮像光路に達するまでの光路上に第1のスペイシャルフィルタを備えているとともに第1のスペイシャルフィルタから前記撮像光路に達するまでの光路上に0個又は1個のみのミラーを備えており、
 前記透過回折光用導光系は、第2のスペイシャルフィルタを備えているとともに第2のスペイシャルフィルタから前記物体に達するまでの光路上に0個又は1個のみのミラーを備えているという構成を有する。
 また、上記課題を解決するため、請求項10記載の発明は、前記請求項3乃至9いずれかの構成において、前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであるという構成を有する。
 また、上記課題を解決するため、請求項11記載の発明は、前記請求項3乃至10いずれかの構成において、前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであるという構成を有する。
 また、上記課題を解決するため、請求項12記載の発明は、前記請求項3,5,6,7,8又は9の構成において、前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであり、
 前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであり、
 前記参照光導光系は、反射モードの際に前記第1のビームスプリッタで分割された他方の光を前記物体を経ずに前記撮像素子の撮像面に導くものであり、
 前記第1の選択用光学素子は、第2のビームスプリッタであって、第2のビームスプリッタの配置位置を変更する駆動部が設けられており、駆動部は、反射モードの際には第2のビームスプリッタを主光路から外れた位置として光が前記透過回折光用導光系の光路に進まないようにするとともに、透過モードの際には第2のビームスプリッタを主光路上に配置して光の一部が前記透過回折光用導光系の光路に沿って進むようにするものであり、
 前記第1のビームスプリッタは第2の選択用光学素子として配置されており、前記第1のビームスプリッタには前記第1のビームスプリッタの状態を変更する切替部が設けられており、
 前記切替部は、反射モードの際には前記第1のビームスプリッタを前記第1の状態とするものであり、透過モードの際には、前記第1のビームスプリッタを第2の状態とするものであり、該第2の状態は、前記反射回折光用導光系が前記参照光導光系として兼用されるよう、前記反射回折光用導光系で導かれて前記第1のビームスプリッタに達した光が前記物体を経ずに前記撮像素子の撮像面に入射する状態であるという構成を有する。
 また、上記課題を解決するため、請求項13記載の発明は、前記請求項12の構成において、前記参照光導光系は、反射モードの際、前記第1のビームスプリッタを透過した前記他方の光が前記第1のビームスプリッタを経て前記撮像素子の撮像面に入射するよう該他方の光を前記第1のビームスプリッタに戻すものであり、
 該他方の光を前記第1のビームスプリッタに戻す光路上に配置されることが可能なビームストッパと、ビームストッパを駆動するストッパ駆動部とが設けられており、ストッパ駆動部は、反射モードの際にはビームストッパを光路上に配置せず、透過モードの際にはビームストッパを光路上に配置するものであるという構成を有する。
 また、上記課題を解決するため、請求項14記載の発明は、前記請求項3乃至12の構成において、前記参照光導光系は、前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子を備えているという構成を有する。
 また、上記課題を解決するため、請求項15記載の発明は、前記請求項13の構成において、前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子が設けられており、
 オフアクシス用光学素子は、前記反射回折光用導光系が前記第1のビームスプリッタの手前の光路上に備える第1オフアクシス用ミラーと、前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す際の光路上に備えた第2オフアクシス用ミラーであり、
 第1オフアクシス用ミラーには駆動部が設けられており、この駆動部は、反射モードの際には該第1オフアクシス用ミラーを第1の姿勢とし、透過モードの際には該第1オフアクシス用ミラーを第2の姿勢とするものであり、
第1の姿勢は、該第1オフアクシス用ミラーによっては前記所定の角度が付与されない姿勢であり、第2の姿勢は、該第1オフアクシス用ミラーによって前記所定の角度が付与される姿勢であるという構成を有する。
 また、上記課題を解決するため、請求項16記載の発明は、前記請求項15の構成において、前記第1のビームスプリッタから前記光源に向けて光の進行方向とは逆向きに光路をたどった際、前記第1オフアクシス用ミラーは最初のミラーであり、
 前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す光路上において前記第1のビームスプリッタから光の進行方向とは逆向きにたどった際、前記第2オフアクシス用ミラーは最初のミラーであるという構成を有する。
In order to solve the above-described problem, the invention according to claim 1 of the present application passes the object through the object with the diffracted light from the object obtained by irradiating the object with the light emitted from the light source and the light emitted from the light source. A digital holography method for acquiring hologram data by causing interference on the imaging surface of an imaging device with reference light obtained by guiding without any problem,
When the object from the first side is irradiated with the light from the light source, the reflected diffracted light reflected from the object to the first side and emitted is interfered with the reference light on the image pickup surface of the image pickup device to obtain hologram data. Performing a reflection mode to
When the light from the light source is irradiated on the object from the second side opposite to the first side, the transmitted diffracted light that is transmitted through and emitted from the first side and the reference light are reflected on the imaging surface of the image sensor. And performing a transmission mode of acquiring hologram data by causing interference,
The step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
In order to solve the above problem, the invention described in claim 2 does not include object information from diffracted light from an object obtained by irradiating an object with light emitted from a light source and diffracted light from the object. A digital holography method for acquiring hologram data by causing interference with an imaging surface of an imaging device with reference light extracted in a state,
When the object from the first side is irradiated with the light from the light source, the reflected diffracted light reflected from the object to the first side and emitted is interfered with the reference light on the image pickup surface of the image pickup device to obtain hologram data. Performing a reflection mode to
When the light from the light source is irradiated on the object from the second side opposite to the first side, the transmitted diffracted light that is transmitted through and emitted from the first side and the reference light are reflected on the imaging surface of the image sensor. And performing a transmission mode of acquiring hologram data by causing interference,
The step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
In order to solve the above problem, the invention described in claim 3 is such that the diffracted light from the object obtained by irradiating the object with the light emitted from the light source and the light emitted from the light source through the object. A digital holography device that obtains hologram data by causing interference on the imaging surface of the imaging device with reference light obtained by guiding without
A light guide system for reflected diffracted light that guides light from the light source to the object in order to obtain reflected diffracted light that is diffracted light that is reflected and emitted from the object;
A light guide system for transmitted diffracted light that guides light from the light source to the object in order to obtain transmitted diffracted light that is diffracted light that is transmitted through and emitted from the object;
An imaging device in which the imaging surface is located at a position where the reflected diffracted light can be incident and at which the transmitted diffracted light can be incident;
A reference light guide system that guides light from the light source to the imaging surface of the image sensor without passing through an object,
There is provided a selection optical element for selectively selecting whether to enter the reflection mode by entering the reflected diffracted light on the imaging surface of the image sensor or to enter the transmission mode by entering the transmitted diffracted light.
The light guide system for reflected diffracted light irradiates light from the light source to the object from the first side,
The light guide system for transmitted diffracted light irradiates the object with light from the light source from a second side opposite to the first side,
An imaging optical path, which is an optical path from the object to the imaging surface of the imaging element, is set on the first side of the object.
In order to solve the above problem, the invention described in claim 4 does not include object information from diffracted light from an object obtained by irradiating an object with light emitted from a light source and diffracted light from the object. A digital holography device for acquiring hologram data by causing interference with an imaging surface of an imaging element with reference light extracted in a state,
A light guide system for reflected diffracted light that guides light from the light source to the object in order to obtain reflected diffracted light that is diffracted light that is reflected and emitted from the object;
A light guide system for transmitted diffracted light that guides light from the light source to the object in order to obtain transmitted diffracted light that is diffracted light that is transmitted through and emitted from the object;
An imaging device in which the imaging surface is located at a position where the reflected diffracted light can be incident and at which the transmitted diffracted light can be incident;
A reference light guide system that extracts reference light from reflected diffracted light or transmitted diffracted light without including object information and guides it to the imaging surface of the image sensor,
There is provided a selection optical element for selectively selecting whether to enter the reflection mode by entering the reflected diffracted light on the imaging surface of the image sensor or to enter the transmission mode by entering the transmitted diffracted light.
The light guide system for reflected diffracted light irradiates light from the light source to the object from the first side,
The light guide system for transmitted diffracted light irradiates the object with light from the light source from a second side opposite to the first side,
An imaging optical path, which is an optical path from the object to the imaging surface of the imaging element, is set on the first side of the object.
In order to solve the above problem, the invention described in claim 5 has a configuration in which, in the configuration of claim 3 or 4, an imaging optical system including a lens is provided on the imaging optical path.
In order to solve the above problem, the invention according to claim 6 is the configuration according to claim 3, 4 or 5, wherein the imaging optical system includes at least a part of the optical elements in the reflection mode and the transmission mode. Are shared.
In order to solve the above problem, the invention described in claim 7 has a configuration in which, in the configuration of claim 3, 4, 5 or 6, the imaging optical system is a telecentric optical system.
In order to solve the above problem, the invention according to claim 8 is the structure according to any one of claims 3 to 7, wherein the imaging optical path extends straight from the object to the imaging surface. Have.
In order to solve the above-mentioned problem, according to a ninth aspect of the present invention, in the configuration according to any of the third to eighth aspects, the light guide system for reflected diffracted light guides light to the object through the imaging optical path. A first spatial filter is provided on the optical path until reaching the imaging optical path, and zero or only one is provided on the optical path from the first spatial filter to the imaging optical path. Equipped with a mirror,
The light guide system for transmitted diffracted light includes a second spatial filter, and includes zero or only one mirror on the optical path from the second spatial filter to the object. It has a configuration.
In order to solve the above-described problem, the invention according to claim 10 is the configuration according to any one of claims 3 to 9, wherein the selection optical element is a first optical element disposed on a main optical path extending from the light source. A selection optical element, and a main optical path is branched into an optical path of the reflected diffracted light guide system and an optical path of the transmitted diffracted light guide system, and the first selection optical element is: A configuration that selectively selects whether the light from the light source travels along the optical path of the reflected diffracted light guide system or the optical path of the transmitted diffracted light guide system Have
In order to solve the above-described problem, the invention according to claim 11 is the structure according to any one of claims 3 to 10, wherein a first beam splitter is provided on the imaging optical path, and the reflected diffracted light is provided. The light guide system guides light from the light source to the first beam splitter, and the first beam splitter splits the light guided by the reflected diffracted light guide system in the reflection mode. The first state where one of them is directed to the object.
In order to solve the above-mentioned problems, the invention according to claim 12 is the main optical path extending from the light source as the selection optical element in the configuration of claim 3, 5, 6, 7, 8, or 9. And a main optical path is branched into an optical path of the reflected diffracted light guide system and an optical path of the transmitted diffracted light guide system. The optical element for selection alternatively selects whether the light from the light source travels along the optical path of the light guide system for reflected diffracted light or the light path of the light guide system for transmitted diffracted light Is what
A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffracted light guides light from a light source to the first beam splitter, and the first beam splitter is Taking a first state in which the light guided by the light guide system for reflected diffracted light in the reflection mode is divided and one of the lights is directed to the object;
The reference light guide system guides the other light divided by the first beam splitter in the reflection mode to the imaging surface of the imaging element without passing through the object,
The first optical element for selection is a second beam splitter, and is provided with a drive unit for changing the arrangement position of the second beam splitter, and the drive unit is a second beam splitter in the reflection mode. In order to prevent light from traveling to the optical path of the transmission diffracted light guide system, the second beam splitter is arranged on the main optical path in the transmission mode. A part of the light is allowed to travel along an optical path of the light guide system for transmitted diffraction light,
The first beam splitter is arranged as a second optical element for selection, and the first beam splitter is provided with a switching unit for changing the state of the first beam splitter,
The switching unit sets the first beam splitter to the first state in the reflection mode, and sets the first beam splitter to the second state in the transmission mode. The second state is guided by the reflected diffracted light guiding system and reaches the first beam splitter so that the reflected diffracted light guiding system is also used as the reference light guiding system. The light is incident on the imaging surface of the image sensor without passing through the object.
In order to solve the above-described problem, the invention according to claim 13 is the configuration according to claim 12, wherein the reference light guide system transmits the other light transmitted through the first beam splitter in the reflection mode. Returns the other light to the first beam splitter so as to enter the imaging surface of the imaging device via the first beam splitter,
A beam stopper that can be disposed on an optical path for returning the other light to the first beam splitter, and a stopper driving unit that drives the beam stopper are provided. In some cases, the beam stopper is not disposed on the optical path, and in the transmission mode, the beam stopper is disposed on the optical path.
In order to solve the above problem, according to a fourteenth aspect of the present invention, in the configuration according to the third to twelfth aspects, the reference light guide system has the reflected diffracted light or the incident light incident on the imaging surface of the imaging element. An off-axis optical element is provided that allows reference light to enter the imaging surface of the imaging element in a state where a predetermined angle is given to the direction of the transmitted diffracted light.
In order to solve the above-mentioned problem, the invention according to claim 15 is directed to the direction of the reflected diffracted light or transmitted diffracted light when entering the imaging surface of the image sensor in the configuration of claim 13. An off-axis optical element is provided that makes reference light incident on the imaging surface of the imaging element in a state where a predetermined angle is given,
The off-axis optical element includes a first off-axis mirror provided on the optical path in front of the first beam splitter by the reflected diffracted light guiding system, and the reference light guiding system configured to transmit the other light. A second off-axis mirror provided on the optical path when returning to the first beam splitter;
The first off-axis mirror is provided with a drive unit. The drive unit sets the first off-axis mirror in the first posture in the reflection mode and the first off-axis mirror in the transmission mode. The off-axis mirror is in the second position,
The first posture is a posture in which the predetermined angle is not given by the first off-axis mirror, and the second posture is a posture in which the predetermined angle is given by the first off-axis mirror. It has a configuration that there is.
In order to solve the above-mentioned problem, in the invention of claim 16, in the structure of claim 15, the optical path is traced in the direction opposite to the traveling direction of light from the first beam splitter toward the light source. The first off-axis mirror is the first mirror;
When the reference light guide system traces the light from the first beam splitter in the direction opposite to the traveling direction on the optical path for returning the other light to the first beam splitter, the second off-axis mirror is The first mirror is configured.
 以下に説明する通り、本願の請求項1又は2記載の発明によれば、一つの物体について反射回折光と透過回折光とでそれぞれホログラムデータが得られるので、物体の状態や形状等を詳しく調べるのに適したものとなる。この際、反射モードと透過モードとを時間的に分けて行うので、光学系の構成が簡略化される。また、請求項1記載の発明によれば、参照光を物体を経ずに撮像素子に導くので、物体の条件によらず常に安定した参照光が得られる。このため、精度の高いホログラムデータが取得できる。
 また、請求項3又は4記載の発明によれば、一つの物体について反射回折光と透過回折光とでそれぞれホログラムデータを得ることができるので、物体の状態や形状等を詳しく調べるのに適したものとなる。この際、反射モードと透過モードとを時間的に分けて行うので、光学系の構成が簡略化される。また、反射モードと透過モードとを一つの装置で行うことができるので、コスト上のメリットに加え、作業性の点でも好適である。さらに、透明な容器に物体を置いた状態でも精度の高いホログラムデータを得ることができ、同じ側の視点で反射モードでの観察と透過モードでの観察が行える。また、請求項3記載の発明によれば、参照光を物体を経ずに撮像素子に導くので、物体の条件によらず常に安定した参照光が得られる。このため、精度の高いホログラムデータが取得できる。
 また、請求項6記載の発明によれば、上記効果に加え、撮像光学系が少なくとも一部の光学素子を共用しているので、光学系の構成が簡略化され、コストが安くなる。
 また、請求項7記載の発明によれば、上記効果に加え、撮像光学系がテレセントリックな光学系であるので、反射モードにおいても透過モードにおいても物体に対して平面波を照射することができる。このため、物体光が歪められず、補正計算が不要となる。
 また、請求項8記載の発明によれば、上記効果に加え、前記撮像光路は、前記物体から前記撮像面に一直線に延びるものであるので、光学系の構成もシンプルになり、波面の乱れが少なくなる。このため、より精度の高いホログラムデータの取得に貢献でき、コストも安価となる。
 また、請求項9記載の発明によれば、上記効果に加え、スペイシャルフィルタを使用しているので、より精度の高いホログラムデータが得られる。そして、スペイシャルフィルタは物体に対してより近い光路上に位置しているので、精度向上の効果がより高くなっている。
 また、請求項12記載の発明によれば、上記効果に加え、反射回折光用導光系が参照光導光系に兼用されているので、光の可干渉性が向上し、この点でより精度の高いホログラムデータが取得できる。
 また、請求項13記載の発明によれば、上記効果に加え、参照光導光系は、反射モードの際、第1のビームスプリッタに光を戻して第1のビームスプリッタを経て光を撮像素子に導くので、この点で光の可干渉性がさらに向上し、より精度の高いホログラムデータが取得できる。
 また、請求項14又は15記載の発明によれば、上記効果に加え、オフアクシス用光学素子が設けられているので、オフアクシス式の動作が可能となる。このため、真像を0次像やと共役像から分離した状態で像再生が行える。
 また、請求項16記載の発明によれば、オフアクシス用ミラーが撮像素子に近いところに設けられているので、撮像素子の撮像面に対する参照光の入射位置が大きくずれてしまうことがない。
As described below, according to the invention described in claim 1 or 2 of the present application, since hologram data can be obtained for each object using reflected diffracted light and transmitted diffracted light, the state and shape of the object are examined in detail. It will be suitable for. At this time, since the reflection mode and the transmission mode are performed separately in time, the configuration of the optical system is simplified. According to the first aspect of the present invention, since the reference light is guided to the image sensor without passing through the object, stable reference light can always be obtained regardless of the condition of the object. For this reason, highly accurate hologram data can be acquired.
Further, according to the invention described in claim 3 or 4, since hologram data can be obtained for each object using reflected diffracted light and transmitted diffracted light, it is suitable for examining the state and shape of the object in detail. It will be a thing. At this time, since the reflection mode and the transmission mode are performed separately in time, the configuration of the optical system is simplified. In addition, since the reflection mode and the transmission mode can be performed by one apparatus, it is preferable in terms of workability in addition to the merit in cost. Furthermore, highly accurate hologram data can be obtained even when an object is placed on a transparent container, and observation in the reflection mode and observation in the transmission mode can be performed from the same viewpoint. According to the third aspect of the invention, since the reference light is guided to the image sensor without passing through the object, stable reference light can always be obtained regardless of the condition of the object. For this reason, highly accurate hologram data can be acquired.
According to the invention described in claim 6, in addition to the above effect, since the imaging optical system shares at least a part of the optical elements, the configuration of the optical system is simplified and the cost is reduced.
According to the seventh aspect of the invention, in addition to the above effect, since the imaging optical system is a telecentric optical system, it is possible to irradiate the object with plane waves in both the reflection mode and the transmission mode. For this reason, the object light is not distorted and correction calculation is not required.
According to the invention of claim 8, in addition to the above effect, the imaging optical path extends straight from the object to the imaging surface, so that the configuration of the optical system is simplified, and the wave front is disturbed. Less. For this reason, it can contribute to acquisition of hologram data with higher accuracy, and the cost is also low.
According to the ninth aspect of the invention, in addition to the above effect, since a spatial filter is used, more accurate hologram data can be obtained. Since the spatial filter is located on the optical path closer to the object, the effect of improving accuracy is higher.
According to the invention of claim 12, in addition to the above effect, the reflected diffracted light guiding system is also used as the reference light guiding system, so that the coherence of light is improved and more accurate in this respect. High hologram data can be acquired.
According to the thirteenth aspect of the invention, in addition to the above effect, the reference light guide system returns light to the first beam splitter and passes the light to the image sensor through the first beam splitter in the reflection mode. Therefore, the coherence of light is further improved in this respect, and more accurate hologram data can be acquired.
According to the invention of claim 14 or 15, in addition to the above effect, an off-axis operation is possible because the off-axis optical element is provided. Therefore, image reproduction can be performed with the true image separated from the zero-order image and the conjugate image.
According to the sixteenth aspect of the present invention, since the off-axis mirror is provided near the image pickup device, the incident position of the reference light on the image pickup surface of the image pickup device is not greatly shifted.
本発明の実施形態に係るデジタルホログラフィ方法を概念的に示した図である。It is the figure which showed notionally the digital holography method which concerns on embodiment of this invention. 本発明の第1の実施形態のデジタルホログラフィ装置の正面概略図である。1 is a schematic front view of a digital holography device according to a first embodiment of the present invention. 本発明の第2の実施形態のデジタルホログラフィ装置の正面概略図である。It is the front schematic of the digital holography device of the 2nd Embodiment of this invention. 第2のビームエキスパンダ321と第2のスペイシャルフィルタ326について示した概略図である。FIG. 6 is a schematic diagram showing a second beam expander 321 and a second spatial filter 326. 図3の装置における撮像光学系5のテレセントリック性について模式的に示した概略図である。It is the schematic which showed typically about the telecentricity of the imaging optical system 5 in the apparatus of FIG. 第2の実施形態のデジタルホログラフィ装置の制御系を示した概略図である。It is the schematic which showed the control system of the digital holography apparatus of 2nd Embodiment. 第2の実施形態の装置の動作について示した概略図であり、反射モードと透過モードとにおける各光の進行状況について対比して示した図である。It is the schematic shown about operation | movement of the apparatus of 2nd Embodiment, and is the figure shown by contrasting about the advancing condition of each light in reflection mode and transmission mode. 反射モードでの動作フローの概略を示した図である。It is the figure which showed the outline of the operation | movement flow in reflection mode. 透過モードでの動作フローの概略を示した図である。It is the figure which showed the outline of the operation | movement flow in transparent mode. 第2の実施形態の装置がテレセントリックな撮像光学系5を備えていることの効果を示した概略図である。It is the schematic which showed the effect that the apparatus of 2nd Embodiment is equipped with the telecentric imaging optical system. 本発明の第3の実施形態に係るデジタルホログラフィ装置の正面概略図である。It is a front schematic diagram of a digital holography device according to a third embodiment of the present invention. 第3の実施形態で用いられているオフアクシス用ミラーの配置角度の変化を示した図である。It is the figure which showed the change of the arrangement angle of the mirror for off-axis used in 3rd Embodiment. 第3の実施形態の装置の動作について示した概略図であり、反射モードと透過モードとにおける各光の進行状況について対比して示した図である。It is the schematic shown about operation | movement of the apparatus of 3rd Embodiment, and is the figure shown by contrasting about the advancing condition of each light in reflection mode and transmission mode. 本発明の第4の実施形態のデジタルホログラフィ装置の正面概略図である。It is the front schematic of the digital holography device of the 4th Embodiment of this invention. 図14に示す実施形態における参照光抽出ユニット9の例を示した正面概略図である。It is the front schematic which showed the example of the reference light extraction unit 9 in embodiment shown in FIG. 従来のデジタルホログラフィ装置の概略を示した図である。It is the figure which showed the outline of the conventional digital holography apparatus. 特許文献3に開示されたデジタルホログラフィ装置を示す図である。It is a figure which shows the digital holography apparatus disclosed by patent document 3. FIG. 特許文献3のデジタルホログラフィ装置の問題点について示した概略図である。It is the schematic shown about the problem of the digital holography apparatus of patent document 3. FIG. スペイシャルフィルタの概略図である。It is the schematic of a spatial filter.
 次に、本発明を実施するための形態(以下、実施形態)について説明する。
 図1は、本発明の実施形態に係るデジタルホログラフィ方法を概念的に示した図である。実施形態に係るデジタルホログラフィ方法は、光源1から放出された光(平面波)を物体Sに照射して得られた物体Sからの回折光(物体光)と、光源1からの光を物体Sを経ることなく導いて得られた参照光とを撮像素子2の撮像面で干渉させてホログラムデータを取得する方法である。
Next, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.
FIG. 1 is a diagram conceptually illustrating a digital holography method according to an embodiment of the present invention. In the digital holography method according to the embodiment, diffracted light (object light) from the object S obtained by irradiating the object S with light (plane wave) emitted from the light source 1 and light from the light source 1 are transmitted to the object S. This is a method of acquiring hologram data by causing interference between the reference light obtained without passing through the imaging surface of the imaging device 2.
 この方法の大きな特徴点の一つは、物体Sに照射された光のうち物体Sに反射して回折となって進む物体光(反射回折光)と参照光とを撮像面で干渉させてホログラムデータを得る反射モードと、物体Sに照射された光のうち物体Sを透過して回折光となって進む物体光(透過回折光)と参照光とを撮像面で干渉させてホログラムデータを得る透過モードとを行う方法となっている点であり、反射モードと透過モードとが別々のステップで行われる点である。図1(1)が反射モードを示し、図1(2)が透過モードを示す。
 反射モードのステップと透過モードのステップは、どちらが先でも良い。要は、透過回折光は使用せずに反射回折光を使用してホログラムデータを得るステップと、反射回折光は使用せずに透過回折光を使用してホログラムデータを得るステップとがあり、これらが同時ではなく別々の時間帯に行われるということである。
One of the major feature points of this method is that the object light (reflected diffracted light) that travels as a diffraction reflected from the object S out of the light irradiated to the object S interferes with the reference light on the imaging surface to generate a hologram. Hologram data is obtained by causing the imaging surface to interfere with the reflection mode for obtaining data and the object light (transmitted diffracted light) that travels as diffracted light through the object S among the light irradiated to the object S and the reference light. The transmission mode is a method in which the reflection mode and the transmission mode are performed in separate steps. FIG. 1 (1) shows the reflection mode, and FIG. 1 (2) shows the transmission mode.
Either the reflection mode step or the transmission mode step may be first. In short, there are a step of obtaining hologram data using reflected diffracted light without using transmitted diffracted light, and a step of obtaining hologram data using transmitted diffracted light without using reflected diffracted light. Are performed at different times rather than simultaneously.
 実施形態のデジタルホログラフィ方法の別の大きな特徴点は、反射モードと透過モードとでは、物体Sに対する光の照射の仕方が異なるということである。すなわち、図1(1)に示すように、反射モードでは光源1からの光を第1の側から物体Sに照射する。一方、図1(2)に示すように、透過モードでは第1の側とは反対側の第2の側から物体Sに光を照射する。そして、反射モードでは第1の側に反射してきた回折光を撮像素子2に入射させ、透過モードでも第1の側に透過してきた回折光を撮像素子2に入射させる。すなわち、撮像素子2による撮像の側は反射モードでも透過モードでも同じである。 Another major feature of the digital holography method of the embodiment is that the way of irradiating the object S with light differs between the reflection mode and the transmission mode. That is, as shown in FIG. 1A, in the reflection mode, the object S is irradiated with light from the light source 1 from the first side. On the other hand, as shown in FIG. 1B, in the transmission mode, the object S is irradiated with light from the second side opposite to the first side. In the reflection mode, the diffracted light reflected on the first side is incident on the image sensor 2, and in the transmission mode, the diffracted light transmitted on the first side is incident on the image sensor 2. That is, the image pickup side by the image pickup device 2 is the same in the reflection mode and the transmission mode.
 次に、上記実施形態のデジタルホログラフィ方法の実施に使用される各実施形態のデジタルホログラフィ装置について説明する。まず、第1の実施形態のデジタルホログラフィ装置について説明する。図2は、第1の実施形態のデジタルホログラフィ装置の正面概略図である。
 図2に示すように、第1の実施形態のデジタルホログラフィ装置は、反射回折光を得るために光源1からの光を物体Sまで導く反射回折光用導光系31と、透過回折光を得るために光源1からの光を物体Sまで導く透過回折光用導光系32と、光源1からの光を物体Sを経ずに撮像素子2の撮像面に導く参照光導光系33と、反射回折光と参照光とが干渉する位置であるとともに透過回折光と参照光とが干渉する位置に撮像面が位置する撮像素子2とを備えている。そして、この装置には、撮像素子2の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられている。
Next, the digital holography device of each embodiment used for implementing the digital holography method of the above embodiment will be described. First, the digital holography device according to the first embodiment will be described. FIG. 2 is a schematic front view of the digital holography device according to the first embodiment.
As shown in FIG. 2, the digital holography device according to the first embodiment obtains a reflected diffracted light guiding system 31 that guides light from the light source 1 to an object S and obtains transmitted diffracted light in order to obtain reflected diffracted light. Therefore, a light guide system 32 for transmitted diffracted light that guides light from the light source 1 to the object S, a reference light guide system 33 that guides light from the light source 1 to the imaging surface of the image sensor 2 without passing through the object S, and reflection The imaging device 2 is provided with an imaging surface located at a position where the diffracted light and the reference light interfere with each other and the transmitted diffracted light and the reference light interfere with each other. In this apparatus, there is a selection optical element that selectively selects whether the reflection diffracted light is incident on the image pickup surface of the image pickup element 2 to enter the reflection mode or the transmission diffracted light to enter the transmission mode. Is provided.
 前述したように、反射モードでも透過モードでも、物体光は同じ第1の側に出射する。したがって、撮像素子2はこの第1の側に設定された撮像光路Pi上に設けられている。撮像光路Pi上には、第1のビームスプリッタ41が設けられている。反射回折光用の光は撮像光路Piを通って物体Sに照射するため、撮像光路Piの途中に第1のビームスプリッタ41を配置し、そこから反射回折光用の光を導入するようにしている。
 また、この実施形態では、レンズを含む撮像光学系5が撮像光路Pi上に設けられている。撮像光学系5は、撮像素子2が物体Sに比較的近い位置にありフレネル回折を利用する場合(フレネルホログラムの場合)には不要である。また、参照光を球面波としたフーリエ変換ホログラム(レンズレスフーリエ変換ホログラム)の場合も撮像光学系5は不要である。撮像光学系5が必要になる場合としては、レンズを用いてフラウンホーファーホログラム(フーリエ変換ホログラム)とする場合や、物体Sからの回折光による干渉像を拡大像又は縮小像とする場合などである。
As described above, the object light is emitted to the same first side in both the reflection mode and the transmission mode. Therefore, the image pickup device 2 is provided on the image pickup optical path Pi set on the first side. A first beam splitter 41 is provided on the imaging optical path Pi. Since the light for reflected diffracted light irradiates the object S through the imaging optical path Pi, the first beam splitter 41 is disposed in the middle of the imaging optical path Pi, and the light for reflected diffracted light is introduced from there. Yes.
In this embodiment, the imaging optical system 5 including a lens is provided on the imaging optical path Pi. The imaging optical system 5 is not necessary when the imaging device 2 is located relatively close to the object S and uses Fresnel diffraction (in the case of a Fresnel hologram). Further, the imaging optical system 5 is not necessary in the case of a Fourier transform hologram (lensless Fourier transform hologram) in which the reference light is a spherical wave. The imaging optical system 5 is necessary when a lens is used to form a Fraunhofer hologram (Fourier transform hologram), or when an interference image due to diffracted light from the object S is enlarged or reduced. .
 鮮明なホログラム再生像を得るには、物体光と参照光とが十分に干渉して干渉縞が形成されることが必要である。このためには、光源1は単一波長で位相がそろっている(コヒーレントである)ことが必要である。このため、光源1としてはレーザが用いられる。例えば波長が632.8nmのHe-Ne(ヘリウムネオン)レーザが用いられる。
 物体光用と参照光用とで別々の光源を使用することも原理的には可能であるが、別々の光源を使用すると波長や位相を十分にそろえることが非常に難しい。このため、一つの光源1からの光を分割して使用している。すなわち、光源1から放出された光を参照光取り出し用ビームスプリッタ42で分け、一方を参照光として使用している。
In order to obtain a clear hologram reproduction image, it is necessary that the object beam and the reference beam sufficiently interfere to form interference fringes. For this purpose, the light source 1 needs to be in phase with a single wavelength (coherent). For this reason, a laser is used as the light source 1. For example, a He—Ne (helium neon) laser having a wavelength of 632.8 nm is used.
Although it is possible in principle to use different light sources for the object light and the reference light, it is very difficult to sufficiently align the wavelength and phase when using different light sources. For this reason, the light from one light source 1 is divided and used. That is, the light emitted from the light source 1 is divided by the reference light extraction beam splitter 42, and one is used as the reference light.
 選択用光学素子は、この実施形態では可動ミラー43である。可動ミラー43は、移動可能なミラーであり、参照光用取り出し用ビームスプリッタ42からの照射光を反射回折光用導光系31に導くか透過回折光用導光系32に導くかを選択するようになっている。
 なお、この実施形態はインライン式の装置であり、参照光も物体光と同様に撮像素子2の撮像面に垂直に入射させるものである。図1に示すように、撮像光路Pi上には統合用ビームスプリッタ44が配置されており、参照光は統合用ビームスプリッタ44に反射して撮像素子2の撮像面に垂直に入射するようになっている。なお、参照光導光系33は、参照光用第1ミラー331と、参照光用第2ミラー332とから構成されており、参照光取り出し用ビームスプリッタ42で取り出された光を統合用ビームスプリッタ44に導くものとなっている。
The optical element for selection is a movable mirror 43 in this embodiment. The movable mirror 43 is a movable mirror and selects whether to guide the irradiation light from the reference beam extraction beam splitter 42 to the reflected diffracted light guide system 31 or to the transmitted diffracted light guide system 32. It is like that.
Note that this embodiment is an in-line apparatus, and the reference light is incident on the imaging surface of the imaging device 2 perpendicularly in the same manner as the object light. As shown in FIG. 1, an integration beam splitter 44 is disposed on the imaging optical path Pi, and the reference light is reflected by the integration beam splitter 44 and enters the imaging surface of the imaging device 2 perpendicularly. ing. The reference light guide system 33 includes a reference light first mirror 331 and a reference light second mirror 332, and integrates the light extracted by the reference light extraction beam splitter 42. It has led to
 実施形態の方法及び装置においては、シャーレのような容器に物体Sを置いてそのホログラムデータを得る。光源1を動作させ、最初に例えば反射モードでホログラムデータを得た後、可動ミラー43を移動させて透過モードでホログラムデータを得る。それぞれのホログラムデータは、撮像素子2が接続されたコンピュータ(図1中不図示)で処理される。コンピュータには、ホログラムデータから再生像を得るための所定のプログラム(以下、像再生プログラム)がインストールされており、像再生プログラムを実行することによってディスプレイ上に再生像を表示したり、物体S上の特定の箇所の距離を計測したり、または物体Sの反射率分布や透過率分布を表示したりことが可能となる。
 このような実施形態の方法及び装置によれば、一つの物体Sについて反射回折光と透過回折光とでそれぞれホログラムデータが得られるので、物体Sの状態や形状等を詳しく調べるのに適したものとなる。例えば、物体Sの表面の反射率分布と透過率分布との双方を知るのに好適に利用できる。
In the method and apparatus of the embodiment, the hologram S is obtained by placing the object S in a container such as a petri dish. After the light source 1 is operated and hologram data is first obtained in, for example, the reflection mode, the movable mirror 43 is moved to obtain hologram data in the transmission mode. Each hologram data is processed by a computer (not shown in FIG. 1) to which the image sensor 2 is connected. A predetermined program (hereinafter referred to as an image reproduction program) for obtaining a reproduction image from hologram data is installed in the computer, and the reproduction image is displayed on the display by executing the image reproduction program. It is possible to measure the distance of a specific location or to display the reflectance distribution or transmittance distribution of the object S.
