WO2013047622A1 - Display device and display device manufacturing method - Google Patents

Display device and display device manufacturing method Download PDF

Info

Publication number
WO2013047622A1
WO2013047622A1 PCT/JP2012/074791 JP2012074791W WO2013047622A1 WO 2013047622 A1 WO2013047622 A1 WO 2013047622A1 JP 2012074791 W JP2012074791 W JP 2012074791W WO 2013047622 A1 WO2013047622 A1 WO 2013047622A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
reflective electrode
organic
light
layer
Prior art date
Application number
PCT/JP2012/074791
Other languages
French (fr)
Japanese (ja)
Inventor
哲憲 田中
庄治 岡崎
宏充 勝井
通 園田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013047622A1 publication Critical patent/WO2013047622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the microcavity effect is a phenomenon in which emitted light undergoes multiple reflections between an anode and a cathode and resonates, resulting in a steep emission spectrum and amplification of emission intensity at a peak wavelength.
  • the anode has a laminated structure of a reflective electrode layer and a transparent electrode layer as described above, and after the organic EL layer is appropriately laminated, the cathode is made into a thin film, for example, as a semitransparent electrode.
  • a microcavity structure can be introduced into the organic EL element.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2007-280677 (published on Oct. 25, 2007)”
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-116516 (published April 28, 2005)”
  • FIG. 15A includes a reflective electrode 21, a counter electrode 23 provided to face the reflective electrode 21, and an organic EL layer 22 between the electrodes. It is the schematic of the conventional organic electroluminescence display 100 designed to have.
  • the provision of the edge cover 25 defines the light emitting unit 30 that is a portion from which light can be extracted from the organic EL layer 22.
  • the BM is designed including the bonding margin 103 in consideration of the margin for the positional deviation.
  • the opening of the BM is smaller than the light emitting part.
  • the light emitting unit 30 is defined by the end of the edge cover 25, the display area 101 (opening) as a display device is defined by the BM 52. In other words, light emission at the bonding margin 103 does not contribute to display. This causes a decrease in the aperture ratio of the display device and a decrease in light utilization efficiency.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a display device that suppresses unnecessary reflection of outside incident light and improves light utilization efficiency.
  • Another object of the present invention is to provide a display device capable of designing a BM opening larger than a conventional display device.
  • Another object of the present invention is to provide a method for performing low reflection treatment on at least a part of the periphery of the reflective electrode in order to manufacture the display device as described above.
  • a method for manufacturing a display device of the present invention includes: A method of manufacturing a display device, comprising: a reflective electrode provided for each pixel; a counter electrode provided to face the reflective electrode; and a light control layer sandwiched between the reflective electrode and the counter electrode
  • the low-reflection region is provided in at least a part of the periphery of the reflective electrode by performing a low-reflection treatment on at least a part of the reflective electrode.
  • the reflection electrode has a low reflection region, and it is possible to suppress the outside light from being reflected by the reflection electrode and emitted to the outside, thereby suppressing the decrease in the contrast ratio of the display.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is sectional drawing of an organic electroluminescence display provided with a colored light emitting layer. It is a schematic diagram which shows the image display method of the organic electroluminescent display apparatus of this invention. It is a schematic diagram which shows the behavior of the external light which injected into the organic electroluminescent display apparatus of this invention.
  • A) is sectional drawing of the organic electroluminescence display of Example 1 of this invention
  • (b) is a top view.
  • (A) is sectional drawing of the other organic electroluminescent display apparatus of Example 1 of this invention, (b) is a top view.
  • (A) is sectional drawing of the organic electroluminescent display apparatus of Example 2 of this invention, (b) is a top view.
  • (A) is sectional drawing of the other organic electroluminescent display apparatus of Example 2 of this invention, (b) is a top view.
  • (A) is sectional drawing of the organic electroluminescent display apparatus of Example 3 of this invention, (b) is a top view. It is a flowchart which shows an example of the manufacturing process of the organic electroluminescent display apparatus of this invention in process order.
  • an organic EL display device will be described as an example of the display device.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an organic EL display panel 1 provided in the organic EL display device 100 of the present embodiment.
  • the organic EL display panel 1 includes an organic EL element 20, a sealing resin layer 41, a filling resin layer 42, and a color filter (hereinafter, referred to as “film formation substrate, TFT (Thin Film Transistor: Thin Film Transistor) substrate)” on a support substrate 10.
  • CF Film Formation substrate, TFT (Thin Film Transistor: Thin Film Transistor) substrate
  • the support substrate 10 is provided with electrodes to be described later, and the support substrate 10 functions as an electrode substrate.
  • the sealing substrate 50 is provided to face the support substrate 10 with the organic EL element 20 interposed therebetween, and functions as a counter substrate.
  • a filling resin layer 42 having adhesiveness containing a desiccant is formed on the organic EL element 20, a filling resin layer 42 having adhesiveness containing a desiccant is formed.
  • the filling resin constituting the filling resin layer 42 is filled in a space surrounded by the support substrate 10, the sealing substrate 50, and the sealing resin layer 41.
  • the CF51 is not essential.
  • the organic EL element 20 itself can be configured to color red, green, blue, etc., and the CF can be omitted.
  • an inorganic film (not shown), a mixed organic / inorganic laminated film, or the like may be laminated on the organic EL element 20.
  • the sealing resin layer 41, the sealing substrate 50, and the filling resin layer 42 can be omitted if the sealing performance of the organic EL element 20 is sufficient only with an inorganic film or an organic / inorganic mixed laminated film.
  • a hollow structure in which an inert gas is sealed in the space may be used.
  • it may have a structure in which a desiccant is applied or pasted in the hollow structure.
  • a desiccant is applied or pasted in the hollow structure.
  • FIG. 2 is a plan view showing a configuration of a main part of the organic EL display device 100.
  • the organic EL display device 100 includes a plurality of pixels 70 on which organic EL elements are formed.
  • the pixel 70 includes a pixel 70R that displays red, a pixel 70G that displays green, and a pixel 70B that displays blue. Further, a pixel that displays a color different from the red, green, and blue colors such as yellow can be added to the pixel 70.
  • each pixel 70 has a display area 101 and a non-display area 102.
  • the display area 101 is an area in the light emitting unit 30 in a plan view.
  • the light emitting unit 30 refers to a region where the reflective electrode 21 is provided and the edge cover 25 is not provided. This will be described later with reference to FIG.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the organic EL display panel 1 when the organic EL display panel 1 is cut along line AA shown in FIG.
  • the sealing substrate 50 is provided so as to seal the organic EL element 20 and the filling resin layer 42.
  • sealing substrate 50 As a material for forming the sealing substrate 50, for example, glass or plastic can be used.
  • the surface of the sealing substrate 50 is provided with a CF 51 and a black matrix (hereinafter referred to as BM) 52 as a shielding part.
  • BM black matrix
  • CF51 is a colored layer that transmits a specific wavelength of light emitted from the organic EL layer 22 described later.
  • the BM 52 is provided between the CFs 51 to prevent light from entering between the CFs 51 from the outside and light leakage from between the CFs 51.
  • CF51R that transmits red (R) corresponding to each pixel 70, specifically, red (R) corresponding to the pixel 70R that displays red, and green are provided.
  • a configuration without using the CF 51 is also possible. That is, when the organic EL element of each pixel 70 develops a desired color such as red, green, and blue by itself, the CF 51 can be omitted.
  • the support substrate 10 As a material for forming the support substrate 10, for example, glass or plastic can be used.
  • an opaque metal plate or the like may be used as the support substrate 10 used in the top emission type organic EL display device 100 that emits light from the sealing substrate 50 side.
  • the signal line 11 and the TFT 12 are provided on the support substrate 10 corresponding to each pixel 70.
  • an interlayer film 13 (a planarizing film) is laminated on the support substrate 10 over the entire region of the support substrate 10 so as to cover the signal lines 11 and the TFTs 12.
  • the signal line 11 includes, for example, a plurality of lines for selecting pixels (gate lines), a plurality of lines for writing data (source lines), a plurality of lines for supplying power to the organic EL elements 20 (power supply lines), and the like. ing.
  • the signal line is connected to an external circuit (not shown) outside the display area 101.
  • an electric signal to the signal line 11 from the external circuit, the organic EL element arranged at the signal line intersection can be driven (emitted).
  • a control signal is sent to the reflective electrode 21 of each pixel 70 via the signal line 11 and the TFT 12, and the organic EL element emits light.
  • At least one TFT 12 is disposed in each pixel 70.
  • each pixel 70 may be formed with a capacitor for holding the written voltage and a compensation circuit for compensating for variations in characteristics of the TFT 12.
  • a known photosensitive resin can be used as the interlayer film 13.
  • the photosensitive resin for example, an acrylic resin or a polyimide resin can be used.
  • the interlayer film 13 is provided with a contact hole 26 for electrically connecting the reflective electrode 21 provided in the organic EL element 20 to the TFT 12.
  • Organic EL element 20 is a light emitting element capable of high luminance light emission by low voltage direct current drive.
  • a reflective electrode 21, an organic EL layer 22, and a counter electrode 23 are stacked on the interlayer film 13 in this order.
  • the periphery of the reflective electrode 21 is covered with an edge cover 25 that is an insulating portion.
  • the periphery of two adjacent reflective electrodes 21 is covered with an edge cover 25.
  • the organic EL layer 22 and the counter electrode 23 are provided above the reflective electrode 21 or the edge cover 25.
  • the reflective electrode 21 is connected to the TFT 12 through a contact hole 26 provided in the support substrate 10.
  • a metal material can be used as the reflective electrode 21. More specifically, for example, Ag or an Ag alloy, Al or an Al alloy, or the like can be used.
  • a translucent electrode as the counter electrode 23.
  • a metal translucent electrode alone or a laminate of a metal translucent electrode layer and a transparent electrode layer can be used.
  • the reflective electrode 21 is a layer having a function of injecting (supplying) holes into the organic EL layer 22.
  • the counter electrode 23 is a layer having a function of injecting (supplying) electrons into the organic EL layer 22.
  • the light emitting unit 30 is a region where light can be extracted from the light emitting layer 24. That is, the edge cover 25 defines the area of the light emitting unit 30.
  • the edge cover 25 is made of an insulating material, and the organic EL layer 22 becomes thin or the electric field concentration occurs at the end of the reflective electrode 21, so that the reflective electrode 21 and the counter electrode 23 in the organic EL element 20 are connected. Prevent short circuit.
  • a known photosensitive resin can be used as the material of the edge cover 25 .
  • the photosensitive resin for example, an acrylic resin or a polyimide resin can be used.
  • the reflective electrode 21 of the organic EL display device 100 includes a reflective region 211 and a low reflective region 212, and the low reflective region 212 is provided on at least a part of the periphery of the reflective electrode 21. .
  • the low reflection region 212 is a region having a lower light reflectance than the reflection region 211.
  • a material having a color close to black as compared with the reflection region 211 can be used.
  • the low reflection region 212 can be provided by performing a low reflection treatment on the reflective electrode 21.
  • the reflective electrode 21 is a metal
  • the reflective electrode 21 is composed of silver or a silver alloy
  • the low reflective region 212 can be composed of silver oxide.
  • the organic EL layer 22 includes a light emitting layer 24 that functions as a light control layer, and a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer (not shown).
  • the organic EL display device 100 shown in FIG. 3 includes a light emitting element that emits white light as the light emitting layer 24, and is provided continuously to the plurality of pixels 70, that is, the entire pixel portion.
  • a light emitting element that emits light of a desired color can be used for the light emitting layer 24.
  • a light emitting layer 24R formed of a light emitting element emitting red light, a light emitting layer 24G formed of a light emitting element emitting green light, and a light emitting layer 24B formed of a light emitting element emitting blue light can be used.
  • color display can be performed without providing a CF.
  • the light emitting layer 24 is configured to emit light of red, green, blue, etc., it is possible to use CF in combination.
  • the pixels 70R, 70G, and 70B that emit a desired color can be formed in each pixel 70.
  • the organic EL layer 22 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer between the reflective electrode 21 and the counter electrode 23 from the reflective electrode 21 side. It has the structure formed in order.
  • a carrier blocking layer for blocking the flow of carriers such as holes and electrons may be inserted as necessary.
  • one layer may have a plurality of functions, and for example, a single layer serving as a hole injection layer and a hole transport layer may be formed.
  • the stacking order is that in which the reflective electrode 21 is an anode and the counter electrode 23 is a cathode.
  • the stacking order of the organic EL layers 22 is reversed.
  • the hole injection layer is a layer having a function of increasing the efficiency of hole injection from the reflective electrode 21 to the organic EL layer 22.
  • the hole transport layer is a layer having a function of increasing the hole transport efficiency to the light emitting layer.
  • the hole injection layer and the hole transport layer are uniformly formed so as to cover the reflective electrode 21 and the edge cover 25.
  • a light emitting layer 24 is formed for each pixel light emitting region.
  • the light emitting layer 24 is a layer having a function of emitting light by recombining holes injected from the reflective electrode 21 side and electrons injected from the counter electrode 23 side.
  • Each of the light emitting layers 24 is formed of a material having high light emission efficiency, such as a low molecular fluorescent dye or a metal complex.
  • the electron transport layer is a layer having a function of increasing the efficiency of transporting electrons to the light emitting layer 24.
  • the electron injection layer is a layer having a function of increasing the efficiency of electron injection from the counter electrode 23 to the organic EL layer 22.
  • the electron transport layer is uniformly formed on the light emitting layer 24 and the hole transport layer so as to cover the light emitting layer 24 and the hole transport layer.
  • the electron injection layer is uniformly formed on the electron transport layer so as to cover the electron transport layer.
  • the electron transport layer and the electron injection layer may be formed as independent layers as described above, or may be integrated with each other. That is, the organic EL display panel 1 may include an electron transport layer / electron injection layer instead of the electron transport layer and the electron injection layer.
  • the reflective electrode 21 is a layer having a function of injecting electrons into the organic EL layer 22 composed of the organic layer as described above.
  • the reflective electrode 21 is uniformly formed on the electron injection layer so as to cover the electron injection layer.
  • the organic layers other than the light emitting layer 24 are not essential layers as the organic EL layer 22, and may be appropriately formed according to the required characteristics of the organic EL element.
  • a carrier blocking layer can be added to the organic EL layer 22 as necessary.
  • a hole blocking layer as a carrier blocking layer between the light emitting layer 24 and the electron transporting layer, it is possible to prevent holes from escaping to the electron transporting layer and improve the light emission efficiency.
  • layers other than the reflective electrode 21 (anode), the counter electrode 23 (cathode), and the light emitting layer 24 may be inserted as appropriate.
  • an example of the laminated structure of the organic EL layer 22 in the case where the light emitting color 24 of white (W) and the CF 51 are used is as follows. That is, from the reflective electrode 21 side, a hole injection layer, a hole transport layer, a first light emitting layer, an electron transport layer, a carrier generation layer, a hole transport layer, a second light emitting layer, an electron transport layer, an electron injection layer, etc.
  • the laminated structure of these is mentioned.
  • a mixture of light emitted from the first light emitting layer and the second light emitting layer is obtained from the organic EL element 20.
  • the light emitting layer By making the light emitting layer into two layers as described above, it is possible to improve the light emission efficiency and the amount of emitted light. Further, light having a desired spectrum can be extracted outside by adjusting the light with the CF 51.
  • the carrier generation layer is a layer for supplying electrons to the first light emitting layer side and holes to the second light emitting layer side. That is, assuming that the hole transport layer, the light-emitting layer, and the electron transport layer are one unit, the unit on the first light-emitting layer side and the unit on the second light-emitting layer side are connected via the carrier generation layer. .
  • units having the third light emitting layer may be laminated in the same manner, or four or more units may be laminated. Furthermore, as described above, addition of a carrier block king layer and integration of a hole injection layer and a hole transport layer can be appropriately performed.
  • the emission color of each pixel 70 is changed by the CF 51 or other methods, so it is not necessary to coat the emission layer 24 for each pixel 70, and the hole transport layer. Similarly to the above, it may be formed uniformly in the organic EL layer 22 in plan view.
  • the reflective electrode 21 is formed in a pattern corresponding to each pixel 70 by photolithography and etching after an electrode material is formed by sputtering or the like.
  • the counter electrode 23 various conductive materials can be used.
  • the counter electrode 23 is transparent or semi-transparent. It is preferably transparent.
  • Examples of the conductive film material used for the counter electrode 23 include transparent conductive materials such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and gallium-doped zinc oxide (GZO).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • GZO gallium-doped zinc oxide
  • a material, a metal material such as gold (Au), nickel (Ni), platinum (Pt), or a laminated film thereof can be used.
  • a sputtering method a vacuum deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, a printing method, or the like can be used.
  • a known material can be used as a material of the organic EL layer 22 . Note that a single material may be used for each of the light emitting layers 24, or a mixed material in which a certain material is used as a host material and another material is mixed as a guest material or a dopant may be used.
  • the hole injection layer As a material of the hole injection layer, the hole transport layer, or the hole injection layer / hole transport layer, for example, anthracene, azatriphenylene, fluorenone, hydrazone, stilbene, triphenylene, benzine, styrylamine, triphenylamine, porphyrin, Chain or heterocyclic such as triazole, imidazole, oxadiazole, oxazole, polyarylalkane, phenylenediamine, arylamine, and derivatives thereof, thiophene compounds, polysilane compounds, vinylcarbazole compounds, aniline compounds Examples include conjugated monomers, oligomers, and polymers.
  • a material having high luminous efficiency such as a low molecular fluorescent dye or a metal complex is used.
  • a material having high luminous efficiency such as a low molecular fluorescent dye or a metal complex.
  • Examples of the material for the electron transport layer, the electron injection layer, or the electron transport layer / electron injection layer include tris (8-quinolinolato) aluminum complex, oxadiazole derivative, triazole derivative, phenylquinoxaline derivative, silole derivative, and the like. .
  • FIG. 5 is a schematic diagram for explaining an image display method of the organic EL display device 100 according to the present embodiment.
  • the organic EL element 20 according to this embodiment preferably has a microcavity structure.
  • the microcavity is a phenomenon in which emitted light undergoes multiple reflections between the anode and the cathode and resonates, resulting in a steep emission spectrum and amplification of the emission intensity at the peak wavelength.
  • the microcavity effect can be obtained, for example, by optimally designing the reflectance and film thickness of the anode and cathode, the film thickness of the organic EL layer 22, and the like.
  • the organic EL element 20 having the microcavity structure In the organic EL element 20 having the microcavity structure, light emitted from the light emitting layer in the organic EL layer 22 provided between the reflective electrode 21 and the counter electrode 23 is between the reflective electrode 21 and the counter electrode 23. Repeat reflection.
  • the light emitted from the light emitting layer 24 is reflected by changing the optical path lengths 72R, 72G, 72B of the organic EL elements 20 in the respective pixels 70R, 70G, 70B for each emission color. It reciprocates between the electrode 21 and the counter electrode 23, and the intensity
  • the transparent electrode layer 121 is provided on the reflective electrode 21, and the optical path lengths 72R and 72G of the organic EL elements 20 in the respective pixels 70R, 70G, and 70B are changed by changing the film thickness of the transparent electrode layer 121. ⁇ 72B is changed.
  • the microcavity effect can be changed and the emission color can be adjusted.
  • FIG. 6 is a schematic diagram for explaining the behavior of external light incident on the organic EL display device 100 according to the present embodiment.
  • the optical path length between the electrodes is designed so that the resonance wavelength thereof matches the wavelength that transmits the CF 51. Thereby, the light of the wavelength component contained in the incident external light is confined between the electrodes and is not emitted outside. On the other hand, light other than the wavelength component is cut by the CF 51.
  • the CF 51G transmits green light of external light and absorbs light of other wavelengths. Therefore, green light of the external light reaches the organic EL element 20.
  • the microcavity structure of the organic EL element 20 transmits green light remarkably and hardly reflects it. For this reason, green light resulting from external light hardly proceeds from the organic EL element 20 to the CF 51G.
  • the organic EL display device 100 even when external light is incident on the organic EL display device 100, it is possible to suppress light of any wavelength from being reflected by the reflective electrode 21 and being emitted to the outside.
  • a low reflection region is provided around the reflective electrode 21. Therefore, it becomes easy to widen the BM opening 53 of the BM 52 provided on the support substrate 10 as the counter substrate.
  • FIG. 7 is a schematic diagram of the organic EL display device 100 of the present embodiment.
  • the member numbers are omitted for the configuration of each part already described.
  • the BM opening 53 and the light emitting unit 30 are indicated by auxiliary lines.
  • the light emitting unit 30 is inside the BM opening 53. That is, since the display area 101 is defined by the light emitting unit 30, the display area 101 is the same as the light emitting unit 30.
  • the light extracted by the light emitting unit 30 can contribute to display efficiently.
  • FIG. 15B which is a plan view of a conventional display device
  • the BM opening 53 is conventionally positioned inside the light emitting unit 30. For this reason, it is difficult to emit all the light emitted from the light emitting unit 30, and the light use efficiency is reduced.
  • a low reflection region 212 is provided around the reflective electrode 21.
  • the BM opening 53 can be made larger than the light emitting unit 30.
  • the external light incident on the light emitting unit 30 is incident on the reflection region 211 and reflected, and is suppressed from being emitted to the outside due to the microcavity effect of the organic EL element 20.
  • the above configuration is different from the configuration of the second embodiment described above in that the low reflection region 212 is formed over a portion where the edge cover 25 is not provided. That is, the low reflection region 212 is provided in a region corresponding to the end portion vicinity of the edge cover 25 in plan view.
  • FIG. 9 is a schematic view of the organic EL display device 100 of the present embodiment.
  • the member numbers are omitted for the configuration of each part already described.
  • the BM opening 53 and the light emitting unit 30 are indicated by auxiliary lines.
  • FIG. 9A is a cross-sectional view showing a schematic configuration of the organic EL display panel 1
  • FIG. 9B is a plan view showing a schematic configuration of the organic EL display panel 1.
  • the BM opening 53 and the light emitting unit 30 have the same width. That is, when there is no positional shift, the display region 101 is the same region as the BM opening 53 and the light emitting unit 30 in plan view.
  • the light emitted from the light emitting unit 30 can efficiently contribute to the display without being blocked by the BM 52.
  • the end portion of the edge cover 25 is easily covered with the BM 52 in plan view.
  • each laminated layer may be uneven or may differ from a desired thickness.
  • the thickness of each layer is as described above, it is difficult to obtain the microcavity effect. For this reason, incident external light may be reflected and emitted, resulting in a decrease in contrast ratio.
  • the BM opening 53 is narrowed to a width that does not easily reduce the light efficiency, that is, the width of the light emitting section 30.
  • the above configuration is different from the configuration of the second embodiment described above in that the low reflection region 212 is formed over a portion where the edge cover 25 is not provided. That is, the low reflection region 212 is provided in a region corresponding to the end portion vicinity of the edge cover 25 in plan view.
  • FIG. 11 is a schematic diagram of the organic EL display device 100 of the present embodiment.
  • the organic EL display device 100 includes a display area 101 of each pixel 70 and a non-display area 102 in which the reflective electrode 21 is continuous in the plan view. And formed.
  • the reflective electrode 21 in the non-display area 102 in the plan view is a low reflection area 212.
  • Such a configuration makes it easier to make the BM opening 53 wider or to omit the BM 52.
  • FIG. 12 is a flowchart illustrating an example of a manufacturing process of the organic EL display device 100 in the order of processes.
  • step S1 the TFT 12, the signal line 11, the interlayer film 13, and the contact hole 26 are formed on the support substrate 10 by a known method.
  • a glass substrate such as a non-alkali glass substrate or a plastic substrate can be used.
  • the reflective electrode 21 is prepared for each of the pixels 70R, 70G, and 70B.
  • a sputtering method a vacuum vapor deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, a printing method, or the like can be used.
  • step S3 the edge cover 25 is manufactured so that the end portion (pattern end portion) of the reflective electrode 21 is covered on the interlayer film 13 and the light emitting portion 30 is formed for each of the pixels 70R, 70G, and 70B.
  • a known photosensitive resin can be used for the edge cover 25.
  • the photosensitive resin include acrylic resin and polyimide resin.
  • step S4 the organic EL layer 22 is produced so as to cover the reflective electrode 21 and the edge cover 25.
  • the light emitting layer 24 is formed on the entire pixel portion.
  • the light emitting layer 24 is formed in a predetermined pattern on the organic EL element 20 of each pixel 70.
  • a method of forming the light emitting layer 24 with the predetermined pattern for example, a vacuum deposition method, an ink jet method, or a laser transfer method can be used.
  • a single material may be used for each of the light emitting layers 24, or a mixed material in which a certain material is used as a host material and another material is mixed as a guest material or a dopant may be used.
  • step S5 the counter electrode 23 is formed on the entire surface of the organic EL layer 22 by a known method.
  • step S6 the support substrate 10 on which the organic EL element 20 is formed and the sealing substrate 50 are bonded together with the sealing resin layer 41, and the organic EL element 20 is sealed.
  • a dense sealing film that hardly allows moisture and oxygen to pass through is formed on the upper surface of the organic EL element 20 by a CVD (chemical vapor deposition, chemical vapor deposition) method or the like.
  • the organic EL element 20 can be sealed by forming a frit glass (powder glass) into a frame shape.
  • the support substrate 10 and the sealing substrate 50 may be bonded together and the organic EL element 20 may be sealed.
  • step S7 the connection terminal of the circuit part (not shown) is connected to the electric wiring terminal of the terminal part region (not shown) of the support substrate 10. In this way, the organic EL display device 100 is manufactured.
  • the reflective electrode manufacturing process of the present invention at least a part of the reflective electrode 21 is subjected to a low reflection treatment, and a low reflective region 212 is formed around a part of the reflective electrode 21.
  • the process of providing is provided.
  • the low reflection treatment for example, a treatment of providing a low reflection material around the reflective electrode 21 or blackening the periphery of the reflective electrode 21 can be adopted.
  • FIGS. 13A to 13F are plan views illustrating an example of a method for manufacturing the reflective electrode 21 in the organic EL display device 100 in the order of steps in plan view.
  • FIG. 13A is a cross-sectional view of FIG. 13A taken along line AA, and the same applies to FIG.
  • a reflective electrode material 110 such as Ag is formed on a support substrate by a sputtering method or the like.
  • a first resist pattern 120 is formed on the reflective electrode material 110 by photolithography for each color pixel.
  • the reflective electrode material 110 is etched using the first resist pattern 120 as a mask.
  • a mixed solution of phosphoric acid, nitric acid, acetic acid, or the like can be used.
  • the first resist pattern 120 is stripped and washed with a resist stripper.
  • the reflective electrode 21 is formed by patterning the reflective electrode material 110 so as to be separated for each color pixel.
  • a second resist pattern 130 is formed by photolithography so that at least a part of the periphery of the patterned reflective electrode 21 is exposed.
  • a resist pattern that is slightly smaller than the reflective electrode 21 in plan view is formed so that the entire periphery of the reflective electrode 21 is exposed.
  • the exposed portion of the reflective electrode 21 is subjected to a low reflection treatment.
  • UV irradiation and oxygen plasma treatment can be performed as the low reflection treatment.
  • the exposed portion of the reflective electrode 21 is reduced in the light reflectivity and becomes a low reflection region 212.
  • the second resist pattern 130 is stripped and washed with a resist stripper.
  • the reflection electrode 21 whose periphery is subjected to low reflection treatment can be manufactured.
  • FIG. 14A to 14E are plan views showing an example of a method for manufacturing the reflective electrode 21 in the organic EL display device 100 in the order of steps in plan view.
  • FIG. 14A is a cross-sectional view of FIG. 14A taken along the line AA, and the same applies to FIG.
  • a reflective electrode material 110 such as Ag is formed on a support substrate by a sputtering method or the like.
  • a halftone resist pattern 140 is formed on the reflective electrode material 110 by photolithography for each color pixel.
  • the halftone resist pattern 140 refers to a resist pattern in which the height of at least a part of the periphery is lower than the height of the central portion with respect to the bottom surface.
  • the reflective electrode material 110 is etched using the halftone resist pattern 140 as a mask.
  • a mixed solution of phosphoric acid, nitric acid, acetic acid, or the like can be used.
  • a part of the halftone resist pattern 140 is removed by ashing using a dry etching apparatus.
  • the part of the halftone resist pattern 140 refers to the extent to which at least a part of the periphery of the reflective electrode 21 is exposed in a plan view by ashing the halftone resist pattern 140.
  • a low reflection process is performed on the exposed portion of the reflective electrode 21.
  • UV irradiation and oxygen plasma treatment can be performed as the low reflection treatment.
  • the exposed portion of the reflective electrode 21 is reduced in light reflectivity and becomes a low reflection region 212.
  • the remaining halftone resist pattern 140 is stripped and washed with a resist stripping solution.
  • a reflective electrode 21 in which at least a part of the periphery is subjected to a low reflection treatment can be produced.
  • the organic EL display device 100 of the present invention may be a bottom emission type that emits light from the support substrate 10 side.
  • an opaque metal plate or the like can be used as the sealing substrate 50.
  • the organic EL display device is taken as an example, but the display device of the present invention is not limited to this.
  • the present invention can be applied to other self-luminous elements and display devices that function as light valves such as liquid crystal display devices.
  • the display device of the present invention is The reflective electrode is formed so as to cover a display area of each pixel and a non-display area continuous therewith in a plan view, and the low reflection area is included in the non-display area. .
  • the portion of the reflective electrode included in the display area can reflect light. Thereby, efficient use of light becomes possible.
  • the microcavity effect can be easily obtained.
  • the display device of the present invention is The non-display area is the low reflection area.
  • the reflection region and the low reflection region can be formed corresponding to the display region and the non-display region, and the microcavity effect can be efficiently exhibited and reflection of external light can be suppressed.
  • the display device of the present invention is
  • the reflective electrode is made of metal, and the low reflection region is a region where the metal is subjected to low reflection treatment.
  • the reflective electrode can reflect light due to its metallic luster.
  • a low reflection region can be formed by subjecting the metal to low reflection treatment, and the manufacturing process can be simplified.
  • the display device of the present invention is
  • the reflective electrode is made of a metal, and the low reflective region is made of an oxide of the metal.
  • a low reflection region can be formed by oxidizing at least a part of the periphery of the reflective electrode, and the manufacturing process can be simplified.
  • the display device of the present invention is
  • the reflective electrode is made of silver or a silver alloy.
  • the reflective electrode can reflect light efficiently, so that the light use efficiency is improved. Also, the microcavity effect can be enhanced.
  • the display device of the present invention is An insulating part is provided between the two adjacent reflective electrodes, and the insulating part covers the end of each reflective electrode in plan view, and the end covered with the reflective electrode is covered with the insulating part.
  • the non-display area is provided between the two adjacent reflective electrodes, and the insulating part covers the end of each reflective electrode in plan view, and the end covered with the reflective electrode is covered with the insulating part.
  • the light emitting part that can extract light from the light control layer can be defined by the insulating part.
  • the reflective electrode covered with the said insulation part can be made into a non-display area
  • the reflective electrode it is possible to reliably obtain necessary reflection and to reliably suppress unnecessary reflection.
  • the display device of the present invention is A shielding portion corresponding to the pixel is provided on a surface side of the counter electrode that is different from the surface facing the light control layer, and the display area of the corresponding pixel in a plan view is the area of the shielding portion. It is located in the opening.
  • the display area is located in the opening of the shielding part, the light from the display area can be emitted without being blocked by the shielding part. Therefore, the light use efficiency can be improved.
  • the display device of the present invention is
  • the light control layer is an organic EL layer.
  • electrons and holes are injected from each electrode into the organic EL layer by applying a voltage between the electrodes.
  • the electrons and holes combine with each other in the light emitting layer provided in the organic EL layer and emit light.
  • an organic EL layer as the light control layer, for example, it is possible to obtain a display device with a high response speed and a wide viewing angle as compared with a liquid crystal display device.
  • a manufacturing method of a display device of the present invention includes:
  • the reflective electrode is made of metal, and the low reflection treatment is at least one of a UV irradiation treatment and an oxygen plasma treatment.
  • the metal can be subjected to a low reflection treatment by a simple method.
  • the metal is, for example, silver
  • the silver can be easily blackened by at least one of the above treatments.
  • the part By blackening at least a part of the periphery of the reflective electrode, the part can be made a low reflection region.
  • the present invention can be used for a display device including an electrode and a light control unit and a method for manufacturing the display device.
  • Organic EL Display Panel 10 Support Substrate 11 Signal Line 12 TFT DESCRIPTION OF SYMBOLS 13 Interlayer film 20 Organic EL element 21 Reflective electrode 22 Organic EL layer 23 Counter electrode 24 Light emitting layer 24R / 24G / 24B Light emitting layer 25 Edge cover 26 Contact hole 30 Light emitting part 41 Sealing resin layer 42 Filling resin layer 50 Sealing substrate 51 Color filter 52 Black matrix 53 BM opening 70 pixel 70R / 70G / 70B pixel 72A / 72B optical path length 72R / 72G / 72B optical path length 100 organic EL display device 101 display region 102 non-display region 103 bonding margin 110 reflective electrode material 120 First resist pattern 121 Transparent electrode layer 130 Second resist pattern 140 Halftone resist pattern 211 Reflective region 212 Low reflective region

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a display device that is less likely to reflect outside light and has a large aperture ratio. A light-emitting section (30) is provided inside a BM aperture section (53) in a plan view, said light-emitting section being defined by an edge cover (25) that is provided on the edge of a reflecting electrode (21). In addition, a low-reflection treatment is applied to a region around the reflecting electrode (21) in order to form a low-reflection region (212) where incident outside light is less likely to be reflected. Furthermore, in the plan view, a region of the reflecting electrode (21) formed inside the BM aperture section (53) but not used for the light-emitting section (30) constitutes the low-reflection region (212). Consequently, the provided display device prevents reflection of outside light and has a large aperture ratio.