According to the method and apparatus of such an embodiment, hologram data can be obtained for each object S using reflected diffracted light and transmitted diffracted light. It becomes. For example, it can be suitably used to know both the reflectance distribution and the transmittance distribution on the surface of the object S.
 この際、実施形態の方法および装置では、反射モードと透過モードとを時間的に分けて行うので、光学系の構成が簡略化される。図15のような構成でも反射回折光によるホログラムデータと透過回折光によるホログラムデータとを得ることができるが、図15の構成では、反射回折光と透過回折光とが同時に物体から出てきてしまうので、これを分離してそれぞれの撮像素子に入射させる必要がある。このため、複雑な撮像光学系5が必要なる。事実、図15は、偏光ビームスプリッタ143等を使用した複雑な撮像光学系となっている。なお、撮像光学系とは、物体から撮像素子に至る物体光の光路上の光学系という意味である。
 一方、本実施形態の方法又は装置によれば、反射モードと透過モードとを時間的に分離して行うので、光学的な分離は不要である。このため、撮像光学系5がシンプルになる。撮像光学系5がシンプルになるということは、コスト面での優位性に加え、より多くの光学素子を使うことによる波面の乱れの可能性が少なくなるため、より精度の高いホログラムデータが得られるという優位性がある。
At this time, in the method and apparatus of the embodiment, since the reflection mode and the transmission mode are performed separately in time, the configuration of the optical system is simplified. Even with the configuration as shown in FIG. 15, hologram data based on reflected diffracted light and hologram data based on transmitted diffracted light can be obtained. However, with the configuration shown in FIG. Therefore, it is necessary to separate this and make it incident on each image sensor. For this reason, a complicated imaging optical system 5 is required. In fact, FIG. 15 shows a complicated imaging optical system using the polarization beam splitter 143 and the like. The imaging optical system means an optical system on the optical path of object light from the object to the imaging device.
On the other hand, according to the method or apparatus of the present embodiment, since the reflection mode and the transmission mode are temporally separated, optical separation is unnecessary. For this reason, the imaging optical system 5 becomes simple. The fact that the imaging optical system 5 is simple means that, in addition to cost advantages, the possibility of wavefront disturbance due to the use of more optical elements is reduced, so that more accurate hologram data can be obtained. There is an advantage.
 また、図15のように反射モードと透過モードとを同時に行うということは、光を一方の側から物体Sに照射し、一方の側に反射して出てくる反射回折光と他方の側に透過して出てくる透過回折光とをそれぞれ撮像素子で捉えるということになる。この場合、前述したように、物体Sを空中に浮かせて保持するような構成にしなければ、精度の高いホログラムデータを得ることができない。しかし、反射モードと透過モードとを時間的に別々に行う場合、透過モードの際には逆側から光を照射するようにすることができ、撮像する側を物体Sの同じ側とすることができる。このため、シャーレのような容器に物体Sを置いた状態でも精度の高いホログラムデータを得ることができ、また同じ側の視点から反射モードでの観察と透過モードでの観察が行える。実施形態の装置は、このような装置となっている。 Further, simultaneously performing the reflection mode and the transmission mode as shown in FIG. 15 means that the object S is irradiated with light from one side and reflected and reflected on one side and reflected on the other side. This means that the transmitted diffracted light that passes through is captured by the image sensor. In this case, as described above, high-accuracy hologram data cannot be obtained unless the object S is suspended and held in the air. However, when the reflection mode and the transmission mode are performed separately in time, the light can be irradiated from the opposite side in the transmission mode, and the imaging side can be the same side of the object S. it can. Therefore, highly accurate hologram data can be obtained even when the object S is placed in a container such as a petri dish, and observation in the reflection mode and observation in the transmission mode can be performed from the same side viewpoint. The device of the embodiment is such a device.
 反射モードと透過モードとを行うことは、前述したように物体Sの状態や形状等を詳しく調べるのに適しているが、これが一つの装置で行えることは、コスト上のメリットの他、作業性の点でも好適である。反射モードで測定を行うデジタルホログラフィ装置と透過モードで測定を行うデジタルホログラフィ装置とを用意すれば同様のことが可能であるが、この場合、反射モードの装置で測定を行った後に物体Sを取り出し、透過モードの装置にセットして測定を行わなければならず、煩雑である。本実施形態の装置によれば、このような問題はない。
 また一般的に言えば、物体Sが不透明体である場合には、そもそも透過モードでのホログラムデータの取得はできない。透明体の場合、透過モードでも反射モードでもデータ取得はできるが、反射モードを透明体に対して行った場合、物体の表面からの反射回折光と物体の裏面からの反射回折光とが干渉して干渉縞が生じてしまう場合があり、この影響で正確なホログラムデータが得られないことがある。これらを考えると、対象物である物体Sの性状に応じて一台の装置でモードを任意に選ぶことができるメリットは、非常に大きい。
Performing the reflection mode and the transmission mode is suitable for examining the state and shape of the object S in detail as described above. However, the fact that this can be performed with one apparatus is not only cost-effective but also workable. This is also suitable. If a digital holography device that performs measurement in the reflection mode and a digital holography device that performs measurement in the transmission mode are prepared, the same can be achieved. In this case, the object S is taken out after measurement is performed using the device in the reflection mode. The measurement must be performed by setting the device in a transmission mode. According to the apparatus of this embodiment, there is no such problem.
Generally speaking, when the object S is an opaque body, hologram data cannot be acquired in the transmission mode. In the case of a transparent body, data can be acquired in both the transmission mode and the reflection mode. Interference fringes may occur, and accurate hologram data may not be obtained due to this influence. Considering these, the merit that the mode can be arbitrarily selected with one apparatus according to the property of the object S as the object is very large.
 また、参照光を物体Sを経ずに撮像素子2に導いている点は、物体Sの条件によらず常に安定した参照光を得るという点で優れている。図15では、物体Sを透過した光を取り出して参照光としている。このように、物体Sへの光照射→物体光→撮像素子2という物体光のルートと同じルートで参照光を撮像素子2に入射させることも不可能ではない。しかしながら、このようにすると、物体Sの光学的な物性によって参照光が変化してしまうため、常に安定した光を参照光として使用することができない。一方、本実施形態のように、物体Sを経ないで参照光を撮像素子2に導くようにすれば、物体Sの条件によって変化することはなく、参照光を常に安定したものとすることができる。例えば、物体Sからの光透過率を測定する場合、本実施形態の方法又は装置によれば、定量性を持ったデータが得られるメリットがある。 Also, the point that the reference light is guided to the image sensor 2 without passing through the object S is excellent in that a stable reference light is always obtained regardless of the conditions of the object S. In FIG. 15, the light transmitted through the object S is taken out and used as reference light. As described above, it is not impossible to make the reference light incident on the image sensor 2 through the same route as the object light route of light irradiation on the object S → object light → image sensor 2. However, if this is done, the reference light changes depending on the optical properties of the object S, so that stable light cannot always be used as the reference light. On the other hand, if the reference light is guided to the image sensor 2 without passing through the object S as in the present embodiment, the reference light is always stable without changing depending on the conditions of the object S. it can. For example, when measuring the light transmittance from the object S, according to the method or apparatus of this embodiment, there is an advantage that data having quantitativeness can be obtained.
 次に、より実用性を高めた第2の実施形態のデジタルホログラフィ装置について以下に説明する。図3は、本発明の第2の実施形態のデジタルホログラフィ装置の正面概略図である。
 第2の実施形態のデジタルホログラフィ装置は、反射回折光を得るために光源1からの光を物体Sまで導く反射回折光用導光系31と、透過回折光を得るために光源1からの光を物体Sまで導く透過回折光用導光系32と、光源1からの光を物体Sを経ずに撮像素子2の撮像面に導く参照光導光系33と、反射回折光と参照光とが干渉する位置であるとともに透過回折光と参照光とが干渉する位置に撮像面が位置する撮像素子2と、撮像素子2の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを選択する選択用光学素子と、選択用光学素子の動作を制御する制御系(図3中不図示)とを備えている。
Next, a digital holography device according to a second embodiment that is more practical will be described below. FIG. 3 is a schematic front view of a digital holography device according to a second embodiment of the present invention.
The digital holography device of the second embodiment includes a light guide system 31 for reflected diffracted light that guides light from the light source 1 to the object S to obtain reflected diffracted light, and light from the light source 1 to obtain transmitted diffracted light. A diffracted light guide system 32 for transmitting diffracted light to the object S, a reference light guide system 33 for guiding light from the light source 1 to the imaging surface of the image sensor 2 without passing through the object S, reflected diffracted light and reference light. The imaging device 2 in which the imaging surface is located at a position where the transmitted diffracted light and the reference light interfere with each other, and the reflected diffracted light is incident on the imaging surface of the imaging device 2 to enter the reflection mode or the transmitted diffracted light. And a control system (not shown in FIG. 3) for controlling the operation of the selection optical element.
 第2の実施形態は、装置の実用性を高めるため、反射回折光用導光系31を参照光導光系として一部兼用したものである。具体的に説明すると、第2の実施形態では、第1の実施形態における可動ミラー43に変えて第2のビームスプリッタ45を設けている。第2のビームスプリッタ45には、駆動部451が付設されている。また、第1の実施形態と同様に第1のビームスプリッタ41が設けられているが、第1のビームスプリッタ41には、駆動機構として切替部411が付設されている。これら第1のビームスプリッタ41と第2のビームスプリッタ45は、選択用光学素子として機能するようになっている。 In the second embodiment, the light guide system 31 for reflected diffracted light is partially used as a reference light guide system in order to improve the practicality of the apparatus. Specifically, in the second embodiment, a second beam splitter 45 is provided in place of the movable mirror 43 in the first embodiment. A drive unit 451 is attached to the second beam splitter 45. Further, the first beam splitter 41 is provided as in the first embodiment, but the first beam splitter 41 is provided with a switching unit 411 as a drive mechanism. The first beam splitter 41 and the second beam splitter 45 function as a selection optical element.
 図3に示すように、光源1から延びる光路(以下、主光路)は、第1のミラー46で90°折り曲げられた後、まず、第2のビームスプリッタ45で分岐し得るようになっている。反射回折光用導光系31は、主光路上であって、第2のビームスプリッタ45による分割位置の像側(光の進行方向における前方、以下同じ)に配置されている。図1に示すように、反射回折光用導光系31は、第1のビームエキスパンダ311と、第2のミラー312と、第1のビームスプリッタ41等で構成されている。第2のミラー312は、第1のビームエキスパンダ311で幅が広げられた光を90°曲げて第1のビームスプリッタ41に到達させるものである。 As shown in FIG. 3, the optical path extending from the light source 1 (hereinafter, the main optical path) can be branched by the second beam splitter 45 after being bent by 90 ° by the first mirror 46. . The light guide system 31 for reflected diffracted light is arranged on the main optical path and on the image side of the division position by the second beam splitter 45 (forward in the light traveling direction, hereinafter the same). As shown in FIG. 1, the light guide system 31 for reflected diffracted light includes a first beam expander 311, a second mirror 312, a first beam splitter 41, and the like. The second mirror 312 bends the light whose width is widened by the first beam expander 311 by 90 ° and reaches the first beam splitter 41.
 また、透過回折光用導光系32は、この第2のビームスプリッタ45が主光路上に位置することにより主光路から分かれて形成される光路(以下、分岐光路)Ps上に配置された各光学素子によって構成されている。各光学素子とは、第2のビームエキスパンダ321や第3のミラー322などである。
 第3のミラー322は、分岐光路Psを90°曲げて物体Sの位置に達するようにしている。第2のビームスプリッタ45で分かれた分岐光路Ps上を進む光は、第2のビームエキスパンダ321を経て第3のミラー322に反射し、物体Sに達するようになっている。この光が物体Sを透過して透過回折光となる。
 第2のビームスプリッタ45に設けられた駆動部451は、第2のビームスプリッタ45を主光路上に配置して光を分割する分割位置と、光を分割しないよう主光路から退避させた退避位置との間で第2のビームスプリッタ45を移動させる機構である。これにより、第2のビームスプリッタ45は選択用光学素子として機能する。駆動部451は、例えばリニアステージなどの直動式のステージで構成される。
In addition, the light guide system 32 for transmitted diffracted light is arranged on each optical path (hereinafter referred to as a branched optical path) Ps formed separately from the main optical path by the second beam splitter 45 being positioned on the main optical path. It is comprised by the optical element. Each optical element is the second beam expander 321, the third mirror 322, or the like.
The third mirror 322 bends the branched optical path Ps by 90 ° to reach the position of the object S. The light traveling on the branched optical path Ps divided by the second beam splitter 45 is reflected by the third mirror 322 via the second beam expander 321 and reaches the object S. This light passes through the object S and becomes transmitted diffracted light.
The drive unit 451 provided in the second beam splitter 45 includes a division position where the second beam splitter 45 is arranged on the main optical path to divide the light, and a retraction position where the light is retreated from the main optical path so as not to divide the light. Is a mechanism for moving the second beam splitter 45 between the two. Thereby, the second beam splitter 45 functions as a selection optical element. The drive unit 451 is configured with a linear motion stage such as a linear stage, for example.
 第1のビームスプリッタ41に設けられた切替部411は、第1のビームスプリッタ41が選択用光学素子として機能するよう第1のビームスプリッタ41の状態を変更するものである。具体的には、切替部411は、反射モードの際には第1のビームスプリッタ41を第1の実施形態の場合の同じ状態、すなわち、反射回折光用導光系31によって導かれた光が反射して物体Sに向かう姿勢(以下、第1の状態という)とする。そして、切替部411は、透過モードの際には、第1のビームスプリッタ41を90°回転させ、反射回折光用導光系31で導かれた光を反射させてそのまま撮像素子2に入射させる姿勢(以下、第2の状態という)とするものである。すなわち、切替部411は、透過モードの際には、光源1からの光が逆側から物体Sに照射されないようにするとともに、反射回折光用導光系31が参照光導光系33として機能するようにする二つの役割を果たしている。このような切替部411は、例えば回転ステージで構成される。回転軸は、光軸に対して垂直で且つ第1のビームスプリッタ41の反射面の中心を通り反射面に沿った直線上である。 The switching unit 411 provided in the first beam splitter 41 changes the state of the first beam splitter 41 so that the first beam splitter 41 functions as a selection optical element. Specifically, in the reflection mode, the switching unit 411 causes the first beam splitter 41 to be in the same state as in the first embodiment, that is, the light guided by the reflected diffracted light guide system 31. It is assumed that the posture is reflected toward the object S (hereinafter referred to as a first state). Then, in the transmission mode, the switching unit 411 rotates the first beam splitter 41 by 90 °, reflects the light guided by the reflected diffracted light guiding system 31, and directly enters the imaging element 2. It is a posture (hereinafter referred to as a second state). That is, the switching unit 411 prevents the light from the light source 1 from irradiating the object S from the opposite side in the transmission mode, and the reflected diffraction light guide system 31 functions as the reference light guide system 33. It plays two roles. Such a switching part 411 is comprised with a rotation stage, for example. The rotation axis is on a straight line that is perpendicular to the optical axis and passes through the center of the reflection surface of the first beam splitter 41 along the reflection surface.
 上記説明から解る通り、参照光導光系33は、参照光を撮像素子2まで導くものであるが、透過モードと反射モードで異なる経路で参照光を導くものとなっている。参照光導光系33は、透過モードでは、上述した反射回折光用導光系31の一部を使用して参照光を撮像素子2まで導くものとなっている。すなわち、透過モードにおける参照光導光系33は、第1のミラー46と、第2のビームスプリッタ45と、第1のビームエキスパンダ311と、第2のミラー312等によって構成されている。
 反射モードにおいては、参照光導光系33は、同様に共用する反射回折光用導光系31の一部と、追加導光系34とによって構成される。反射モードにおいては、第1のビームスプリッタ41は、分割した光の一方を物体Sに向けて進ませる。追加導光系34は、第1のビームスプリッタ41が分割した他方の光を撮像素子2まで導くものである。本実施形態では、なるべく同一の経路を通って導くようにするため、追加導光系34は、他方の光を第1のビームスプリッタ41に戻し、第1のビームスプリッタ41を経て撮像素子2の撮像面に参照光として入射させるようにしている。
As will be understood from the above description, the reference light guide system 33 guides the reference light to the imaging device 2, but guides the reference light through different paths in the transmission mode and the reflection mode. In the transmissive mode, the reference light guide system 33 guides the reference light to the image sensor 2 by using a part of the above-described reflected diffracted light guide system 31. That is, the reference light guide system 33 in the transmission mode includes the first mirror 46, the second beam splitter 45, the first beam expander 311, the second mirror 312, and the like.
In the reflection mode, the reference light guide system 33 is configured by a part of the shared reflection-diffracted light guide system 31 and the additional light guide system 34. In the reflection mode, the first beam splitter 41 advances one of the divided lights toward the object S. The additional light guide system 34 guides the other light split by the first beam splitter 41 to the image sensor 2. In the present embodiment, the additional light guide system 34 returns the other light to the first beam splitter 41 and guides the imaging element 2 through the first beam splitter 41 in order to guide it through the same path as much as possible. The light is incident on the imaging surface as reference light.
 より具体的に説明すると、反射モードにおいては、参照光導光系33は、第1のミラー46と、第1のビームエキスパンダ311と、第2のミラー312と、第1のビームスプリッタ41と、追加導光系34とによって構成される。追加導光系34は、第4のミラー341と、折り返しミラー342等によって構成されている。第4のミラー341は、第2のビームスプリッタ45からの光を90°折り曲げるものであり、折り返しミラー342は光を180°曲げて折り返すものである。
 第4のミラー341と折り返しミラー342との間には、ビームストッパ343と、ビームストッパ343を駆動するストッパ駆動部344とが設けられている。ビームストッパ343及びストッパ駆動部344は、透過モードの際には追加導光系34は不要であるので、光をストップさせて折り返さないようにするものである。
More specifically, in the reflection mode, the reference light guide system 33 includes the first mirror 46, the first beam expander 311, the second mirror 312, the first beam splitter 41, And an additional light guide system 34. The additional light guide system 34 includes a fourth mirror 341, a folding mirror 342, and the like. The fourth mirror 341 folds the light from the second beam splitter 45 by 90 °, and the folding mirror 342 folds the light by bending 180 °.
A beam stopper 343 and a stopper driving unit 344 that drives the beam stopper 343 are provided between the fourth mirror 341 and the folding mirror 342. The beam stopper 343 and the stopper driving unit 344 do not need the additional light guide system 34 in the transmission mode, and thus stop the light so that it does not return.
 本実施形態のデジタルホログラフィ装置は、精度の良いホログラムデータを得るため、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326を配置している。第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326は、反射回折光用導光系31、透過回折光用導光系32及び参照光導光系33にそれぞれ配置されている。
 具体的に説明すると、反射回折光用導光系31に第1のスペイシャルフィルタ316が配置され、透過回折光用導光系32に第2のスペイシャルフィルタ326が配置されている。反射回折光用導光系31は、参照光導光系33に兼用されているので、結局、透過回折光用の光、反射回折光用の光、参照光のすべてがスペイシャルフィルタを経由することになる。すなわち、撮像素子2に入射する光はすべてスペイシャルフィルタを経由したものである。このため、精度の良いホログラムデータを得る点で極めて好適となっている。
In the digital holography device of the present embodiment, a first spatial filter 316 and a second spatial filter 326 are arranged in order to obtain highly accurate hologram data. The first spatial filter 316 and the second spatial filter 326 are disposed in the reflected diffracted light guide system 31, the transmitted diffracted light guide system 32, and the reference light guide system 33, respectively.
More specifically, a first spatial filter 316 is disposed in the light guide system 31 for reflected diffracted light, and a second spatial filter 326 is disposed in the light guide system 32 for transmitted diffracted light. Since the reflected diffracted light guide system 31 is also used as the reference light guide system 33, all of the transmitted diffracted light, reflected diffracted light, and reference light all pass through the spatial filter. become. That is, all the light incident on the image pickup device 2 passes through the spatial filter. For this reason, it is extremely suitable in terms of obtaining accurate hologram data.
 本実施形態では、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326を物体S又は撮像素子2になるべく近い位置に配置している。具体的に説明すると、反射回折光用導光系31においては、第1のスペイシャルフィルタ316は、主光路において分岐光路Psの分岐点から像側に配置されており、第1のスペイシャルフィルタ316と第1のビームスプリッタ41との間には、1個のみの第2のミラー312が配置された状態となっている。透過回折光用導光系32においては、第2のスペイシャルフィルタ326は分岐光路Ps上に配置されており、第2のスペイシャルフィルタ326から物体Sまでの間には1個のみの第3のミラー322が配置された状態となっている。 In the present embodiment, the first spatial filter 316 and the second spatial filter 326 are arranged as close as possible to the object S or the image sensor 2. Specifically, in the light guide system 31 for reflected diffracted light, the first spatial filter 316 is arranged on the image side from the branch point of the branch optical path Ps in the main optical path, and the first spatial filter Only one second mirror 312 is arranged between 316 and the first beam splitter 41. In the light guide system 32 for transmitted diffracted light, the second spatial filter 326 is disposed on the branch optical path Ps, and only one third filter is provided between the second spatial filter 326 and the object S. The mirror 322 is arranged.
 このように、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326から物体S又は撮像素子2までの間に配置されるミラーの数を最小限にすることで、ミラーのキズやミラーに付着したゴミの影響でホログラムデータの精度が低下するのを抑制することができる。
 なお、反射回折光用導光系31において、スペイシャルフィルタを第2のミラー312と第1のビームスプリッタ41との間に配置することができる。このようにすると、ホログラムデータの精度をさらに向上させることができる。透過回折光用導光系32においては、スペイシャルフィルタを第3のミラー322と物体Sとの間に配置することができ、同様にホログラムデータのさらなる精度向上を可能にする。
In this way, by minimizing the number of mirrors arranged between the first spatial filter 316 and the second spatial filter 326 and the object S or the image pickup device 2, it is possible to prevent damage to the mirror and the mirror. It can suppress that the precision of hologram data falls by the influence of the dust which adhered.
In the light guide system 31 for reflected diffracted light, a spatial filter can be disposed between the second mirror 312 and the first beam splitter 41. In this way, the accuracy of hologram data can be further improved. In the light guide system 32 for transmitted diffracted light, a spatial filter can be disposed between the third mirror 322 and the object S, and the accuracy of hologram data can be further improved.
 また、本実施形態では、光学系の構成を簡素化するため、ビームエキスパンダとスペイシャルフィルタとで光学素子を一部兼用した構成としている。すなわち、第1のスペイシャルフィルタ316は第1のビームエキスパンダ311において実現されており、第2のスペイシャルフィルタ326は、第2のビームエキスパンダ321において実現されている。具体的な構造について、図4を使用して説明する。図4は、一例として、第2のビームエキスパンダ321と第2のスペイシャルフィルタ326について示した概略図である。
 図4に示すように、第2のビームエキスパンダ321は、集光レンズ323と、コリメータレンズ324とによって構成されている。集光レンズ323の像側の焦点f1の位置にコリメータレンズ324の物側の焦点f2を合わせておき、コリメータレンズ324として口径の大きなものを用いることで、図4に示すように、ビーム径が大きくされた平行光が出射する。
In the present embodiment, in order to simplify the configuration of the optical system, the beam expander and the spatial filter are configured to partially use the optical element. That is, the first spatial filter 316 is realized by the first beam expander 311, and the second spatial filter 326 is realized by the second beam expander 321. A specific structure will be described with reference to FIG. FIG. 4 is a schematic diagram showing the second beam expander 321 and the second spatial filter 326 as an example.
As shown in FIG. 4, the second beam expander 321 includes a condenser lens 323 and a collimator lens 324. By aligning the object side focal point f2 of the collimator lens 324 with the position of the image side focal point f1 of the condenser lens 323 and using a collimator lens 324 having a large aperture, as shown in FIG. The increased parallel light is emitted.
 そして、本実施形態では、集光レンズ323による集光位置にピンホール板325が配置されている。ピンホール板325のピンホールは集光位置に一致している。図4から解るように、集光レンズ323とピンホール板325によって第2のスペイシャルフィルタ326が構成されている。すなわち、集光レンズ323が第2のビームエキスパンダ321と第2のスペイシャルフィルタ326に兼用されている。このような構造であるため、光学系の構成が簡素化され、部品点数の削減によるコストダウンが図られている。第1のビームエキスパンダ311内に実現された第1のスペイシャルフィルタ316についても同様の構造である。 And in this embodiment, the pinhole board 325 is arrange | positioned in the condensing position by the condensing lens 323. FIG. The pinhole of the pinhole plate 325 coincides with the light collecting position. As can be seen from FIG. 4, the second spatial filter 326 is configured by the condenser lens 323 and the pinhole plate 325. That is, the condensing lens 323 is also used as the second beam expander 321 and the second spatial filter 326. With such a structure, the configuration of the optical system is simplified, and the cost is reduced by reducing the number of parts. The first spatial filter 316 realized in the first beam expander 311 has the same structure.
 次に、撮像光学系5について説明する。
 本実施形態においても、反射回折光用導光系31は、透過回折光用導光系32が光を物体Sに照射する側とは反対側から光を照射するものであり、撮像光学系5は、反射回折光用導光系31が光を照射する側において延びる撮像光路Pi上に設けられている。すなわち、反射回折光と透過回折光とは、共通の撮像光路Piを経て撮像素子2の撮像面に至るよう構成されており、撮像光学系5は、この共通の光路上に配置されている。
 撮像光学系5は、物体Sに近い側に配置された対物レンズ51と、撮像素子2に近い側に配置された結像レンズ52によって構成されている。本実施形態の装置の別の大きな特徴点は、この撮像光学系5がテレセントリックな光学系となっている点である。以下、この点について図5を使用して説明する。
Next, the imaging optical system 5 will be described.
Also in the present embodiment, the reflected diffracted light guide system 31 irradiates light from the side opposite to the side where the transmitted diffracted light guide system 32 irradiates the object S with light, and the imaging optical system 5 Is provided on the imaging optical path Pi that extends on the light irradiation side of the light guide system 31 for reflected diffracted light. That is, the reflected diffracted light and the transmitted diffracted light are configured to reach the image pickup surface of the image pickup device 2 via a common image pickup optical path Pi, and the image pickup optical system 5 is disposed on this common optical path.
The imaging optical system 5 includes an objective lens 51 arranged on the side close to the object S and an imaging lens 52 arranged on the side close to the imaging element 2. Another major feature of the apparatus of this embodiment is that the imaging optical system 5 is a telecentric optical system. Hereinafter, this point will be described with reference to FIG.
 図5は、図3の装置における撮像光学系5のテレセントリック性について模式的に示した概略図である。テレセントリックな光学系とは、一般的には、主光線が主軸と平行であるとみなせる光学系をいう。図5(1)には像側でテレセントリックな光学系が示されている。特に、物側及び像側の双方において主光線が光軸に平行であるとみなせる光学系は、両側テレセントリックと呼ばれる。 FIG. 5 is a schematic diagram schematically showing the telecentricity of the imaging optical system 5 in the apparatus of FIG. A telecentric optical system generally refers to an optical system in which the principal ray can be regarded as being parallel to the principal axis. FIG. 5A shows an optical system telecentric on the image side. In particular, an optical system in which the principal ray can be considered parallel to the optical axis on both the object side and the image side is called double-sided telecentric.
 本実施形態における撮像光学系5のテレセントリック性も、図5(2)に示すように、光学系の前側(物体S側)と後側(撮像素子2側)との双方において主光線が光軸に平行であるとみなせることである。本実施形態では、光源1はレーザであって平面波(平行光)が入射することが前提になっている。このため、両側テレセントリックである結合光学系は、対物レンズ51の後側焦点の位置と結像レンズ52の前側焦点の位置を一致させること(コンフォーカルにすること)によって達成できる。
 本実施形態における撮像光学系5のテレセントリック性とは、もう一つ意味がある。それは、図5(3)に示すように、対物レンズ51と結像レンズ52とが無限遠補正光学系となっており、物体Sの一点から出た回折光(物体光)は、対物レンズ51で平行光となって結像レンズ52に入射するようになっている点である。
 テレセントリック性を持つ無限遠補正系では、物体Sの位置を変えてピント調節をしても像の大きさが変化しないという大きなメリットがある。これは、物体Sの表面から少し深い位置からの反射回折光ないし透過回折光でホログラムデータを得たい場合にメリットがある。例えば、本実施形態の装置をデジタルホログラフィック顕微鏡として構成し、ある程度透明な生体試料を拡大しながら再生像を得るような場合、大きなメリットがある。
The telecentricity of the imaging optical system 5 in the present embodiment is such that, as shown in FIG. 5 (2), the principal ray is the optical axis on both the front side (object S side) and the rear side (imaging element 2 side) of the optical system. It can be regarded as parallel to. In the present embodiment, the light source 1 is a laser, and it is assumed that plane waves (parallel light) are incident. For this reason, a coupling optical system that is telecentric on both sides can be achieved by making the position of the rear focal point of the objective lens 51 coincide with the position of the front focal point of the imaging lens 52 (confocal).
The telecentricity of the imaging optical system 5 in this embodiment has another meaning. As shown in FIG. 5 (3), the objective lens 51 and the imaging lens 52 are an infinite correction optical system, and the diffracted light (object light) emitted from one point of the object S is the objective lens 51. Thus, the light beam becomes parallel light and enters the imaging lens 52.
The infinity correction system having telecentricity has a great advantage that the size of the image does not change even when the position of the object S is changed and the focus is adjusted. This is advantageous when it is desired to obtain hologram data with reflected or transmitted diffracted light from a position slightly deeper than the surface of the object S. For example, when the apparatus of the present embodiment is configured as a digital holographic microscope and a reproduced image is obtained while enlarging a biological sample that is transparent to some extent, there is a great advantage.
 このような撮像光学系5としては、物側テレセントリックレンズを対物レンズ51として採用し、像側テレセントリックレンズを結像レンズ52として採用するともに、対物レンズ51の像側の焦点位置と結像レンズ52の物側焦点位置を一致させた状態(コンフォーカルな状態)で配置することで達成できる。物側テレセントリックレンズや像側テレセントリックレンズについては、市販のものを使用できるので、詳細な説明は割愛する。なお、像側テレセントリックレンズである結像レンズ52は、無限遠補正系を構成するものであるので、光のロスをなるべく少なくするため、有効口径の大きいものを使用することが好ましい。 As such an imaging optical system 5, an object side telecentric lens is adopted as the objective lens 51, an image side telecentric lens is adopted as the imaging lens 52, and the focal position on the image side of the objective lens 51 and the imaging lens 52 are adopted. This can be achieved by arranging in a state where the object side focal position of the lens is matched (confocal state). As the object-side telecentric lens and the image-side telecentric lens, commercially available lenses can be used, and detailed description thereof is omitted. The imaging lens 52, which is an image-side telecentric lens, constitutes an infinity correction system. Therefore, it is preferable to use a lens having a large effective aperture in order to reduce light loss as much as possible.
 撮像素子2は、例えばCCDカメラである。CCDカメラは、例えば1024×1024画素の撮像面を備えている。撮像素子2は、撮像面の中心が光軸上に位置し、撮像面が光軸に対して垂直となるよう配置されている。
 なお、光源1から光が出た直後の光路上には、偏光フィルタ11と1/4波長板12が設けられている。偏光フィルタ11と1/4波長板12は、光源1に戻り光が入射するのを防止するものである。
 偏光フィルタ11は、特定の方向の直線偏光の光のみを透過させるものである。1/4波長板12は、偏光フィルタ11の透過軸(直線偏光の方向)から45°だけ結晶軸をずらして配置されており、直線偏光を円偏光に変換する機能を持っている。円偏光となった光は、物体Sに照射されたり参照光として撮像素子2に入射したりするが、第1のビームスプリッタ41や第2のビームスプリッタ45を使用している関係で、この光が戻ってくることがある。戻ってきた円偏光の光は、再度1/4λ波長板12を透過することで再び直線偏光の光に変換される。この直線偏光の光は、さらに1/4波長の位相差が生ずるので、最初の直線偏光の光とは90°偏光方向がずれることになる。このため、この光は偏光フィルタ11を透過することができず、偏光フィルタ11のところで遮蔽される。戻り光が光源1に入射することがないので、戻り光による光源1の破損等が防止される。
The image sensor 2 is a CCD camera, for example. The CCD camera has an imaging surface of 1024 × 1024 pixels, for example. The imaging element 2 is arranged such that the center of the imaging surface is located on the optical axis and the imaging surface is perpendicular to the optical axis.
A polarizing filter 11 and a quarter wavelength plate 12 are provided on the optical path immediately after the light is emitted from the light source 1. The polarizing filter 11 and the quarter wavelength plate 12 prevent the light from returning to the light source 1 and entering.
The polarizing filter 11 transmits only linearly polarized light in a specific direction. The quarter-wave plate 12 is arranged by shifting the crystal axis by 45 ° from the transmission axis (direction of linearly polarized light) of the polarizing filter 11 and has a function of converting linearly polarized light into circularly polarized light. The circularly polarized light is irradiated onto the object S or incident on the image sensor 2 as reference light. May come back. The returned circularly polarized light is again converted to linearly polarized light by passing through the ¼λ wavelength plate 12 again. Since this linearly polarized light has a phase difference of ¼ wavelength, the polarization direction is shifted by 90 ° from the first linearly polarized light. For this reason, this light cannot pass through the polarizing filter 11 and is blocked at the polarizing filter 11. Since the return light does not enter the light source 1, damage to the light source 1 due to the return light is prevented.
 また、物体Sの保持について説明すると、物体Sは、その性状や大きさ等に応じて適宜の部材で保持される。例えば、前述したようにシャーレのような透明な容器や透明なプレート状の部材の上に置いて物体Sを保持する他、大きい物体Sの場合には、挟み込んで保持するクランプ状の部材が使用されることもある。物体Sが基板のような板状のものであれば、枠状の部材で保持することもある。いずれにしても、このような保持部材により物体Sは導光系や撮像光学系5に対して所定位置に保持される。 Further, the holding of the object S will be described. The object S is held by an appropriate member in accordance with its properties and size. For example, as described above, the object S is held on a transparent container such as a petri dish or a transparent plate-like member, and in the case of a large object S, a clamp-like member that is sandwiched and held is used. Sometimes it is done. If the object S is a plate-like object such as a substrate, it may be held by a frame-shaped member. In any case, the object S is held at a predetermined position with respect to the light guide system and the imaging optical system 5 by such a holding member.
 次に、装置の制御系について図6を使用して説明する。図6は、第2の実施形態のデジタルホログラフィ装置の制御系を示した概略図である。
 選択用光学素子などを制御する制御系6は、制御ボード61と、反射モードと透過モードとを切り替えるために制御ボード61に信号を送る切替プログラム62がインストールされたコンピュータ63等で構成されている。
 本実施形態では、コンピュータ63に再生像の計算処理の機能も持たせるため、コンピュータ63として、デスクトップパソコンのような汎用OS上で動作する一般的なコンピュータを用いている。そして、各部の制御を可能にするため、そのインターフェースとして制御ボード61を付設している。切替プログラム62は、反射モードと透過モードとを切り替えるための制御信号をコンピュータ63から制御ボード61に送出するプログラムである。
Next, the control system of the apparatus will be described with reference to FIG. FIG. 6 is a schematic diagram illustrating a control system of the digital holography device according to the second embodiment.
The control system 6 that controls the optical elements for selection and the like includes a control board 61 and a computer 63 in which a switching program 62 that sends a signal to the control board 61 to switch between the reflection mode and the transmission mode is installed. .
In the present embodiment, since the computer 63 is also provided with a calculation function of a reproduced image, a general computer that operates on a general-purpose OS such as a desktop personal computer is used as the computer 63. And in order to enable control of each part, the control board 61 is attached as the interface. The switching program 62 is a program for sending a control signal for switching between the reflection mode and the transmission mode from the computer 63 to the control board 61.
 制御ボード61には、送出された制御信号に基づいて、第1のビームスプリッタ41の切替部411、第2のビームスプリッタ45の駆動部451、およびビームストッパ343のストッパ駆動部344を駆動するための各動作信号を送出するようになっている。制御ボード61は、RAMのような記憶部を有しており、この記憶部には制御信号にしたがって各動作信号を出力するシーケンス制御プログラムが書き込まれている。
 切替プログラム62において反射モードが選択され、反射モードとする旨の制御信号が送出されると、シーケンス制御プログラムは、第1のビームスプリッタ41の切替部411、第2のビームスプリッタ45の駆動部451、およびビームストッパ343のストッパ駆動部344に反射モード用の動作信号を送るようプログラミングされている。また、切替プログラム62において透過モードが選択され、透過モードとする旨の制御信号が送出されると、シーケンス制御ブログラムは、透過モード用の動作信号を第1のビームスプリッタ41の切替部411、第2のビームスプリッタ45の駆動部451、およびビームストッパ343のストッパ駆動部344に送出するようプログラミングされている。
The control board 61 drives the switching unit 411 of the first beam splitter 41, the driving unit 451 of the second beam splitter 45, and the stopper driving unit 344 of the beam stopper 343 based on the transmitted control signal. Each operation signal is sent out. The control board 61 has a storage unit such as a RAM, and a sequence control program for outputting each operation signal in accordance with the control signal is written in the storage unit.
When the reflection mode is selected in the switching program 62 and a control signal for switching to the reflection mode is transmitted, the sequence control program reads the switching unit 411 of the first beam splitter 41 and the driving unit 451 of the second beam splitter 45. And an operation signal for the reflection mode is programmed to be sent to the stopper driving unit 344 of the beam stopper 343. Further, when the transmission mode is selected in the switching program 62 and a control signal indicating that the transmission mode is set is transmitted, the sequence control program sends the operation signal for the transmission mode to the switching unit 411 of the first beam splitter 41, It is programmed to send to the drive unit 451 of the second beam splitter 45 and the stopper drive unit 344 of the beam stopper 343.
 なお、第1のビームスプリッタ41、第2のビームスプリッタ45、ビームストッパ343について、それぞれの位置や姿勢を検出するセンサを設け、各センサからの信号を制御ボード61に入力して制御に用いると好適である。各センサからの信号は、各部が正常に駆動されているかを監視したり、前回の動作と同じモードを行う際には位置や姿勢を確認するだけで動作信号を送らないようにしたりするのに使用され得る。
 また、光源1については、不図示の電源に設けられたスイッチでオンオフするようになっている。但し、光源1のオンオフについてもコンピュータ63から制御ボード61を介して信号を送ることで行うことも勿論可能である。
When the first beam splitter 41, the second beam splitter 45, and the beam stopper 343 are provided with sensors for detecting their positions and postures, and signals from the sensors are input to the control board 61 and used for control. Is preferred. The signal from each sensor is used to monitor whether each unit is operating normally, or to check the position and orientation when performing the same mode as the previous operation, so that no operation signal is sent. Can be used.
The light source 1 is turned on and off by a switch provided in a power source (not shown). However, the light source 1 can be turned on / off by sending a signal from the computer 63 via the control board 61.
 上記コンピュータ63には、撮像素子2の撮像面で得られたホログラムデータに基づいて再生像を得るための所定の計算処理を実行するプログラム(以下、再生プログラム)64もインストールされている。
 ホログラムデータから再生像を得る計算処理については、種々の計算式や技術が周知となっており、任意のものを選択して適用することができる。一例として、フーリエ変換を利用したものを以下に示す。
The computer 63 is also installed with a program (hereinafter referred to as a reproduction program) 64 that executes a predetermined calculation process for obtaining a reproduction image based on hologram data obtained on the imaging surface of the image sensor 2.
Various calculation formulas and techniques are known for calculation processing for obtaining a reproduced image from hologram data, and any one can be selected and applied. As an example, one using the Fourier transform is shown below.
 再生面(再生像ができる平面)はホログラム面(ここでは撮像素子2の撮像面)と平行であってその距離はRであるとし、rはホログラム面上の一点から再生面上の一点までの距離であるとする。x,yはホログラム面上の座標、X,Yを再生面上の座標である。
 再生面での複素振幅分布は、キルヒホッフの回折積分の式に従い、式1のように表せる。g(x、y)はホログラムデータ、G(X,Y)は生成像の複素振幅分布である。
Figure JPOXMLDOC01-appb-M000001

 式1において、λは波長、kは波数である。式1に対し、式2に示すフレネル近似を適用して代入すると、式3が得られる。
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

 式3において、積分をフーリエ変換であるとみなして変形すると、式4が得られる。
Figure JPOXMLDOC01-appb-M000004

 式4においてFのカッコ内はフーリエ変換であることを示す。xやyは、撮像面の各ピクセルからの出力であり、離散フーリエ変換をすることで再生像G(X,Y)が得られる。
The reproduction plane (plane on which a reproduction image can be generated) is parallel to the hologram plane (here, the imaging plane of the image sensor 2), and the distance is R, and r is a point on the reproduction plane to a point on the reproduction plane. Suppose that it is a distance. x and y are coordinates on the hologram surface, and X and Y are coordinates on the reproduction surface.
The complex amplitude distribution on the reproduction surface can be expressed as Equation 1 according to Kirchhoff's diffraction integral equation. g (x, y) is hologram data, and G (X, Y) is a complex amplitude distribution of the generated image.
Figure JPOXMLDOC01-appb-M000001

In Equation 1, λ is the wavelength and k is the wave number. If the Fresnel approximation shown in Formula 2 is applied and substituted into Formula 1, Formula 3 is obtained.
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

In Equation 3, when the integral is regarded as Fourier transform and transformed, Equation 4 is obtained.
Figure JPOXMLDOC01-appb-M000004