Description

表示装置及び表示装置の製造方法Display device and manufacturing method of display device
 本発明は、入射外光の不要な反射を抑制し、光の利用効率を向上させた表示装置及びその製造方法に関する。 The present invention relates to a display device that suppresses unnecessary reflection of outside incident light and improves light utilization efficiency, and a method for manufacturing the same.
 近年、様々な商品や分野でフラットパネルディスプレイが活用されており、フラットパネルディスプレイのさらなる大型化、高画質化、低消費電力化が求められている。 In recent years, flat panel displays have been used in various products and fields, and further flat panel displays are required to have larger sizes, higher image quality, and lower power consumption.
 そのような状況下において、有機材料の電界発光(Electro Luminescence:エレクトロルミネッセンス、以下「EL」と記す)を利用した有機EL素子を備えた有機EL表示装置は、全固体型で、低電圧駆動、高速応答性、自発光性、広視野角特性等の点で優れたフラットパネルディスプレイとして、高い注目を浴びている。 Under such circumstances, an organic EL display device including an organic EL element using electroluminescence of an organic material (Electro Luminescence: hereinafter referred to as “EL”) is an all-solid-state type, driven at a low voltage, As a flat panel display excellent in terms of high-speed response, self-luminous property, wide viewing angle characteristics, etc., it has attracted a great deal of attention.
 有機EL表示装置は、例えば、TFT(Thin Film Transistor:薄膜トランジスタ)が設けられたガラス基板等からなる基板上に、TFTに電気的に接続された有機EL素子が設けられた構成を有している。 An organic EL display device has, for example, a configuration in which an organic EL element electrically connected to a TFT is provided on a substrate made of a glass substrate or the like provided with a TFT (Thin Film Transistor). .
 有機EL素子は、低電圧直流駆動による高輝度発光が可能な発光素子であり、第1電極、有機EL層、第2電極が、この順に積層された構造を有している。 The organic EL element is a light-emitting element that can emit light with high luminance by low-voltage direct current drive, and has a structure in which a first electrode, an organic EL layer, and a second electrode are stacked in this order.
 このような有機EL素子を用いた有機EL表示装置をフルカラー化するための方式としては、例えば、(1)赤(R)、緑(G)、青(B)に発光する有機EL素子を画素として基板上に配列する方式や、(2)白色発光の有機EL素子とカラーフィルタとを組み合わせて各画素における発光色を選択する方式が知られている。 As a method for full-coloring an organic EL display device using such an organic EL element, for example, (1) organic EL elements that emit light in red (R), green (G), and blue (B) are used as pixels. And (2) a method of selecting a light emission color in each pixel by combining a white light emitting organic EL element and a color filter.
 近年、これらの方式において、マイクロキャビティ効果により発光の色度や発光効率を向上させる方法が提案されている。上記提案は、例えば、下記特許文献1、特許文献2に言及されている。 Recently, in these methods, methods for improving the chromaticity of light emission and light emission efficiency by the microcavity effect have been proposed. The above proposal is referred to, for example, in Patent Document 1 and Patent Document 2 below.
 マイクロキャビティ効果とは、発光した光が陽極と陰極との間で多重反射し、共振することで発光スペクトルが急峻になり、また、ピーク波長の発光強度が増幅される現象である。 The microcavity effect is a phenomenon in which emitted light undergoes multiple reflections between an anode and a cathode and resonates, resulting in a steep emission spectrum and amplification of emission intensity at a peak wavelength.
 マイクロキャビティ効果は、例えば、陽極や陰極の反射率及び膜厚、有機層の層厚等を最適に設計することで得ることができる。 The microcavity effect can be obtained, for example, by optimally designing the reflectance and film thickness of the anode and cathode, the layer thickness of the organic layer, and the like.
 有機EL素子に、このような共振構造、つまりマイクロキャビティ構造を導入する方法としては、例えば、発光色毎に各画素における有機EL素子の光路長を変える方法が知られている。 As a method of introducing such a resonance structure, that is, a microcavity structure into an organic EL element, for example, a method of changing the optical path length of the organic EL element in each pixel for each emission color is known.
 発光色毎に各画素における有機EL素子の光路長を変える方法としては、反射電極と半透明電極との間に、発光層を含む有機EL層と透明電極層とを積層する方法が挙げられる。 As a method of changing the optical path length of the organic EL element in each pixel for each emission color, a method of laminating an organic EL layer including a light emitting layer and a transparent electrode layer between a reflective electrode and a semitransparent electrode can be mentioned.
 すなわち、例えば、トップエミッション型の有機EL素子の場合、陽極を、反射電極層と透明電極層との積層構造とし、画素毎に、陽極の反射電極層上の透明電極層の膜厚を変える方法が挙げられる。 That is, for example, in the case of a top emission type organic EL element, the anode has a laminated structure of a reflective electrode layer and a transparent electrode layer, and the thickness of the transparent electrode layer on the reflective electrode layer of the anode is changed for each pixel. Is mentioned.
 トップエミッション型の有機EL素子の場合、このように陽極を、反射電極層と透明電極層との積層構造とし、有機EL層を適宜積層した後、陰極に、半透明電極として、例えば薄膜にした半透明の銀等を用いることで、有機EL素子にマイクロキャビティ構造を導入することができる。 In the case of a top emission type organic EL element, the anode has a laminated structure of a reflective electrode layer and a transparent electrode layer as described above, and after the organic EL layer is appropriately laminated, the cathode is made into a thin film, for example, as a semitransparent electrode. By using translucent silver or the like, a microcavity structure can be introduced into the organic EL element.
 このように有機EL素子にマイクロキャビティ構造を導入すると、発光層から発光され、陰極を通して射出された光のスペクトルは、有機EL素子がマイクロキャビティ構造を有していない場合よりも急峻になり、また、正面への射出強度が大きく増大する。 When the microcavity structure is introduced into the organic EL element in this way, the spectrum of light emitted from the light emitting layer and emitted through the cathode becomes steeper than when the organic EL element does not have the microcavity structure. The injection strength to the front is greatly increased.
 さらに、特許文献1には、発光素子の放出光のピーク波長の光が外部から共振構造に照射されると、これをほとんど反射しないということが開示されている。 Furthermore, Patent Document 1 discloses that when light having a peak wavelength of light emitted from a light emitting element is irradiated on the resonance structure from the outside, the light is hardly reflected.
 すなわち、マイクロキャビティ構造を導入することにより、反射電極で反射した外光の外部への射出を抑制することができ、コントラスト比の低下を防止することができる。 That is, by introducing the microcavity structure, it is possible to suppress the outside light reflected by the reflective electrode from being emitted to the outside, and to prevent the contrast ratio from being lowered.
日本国公開特許公報「特開2007-280677号公報(2007年10月25日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2007-280677 (published on Oct. 25, 2007)” 日本国公開特許公報「特開2005-116516号公報(2005年4月28日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-116516 (published April 28, 2005)”
 しかしながら、マイクロキャビティ構造により外光の反射を防止する従来構造の有機EL表示装置には、以下に説明するように、開口率の低下を招くという問題がある。 However, the organic EL display device having the conventional structure that prevents the reflection of external light by the microcavity structure has a problem that the aperture ratio is lowered as described below.
 図15(a)は、反射電極21と、該反射電極21に対向して設けられている対向電極23と、電極間に有機EL層22とを備え、電極間の距離を、マイクロキャビティ構造を有するよう設計された従来の有機EL表示装置100の概略図である。 FIG. 15A includes a reflective electrode 21, a counter electrode 23 provided to face the reflective electrode 21, and an organic EL layer 22 between the electrodes. It is the schematic of the conventional organic electroluminescence display 100 designed to have.
 反射電極21の周囲は絶縁部であるエッジカバー25で覆われているため、有機EL層22のうち反射電極21を覆うエッジカバー25の上部にある部分へは電界が形成されず、この部分は発光しない。 Since the periphery of the reflective electrode 21 is covered with an edge cover 25 that is an insulating portion, an electric field is not formed on the portion of the organic EL layer 22 that is above the edge cover 25 that covers the reflective electrode 21. Does not emit light.
 したがって、上記エッジカバー25を設けることにより、有機EL層22から光を取り出すことのできる部分である発光部30が規定される。 Therefore, the provision of the edge cover 25 defines the light emitting unit 30 that is a portion from which light can be extracted from the organic EL layer 22.
 ここで、上述したように、マイクロキャビティ構造を有することにより、反射電極21により反射された外光の外部への射出は抑制される。 Here, as described above, by having the microcavity structure, emission of external light reflected by the reflective electrode 21 to the outside is suppressed.
 しかしながら、エッジカバー25が設けられている部分の電極間距離、すなわち光路長72Bは、発光部30における光路長72Aに比べて長い。マイクロキャビティ構造は、発光部30における光路長72Aの設計に適用されるため、反射電極21のうちエッジカバー25が設けられている部分に入射した外光は、反射して外部に射出する。これにより、表示のコントラスト比は低下する。 However, the distance between the electrodes where the edge cover 25 is provided, that is, the optical path length 72 </ b> B is longer than the optical path length 72 </ b> A in the light emitting unit 30. Since the microcavity structure is applied to the design of the optical path length 72 </ b> A in the light emitting unit 30, the external light incident on the portion of the reflective electrode 21 where the edge cover 25 is provided is reflected and emitted to the outside. Thereby, the contrast ratio of the display is lowered.
 そのため、外光が反射電極21のうちエッジカバー25が設けられている部分に入射しないよう、また、この部分から光が出射しないように、封止基板50上のカラーフィルタ51(以下、CF)の間には、遮蔽部であるブラックマトリクス52(以下、BM)が設けられている。 For this reason, a color filter 51 (hereinafter referred to as CF) on the sealing substrate 50 is used so that external light does not enter the portion of the reflective electrode 21 where the edge cover 25 is provided and light does not exit from this portion. Between them, a black matrix 52 (hereinafter referred to as BM) which is a shielding part is provided.
 しかしながら、BMと、絶縁部により規定される発光部とには、貼り合わせの際に位置ずれが生じる可能性がある。そのため、BMは、上記位置ずれに対するマージンを見込んで、貼り合わせマージン103を含めて設計される。その結果、BMの開口部は発光部よりも小さくなっている。 However, there is a possibility that positional deviation occurs between the BM and the light emitting part defined by the insulating part at the time of bonding. For this reason, the BM is designed including the bonding margin 103 in consideration of the margin for the positional deviation. As a result, the opening of the BM is smaller than the light emitting part.
 したがって、発光部30はエッジカバー25の端部により規定されるが、表示装置としての表示領域101(開口部)は、BM52により規定されてしまう。言い換えると、貼り合わせマージン103の部分の発光は表示に寄与しない。これにより、表示装置の開口率の低下、光の利用効率の低下を招いている。 Therefore, although the light emitting unit 30 is defined by the end of the edge cover 25, the display area 101 (opening) as a display device is defined by the BM 52. In other words, light emission at the bonding margin 103 does not contribute to display. This causes a decrease in the aperture ratio of the display device and a decrease in light utilization efficiency.
 なお、上記開口率の低下は、封止基板にカラーフィルタは設けられておらず、BMのみが設けられている構成でも、同様に問題となる。 Note that the decrease in the aperture ratio also causes a problem even in a configuration in which the color filter is not provided on the sealing substrate and only the BM is provided.
 (特許文献1)
 図16に示す特許文献1の表示装置は、反射電極に絶縁部が設けられておらず、反射電極が設けられた領域により発光部を規定している。
(Patent Document 1)
In the display device of Patent Document 1 shown in FIG. 16, the insulating portion is not provided in the reflective electrode, and the light emitting portion is defined by the region where the reflective electrode is provided.
 上記構成では、外部に放出される光束の指向性を高めることを目的として、反射電極の縁で反射された光が射出されないように、開口部をBMにより規定する。そのため、上記構成においても、表示装置としての開口率は低下している。 In the above configuration, for the purpose of enhancing the directivity of the light beam emitted to the outside, the opening is defined by BM so that the light reflected by the edge of the reflective electrode is not emitted. Therefore, also in the above configuration, the aperture ratio as a display device is lowered.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、入射外光の不要な反射を抑制し、光の利用効率を向上させた表示装置を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a display device that suppresses unnecessary reflection of outside incident light and improves light utilization efficiency.
 また、BM開口部を従来の表示装置よりも大きく設計することが可能な表示装置を提供することにある。 Another object of the present invention is to provide a display device capable of designing a BM opening larger than a conventional display device.
 また、上記のような表示装置を製造するために、反射電極の周囲の少なくとも一部を低反射処理する方法を提供することにある。 Another object of the present invention is to provide a method for performing low reflection treatment on at least a part of the periphery of the reflective electrode in order to manufacture the display device as described above.
 上記の課題を解決するために、本発明の表示装置は、
 画素毎に設けられている反射電極と、上記反射電極に対向して設けられている対向電極と、上記反射電極と上記対向電極とに挟持されている調光層とを備える表示装置であって、上記反射電極の周囲の少なくとも一部に、低反射領域が設けられていることを特徴とする。
In order to solve the above-described problems, the display device of the present invention includes:
A display device comprising: a reflective electrode provided for each pixel; a counter electrode provided to face the reflective electrode; and a light control layer sandwiched between the reflective electrode and the counter electrode. A low reflection region is provided at least at a part of the periphery of the reflection electrode.
 上記の構成により、反射電極の周囲の少なくとも一部は、反射し難い構造となる。 With the above configuration, at least a part of the periphery of the reflective electrode has a structure that is difficult to reflect.
 これにより、外光が、上記表示装置に設けられた上記低反射領域に入射した場合に、反射して該表示装置の外部に射出することを抑制し、表示のコントラスト比の低下を抑制することができる。 As a result, when external light is incident on the low reflection region provided in the display device, it is prevented from being reflected and emitted to the outside of the display device, and a reduction in display contrast ratio is suppressed. Can do.
 また、上記の課題を解決するために、本発明の表示装置の製造方法は、
 画素毎に設けられている反射電極と、上記反射電極に対向して設けられている対向電極と、上記反射電極と上記対向電極とに挟持されている調光層とを備える表示装置の製造方法であって、上記反射電極の少なくとも一部を低反射処理することで、上記反射電極の周囲の少なくとも一部に低反射領域を設けることを特徴とする。
In addition, in order to solve the above-described problems, a method for manufacturing a display device of the present invention includes:
A method of manufacturing a display device, comprising: a reflective electrode provided for each pixel; a counter electrode provided to face the reflective electrode; and a light control layer sandwiched between the reflective electrode and the counter electrode The low-reflection region is provided in at least a part of the periphery of the reflective electrode by performing a low-reflection treatment on at least a part of the reflective electrode.
 上記の構成により、周囲の少なくとも一部を、反射し難い構造とする反射電極を備える表示装置を製造することができる。 With the above configuration, it is possible to manufacture a display device including a reflective electrode in which at least a part of the periphery has a structure that is difficult to reflect.
 これにより、外光が上記低反射領域に入射した場合に、反射して外部に射出することを抑制し、表示のコントラスト比の低下を抑制する表示装置を製造することができる。 Thereby, when external light is incident on the low reflection region, it is possible to manufacture a display device that suppresses reflection and emission to the outside and suppresses a reduction in display contrast ratio.
 本発明によれば、反射電極は低反射領域を備え、外光が反射電極に反射して外部に射出することを抑制し、表示のコントラスト比の低下を抑制することができるという効果を奏する。 According to the present invention, the reflection electrode has a low reflection region, and it is possible to suppress the outside light from being reflected by the reflection electrode and emitted to the outside, thereby suppressing the decrease in the contrast ratio of the display.
 また、反射光の射出を抑制するために、過剰に光遮蔽手段を設ける必要がない。それにより、光の利用効率を高めることができるという効果を奏する。 Further, it is not necessary to provide an excessive light shielding means in order to suppress the emission of reflected light. Thereby, the effect that the utilization efficiency of light can be improved is produced.
 また、本発明によれば、簡易な方法で反射電極の周囲の少なくとも一部を低反射処理することができるという効果を奏する。 Also, according to the present invention, there is an effect that at least a part of the periphery of the reflective electrode can be subjected to a low reflection process by a simple method.
本発明の有機EL表示パネルの断面図である。It is sectional drawing of the organic electroluminescent display panel of this invention. 本発明の有機EL表示装置の要部の構成を示す平面図である。It is a top view which shows the structure of the principal part of the organic electroluminescence display of this invention. 図2のA-A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 有色発光層を備える有機EL表示装置の断面図である。It is sectional drawing of an organic electroluminescence display provided with a colored light emitting layer. 本発明の有機EL表示装置の画像表示方法を示す模式図である。It is a schematic diagram which shows the image display method of the organic electroluminescent display apparatus of this invention. 本発明の有機EL表示装置に入射した外光の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the external light which injected into the organic electroluminescent display apparatus of this invention. (a)は本発明の実施例1の有機EL表示装置の断面図、(b)は平面図である。(A) is sectional drawing of the organic electroluminescence display of Example 1 of this invention, (b) is a top view. (a)は本発明の実施例1の他の有機EL表示装置の断面図、(b)は平面図である。(A) is sectional drawing of the other organic electroluminescent display apparatus of Example 1 of this invention, (b) is a top view. (a)は本発明の実施例2の有機EL表示装置の断面図、(b)は平面図である。(A) is sectional drawing of the organic electroluminescent display apparatus of Example 2 of this invention, (b) is a top view. (a)は本発明の実施例2の他の有機EL表示装置の断面図、(b)は平面図である。(A) is sectional drawing of the other organic electroluminescent display apparatus of Example 2 of this invention, (b) is a top view. (a)は本発明の実施例3の有機EL表示装置の断面図、(b)は平面図である。(A) is sectional drawing of the organic electroluminescent display apparatus of Example 3 of this invention, (b) is a top view. 本発明の有機EL表示装置の製造工程の一例を工程順に示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the organic electroluminescent display apparatus of this invention in process order. 本発明の製造方法例1の反射電極の作製方法の一例を工程順に示す平面図と断面図である。It is the top view and sectional drawing which show an example of the manufacturing method of the reflective electrode of the manufacturing method example 1 of this invention to process order. 本発明の製造方法例2の反射電極の作製方法の一例を工程順に示す平面図と断面図である。It is the top view and sectional drawing which show an example of the preparation methods of the reflective electrode of the manufacturing method example 2 of this invention to process order. (a)は従来の表示装置の断面図であり、(b)は平面図である。(A) is sectional drawing of the conventional display apparatus, (b) is a top view. 従来の表示装置の断面図である。It is sectional drawing of the conventional display apparatus.
 本発明の一実施の形態について、図1から図14に基づいて説明すれば以下の通りである。 An embodiment of the present invention will be described below with reference to FIGS.
 なお、以下の説明では、表示装置として、有機EL表示装置を例にして説明する。 In the following description, an organic EL display device will be described as an example of the display device.
 <有機EL表示装置>
 有機EL表示素子の概略構成を、図1に基づいて説明する。
<Organic EL display device>
A schematic configuration of the organic EL display element will be described with reference to FIG.
 図1は、本実施の形態の有機EL表示装置100に設けられている有機EL表示パネル1の概略構成を示す断面図である。 FIG. 1 is a cross-sectional view showing a schematic configuration of an organic EL display panel 1 provided in the organic EL display device 100 of the present embodiment.
 本実施の形態の有機EL表示装置100には、その表示部として、有機EL表示パネル1(表示パネル)が備えられている。 The organic EL display device 100 according to the present embodiment includes an organic EL display panel 1 (display panel) as a display unit.
 有機EL表示パネル1は、支持基板10(被成膜基板、TFT(薄膜トランジスタ:Thin Film Transistor)基板)上に、有機EL素子20及び封止樹脂層41、充填樹脂層42、カラーフィルタ(以下、CF)51、封止基板50が、この順に設けられた構成を有している。 The organic EL display panel 1 includes an organic EL element 20, a sealing resin layer 41, a filling resin layer 42, and a color filter (hereinafter, referred to as “film formation substrate, TFT (Thin Film Transistor: Thin Film Transistor) substrate)” on a support substrate 10. CF) 51 and sealing substrate 50 are provided in this order.
 上記支持基板10には、後に説明する電極が設けられており、支持基板10は電極基板として機能する。一方、上記封止基板50は、上記有機EL素子20を介して、上記支持基板10に対向して設けられおり、対向基板として機能する。 The support substrate 10 is provided with electrodes to be described later, and the support substrate 10 functions as an electrode substrate. On the other hand, the sealing substrate 50 is provided to face the support substrate 10 with the organic EL element 20 interposed therebetween, and functions as a counter substrate.
 有機EL素子20は、図示しないTFTに接続されている。このTFTは、上記有機EL素子20のスイッチング素子として機能するものである。 The organic EL element 20 is connected to a TFT (not shown). This TFT functions as a switching element of the organic EL element 20.
 有機EL素子20上には、乾燥剤を含有した接着性を有する充填樹脂層42が形成されている。充填樹脂層42を構成する充填樹脂は、支持基板10、封止基板50、及び封止樹脂層41で囲まれた空間に充填されている。 On the organic EL element 20, a filling resin layer 42 having adhesiveness containing a desiccant is formed. The filling resin constituting the filling resin layer 42 is filled in a space surrounded by the support substrate 10, the sealing substrate 50, and the sealing resin layer 41.
 有機EL表示パネル1は、このように有機EL素子20が支持基板10と封止基板50との間に封入されていることで、有機EL素子20への酸素や水分の外部からの浸入が防止されている。 In the organic EL display panel 1, the organic EL element 20 is sealed between the support substrate 10 and the sealing substrate 50 as described above, thereby preventing oxygen and moisture from entering the organic EL element 20 from the outside. Has been.
 図1に示すように、封止基板50が有する面のうち、支持基板10に対向する面には、CF51が設けられている。本実施の形態の有機EL表示装置は封止基板50側から光を射出するトップエミッション型である。 As shown in FIG. 1, among the surfaces of the sealing substrate 50, the surface facing the support substrate 10 is provided with CF 51. The organic EL display device of the present embodiment is a top emission type that emits light from the sealing substrate 50 side.
 なお、上記CF51は必須ではない。例えば、有機EL素子20自身が赤色・緑色・青色等を発色するように構成し、CFを省略することも可能である。 Note that the CF51 is not essential. For example, the organic EL element 20 itself can be configured to color red, green, blue, etc., and the CF can be omitted.
 また、有機EL素子20の封止性能をより向上させるために、有機EL素子20の上に、図示しない無機膜や有機・無機の混合積層膜等が積層されていてもよい。 Further, in order to further improve the sealing performance of the organic EL element 20, an inorganic film (not shown), a mixed organic / inorganic laminated film, or the like may be laminated on the organic EL element 20.
 さらに、無機膜や有機・無機の混合積層膜等だけで有機EL素子20の封止性能が十分であれば、封止樹脂層41や封止基板50、充填樹脂層42を省くこともできる。 Furthermore, the sealing resin layer 41, the sealing substrate 50, and the filling resin layer 42 can be omitted if the sealing performance of the organic EL element 20 is sufficient only with an inorganic film or an organic / inorganic mixed laminated film.
 支持基板10、封止基板50、及び封止樹脂層41で囲まれた空間に封止樹脂を充填する代わりに、上記空間に不活性ガスを封入した中空構造としてもよい。また、それに加えて、中空構造内に乾燥剤を塗布あるいは貼付した構造を有していてもよい。ただし、封止基板50側から光を射出する場合、乾燥剤によって遮光されないようにする必要がある。 Instead of filling the space surrounded by the support substrate 10, the sealing substrate 50, and the sealing resin layer 41 with the sealing resin, a hollow structure in which an inert gas is sealed in the space may be used. In addition, it may have a structure in which a desiccant is applied or pasted in the hollow structure. However, when light is emitted from the sealing substrate 50 side, it is necessary to prevent light from being blocked by the desiccant.
 <表示領域>
 次に、有機EL表示装置100における表示領域について、図2に基づいて説明する。
<Display area>
Next, the display area in the organic EL display device 100 will be described with reference to FIG.
 図2は、有機EL表示装置100の要部の構成を示す平面図である。 FIG. 2 is a plan view showing a configuration of a main part of the organic EL display device 100.
 有機EL表示装置100は、有機EL素子が形成された複数の画素70を備えている。 The organic EL display device 100 includes a plurality of pixels 70 on which organic EL elements are formed.
 画素70は、赤色を表示する画素70R、緑色を表示する画素70G、及び青色を表示する画素70Bで構成されている。画素70には、さらに、黄色等、上記赤緑青とは異なる色を表示する画素を加えることもできる。 The pixel 70 includes a pixel 70R that displays red, a pixel 70G that displays green, and a pixel 70B that displays blue. Further, a pixel that displays a color different from the red, green, and blue colors such as yellow can be added to the pixel 70.
 本実施の形態の有機EL表示装置100では、上記各画素70は、表示領域101と非表示領域102とを有する。 In the organic EL display device 100 of the present embodiment, each pixel 70 has a display area 101 and a non-display area 102.
 表示領域101は、平面視において、調光層である有機EL層22から光を射出することで画像の表示に寄与する領域である。一方、非表示領域102は、表示領域101に比べ光の射出が少なく、表示に寄与しない領域である。 The display area 101 is an area that contributes to image display by emitting light from the organic EL layer 22 that is a light control layer in plan view. On the other hand, the non-display area 102 is an area that emits less light than the display area 101 and does not contribute to display.
 より具体的には、表示領域101は、平面視において、発光部30内の領域をいう。ここで上記発光部30とは、反射電極21が設けられ、かつ、エッジカバー25の設けられていない領域を指す。これについては、図3に基づいて後に説明する。 More specifically, the display area 101 is an area in the light emitting unit 30 in a plan view. Here, the light emitting unit 30 refers to a region where the reflective electrode 21 is provided and the edge cover 25 is not provided. This will be described later with reference to FIG.
 また、有機EL表示装置100には、上記各画素に対応して、X軸方向及びY軸方向に、複数の信号線11(配線)が設けられている。そして、上記各配線は、上記TFTに接続されている。 Further, the organic EL display device 100 is provided with a plurality of signal lines 11 (wirings) in the X-axis direction and the Y-axis direction corresponding to the respective pixels. Each of the wirings is connected to the TFT.
 <封止基板50>
 次に図3に基づいて、有機EL表示パネル1の断面構成等について説明する。
<Sealing substrate 50>
Next, based on FIG. 3, the cross-sectional configuration of the organic EL display panel 1 will be described.
 図3は、有機EL表示パネル1を図2に示すA-A線で切断したときの有機EL表示パネル1の概略構成を示す断面図である。 FIG. 3 is a cross-sectional view showing a schematic configuration of the organic EL display panel 1 when the organic EL display panel 1 is cut along line AA shown in FIG.
 図3に示すように、封止基板50は、有機EL素子20及び充填樹脂層42を封止するように設けられている。 As shown in FIG. 3, the sealing substrate 50 is provided so as to seal the organic EL element 20 and the filling resin layer 42.
 封止基板50を形成する材料としては、例えばガラスやプラスチックを用いることができる。 As a material for forming the sealing substrate 50, for example, glass or plastic can be used.
 図3に示すように、封止基板50の表面には、CF51及び遮蔽部としてのブラックマトリクス(以下、BM)52等が設けられている。 As shown in FIG. 3, the surface of the sealing substrate 50 is provided with a CF 51 and a black matrix (hereinafter referred to as BM) 52 as a shielding part.
 CF51は、後述する有機EL層22から射出された光のうち特定の波長を透過させる着色層である。 CF51 is a colored layer that transmits a specific wavelength of light emitted from the organic EL layer 22 described later.
 BM52は、各CF51の間に設けられ、外部からCF51間への光の侵入、及び、CF51間からの光漏れを防止する。 The BM 52 is provided between the CFs 51 to prevent light from entering between the CFs 51 from the outside and light leakage from between the CFs 51.
 本実施の形態の有機EL表示装置100の封止基板50には、各画素70に対応して、詳しくは、赤色を表示する画素70Rに対応して赤(R)を透過させるCF51R、緑色を表示する画素70Gに対応して緑(G)を透過させるCF51G、又は青色を表示する画素70Bに対応して青(B)を透過させるCF51Bが設けられている。 In the sealing substrate 50 of the organic EL display device 100 according to the present embodiment, CF51R that transmits red (R) corresponding to each pixel 70, specifically, red (R) corresponding to the pixel 70R that displays red, and green are provided. A CF 51G that transmits green (G) corresponding to the pixel 70G to be displayed or a CF 51B that transmits blue (B) corresponding to the pixel 70B that displays blue is provided.
 そのため、各画素70の有機EL素子が白色に発光する場合でも、カラー表示が可能となる。 Therefore, even when the organic EL element of each pixel 70 emits white light, color display is possible.
 なお、後述するように、発光素子の構成によっては、CF51を用いない構成も可能である。すなわち、各画素70の有機EL素子が、それ自身で赤・緑・青等の所望の色に発色する場合は、CF51を省くことができる。 As will be described later, depending on the configuration of the light emitting element, a configuration without using the CF 51 is also possible. That is, when the organic EL element of each pixel 70 develops a desired color such as red, green, and blue by itself, the CF 51 can be omitted.
 また、所望の色に発色する発光素子と、CFとを組み合わせることも可能である。この構成では、色純度の高い表示を行うことが容易になる。 It is also possible to combine a light emitting element that develops a desired color and CF. With this configuration, it becomes easy to perform display with high color purity.
 <支持基板10>
 支持基板10は、上記封止基板50との間に、調光層である有機EL素子20等を挟持するように、封止基板50に対向して設けられている。
<Supporting substrate 10>
The support substrate 10 is provided so as to face the sealing substrate 50 so as to sandwich the organic EL element 20 or the like that is a light control layer between the supporting substrate 10 and the sealing substrate 50.
 支持基板10を形成する材料としては、例えばガラスやプラスチックを用いることができる。 As a material for forming the support substrate 10, for example, glass or plastic can be used.
 なお、封止基板50側から光を射出するトップエミッション型の有機EL表示装置100に用いられる支持基板10としては、不透明の金属板等を用いることもできる。 Note that an opaque metal plate or the like may be used as the support substrate 10 used in the top emission type organic EL display device 100 that emits light from the sealing substrate 50 side.
 図2及び図3に示すように、支持基板10の上には、各画素70に対応して、信号線11及びTFT12が設けられている。 As shown in FIGS. 2 and 3, the signal line 11 and the TFT 12 are provided on the support substrate 10 corresponding to each pixel 70.
 さらに、支持基板10の上には層間膜13(平坦化膜)が、信号線11及びTFT12を覆うように、支持基板10の全領域に渡って積層されている。 Furthermore, an interlayer film 13 (a planarizing film) is laminated on the support substrate 10 over the entire region of the support substrate 10 so as to cover the signal lines 11 and the TFTs 12.
 信号線11は、例えば、画素を選択する複数の線(ゲート線)、データを書き込む複数の線(ソース線)、有機EL素子20に電力を供給する複数の線(電源線)等から構成されている。 The signal line 11 includes, for example, a plurality of lines for selecting pixels (gate lines), a plurality of lines for writing data (source lines), a plurality of lines for supplying power to the organic EL elements 20 (power supply lines), and the like. ing.
 信号線は、表示領域101の外で図示しない外部回路と接続されている。上記外部回路から信号線11に対して電気信号を入力することで、信号線交差部に配された有機EL素子を駆動(発光)させることができる。言い換えると、上記信号線11及びTFT12を介して、各画素70の反射電極21に制御信号が送られ、有機EL素子が発光する。 The signal line is connected to an external circuit (not shown) outside the display area 101. By inputting an electric signal to the signal line 11 from the external circuit, the organic EL element arranged at the signal line intersection can be driven (emitted). In other words, a control signal is sent to the reflective electrode 21 of each pixel 70 via the signal line 11 and the TFT 12, and the organic EL element emits light.
 アクティブマトリクス型の表示装置の場合には、各画素70には少なくとも1つのTFT12が配置されている。 In the case of an active matrix display device, at least one TFT 12 is disposed in each pixel 70.
 また、各画素70には、書き込まれた電圧を保持するキャパシタや、TFT12の特性のばらつきを補償するための補償回路が形成されていてもよい。 Further, each pixel 70 may be formed with a capacitor for holding the written voltage and a compensation circuit for compensating for variations in characteristics of the TFT 12.
 層間膜13としては、既知の感光性樹脂を用いることができる。上記感光性樹脂としては、例えばアクリル樹脂やポリイミド樹脂を用いることができる。 As the interlayer film 13, a known photosensitive resin can be used. As the photosensitive resin, for example, an acrylic resin or a polyimide resin can be used.
 層間膜13には、有機EL素子20に設けられる反射電極21をTFT12に電気的に接続するためのコンタクトホール26が設けられている。 The interlayer film 13 is provided with a contact hole 26 for electrically connecting the reflective electrode 21 provided in the organic EL element 20 to the TFT 12.
 <有機EL素子20>
 有機EL素子20は、低電圧直流駆動による高輝度発光が可能な発光素子である。
<Organic EL element 20>
The organic EL element 20 is a light emitting element capable of high luminance light emission by low voltage direct current drive.
 図3に示すように、上記層間膜13の上に、反射電極21、有機EL層22、対向電極23が、この順に積層された構造を有している。 As shown in FIG. 3, a reflective electrode 21, an organic EL layer 22, and a counter electrode 23 are stacked on the interlayer film 13 in this order.
 さらに、反射電極21の周囲は、絶縁部であるエッジカバー25で覆われている。 Furthermore, the periphery of the reflective electrode 21 is covered with an edge cover 25 that is an insulating portion.
 好ましくは、隣接する2つの反射電極21の周囲が、エッジカバー25で覆われている。 Preferably, the periphery of two adjacent reflective electrodes 21 is covered with an edge cover 25.