In Equation 4, the parentheses of F indicate Fourier transform. x and y are outputs from each pixel on the imaging surface, and a reproduced image G (X, Y) is obtained by performing a discrete Fourier transform.
 また、コンピュータ63には、全体の動作を制御するメインプログラム(不図示)がインストールされている。メインプログラムは、装置がオンされると自動で起動するものである。メインプログラムは、反射モードと透過モードとのいずれかを選ぶ画面をディスプレイに表示したり、ホログラムデータの取得及び再生像の形成というメインの動作の実行を指令するボタンを表示したりするものである。 The computer 63 is installed with a main program (not shown) for controlling the overall operation. The main program is automatically started when the apparatus is turned on. The main program displays a screen for selecting either the reflection mode or the transmission mode on the display, or displays buttons for instructing execution of main operations such as acquisition of hologram data and formation of a reproduced image. .
 次に、上記第2の実施形態のデジタルホログラフィ装置の動作について、図3~図9に基づいて以下に説明する。図7~図9は、第2の実施形態のデジタルホログラフィ装置の動作について示した概略図である。このうち、図7は反射モードと透過モードとにおける各光の進行状況について対比して示した図、図8は反射モードでの動作フローの概略を示した図、図9は透過モードでの動作フローの概略を示した図である。
 まず、ホログラムデータを取得する対象である物体Sを保持部材によって所定位置に配置して保持する。この状態で、装置の電源をオンし、メインプログラムを起動させる。コンピュータ63のディスプレイ上には、反射モードと透過モードのいずれを選択するかの画面が表示されるので、入力部によっていずれかを選択する。
Next, the operation of the digital holography device according to the second embodiment will be described with reference to FIGS. 7 to 9 are schematic views showing the operation of the digital holography device of the second embodiment. Among these, FIG. 7 is a diagram showing a comparison of the progress of each light in the reflection mode and the transmission mode, FIG. 8 is a diagram showing an outline of the operation flow in the reflection mode, and FIG. 9 is an operation in the transmission mode. It is the figure which showed the outline of the flow.
First, the object S from which hologram data is acquired is placed and held at a predetermined position by a holding member. In this state, the apparatus is turned on to start the main program. On the display of the computer 63, a screen for selecting either the reflection mode or the transmission mode is displayed, and either is selected by the input unit.
 例えば、反射モードを選択すると、切替プログラム62が実行され、反射モードとする制御信号が制御ボード61に送出される。この制御信号を受けた制御ボード61は、反射モード用の各動作信号を第1のビームスプリッタ41の切替部411と、第2のビームスプリッタ45の駆動部451と、ビームストッパ343のストッパ駆動部344に送出する。
 具体的に説明すると、制御ボード61は、まず、図8のS1に示すように、切替部411に動作信号を送り、第1のビームスプリッタ41が第1の状態となるようにする。第1の状態とは、図7(A)に示すように、反射回折光用導光系31を介して第1のビームスプリッタ41に入射した光が、その反射面で反射して物体Sに向けて進む姿勢を取る状態である。
For example, when the reflection mode is selected, the switching program 62 is executed, and a control signal for setting the reflection mode is sent to the control board 61. Upon receiving this control signal, the control board 61 sends the operation signals for the reflection mode to the switching unit 411 of the first beam splitter 41, the driving unit 451 of the second beam splitter 45, and the stopper driving unit of the beam stopper 343. 344.
Specifically, as shown in S1 of FIG. 8, the control board 61 first sends an operation signal to the switching unit 411 so that the first beam splitter 41 is in the first state. In the first state, as shown in FIG. 7A, light incident on the first beam splitter 41 via the light guide system 31 for reflected diffracted light is reflected by the reflecting surface and is reflected on the object S. It is in a state of taking an attitude of moving forward.
 次に、制御ボード61は、図8のS2および図7(A)に示すように、駆動部451に動作信号を送り、第2のビームスプリッタ45を主光路上の分岐位置から退避させる。すなわち、反射モードでは、透過回折光用導光系32は使用しない。
 その次に、図8のS3および図7(A)に示すように、制御ボード61は、ストッパ駆動部344に動作信号を送り、ビームストッパ343を光路から退避させる。
 これで制御ボード61上のシーケンス制御プログラムの動作は終了である。
Next, as shown in S2 of FIG. 8 and FIG. 7A, the control board 61 sends an operation signal to the drive unit 451 to retract the second beam splitter 45 from the branch position on the main optical path. That is, in the reflection mode, the light guide system 32 for transmitted diffracted light is not used.
Next, as shown in S3 of FIG. 8 and FIG. 7A, the control board 61 sends an operation signal to the stopper driving unit 344 to retract the beam stopper 343 from the optical path.
This completes the operation of the sequence control program on the control board 61.
 次に、図8のS4に示すように、光源1の電源をオンにして光を放出させる。光源1から放出された光L1は、反射回折光用導光系31を介して第1のビームスプリッタ41に入射する。光L1は、第1のビームスプリッタ41の反射面により物体Sに向けて反射する一方の光L2と、第1のビームスプリッタ41を透過して追加導光系34に達する他方の光L3に分割される。
 一方の光L2は、撮像光学系5を介して物体Sに照射され、物体Sからは反射回折光L4が出射する。反射回折光L4は、再び撮像光学系5を経て第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2に入射する。
 他方の光L3は、追加導光系34の折り返しミラー342に反射して戻り、第1のビームスプリッタ41に再入射する。そして、この光L3は、第1のビームスプリッタ41の反射面で反射し、参照光として撮像素子2の撮像面に入射する。
 そして、図8のS5,S6に示すように、撮像素子2の撮像面では反射回折光L4と参照光L3とが干渉し、この干渉縞が撮像面で撮像されてホログラムデータがコンピュータ63に出力される。ホログラムデータが出力されると、コンピュータ63上で再生プログラム64が実行され、上述したような計算処理を行うことで物体Sの再生像が形成される。
Next, as shown in S4 of FIG. 8, the light source 1 is turned on to emit light. The light L1 emitted from the light source 1 enters the first beam splitter 41 through the light guide system 31 for reflected diffracted light. The light L1 is divided into one light L2 reflected toward the object S by the reflecting surface of the first beam splitter 41 and the other light L3 that passes through the first beam splitter 41 and reaches the additional light guide system 34. Is done.
One light L2 is applied to the object S via the imaging optical system 5, and reflected diffracted light L4 is emitted from the object S. The reflected diffracted light L4 enters the first beam splitter 41 again through the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging device 2.
The other light L3 is reflected by the folding mirror 342 of the additional light guide system 34 and returns to the first beam splitter 41. The light L3 is reflected by the reflection surface of the first beam splitter 41 and enters the imaging surface of the imaging device 2 as reference light.
Then, as shown in S5 and S6 of FIG. 8, the reflected diffracted light L4 and the reference light L3 interfere with each other on the image pickup surface of the image pickup device 2, and the interference fringes are picked up on the image pickup surface and the hologram data is output to the computer 63. Is done. When the hologram data is output, a reproduction program 64 is executed on the computer 63, and a reproduction image of the object S is formed by performing the calculation process as described above.
 また、コンピュータ63上で透過モードが選択されると、切替プログラム62は透過モードとする制御信号を制御ボード61に送出する。この制御信号を受けた制御ボード61は、シーケンス制御プログラムを実行し、反射モード用の各動作信号を第1のビームスプリッタ41の切替部411と、第2のビームスプリッタ45の駆動部451と、ビームストッパ343のストッパ駆動部344に送出する。
 具体的に説明すると、図9のS1に示すように、制御ボード61は、上記切替部411によって、第1のビームスプリッタ41を駆動し、第1のビームスプリッタ41を第2の状態とする。第2の状態は、図7(B)に示すように、反射回折光用導光系31を介して第1のビームスプリッタ41に入射した光が反射面で反射して撮像素子2に向けて進む姿勢を取る状態である。第2の状態は、第1のビームスプリッタ41の反射面の向きが第1の状態とは90°異なる。
 次に、図9のS2および図7(B)に示すように、制御ボード61は、上記駆動部451に動作信号を送り、第2のビームスプリッタ45を主光路上に配置する。すなわち透過モードでは、透過回折光用導光系32および反射回折光用導光系31を使用する。
 その次に、図9のS3および図7(B)に示すように、制御ボード61は、上記ストッパ駆動部344に動作信号を送り、ビームストッパ343を追加導光系34の光路上に配置し、光路を遮断する。
 これで、制御ボード61上のシーケンス制御プログラムの動作は終了である。
When the transmission mode is selected on the computer 63, the switching program 62 sends a control signal for setting the transmission mode to the control board 61. Upon receiving this control signal, the control board 61 executes a sequence control program, and sends each operation signal for the reflection mode to the switching unit 411 of the first beam splitter 41, the drive unit 451 of the second beam splitter 45, The beam is sent to the stopper driving unit 344 of the beam stopper 343.
Specifically, as shown in S1 of FIG. 9, the control board 61 drives the first beam splitter 41 by the switching unit 411 to place the first beam splitter 41 in the second state. In the second state, as shown in FIG. 7B, the light incident on the first beam splitter 41 via the light guide system 31 for reflected diffracted light is reflected by the reflecting surface and directed toward the image sensor 2. This is a state of taking a forward posture. In the second state, the direction of the reflecting surface of the first beam splitter 41 is 90 ° different from that in the first state.
Next, as shown in S2 of FIG. 9 and FIG. 7B, the control board 61 sends an operation signal to the drive unit 451 and arranges the second beam splitter 45 on the main optical path. That is, in the transmission mode, the light guide system 32 for transmitted diffracted light and the light guide system 31 for reflected diffracted light are used.
Next, as shown in S3 of FIG. 9 and FIG. 7B, the control board 61 sends an operation signal to the stopper driving unit 344, and places the beam stopper 343 on the optical path of the additional light guide system 34. , Block the light path.
This completes the operation of the sequence control program on the control board 61.
 次に、図9のS4に示すように、光源1を動作させ光を放出させる。光源1から放出された光は、第2のビームスプリッタ45に入射する。この光は、第2のビームスプリッタ45を透過する一方の光L5と、第2のビームスプリッタ45の反射面で反射して物体Sに向う他方の光L6とに分岐される。一方の光L5は、参照光導光系33に兼用された反射回折光用導光系31により導かれ、第1のビームスプリッタ41に入射する。第1のビームスプリッタ41に入射した光L5は、第1のビームスプリッタ41の反射面で反射して撮像素子2に向かい、参照光として撮像素子2の撮像面に入射する。なお、第1のビームスプリッタ41を透過した光は、ビームストッパ343により遮蔽され、第1のビームスプリッタ41には戻らない。
 第2のビームスプリッタ45で分割された他方の光L6は、透過回折光用導光系32を介して物体Sに照射される。光は物体Sを透過し、透過回折光L7となって該物体Sから放射される。透過回折光L7は、撮像光学系5を介して第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2の撮像面に入射する。
 図9のS5,S6に示すように、撮像素子2の撮像面では、参照光L5と透過回折光L7との干渉縞が形成され、この干渉縞が撮像されてホログラムデータが得られる。ホログラムデータは、同様にコンピュータ63に送られ、再生プログラム64が実行されて物体Sの再生像が形成される。
Next, as shown in S4 of FIG. 9, the light source 1 is operated to emit light. The light emitted from the light source 1 enters the second beam splitter 45. This light is branched into one light L5 that is transmitted through the second beam splitter 45 and the other light L6 that is reflected by the reflecting surface of the second beam splitter 45 and is directed toward the object S. One light L <b> 5 is guided by the reflected diffracted light guiding system 31 that is also used as the reference light guiding system 33, and enters the first beam splitter 41. The light L5 incident on the first beam splitter 41 is reflected by the reflection surface of the first beam splitter 41, travels toward the image sensor 2, and enters the image surface of the image sensor 2 as reference light. The light transmitted through the first beam splitter 41 is shielded by the beam stopper 343 and does not return to the first beam splitter 41.
The other light L6 divided by the second beam splitter 45 is irradiated onto the object S through the light guide system 32 for transmitted diffracted light. The light passes through the object S and is emitted from the object S as transmitted diffracted light L7. The transmitted diffracted light L7 enters the first beam splitter 41 via the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging surface of the imaging device 2.
As shown in S5 and S6 in FIG. 9, on the imaging surface of the imaging device 2, an interference fringe between the reference light L5 and the transmitted diffracted light L7 is formed, and this interference fringe is imaged to obtain hologram data. Similarly, the hologram data is sent to the computer 63, and the reproduction program 64 is executed to form a reproduction image of the object S.
 上記したように、反射モード及び透過モードを順次行って像が再生されるが、再生像の情報には、振幅情報と位相情報とが含まれる。一般的に言えば、振幅情報は物体の表面の2次元的な形状やコントラストを観察するのに適しており、位相情報は物体の奥行きにおける形状を観察するのに適している。したがって、再生像を得る際、振幅情報のみを取り出して2次元的な形状等を主に観察したり、位相情報のみを取り出して奥行き状態の観察をしたりすることがある。 As described above, the image is reproduced by sequentially performing the reflection mode and the transmission mode, but the information of the reproduction image includes amplitude information and phase information. Generally speaking, the amplitude information is suitable for observing the two-dimensional shape and contrast of the surface of the object, and the phase information is suitable for observing the shape at the depth of the object. Therefore, when obtaining a reproduced image, there are cases where only the amplitude information is extracted and the two-dimensional shape is mainly observed, or only the phase information is extracted and the depth state is observed.
 上記本実施形態の装置の動作において、撮像光学系5がテレセントリックなものであることは、精度の高いホログラムデータを得る観点において顕著な効果を有している。以下、この点について、図10を使用して説明する。
 図10は、第2の実施形態の装置がテレセントリックな撮像光学系5を備えていることの効果を示した概略図である。図10(A)は比較のため示したもので、テレセントリックではない撮像光学系を使用した場合の波面図である。図10(B)は、本実施形態のもので、テレセントリックな撮像光学系5を使用した場合の波面図である。
In the operation of the apparatus of the present embodiment, the fact that the imaging optical system 5 is telecentric has a remarkable effect in terms of obtaining highly accurate hologram data. Hereinafter, this point will be described with reference to FIG.
FIG. 10 is a schematic diagram showing the effect of the device of the second embodiment including the telecentric imaging optical system 5. FIG. 10A is shown for comparison, and is a wavefront diagram when an imaging optical system that is not telecentric is used. FIG. 10B is a wavefront diagram when the telecentric imaging optical system 5 is used in the present embodiment.
 本実施形態の装置におけるテレセントリック性は、無限補正光学系を構成する対物レンズ51と結像レンズ52とをコンフォーカルに配置することで達成されている。図10(A1)に示すように、一般的な有限補正光学系を使用すると、透過モードでは、物体Sに対して平面波Lpを照射することができる。ところが、有限補正光学系では、透過モードから反射モードに切替えた場合に、図10(A2)に示すように、平面波Lpを物体Sに照射しようとしても、撮像光学系5を経ることになるため、対物レンズにより集光された光(球面波)Lsが物体Sに照射されることになってしまう。この場合、撮像素子2に撮像される物体光が歪められることに起因して、精度良く再生像を形成することができない。 The telecentricity in the apparatus of this embodiment is achieved by arranging the objective lens 51 and the imaging lens 52 constituting the infinite correction optical system confocally. As shown in FIG. 10A1, when a general finite correction optical system is used, the plane wave Lp can be applied to the object S in the transmission mode. However, in the finite correction optical system, when the transmission mode is switched to the reflection mode, the object S is irradiated with the plane wave Lp as shown in FIG. The object S is irradiated with light (spherical wave) Ls collected by the objective lens. In this case, a reproduced image cannot be formed with high accuracy because the object light imaged by the image sensor 2 is distorted.
 また、図10(A2)に示すように球面波Lsが物体Sに照射されると、透過モードの際と比較して視野が変化してしまう。また、デジタルホログラフィは、光軸上の任意位置での再生像を計算できるため、原理的に作動距離を可変とできる特徴を持つが、比較例の光学系では、物体光が歪められているため、作動距離の変化に対して視野も変化してしまう。この視野の変化を抑えたい場合、別途補正計算が必要となる。
 これに対して、図10(B)に示す本実施形態のように、無限補正光学系を使用し、結像レンズ52と対物レンズ51とをコンフォーカルな光学配置とすれば、テレセントリックな光学系となることから、反射モードおよび透過モードの何れを選択した場合でも、物体Sに対して平面波Lpが照射される(図10(B1)(B2))。なお、コンフォーカルとは、前述したように、対物レンズ51の像側の焦点と結像レンズ52の物側の焦点とが一致しているということである。
Further, as shown in FIG. 10A2, when the spherical wave Ls is irradiated to the object S, the field of view changes as compared with the transmission mode. In addition, digital holography has the feature that the working distance can be changed in principle because it can calculate a reconstructed image at an arbitrary position on the optical axis, but the object light is distorted in the optical system of the comparative example. The field of view also changes with changes in working distance. In order to suppress this change in the visual field, a separate correction calculation is required.
On the other hand, if an infinite correction optical system is used and the imaging lens 52 and the objective lens 51 have a confocal optical arrangement as in this embodiment shown in FIG. 10B, a telecentric optical system is used. Therefore, regardless of whether the reflection mode or the transmission mode is selected, the plane wave Lp is irradiated to the object S (FIGS. 10B1 and 10B2). Note that “confocal” means that the focal point on the image side of the objective lens 51 is coincident with the focal point on the object side of the imaging lens 52 as described above.
 このように、本実施形態によれば、反射モードおよび透過モードの何れを選択した場合でも物体Sに対して平面波Lpが照射される。したがって、透過モードおよび反射モードのいずれも同サイズの領域を観察対象とでき、また同一の再生計算手段により像再生できる。さらに、物体光が歪められないために、補正計算が不要となり、デジタルホログラフィの原理的特徴である、作動距離を可変とした像再生も自由に行える。さらに、テレセントリックな光学系であるため、作動距離を可変とした像再生において結像倍率が変化しないというメリットもある。なお、作動距離を可変とした像再生とは、物体の奥行き方向で任意の位置にピントを合わせて像再生が行えるということである。 Thus, according to the present embodiment, the plane wave Lp is irradiated to the object S regardless of whether the reflection mode or the transmission mode is selected. Therefore, in both the transmission mode and the reflection mode, a region having the same size can be set as an observation target, and an image can be reproduced by the same reproduction calculation means. Further, since the object light is not distorted, correction calculation is not required, and image reproduction with a variable working distance, which is a principle feature of digital holography, can be performed freely. Furthermore, since it is a telecentric optical system, there is also an advantage that the imaging magnification does not change during image reproduction with a variable working distance. Note that image reproduction with variable working distance means that image reproduction can be performed by focusing on an arbitrary position in the depth direction of the object.
 本実施形態のデジタルホログラフィ装置においても、反射モードと透過モードの双方のモードが一台で行えるので、物体Sに対して多様な観察や計測を低コストに行うことができる。加えて、反射回折光と透過回折光とが時間的に分離されて撮像素子2に入射するので、光学系の構成が簡略化される上、撮像素子2も一個で済む。このため、一台の装置のコストも安くなる。
 また、反射回折光用の光が物体Sの第1の側から照射され、透過回折光用の光が反対の第2の側から照射されるので、第1の側で専ら物体光を捉えることができる。このため、物体Sを無理に空中に浮いた状態にすることなく精度の高いホログラムデータを得ることができる。
 また、撮像光学系5は、反射モードにおいても透過モードにおいても物体光を撮像素子2に入射させるものであるが、両モードで共用されるものであるため、この点でも光学系の構成が簡略化され、装置のコストを低減するのに貢献している。
Also in the digital holography device of this embodiment, since both the reflection mode and the transmission mode can be performed by one unit, various observations and measurements on the object S can be performed at low cost. In addition, since the reflected diffracted light and the transmitted diffracted light are temporally separated and enter the image sensor 2, the configuration of the optical system is simplified and only one image sensor 2 is required. For this reason, the cost of one apparatus is also reduced.
Moreover, since the light for reflected diffracted light is irradiated from the first side of the object S and the light for transmitted diffracted light is irradiated from the opposite second side, the object light is exclusively captured on the first side. Can do. Therefore, highly accurate hologram data can be obtained without forcing the object S to float in the air.
In addition, the imaging optical system 5 makes object light incident on the imaging device 2 in both the reflection mode and the transmission mode. However, since the imaging light system 5 is shared by both modes, the configuration of the optical system is also simple in this respect. And contributes to reducing the cost of the apparatus.
 なお、本発明を実施する上では、反射モード用と透過モード用とで別々の撮像光学系を設け、リボルバ式の機構等を採用して択一的に使用するようにしても良い。反射モードの際には反射モード用の撮像光学系を撮像光路Pi上に配置し、透過モードの際には透過モード用の撮像光学系を撮像光路Pi上に切り替えて配置する。
 また、両モードで撮像光学系を共用する場合でも、全部を共用する場合の他、一部を共用しても良い。例えば、結像レンズは共用とし、対物レンズを反射モード用と透過モード用に用意して切り替えて使うようにしても良い。
In practicing the present invention, separate imaging optical systems may be provided for the reflection mode and the transmission mode, and a revolver type mechanism or the like may be adopted and used alternatively. In the reflection mode, the imaging optical system for the reflection mode is arranged on the imaging optical path Pi, and in the transmission mode, the imaging optical system for the transmission mode is switched and arranged on the imaging optical path Pi.
Further, even when the imaging optical system is shared in both modes, a part of the imaging optical system may be shared in addition to the case of sharing the whole. For example, the imaging lens may be shared, and the objective lens may be prepared for the reflection mode and the transmission mode and used by switching.
 また、図15の装置と比べると、本実施形態の装置は、撮像光路Piが一直線となっている。すなわち、物体Sから出た物体光は、一直線上の光路を進んで撮像素子2に入射する。この点は、以下のような効果がある。
 まず、光路が一直線であるため、光軸の調整が容易である。すなわち、精度の高いホログラムデータを得るには、物体S、撮像光学系5及び撮像素子2が精度良く光軸上に並ぶ必要があるが、光軸が一直線であるため、この調整が容易である。
 また、図15のように、物体Sから撮像素子2までの光路が複雑に屈曲したものであると、ミラー等の光学素子が多く必要になり、その分だけコストがアップする。本実施形態によれば、そのようなコストアップはない。
 さらに、光路が複雑に屈曲していると、ミラー等の光学素子による波面の乱れが生じやすいが、本実施形態ではこのような問題はない。この点でも精度の高いホログラムデータの取得が可能となっている。
Further, as compared with the apparatus of FIG. 15, the imaging optical path Pi of the apparatus of the present embodiment is a straight line. That is, the object light emitted from the object S travels on a straight optical path and enters the image sensor 2. This point has the following effects.
First, since the optical path is straight, it is easy to adjust the optical axis. That is, in order to obtain hologram data with high accuracy, the object S, the imaging optical system 5 and the imaging element 2 need to be aligned on the optical axis with high accuracy, but this adjustment is easy because the optical axis is straight. .
Further, as shown in FIG. 15, if the optical path from the object S to the image sensor 2 is bent in a complicated manner, a large number of optical elements such as mirrors are required, which increases the cost. According to this embodiment, there is no such cost increase.
Furthermore, if the optical path is bent in a complicated manner, the wavefront is easily disturbed by an optical element such as a mirror, but this embodiment does not have such a problem. Also in this respect, it is possible to acquire hologram data with high accuracy.
 また、本実施形態の装置は、第1のスペイシャルフィルタ316と第2のスペイシャルフィルタ326を使用しており、物体光及び参照光のいずれもがスペイシャルフィルタを経由した光となっている。このため、ノイズが除去された状態で波面が撮像素子2に入射する。この点も、ホログラムデータの精度向上に大きく貢献している上、スペイシャルフィルタは物体Sに対してより近い光路上に位置している。このため、スペイシャルフィルタを経由した後の要因によってノイズが波面に紛れ込んでしまう可能性が小さくなっている。この点も、ホログラムデータの精度向上に大きく貢献している。 Further, the apparatus according to the present embodiment uses the first spatial filter 316 and the second spatial filter 326, and both the object light and the reference light are light that has passed through the spatial filter. . For this reason, the wavefront enters the image sensor 2 with the noise removed. This also contributes greatly to improving the accuracy of the hologram data, and the spatial filter is located on the optical path closer to the object S. For this reason, the possibility that noise is mixed into the wavefront due to factors after passing through the spatial filter is reduced. This point also contributes greatly to improving the accuracy of hologram data.
 また、本実施形態の装置は、第1の実施形態と比較すると、参照光導光系33を物体光用の導光系と共通化することで、さらに光学系を簡略化し、可干渉性を高めており、より実用的な装置となっている。以下、この効果について説明する。
 まず、反射モードの際には、反射回折光用の光と参照光とは、光源1から第1のビームスプリッタ41までは全く同一の導光系によって導かれる。そして、第1のビームスプリッタ41に分かれて反射回折光用の光は物体Sに達し、参照光は追加導光系34によって物体Sを経ることなく撮像素子2に達する。
 このように、なるべく導光系を共用しながら物体光と参照光とが撮像素子2に入射するようにした構成であると、光学的な条件の差を小さくしたり光路長の差を少なくしたりすることが容易である。このため、参照光と物体光との可干渉性を高めることができ、より精度の高いホログラムデータを得るのに役立つとともに、光学素子の使用数の削減による装置コストの低下が実現される。追加導光系34は、光を折り返して第1のビームスプリッタ41に戻してそこから撮像素子2に参照光として入射させている点も、同様の意味がある。
 また、透過モードでは、反射回折光用導光系31によって導かれた光が第1のビームスプリッタ41を経て撮像素子2に入射しており、参照光の導光用のほぼ全ての部分が反射回折光用導光系31を兼用している。このため、可干渉性がさらに高まり、光学系の構成がより簡略化され、光学素子の使用数の低減によるコストダウンがさらに実現されている。
In addition, compared with the first embodiment, the apparatus of the present embodiment further simplifies the optical system and enhances coherence by sharing the reference light guide system 33 with the object light guide system. It is a more practical device. Hereinafter, this effect will be described.
First, in the reflection mode, the light for reflected diffracted light and the reference light are guided from the light source 1 to the first beam splitter 41 by the same light guide system. The light for reflected diffracted light reaches the object S by being divided into the first beam splitter 41, and the reference light reaches the image sensor 2 without passing through the object S by the additional light guide system 34.
As described above, when the object light and the reference light are incident on the image sensor 2 while sharing the light guide system as much as possible, the difference in optical conditions is reduced or the difference in optical path length is reduced. It is easy to do. For this reason, the coherence between the reference beam and the object beam can be enhanced, which helps to obtain hologram data with higher accuracy, and a reduction in the apparatus cost due to the reduction in the number of optical elements used. The additional light guide system 34 has the same meaning in that the light is folded back and returned to the first beam splitter 41 so as to enter the imaging device 2 as reference light therefrom.