 有機EL層22及び対向電極23は、反射電極21又はエッジカバー25の上部に設けられている。 The organic EL layer 22 and the counter electrode 23 are provided above the reflective electrode 21 or the edge cover 25.
 反射電極21は、支持基板10に設けられたコンタクトホール26を介してTFT12と接続されている。 The reflective electrode 21 is connected to the TFT 12 through a contact hole 26 provided in the support substrate 10.
 反射電極21として、金属材料を用いることができる。より具体的には、例えば、Ag又はAg合金や、Al又はAl合金などを用いることができる。 A metal material can be used as the reflective electrode 21. More specifically, for example, Ag or an Ag alloy, Al or an Al alloy, or the like can be used.
 また、対向電極23としては、半透明電極を用いることが望ましい。半透明電極としては、例えば、金属の半透明電極単体、金属の半透明電極層と透明電極層との積層体を用いることができる。 Further, it is desirable to use a translucent electrode as the counter electrode 23. As the translucent electrode, for example, a metal translucent electrode alone or a laminate of a metal translucent electrode layer and a transparent electrode layer can be used.
 なお、反射電極21は、上記有機EL層22に正孔を注入(供給)する機能を有する層である。また、対向電極23は、上記有機EL層22に電子を注入(供給)する機能を有する層である。 The reflective electrode 21 is a layer having a function of injecting (supplying) holes into the organic EL layer 22. The counter electrode 23 is a layer having a function of injecting (supplying) electrons into the organic EL layer 22.
 平面視において、反射電極21が設けられ、かつ、エッジカバー25の設けられていない領域を発光部30として規定する。発光部30は、発光層24から光を取り出すことのできる領域である。すなわち、エッジカバー25は、発光部30の領域を規定する。 In plan view, a region where the reflective electrode 21 is provided and the edge cover 25 is not provided is defined as the light emitting unit 30. The light emitting unit 30 is a region where light can be extracted from the light emitting layer 24. That is, the edge cover 25 defines the area of the light emitting unit 30.
 エッジカバー25は絶縁材料で形成されており、反射電極21の端部で有機EL層22が薄くなったり電界集中が起こったりすることで、有機EL素子20における反射電極21と対向電極23とが短絡することを防止する。 The edge cover 25 is made of an insulating material, and the organic EL layer 22 becomes thin or the electric field concentration occurs at the end of the reflective electrode 21, so that the reflective electrode 21 and the counter electrode 23 in the organic EL element 20 are connected. Prevent short circuit.
 エッジカバー25の材料としては、既知の感光性樹脂を用いることができる。上記感光性樹脂としては、例えばアクリル樹脂やポリイミド樹脂を用いることができる。 As the material of the edge cover 25, a known photosensitive resin can be used. As the photosensitive resin, for example, an acrylic resin or a polyimide resin can be used.
 本実施の形態の有機EL表示装置100の反射電極21は、反射領域211と低反射領域212とを備えており、低反射領域212は、反射電極21の周囲の少なくとも一部に設けられている。 The reflective electrode 21 of the organic EL display device 100 according to the present embodiment includes a reflective region 211 and a low reflective region 212, and the low reflective region 212 is provided on at least a part of the periphery of the reflective electrode 21. .
 ここで、低反射領域212とは、反射領域211に比べ、光の反射率が低い領域である。低反射領域212としては、例えば、反射領域211に比べ黒色に近い色の材料を用いることができる。 Here, the low reflection region 212 is a region having a lower light reflectance than the reflection region 211. As the low reflection region 212, for example, a material having a color close to black as compared with the reflection region 211 can be used.
 また、低反射領域212は、反射電極21を低反射処理して設けることができる。具体的には、反射電極21が金属である場合に、反射電極21を、UV照射処理や酸素プラズマ処理等で酸化することにより低反射処理したものを用いることができる。より具体的には、反射電極21が銀又は銀合金で構成される場合には、低反射領域212を酸化銀で構成することができる。 Further, the low reflection region 212 can be provided by performing a low reflection treatment on the reflective electrode 21. Specifically, when the reflective electrode 21 is a metal, it is possible to use the reflective electrode 21 that has been subjected to a low-reflection treatment by oxidizing it with a UV irradiation treatment, an oxygen plasma treatment, or the like. More specifically, when the reflective electrode 21 is composed of silver or a silver alloy, the low reflective region 212 can be composed of silver oxide.
 <有機EL層22>
 有機EL層22には、調光層として機能する発光層24と、図示しない正孔注入層、正孔輸送層、電子輸送層、及び電子注入層が設けられている。
<Organic EL layer 22>
The organic EL layer 22 includes a light emitting layer 24 that functions as a light control layer, and a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer (not shown).
 図3に示す有機EL表示装置100は、発光層24として、白色に発光する発光素子を備えており、複数の画素70に連続して、すなわち、画素部全体に設けられている。 The organic EL display device 100 shown in FIG. 3 includes a light emitting element that emits white light as the light emitting layer 24, and is provided continuously to the plurality of pixels 70, that is, the entire pixel portion.
 なお、図4に示すように、発光層24に、それ自身で所望の色に発光する発光素子を用いることができる。例えば赤色に発光する発光素子で形成された発光層24R、緑色に発光する発光素子で形成された発光層24G、及び青色に発光する発光素子で形成された発光層24Bを用いることができる。この場合、先にも述べたように、CFを設けることなく、カラー表示を行うことが可能となる。 As shown in FIG. 4, a light emitting element that emits light of a desired color can be used for the light emitting layer 24. For example, a light emitting layer 24R formed of a light emitting element emitting red light, a light emitting layer 24G formed of a light emitting element emitting green light, and a light emitting layer 24B formed of a light emitting element emitting blue light can be used. In this case, as described above, color display can be performed without providing a CF.
 また、上記のように、発光層24を赤・緑・青色等に発光するように構成した場合であっても、それにCFを併用することも可能である。 Further, as described above, even when the light emitting layer 24 is configured to emit light of red, green, blue, etc., it is possible to use CF in combination.
 以上の各構成により、各画素70において、所望の色を発光する画素70R・70G・70Bを形成することができる。 With each configuration described above, the pixels 70R, 70G, and 70B that emit a desired color can be formed in each pixel 70.
 <有機EL層22の詳細>
 以下では、有機EL層22の構成について、さらに詳細に説明する。
<Details of the organic EL layer 22>
Hereinafter, the configuration of the organic EL layer 22 will be described in more detail.
 有機EL層22は、反射電極21と対向電極23との間に、反射電極21側から、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層が、この順に形成された構成を有している。 The organic EL layer 22 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer between the reflective electrode 21 and the counter electrode 23 from the reflective electrode 21 side. It has the structure formed in order.
 なお、必要に応じて正孔、電子といったキャリアの流れをせき止めるキャリアブロッキング層が挿入されていてもよい。 It should be noted that a carrier blocking layer for blocking the flow of carriers such as holes and electrons may be inserted as necessary.
 また、一つの層が複数の機能を有していてもよく、例えば、正孔注入層と正孔輸送層とを兼ねた一つの層を形成してもよい。 In addition, one layer may have a plurality of functions, and for example, a single layer serving as a hole injection layer and a hole transport layer may be formed.
 なお、上記積層順は、反射電極21を陽極とし、対向電極23を陰極としたものである。反射電極21を陰極とし、対向電極23を陽極とする場合には、有機EL層22の積層順は反転する。 Note that the stacking order is that in which the reflective electrode 21 is an anode and the counter electrode 23 is a cathode. When the reflective electrode 21 is a cathode and the counter electrode 23 is an anode, the stacking order of the organic EL layers 22 is reversed.
 正孔注入層は、反射電極21から有機EL層22への正孔注入効率を高める機能を有する層である。また、正孔輸送層は、発光層への正孔輸送効率を高める機能を有する層である。正孔注入層及び正孔輸送層は、反射電極21及びエッジカバー25を覆うように一様に形成されている。 The hole injection layer is a layer having a function of increasing the efficiency of hole injection from the reflective electrode 21 to the organic EL layer 22. The hole transport layer is a layer having a function of increasing the hole transport efficiency to the light emitting layer. The hole injection layer and the hole transport layer are uniformly formed so as to cover the reflective electrode 21 and the edge cover 25.
 正孔輸送層上には、発光層24が各画素の発光領域に対して各々形成されている。 On the hole transport layer, a light emitting layer 24 is formed for each pixel light emitting region.
 発光層24は、反射電極21側から注入された正孔と対向電極23側から注入された電子とを再結合させて光を射出する機能を有する層である。発光層24は、それぞれ、低分子蛍光色素、金属錯体等の、発光効率が高い材料で形成されている。 The light emitting layer 24 is a layer having a function of emitting light by recombining holes injected from the reflective electrode 21 side and electrons injected from the counter electrode 23 side. Each of the light emitting layers 24 is formed of a material having high light emission efficiency, such as a low molecular fluorescent dye or a metal complex.
 電子輸送層は、発光層24への電子輸送効率を高める機能を有する層である。また、電子注入層は、対向電極23から有機EL層22への電子注入効率を高める機能を有する層である。 The electron transport layer is a layer having a function of increasing the efficiency of transporting electrons to the light emitting layer 24. The electron injection layer is a layer having a function of increasing the efficiency of electron injection from the counter electrode 23 to the organic EL layer 22.
 電子輸送層は、発光層24及び正孔輸送層上を覆うように、これら発光層24及び正孔輸送層上に一様に形成されている。 The electron transport layer is uniformly formed on the light emitting layer 24 and the hole transport layer so as to cover the light emitting layer 24 and the hole transport layer.
 また、電子注入層は、電子輸送層を覆うように、電子輸送層上に一様に形成されている。 Moreover, the electron injection layer is uniformly formed on the electron transport layer so as to cover the electron transport layer.
 なお、電子輸送層と電子注入層とは、上記したように互いに独立した層として形成されていてもよく、又は互いに一体化して設けられていてもよい。すなわち、有機EL表示パネル1は、電子輸送層及び電子注入層に代えて、電子輸送層兼電子注入層を備えていてもよい。 The electron transport layer and the electron injection layer may be formed as independent layers as described above, or may be integrated with each other. That is, the organic EL display panel 1 may include an electron transport layer / electron injection layer instead of the electron transport layer and the electron injection layer.
 反射電極21は、上記のような有機層で構成される有機EL層22に電子を注入する機能を有する層である。反射電極21は、電子注入層を覆うように、電子注入層上に一様に形成されている。 The reflective electrode 21 is a layer having a function of injecting electrons into the organic EL layer 22 composed of the organic layer as described above. The reflective electrode 21 is uniformly formed on the electron injection layer so as to cover the electron injection layer.
 なお、発光層24以外の有機層は有機EL層22として必須の層ではなく、要求される有機EL素子の特性に応じて適宜形成すればよい。 Note that the organic layers other than the light emitting layer 24 are not essential layers as the organic EL layer 22, and may be appropriately formed according to the required characteristics of the organic EL element.
 また、有機EL層22には、必要に応じ、キャリアブロッキング層を追加することもできる。例えば、発光層24と電子輸送層との間にキャリアブロッキング層として正孔ブロッキング層を追加することで、正孔が電子輸送層に抜けるのを阻止し、発光効率を向上することができる。 Also, a carrier blocking layer can be added to the organic EL layer 22 as necessary. For example, by adding a hole blocking layer as a carrier blocking layer between the light emitting layer 24 and the electron transporting layer, it is possible to prevent holes from escaping to the electron transporting layer and improve the light emission efficiency.
 上記構成において、反射電極21(陽極)、対向電極23(陰極)、及び発光層24以外の層は、適宜挿入すればよい。 In the above configuration, layers other than the reflective electrode 21 (anode), the counter electrode 23 (cathode), and the light emitting layer 24 may be inserted as appropriate.
 積層構成の例として、発光色が白(W)の発光層24とCF51とを用いる場合の上記有機EL層22の積層構成の一例は下記の通りである。すなわち、反射電極21側から、正孔注入層、正孔輸送層、第一発光層、電子輸送層、キャリア発生層、正孔輸送層、第二発光層、電子輸送層、及び電子注入層などの積層構成が挙げられる。 As an example of the laminated structure, an example of the laminated structure of the organic EL layer 22 in the case where the light emitting color 24 of white (W) and the CF 51 are used is as follows. That is, from the reflective electrode 21 side, a hole injection layer, a hole transport layer, a first light emitting layer, an electron transport layer, a carrier generation layer, a hole transport layer, a second light emitting layer, an electron transport layer, an electron injection layer, etc. The laminated structure of these is mentioned.
 この場合、第一発光層及び第二発光層から射出された光の混合が有機EL素子20より得られる。上記のように発光層を2層とすることで、発光効率や発光光量の向上を図ることができる。またその光をCF51によって調整することで所望のスペクトルを有する光を外部に取り出すことができる。 In this case, a mixture of light emitted from the first light emitting layer and the second light emitting layer is obtained from the organic EL element 20. By making the light emitting layer into two layers as described above, it is possible to improve the light emission efficiency and the amount of emitted light. Further, light having a desired spectrum can be extracted outside by adjusting the light with the CF 51.
 ここで、キャリア発生層とは、第一発光層側に電子を、第二発光層側に正孔を供給するための層である。すなわち、正孔輸送層、発光層及び電子輸送層を1ユニットと考えれば、第一発光層側のユニットと、第二発光層側のユニットがキャリア発生層を介して接続されていることになる。 Here, the carrier generation layer is a layer for supplying electrons to the first light emitting layer side and holes to the second light emitting layer side. That is, assuming that the hole transport layer, the light-emitting layer, and the electron transport layer are one unit, the unit on the first light-emitting layer side and the unit on the second light-emitting layer side are connected via the carrier generation layer. .
 なお、第三発光層を有するユニットを同様に積層してもよいし、4つ以上のユニットを積層することもできる。さらには、上記で述べたように、キャリアブロックキング層の追加や、正孔注入層と正孔輸送層の一体化なども適宜行うことができる。 It should be noted that units having the third light emitting layer may be laminated in the same manner, or four or more units may be laminated. Furthermore, as described above, addition of a carrier block king layer and integration of a hole injection layer and a hole transport layer can be appropriately performed.
 W発光の発光層24とCF51を組み合わせた素子においては、CF51あるいはその他の方法で各画素70の発光色を変更するため、発光層24を画素70毎に塗り分ける必要はなく、正孔輸送層等と同じように、平面視において有機EL層22内に一様に形成すればよい。 In an element in which the W emission layer 24 and the CF 51 are combined, the emission color of each pixel 70 is changed by the CF 51 or other methods, so it is not necessary to coat the emission layer 24 for each pixel 70, and the hole transport layer. Similarly to the above, it may be formed uniformly in the organic EL layer 22 in plan view.
 反射電極21は、電極材料をスパッタ法等で形成した後、フォトリソグラフィ技術及びエッチングにより、個々の画素70に対応してパターン形成されている。 The reflective electrode 21 is formed in a pattern corresponding to each pixel 70 by photolithography and etching after an electrode material is formed by sputtering or the like.
 対向電極23としては、様々な導電性材料を用いることができるが、支持基板10とは反対側から光を放射するトップエミッション型有機EL素子20の場合には、対向電極23は、透明又は半透明であることが好ましい。 As the counter electrode 23, various conductive materials can be used. In the case of the top emission type organic EL element 20 that emits light from the side opposite to the support substrate 10, the counter electrode 23 is transparent or semi-transparent. It is preferably transparent.
 上記対向電極23に用いられる導電膜材料としては、例えば、ITO(Indium Tin Oxide:インジウム錫酸化物)、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)、ガリウム添加酸化亜鉛(GZO)等の透明導電材料、金(Au)、ニッケル(Ni)、白金(Pt)等の金属材料、あるいはそれらの積層膜を用いることができる。 Examples of the conductive film material used for the counter electrode 23 include transparent conductive materials such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and gallium-doped zinc oxide (GZO). A material, a metal material such as gold (Au), nickel (Ni), platinum (Pt), or a laminated film thereof can be used.
 また、上記及び対向電極23の積層方法としては、スパッタ法、真空蒸着法、CVD(chemical vapor deposition、化学蒸着)法、プラズマCVD法、印刷法等を用いることができる。 Further, as the above and the method of laminating the counter electrode 23, a sputtering method, a vacuum deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, a printing method, or the like can be used.
 有機EL層22の材料としては、既知の材料を用いることができる。なお、発光層24には、それぞれ、単一の材料を用いてもよく、ある材料をホスト材料とし、他の材料をゲスト材料又はドーパントとして混ぜ込んだ混合材料を用いてもよい。 As a material of the organic EL layer 22, a known material can be used. Note that a single material may be used for each of the light emitting layers 24, or a mixed material in which a certain material is used as a host material and another material is mixed as a guest material or a dopant may be used.