In the transmission mode, the light guided by the reflected diffracted light guiding system 31 is incident on the image sensor 2 through the first beam splitter 41, and almost all the light for guiding the reference light is reflected. The light guide system 31 for diffracted light is also used. For this reason, the coherence is further enhanced, the configuration of the optical system is further simplified, and cost reduction is further realized by reducing the number of optical elements used.
 次に、本発明の第3の実施形態のデジタルホログラフィ装置について説明する。
 図11は、本発明の第3の実施形態に係るデジタルホログラフィ装置の正面概略図である。第3の実施形態の装置は、第2の実施形態の装置においてオフアクシス式による動作を可能としたものである。オフアクシス式は、物体光と参照光とが角度をもって入射するので、像再生時において所望の像(真像)が共役像や0次像(参照光による像)から分離して形成され、像が重なることを防ぐことができるという利点がある。
 図11に示す装置は、オフアクシス式を可能にするため、参照光導光系33の構成が第2の実施形態と異なっている。すなわち、参照光導光系33を構成するミラーの一つが、光軸に対する角度が変更可能な状態で配置されている。
 具体的に説明すると、透過モードの際に参照光導光系33に兼用される反射回折光用導光系31のうち、第2の実施形態における第2のミラー312がオフアクシス用ミラー(以下、第1オフアクシス用ミラー)317に変更されている。第1オフアクス用ミラー317には、第1オフアクシス用駆動部318が設けられており、第1オフアクシス用ミラー317の光軸に対する配置角度を変更可能としている。
Next, a digital holography device according to a third embodiment of the present invention will be described.
FIG. 11 is a schematic front view of a digital holography device according to a third embodiment of the present invention. The apparatus according to the third embodiment enables an off-axis operation in the apparatus according to the second embodiment. In the off-axis method, since the object light and the reference light are incident at an angle, a desired image (true image) is formed separately from the conjugate image and the zero-order image (image by the reference light) during image reproduction. There is an advantage that can be prevented from overlapping.
The apparatus shown in FIG. 11 differs from the second embodiment in the configuration of the reference light guide system 33 in order to enable an off-axis type. That is, one of the mirrors constituting the reference light guide system 33 is arranged in a state where the angle with respect to the optical axis can be changed.
Specifically, out of the reflected diffracted light guiding system 31 that is also used as the reference light guiding system 33 in the transmission mode, the second mirror 312 in the second embodiment is an off-axis mirror (hereinafter, referred to as “off-axis mirror”). The first off-axis mirror) 317 is changed. The first off-axis mirror 317 is provided with a first off-axis driving unit 318, and the arrangement angle of the first off-axis mirror 317 with respect to the optical axis can be changed.
 また、反射モードの際の参照光導光系33については、追加導光系34の構成が大きく変更されている。第3の実施形態における追加導光系34も、反射モード時に第1のビームスプリッタ41を透過した光を折り返して第1のビームスプリッタ41に戻すものである。第3の実施形態では、オフアクシス用ミラーを撮像素子2に対して近い位置に配置するとともに、物体光と光路長の差を少なく(または無いように)するため、追加導光系34はループ状の光路を形成するものとなっている。
 具体的に説明すると、追加導光系34は、第1のビームスプリッタ41から延びる光路上に、偏光ビームスプリッタ345を有している。偏光ビームスプリッタ345は、特定の偏光方向の直線偏光成分のみを透過し、他の成分は反射するビームスプリッタである。第1のビームスプリッタ41と偏光ビームスプリッタ345の間には、1/4波長板346が設けられている。
Further, regarding the reference light guide system 33 in the reflection mode, the configuration of the additional light guide system 34 is greatly changed. The additional light guide system 34 in the third embodiment is also configured to return the light transmitted through the first beam splitter 41 and return it to the first beam splitter 41 in the reflection mode. In the third embodiment, the additional light guide system 34 is a loop in order to dispose the off-axis mirror at a position close to the image sensor 2 and reduce (or eliminate) the difference between the object light and the optical path length. The optical path is formed.
More specifically, the additional light guide system 34 has a polarization beam splitter 345 on the optical path extending from the first beam splitter 41. The polarization beam splitter 345 is a beam splitter that transmits only a linearly polarized light component in a specific polarization direction and reflects other components. A quarter wavelength plate 346 is provided between the first beam splitter 41 and the polarization beam splitter 345.
 前述したように、光源1からの光は、直後の偏光フィルタ11及び1/4波長板12により円偏光に変換されている。このため、1/4波長板346を透過すると、光はさらに45°ずれた方向の直線偏光となる。偏光ビームスプリッタ345は、この方向の直線偏光の光を反射し、他の光を透過するものとなっている。
 そして、偏光ビームスプリッタ345で反射した直線偏光の光の光路に沿って、第5のミラー347、第6のミラー348及び第2オフアクシス用ミラー349が設けられている。これらミラーに反射することで、光は偏光ビームスプリッタ345に戻るようになっている。第2オフアクシス用ミラー349には、第2オフアクシス用駆動部350が設けられている。
 偏光ビームスプリッタ345と第5のミラーとの間には、1/2波長板351が設けられている。したがって、偏光ビームスプリッタ345に戻る光は90°ずれた偏光方向になっており、偏光ビームスプリッタ345に反射せずに透過する。この光は、1/4波長板346を再度透過することにより再び円偏光に変換され、第1のビームスプリッタ41を経て撮像素子2に達するようになっている。
As described above, the light from the light source 1 is converted into circularly polarized light by the polarizing filter 11 and the quarter wavelength plate 12 immediately after that. For this reason, when the light passes through the quarter-wave plate 346, the light becomes linearly polarized light in a direction further shifted by 45 °. The polarization beam splitter 345 reflects linearly polarized light in this direction and transmits other light.
A fifth mirror 347, a sixth mirror 348, and a second off-axis mirror 349 are provided along the optical path of linearly polarized light reflected by the polarization beam splitter 345. The light returns to the polarization beam splitter 345 by being reflected by these mirrors. The second off-axis mirror 349 is provided with a second off-axis driving unit 350.
A half-wave plate 351 is provided between the polarization beam splitter 345 and the fifth mirror. Therefore, the light returning to the polarization beam splitter 345 has a polarization direction shifted by 90 ° and is transmitted without being reflected by the polarization beam splitter 345. This light is again converted into circularly polarized light by passing through the quarter-wave plate 346 again, and reaches the image sensor 2 via the first beam splitter 41.
 なお、この実施形態においても、透過モードでは追加導光系34は使用しないので、光を遮断するビームストッパ及びストッパ駆動部が設けられている。これらビームストッパ及びストッパ駆動部の図示は省略されているが、例えば、1/4波長板346と偏光ビームスプリッタ345の間にビームストッパを配置することができる。
 また、追加導光系34には、ビームエキスパンダ352が配置されている。このビームエキスパンダ352は、例えば等倍のビームエキスパンダであり、図4に示すものと同様に内部にピンホールを持ち、スペイシャルフィルタ構成を成す。これにより、スペイシャルフィルタ直前までのミラーや波長板などの光学部品に由来する波面の揺らぎを除去できる。
Also in this embodiment, since the additional light guide system 34 is not used in the transmission mode, a beam stopper and a stopper driving unit for blocking light are provided. Although the illustration of the beam stopper and the stopper driving unit is omitted, for example, a beam stopper can be disposed between the quarter-wave plate 346 and the polarization beam splitter 345.
In addition, a beam expander 352 is disposed in the additional light guide system 34. The beam expander 352 is, for example, an equal magnification beam expander, and has a pinhole inside as in the case shown in FIG. 4 to form a spatial filter configuration. Thereby, the fluctuation of the wavefront originating from optical components such as a mirror and a wave plate up to just before the spatial filter can be removed.
 図12を参照しながら、オフアクシス用ミラーについてさらに詳説する。図12は、第3の実施形態で用いられているオフアクシス用ミラーの配置角度の変化を示した図であり、図12(1)は平面概略図、図12(2)は斜視概略図である。図12には、一例として、追加導光系34に配置された第2オフアクシス用ミラー349について示している。
 図9に示すように、第2オフアクシス用ミラー349は、光軸に対する角度が45°ではなく僅かに傾いた姿勢を取り得るようになっている。この結果、撮像素子2に入射する際の参照光の入射角度は、物体光の入射角度と同じ角度ではなく、物体光の入射角度に対して所定の角度(以下、オフアクシス角と呼び、図12(1)にθで示す)が付与された状態にできるようになっている。
The off-axis mirror will be further described in detail with reference to FIG. FIG. 12 is a diagram showing a change in the arrangement angle of the off-axis mirror used in the third embodiment. FIG. 12 (1) is a schematic plan view, and FIG. 12 (2) is a schematic perspective view. is there. FIG. 12 shows a second off-axis mirror 349 arranged in the additional light guide system 34 as an example.
As shown in FIG. 9, the second off-axis mirror 349 can take a slightly inclined posture with respect to the optical axis instead of 45 °. As a result, the incident angle of the reference light when entering the imaging device 2 is not the same angle as the incident angle of the object light, but a predetermined angle (hereinafter referred to as an off-axis angle) with respect to the incident angle of the object light. 12 (1) is indicated by θ).
 本実施形態では、第2オフアクシス用ミラー349の姿勢変化は、二つの方向で可能となっている。すなわち、図12(2)に示すように、屈折する前の光軸と屈折した後の光軸が成す平面が反射面に交差してできる線に沿った回転軸A1の回りの回転と、回転軸A1に対して垂直な方向であって反射面に沿った方向の回転軸A2の回りの回転である。このような二つの回転ができるようにすることで、撮像素子2の撮像面に対し、直交する二つの方向(XY方向)においてオフアクシス角θを付けて参照光を入射させることができる。いずれの方向にオフアクシス角θを付けるかは、どの方向に真像を0次像や共役像から分離したいかであり、操作者の任意である。図12に示す方向以外の方向に第2オフアクシス用ミラー349を傾け、その方向に像を分離する場合もあり得る。
 このような各オフアクシス用ミラーの駆動部としては、2方向での調整が可能なキネマティックミラーホルダーを使用できるし、各調整軸にアクチュエータを付設して外部信号による制御を可能とした構成を採用することができる。各駆動部は、同様に制御ボード61から動作信号が送られて制御されるようにする。
In the present embodiment, the posture of the second off-axis mirror 349 can be changed in two directions. That is, as shown in FIG. 12 (2), the rotation around the rotation axis A1 along the line formed by the plane formed by the optical axis before refracting and the optical axis after refracting intersecting the reflecting surface, The rotation about the rotation axis A2 in the direction perpendicular to the axis A1 and along the reflecting surface. By making such two rotations possible, the reference light can be incident on the imaging surface of the imaging device 2 with an off-axis angle θ in two orthogonal directions (XY directions). The direction in which the off-axis angle θ is given depends on which direction the true image is desired to be separated from the zero-order image and the conjugate image, and is arbitrary by the operator. The second off-axis mirror 349 may be tilted in a direction other than the direction shown in FIG. 12 to separate the image in that direction.
As such a drive unit for each off-axis mirror, a kinematic mirror holder that can be adjusted in two directions can be used, and an actuator can be attached to each adjustment shaft to enable control by an external signal. Can be adopted. Similarly, each drive unit is controlled by an operation signal sent from the control board 61.
 反射回折光用導光系31内の第1オフアクシス用ミラー317は、透過モードの際にオフアクシス用として使用されるものであり、反射モードの際には通常のミラーとして使用される。したがって、制御ボード61は、透過モードの際にはオフアクシス角θが得られるように45°から所定角度傾いた姿勢する動作信号を送る。また、反射モード時には、通常の姿勢すなわち光軸に対して45°の姿勢に戻すよう動作信号を送る。なお、「通常のミラー」とは、そのミラーによってはオフアクシス角が発生しない状態のミラーという意味である。
 追加導光系34内の第2オフアクシス用ミラー349は、透過モード時には使用しないので、オフアクシス角θを達成する傾斜角に維持した構成とすることもできる。この場合には、制御ボード61から動作信号は送られない。角度変更のための機構も不要ということになるが、調整等のため角度変更できるようにすることが好ましい。
The first off-axis mirror 317 in the light guide system 31 for reflected diffracted light is used for off-axis in the transmission mode, and is used as a normal mirror in the reflection mode. Therefore, the control board 61 sends an operation signal that is tilted at a predetermined angle from 45 ° so that the off-axis angle θ is obtained in the transmission mode. In the reflection mode, an operation signal is sent to return to a normal attitude, that is, an attitude of 45 ° with respect to the optical axis. Note that “normal mirror” means a mirror in a state where an off-axis angle does not occur depending on the mirror.
Since the second off-axis mirror 349 in the additional light guide system 34 is not used in the transmission mode, the second off-axis mirror 349 can be configured to maintain an inclination angle that achieves the off-axis angle θ. In this case, no operation signal is sent from the control board 61. Although a mechanism for changing the angle is not necessary, it is preferable that the angle can be changed for adjustment or the like.
 上記したように、反射モード時に使用される追加導光系34の構成は、本実施形態では大きく変更されている。この理由は、第2オフアクシス用ミラー349を撮像素子2になるべく近い位置に置きたいためと、参照光と物体光との光路長差を少なくするためである。
 オフアクシス式では、参照光を物体光に対して斜めに入射させることで真像を0次像や共役像から分離するものである。しかしながら、斜めの角度(オフアクシス角)が大きくなると、撮像素子2の撮像面における空間周波数が高くなり(すなわち、干渉縞が細かくなり)、撮像素子2の解像度の影響を受けて鮮明な像再生ができなくなってしまう。このため、オフアクシス角θは、例えば2~3°度程度の小さいものであることが好ましい。
 このようなオフアクシス角θのため、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349は、図12に示すように光軸に対して45°ではなく斜めの姿勢とされるのであるが、撮像素子2から離れた光路上に位置していると、僅かに角度を変化させただけでも撮像素子2の撮像面では大きく入射位置がずれてしまう。参照光は、撮像素子の撮像面の全域をカバーする必要があり、入射位置のずれによって参照光が入射しない領域ができてしまうと、その部分では干渉縞の撮像ができなくなってしまう。したがって、2~3°程度の小さい角度であっても、参照光を撮像素子2の撮像面の全域に入射させるため、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349は、撮像素子2に対して近い位置のミラーとすべきである。
As described above, the configuration of the additional light guide system 34 used in the reflection mode is greatly changed in this embodiment. The reason for this is to place the second off-axis mirror 349 as close as possible to the image sensor 2 and to reduce the optical path length difference between the reference light and the object light.
In the off-axis method, the true image is separated from the zero-order image and the conjugate image by causing the reference light to enter the object light obliquely. However, when the oblique angle (off-axis angle) increases, the spatial frequency on the imaging surface of the image sensor 2 increases (that is, the interference fringes become finer), and a clear image reproduction is affected by the resolution of the image sensor 2. Will not be able to. For this reason, the off-axis angle θ is preferably as small as about 2 to 3 °.
Because of such an off-axis angle θ, the first off-axis mirror 317 and the second off-axis mirror 349 are not inclined at 45 ° with respect to the optical axis as shown in FIG. However, if it is located on the optical path away from the image sensor 2, the incident position is greatly shifted on the imaging surface of the image sensor 2 even if the angle is slightly changed. The reference light needs to cover the entire image pickup surface of the image pickup device, and if a region where the reference light does not enter is formed due to a shift in the incident position, it becomes impossible to pick up the interference fringes at that portion. Therefore, the first off-axis mirror 317 and the second off-axis mirror 349 are provided so that the reference light is incident on the entire imaging surface of the imaging device 2 even at a small angle of about 2 to 3 °. The mirror should be close to 2.
 図3に示す第2の実施形態の構成で言うと、追加導光系34の折り返しミラー342をオフアクシス用ミラーとしても良いが、撮像素子2から離れた位置にあるため、撮像素子2の撮像面に対する参照光の入射位置のずれが大きくなってしまう。折り返しミラー342の手前の光路上にある第4のミラー341をオフアクシス用ミラーとすることが考えられるが、第4のミラー341は、折り返しミラー342に達する前と達した後とで2回反射するため、参照光のずれは2倍になってしまう。
 さらに、第4のミラー341の位置に折り返しミラー342を設け、これをオフアクシス用ミラーとすることも考えられるが、こうすると、光路長が短くなり、参照光と物体光(この場合には反射回折光)とで光路長の差が大きくなる。このため、可干渉性の点で問題が生じ得る。すなわち、光路長の差が大きくなると、光源1の出力の時間的な安定性の問題から、参照光と物体光とが干渉しにくくなる。
In the configuration of the second embodiment shown in FIG. 3, the folding mirror 342 of the additional light guide system 34 may be an off-axis mirror, but is located away from the image sensor 2, so that the image of the image sensor 2 is captured. The deviation of the incident position of the reference light with respect to the surface becomes large. Although it is conceivable that the fourth mirror 341 on the optical path in front of the folding mirror 342 is an off-axis mirror, the fourth mirror 341 reflects twice before reaching the folding mirror 342 and after reaching it. For this reason, the deviation of the reference light is doubled.
Furthermore, it is conceivable that a folding mirror 342 is provided at the position of the fourth mirror 341, and this is used as an off-axis mirror. The difference in the optical path length between the diffracted light and the light becomes large. For this reason, a problem may arise in terms of coherence. That is, when the difference in the optical path length increases, the reference light and the object light are less likely to interfere due to the problem of temporal stability of the output of the light source 1.
 これらの点を考慮すると、一回だけ反射するミラーを撮像素子2に近い位置に配置して光路長を確保する観点から、偏光ビームスプリッタ345でループ状の光路を形成し、その一角にオフアクシス用ミラーを配置するのが好適である。第3の実施形態の追加導光系34は、このような考えに基づいている。
 なお、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349の配置位置における「近い」ということについて補足して説明すると、本実施形態の構成では、物体光と参照光とは第1のビームスプリッタ41で統合される。したがって、光の進行方向とは逆向きにたどった際に第1のビームスプリッタ41から見て最初のミラーがオフアクシス用ミラーとなっているということが、「近い」ということである。
Considering these points, from the viewpoint of securing the optical path length by arranging a mirror that reflects only once at a position close to the image sensor 2, a polarization beam splitter 345 forms a loop-shaped optical path, and off-axis is formed at one corner thereof. It is preferable to arrange a mirror for use. The additional light guide system 34 of the third embodiment is based on such an idea.
In addition, a supplementary explanation will be given of the fact that the first off-axis mirror 317 and the second off-axis mirror 349 are “close” at the position where the first off-axis mirror 317 and the second off-axis mirror 349 are arranged. They are integrated by the beam splitter 41. Therefore, it is “near” that the first mirror viewed from the first beam splitter 41 is an off-axis mirror when traced in the direction opposite to the light traveling direction.
 図11に示す第3のデジタルホログラフィ装置の動作について、図13を参照しながら説明する。図13は、第3の実施形態の動作について示した概略図であり、反射モードと透過モードとにおける各光の進行状況について対比して示した図である。
 まず、反射モードが選択された場合、制御ボード61から反射モード用の動作信号が各部に送られて制御される。すなわち、図13(A)に示すように、第2のビームスプリッタ45が主光路上から退避させられ、第1のビームスプリッタ41が第1の状態とされる。また、追加導光系34内のビームストッパ(不図示)が光路から退避して追加導光系34が開放される。なお、第1オフアクシス用ミラー317は、通常のミラーとして使用されるため、光軸に対して45°の姿勢が維持される。
The operation of the third digital holography device shown in FIG. 11 will be described with reference to FIG. FIG. 13 is a schematic diagram illustrating the operation of the third embodiment, and is a diagram comparing the progress of each light in the reflection mode and the transmission mode.
First, when the reflection mode is selected, an operation signal for the reflection mode is sent from the control board 61 to each unit and controlled. That is, as shown in FIG. 13A, the second beam splitter 45 is retracted from the main optical path, and the first beam splitter 41 is set to the first state. Further, a beam stopper (not shown) in the additional light guide system 34 is retracted from the optical path, and the additional light guide system 34 is opened. Note that the first off-axis mirror 317 is used as a normal mirror, and therefore maintains a 45 ° attitude with respect to the optical axis.
 光源1から放出された光L1は、偏光フィルタ11及び1/4波長板12を経ることで円偏光の光とされ、反射回折光用導光系31を介して第1のビームスプリッタ41に入射する。この光L1は、図13(A)に示すように、第1のビームスプリッタ41に反射した光L2と透過した光L3に分割される。第1のビームスプリッタ41で反射した光L2は、撮像光学系5を介して物体Sに照射される。照射された光L2は、物体Sに反射して物体光(反射回折光)L4となる。物体光(反射回折光)L4は、撮像光学系5を介して、第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2の撮像面に入射する。
 一方、第1のビームスプリッタ41を透過した光L3は、追加導光系34に入射する。この光L3は、円偏光の光であるので、1/4波長板346によって特定の偏光成分を有する直線偏光の光に変換され、直線偏光となった光L3が偏光ビームスプリッタ345に入射する。
The light L1 emitted from the light source 1 passes through the polarizing filter 11 and the quarter-wave plate 12 to become circularly polarized light, and enters the first beam splitter 41 via the light guide system 31 for reflected diffracted light. To do. As shown in FIG. 13A, the light L1 is split into light L2 reflected by the first beam splitter 41 and light L3 transmitted. The light L <b> 2 reflected by the first beam splitter 41 is applied to the object S through the imaging optical system 5. The irradiated light L2 is reflected by the object S to become object light (reflected diffracted light) L4. The object light (reflected diffracted light) L4 enters the first beam splitter 41 via the imaging optical system 5, passes through the first beam splitter 41, and enters the imaging surface of the imaging device 2.
On the other hand, the light L3 that has passed through the first beam splitter 41 is incident on the additional light guide system 34. Since the light L3 is circularly polarized light, it is converted into linearly polarized light having a specific polarization component by the quarter wavelength plate 346, and the linearly polarized light L3 enters the polarization beam splitter 345.
 この偏光ビームスプリッタ345は、1/4波長板346によって変換された上記特定の成分の偏光の光のみを反射する。よって、図13(A)に示すように、光L3は、偏光ビームスプリッタ345によって反射され、1/2波長板351に入射して、上記直線偏光の光と偏光方向が90°異なる直線偏光の光に変換される。90°異なる直線偏光とされた光L3は、第5のミラー347、第6のミラー348、ビームエキスパンダ352を経た後、第2オフアクシス用ミラー349で反射して偏光ビームスプリッタ345に戻る。この際、第2オフアクシス用ミラー349は光軸に対して45°ではなく僅かに傾けられているため、オフアクシス用ミラーに反射した光L3は、光軸に対して平行ではなく僅かに角度を持った状態で進む。 The polarization beam splitter 345 reflects only the polarized light of the specific component converted by the quarter wavelength plate 346. Therefore, as shown in FIG. 13A, the light L3 is reflected by the polarization beam splitter 345, enters the half-wave plate 351, and is linearly polarized light whose polarization direction is 90 ° different from that of the linearly polarized light. Converted to light. The light L3 having a linearly polarized light different by 90 ° passes through the fifth mirror 347, the sixth mirror 348, and the beam expander 352, and then is reflected by the second off-axis mirror 349 and returns to the polarization beam splitter 345. At this time, since the second off-axis mirror 349 is slightly inclined with respect to the optical axis instead of 45 °, the light L3 reflected by the off-axis mirror is not parallel to the optical axis but slightly at an angle. Proceed with the.
 このように角度を持った状態で偏光ビームスプリッタ345に達した光L3は、1/2波長板351により直線偏光の方向が90°変換されているので、偏光ビームスプリッタ345を透過する。そして、この光L3は、1/4波長板346によって円偏光に変換され、第1のビームスプリッタ41に反射した後、撮像素子2の撮像面に参照光として入射する。この際、第2オフアクシス用ミラー349を経ているため、図12に示すように、参照光L3は物体光(反射回折光)L4に対してオフアクシス角θが付いた状態で入射する。撮像素子2の撮像面では、物体光(反射回折光)L4と参照光L3とが干渉して干渉縞が形成され、この干渉縞が撮像面で撮像される。これにより反射モードでのホログラムデータが得られる。
 なお、第2オフアクシス用ミラー349で反射した光は、上記のように光軸に対して角度を持った状態で進行して偏光ビームスプリッタ345や1/4波長板346を透過することになるが、光軸に対する角度は非常に小さいものなので、偏光ビームスプリッタ345や1/4波長板346における光制御の点で問題になることはない。
The light L3 that has reached the polarization beam splitter 345 with an angle in this manner is transmitted through the polarization beam splitter 345 because the direction of linearly polarized light is converted by 90 ° by the half-wave plate 351. The light L3 is converted into circularly polarized light by the quarter-wave plate 346, reflected by the first beam splitter 41, and then incident on the imaging surface of the imaging device 2 as reference light. At this time, since the light passes through the second off-axis mirror 349, the reference light L3 is incident on the object light (reflected diffracted light) L4 with an off-axis angle θ as shown in FIG. On the imaging surface of the imaging device 2, the object light (reflected diffracted light) L4 and the reference light L3 interfere to form an interference fringe, and the interference fringe is imaged on the imaging surface. Thereby, hologram data in the reflection mode is obtained.
The light reflected by the second off-axis mirror 349 travels with an angle with respect to the optical axis as described above and passes through the polarization beam splitter 345 and the quarter-wave plate 346. However, since the angle with respect to the optical axis is very small, there is no problem in terms of light control in the polarizing beam splitter 345 and the quarter wavelength plate 346.
 透過モードが選択された場合は、制御ボード61から反射モード用の動作信号が各部に送られて制御される。すなわち、図13(B)に示すように、第1のビームスプリッタ41は90°回転して第2の状態となる。また、第2のビームスプリッタ45が主光路上に移動し、追加導光系34内のビームストッパ(不図示)を光路上に配置する。また、第1オフアクシス用ミラー317の駆動部に動作信号が送られ、第1オフアクシス用ミラー317は光軸に対して45°の姿勢から所定角度傾けられる。
 光源1から放出された光は、同様に円偏光の光に変換された後、第2のビームスプリッタ45に入射する。図13(B)に示すように、第2のビームスプリッタ45でその一部が反射して透過回折光用の光L5として分岐光路Psに進み、透過回折光用導光系32によって物体Sに照射される。この光L5は、物体Sを透過して物体光(透過回折光)L6となり、撮像光学系5を経て第1のビームスプリッタ41に入射し、第1のビームスプリッタ41を透過して撮像素子2の撮像面に入射する。
When the transmission mode is selected, an operation signal for the reflection mode is sent from the control board 61 to each unit and controlled. That is, as shown in FIG. 13B, the first beam splitter 41 is rotated by 90 ° to be in the second state. Further, the second beam splitter 45 moves on the main optical path, and a beam stopper (not shown) in the additional light guide system 34 is arranged on the optical path. Further, an operation signal is sent to the drive unit of the first off-axis mirror 317, and the first off-axis mirror 317 is tilted by a predetermined angle with respect to the optical axis from an attitude of 45 °.
Similarly, the light emitted from the light source 1 is converted into circularly polarized light and then enters the second beam splitter 45. As shown in FIG. 13B, a part of the light is reflected by the second beam splitter 45 and proceeds to the branch optical path Ps as the light L5 for transmitted diffracted light, and is transmitted to the object S by the light guide system 32 for transmitted diffracted light. Irradiated. The light L5 passes through the object S to become object light (transmission diffracted light) L6, enters the first beam splitter 41 through the imaging optical system 5, passes through the first beam splitter 41, and passes through the imaging element 2. Is incident on the imaging surface.