 正孔注入層、正孔輸送層、あるいは正孔注入層兼正孔輸送層の材料としては、例えば、アントラセン、アザトリフェニレン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、オキザゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、及びこれらの誘導体、チオフェン系化合物、ポリシラン系化合物、ビニルカルバゾール系化合物、アニリン系化合物等の鎖状式あるいは複素環式共役系のモノマー、オリゴマー、又はポリマー等が挙げられる。 As a material of the hole injection layer, the hole transport layer, or the hole injection layer / hole transport layer, for example, anthracene, azatriphenylene, fluorenone, hydrazone, stilbene, triphenylene, benzine, styrylamine, triphenylamine, porphyrin, Chain or heterocyclic such as triazole, imidazole, oxadiazole, oxazole, polyarylalkane, phenylenediamine, arylamine, and derivatives thereof, thiophene compounds, polysilane compounds, vinylcarbazole compounds, aniline compounds Examples include conjugated monomers, oligomers, and polymers.
 発光層24の材料としては、低分子蛍光色素、金属錯体等の発光効率が高い材料が用いられる。例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、及びこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体、ジトルイルビニルビフェニル、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール等が挙げられる。 As the material of the light emitting layer 24, a material having high luminous efficiency such as a low molecular fluorescent dye or a metal complex is used. For example, anthracene, naphthalene, indene, phenanthrene, pyrene, naphthacene, triphenylene, perylene, picene, fluoranthene, acephenanthrylene, pentaphen, pentacene, coronene, butadiene, coumarin, acridine, stilbene, and derivatives thereof, tris (8- Quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex, ditoluylvinylbiphenyl, hydroxyphenyloxazole, hydroxyphenylthiazole and the like.
 電子輸送層、電子注入層、あるいは電子輸送層兼電子注入層の材料としては、例えば、トリス(8-キノリノラト)アルミニウム錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体等が挙げられる。 Examples of the material for the electron transport layer, the electron injection layer, or the electron transport layer / electron injection layer include tris (8-quinolinolato) aluminum complex, oxadiazole derivative, triazole derivative, phenylquinoxaline derivative, silole derivative, and the like. .
 <マイクロキャビティ>
 図5は、本実施の形態にかかる有機EL表示装置100の画像表示方法について説明する模式図である。
<Microcavity>
FIG. 5 is a schematic diagram for explaining an image display method of the organic EL display device 100 according to the present embodiment.
 本実施の形態にかかる有機EL素子20は、マイクロキャビティ構造を有していることが好ましい。 The organic EL element 20 according to this embodiment preferably has a microcavity structure.
 マイクロキャビティとは、発光した光が陽極と陰極との間で多重反射し、共振することで発光スペクトルが急峻になり、また、ピーク波長の発光強度が増幅される現象である。 The microcavity is a phenomenon in which emitted light undergoes multiple reflections between the anode and the cathode and resonates, resulting in a steep emission spectrum and amplification of the emission intensity at the peak wavelength.
 マイクロキャビティ効果は、例えば、陽極や陰極の反射率及び膜厚、有機EL層22の膜厚等を最適に設計することで得ることができる。 The microcavity effect can be obtained, for example, by optimally designing the reflectance and film thickness of the anode and cathode, the film thickness of the organic EL layer 22, and the like.
 マイクロキャビティ構造を有する有機EL素子20において、反射電極21と対向電極23との間に設けられた有機EL層22における発光層から発光された光は、反射電極21と対向電極23との間で反射を繰り返す。 In the organic EL element 20 having the microcavity structure, light emitted from the light emitting layer in the organic EL layer 22 provided between the reflective electrode 21 and the counter electrode 23 is between the reflective electrode 21 and the counter electrode 23. Repeat reflection.
 このとき、図5に示すように、発光色毎に、各画素70R・70G・70Bにおける有機EL素子20の光路長72R・72G・72Bを変えることで、上記発光層24から発光した光が反射電極21と対向電極23との間で往復し、特定波長の光の強度が増幅される。 At this time, as shown in FIG. 5, the light emitted from the light emitting layer 24 is reflected by changing the optical path lengths 72R, 72G, 72B of the organic EL elements 20 in the respective pixels 70R, 70G, 70B for each emission color. It reciprocates between the electrode 21 and the counter electrode 23, and the intensity | strength of the light of a specific wavelength is amplified.
 本実施の形態では、反射電極21上に透明電極層121を設け、この透明電極層121の膜厚を変更することで、各画素70R・70G・70Bにおける有機EL素子20の光路長72R・72G・72Bを変更している。 In the present embodiment, the transparent electrode layer 121 is provided on the reflective electrode 21, and the optical path lengths 72R and 72G of the organic EL elements 20 in the respective pixels 70R, 70G, and 70B are changed by changing the film thickness of the transparent electrode layer 121.・ 72B is changed.
 このように、各画素70R・70G・70Bにおける透明電極層121の膜厚を変更することで、マイクロキャビティ効果を変化させ、発光色を調整することができる。 Thus, by changing the film thickness of the transparent electrode layer 121 in each of the pixels 70R, 70G, and 70B, the microcavity effect can be changed and the emission color can be adjusted.
 図6は、本実施の形態にかかる有機EL表示装置100に入射した外光の挙動について説明する模式図である。 FIG. 6 is a schematic diagram for explaining the behavior of external light incident on the organic EL display device 100 according to the present embodiment.
 以下に、マイクロキャビティ構造を有する有機EL素子20に入射した外光の挙動を説明する。 Hereinafter, the behavior of external light incident on the organic EL element 20 having a microcavity structure will be described.
 マイクロキャビティ構造を有する有機EL素子20では、電極間の光路長を、その共振波長が、CF51を透過する波長と合致するように設計する。これにより、入射した外光に含まれる上記波長成分の光を電極間に閉じ込め、外部に射出させない。一方、上記波長成分以外の光はCF51によりカットされる。 In the organic EL element 20 having the microcavity structure, the optical path length between the electrodes is designed so that the resonance wavelength thereof matches the wavelength that transmits the CF 51. Thereby, the light of the wavelength component contained in the incident external light is confined between the electrodes and is not emitted outside. On the other hand, light other than the wavelength component is cut by the CF 51.
 具体的には、例えば、CF51Gは外光のうち、緑色の波長の光を透過し、他の波長の光を吸収する。したがって、有機EL素子20には、外光のうち緑色の光が到達する。 Specifically, for example, the CF 51G transmits green light of external light and absorbs light of other wavelengths. Therefore, green light of the external light reaches the organic EL element 20.
 しかしながら、有機EL素子20の有するマイクロキャビティ構造は、緑色の光を顕著に透過し、ほとんど反射しない。このため、有機EL素子20からCF51Gには外光に起因する緑色の光がほとんど進行しない。 However, the microcavity structure of the organic EL element 20 transmits green light remarkably and hardly reflects it. For this reason, green light resulting from external light hardly proceeds from the organic EL element 20 to the CF 51G.
 以上より、有機EL表示装置100に外光が入射しても、いずれの波長の光も、反射電極21により反射されて外部に射出されることは抑制される。 As described above, even when external light is incident on the organic EL display device 100, it is possible to suppress light of any wavelength from being reflected by the reflective electrode 21 and being emitted to the outside.
 以下、反射電極21の低反射領域212、BM52、及び発光部30の位置関係について、具体例を挙げて詳細に説明する。 Hereinafter, the positional relationship among the low reflection region 212, the BM 52, and the light emitting unit 30 of the reflective electrode 21 will be described in detail with specific examples.
 本実施の形態の有機EL表示装置100では、反射電極21の周囲に低反射領域が設けられている。そのため、対向基板としての支持基板10に設けられているBM52のBM開口部53を広くすることが容易になる。 In the organic EL display device 100 of the present embodiment, a low reflection region is provided around the reflective electrode 21. Therefore, it becomes easy to widen the BM opening 53 of the BM 52 provided on the support substrate 10 as the counter substrate.
 以下、具体例に基づいて説明する。 Hereinafter, description will be made based on specific examples.
 <実施例1>
 図7は、本実施の有機EL表示装置100の概略図である。
<Example 1>
FIG. 7 is a schematic diagram of the organic EL display device 100 of the present embodiment.
 なお、説明のため、既に説明した各部の構成については、部材番号を省略する。また、説明のため、BM開口部53、及び発光部30を補助線で記す。 For the sake of explanation, the member numbers are omitted for the configuration of each part already described. For the sake of explanation, the BM opening 53 and the light emitting unit 30 are indicated by auxiliary lines.
 図7(a)及び図7(b)に示すように、本実施例の有機EL表示装置100において、発光部30は、BM開口部53の内側にある。すなわち、表示領域101は発光部30で規定されるため、表示領域101は発光部30と同一である。 7A and 7B, in the organic EL display device 100 of the present embodiment, the light emitting unit 30 is inside the BM opening 53. That is, since the display area 101 is defined by the light emitting unit 30, the display area 101 is the same as the light emitting unit 30.
 これにより、発光部30で取り出された光は効率的に表示に寄与することができる。 Thereby, the light extracted by the light emitting unit 30 can contribute to display efficiently.
 すなわち、従来の表示装置の平面図である図15(b)に示すように、従来は、発光部30よりも内側にBM開口部53が位置していた。そのため、発光部30から発光した光が、すべて射出することが困難となり、光の利用効率が低下していた。 That is, as shown in FIG. 15B, which is a plan view of a conventional display device, the BM opening 53 is conventionally positioned inside the light emitting unit 30. For this reason, it is difficult to emit all the light emitted from the light emitting unit 30, and the light use efficiency is reduced.
 これに対し、本実施例では、反射電極21の周囲に、低反射領域212が設けられている。 In contrast, in this embodiment, a low reflection region 212 is provided around the reflective electrode 21.
 そのため、支持基板10と封止基板50との貼り合わせマージン等を考慮して、BM開口部53を小さく設計する必要が少なくなる。その結果、BM開口部53を、発光部30よりも大きくすることができる。 Therefore, it is less necessary to design the BM opening 53 in consideration of a bonding margin between the support substrate 10 and the sealing substrate 50 and the like. As a result, the BM opening 53 can be made larger than the light emitting unit 30.
 そのため、上記のように、本実施例では、光の利用効率が向上する。 Therefore, as described above, in this embodiment, the light use efficiency is improved.
 また、BM開口部53であって発光部30でない領域に入射した外光は、反射電極21の低反射領域212に入射するため、反射を抑制される。 Moreover, since the external light which entered into the area | region which is the BM opening 53 and is not the light emission part 30 injects into the low reflection area 212 of the reflective electrode 21, reflection is suppressed.
 さらに、発光部30に入射した外光は反射領域211に入射し反射され、有機EL素子20のマイクロキャビティ効果により、外部への射出を抑制される。 Furthermore, the external light incident on the light emitting unit 30 is incident on the reflection region 211 and reflected, and is suppressed from being emitted to the outside due to the microcavity effect of the organic EL element 20.
 これにより、外光が有機EL表示装置100に入射し、内部で反射して外部に射出されることが抑制される。 Thereby, it is suppressed that external light enters the organic EL display device 100, is reflected inside, and is emitted outside.
 そのため、特に外光強度が高い場合であっても、コントラスト比の高い表示を行うことができる。 Therefore, display with a high contrast ratio can be performed even when the external light intensity is particularly high.
 <変形例>
 また、本実施例の変形例として、図8(a)及び図8(b)に示す構成が考えられる。
<Modification>
Further, as a modification of the present embodiment, the configuration shown in FIGS. 8A and 8B can be considered.
 上記の構成では、先に説明した実施例2の構成と比べて、低反射領域212が、エッジカバー25の設けられていない部分に及んで形成されていている点が相違する。すなわち、平面視において、上記エッジカバー25の端部近傍部に相当する領域に、低反射領域212が設けられている。 The above configuration is different from the configuration of the second embodiment described above in that the low reflection region 212 is formed over a portion where the edge cover 25 is not provided. That is, the low reflection region 212 is provided in a region corresponding to the end portion vicinity of the edge cover 25 in plan view.
 そのため、先に説明した上記端部近傍部からの反射光が低減される。その結果、高いコントラスト比を得ることが容易になる。 Therefore, the reflected light from the end portion vicinity described above is reduced. As a result, it becomes easy to obtain a high contrast ratio.
 <実施例2>
 図9は、本実施の有機EL表示装置100の概略図である。
<Example 2>
FIG. 9 is a schematic view of the organic EL display device 100 of the present embodiment.
 なお、説明のため、既に説明した各部の構成については、部材番号を省略する。また、説明のため、BM開口部53、及び発光部30を補助線で記す。 For the sake of explanation, the member numbers are omitted for the configuration of each part already described. For the sake of explanation, the BM opening 53 and the light emitting unit 30 are indicated by auxiliary lines.
 図9(a)は、有機EL表示パネル1の概略構成を示す断面図であり、図9(b)は、有機EL表示パネル1の概略構成を示す平面図である。 FIG. 9A is a cross-sectional view showing a schematic configuration of the organic EL display panel 1, and FIG. 9B is a plan view showing a schematic configuration of the organic EL display panel 1.
 図9(a)及び図9(b)に示すように、本実施例の有機EL表示装置100は、BM開口部53と発光部30とが同じ幅を有している。すなわち、互いに位置ずれがない場合、平面視において、表示領域101はBM開口部53及び発光部30と同一の領域である。 As shown in FIGS. 9A and 9B, in the organic EL display device 100 according to the present embodiment, the BM opening 53 and the light emitting unit 30 have the same width. That is, when there is no positional shift, the display region 101 is the same region as the BM opening 53 and the light emitting unit 30 in plan view.
 これにより、発光部30から発光した光は、BM52に遮られることなく、効率的に表示に寄与することができる。 Thereby, the light emitted from the light emitting unit 30 can efficiently contribute to the display without being blocked by the BM 52.
 また、本実施例の有機EL表示パネル1では、平面視において、エッジカバー25の端部が、BM52で覆われやすくなっている。 In the organic EL display panel 1 of the present embodiment, the end portion of the edge cover 25 is easily covered with the BM 52 in plan view.
 ここで、上記エッジカバー25の端部近傍部では、積層されている各層の厚さが不均一になったり、所望の厚さと相違する場合がある。そして、各層の厚さが上記のようになると、マイクロキャビティ効果が得られにくくなる。そのため、入射した外光が、反射して射出することで、コントラスト比の低下をもたらす場合がある。 Here, in the vicinity of the end portion of the edge cover 25, the thickness of each laminated layer may be uneven or may differ from a desired thickness. When the thickness of each layer is as described above, it is difficult to obtain the microcavity effect. For this reason, incident external light may be reflected and emitted, resulting in a decrease in contrast ratio.
 ここで、本実施例では、BM開口部53が、光の効率を低下させにくい幅、すなわち発光部30の幅まで狭められている。 Here, in this embodiment, the BM opening 53 is narrowed to a width that does not easily reduce the light efficiency, that is, the width of the light emitting section 30.
 そのため、上記エッジカバー25の端部近傍部での反射光の射出を抑制し、高いコントラスト比を得ながら、光の利用効率の高い表示を行うことが容易になる。 Therefore, it is easy to perform display with high light utilization efficiency while suppressing the emission of reflected light near the edge of the edge cover 25 and obtaining a high contrast ratio.
 <変形例>
 また、本実施例の変形例として、図10(a)及び図10(b)に示す構成が考えられる。
<Modification>
Further, as a modification of the present embodiment, the configurations shown in FIGS. 10A and 10B can be considered.
 上記の構成では、先に説明した実施例2の構成と比べて、低反射領域212が、エッジカバー25の設けられていない部分に及んで形成されていている点が相違する。すなわち、平面視において、上記エッジカバー25の端部近傍部に相当する領域に、低反射領域212が設けられている。 The above configuration is different from the configuration of the second embodiment described above in that the low reflection region 212 is formed over a portion where the edge cover 25 is not provided. That is, the low reflection region 212 is provided in a region corresponding to the end portion vicinity of the edge cover 25 in plan view.
 そのため、先に説明した上記端部近傍部からの反射光が低減される。その結果、高いコントラスト比を得ることが容易になる。 Therefore, the reflected light from the end portion vicinity described above is reduced. As a result, it becomes easy to obtain a high contrast ratio.
 <実施例3>
 図11は、本実施の有機EL表示装置100の概略図である。
<Example 3>
FIG. 11 is a schematic diagram of the organic EL display device 100 of the present embodiment.
 図11(a)及び図11(b)に示すように、本実施例の有機EL表示装置100は、平面視において、反射電極21が各画素70の表示領域101とそれに連続する非表示領域102とに及んで形成されている。そして、平面視において非表示領域102にある反射電極21は、低反射領域212となっている。 As shown in FIGS. 11A and 11B, the organic EL display device 100 according to the present embodiment includes a display area 101 of each pixel 70 and a non-display area 102 in which the reflective electrode 21 is continuous in the plan view. And formed. The reflective electrode 21 in the non-display area 102 in the plan view is a low reflection area 212.
 このような構成により、BM開口部53をより広くしたり、又は、BM52を省くことが容易になる。 Such a configuration makes it easier to make the BM opening 53 wider or to omit the BM 52.
 〔製造方法〕
 本実施の形態の上記表示装置の製造方法について、図12から14に基づいて説明すれば以下の通りである。
〔Production method〕
A method for manufacturing the display device according to the present embodiment will be described below with reference to FIGS.