 一方、第2のビームスプリッタ45で反射することなく第2のビームスプリッタ45を透過した光L7は、参照光導光系33に兼用される反射回折光用導光系31によって導かれ、第1のビームスプリッタ41に達し、第1のビームスプリッタ41で反射して撮像素子2の撮像面に参照光として入射する。この際、第1オフアクシス用ミラー317が所定角度傾けられているため、参照光L7は物体光L6に対してオフアクシス角θが付いた状態で入射する。
 撮像素子2の撮像面では、参照光L7と物体光L6とが干渉して干渉縞が形成され、この干渉縞が撮像面において撮像され、ホログラムデータが得られる。そして、ホログラムデータを同様に計算処理することで物体Sの再生像が形成される。
On the other hand, the light L7 that has passed through the second beam splitter 45 without being reflected by the second beam splitter 45 is guided by the reflected diffracted light guiding system 31 that also serves as the reference light guiding system 33, and the first L It reaches the beam splitter 41, is reflected by the first beam splitter 41, and enters the imaging surface of the imaging device 2 as reference light. At this time, since the first off-axis mirror 317 is tilted by a predetermined angle, the reference light L7 is incident on the object light L6 with an off-axis angle θ.
On the imaging surface of the imaging device 2, the reference light L7 and the object light L6 interfere with each other to form an interference fringe, and the interference fringe is imaged on the imaging surface to obtain hologram data. Then, a reproduced image of the object S is formed by similarly calculating the hologram data.
 この第3の実施形態のデジタルホログラフィ装置によれば、ホログラムデータを計算処理して像を再生した際、真像が0次像や共役像から分離して形成されるので、より鮮明な真像を得ることができる。このため、物体S上のある点とある点との距離を計算したり、物体Sの状態を観察したりする場合、より好適となる。
 また、第1オフアクシス用ミラー317と第2オフアクシス用ミラー349が撮像素子2に近いところに設けられているので、撮像素子2の撮像面に対する参照光の入射位置が大きくずれてしまう問題がない。その一方、参照光の光路長と物体光の光路長とが十分に一致するように工夫しているので、光源1の出力の時間的な変動によらず精度の高いホログラムデータが得られる。「十分に一致する」とは、光路長に差があっても可干渉性の点で問題が無い範囲であるという意味である。
 オフアクシス用ミラーを使用してオフアクシス式の装置とすることは、第1の実施形態の装置においても可能である。第1の実施形態の場合、参照光用第2ミラー332をオフアクシス用ミラーに変更することになる。このように、オフアクシス手段としては、撮像素子2に達する参照光の光路上に一つのオフアクシス用ミラーがあれば足りる。
 また、オフアクシス手段としては、ミラー以外の光学素子を用いることも原理的には可能である。例えば、プリズムのような光路を曲げる機能を有する光学素子を参照光の光路上に配置することでオフアクシスとすることができる。
According to the digital holography device of the third embodiment, when the hologram data is calculated and the image is reproduced, the true image is formed separately from the zero-order image and the conjugate image. Can be obtained. For this reason, it is more suitable when calculating the distance between a certain point on the object S or observing the state of the object S.
In addition, since the first off-axis mirror 317 and the second off-axis mirror 349 are provided in the vicinity of the image sensor 2, there is a problem that the incident position of the reference light with respect to the imaging surface of the image sensor 2 is greatly shifted. Absent. On the other hand, since it is devised so that the optical path length of the reference light and the optical path length of the object light sufficiently coincide with each other, highly accurate hologram data can be obtained regardless of the temporal variation of the output of the light source 1. “Fully match” means that there is no problem in terms of coherence even if there is a difference in optical path length.
It is also possible for the apparatus of the first embodiment to use an off-axis mirror to form an off-axis type apparatus. In the case of the first embodiment, the reference light second mirror 332 is changed to an off-axis mirror. Thus, as the off-axis means, one off-axis mirror is sufficient on the optical path of the reference light reaching the image sensor 2.
In principle, it is possible to use an optical element other than the mirror as the off-axis means. For example, an optical element having a function of bending an optical path such as a prism can be placed on the optical path of the reference light so as to be off-axis.
 また、オフアクシス以外の構成として、第1の実施形態の装置や第2の実施形態の装置において、位相シフト法により真像を0次像や共役像から分離するようにすることも可能である。この場合は、参照光導光系33内に位相シフト素子を設けることになる。位相シフト素子としては、前述したようにピエゾ素子などの圧電素子やSLMなどの光路長を変化させることができる素子である。位相シフト素子を配置する場所は、例えば第2の実施形態であれば、反射モード用の位相シフト素子を追加導光系34内に配置し、透過モード用の位相シフト素子を反射回折光用導光系31内(但し、物体Sと第1のビームスプリッタ41の間の光路上は除く。例えば、第2のミラー312と第1のビームスプリッタ41の間の位置)に配置するということになる。反射回折光用導光系31内の位相シフト素子は、反射モードの際には光路から退避させるようにする。
 なお、位相シフト法を採用すると、前述したように、物体Sが動くものの場合は実質的にホログラムデータを得ることができない。一方、第1第2の実施形態の装置(インライン式装置)や第3の実施形態の装置(オフアクシス式装置)では、物体Sが動くものであってもホログラムデータを得ることができる。つまり、再生像を動画として得ることができる。この点も各実施形態の装置のメリットである。
Further, as a configuration other than off-axis, the true image can be separated from the zero-order image and the conjugate image by the phase shift method in the device of the first embodiment and the device of the second embodiment. . In this case, a phase shift element is provided in the reference light guide system 33. As described above, the phase shift element is a piezoelectric element such as a piezoelectric element or an element that can change the optical path length such as an SLM. In the second embodiment, for example, in the second embodiment, the phase shift element is disposed in the additional light guide system 34, and the phase shift element for the transmission mode is guided for the reflected diffracted light. It is arranged in the optical system 31 (however, excluding on the optical path between the object S and the first beam splitter 41. For example, the position between the second mirror 312 and the first beam splitter 41). . The phase shift element in the light guide system 31 for reflected diffracted light is retracted from the optical path in the reflection mode.
When the phase shift method is employed, as described above, the hologram data cannot be obtained substantially in the case where the object S moves. On the other hand, in the apparatus of the first and second embodiments (in-line apparatus) and the apparatus of the third embodiment (off-axis apparatus), hologram data can be obtained even if the object S moves. That is, a reproduced image can be obtained as a moving image. This is also a merit of the apparatus of each embodiment.
 次に、参照光導光系の構成が異なる第4の実施形態について説明する。図14は、本発明の第4の実施形態のデジタルホログラフィ装置の正面概略図である。
 図14に示すように、この第4の実施形態のデジタルホログラフィ装置においても、反射回折光用導光系31と、透過回折光用導光系32とが設けられている。これらの導光系31,32は、図3に示す第2の実施形態とほぼ同様である。この第4の実施形態が第2の実施形態と大きく異なるのは、参照光導光系33が、参照光を物体光から抽出して撮像素子2に導くものとなっている点である。
Next, a fourth embodiment in which the configuration of the reference light guide system is different will be described. FIG. 14 is a schematic front view of a digital holography device according to a fourth embodiment of the present invention.
As shown in FIG. 14, also in the digital holography device of the fourth embodiment, a reflected diffracted light guide system 31 and a transmitted diffracted light guide system 32 are provided. These light guide systems 31 and 32 are substantially the same as those of the second embodiment shown in FIG. The fourth embodiment is greatly different from the second embodiment in that the reference light guide system 33 extracts the reference light from the object light and guides it to the image sensor 2.
 具体的に説明すると、図14に示すように、この実施形態では、参照光導光系33は、第1のビームスプリッタ41と撮像素子2との間の光路上に配置されている。参照光導光系33は、一つのユニット9の要素として設けられている。このユニット9は、物体光を撮像素子2に導きつつ、物体光から参照光を抽出して撮像素子2に導くユニットである(以下、参照光抽出ユニット呼ぶ)。 Specifically, as shown in FIG. 14, in this embodiment, the reference light guide system 33 is disposed on the optical path between the first beam splitter 41 and the imaging device 2. The reference light guide system 33 is provided as an element of one unit 9. This unit 9 is a unit that extracts the reference light from the object light and guides it to the image sensor 2 while guiding the object light to the image sensor 2 (hereinafter referred to as a reference light extraction unit).
 物体光から参照光を抽出する手法としては、空間周波数フィルタリングの手法が採用される。物体光のうち、物体の形状や表面状態等に応じて波面(振幅又は位相)が変化している部分は、空間周波数が高い部分である。そのように物体の形状や表面状態等に応じて波面が変化している部分というのは、前述したように像を再生することで物体の形状や表面状態を表現し得る部分であり、物体情報を含んだ部分であると言える。一方、物体光のうち、屈折率が十分に一様な領域から出た回折光は、空間周波数が低く、物体を経ない光と同様であると扱える。つまり、物体光のうち、物体情報を表現し得る光というのは空間周波数が高い光であり、それを物体光から除去すれば、物体情報を含まない光(即ち、参照光)が抽出できる。これは、スペイシャルフィルタと同様の原理である。図14に示す参照光抽出ユニット9は、このような抽出を行うユニットとなっている。 As a method for extracting the reference light from the object light, a spatial frequency filtering method is adopted. Of the object light, a portion where the wavefront (amplitude or phase) changes according to the shape, surface state, etc. of the object is a portion having a high spatial frequency. The part where the wavefront changes according to the shape and surface state of the object is the part that can represent the shape and surface state of the object by reproducing the image as described above. It can be said that it is a part including. On the other hand, among the object light, diffracted light emitted from a region where the refractive index is sufficiently uniform can be treated as having the same spatial frequency as the light that does not pass through the object. In other words, light that can represent object information among object light is light having a high spatial frequency, and light that does not include object information (that is, reference light) can be extracted by removing it from the object light. This is the same principle as that of the spatial filter. The reference light extraction unit 9 shown in FIG. 14 is a unit that performs such extraction.
 このような参照光抽出ユニット9については、幾つかの異なる光学系が考えられる。このうち、図15には、二つの異なる例が示されている。図15は、図14に示す実施形態における参照光抽出ユニット9の例を示した正面概略図である。
 図15(1)に示す参照光抽出ユニット9は、物体光を分離して二つの異なる光軸に沿って進ませる分離素子91と、参照光の抽出のために光を集光する抽出用レンズ92と、抽出用レンズ92による集光位置に配置された空間周波数フィルタ93と、各光を平行光に戻して統合するコリメータレンズ94等を備えたものとなっている。
 分離素子91としては、例えば特開平10-141912号公報が開示するように回折格子を使用したり、または特開2006-292939号公報が開示するように偏光ビームスプリッタを使用したりすることができる。
For such a reference light extraction unit 9, several different optical systems are conceivable. Of these, FIG. 15 shows two different examples. FIG. 15 is a schematic front view showing an example of the reference light extraction unit 9 in the embodiment shown in FIG.
The reference light extraction unit 9 shown in FIG. 15A includes a separation element 91 that separates object light and advances it along two different optical axes, and an extraction lens that condenses the light for extracting the reference light. 92, a spatial frequency filter 93 disposed at a condensing position by the extraction lens 92, and a collimator lens 94 for converting the respective lights back into parallel light and integrating them.
As the separating element 91, for example, a diffraction grating can be used as disclosed in JP-A-10-141912, or a polarizing beam splitter can be used as disclosed in JP-A-2006-292939. .
 分離素子91として回折格子が使用される場合を例にすると、物体光は分離素子91により0次回折光と1次回折光に分離される。抽出用レンズ92は、0次光回折光、1次回折光をそれぞれ集光するが、空間周波数フィルタ93は、0次回折光が集光される光軸上の位置に設けられた開口931と、1次回折光が集光される光軸上の位置に設けられたピンホール932とを有する。開口931は、十分に大きいために物体光(0次回折光)について空間周波数を選択せずにそのまま通過させる。一方、ピンホール932は十分に小さいものであるため、低い周波数のみ通過させる。このため、1次回折光は物体情報を含まないものとなる。これらの光は、図15(1)に示すようにコリメータレンズ94により平行光に戻されながら統合され、撮像素子2の撮像面において重ね合わされる。 Taking the case where a diffraction grating is used as the separation element 91 as an example, the object light is separated into zero-order diffracted light and first-order diffracted light by the separation element 91. The extraction lens 92 condenses the 0th-order diffracted light and the 1st-order diffracted light, respectively, while the spatial frequency filter 93 has an opening 931 provided at a position on the optical axis where the 0th-order diffracted light is collected, and 1 And a pinhole 932 provided at a position on the optical axis where the next diffracted light is collected. Since the opening 931 is sufficiently large, the object light (0th-order diffracted light) is allowed to pass through as it is without selecting a spatial frequency. On the other hand, since the pinhole 932 is sufficiently small, only a low frequency is allowed to pass through. For this reason, the first-order diffracted light does not include object information. As shown in FIG. 15 (1), these lights are integrated while being returned to parallel light by a collimator lens 94, and are superimposed on the imaging surface of the imaging device 2.
 分離素子91として偏光ビームスプリッタが使用される場合、物体光は、偏光方向が90°異なる二つの偏光光に分離される。便宜上、二つの偏光光を第一偏光光と第二偏光光と呼ぶと、第一第二の二つの偏光光は同様に抽出用レンズ92でそれぞれ集光され、空間周波数フィルタ93に達する。空間周波数フィルタ93の構造は上記と同様であり、第一偏光光の光軸上には十分に大きな開口931が形成され、第二偏光光の光軸上には十分に小さなピンホール932が形成される。第一偏光光は空間周波数によるフィルタリングがされずにそのまま開口931を通過し、物体光として撮像素子2に入射する。その一方、第二偏光光については空間周波数の高い成分が除去された状態でピンホール932を通過し、参照光となる。この光は、コリメータレンズ94により第一偏光光(物体光)とともに平行光に戻されて第一偏光光に統合される。尚、図15(1)中に点線で示すように、分離素子91として偏光ビームスプリッタを使用する場合、空間周波数フィルタ93のピンホール932の出射側に、1/2波長板95が設けられる。参照光の偏光状態を物体光に一致させ、可干渉性を高めるためである。 When a polarizing beam splitter is used as the separating element 91, the object light is separated into two polarized lights having polarization directions different by 90 °. For convenience, when the two polarized lights are called first polarized light and second polarized light, the first and second polarized lights are similarly condensed by the extraction lens 92 and reach the spatial frequency filter 93. The structure of the spatial frequency filter 93 is the same as described above. A sufficiently large opening 931 is formed on the optical axis of the first polarized light, and a sufficiently small pin hole 932 is formed on the optical axis of the second polarized light. Is done. The first polarized light passes through the opening 931 without being filtered by the spatial frequency, and enters the image sensor 2 as object light. On the other hand, the second polarized light passes through the pinhole 932 in a state where a component having a high spatial frequency is removed, and becomes the reference light. This light is returned to parallel light together with the first polarized light (object light) by the collimator lens 94 and integrated into the first polarized light. As shown by a dotted line in FIG. 15 (1), when a polarizing beam splitter is used as the separating element 91, a half-wave plate 95 is provided on the exit side of the pinhole 932 of the spatial frequency filter 93. This is to make the polarization state of the reference light coincide with the object light and to enhance the coherence.
 分散素子91としては、物体光を二つの光軸に沿って分離できるものであれば、上述した二つの例以外のものであっても良い。図15(2)に示す例はこのうちの一つであり、通常のビームスプリッタを使用した例となっている。分離素子91(ビームスプリッタ)で物体光を二つに分離し、一方の光軸上に抽出用レンズ92と、空間周波数フィルタ93と、コリメータレンズ94とを設けた構成となっている。空間周波数フィルタ93は、他方の光軸から大きく外れているため、物体光のための開口は不要であり、ピンホール932のみを有する構造となっている分離素子91で分離された一方の光は、空間周波数フィルタ93を通過する際に空間周波数の高い成分が除去されて参照光となり、コリメータレンズ94で平行光に戻される。そして、統合用ビームスプリッタ96で他方の光(物体光)と統合され、撮像素子2に入射する。 The dispersion element 91 may be other than the two examples described above as long as the object light can be separated along the two optical axes. The example shown in FIG. 15 (2) is one of them, and is an example using a normal beam splitter. The object light is separated into two by a separation element 91 (beam splitter), and an extraction lens 92, a spatial frequency filter 93, and a collimator lens 94 are provided on one optical axis. Since the spatial frequency filter 93 is greatly deviated from the other optical axis, an opening for object light is unnecessary, and one light separated by the separation element 91 having a structure having only the pinhole 932 is When passing through the spatial frequency filter 93, a component having a high spatial frequency is removed to become reference light, which is returned to parallel light by the collimator lens 94. Then, it is integrated with the other light (object light) by the integrating beam splitter 96 and enters the image sensor 2.
 第4の実施形態では、図3に示す第2の実施形態と異なり、反射回折光用導光系31が参照光導光系に兼用されていないので、第2のビームスプリッタ45を駆動するのではなく、二つのシャッタの切替によって透過モードと反射モードとを切り替えている。即ち、図14に示すように、主光路P上には第一のシャッタ319が設けられ、分岐光路Ps上には第二のシャッタ327が設けられている。透過モードの際には、第一のシャッタ319は閉じられ、第二のシャッタ327が開けられる。反射モードの際には、第一のシャッタ319が開けられ、第二のシャッタ327は閉じられる。 In the fourth embodiment, unlike the second embodiment shown in FIG. 3, the reflected diffracted light guiding system 31 is not used as the reference light guiding system, so that the second beam splitter 45 is not driven. Instead, the transmission mode and the reflection mode are switched by switching between the two shutters. That is, as shown in FIG. 14, a first shutter 319 is provided on the main optical path P, and a second shutter 327 is provided on the branch optical path Ps. In the transmission mode, the first shutter 319 is closed and the second shutter 327 is opened. In the reflection mode, the first shutter 319 is opened and the second shutter 327 is closed.
 尚、図15(1)に示す例では、参照光は物体光に対してオフアクシスの状態で撮像素子2に入射するが、図15(2)に示す例では、インラインの状態で入射する。図15(2)に示す例でオフアクシスの状態にしたい場合、コリーメータレンズ94と統合用ビームスプリッタ96との間に配置されたミラー97に駆動機構を付設してオフアクシス用ミラーとすれば良い。
 上記第4の実施形態においても、参照光を得る構造が異なるのみで、他は前述した実施形態と同様である。反射モードと透過モードとを別々に行うことができ、物体の状態や形状等を詳しく調べるのに好適なものとなり、光学系の構成が簡略化される。
 尚、図15(2)に示す光学系において、物体光と参照光の光路長が異なることが可干渉性等の点で問題になる場合には、統合用ビームスプリッタ96に代えてミラーを配置して物体光を下方に折り返し、ミラー97に代えて統合用ビームスプリッタを配置し、空間周波数フィルタ93から光軸を直線的に延ばした位置に撮像素子2を配置するようにすれば良い。
In the example shown in FIG. 15 (1), the reference light is incident on the image sensor 2 in an off-axis state with respect to the object light. However, in the example shown in FIG. 15 (2), the reference light is incident in an in-line state. In the example shown in FIG. 15B, when it is desired to be in the off-axis state, a mirror 97 disposed between the collimator lens 94 and the integrating beam splitter 96 is attached with a drive mechanism to form an off-axis mirror. good.
The fourth embodiment is the same as the above-described embodiment except that the structure for obtaining the reference light is different. The reflection mode and the transmission mode can be performed separately, which is suitable for examining the state and shape of the object in detail, and the configuration of the optical system is simplified.
In the optical system shown in FIG. 15 (2), if the difference between the optical path lengths of the object beam and the reference beam becomes a problem in terms of coherence, a mirror is disposed instead of the integrating beam splitter 96. Then, the object light may be folded back, an integration beam splitter may be disposed in place of the mirror 97, and the image sensor 2 may be disposed at a position where the optical axis is linearly extended from the spatial frequency filter 93.
 上述した各実施形態において、撮像光学系5は、前述したようにホログラムのタイプによって適宜構成が変更される。フレネル回折を利用するフレネルホログラムの場合やレンズレスフーリエ変換ホログラムとする場合には、撮像光学系5が設けられない場合もある。レンズレスフーリエ変換ホログラムの場合、参照光導光系33は、参照光を球面波にして撮像素子2の撮像面に入射させるレンズを含むことになる。
 また、上記各実施形態において、撮像光学系5は、対物レンズ51と結像レンズ52とを有するものであったが、これは一例であり、レンズが一つの場合もある。レンズを二つ以上用いる場合であっても、イメージホログラムのように撮像面上に像を結ぶ場合もあるが、これは必須ではないから、一方のレンズが結像レンズ52と呼べない場合もあり、第1対物レンズ、第2対物レンズのように呼ばれることもある。
In each of the above-described embodiments, the configuration of the imaging optical system 5 is appropriately changed depending on the type of hologram as described above. In the case of a Fresnel hologram using Fresnel diffraction or a lensless Fourier transform hologram, the imaging optical system 5 may not be provided. In the case of a lensless Fourier transform hologram, the reference light guide system 33 includes a lens that makes the reference light a spherical wave and enters the imaging surface of the imaging device 2.
In each of the above embodiments, the imaging optical system 5 includes the objective lens 51 and the imaging lens 52. However, this is an example, and there may be one lens. Even when two or more lenses are used, an image may be formed on the imaging surface like an image hologram. However, since this is not essential, one lens may not be called the imaging lens 52. , Sometimes referred to as the first objective lens and the second objective lens.
 上記各実施形態の装置では、反射回折光用の光が物体Sに入射する向きと透過回折光用の光が物体Sに入射する向きは180°異なっている。しかしながら、これは本発明において必須の要件ではない。物体Sから撮像素子2に至る直線状の撮像光路Piの光軸を基準にして考えた場合、反射回折光用の光を光軸に対して斜めに入射させる場合もあるし、透過回折光用の光を光軸に対して斜めに入射させる場合もある。したがって、物体Sの位置を原点とした直交座標で考え、「第1の側」をその第1象限及び第2象限とした場合、「第2の側」とはその第3象限及び第4象限ということになる。 In the apparatus of each of the embodiments described above, the direction in which the reflected diffracted light enters the object S and the direction in which the transmitted diffracted light enters the object S are different by 180 °. However, this is not an essential requirement in the present invention. Considering the optical axis of the linear imaging optical path Pi from the object S to the imaging device 2 as a reference, the reflected diffracted light may be incident obliquely with respect to the optical axis, or the transmitted diffracted light may be used. May be incident obliquely with respect to the optical axis. Accordingly, when the orthogonal coordinates with the position of the object S as the origin are considered and the “first side” is the first and second quadrants, the “second side” is the third and fourth quadrants. It turns out that.
 また、上記各実施形態では、反射モード時には第1のビームスプリッタ41で反射した光が物体Sに達し、透過モード時には第1のビームスプリッタ41で反射した光が参照光として撮像素子2に達した。この構成は、本発明において必須の条件ではなく、他の構成もあり得る。すなわち、反射モード時に第1のビームスプリッタ41を透過した光が物体に達し、透過モード時には第1のビームスプリッタを透過した光が参照光として撮像素子に達するようにしても良い。具体的には、反射モードでは、図3に示す第2の実施形態において物体Sが置かれている位置に折り返しミラーを置き、第4のミラー341が置かれている位置に物体を置く。透過モードの際には、物体の位置は図3の場合と変えずに第4のミラー341の位置に撮像素子を置き、第1のビームスプリッタを同様に90°向きを変える。このようにしても、本発明の実施は可能である。但し、物体から撮像素子に至る撮像光路が第1のビームスプリッタ41のところで90°折れ曲がった状態になるので、光軸調整の容易さや得られるホログラムデータの精度といった点では、上記各実施形態に劣る。 In each of the above embodiments, the light reflected by the first beam splitter 41 reaches the object S in the reflection mode, and the light reflected by the first beam splitter 41 reaches the image sensor 2 as reference light in the transmission mode. . This configuration is not an essential condition in the present invention, and there may be other configurations. That is, the light transmitted through the first beam splitter 41 in the reflection mode may reach the object, and the light transmitted through the first beam splitter in the transmission mode may reach the image sensor as reference light. Specifically, in the reflection mode, the folding mirror is placed at the position where the object S is placed in the second embodiment shown in FIG. 3, and the object is placed at the position where the fourth mirror 341 is placed. In the transmission mode, the image sensor is placed at the position of the fourth mirror 341 without changing the position of the object in the case of FIG. 3, and the first beam splitter is similarly turned 90 °. Even in this way, the present invention can be implemented. However, since the imaging optical path from the object to the imaging device is bent by 90 ° at the first beam splitter 41, it is inferior to the above embodiments in terms of ease of optical axis adjustment and accuracy of the obtained hologram data. .
 上記の点に関連するが、第2の実施形態や第3の実施形態において、第1のビームスプリッタ41についての「第1の状態」や「第2の状態」は広義に解される必要がある。例えば、第1のビームスプリッタとして機能するビームスプリッタを二つ用意し、反射モード用と透過モード用とで使い分ける構成も考えられる。図7(A)に示すように反射面が斜め左上から斜め右下に延びる姿勢のビームスプリッタと、図7(B)に示すように反射面が斜め左下から斜め右上に延びるビームスプリッタとを用意し、適宜の切替機構で光路上に切り替えて配置する構成が考えられる。このような構成も、「第1の状態」及び「第2の状態」の概念の範囲内である。 Although related to the above points, in the second embodiment and the third embodiment, the “first state” and “second state” of the first beam splitter 41 need to be understood in a broad sense. is there. For example, a configuration in which two beam splitters functioning as the first beam splitter are prepared and used separately for the reflection mode and the transmission mode can be considered. As shown in FIG. 7A, a beam splitter having a posture in which the reflecting surface extends obliquely from the upper left to the lower right and a beam splitter in which the reflecting surface extends obliquely from the lower left to the upper right are prepared as shown in FIG. However, a configuration in which the light source is switched on the optical path by an appropriate switching mechanism can be considered. Such a configuration is also within the concept of the “first state” and the “second state”.
1 光源
2 撮像素子
31 反射回折光用導光系
32 透過回折光用導光系
33 参照光導光系
34 追加導光系
41 第1のビームスプリッタ
45 第2のビームスプリッタ
5 撮像光学系
6 制御系
61 制御ボード
62 切替プログラム
63 コンピュータ
DESCRIPTION OF SYMBOLS 1 Light source 2 Image pick-up element 31 Light guide system 32 for reflected diffracted light Light guide system 33 for transmitted diffracted light Reference light guide system 34 Additional light guide system 41 First beam splitter 45 Second beam splitter 5 Imaging optical system 6 Control system 61 control board 62 switching program 63 computer