 ただし、本実施の形態に記載されている各構成要素の寸法、材質、形状等はあくまで一実施の形態に過ぎず、これによって本発明の範囲が限定解釈されるべきではない。 However, the dimensions, materials, shapes, and the like of the constituent elements described in this embodiment are merely one embodiment, and the scope of the present invention should not be construed as being limited thereto.
 まず、図12を参照して、有機EL表示装置100の製造工程の流れの概要について説明する。 First, with reference to FIG. 12, an outline of the flow of the manufacturing process of the organic EL display device 100 will be described.
 図12は、有機EL表示装置100の製造工程の一例を工程順に示すフローチャートである。 FIG. 12 is a flowchart illustrating an example of a manufacturing process of the organic EL display device 100 in the order of processes.
 なお、S1、S4~S7の工程は、既知の方法で行うことができるため、説明を簡略化する。 Note that the steps S1, S4 to S7 can be performed by a known method, so the description will be simplified.
 ステップS1において、既知の方法で、支持基板10の上に、TFT12、信号線11、層間膜13、及びコンタクトホール26を形成する。 In step S1, the TFT 12, the signal line 11, the interlayer film 13, and the contact hole 26 are formed on the support substrate 10 by a known method.
 支持基板10としては、無アルカリガラス基板等のガラス基板あるいはプラスチック基板を用いることができる。 As the support substrate 10, a glass substrate such as a non-alkali glass substrate or a plastic substrate can be used.
 ステップS2において、画素70R・70G・70B毎に反射電極21を作製する。反射電極21の積層方法としては、スパッタ法、真空蒸着法、CVD(chemical vapor deposition、化学蒸着)法、プラズマCVD法、印刷法等を用いることができる。 In step S2, the reflective electrode 21 is prepared for each of the pixels 70R, 70G, and 70B. As a method for laminating the reflective electrode 21, a sputtering method, a vacuum vapor deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, a printing method, or the like can be used.
 その他の詳細事項については以下の各実施例において説明する。 Other details will be described in the following examples.
 ステップS3において、層間膜13上に、反射電極21の端部(パターン端部)を被覆すると共に、画素70R・70G・70B毎に発光部30が形成されるようにエッジカバー25を作製する。 In step S3, the edge cover 25 is manufactured so that the end portion (pattern end portion) of the reflective electrode 21 is covered on the interlayer film 13 and the light emitting portion 30 is formed for each of the pixels 70R, 70G, and 70B.
 エッジカバー25には、既知の感光性樹脂を用いることができる。上記感光性樹脂としては、例えば、アクリル樹脂やポリイミド樹脂等が挙げられる。 A known photosensitive resin can be used for the edge cover 25. Examples of the photosensitive resin include acrylic resin and polyimide resin.
 ステップS4で、上記反射電極21及び上記エッジカバー25を被覆するように、有機EL層22を作製する。 In step S4, the organic EL layer 22 is produced so as to cover the reflective electrode 21 and the edge cover 25.
 発光層24として、白色に発光する発光素子を用いる場合には、画素部全体に発光層24を形成する。 When a light emitting element that emits white light is used as the light emitting layer 24, the light emitting layer 24 is formed on the entire pixel portion.
 ここで、有機EL層22に設けられる発光層24として、有色に発光する発光素子を用いる場合には、各画素70の有機EL素子20に所定パターンで発光層24を形成する。 Here, when a light emitting element that emits light is used as the light emitting layer 24 provided in the organic EL layer 22, the light emitting layer 24 is formed in a predetermined pattern on the organic EL element 20 of each pixel 70.
 上記所定パターンで発光層24を形成する方法としては、例えば、真空蒸着法、インクジェット法、レーザ転写法を用いることができる。 As a method of forming the light emitting layer 24 with the predetermined pattern, for example, a vacuum deposition method, an ink jet method, or a laser transfer method can be used.
 なお、発光層24には、それぞれ、単一の材料を用いてもよく、ある材料をホスト材料とし、他の材料をゲスト材料又はドーパントとして混ぜ込んだ混合材料を用いてもよい。 Note that a single material may be used for each of the light emitting layers 24, or a mixed material in which a certain material is used as a host material and another material is mixed as a guest material or a dopant may be used.
 ステップS5で、既知の方法で、有機EL層22の全面に対向電極23を形成する。 In step S5, the counter electrode 23 is formed on the entire surface of the organic EL layer 22 by a known method.
 ステップS6で、有機EL素子20が形成された支持基板10と封止基板50とを、封止樹脂層41にて貼り合わせ、有機EL素子20の封入を行う。 In step S6, the support substrate 10 on which the organic EL element 20 is formed and the sealing substrate 50 are bonded together with the sealing resin layer 41, and the organic EL element 20 is sealed.
 有機EL素子20の他の封入方法としては、例えば、有機EL素子20の上面に、水分や酸素の透過しにくい緻密な封止膜を、CVD(chemical vapor deposition、化学蒸着)法等で形成し、フリットガラス(粉末ガラス)を、枠状に形成して有機EL素子20の封止することもできる。 As another method for encapsulating the organic EL element 20, for example, a dense sealing film that hardly allows moisture and oxygen to pass through is formed on the upper surface of the organic EL element 20 by a CVD (chemical vapor deposition, chemical vapor deposition) method or the like. The organic EL element 20 can be sealed by forming a frit glass (powder glass) into a frame shape.
 また乾燥剤を含有した接着性の充填樹脂を有機EL素子20上に形成することで、支持基板10と封止基板50との貼り合わせ並びに有機EL素子20の封入を行ってもよい。 Further, by forming an adhesive filling resin containing a desiccant on the organic EL element 20, the support substrate 10 and the sealing substrate 50 may be bonded together and the organic EL element 20 may be sealed.
 ステップS7において、支持基板10の図示しない端子部領域の電気配線端子に、図示しない回路部の接続端子を接続する。このようにして、有機EL表示装置100が製造される。 In step S7, the connection terminal of the circuit part (not shown) is connected to the electric wiring terminal of the terminal part region (not shown) of the support substrate 10. In this way, the organic EL display device 100 is manufactured.
 以上の既知の有機EL表示装置100の製造工程に加え、本発明の反射電極作製工程は、反射電極21の少なくとも一部を低反射処理し、反射電極21の周囲の一部に低反射領域212を設ける工程を備えている。 In addition to the known manufacturing process of the organic EL display device 100 described above, in the reflective electrode manufacturing process of the present invention, at least a part of the reflective electrode 21 is subjected to a low reflection treatment, and a low reflective region 212 is formed around a part of the reflective electrode 21. The process of providing is provided.
 低反射処理とは、例えば、反射電極21の周囲に低反射材料を設ける、又は反射電極21の周囲を黒色化する処理等を採用することができる。 As the low reflection treatment, for example, a treatment of providing a low reflection material around the reflective electrode 21 or blackening the periphery of the reflective electrode 21 can be adopted.
 以下に、上記ステップS2の、低反射処理を備える反射電極作製工程について実施例を挙げて説明する。 Hereinafter, the reflective electrode manufacturing process including the low reflection process in Step S2 will be described with reference to examples.
 <製造方法例1>
 実施例1の反射電極21を低反射処理する工程について、図13を用いて説明すれば以下の通りである。
<Production Method Example 1>
The process of subjecting the reflective electrode 21 of Example 1 to a low reflection process will be described with reference to FIG.
 図13(A)~(F)は、平面視において、有機EL表示装置100における反射電極21の作製方法の一例を工程順に示す平面図である。図13(a)は、図13(A)をA-A線で切断したときの断面図であり、図13(b)以下も同様である。 FIGS. 13A to 13F are plan views illustrating an example of a method for manufacturing the reflective electrode 21 in the organic EL display device 100 in the order of steps in plan view. FIG. 13A is a cross-sectional view of FIG. 13A taken along line AA, and the same applies to FIG.
 第1に、支持基板上にAg等の反射電極材料110をスパッタリング法等により成膜する。 First, a reflective electrode material 110 such as Ag is formed on a support substrate by a sputtering method or the like.
 第2に、図13(a)に示すように、上記反射電極材料110の上に、各色の画素毎に、フォトリソグラフィにより第一のレジストパターン120を形成する。 Second, as shown in FIG. 13A, a first resist pattern 120 is formed on the reflective electrode material 110 by photolithography for each color pixel.
 第3に、図13(b)に示すように、上記第一のレジストパターン120をマスクとして反射電極材料110をエッチング処理する。エッチング液には、リン酸、硝酸、酢酸等の混合液を用いることができる。 Third, as shown in FIG. 13B, the reflective electrode material 110 is etched using the first resist pattern 120 as a mask. As the etching solution, a mixed solution of phosphoric acid, nitric acid, acetic acid, or the like can be used.
 第4に、図13(c)に示すように、上記第一のレジストパターン120を、レジスト剥離液により剥離洗浄する。これにより、反射電極材料110を、各色の画素毎に分離するようにパターニングすることで反射電極21を形成する。 Fourth, as shown in FIG. 13C, the first resist pattern 120 is stripped and washed with a resist stripper. Thereby, the reflective electrode 21 is formed by patterning the reflective electrode material 110 so as to be separated for each color pixel.
 第5に、上記パターニングされた反射電極21の周囲のうち、少なくとも一部を露出させるように、フォトリソグラフィにより第二のレジストパターン130を形成する。図13(d)に示す例では、反射電極21の周囲をすべて露出させるように、平面視において反射電極21よりも一回り小さいレジストパターンを形成している。 Fifth, a second resist pattern 130 is formed by photolithography so that at least a part of the periphery of the patterned reflective electrode 21 is exposed. In the example shown in FIG. 13D, a resist pattern that is slightly smaller than the reflective electrode 21 in plan view is formed so that the entire periphery of the reflective electrode 21 is exposed.
 第6に、反射電極21の露出部分に低反射処理を施す。ここで、上記低反射処理として、UV照射、酸素プラズマ処理をすることができる。 Sixth, the exposed portion of the reflective electrode 21 is subjected to a low reflection treatment. Here, UV irradiation and oxygen plasma treatment can be performed as the low reflection treatment.
 これにより、図13(e)に示すように、反射電極21の露出部は光の反射率が低減し、低反射領域212となる。 Thereby, as shown in FIG. 13E, the exposed portion of the reflective electrode 21 is reduced in the light reflectivity and becomes a low reflection region 212.
 第7に、上記第二のレジストパターン130を、レジスト剥離液により剥離洗浄する。 Seventh, the second resist pattern 130 is stripped and washed with a resist stripper.
 上記の工程により、図13(f)に示すように、その周囲が低反射処理された反射電極21を作製することができる。 By the above process, as shown in FIG. 13 (f), the reflection electrode 21 whose periphery is subjected to low reflection treatment can be manufactured.
 <製造方法例2>
 実施例2の反射電極21を低反射処理する工程について、図14を用いて説明すれば以下の通りである。
<Production Method Example 2>
The process of subjecting the reflective electrode 21 of Example 2 to the low reflection process will be described with reference to FIG.
 なお、図14(A)~(E)は、平面視において、有機EL表示装置100における反射電極21の作製方法の一例を工程順に示す平面図である。図14(a)は、図14(A)をA-A線で切断したときの断面図であり、図14(b)以下も同様である。 14A to 14E are plan views showing an example of a method for manufacturing the reflective electrode 21 in the organic EL display device 100 in the order of steps in plan view. FIG. 14A is a cross-sectional view of FIG. 14A taken along the line AA, and the same applies to FIG.
 第1に、支持基板上にAg等の反射電極材料110をスパッタリング法等により成膜する。 First, a reflective electrode material 110 such as Ag is formed on a support substrate by a sputtering method or the like.
 第2に、図14(a)に示すように、上記反射電極材料110の上に、各色の画素毎に、フォトリソグラフィによりハーフトーンレジストパターン140を形成する。 Secondly, as shown in FIG. 14A, a halftone resist pattern 140 is formed on the reflective electrode material 110 by photolithography for each color pixel.
 ここで、ハーフトーンレジストパターン140とは、底面を基準として、周囲の少なくとも一部の高さが、中央部の高さよりも低いレジストパターンをいう。 Here, the halftone resist pattern 140 refers to a resist pattern in which the height of at least a part of the periphery is lower than the height of the central portion with respect to the bottom surface.
 第3に、図14(b)に示すように、上記ハーフトーンレジストパターン140をマスクとして反射電極材料110をエッチング処理する。エッチング液には、リン酸、硝酸、酢酸等の混合液を用いることができる。 Third, as shown in FIG. 14B, the reflective electrode material 110 is etched using the halftone resist pattern 140 as a mask. As the etching solution, a mixed solution of phosphoric acid, nitric acid, acetic acid, or the like can be used.
 第4に、図14(c)に示すように、上記ハーフトーンレジストパターン140の一部をドライエッチング装置によるアッシング処理により除去する。ここでいうハーフトーンレジストパターン140の一部とは、ハーフトーンレジストパターン140をアッシングすることにより、平面視において反射電極21の周囲の少なくとも一部が露出する程度をいう。 Fourth, as shown in FIG. 14C, a part of the halftone resist pattern 140 is removed by ashing using a dry etching apparatus. Here, the part of the halftone resist pattern 140 refers to the extent to which at least a part of the periphery of the reflective electrode 21 is exposed in a plan view by ashing the halftone resist pattern 140.
 第5に、反射電極21の露出部分に低反射処理を施す。ここで、上記低反射処理として、UV照射、酸素プラズマ処理をすることができる。 Fifth, a low reflection process is performed on the exposed portion of the reflective electrode 21. Here, UV irradiation and oxygen plasma treatment can be performed as the low reflection treatment.
 これにより、図14(d)に示すように、反射電極21の露出部は光の反射率が低減し、低反射領域212となる。 As a result, as shown in FIG. 14D, the exposed portion of the reflective electrode 21 is reduced in light reflectivity and becomes a low reflection region 212.
 第6に、残存する上記ハーフトーンレジストパターン140を、レジスト剥離液により剥離洗浄する。 Sixth, the remaining halftone resist pattern 140 is stripped and washed with a resist stripping solution.
 上記の工程により、図14(e)に示すように、周囲の少なくとも一部が低反射処理された反射電極21を作製することができる。 By the above process, as shown in FIG. 14E, a reflective electrode 21 in which at least a part of the periphery is subjected to a low reflection treatment can be produced.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 また、本発明の有機EL表示装置100は、支持基板10側から光を射出するボトムエミッション型であってもよい。有機EL表示装置100をボトムエミッション型とした場合には、封止基板50としては、不透明の金属板等を用いることもできる。 The organic EL display device 100 of the present invention may be a bottom emission type that emits light from the support substrate 10 side. When the organic EL display device 100 is a bottom emission type, an opaque metal plate or the like can be used as the sealing substrate 50.
 また、上記説明では、有機EL表示装置を例にしたが、本発明の表示装置はこれに限定されない。例えば、他の自発光素子や、液晶表示装置等のライトバルブとして機能する表示装置に適用することも可能である。 In the above description, the organic EL display device is taken as an example, but the display device of the present invention is not limited to this. For example, the present invention can be applied to other self-luminous elements and display devices that function as light valves such as liquid crystal display devices.
 また、本発明の表示装置は、
 上記反射電極は、平面視において、各画素の表示領域とそれに連続する非表示領域とに及んで形成されており、上記低反射領域は、上記非表示領域に含まれていることを特徴とする。
The display device of the present invention is
The reflective electrode is formed so as to cover a display area of each pixel and a non-display area continuous therewith in a plan view, and the low reflection area is included in the non-display area. .
 上記の構成により、上記表示装置の非表示領域に入射した外光の反射を低減することができる。これにより、不要な反射光の射出が抑制できるので、コントラスト比の低下が抑制できる。 With the above configuration, reflection of external light incident on the non-display area of the display device can be reduced. Thereby, since unnecessary emission of reflected light can be suppressed, a decrease in contrast ratio can be suppressed.
 また、平面視において、反射電極のうち表示領域に含まれる部分は、光を反射させることができる。これにより、光の効率的な利用が可能になる。 Also, in a plan view, the portion of the reflective electrode included in the display area can reflect light. Thereby, efficient use of light becomes possible.
 また、反射電極と対向電極との間で光を多重反射させることができるので、マイクロキャビティ効果を得ることが容易になる。 Also, since the light can be multiple-reflected between the reflective electrode and the counter electrode, the microcavity effect can be easily obtained.
 また、本発明の表示装置は、
 上記非表示領域が上記低反射領域であることを特徴とする。
The display device of the present invention is
The non-display area is the low reflection area.
 上記の構成により、非表示領域の全域が低反射領域となるので、不要な反射光の射出をより確実に抑制することができる。 With the above configuration, since the entire non-display area becomes a low reflection area, the emission of unnecessary reflected light can be more reliably suppressed.
 また、表示領域と非表示領域とに対応して、反射領域と低反射領域を形成することができ、効率的にマイクロキャビティ効果を発揮して、外光の反射を抑制することができる。 Also, the reflection region and the low reflection region can be formed corresponding to the display region and the non-display region, and the microcavity effect can be efficiently exhibited and reflection of external light can be suppressed.