Claims (16)

  1.  光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
     光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
     光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
     前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであることを特徴とするデジタルホログラフィ方法。
    Interference between the diffracted light from the object obtained by irradiating the light emitted from the light source on the object and the reference light obtained by guiding the light emitted from the light source without passing through the object on the imaging surface of the image sensor A digital holography method for acquiring hologram data by
    When the object from the first side is irradiated with the light from the light source, the reflected diffracted light reflected from the object to the first side and emitted is interfered with the reference light on the image pickup surface of the image pickup device to obtain hologram data. Performing a reflection mode to
    When the light from the light source is irradiated on the object from the second side opposite to the first side, the transmitted diffracted light that is transmitted through and emitted from the first side and the reference light are reflected on the imaging surface of the image sensor. And performing a transmission mode of acquiring hologram data by causing interference,
    The digital holography method, wherein the step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
  2.  光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ方法であって、
     光源からの光を第1の側から物体に照射した際に物体から第1の側に反射して出射する反射回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する反射モードを行うステップと、
     光源からの光を第1の側とは反対側の第2の側から物体に照射した際に第1の側に透過して出射する透過回折光と前記参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得する透過モードを行うステップとを有しており、
     前記反射モードを行うステップと前記透過モードを行うステップとは、択一的に選択されて互いに異なる時間帯に行われるものであることを特徴とするデジタルホログラフィ方法。
    The diffracted light from the object obtained by irradiating the object with light emitted from the light source and the reference light extracted from the diffracted light from the object without including object information are caused to interfere with each other on the imaging surface of the image sensor. A digital holography method for acquiring hologram data,
    When the object from the first side is irradiated with the light from the light source, the reflected diffracted light reflected from the object to the first side and emitted is interfered with the reference light on the image pickup surface of the image pickup device to obtain hologram data. Performing a reflection mode to
    When the light from the light source is irradiated on the object from the second side opposite to the first side, the transmitted diffracted light that is transmitted through and emitted from the first side and the reference light are reflected on the imaging surface of the image sensor. And performing a transmission mode of acquiring hologram data by causing interference,
    The digital holography method, wherein the step of performing the reflection mode and the step of performing the transmission mode are alternatively selected and performed in different time zones.
  3.  光源から放出された光を物体に照射して得られた物体からの回折光と、光源から放出された光を物体を経ることなく導いて得られた参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
     光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
     光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
     反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
     光源からの光を物体を経ずに撮像素子の撮像面に導く参照光導光系とを備えており、
     撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
     前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
     前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
     前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されていることを特徴とするデジタルホログラフィ装置。
    Interference between the diffracted light from the object obtained by irradiating the light emitted from the light source on the object and the reference light obtained by guiding the light emitted from the light source without passing through the object on the imaging surface of the image sensor A digital holography device for acquiring hologram data by
    A light guide system for reflected diffracted light that guides light from the light source to the object in order to obtain reflected diffracted light that is diffracted light that is reflected and emitted from the object;
    A light guide system for transmitted diffracted light that guides light from the light source to the object in order to obtain transmitted diffracted light that is diffracted light that is transmitted through and emitted from the object;
    An imaging device in which the imaging surface is located at a position where the reflected diffracted light can be incident and at which the transmitted diffracted light can be incident;
    A reference light guide system that guides light from the light source to the imaging surface of the image sensor without passing through an object,
    There is provided a selection optical element for selectively selecting whether to enter the reflection mode by entering the reflected diffracted light on the imaging surface of the image sensor or to enter the transmission mode by entering the transmitted diffracted light.
    The light guide system for reflected diffracted light irradiates light from the light source to the object from the first side,
    The light guide system for transmitted diffracted light irradiates the object with light from the light source from a second side opposite to the first side,
    A digital holography apparatus, wherein an imaging optical path, which is an optical path from the object to an imaging surface of the imaging element, is set on the first side of the object.
  4.  光源から放出された光を物体に照射して得られた物体からの回折光と、物体からの回折光から物体情報を含まない状態で抽出した参照光とを撮像素子の撮像面で干渉させてホログラムデータを取得するデジタルホログラフィ装置であって、
     光が物体に反射して出射する回折光である反射回折光を得るために光源からの光を物体まで導く反射回折光用導光系と、
     光が物体を透過して出射する回折光である透過回折光を得るために光源からの光を物体まで導く透過回折光用導光系と、
     反射回折光が入射可能な位置であるとともに透過回折光が入射可能な位置に撮像面が位置する撮像素子と、
     反射回折光又は透過回折光から物体情報を含まない状態で参照光を抽出して撮像素子の撮像面に導く参照光導光系とを備えており、
     撮像素子の撮像面に反射回折光を入射させて反射モードとするか透過回折光を入射させて透過モードとするかを択一的に選択する選択用光学素子が設けられており、
     前記反射回折光用導光系は、前記光源からの光を前記物体に対して第1の側から照射するものであり、
     前記透過回折光用導光系は、前記光源からの光を第1の側とは反対の第2の側から前記物体に照射するものであり、
     前記物体から前記撮像素子の撮像面に至る光路である撮像光路が前記物体の第1の側に設定されていることを特徴とするデジタルホログラフィ装置。
    The diffracted light from the object obtained by irradiating the object with light emitted from the light source and the reference light extracted from the diffracted light from the object without including object information are caused to interfere with each other on the imaging surface of the image sensor. A digital holography device for acquiring hologram data,
    A light guide system for reflected diffracted light that guides light from the light source to the object in order to obtain reflected diffracted light that is diffracted light that is reflected and emitted from the object;
    A light guide system for transmitted diffracted light that guides light from the light source to the object in order to obtain transmitted diffracted light that is diffracted light that is transmitted through and emitted from the object;
    An imaging device in which the imaging surface is located at a position where the reflected diffracted light can be incident and at which the transmitted diffracted light can be incident;
    A reference light guide system that extracts reference light from reflected diffracted light or transmitted diffracted light without including object information and guides it to the imaging surface of the image sensor,
    There is provided a selection optical element for selectively selecting whether to enter the reflection mode by entering the reflected diffracted light on the imaging surface of the image sensor or to enter the transmission mode by entering the transmitted diffracted light.
    The light guide system for reflected diffracted light irradiates light from the light source to the object from the first side,
    The light guide system for transmitted diffracted light irradiates the object with light from the light source from a second side opposite to the first side,
    A digital holography apparatus, wherein an imaging optical path, which is an optical path from the object to an imaging surface of the imaging element, is set on the first side of the object.
  5.  前記撮像光路上には、レンズを含む撮像光学系が設けられていることを特徴とする請求項3又は4記載のデジタルホログラフィ装置。 The digital holography device according to claim 3 or 4, wherein an imaging optical system including a lens is provided on the imaging optical path.
  6.  前記撮像光学系は、前記反射モードと前記透過モードとで少なくとも一部の光学素子を共用するものであることを特徴とする請求項5記載のデジタルホログラフィ装置。 The digital holography device according to claim 5, wherein the imaging optical system shares at least a part of optical elements in the reflection mode and the transmission mode.
  7.  前記撮像光学系は、テレセントリックな光学系であることを特徴とする請求項3、4、5又は6記載のデジタルホログラフィ装置。 The digital holography device according to claim 3, 4, 5, or 6, wherein the imaging optical system is a telecentric optical system.
  8.  前記撮像光路は、前記物体から前記撮像面に一直線に延びるものであることを特徴とする請求項3乃至7いずれかに記載のデジタルホログラフィ装置。 The digital holography device according to any one of claims 3 to 7, wherein the imaging optical path extends straight from the object to the imaging surface.
  9.  前記反射回折光用導光系は、前記撮像光路を通って光を前記物体に導くものであって、前記撮像光路に達するまでの光路上に第1のスペイシャルフィルタを備えているとともに第1のスペイシャルフィルタから前記撮像光路に達するまでの光路上に0個又は1個のみのミラーを備えており、
     前記透過回折光用導光系は、第2のスペイシャルフィルタを備えているとともに第2のスペイシャルフィルタから前記物体に達するまでの光路上に0個又は1個のみのミラーを備えていることを特徴とする請求項3乃至8いずれかに記載のデジタルホログラフィ装置。
    The light guide system for reflected diffracted light guides light to the object through the imaging optical path, and includes a first spatial filter on the optical path up to the imaging optical path and the first Comprising zero or only one mirror on the optical path from the spatial filter to the imaging optical path,
    The light guide system for transmitted diffracted light includes a second spatial filter and includes zero or only one mirror on the optical path from the second spatial filter to the object. The digital holography device according to claim 3, wherein:
  10.  前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであることを特徴とする請求項3乃至9いずれかに記載のデジタルホログラフィ装置。 The selection optical element includes a first selection optical element disposed on a main optical path extending from the light source, and the main optical path includes an optical path of the light guide system for the reflected diffracted light and the transmitted diffracted light The first selection optical element branches the light from the light source along the optical path of the reflected diffracted light guide system or the transmitted diffracted light guide light. 10. The digital holography device according to claim 3, wherein the digital holography device selectively selects whether to advance along the optical path of the system.
  11.  前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであることを特徴とする請求項3乃至10いずれかに記載のデジタルホログラフィ装置。 A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffracted light guides light from a light source to the first beam splitter, and the first beam splitter is 11. The method according to any one of claims 3 to 10, wherein a first state in which light guided by the light guide system for reflected diffracted light is divided in the reflection mode and one of the lights is directed to the object is taken. A digital holography device according to claim 1.
  12.  前記選択用光学素子として、前記光源から延びる主光路上に配置された第1の選択用光学素子を備えており、主光路は、前記反射回折光用導光系の光路と前記透過回折光用導光系の光路とに分岐しており、第1の選択用光学素子は、前記光源からの光を前記反射回折光用導光系の光路に沿って進ませるか前記透過回折光用導光系の光路に沿って進ませるかを択一的に選択するものであり、
     前記撮像光路上には第1のビームスプリッタが設けられており、前記反射回折光用導光系は、光源からの光を第1のビームスプリッタに導くものであり、第1のビームスプリッタは、反射モードの際に前記反射回折光用導光系で導かれた光を分割してその一方を前記物体に向かわせる第1の状態を取るものであり、
     前記参照光導光系は、反射モードの際に前記第1のビームスプリッタで分割された他方の光を前記物体を経ずに前記撮像素子の撮像面に導くものであり、
     前記第1の選択用光学素子は、第2のビームスプリッタであって、第2のビームスプリッタの配置位置を変更する駆動部が設けられており、駆動部は、反射モードの際には第2のビームスプリッタを主光路から外れた位置として光が前記透過回折光用導光系の光路に進まないようにするとともに、透過モードの際には第2のビームスプリッタを主光路上に配置して光の一部が前記透過回折光用導光系の光路に沿って進むようにするものであり、
     前記第1のビームスプリッタは第2の選択用光学素子として配置されており、前記第1のビームスプリッタには前記第1のビームスプリッタの状態を変更する切替部が設けられており、
     前記切替部は、反射モードの際には前記第1のビームスプリッタを前記第1の状態とするものであり、透過モードの際には、前記第1のビームスプリッタを第2の状態とするものであり、該第2の状態は、前記反射回折光用導光系が前記参照光導光系として兼用されるよう、前記反射回折光用導光系で導かれて前記第1のビームスプリッタに達した光が前記物体を経ずに前記撮像素子の撮像面に入射する状態であることを特徴とする請求項3,5,6,7,8又は9記載のデジタルホログラフィ装置。
    The selection optical element includes a first selection optical element disposed on a main optical path extending from the light source, and the main optical path includes an optical path of the light guide system for the reflected diffracted light and the transmitted diffracted light The first selection optical element branches the light from the light source along the optical path of the reflected diffracted light guide system or the transmitted diffracted light guide light. It is an option to select whether to advance along the optical path of the system,
    A first beam splitter is provided on the imaging optical path, the light guide system for reflected diffracted light guides light from a light source to the first beam splitter, and the first beam splitter is Taking a first state in which the light guided by the light guide system for reflected diffracted light in the reflection mode is divided and one of the lights is directed to the object;
    The reference light guide system guides the other light divided by the first beam splitter in the reflection mode to the imaging surface of the imaging element without passing through the object,
    The first optical element for selection is a second beam splitter, and is provided with a drive unit for changing the arrangement position of the second beam splitter, and the drive unit is a second beam splitter in the reflection mode. In order to prevent light from traveling to the optical path of the transmission diffracted light guide system, the second beam splitter is arranged on the main optical path in the transmission mode. A part of the light is allowed to travel along an optical path of the light guide system for transmitted diffraction light,
    The first beam splitter is arranged as a second optical element for selection, and the first beam splitter is provided with a switching unit for changing the state of the first beam splitter,
    The switching unit sets the first beam splitter to the first state in the reflection mode, and sets the first beam splitter to the second state in the transmission mode. The second state is guided by the reflected diffracted light guiding system and reaches the first beam splitter so that the reflected diffracted light guiding system is also used as the reference light guiding system. The digital holography apparatus according to claim 3, 5, 6, 7, 8, or 9, wherein the light that has entered is incident on an imaging surface of the imaging device without passing through the object.
  13.  前記参照光導光系は、反射モードの際、前記第1のビームスプリッタを透過した前記他方の光が前記第1のビームスプリッタを経て前記撮像素子の撮像面に入射するよう該他方の光を前記第1のビームスプリッタに戻すものであり、
     該他方の光を前記第1のビームスプリッタに戻す光路上に配置されることが可能なビームストッパと、ビームストッパを駆動するストッパ駆動部とが設けられており、ストッパ駆動部は、反射モードの際にはビームストッパを光路上に配置せず、透過モードの際にはビームストッパを光路上に配置するものであることを特徴とする請求項12記載のデジタルホログラフィ装置。
    In the reflection mode, the reference light guide system transmits the other light that has passed through the first beam splitter and enters the imaging surface of the imaging element via the first beam splitter. Return to the first beam splitter,
    There is provided a beam stopper capable of being arranged on the optical path for returning the other light to the first beam splitter, and a stopper driving unit for driving the beam stopper. 13. The digital holography device according to claim 12, wherein the beam stopper is not disposed on the optical path when the beam is stopped, and the beam stopper is disposed on the optical path when the transmission mode is selected.
  14.  前記参照光導光系は、前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子を備えていることを特徴とする請求項3乃至12いずれかに記載のデジタルホログラフィ装置。 The reference light guide system emits reference light in a state where a predetermined angle is given with respect to the direction of the reflected diffracted light or the transmitted diffracted light when entering the image pickup surface of the image pickup device. The digital holography device according to claim 3, further comprising an off-axis optical element that is incident on the optical axis.
  15.  前記撮像素子の撮像面に入射する際の前記反射回折光又は前記透過回折光の方向に対して所定の角度が付与された状態で参照光を前記撮像素子の撮像面に入射させるオフアクシス用光学素子が設けられており、
     オフアクシス用光学素子は、前記反射回折光用導光系が前記第1のビームスプリッタの手前の光路上に備える第1オフアクシス用ミラーと、前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す際の光路上に備えた第2オフアクシス用ミラーであり、
     第1オフアクシス用ミラーには駆動部が設けられており、この駆動部は、反射モードの際には該第1オフアクシス用ミラーを第1の姿勢とし、透過モードの際には該第1オフアクシス用ミラーを第2の姿勢とするものであり、
     第1の姿勢は、該第1オフアクシス用ミラーによっては前記所定の角度が付与されない姿勢であり、第2の姿勢は、該第1オフアクシス用ミラーによって前記所定の角度が付与される姿勢であることを特徴とする請求項13記載のデジタルホログラフィ装置。
    Off-axis optics that allows reference light to enter the imaging surface of the imaging element in a state where a predetermined angle is given to the direction of the reflected or transmitted diffracted light when entering the imaging surface of the imaging element Elements are provided,
    The off-axis optical element includes a first off-axis mirror provided on the optical path in front of the first beam splitter by the reflected diffracted light guiding system, and the reference light guiding system configured to transmit the other light. A second off-axis mirror provided on the optical path when returning to the first beam splitter;
    The first off-axis mirror is provided with a drive unit. The drive unit sets the first off-axis mirror in the first posture in the reflection mode and the first off-axis mirror in the transmission mode. The off-axis mirror is in the second position,
    The first posture is a posture in which the predetermined angle is not given by the first off-axis mirror, and the second posture is a posture in which the predetermined angle is given by the first off-axis mirror. 14. The digital holography device according to claim 13, wherein the digital holography device is provided.
  16.  前記第1のビームスプリッタから前記光源に向けて光の進行方向とは逆向きに光路をたどった際、前記第1オフアクシス用ミラーは最初のミラーであり、
     前記参照光導光系が前記他方の光を前記第1のビームスプリッタに戻す光路上において前記第1のビームスプリッタから光の進行方向とは逆向きにたどった際、前記第2オフアクシス用ミラーは最初のミラーであることを特徴とする請求項15記載のデジタルホログラフィ装置。
    When the optical path from the first beam splitter toward the light source is traced in the direction opposite to the traveling direction of the light, the first off-axis mirror is an initial mirror;
    When the reference light guide system traces the light from the first beam splitter in the direction opposite to the traveling direction on the optical path for returning the other light to the first beam splitter, the second off-axis mirror is 16. The digital holography device according to claim 15, which is the first mirror.
PCT/JP2012/074987 2011-09-30 2012-09-27 Digital holography method and digital holography device WO2013047709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536410A JP5888334B2 (en) 2011-09-30 2012-09-27 Digital holography method and digital holography apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-215952 2011-09-30
JP2011215952 2011-09-30

Publications (2)

Publication Number Publication Date
WO2013047709A1 true WO2013047709A1 (en) 2013-04-04
WO2013047709A4 WO2013047709A4 (en) 2013-08-29

Family

ID=47995736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074987 WO2013047709A1 (en) 2011-09-30 2012-09-27 Digital holography method and digital holography device

Country Status (2)

Country Link
JP (2) JP5888334B2 (en)
WO (1) WO2013047709A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064088A1 (en) * 2013-10-28 2015-05-07 公立大学法人兵庫県立大学 Holographic microscope and data processing method for high-resolution hologram image
JP2015096943A (en) * 2013-10-11 2015-05-21 パナソニックIpマネジメント株式会社 Scanning optical microscope
CN105066908A (en) * 2015-08-12 2015-11-18 北京航空航天大学 Digital holography three-directional shape detection device based on multi-wavelengths and multi-polarization states
WO2017006369A1 (en) * 2015-07-07 2017-01-12 オリンパス株式会社 Digital holographic imaging device and illumination device
CN107463081A (en) * 2017-06-16 2017-12-12 重庆理工大学 A kind of real-time micro-imaging detecting system of three-dimensional using Digital Holography
KR20190022039A (en) * 2017-08-25 2019-03-06 주식회사 내일해 An Improved Holographic Reconstruction Apparatus and Method
CN110360949A (en) * 2019-07-19 2019-10-22 东北大学 A kind of multifunctional holographic interferometer measuration system
KR20200072306A (en) * 2018-12-12 2020-06-22 주식회사 내일해 Method for generating 3d shape information of an object
CN111811394A (en) * 2020-06-02 2020-10-23 上海大学 Dynamic three-wavelength digital holographic measurement method based on 3CCD or 3CMOS
KR20230067574A (en) 2021-11-08 2023-05-16 오츠카덴시가부시끼가이샤 Optical measuring method and optical measuring system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176054B2 (en) * 2013-10-19 2017-08-09 ウシオ電機株式会社 Droplet flow observation method and droplet flow observation apparatus
KR101902348B1 (en) * 2017-04-13 2018-09-28 연세대학교 산학협력단 Digital holography system using a MLCC actuator
KR102222859B1 (en) * 2019-06-11 2021-03-04 주식회사 내일해 An Improved Holographic Reconstruction Apparatus and Method
WO2021095419A1 (en) * 2019-11-15 2021-05-20 富士フイルム株式会社 Information processing device, method for operating information processing device, and program for operating information processing device
JP6809626B1 (en) 2020-04-08 2021-01-06 信越半導体株式会社 DIC defect shape measurement method and polishing method for silicon wafers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526815A (en) * 1998-10-07 2002-08-20 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Method and apparatus for simultaneously forming an amplitude contrast image and a quantitative phase contrast image by numerically reconstructing a digital hologram
WO2008123408A1 (en) * 2007-04-04 2008-10-16 Nikon Corporation Three-dimensional microscope and method for acquiring three-dimensional image
JP2011043555A (en) * 2009-08-19 2011-03-03 Olympus Corp Objective optical system for microscope, and microscope having objective optical system for microscope and variable power optical system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230983B2 (en) * 1996-01-12 2001-11-19 富士写真光機株式会社 Subject position adjustment method for lightwave interference device
JP4294526B2 (en) * 2004-03-26 2009-07-15 独立行政法人科学技術振興機構 Digital holography apparatus and image reproduction method using digital holography
JP2008209722A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Method for producing multiple-exposure hologram and multiple-exposure hologram
EP2063260A1 (en) * 2007-11-19 2009-05-27 Lambda-X Fourier transform deflectometry system and method
JP2010145843A (en) * 2008-12-19 2010-07-01 Nippon Soken Inc Interference image recording device and method for adjusting optical system in interference image recording device
JP2010223775A (en) * 2009-03-24 2010-10-07 Olympus Corp Interferometer
IN2012DN01700A (en) * 2009-10-08 2015-06-05 Univ Bruxelles
US9025156B2 (en) * 2009-12-14 2015-05-05 Konica Minolta Holdings, Inc. Interferometer and fourier spectrometer using same
JP2012202777A (en) * 2011-03-24 2012-10-22 Nikon Corp Observation device and observation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526815A (en) * 1998-10-07 2002-08-20 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Method and apparatus for simultaneously forming an amplitude contrast image and a quantitative phase contrast image by numerically reconstructing a digital hologram
WO2008123408A1 (en) * 2007-04-04 2008-10-16 Nikon Corporation Three-dimensional microscope and method for acquiring three-dimensional image
JP2011043555A (en) * 2009-08-19 2011-03-03 Olympus Corp Objective optical system for microscope, and microscope having objective optical system for microscope and variable power optical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. KIM ET AL.: "Study on elimination of twin image in a combined dual-type digital hologram microscope system", PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 7329, 2009, pages 73290F - 1 - 73290F-8, XP055064687 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096943A (en) * 2013-10-11 2015-05-21 パナソニックIpマネジメント株式会社 Scanning optical microscope
JPWO2015064088A1 (en) * 2013-10-28 2017-03-09 公立大学法人兵庫県立大学 Holographic microscope and data processing method for high resolution hologram images
US10156829B2 (en) 2013-10-28 2018-12-18 University Of Hyogo Holographic microscope and data processing method for high-resolution hologram image
WO2015064088A1 (en) * 2013-10-28 2015-05-07 公立大学法人兵庫県立大学 Holographic microscope and data processing method for high-resolution hologram image
WO2017006369A1 (en) * 2015-07-07 2017-01-12 オリンパス株式会社 Digital holographic imaging device and illumination device
JPWO2017006369A1 (en) * 2015-07-07 2018-04-19 オリンパス株式会社 Digital holographic imaging device and illumination device
US10649405B2 (en) 2015-07-07 2020-05-12 Olympus Corporation Digital holographic imaging apparatus and illumination apparatus
CN105066908A (en) * 2015-08-12 2015-11-18 北京航空航天大学 Digital holography three-directional shape detection device based on multi-wavelengths and multi-polarization states
CN105066908B (en) * 2015-08-12 2017-06-09 北京航空航天大学 A kind of digital hologram three-dimensional Shape measure device based on multi-wavelength and multi-polarization state
CN107463081B (en) * 2017-06-16 2020-01-17 重庆理工大学 Three-dimensional real-time microscopic imaging detection system using digital holographic technology
CN107463081A (en) * 2017-06-16 2017-12-12 重庆理工大学 A kind of real-time micro-imaging detecting system of three-dimensional using Digital Holography
KR101990009B1 (en) * 2017-08-25 2019-09-30 주식회사 내일해 An Improved Holographic Reconstruction Apparatus and Method
KR20190022039A (en) * 2017-08-25 2019-03-06 주식회사 내일해 An Improved Holographic Reconstruction Apparatus and Method
US11215950B2 (en) 2017-08-25 2022-01-04 Naeilhae, Co., Ltd. Holographic reconstruction device and method
KR20200072306A (en) * 2018-12-12 2020-06-22 주식회사 내일해 Method for generating 3d shape information of an object
KR102150110B1 (en) 2018-12-12 2020-08-31 주식회사 내일해 Method for generating 3d shape information of an object
CN110360949A (en) * 2019-07-19 2019-10-22 东北大学 A kind of multifunctional holographic interferometer measuration system
CN110360949B (en) * 2019-07-19 2020-10-20 东北大学 Multifunctional holographic interference measurement system
CN111811394A (en) * 2020-06-02 2020-10-23 上海大学 Dynamic three-wavelength digital holographic measurement method based on 3CCD or 3CMOS
KR20230067574A (en) 2021-11-08 2023-05-16 오츠카덴시가부시끼가이샤 Optical measuring method and optical measuring system

Also Published As

Publication number Publication date
JPWO2013047709A1 (en) 2015-03-26
WO2013047709A4 (en) 2013-08-29
JP2016027407A (en) 2016-02-18
JP5888334B2 (en) 2016-03-22
JP6079839B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6079839B2 (en) Digital holography method and digital holography apparatus
JP5603081B2 (en) Focus adjustment device and focus adjustment method
US6441356B1 (en) Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
JP6033798B2 (en) System and method for illumination phase control in fluorescence microscopy
US9696686B2 (en) Method and device for focussing a microscope automatically
JP2007279287A (en) Structured illuminating optical system and structured illuminating microscope having the same
JP3943620B2 (en) Differential interference microscope
CN108562241A (en) The apparatus and method of digital hologram flexible measuring based on fiber optic bundle
US6433876B1 (en) Multiple wavelength or multiple shear distance quantitative differential interference contrast microscopy
JP5107547B2 (en) Interferometric surface shape measuring device
JP6759658B2 (en) Digital holography equipment
JP2005532596A (en) Optical microscope capable of rapid three-dimensional modulation of observation point position
JP2006275868A (en) Speckle interferometry system
JP6670476B2 (en) Detector
JP4072190B2 (en) Differential interference microscope
JP6409260B2 (en) Structured illumination device and structured illumination microscope device
JP6762063B2 (en) Optical measuring device and optical measuring method
CN117940761A (en) Optical measurement system and optical measurement method
JP5181403B2 (en) Interferometer
WO2022020511A1 (en) Apparatus and method to convert a regular bright-field microscope into a ps-qpi system
Faridian et al. Deep-ultraviolet digital holographic microscopy for nano-inspection
JP2014010019A (en) Interference measurement
JP2020095228A (en) Digital holography device
JPH11109253A (en) Interference microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836898

Country of ref document: EP

Kind code of ref document: A1