 また、本発明の表示装置は、
 上記反射電極は、金属で形成されており、上記低反射領域は、該金属が低反射処理された領域であることを特徴とする。
The display device of the present invention is
The reflective electrode is made of metal, and the low reflection region is a region where the metal is subjected to low reflection treatment.
 上記の構成により、反射電極は、その金属光沢により光を反射することができる。 With the above configuration, the reflective electrode can reflect light due to its metallic luster.
 また、上記金属を低反射処理することで低反射領域を形成することができ、製造工程を簡略化することができる。 Also, a low reflection region can be formed by subjecting the metal to low reflection treatment, and the manufacturing process can be simplified.
 また、本発明の表示装置は、
 上記反射電極は、金属で形成されており、上記低反射領域は、該金属の酸化物で形成されていることを特徴とする。
The display device of the present invention is
The reflective electrode is made of a metal, and the low reflective region is made of an oxide of the metal.
 上記の構成により、反射電極の周囲の少なくとも一部を酸化することにより低反射領域を形成することができ、製造工程を簡略化することができる。 With the above configuration, a low reflection region can be formed by oxidizing at least a part of the periphery of the reflective electrode, and the manufacturing process can be simplified.
 また、本発明の表示装置は、
 上記反射電極は、銀又は銀合金で形成されていることを特徴とする。
The display device of the present invention is
The reflective electrode is made of silver or a silver alloy.
 上記の構成により、反射電極は効率的に光を反射することができるので、光の利用効率が向上する。また、マイクロキャビティ効果を高めることも可能となる。 With the above configuration, the reflective electrode can reflect light efficiently, so that the light use efficiency is improved. Also, the microcavity effect can be enhanced.
 また、特に銀又は銀合金を用いた場合には、酸化処理等により低反射領域を設けることが容易になる。 In particular, when silver or a silver alloy is used, it is easy to provide a low reflection region by oxidation treatment or the like.
 また、本発明の表示装置は、
 隣接する2つの上記反射電極間には、絶縁部が設けられており、上記絶縁部は、平面視において、上記各反射電極の端部を覆っており、反射電極の覆われた上記端部が、上記非表示領域であることを特徴とする。
The display device of the present invention is
An insulating part is provided between the two adjacent reflective electrodes, and the insulating part covers the end of each reflective electrode in plan view, and the end covered with the reflective electrode is covered with the insulating part. The non-display area.
 上記の構成により、調光層から光を取り出すことのできる発光部を絶縁部により規定することができる。そして、上記絶縁部に覆われた反射電極を非表示領域とすることができる。 With the above configuration, the light emitting part that can extract light from the light control layer can be defined by the insulating part. And the reflective electrode covered with the said insulation part can be made into a non-display area | region.
 したがって、反射電極において、必要な反射を確実に得ると共に、不要な反射を確実に抑制することが可能となる。 Therefore, in the reflective electrode, it is possible to reliably obtain necessary reflection and to reliably suppress unnecessary reflection.
 また、調光層が薄くなったり電界集中が起こったりすることで、調光層における反射電極と対向電極とが短絡することを防止することができる。 Also, it is possible to prevent the reflective electrode and the counter electrode in the light control layer from being short-circuited due to the light control layer becoming thin or electric field concentration occurring.
 また、本発明の表示装置は、
 上記対向電極における、上記調光層に面する面とは異なる面側には、上記画素に対応した遮蔽部が設けられており、平面視において、対応する画素の表示領域は、上記遮蔽部の開口部内に位置していることを特徴とする。
The display device of the present invention is
A shielding portion corresponding to the pixel is provided on a surface side of the counter electrode that is different from the surface facing the light control layer, and the display area of the corresponding pixel in a plan view is the area of the shielding portion. It is located in the opening.
 上記の構成により、画素と画素の間からの光漏れを遮蔽部により防ぐことができるので、コントラストの向上を図ることができる。 With the above configuration, light leakage from between the pixels can be prevented by the shielding part, so that the contrast can be improved.
 また、表示領域が遮蔽部の開口部内に位置するため、表示領域からの光を、遮蔽部で遮られることなく、射出することができる。そのため、光の利用効率を向上させることができる。 Also, since the display area is located in the opening of the shielding part, the light from the display area can be emitted without being blocked by the shielding part. Therefore, the light use efficiency can be improved.
 また、例えば、平面視において、画素と画素との間に表示装置を駆動する回路部が設けられている場合には、上記回路部への光の入射を遮断することができる。これにより、回路部に光が入射することにより起こる表示装置の劣化等の問題を回避することができる。 For example, when a circuit unit for driving the display device is provided between the pixels in plan view, the incidence of light on the circuit unit can be blocked. Thereby, problems such as deterioration of the display device caused by light entering the circuit portion can be avoided.
 また、本発明の表示装置は、
 上記調光層が、有機EL層であることを特徴とする。
The display device of the present invention is
The light control layer is an organic EL layer.
 上記の構成により、電極間に電圧をかけることにより、各電極から有機EL層へ電子と正孔が注入される。上記電子と正孔は、該有機EL層に設けられた発光層で結合すると共に光を発する。 With the above configuration, electrons and holes are injected from each electrode into the organic EL layer by applying a voltage between the electrodes. The electrons and holes combine with each other in the light emitting layer provided in the organic EL layer and emit light.
 調光層として有機EL層を用いることで、例えば液晶表示装置と比べ応答速度が速く、視野角の広い表示装置とすることができる。 By using an organic EL layer as the light control layer, for example, it is possible to obtain a display device with a high response speed and a wide viewing angle as compared with a liquid crystal display device.
 上記の課題を解決するために、本発明の表示装置の製造方法は、
 上記反射電極は金属で形成されており、上記低反射処理が、UV照射処理、及び、酸素プラズマ処理のうち少なくともいずれか一方であることを特徴とする。
In order to solve the above problems, a manufacturing method of a display device of the present invention includes:
The reflective electrode is made of metal, and the low reflection treatment is at least one of a UV irradiation treatment and an oxygen plasma treatment.
 上記の構成により、金属を簡易な方法で低反射処理することができる。 With the above configuration, the metal can be subjected to a low reflection treatment by a simple method.
 また、上記金属が例えば銀である場合は、上記の少なくともいずれか1つの処理により簡便に銀を黒色化させることができる。 In addition, when the metal is, for example, silver, the silver can be easily blackened by at least one of the above treatments.
 反射電極の周囲の少なくとも一部を黒色化することにより、該一部を低反射領域とすることができる。 By blackening at least a part of the periphery of the reflective electrode, the part can be made a low reflection region.
 これにより、入射した外光を反射してコントラスト比を低下させることを抑制した表示装置を製造することができる。 Thereby, it is possible to manufacture a display device that suppresses the reduction of the contrast ratio by reflecting the incident external light.
 本発明は、電極と調光部とを備える表示装置及び表示装置の製造方法に利用することができる。 The present invention can be used for a display device including an electrode and a light control unit and a method for manufacturing the display device.
 1 有機EL表示パネル
 10 支持基板
 11 信号線
 12 TFT
 13 層間膜
 20 有機EL素子
 21 反射電極
 22 有機EL層
 23 対向電極
 24 発光層
 24R・24G・24B 発光層
 25 エッジカバー
 26 コンタクトホール
 30 発光部
 41 封止樹脂層
 42 充填樹脂層
 50 封止基板
 51 カラーフィルタ
 52 ブラックマトリクス
 53 BM開口部
 70 画素
 70R・70G・70B 画素
 72A・72B 光路長
 72R・72G・72B 光路長
 100 有機EL表示装置
 101 表示領域
 102 非表示領域
 103 貼り合わせマージン
 110 反射電極材料
 120 第一のレジストパターン
 121 透明電極層
 130 第二のレジストパターン
 140 ハーフトーンレジストパターン
 211 反射領域
 212 低反射領域
1 Organic EL Display Panel 10 Support Substrate 11 Signal Line 12 TFT
DESCRIPTION OF SYMBOLS 13 Interlayer film 20 Organic EL element 21 Reflective electrode 22 Organic EL layer 23 Counter electrode 24 Light emitting layer 24R / 24G / 24B Light emitting layer 25 Edge cover 26 Contact hole 30 Light emitting part 41 Sealing resin layer 42 Filling resin layer 50 Sealing substrate 51 Color filter 52 Black matrix 53 BM opening 70 pixel 70R / 70G / 70B pixel 72A / 72B optical path length 72R / 72G / 72B optical path length 100 organic EL display device 101 display region 102 non-display region 103 bonding margin 110 reflective electrode material 120 First resist pattern 121 Transparent electrode layer 130 Second resist pattern 140 Halftone resist pattern 211 Reflective region 212 Low reflective region

Claims (11)

  1.  画素毎に設けられている反射電極と、上記反射電極に対向して設けられている対向電極と、上記反射電極と上記対向電極とに挟持されている調光層とを備える表示装置であって、
     上記反射電極の周囲の少なくとも一部に、低反射領域が設けられていることを特徴とする表示装置。
    A display device comprising: a reflective electrode provided for each pixel; a counter electrode provided to face the reflective electrode; and a light control layer sandwiched between the reflective electrode and the counter electrode. ,
    A display device, wherein a low reflection region is provided at least at a part of the periphery of the reflection electrode.
  2.  上記反射電極は、平面視において、各画素の表示領域とそれに連続する非表示領域とに及んで形成されており、
     上記低反射領域は、上記非表示領域に含まれていることを特徴とする請求項1に記載の表示装置。
    The reflective electrode is formed to cover the display area of each pixel and a non-display area continuous therewith in plan view,
    The display device according to claim 1, wherein the low reflection region is included in the non-display region.
  3.  上記非表示領域が上記低反射領域であることを特徴とする請求項2に記載の表示装置。 3. The display device according to claim 2, wherein the non-display area is the low reflection area.
  4.  上記反射電極は、金属で形成されており、
     上記低反射領域は、該金属が低反射処理された領域であることを特徴とする請求項1から3のいずれか1項に記載の表示装置。
    The reflective electrode is made of metal,
    4. The display device according to claim 1, wherein the low reflection region is a region where the metal is subjected to a low reflection process. 5.
  5.  上記反射電極は、金属で形成されており、
     上記低反射領域は、該金属の酸化物で形成されていることを特徴とする請求項1から4のいずれか1項に記載の表示装置。
    The reflective electrode is made of metal,
    The display device according to claim 1, wherein the low reflection region is formed of an oxide of the metal.
  6.  上記反射電極は、銀又は銀合金で形成されていることを特徴とする請求項4又は5に記載の表示装置。 6. The display device according to claim 4, wherein the reflective electrode is made of silver or a silver alloy.
  7.  隣接する2つの上記反射電極間には、絶縁部が設けられており、
     上記絶縁部は、平面視において、上記各反射電極の端部を覆っており、
     反射電極の覆われた上記端部が、上記非表示領域であることを特徴とする請求項2又は3に記載の表示装置。
    An insulating part is provided between two adjacent reflective electrodes,
    The insulating portion covers the end of each reflective electrode in plan view,
    The display device according to claim 2, wherein the end portion covered with the reflective electrode is the non-display area.
  8.  上記対向電極における、上記調光層に面する面とは異なる面側には、上記画素に対応した遮蔽部が設けられており、
     平面視において、対応する画素の表示領域は、上記遮蔽部の開口部内に位置していることを特徴とする請求項2又は3に記載の表示装置。
    A shielding portion corresponding to the pixel is provided on a surface side of the counter electrode different from the surface facing the light control layer,
    4. The display device according to claim 2, wherein the display area of the corresponding pixel is located in the opening of the shielding part in a plan view.
  9.  上記調光層が、有機EL層であることを特徴とする請求項1から8のいずれか1項に記載の表示装置。 The display device according to claim 1, wherein the light control layer is an organic EL layer.
  10.  画素毎に設けられている反射電極と、上記反射電極に対向して設けられている対向電極と、上記反射電極と上記対向電極とに挟持されている調光層とを備える表示装置の製造方法であって、
     上記反射電極の少なくとも一部を低反射処理することで、上記反射電極の周囲の少なくとも一部に低反射領域を設けることを特徴とする表示装置の製造方法。
    A method of manufacturing a display device, comprising: a reflective electrode provided for each pixel; a counter electrode provided to face the reflective electrode; and a light control layer sandwiched between the reflective electrode and the counter electrode Because
    A method for manufacturing a display device, characterized in that at least a part of the reflective electrode is subjected to a low-reflection treatment so that a low-reflective region is provided in at least a part around the reflective electrode.
  11.  上記反射電極は金属で形成されており、
     上記低反射処理が、UV照射処理、及び、酸素プラズマ処理のうち少なくともいずれか一方であることを特徴とする請求項10に記載の表示装置の製造方法。
    The reflective electrode is made of metal,
    The method for manufacturing a display device according to claim 10, wherein the low reflection treatment is at least one of a UV irradiation treatment and an oxygen plasma treatment.
PCT/JP2012/074791 2011-09-30 2012-09-26 Display device and display device manufacturing method WO2013047622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218360 2011-09-30
JP2011218360 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047622A1 true WO2013047622A1 (en) 2013-04-04

Family

ID=47995653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074791 WO2013047622A1 (en) 2011-09-30 2012-09-26 Display device and display device manufacturing method

Country Status (1)

Country Link
WO (1) WO2013047622A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054601A (en) * 2015-09-07 2017-03-16 株式会社Joled Organic el element, organic el display panel using the same, and manufacturing method for organic el display panel
CN110444580A (en) * 2019-01-25 2019-11-12 友达光电股份有限公司 Display panel
CN113035923A (en) * 2021-03-08 2021-06-25 京东方科技集团股份有限公司 Array substrate, preparation method thereof and display panel
CN114038890A (en) * 2021-11-09 2022-02-11 京东方科技集团股份有限公司 Display panel and preparation method thereof
CN115210793A (en) * 2020-03-02 2022-10-18 夏普株式会社 Display device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063461A (en) * 2002-06-07 2004-02-26 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method therefor
JP2008034591A (en) * 2006-07-28 2008-02-14 Hitachi Displays Ltd Organic el display
JP2009266591A (en) * 2008-04-24 2009-11-12 Kyocera Corp Organic el element and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063461A (en) * 2002-06-07 2004-02-26 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method therefor
JP2008034591A (en) * 2006-07-28 2008-02-14 Hitachi Displays Ltd Organic el display
JP2009266591A (en) * 2008-04-24 2009-11-12 Kyocera Corp Organic el element and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054601A (en) * 2015-09-07 2017-03-16 株式会社Joled Organic el element, organic el display panel using the same, and manufacturing method for organic el display panel
US10707283B2 (en) 2015-09-07 2020-07-07 Joled Inc. Organic EL element, organic EL display panel using same, and organic EL display panel manufacturing method
CN110444580A (en) * 2019-01-25 2019-11-12 友达光电股份有限公司 Display panel
CN115210793A (en) * 2020-03-02 2022-10-18 夏普株式会社 Display device and method for manufacturing the same
CN115210793B (en) * 2020-03-02 2023-08-18 夏普株式会社 Display device and method for manufacturing the same
CN113035923A (en) * 2021-03-08 2021-06-25 京东方科技集团股份有限公司 Array substrate, preparation method thereof and display panel
CN114038890A (en) * 2021-11-09 2022-02-11 京东方科技集团股份有限公司 Display panel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5722453B2 (en) Manufacturing method of display device
US8648361B2 (en) Organic light emitting diode display
KR101920766B1 (en) Method of fabricating the organic light emitting device
JP5543441B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD, ORGANIC DISPLAY PANEL, ORGANIC DISPLAY DEVICE
US20080100209A1 (en) Organic Electroluminescent Display Device
WO2015141143A1 (en) Organic el display panel, display device provided therewith, and method for manufacturing organic el display panel
CN104094669B (en) Display device
WO2011108020A1 (en) Organic el device and method for manufacturing same
JP2011040244A (en) Light-emitting element
US8716931B2 (en) Organic light emitting diode (OLED) display
JP2007005173A (en) Display device
KR20130093187A (en) Organic light emitting display device and method for manufacturing thereof
WO2017043243A1 (en) Organic electroluminescence device, organic electroluminescence device manufacturing method, lighting device and display device
KR101084247B1 (en) Organic light emitting diode display
WO2013047621A1 (en) Display device and method for manufacturing display device
KR20090046100A (en) Organic light emitting diode display device and method of manufacturing the same
WO2013047622A1 (en) Display device and display device manufacturing method
JP5478954B2 (en) Organic electroluminescence display device
CN112635524A (en) Self-luminous display panel
JP2011096378A (en) Organic el display device
KR20110059304A (en) Organic electro-luminescence device
WO2013047457A1 (en) Method for manufacturing display device, and display device
JP2021061234A (en) Self-luminous display panel
US20210408493A1 (en) Display substrate and method of manufacturing the same and electronic device
JP2020035713A (en) Organic EL display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP