WO2013047556A1 - Touch panel and method for producing touch panel - Google Patents

Touch panel and method for producing touch panel Download PDF

Info

Publication number
WO2013047556A1
WO2013047556A1 PCT/JP2012/074643 JP2012074643W WO2013047556A1 WO 2013047556 A1 WO2013047556 A1 WO 2013047556A1 JP 2012074643 W JP2012074643 W JP 2012074643W WO 2013047556 A1 WO2013047556 A1 WO 2013047556A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
peripheral wiring
transparent conductive
touch panel
transparent
Prior art date
Application number
PCT/JP2012/074643
Other languages
French (fr)
Japanese (ja)
Inventor
昌哉 中山
直井 憲次
白田 雅史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020147008305A priority Critical patent/KR101637106B1/en
Priority to CN201280046982.7A priority patent/CN103827790B/en
Publication of WO2013047556A1 publication Critical patent/WO2013047556A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch panel and a touch panel manufacturing method, and more particularly, to a touch panel technology to which a transparent conductive pattern including a binder and conductive fibers is applied.
  • touch panels have attracted attention.
  • the touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a display for a personal computer.
  • PDA personal digital assistant
  • ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • indium which is a raw material of ITO, is expensive and has a limit to stable supply, a manufacturing process is high because a vacuum process is required for thin film production, and an ITO film is brittle and inferior in bending resistance. There are challenges.
  • Patent Document 1 discloses that a transparent conductive film having both high conductivity and good transparency produced by transferring a transparent conductive fiber layer onto a transparent film substrate is suitably used for a touch panel or the like.
  • electrode wirings are electrically connected through a through hole formed in an insulating film.
  • contact between the electrode wirings is insufficient in the contact region, and contact cannot be obtained, resulting in poor conduction.
  • the present invention has been made in consideration of such problems. Even when the transparent conductive film is formed by transfer, sufficient contact with the peripheral wiring can be achieved even in the contact region through the through-hole formed in the insulating film, and good contact (conduction) with the peripheral wiring can be achieved. An object is to provide a touch panel that can prevent corrosion of peripheral wiring.
  • the touch panel includes a transparent substrate, a plurality of first transparent conductive patterns formed along the first direction on the transparent substrate, and including a binder and conductive fibers, and the transparent A plurality of second transparent conductive patterns formed on a substrate along a second direction orthogonal to the first direction and including a binder and conductive fibers; and each of the second transparent conductive patterns formed on the transparent substrate.
  • a plurality of first peripheral wirings electrically connected to the end portions of one transparent conductive pattern, and a plurality of second peripheral lines formed on the transparent substrate and electrically connected to the end portions of the second transparent conductive patterns A first connection structure that connects the wiring, the first transparent conductive pattern and the first peripheral wiring, and a second connection structure that connects the second transparent conductive pattern and the second peripheral wiring.
  • the first connection structure includes A first peripheral wiring, a U-shaped first insulating film formed on the first peripheral wiring and having an opening for exposing a part of the first peripheral wiring; and the exposed first peripheral wiring.
  • the first transparent conductive pattern is provided, and the ratio of the film thickness of the first insulating film to the opening length of the first insulating film (opening length of the first insulating film / film thickness of the first insulating film) is 25 or more. It is.
  • the second connection structure is formed on the second peripheral wiring and the second peripheral wiring to expose a part of the second peripheral wiring.
  • a second transparent conductive pattern covering the exposed second peripheral wiring, and the film thickness of the second insulating film and the opening of the second insulating film.
  • the ratio to the length (opening length of the second insulating film / film thickness of the second insulating film) is 25 or more.
  • the ratio of the thickness of the first transparent conductive pattern to the thickness of the first insulating film is 5 or more and 20 or less
  • / or the ratio of the thickness of the second transparent conductive pattern to the thickness of the second insulating film is 5 or more and 20 or less.
  • the conductive fiber is a silver nanowire.
  • the first peripheral wiring and the second peripheral wiring are made of a metal film.
  • the conductive fiber has a minor axis of 50 nm or less.
  • a method for manufacturing a touch panel includes a step of forming a plurality of first peripheral wirings and a plurality of second peripheral wirings on a transparent substrate, and the first peripheral wirings on the first peripheral wirings.
  • a U-shaped first insulating film having an opening for exposing a part of the peripheral wiring and / or a U having an opening for exposing a part of the second peripheral wiring on each of the second peripheral wirings.
  • the transparent substrate has a temperature range of 90 ° C. or more and 120 ° C. or less.
  • the transfer pressure is in the range of 0.4 MPa to 0.8 MPa.
  • the present invention even when the transparent conductive film is formed by transfer, sufficient contact with the peripheral wiring can be achieved in the contact region, so that good contact (conduction) between the peripheral wiring and the transparent conductive film can be formed. Further, corrosion of peripheral wiring can be prevented.
  • the top view which shows the touch panel by this embodiment typically Plan view of contact area including peripheral wiring and insulating film Sectional drawing along the AA line in the top view shown to FIG. 2A Plan view of contact area including peripheral wiring, insulating film, and transparent conductive pattern Sectional drawing along the BB line in the top view shown to FIG.
  • the touch panel 10 includes a transparent substrate 20, a plurality of first transparent conductive patterns 30 and a plurality of second transparent conductive patterns 40 formed on the transparent substrate 20.
  • Each first transparent conductive pattern 30 is disposed along a first direction
  • each second transparent conductive pattern 40 is disposed along a second direction orthogonal to the first direction.
  • the first transparent conductive pattern 30 includes a plurality of first sensing units 32 and a first connection unit 34 that electrically connects the plurality of first sensing units 32.
  • the first sensing part 32 has a wide rhombus shape, and the first connection part 34 has a narrow strip shape. With respect to the first transparent conductive pattern 30, the first sensing part 32 and the first connection part 34 are integrally formed.
  • the second transparent conductive pattern 40 includes a plurality of second sensing units 42 and a second connection unit 44 that electrically connects the plurality of second sensing units 42.
  • the second sensing part 42 has a wide rhombus shape, and the second connection part 44 has a narrow strip shape.
  • the second connection portion 44 is formed on the insulating film 50 formed on the first connection portion 34. That is, an insulating film 50 having substantially the same shape as the first connection portion 34 is formed on the first connection portion 34 having a strip shape, and the strip-shaped first connection portion having a narrower width than the insulating film 50 is formed on the insulation film 50. Two connecting portions 44 are formed. Regarding the second transparent conductive pattern 40, the second sensing part 42 and the second connection part 44 are formed as separate bodies.
  • the insulating film 50 is required to be transparent. Therefore, as a material of the insulating film 50, the inorganic materials, SiO 2, SiOx, SiNx, SiOxNy (X, Y each is an arbitrary integer), as the organic material, acrylic resin or the like.
  • the first transparent conductive pattern 30 and the second transparent conductive pattern 40 are arranged so that the first sensing unit 32 and the second sensing unit 42 do not overlap in plan view.
  • the 1st connection part 34 and the 2nd connection part 44 are arrange
  • the first connection portion 34 and the second connection portion 44 are electrically separated by the insulating film 50.
  • first transparent conductive pattern 30 and the second transparent conductive pattern 40 By arranging the first transparent conductive pattern 30 and the second transparent conductive pattern 40 as described above, a so-called regularly arranged diamond pattern is configured.
  • Each of the first transparent conductive pattern 30 and the second transparent conductive pattern 40 is composed of a transparent conductive film containing conductive fibers and a binder.
  • the structure of the conductive fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably a solid structure or a hollow structure.
  • the solid structure fiber may be referred to as a wire
  • the hollow structure fiber may be referred to as a tube.
  • a conductive fiber having an average minor axis length of 5 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowire”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m and having a hollow structure may be referred to as “nanotube”.
  • the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose, but is preferably at least one of metal and carbon.
  • the conductive fiber is preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
  • the average minor axis length is preferably 50 nm or less.
  • the binder is an organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer as a main chain) (for example, a carboxyl group, a phosphate group, It can be appropriately selected from alkali-soluble resins having a sulfonic acid group or the like.
  • a transparent glass substrate such as non-alkali glass or soda glass
  • a transparent synthetic resin substrate such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PES (polyether sulfone), or the like
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • alkali-free glass or PET it is preferable to use alkali-free glass or PET.
  • the sensor area S is formed on the transparent substrate 20 by the plurality of first transparent conductive patterns 30 and the plurality of second transparent conductive patterns 40.
  • a plurality of first peripheral wirings 60 and a plurality of second peripheral wirings 70 are formed in the outer peripheral region of the sensor area S on the transparent substrate 20.
  • the first peripheral wiring 60 is electrically connected to one end of the first transparent conductive pattern 30 at one end thereof.
  • the first peripheral wiring 60 is electrically connected to an external connection terminal (not shown) at the other end.
  • the first peripheral wiring 60 includes a narrow line portion 60a, a pad portion 60b wider than the line portion 60a at one end, and a pad 60c wider than the line portion 60a at the other end.
  • the second peripheral wiring 70 is electrically connected to one end of the second transparent conductive pattern 40 at one end thereof.
  • the second peripheral wiring 70 is electrically connected to an external connection terminal (not shown) at the other end.
  • the second peripheral wiring 70 includes a narrow line portion 70a, a pad portion 70b that is wider than the line portion 70a at one end, and a pad 70c that is wider than the line portion 70a at the other end.
  • the first peripheral wiring 60 and the second peripheral wiring 70 are made of a metal film.
  • the metal film is made of, for example, a material such as Al, Ag, Cu, Mo, Ti, Cr, or an alloy thereof.
  • the metal film may be composed of a laminated film of a plurality of materials. For example, a laminated film made of Mo (or Mo alloy) / Al (or Al alloy) / Mo (or Mo alloy) may be used.
  • the first transparent conductive pattern 30 includes a wide connection portion 36 that is electrically connected to the pad portion 60b at one end thereof.
  • the connecting portion 36 is electrically connected to the pad portion 60b through a U-shaped insulating film 38.
  • the second transparent conductive pattern 40 includes a wide connection portion 46 that is electrically connected to the pad portion 70b at one end thereof.
  • the connecting portion 46 is electrically connected to the pad portion 70b through a U-shaped insulating film 48.
  • FIG. 2A is an enlarged plan view showing the pad portion 60b (70b) and the insulating film 38 (48) in the contact region.
  • FIG. 2B is a cross-sectional view along the line AA.
  • a narrow line portion 60a (70a) and a pad portion 60b (70b) wider than the line portion 60a (70a) are formed at one end of the line portion 60a (70a). Is done.
  • a U-shaped insulating film 38 (48) having an opening for exposing part of the pad portion 60b (70b) is formed on the pad portion 60b (70b).
  • the contact hole for connecting the upper and lower wirings is formed of a U-shaped insulating film 38 (48) that is open in plan view.
  • a normal contact hole is formed of an insulating film that surrounds the entire periphery in plan view.
  • the shape of the insulating film is different from the conventional one.
  • the U-shaped insulating film 38 (48) has a predetermined opening length L (distance between the opposing insulating films 38).
  • the U-shaped insulating film 38 (48) has a predetermined film thickness t1.
  • FIG. 3A is an enlarged plan view showing the pad portion 60b (70b), the insulating film 38 (48), and the connection portion 36 (46) in the contact region.
  • 3B is a cross-sectional view taken along the line BB in FIG. 3A.
  • the connecting portion 36 (48) is formed so as to cover all of the pad portion 60b (70b) exposed from the opening of the U-shaped insulating film 38 (48).
  • one side of the U-shaped insulating film 38 (48) is open, so that the connection portion 36 (46) and the pad portion 60b (70b) are reliably electrically connected ( Contacted).
  • connection structure of the present embodiment even when the transparent conductive film (connection portions 36 and 46) is formed by transfer, the insulating film 38 (48) has a U-shape that opens one side.
  • the transparent conductive film (connection portions 36, 46) and the peripheral wiring (pad portions 60b, 70b) can be reliably electrically connected (contacted).
  • connection portions 36 and 46 is formed so as to cover all exposed portions of the peripheral wiring (pad portions 60b and 70b). As a result, corrosion of peripheral wiring can be prevented.
  • the ratio of the thickness t1 of the insulating film 38 (48) to the opening length L of the insulating film 38 (48) needs to be 25 or more. is there. By setting this range, the peripheral wiring can be reliably electrically connected (contacted) without disconnecting the transparent conductive film containing the conductive fibers and the binder.
  • a preferable insulating film thickness t1 is 0.2 ⁇ m or more and 3.0 ⁇ m or less, and an opening length L is preferably 50 ⁇ m or more.
  • the thickness t2 of the connecting portion 36 (46) when the thickness t2 of the connecting portion 36 (46) is set, the ratio of the thickness t2 of the connecting portion 36 (46) and the thickness t1 of the insulating film 38 (48) (thickness t1 / insulating thickness of the connecting portion).
  • the film thickness t2) is preferably 5 or more and 20 or less. By setting it within this range, insulation other than the connection portion is good, and the peripheral wiring is reliably electrically connected (contacted) without disconnecting the transparent conductive film containing the conductive fiber and the binder. be able to.
  • the transparent conductive film contains at least a binder and conductive fibers.
  • the binder is not particularly limited, but preferably contains a photosensitive compound and, if necessary, other components.
  • the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. It is preferable that it is at least any one of a metal and carbon, and among these, it is preferable that the said conductive fiber is at least any one of a metal nanowire, a metal nanotube, and a carbon nanotube.
  • Metal nanowires >> -material-
  • a material of the said metal nanowire According to the objective, it can select suitably.
  • metal examples include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, antimony, and lead. Or alloys thereof. Among these, silver and an alloy with silver are preferable in terms of excellent conductivity.
  • Examples of the metal used in the alloy with silver include gold, platinum, osmium, palladium, iridium and the like. These may be used alone or in combination of two or more.
  • a shape of the said metal nanowire There is no restriction
  • the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 1 nm to 50 nm, more preferably 10 nm to 40 nm, and even more preferably 15 nm to 35 nm. .
  • the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated.
  • the average minor axis length is more than 50 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
  • the average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
  • the average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 45 ⁇ m, and even more preferably 10 ⁇ m to 40 ⁇ m.
  • the average major axis length is less than 1 ⁇ m, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If the average major axis length exceeds 50 ⁇ m, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
  • the average major axis length of the metal nanowire is, for example, observed with 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average major axis length was determined. In addition, when the said metal nanowire was bent, the circle
  • TEM transmission electron microscope
  • JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-86714A are disclosed. Etc. can be used.
  • Metal Nanotubes >> -material-
  • What kind of metal may be sufficient,
  • the material of the above-mentioned metal nanowire etc. can be used.
  • the shape of the metal nanotube may be a single layer or a multilayer, but a single layer is preferable from the viewpoint of excellent conductivity and thermal conductivity.
  • the thickness of the metal nanotube (difference between the outer diameter and the inner diameter) is preferably 3 nm to 80 nm, and more preferably 3 nm to 30 nm.
  • the thickness is less than 3 nm, the oxidation resistance is deteriorated and the durability may be deteriorated.
  • the thickness is more than 80 nm, scattering due to the metal nanotube may occur.
  • the average major axis length of the metal nanotubes is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, still more preferably 5 ⁇ m to 30 ⁇ m.
  • the carbon nanotube is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube.
  • the single-walled carbon nanotubes are called single-walled nanotubes (SWNT)
  • the multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT)
  • the double-walled carbon nanotubes are also called double-walled nanotubes (DWNT).
  • the carbon nanotube may be a single wall or a multilayer, but a single wall is preferable from the viewpoint of excellent conductivity and thermal conductivity.
  • the aspect ratio of the conductive fiber is preferably 10 or more.
  • the aspect ratio generally means the ratio between the long side and the short side of a fibrous material (ratio of average major axis length / average minor axis length).
  • the method for measuring the aspect ratio is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for measuring with an electron microscope.
  • the aspect ratio of the conductive fiber When measuring the aspect ratio of the conductive fiber with an electron microscope, it is only necessary to confirm whether the aspect ratio of the conductive fiber is 10 or more with one field of view of the electron microscope. In addition, the aspect ratio of the entire conductive fiber can be estimated by measuring the major axis length and the minor axis length of the conductive fiber separately.
  • the outer diameter of the tube is used as the diameter for calculating the aspect ratio.
  • the aspect ratio of the conductive fiber is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, preferably 100 to 1,000,000. More preferred.
  • the aspect ratio is less than 10, network formation by the conductive fibers may not be performed and sufficient conductivity may not be obtained.
  • the aspect ratio exceeds 1,000,000, the conductive fibers may be formed or handled thereafter. In this case, since the conductive fibers are entangled and aggregate before film formation, a stable liquid may not be obtained.
  • the ratio of the conductive fibers having an aspect ratio of 10 or more is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more in volume ratio in the total conductive composition.
  • the ratio of these conductive fibers may be referred to as “the ratio of conductive fibers”.
  • the ratio of the conductive fibers is less than 50%, the conductive material contributing to the conductivity may decrease and the conductivity may decrease. At the same time, a voltage concentration may occur because a dense network cannot be formed. , Durability may be reduced.
  • particles having a shape other than the conductive fiber are not preferable because they do not greatly contribute to conductivity and have absorption. In particular, in the case of metal, transparency may be deteriorated when plasmon absorption such as a spherical shape is strong.
  • the ratio of the conductive fibers is, for example, when the conductive fibers are silver nanowires, the silver nanowire aqueous dispersion is filtered to separate the silver nanowires from the other particles.
  • the ratio of the conductive fibers can be determined by measuring the amount of silver remaining on the filter paper and the amount of silver that has passed through the filter paper using an ICP emission analyzer. By observing the conductive fibers remaining on the filter paper with a TEM, observing the short axis lengths of 300 conductive fibers and examining their distribution, the short axis length is 200 nm or less and the long axis length is It confirms that it is an electroconductive fiber whose length is 1 micrometer or more.
  • the filter paper has a short axis length of 200 nm or less in the TEM image and the longest axis of particles other than conductive fibers having a long axis length of 1 ⁇ m or more is measured, and is at least twice the longest axis. And it is preferable to use the thing of the length below the shortest length of the long axis of an electroconductive fiber.
  • the average minor axis length and the average major axis length of the conductive fiber can be obtained by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) or an optical microscope.
  • TEM transmission electron microscope
  • the average minor axis length and the average major axis length of the conductive fibers are obtained by observing 300 conductive fibers with a transmission electron microscope (TEM) and obtaining the average value. is there.
  • the conductive layer containing conductive fibers and a binder (photosensitive resin) in one layer is described below, but the photosensitive layer (patterning material) containing the photosensitive resin is not necessarily integrated with the conductive layer containing conductive fibers.
  • the conductive layer and the photosensitive layer (patterning layer) may be laminated, or the photosensitive layer (patterning layer) may be laminated and transferred after the conductive layer is transferred to the transfer target, or the resist material may be printed.
  • a patterning mask may be formed.
  • the binder is an organic high molecular polymer, and at least one group (for example, carboxyl group, phosphate group) that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer as a main chain). , Sulfonic acid groups, etc.) can be selected appropriately from alkali-soluble resins.
  • those that are soluble in an organic solvent and that can be developed with a weak alkaline aqueous solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid. Particularly preferred.
  • the acid dissociable group represents a functional group capable of dissociating in the presence of an acid.
  • a known radical polymerization method For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
  • the organic polymer is preferably a polymer having a carboxylic acid in the side chain (photosensitive resin having an acidic group).
  • Examples of the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester A maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, a polymer having a hydroxyl group with an acid anhydride added, and a polymer having a (meth) acryloyl group in the side chain Polymers are also preferred.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
  • a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful.
  • the polymer can be used by mixing in an arbitrary amount.
  • 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer , Etc.
  • (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
  • Examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
  • alkyl (meth) acrylate or aryl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth).
  • vinyl compound examples include styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, CH 2 ⁇ CR. 1 R 2 , CH 2 ⁇ C (R 1 ) (COOR 3 ) [wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 2 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms. R 3 represents an alkyl group having 1 to 8 carbon atoms or an aralkyl group having 6 to 12 carbon atoms. ] And the like. These may be used individually by 1 type and may use 2 or more types together.
  • the weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
  • the weight average molecular weight is measured by gel permeation chromatography and can be determined using a standard polystyrene calibration curve.
  • the content of the binder is preferably 40% by mass to 95% by mass with respect to the entire conductive layer, more preferably 50% by mass to 90% by mass, and still more preferably 70% by mass to 90% by mass. When the content is in the range, both developability and conductivity of the metal nanowire can be achieved.
  • the said photosensitive compound means the compound which provides the function which forms an image by exposure, or gives the trigger to it.
  • Specific examples include (1) a compound that generates acid upon exposure (photoacid generator), (2) a photosensitive quinonediazide compound, and (3) a photoradical generator. These may be used individually by 1 type and may use 2 or more types together. Moreover, a sensitizer etc. can also be used together for sensitivity adjustment.
  • a photoinitiator for photocationic polymerization a photoinitiator for radical photopolymerization, a photodecolorant for dyes, a photochromic agent, an actinic ray used for a micro resist, etc.
  • known compounds that generate an acid upon irradiation with radiation and a mixture thereof can be appropriately selected and used.
  • the (1) photoacid generator is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, Examples include disulfone and o-nitrobenzyl sulfonate. Among these, imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate, which are compounds that generate sulfonic acid, are particularly preferable.
  • a group capable of generating an acid upon irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin such as US Pat. No. 3,849,137, German Patent No. 3914407.
  • JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 The compounds described in JP-A-63-146029, etc. can be used.
  • the (2) quinonediazide compound can be obtained, for example, by subjecting 1,2-quinonediazidesulfonyl chlorides, hydroxy compounds, amino compounds and the like to a condensation reaction in the presence of a dehydrochlorinating agent.
  • the blending amount of the (1) photoacid generator and the (2) quinonediazide compound is based on the difference in dissolution rate between the exposed part and the unexposed part, and the allowable range of sensitivity, with respect to 100 parts by weight of the total amount of the binder.
  • the amount is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight.
  • the (1) photoacid generator and the (2) quinonediazide compound may be used in combination.
  • Photoradical generator-- The photoradical generator has a function of directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction to generate a polymerization active radical.
  • the photo radical generator is preferably one having absorption in a wavelength region of 300 nm to 500 nm.
  • the photo radical generator may be used alone or in combination of two or more.
  • the content of the photo radical generator is preferably 0.1% by mass to 50% by mass and more preferably 0.5% by mass to 30% by mass with respect to the total solid content of the coating liquid for the transparent conductive film.
  • the photo radical generator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a group of compounds described in JP-A-2008-268884. Among these, triazine compounds, acetophenone compounds, acylphosphine (oxide) compounds, oxime compounds, imidazole compounds, and benzophenone compounds are particularly preferable from the viewpoint of exposure sensitivity.
  • the coating liquid for the transparent conductive film may be used in combination with a photoradical generator and a chain transfer agent in order to improve exposure sensitivity.
  • chain transfer agent examples include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzoimidazole, Heterocycles such as N-phenylmercaptobenzimidazole, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione
  • Mercapto compounds having an aliphatic polyfunctional mercapto compound such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types
  • the content of the chain transfer agent is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass to 10% by mass, based on the total solid content of the coating liquid for the transparent conductive film. More preferably, the content is 5 to 5% by mass.
  • ingredients examples include various additives such as a crosslinking agent, a dispersing agent, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity modifier, and an antiseptic.
  • additives such as a crosslinking agent, a dispersing agent, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity modifier, and an antiseptic.
  • the crosslinking agent is a compound that forms a chemical bond by free radical or acid and heat to cure the conductive layer, and is substituted with at least one group selected from, for example, a methylol group, an alkoxymethyl group, and an acyloxymethyl group.
  • an epoxy compound, an oxetane compound, and a compound having an ethylenically unsaturated group are particularly preferable in terms of film properties, heat resistance, and solvent resistance.
  • the oxetane resin can be used alone or in combination with an epoxy resin.
  • the reactivity is high, which is preferable from the viewpoint of improving film properties.
  • the content of the crosslinking agent is preferably 1 part by weight to 250 parts by weight, and more preferably 3 parts by weight to 200 parts by weight with respect to 100 parts by weight of the total amount of the binder.
  • the dispersant is used for preventing and dispersing the conductive fibers.
  • the dispersant is not particularly limited as long as the conductive fibers can be dispersed, and can be appropriately selected according to the purpose.
  • a commercially available low molecular pigment dispersant or polymer pigment dispersant can be used.
  • a polymer dispersant having a property of adsorbing to conductive fibers is preferably used.
  • polyvinylpyrrolidone BYK series (manufactured by Big Chemie), Solsperse series (manufactured by Nippon Lubrizol, etc.), Ajisper series ( Ajinomoto Co., Inc.).
  • the content of the dispersant is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 40 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the binder. Particularly preferred.
  • the conductive fibers When the content is less than 0.1 parts by mass, the conductive fibers may aggregate in the dispersion, and when it exceeds 50 parts by mass, a stable liquid film cannot be formed in the coating process. Application unevenness may occur.
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl lactate , 3-methoxybutanol, water, 1-methoxy-2-propanol, isopropyl acetate, methyl lactate, N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL), propylene carbonate, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • Metal corrosion inhibitor There is no restriction
  • the metal corrosion inhibitor is dissolved in the coating liquid for the transparent conductive film, it is added in a state dissolved in a suitable solvent, or powder, or after producing a conductive film with the coating liquid for the transparent conductive film described later, This can be applied by immersing in a metal corrosion inhibitor bath.
  • a conductive layer transfer material is used in the touch panel manufacturing method.
  • a transfer base, a cushion layer for improving the transfer uniformity to the transfer target, and a conductive layer containing a binder and conductive fibers are provided in this order on the transfer base.
  • the conductive layer transfer material preferably has an adhesion layer on the conductive layer, and has other layers such as an antifouling layer, a UV cut layer, and an antireflection layer as necessary. Also good.
  • an easily adhesive protective film may be laminated.
  • the conductive layer transfer material is not particularly limited in its shape, structure, size and the like as long as it has the above-described configuration, and can be appropriately selected according to the purpose.
  • Examples of the structure include a single-layer structure and a laminated structure, and the size can be appropriately selected depending on the application and the like.
  • the conductive layer transfer material is flexible and preferably transparent, and the transparent includes colorless and transparent, colored transparent, translucent, colored translucent and the like.
  • FIG. 4 is a schematic view showing an example of the conductive layer transfer material.
  • the conductive layer transfer material 6 in FIG. 4 has a transfer base 1 and a cushion layer 2 and a conductive layer 3 in this order on one surface of the base.
  • FIG. 5 is a schematic view showing another example of the conductive layer transfer material.
  • the conductive layer transfer material 7 in FIG. 5 is obtained by providing the adhesion layer 4 on the conductive layer 3 in the conductive layer transfer material 6 in FIG. 4.
  • the conductive layer in the said conductive layer transfer material may be patterned, and does not need to be patterned.
  • the patterning include electrode shapes applied with an existing ITO transparent conductive film. Specifically, stripe patterns and diamond patterns disclosed in WO 2005/114369 pamphlet, WO 2004/061808 pamphlet, JP 2010-33478 A, and JP 2010-44453 A are referred to. Etc.
  • the average thickness of the transfer substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 400 ⁇ m, and even more preferably 5 ⁇ m to 300 ⁇ m.
  • the average thickness is less than 1 ⁇ m, it may be difficult to handle the conductive layer transfer material, and when it exceeds 500 ⁇ m, the rigidity of the transfer substrate may be increased, and transfer uniformity may be impaired.
  • the average thickness of the conductive layer is preferably 0.01 ⁇ m to 2 ⁇ m, and more preferably 0.03 ⁇ m to 1 ⁇ m. If the average thickness is less than 0.01 ⁇ m, the in-plane conductivity distribution may be non-uniform, and if it exceeds 2 ⁇ m, the transmittance may be lowered and the transparency may be impaired.
  • the average thickness of the cushion layer is preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the average thickness is less than 1 ⁇ m, transfer uniformity may be impaired, and when it exceeds 50 ⁇ m, the curl balance of the transfer material may be lowered.
  • the average thickness of the transfer substrate, the average thickness of the conductive layer, and the average thickness of the cushion layer are embedded by, for example, SEM observation after taking out a cross section of the material by microtome cutting or by embedding with an epoxy resin. Then, it can be measured by TEM observation of a section prepared with a microtome.
  • the average thickness of each of these layers is an average value measured at 10 points.
  • ⁇ Transfer substrate> There is no restriction
  • Examples of the structure include a single layer structure and a laminated structure. The size can be appropriately selected according to the application.
  • a semiconductor substrate which has a transparent glass substrate, a synthetic resin sheet (film), a metal substrate, a ceramic board, a photoelectric conversion element. Etc. If necessary, the substrate can be subjected to pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
  • the transparent glass substrate examples include white plate glass, blue plate glass, and silica-coated blue plate glass. Further, a thin glass substrate having a thickness of 10 ⁇ m to several hundred ⁇ m developed recently may be used.
  • the synthetic resin sheet examples include a polyethylene terephthalate (PET) sheet, a polycarbonate sheet, a triacetyl cellulose (TAC) sheet, a polyethersulfone sheet, a polyester sheet, an acrylic resin sheet, a vinyl chloride resin sheet, and an aromatic polyamide resin sheet.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • polyethersulfone sheet a polyester sheet
  • acrylic resin sheet a vinyl chloride resin sheet
  • aromatic polyamide resin sheet examples include a polyamideimide sheet, polyimide sheet and the like.
  • Examples of the metal substrate include an aluminum plate, a copper plate, a nickel plate, and a stainless plate.
  • the total visible light transmittance of the transfer substrate is preferably 70% or more, more preferably 85% or more, and still more preferably 90% or more. If the total visible light transmittance is less than 70%, the transmittance may be low and may cause a problem in practical use.
  • a transfer substrate that is colored to the extent that the object of the present invention is not hindered can also be used.
  • ⁇ Cushion layer> There is no restriction
  • the structure include a single layer structure and a laminated structure. The size can be appropriately selected according to the application.
  • the cushion layer is a layer that plays a role of improving transferability with the transfer target, and contains at least a polymer, and further contains other components as necessary.
  • the polymer is not particularly limited as long as it is a thermoplastic resin that softens when heated, and can be appropriately selected according to the purpose.
  • acrylic resin styrene-acrylic copolymer, polyvinyl alcohol, polyethylene, ethylene-acetic acid Vinyl copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, polyvinyl chloride, gelatin; cellulose nitrate, cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate, etc.
  • Cellulose ester Homopolymer or copolymer containing vinylidene chloride, vinyl chloride, styrene, acrylonitrile, vinyl acetate, alkyl (1 to 4 carbon atoms) acrylate, vinyl pyrrolidone, soluble polyester, polycarbonate Boneto, soluble polyamide. These may be used individually by 1 type and may use 2 or more types together.
  • the polymer used for the cushion layer is preferably a thermoplastic resin that is softened by heating.
  • the glass transition temperature of the cushion layer is preferably 40 ° C to 150 ° C. If it is lower than 40 ° C., it may be too soft at room temperature to be inferior in handling properties, and if it is higher than 150 ° C., the cushion layer may not be softened by the heat laminating method and the transferability of the conductive layer may be inferior. Further, the glass transition temperature may be adjusted by adding a plasticizer or the like.
  • Examples of the other components include organic polymer materials described in paragraph [0007] and subsequent paragraphs of JP-A-5-72724, various plasticizers for adjusting adhesive force with the transfer substrate, supercooling materials, Examples thereof include adhesion improvers, surfactants, mold release agents, thermal polymerization inhibitors, and solvents.
  • the cushion layer can be formed by applying a coating solution for the cushion layer containing the polymer and, if necessary, the other components, onto a transfer substrate and drying it.
  • the other components are not particularly limited and may be appropriately selected depending on the intended purpose.
  • fillers for example, fillers, surfactants, antioxidants, sulfurization inhibitors, metal corrosion inhibitors, viscosity modifiers, preservatives And various other additives.
  • the cushion layer can be formed by applying a coating solution for the cushion layer containing the polymer and, if necessary, the other components, onto a base material and drying it.
  • the coating method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a roll coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a bar coating method, a gravure method examples thereof include a coating method, a curtain coating method, a spray coating method, and a doctor coating method.
  • FIGS. 6A to 6C are diagrams showing an example of a transfer method using the conductive layer transfer material 6 of the present invention.
  • FIG. 6A shows a transfer substrate 1 and a conductive layer transfer material 6 having a cushion layer 2 and a conductive layer 3 in this order on one surface of the transfer substrate.
  • the cushion layer 2 and the conductive layer 3 of the conductive layer transfer material 6 shown in FIG. 6A are pressed and heated using a laminator on a glass substrate 8 (corresponding to a transparent substrate of a touch panel) as a transfer target. And paste them together.
  • the cushioning layer 2 and the conductive layer 3 are transferred to the glass substrate 8 by peeling the transfer substrate 1.
  • the glass substrate 8 has a temperature range of 90 ° C. or higher and 120 ° C. or lower. By setting it as this range, the conductive layer 3 can be transferred onto the glass substrate 8 without insulating the conductive layer.
  • the substrate temperature is lower than 90 ° C., the conductive layer 3 cannot be transferred onto the glass substrate 8, and when it exceeds 120 ° C., the conductive fibers are deformed by heat, and the conductive layer 3 is insulated.
  • the transfer pressure is preferably in the range of 0.4 MPa to 0.8 MPa. By setting this range, the conductive layer 3 can be transferred onto the glass substrate 8 without disconnection. If the transfer pressure is less than 0.4 MPa, the conductive layer is not transferred to the glass substrate due to insufficient pressure at the time of transfer. If the transfer pressure exceeds 0.8 MPa, the conductive fiber is crushed and the conductive layer is disconnected due to the transfer pressure.
  • the conductive layer 3 is exposed and developed to form a plurality of first transparent conductive patterns and a plurality of second transparent conductive patterns.
  • the touch panel can be manufactured through the above steps.
  • the weight average molecular weight (Mw) of the binder (A-1) was measured using gel permeation chromatography (GPC). As a result, the weight average molecular weight (Mw) in terms of polystyrene was 30,000, and the molecular weight distribution (Mw / Mn) was 2.21.
  • additive solution G was prepared by dissolving 0.5 g of glucose powder in 140 mL of pure water.
  • additive solution H was prepared by dissolving 0.5 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 27.5 mL of pure water.
  • a silver nanowire aqueous dispersion was prepared as follows.
  • an ultrafiltration module SIP1013 manufactured by Asahi Kasei Co., Ltd., molecular weight cut off 6,000
  • a magnet pump a magnet pump
  • a stainless steel cup was connected with a silicone tube to form an ultrafiltration device.
  • aqueous dispersion (aqueous solution) was put into a stainless steel cup, and ultrafiltration was performed by operating a pump. When the filtrate from the module reached 50 mL, 950 mL of distilled water was added to the stainless steel cup for washing. The above washing was repeated until the conductivity reached 50 ⁇ S / cm or less, followed by concentration to obtain a silver nanowire aqueous dispersion of Preparation Example 1.
  • TEM transmission electron microscope
  • the silver nanowires were separated when determining the ratio of silver nanowires using a membrane filter (Millipore, FALP 02500, pore size 1.0 ⁇ m).
  • conductive layer transfer material > ⁇ Formation of cushion layer >> On a polyethylene terephthalate (PET) film having an average thickness of 30 ⁇ m as a base material, a cushion layer coating solution having the following composition was applied and dried to form a cushion layer having an average thickness of 10 ⁇ m.
  • PET polyethylene terephthalate
  • the transparent conductive film was formed by the following method.
  • a plurality of objects to be transferred including a metal layer and insulating films having different shapes having openings for exposing a part of the metal layer were prepared on a glass substrate having a thickness of 0.7 mm.
  • the conductive layer and cushion layer of the conductive layer transfer material were transferred to a transfer target (a glass substrate having a thickness of 0.7 mm).
  • the cushion layer is removed by shower development.
  • the exposed substrate was subjected to shower development for 30 seconds (shower pressure 0.04 MPa) with a developer in which 5 g of sodium bicarbonate and 2.5 g of sodium carbonate were dissolved in 5,000 g of pure water. Next, it rinsed with the shower of pure water.
  • connection structures 1 to 3 each including a metal layer 100 (corresponding to peripheral wiring), an insulating film 102, and a transparent conductive film 104 (corresponding to a transparent conductive pattern) including silver nanowires.
  • the insulating film 102 has a U-shape that opens in one direction, and the transparent conductive film 104 covers all exposed portions of the metal layer 100.
  • the opening direction of the insulating film 102 is the same direction as the direction in which the transparent conductive film 104 extends.
  • the opening direction of the insulating film 102 is opposite to the direction in which the transparent conductive film 104 extends.
  • the opening direction of the insulating film 102 is a direction orthogonal to the extending direction of the transparent conductive film 104.
  • FIGS. 8A and 8B show connection structures 4 and 5 including a metal layer 100, an insulating film 102, and a transparent conductive film 104, respectively.
  • the insulating film 102 has a rectangular shape that surrounds the exposed portion of the metal layer 100, and does not include an open portion.
  • the transparent conductive film 104 covers all exposed portions of the metal layer 100.
  • the opening direction of the insulating film 102 is opposite to the direction in which the transparent conductive film 104 extends, and the transparent conductive film 104 covers only a part of the exposed portion of the metal layer 100.
  • connection structures 1 to 5 a plurality of samples 1 to 21 having different thicknesses of the insulating film 102, the opening length of the insulating film 102, the temperature of the glass substrate during transfer, the transfer pressure, and the thickness of the transparent conductive film 104 are different. Prepared.
  • connection structure 2 was applied to samples 6 to 21.
  • Samples 8 and 9 since the opening length / film thickness was 25 or less, good results were not obtained for contactability.
  • the transparent conductive film 104 was not transferred, so that a good result was not obtained for the contact property.
  • FIG. 1 illustrates a touch panel to which the connection structure according to the present invention is applied in both vertical and horizontal directions.
  • the configuration of the present invention is not limited to these examples.
  • a touch panel to which the connection structure according to the present invention is applied in any one of the vertical and horizontal directions is naturally possible.

Abstract

In the present invention, a touch panel is provided with: a plurality of first transparent electroconductive patterns extending in a first direction; a plurality of second transparent electroconductive patterns extending in a second direction orthogonal to the first direction; a plurality of first peripheral wirings electrically connected to each of the first transparent electroconductive patterns; and a plurality of second peripheral wirings electrically connected to each of the second transparent electroconductive patterns. The first and second peripheral wirings and the first and second transparent electroconductive patterns are electrically connected via a U-shaped insulating film which opens on one end. The first and second transparent electroconductive patterns cover all of the first and second peripheral wirings which are not covered by the insulating film. Provided thereby is a touch panel making it possible to achieve favorable contact (conduction) with the peripheral wirings even in a contact region in which is interposed a through-hole formed in the insulating film, and making it possible to prevent corrosion of the peripheral wirings.

Description

タッチパネル、及びタッチパネルの製造方法Touch panel and method for manufacturing touch panel
 本発明はタッチパネル、及びタッチパネルの製造方法、特に、バインダーと導電性繊維とを含む透明導電パターンを適用したタッチパネルの技術に関する。 The present invention relates to a touch panel and a touch panel manufacturing method, and more particularly, to a touch panel technology to which a transparent conductive pattern including a binder and conductive fibers is applied.
 近年、タッチパネルが注目されている。タッチパネルは、PDA(携帯情報端末)や携帯電話等の小サイズへの適用が主となっているが、パソコン用ディスプレイ等への適用による大サイズ化が進むと考えられる。 In recent years, touch panels have attracted attention. The touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a display for a personal computer.
 タッチパネルの透明電極として、ITO(Indium Tin Oxide, 酸化インジウムスズ)が用いられている。しかし、ITOの原料であるインジウムは高価であり安定供給に限界があること、薄膜作製に真空過程を必要とするために製造コストが高くなること、また、ITO膜は脆く、曲げ耐性に劣るといった課題がある。 ITO (Indium Tin Oxide) is used as the transparent electrode of the touch panel. However, indium, which is a raw material of ITO, is expensive and has a limit to stable supply, a manufacturing process is high because a vacuum process is required for thin film production, and an ITO film is brittle and inferior in bending resistance. There are challenges.
 そこで、タッチパネルの透明電極として、金属細線(導電性繊維)を含む透明導電膜を使用することが検討されている。特許文献1は、透明導電繊維層を透明フィルム基材上に転写することにより製造された高い導電性と良好な透明性とを併せ持つ透明導電フィルムをタッチパネル等に好適に用いることを開示する。 Therefore, it has been studied to use a transparent conductive film containing fine metal wires (conductive fibers) as the transparent electrode of the touch panel. Patent Document 1 discloses that a transparent conductive film having both high conductivity and good transparency produced by transferring a transparent conductive fiber layer onto a transparent film substrate is suitably used for a touch panel or the like.
特開2009-231029号公報JP 2009-231029
 タッチパネル等の電子機器では、絶縁膜に形成されたスルーホールを介して、電極配線同士が電気的に接続される。しかしながら、特許文献1に記載された方法の場合、コンタクト領域において電極配線同士の接触が不十分で、コンタクトが取れなくなり導通不良を生じる問題が発生する。 In an electronic device such as a touch panel, electrode wirings are electrically connected through a through hole formed in an insulating film. However, in the case of the method described in Patent Document 1, there is a problem in that contact between the electrode wirings is insufficient in the contact region, and contact cannot be obtained, resulting in poor conduction.
 本発明はこのような課題を考慮してなされたものである。転写により透明導電膜を形成する場合においても、絶縁膜に形成されたスルーホールを介したコンタクト領域においても周辺配線と十分な接触ができ、周辺配線と良好なコンタクト(導通)が達成でき、さらに周辺配線の腐食を防止できるタッチパネルを提供することを目的とする。 The present invention has been made in consideration of such problems. Even when the transparent conductive film is formed by transfer, sufficient contact with the peripheral wiring can be achieved even in the contact region through the through-hole formed in the insulating film, and good contact (conduction) with the peripheral wiring can be achieved. An object is to provide a touch panel that can prevent corrosion of peripheral wiring.
 本発明の一態様に係るタッチパネルは、透明基板と、前記透明基板上に第1方向に沿って形成され、且つ、バインダーと導電性繊維とを含む、複数の第1透明導電パターンと、前記透明基板上に前記第1方向と直交する第2方向に沿って形成され、且つ、バインダーと導電性繊維とを含む、複数の第2透明導電パターンと、前記透明基板上に形成され、前記各第1透明導電パターンの端部と電気的に接続する複数の第1周辺配線と、前記透明基板上に形成され、前記各第2透明導電パターンの端部と電気的に接続する複数の第2周辺配線と、前記各第1透明導電パターンと前記各第1周辺配線とを接続する第1接続構造と、前記各第2透明導電パターンと前記各第2周辺配線とを接続する第2接続構造とを備え、前記第1接続構造は、前記第1周辺配線と、前記第1周辺配線上に形成され前記第1周辺配線の一部を露出するための開口を有するU字形状の第1絶縁膜と、露出された前記第1周辺配線を覆う前記第1透明導電パターンとを備え、前記第1絶縁膜の膜厚と前記第1絶縁膜の開口長との比(第1絶縁膜の開口長/第1絶縁膜の膜厚)は25以上である。 The touch panel according to an aspect of the present invention includes a transparent substrate, a plurality of first transparent conductive patterns formed along the first direction on the transparent substrate, and including a binder and conductive fibers, and the transparent A plurality of second transparent conductive patterns formed on a substrate along a second direction orthogonal to the first direction and including a binder and conductive fibers; and each of the second transparent conductive patterns formed on the transparent substrate. A plurality of first peripheral wirings electrically connected to the end portions of one transparent conductive pattern, and a plurality of second peripheral lines formed on the transparent substrate and electrically connected to the end portions of the second transparent conductive patterns A first connection structure that connects the wiring, the first transparent conductive pattern and the first peripheral wiring, and a second connection structure that connects the second transparent conductive pattern and the second peripheral wiring. The first connection structure includes A first peripheral wiring, a U-shaped first insulating film formed on the first peripheral wiring and having an opening for exposing a part of the first peripheral wiring; and the exposed first peripheral wiring. The first transparent conductive pattern is provided, and the ratio of the film thickness of the first insulating film to the opening length of the first insulating film (opening length of the first insulating film / film thickness of the first insulating film) is 25 or more. It is.
 また、本発明の一態様に係るタッチパネルにおいて、好ましくは、前記第2接続構造は、前記第2周辺配線と、前記第2周辺配線上に形成され前記第2周辺配線の一部を露出するための開口を有するU字形状の第2絶縁膜と、露出された前記第2周辺配線を覆う前記第2透明導電パターンとを備え、前記第2絶縁膜の膜厚と前記第2絶縁膜の開口長との比(第2絶縁膜の開口長/第2絶縁膜の膜厚)は25以上である。 In the touch panel according to an aspect of the present invention, preferably, the second connection structure is formed on the second peripheral wiring and the second peripheral wiring to expose a part of the second peripheral wiring. And a second transparent conductive pattern covering the exposed second peripheral wiring, and the film thickness of the second insulating film and the opening of the second insulating film. The ratio to the length (opening length of the second insulating film / film thickness of the second insulating film) is 25 or more.
 好ましくは、前記第1透明導電パターンの膜厚と前記第1絶縁膜の膜厚との比(第1絶縁層の膜厚/第1透明導電パターンの膜厚)は5以上20以下であり、及び/又は前記第2透明導電パターンの膜厚と前記第2絶縁膜の膜厚との比(第2絶縁層の膜厚/第2透明導電パターンの膜厚)は5以上20以下である。 Preferably, the ratio of the thickness of the first transparent conductive pattern to the thickness of the first insulating film (the thickness of the first insulating layer / the thickness of the first transparent conductive pattern) is 5 or more and 20 or less, And / or the ratio of the thickness of the second transparent conductive pattern to the thickness of the second insulating film (the thickness of the second insulating layer / the thickness of the second transparent conductive pattern) is 5 or more and 20 or less.
 好ましくは、前記導電性繊維は銀ナノワイヤーである。 Preferably, the conductive fiber is a silver nanowire.
 好ましくは、前記第1周辺配線、及び前記第2周辺配線は金属膜で構成される。 Preferably, the first peripheral wiring and the second peripheral wiring are made of a metal film.
 好ましくは、前記導電性繊維は50nm以下の短軸を有する。 Preferably, the conductive fiber has a minor axis of 50 nm or less.
 本発明の別の態様によると、タッチパネルの製造方法は、複数の第1周辺配線と複数の第2周辺配線とを透明基板上に形成する工程と、前記各第1周辺配線上に前記第1周辺配線の一部を露出するための開口を有するU字形状の第1絶縁膜、及び/又は前記各第2周辺配線上に前記第2周辺配線の一部を露出するための開口を有するU字形状の第2絶縁膜とを形成する工程と、バインダーと導電性繊維とを含む導電層を転写基材上に形成する工程と、前記転写基材上の前記導電層を前記透明基板上に転写し、前記第1周辺配線、及び/又は前記第2周辺配線の露出部を覆い、前記各第1周辺配線と前記第2周辺配線とを前記導電層と電気的に接続する工程と、前記導電層をパターニングし、第1方向に延びる複数の第1透明導電パターンと、前記第1方向と直交する第2方向に延びる複数の第2透明導電パターンとを形成する工程と、を備える。 According to another aspect of the present invention, a method for manufacturing a touch panel includes a step of forming a plurality of first peripheral wirings and a plurality of second peripheral wirings on a transparent substrate, and the first peripheral wirings on the first peripheral wirings. A U-shaped first insulating film having an opening for exposing a part of the peripheral wiring and / or a U having an opening for exposing a part of the second peripheral wiring on each of the second peripheral wirings. Forming a second insulating film having a letter shape, forming a conductive layer including a binder and conductive fibers on a transfer substrate, and forming the conductive layer on the transfer substrate on the transparent substrate. Transferring, covering the exposed portion of the first peripheral wiring and / or the second peripheral wiring, and electrically connecting the first peripheral wiring and the second peripheral wiring to the conductive layer; A plurality of first transparent conductive patterns extending in the first direction by patterning the conductive layer; And a step of forming a plurality of second transparent conductive patterns extending in a second direction perpendicular to the first direction.
 好ましくは、前記転写基材上の前記導電層を前記透明基板上に転写するとき、前記透明基板が90℃以上120℃以下の温度範囲である。 Preferably, when the conductive layer on the transfer base material is transferred onto the transparent substrate, the transparent substrate has a temperature range of 90 ° C. or more and 120 ° C. or less.
 好ましくは、前記転写基材上の前記導電層を前記透明基板上に転写するとき、転写圧力が0.4MPa以上0.8MPa以下の範囲である。 Preferably, when the conductive layer on the transfer base material is transferred onto the transparent substrate, the transfer pressure is in the range of 0.4 MPa to 0.8 MPa.
 本発明によれば、転写により透明導電膜を形成する場合においても、コンタクト領域において周辺配線と十分な接触が達成できるため、周辺配線と透明導電膜との良好なコンタクト(導通)が形成できる。さらに周辺配線の腐食を防止できる。 According to the present invention, even when the transparent conductive film is formed by transfer, sufficient contact with the peripheral wiring can be achieved in the contact region, so that good contact (conduction) between the peripheral wiring and the transparent conductive film can be formed. Further, corrosion of peripheral wiring can be prevented.
本実施形態によるタッチパネルを模式的に示す平面図The top view which shows the touch panel by this embodiment typically 周辺配線と絶縁膜とを含むコンタクト領域の平面図Plan view of contact area including peripheral wiring and insulating film 図2Aに示す平面図中のA-A線に沿った断面図Sectional drawing along the AA line in the top view shown to FIG. 2A 周辺配線、絶縁膜、及び透明導電パターンを含むコンタクト領域の平面図Plan view of contact area including peripheral wiring, insulating film, and transparent conductive pattern 図3Aに示す平面図中のB-B線に沿った断面図Sectional drawing along the BB line in the top view shown to FIG. 3A 導電層転写材料の一例を示す概略図Schematic showing an example of conductive layer transfer material 導電層転写材料の他の一例を示す概略図Schematic showing another example of conductive layer transfer material 導電層転写材料を用いた転写方法を説明する説明図(その1)Explanatory drawing explaining the transfer method using a conductive layer transfer material (the 1) 導電層転写材料を用いた転写方法を説明する説明図(その2)Explanatory drawing explaining the transfer method using a conductive layer transfer material (the 2) 導電層転写材料を用いた転写方法を説明する説明図(その3)Explanatory drawing explaining the transfer method using a conductive layer transfer material (the 3) 複数の接続構造を示す概略図(その1)Schematic diagram showing multiple connection structures (Part 1) 複数の接続構造を示す概略図(その2)Schematic showing multiple connection structures (part 2) 複数の接続構造を示す概略図(その3)Schematic showing multiple connection structures (Part 3) 別の複数の接続構造を示す概略図(その1)Schematic showing another connection structure (part 1) 別の複数の接続構造を示す概略図(その2)Schematic showing another connection structure (part 2) 製造条件と評価結果を示す表図Table showing manufacturing conditions and evaluation results
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱することなく、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention will be described by the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments than the present embodiment are utilized. be able to. Accordingly, all modifications within the scope of the present invention are included in the claims.
 以下、本実施形態による配線構造体、及びタッチパネルを図1~3Bを参照しながら説明する。 Hereinafter, the wiring structure and the touch panel according to the present embodiment will be described with reference to FIGS. 1 to 3B.
 タッチパネル10は、透明基板20と、透明基板20上に形成された複数の第1透明導電パターン30、及び複数の第2透明導電パターン40とを備える。各第1透明導電パターン30は第1方向に沿って配置され、各第2透明導電パターン40は第1方向と直交する第2方向に沿って配置される。 The touch panel 10 includes a transparent substrate 20, a plurality of first transparent conductive patterns 30 and a plurality of second transparent conductive patterns 40 formed on the transparent substrate 20. Each first transparent conductive pattern 30 is disposed along a first direction, and each second transparent conductive pattern 40 is disposed along a second direction orthogonal to the first direction.
 第1透明導電パターン30は、複数の第1感知部32と、複数の第1感知部32の間を電気的に接続する第1接続部34とを備える。第1感知部32は幅広の菱形形状を有しており、第1接続部34は幅の狭い短冊形状を有している。第1透明導電パターン30について、第1感知部32と第1接続部34とは一体として形成される。 The first transparent conductive pattern 30 includes a plurality of first sensing units 32 and a first connection unit 34 that electrically connects the plurality of first sensing units 32. The first sensing part 32 has a wide rhombus shape, and the first connection part 34 has a narrow strip shape. With respect to the first transparent conductive pattern 30, the first sensing part 32 and the first connection part 34 are integrally formed.
 第2透明導電パターン40は、複数の第2感知部42と、複数の第2感知部42の間を電気的に接続する第2接続部44とを備える。第2感知部42は幅広の菱形形状を有しており、第2接続部44は幅の狭い短冊形状を有している。第2接続部44は、第1接続部34上に形成された絶縁膜50上に形成される。つまり、短冊形状の第1接続部34上に、実質的に第1接続部34と同形状の絶縁膜50が形成され、絶縁膜50の上に絶縁膜50よりも幅の狭い短冊形状の第2接続部44が形成される。第2透明導電パターン40について、第2感知部42と第2接続部44とは別体として形成される。なお、絶縁膜50は透明性が要求される。そのため、絶縁膜50の材料として、無機材料としては、SiO2, SiOx, SiNx, SiOxNy(X, Yはそれぞれ任意の整数)、有機材料としては、アクリル樹脂等が考えられる。 The second transparent conductive pattern 40 includes a plurality of second sensing units 42 and a second connection unit 44 that electrically connects the plurality of second sensing units 42. The second sensing part 42 has a wide rhombus shape, and the second connection part 44 has a narrow strip shape. The second connection portion 44 is formed on the insulating film 50 formed on the first connection portion 34. That is, an insulating film 50 having substantially the same shape as the first connection portion 34 is formed on the first connection portion 34 having a strip shape, and the strip-shaped first connection portion having a narrower width than the insulating film 50 is formed on the insulation film 50. Two connecting portions 44 are formed. Regarding the second transparent conductive pattern 40, the second sensing part 42 and the second connection part 44 are formed as separate bodies. The insulating film 50 is required to be transparent. Therefore, as a material of the insulating film 50, the inorganic materials, SiO 2, SiOx, SiNx, SiOxNy (X, Y each is an arbitrary integer), as the organic material, acrylic resin or the like.
 第1透明導電パターン30と第2透明導電パターン40とは、平面視で、第1感知部32と第2感知部42とが重なり合わないよう配置される。一方、第1接続部34と第2接続部44とは、平面視で、交差するよう配置される。ただし、第1接続部34と第2接続部44とは絶縁膜50により電気的に分離されている。 The first transparent conductive pattern 30 and the second transparent conductive pattern 40 are arranged so that the first sensing unit 32 and the second sensing unit 42 do not overlap in plan view. On the other hand, the 1st connection part 34 and the 2nd connection part 44 are arrange | positioned so that it may cross | intersect by planar view. However, the first connection portion 34 and the second connection portion 44 are electrically separated by the insulating film 50.
 上述のように第1透明導電パターン30と第2透明導電パターン40とを配置することにより、いわゆる、規則的に配置されたダイヤモンドパターンが構成される。第1透明導電パターン30と第2透明導電パターン40とは、いずれも、導電性繊維とバインダーとを含む透明導電膜で構成される。 By arranging the first transparent conductive pattern 30 and the second transparent conductive pattern 40 as described above, a so-called regularly arranged diamond pattern is configured. Each of the first transparent conductive pattern 30 and the second transparent conductive pattern 40 is composed of a transparent conductive film containing conductive fibers and a binder.
 導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造及び中空構造のいずれかであることが好ましい。ここで、中実構造の繊維をワイヤーと呼ぶことがあり、中空構造の繊維をチューブと呼ぶことがある。 The structure of the conductive fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably a solid structure or a hollow structure. Here, the solid structure fiber may be referred to as a wire, and the hollow structure fiber may be referred to as a tube.
 平均短軸長さが5nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と呼ぶことがある。 A conductive fiber having an average minor axis length of 5 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowire”.
 また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と呼ぶことがある。 In addition, a conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 0.1 μm to 1,000 μm and having a hollow structure may be referred to as “nanotube”.
 前記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属及びカーボンの少なくともいずれかであることが好ましい。これらの中でも、前記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、及びカーボンナノチューブの少なくともいずれかであることが好ましい。 The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose, but is preferably at least one of metal and carbon. Among these, the conductive fiber is preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
 透明性、ヘイズの観点から、平均短軸長さは50nm以下であることが好ましい。 From the viewpoint of transparency and haze, the average minor axis length is preferably 50 nm or less.
 バインダーとしては、有機高分子重合体であって、分子(好ましくは、アクリル系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。 The binder is an organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer as a main chain) (for example, a carboxyl group, a phosphate group, It can be appropriately selected from alkali-soluble resins having a sulfonic acid group or the like.
 透明基板20の材料として、例えば、無アルカリガラス、ソーダガラス等の透明ガラス基板、またはPET(ポリエチレン・テレフタレート),PEN(ポリエチレン・ナフタレート),PES(ポリエーテル・サルホン)等の透明合成樹脂基板等を使用することができる。透明度及び寸法安定性の観点から、無アルカリガラス、PETを使用することが好ましい。 As a material of the transparent substrate 20, for example, a transparent glass substrate such as non-alkali glass or soda glass, or a transparent synthetic resin substrate such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PES (polyether sulfone), or the like Can be used. From the viewpoint of transparency and dimensional stability, it is preferable to use alkali-free glass or PET.
 複数の第1透明導電パターン30と複数の第2透明導電パターン40とにより、透明基板20上にセンサエリアSが形成される。透明基板20上のセンサエリアSの外周領域に、複数の第1周辺配線60と複数の第2周辺配線70とが形成される。第1周辺配線60は、その一端において、第1透明導電パターン30の一端と電気的に接続される。第1周辺配線60は、その他端において、外部接続端子(不図示)と電気的に接続される。第1周辺配線60は、細幅のライン部60aと、一端においてライン部60aに対して幅広のパッド部60b、他端においてライン部60aに対して幅広のパッド60cを含んでいる。 The sensor area S is formed on the transparent substrate 20 by the plurality of first transparent conductive patterns 30 and the plurality of second transparent conductive patterns 40. A plurality of first peripheral wirings 60 and a plurality of second peripheral wirings 70 are formed in the outer peripheral region of the sensor area S on the transparent substrate 20. The first peripheral wiring 60 is electrically connected to one end of the first transparent conductive pattern 30 at one end thereof. The first peripheral wiring 60 is electrically connected to an external connection terminal (not shown) at the other end. The first peripheral wiring 60 includes a narrow line portion 60a, a pad portion 60b wider than the line portion 60a at one end, and a pad 60c wider than the line portion 60a at the other end.
 第2周辺配線70は、その一端において、第2透明導電パターン40の一端と電気的に接続される。第2周辺配線70は、その他端において、外部接続端子(不図示)と電気的に接続される。第2周辺配線70は、細幅のライン部70aと、一端においてライン部70aに対して幅広のパッド部70b、他端においてライン部70aに対して幅広のパッド70cを含んでいる。 The second peripheral wiring 70 is electrically connected to one end of the second transparent conductive pattern 40 at one end thereof. The second peripheral wiring 70 is electrically connected to an external connection terminal (not shown) at the other end. The second peripheral wiring 70 includes a narrow line portion 70a, a pad portion 70b that is wider than the line portion 70a at one end, and a pad 70c that is wider than the line portion 70a at the other end.
 第1周辺配線60と第2周辺配線70とは、金属膜で構成される。金属膜は、例えば、Al,Ag,Cu,Mo,Ti,Cr等の材料又は、それらの合金で構成される。金属膜は、複数の材料の積層膜で構成されていても良い。例えば、Mo(又はMo合金)/Al(又はAl合金)/Mo(又はMo合金)からなる積層膜でも良い。 The first peripheral wiring 60 and the second peripheral wiring 70 are made of a metal film. The metal film is made of, for example, a material such as Al, Ag, Cu, Mo, Ti, Cr, or an alloy thereof. The metal film may be composed of a laminated film of a plurality of materials. For example, a laminated film made of Mo (or Mo alloy) / Al (or Al alloy) / Mo (or Mo alloy) may be used.
 第1透明導電パターン30は、その一端において、パッド部60bと電気的に接続する幅広の接続部36を含んでいる。接続部36は、U字形状の絶縁膜38を介してパッド部60bと電気的に接続される。 The first transparent conductive pattern 30 includes a wide connection portion 36 that is electrically connected to the pad portion 60b at one end thereof. The connecting portion 36 is electrically connected to the pad portion 60b through a U-shaped insulating film 38.
 第2透明導電パターン40は、その一端において、パッド部70bと電気的に接続する幅広の接続部46を含んでいる。接続部46は、U字形状の絶縁膜48を介してパッド部70bと電気的に接続される。 The second transparent conductive pattern 40 includes a wide connection portion 46 that is electrically connected to the pad portion 70b at one end thereof. The connecting portion 46 is electrically connected to the pad portion 70b through a U-shaped insulating film 48.
 図2Aは、コンタクト領域における、パッド部60b(70b)と絶縁膜38(48)とを示す拡大平面図である。図2Bは、A-A線に沿った断面図である。透明基板(不図示)上には、細幅のライン部60a(70a)と、ライン部60a(70a)の一端においてライン部60a(70a)に対して幅広のパッド部60b(70b)とが形成される。パッド部60b(70b)上に、パッド部60b(70b)の一部を露出するための開口を有するU字形状の絶縁膜38(48)が形成される。本実施の形態では、上下の配線を接続するためのコンタクトホールは、平面視において一方が開放したU字形状の絶縁膜38(48)で形成される。一方、通常のコンタクトホールは、平面視において周囲をすべて囲む絶縁膜で形成される。本実施の形態では、絶縁膜の形状が、従来と異なる。 FIG. 2A is an enlarged plan view showing the pad portion 60b (70b) and the insulating film 38 (48) in the contact region. FIG. 2B is a cross-sectional view along the line AA. On a transparent substrate (not shown), a narrow line portion 60a (70a) and a pad portion 60b (70b) wider than the line portion 60a (70a) are formed at one end of the line portion 60a (70a). Is done. A U-shaped insulating film 38 (48) having an opening for exposing part of the pad portion 60b (70b) is formed on the pad portion 60b (70b). In the present embodiment, the contact hole for connecting the upper and lower wirings is formed of a U-shaped insulating film 38 (48) that is open in plan view. On the other hand, a normal contact hole is formed of an insulating film that surrounds the entire periphery in plan view. In the present embodiment, the shape of the insulating film is different from the conventional one.
 U字形状の絶縁膜38(48)は、所定の開口長L(対向する絶縁膜38間の距離)を有する。U字形状の絶縁膜38(48)は、所定の膜厚t1を有する。 The U-shaped insulating film 38 (48) has a predetermined opening length L (distance between the opposing insulating films 38). The U-shaped insulating film 38 (48) has a predetermined film thickness t1.
 図3Aは、コンタクト領域における、パッド部60b(70b)、絶縁膜38(48)と接続部36(46)を示す拡大平面図である。図3Bは、図3A中のB-B線に沿った断面図である。U字形状の絶縁膜38(48)の開口から露出したパッド部60b(70b)のをすべて覆うように接続部36(48)が形成される。 FIG. 3A is an enlarged plan view showing the pad portion 60b (70b), the insulating film 38 (48), and the connection portion 36 (46) in the contact region. 3B is a cross-sectional view taken along the line BB in FIG. 3A. The connecting portion 36 (48) is formed so as to cover all of the pad portion 60b (70b) exposed from the opening of the U-shaped insulating film 38 (48).
 図3Bに示すように、U字形状の絶縁膜38(48)は一方が開放しているので、接続部36(46)とパッド部60b(70b)とは確実に電気的に接続される(コンタクトされる)ことになる。 As shown in FIG. 3B, one side of the U-shaped insulating film 38 (48) is open, so that the connection portion 36 (46) and the pad portion 60b (70b) are reliably electrically connected ( Contacted).
 本実施形態の接続構造によれば、転写により透明導電膜(接続部36,46)を形成する場合においても、絶縁膜38(48)が一方を開放するU字型形状を有しているので、透明導電膜(接続部36,46)と周辺配線(パッド部60b,70b)とを確実に電気的に接続(コンタクト)することができる。 According to the connection structure of the present embodiment, even when the transparent conductive film (connection portions 36 and 46) is formed by transfer, the insulating film 38 (48) has a U-shape that opens one side. The transparent conductive film (connection portions 36, 46) and the peripheral wiring ( pad portions 60b, 70b) can be reliably electrically connected (contacted).
 また、透明導電膜(接続部36,46)は周辺配線(パッド部60b,70b)の露出部をすべて覆うように形成される。その結果、周辺配線の腐食を防止できる。 Further, the transparent conductive film (connection portions 36 and 46) is formed so as to cover all exposed portions of the peripheral wiring ( pad portions 60b and 70b). As a result, corrosion of peripheral wiring can be prevented.
 さらに、絶縁膜38(48)の膜厚t1と絶縁膜38(48)の開口長Lとの比(絶縁膜の開口長L/絶縁膜膜の厚t1)は25以上であることが必要である。この範囲とすることにより、導電性繊維とバインダーとを含む透明導電膜が断線することなしに、周辺配線とを確実に電気的に接続(コンタクト)することができる。 Furthermore, the ratio of the thickness t1 of the insulating film 38 (48) to the opening length L of the insulating film 38 (48) (the opening length L of the insulating film / the thickness t1 of the insulating film) needs to be 25 or more. is there. By setting this range, the peripheral wiring can be reliably electrically connected (contacted) without disconnecting the transparent conductive film containing the conductive fibers and the binder.
 好ましい絶縁膜膜厚t1は0.2μm以上3.0μm以下であり、開口長Lは50μm以上が好ましい。 A preferable insulating film thickness t1 is 0.2 μm or more and 3.0 μm or less, and an opening length L is preferably 50 μm or more.
 また、接続部36(46)の膜厚t2としたとき、接続部36(46)の膜厚t2と絶縁膜38(48)の厚t1との比(絶縁膜の膜厚t1/接続部の膜厚t2)は5以上20以下であることが好ましい。この範囲とすることにより、接続部以外の絶縁性が良好でかつ、導電性繊維とバインダーとを含む透明導電膜が断線することなしに、周辺配線とを確実に電気的に接続(コンタクト)することができる。 Further, when the thickness t2 of the connecting portion 36 (46) is set, the ratio of the thickness t2 of the connecting portion 36 (46) and the thickness t1 of the insulating film 38 (48) (thickness t1 / insulating thickness of the connecting portion). The film thickness t2) is preferably 5 or more and 20 or less. By setting it within this range, insulation other than the connection portion is good, and the peripheral wiring is reliably electrically connected (contacted) without disconnecting the transparent conductive film containing the conductive fiber and the binder. be able to.
 <透明導電膜>
 透明導電膜は、少なくともバインダーと導電性繊維を含有している。バインダーは特に限定はないが、感光性化合物、更に必要に応じてその他の成分を含有してなることが好ましい。
<Transparent conductive film>
The transparent conductive film contains at least a binder and conductive fibers. The binder is not particularly limited, but preferably contains a photosensitive compound and, if necessary, other components.
 〔導電性繊維〕
 前記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができる。金属及びカーボンの少なくともいずれかであることが好ましく、これらの中でも、前記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、及びカーボンナノチューブの少なくともいずれかであることが好ましい。
[Conductive fiber]
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. It is preferable that it is at least any one of a metal and carbon, and among these, it is preferable that the said conductive fiber is at least any one of a metal nanowire, a metal nanotube, and a carbon nanotube.
 <<金属ナノワイヤー>>
 -材料-
 前記金属ナノワイヤーの材料としては、特に制限はなく、目的に応じて適宜選択することができる。
<< Metal nanowires >>
-material-
There is no restriction | limiting in particular as a material of the said metal nanowire, According to the objective, it can select suitably.
 -金属-
 前記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマス、アンチモン、鉛、又はこれらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀、及び銀との合金が好ましい。
-metal-
Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, antimony, and lead. Or alloys thereof. Among these, silver and an alloy with silver are preferable in terms of excellent conductivity.
 前記銀との合金で使用する金属としては、金、白金、オスミウム、パラジウム、イリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the metal used in the alloy with silver include gold, platinum, osmium, palladium, iridium and the like. These may be used alone or in combination of two or more.
 -形状-
 前記金属ナノワイヤーの形状としては、特に制限はない。目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができる。高い透明性が必要とされる用途では、円柱状や断面の多角形の角が丸まっている断面形状であることが好ましい。
-shape-
There is no restriction | limiting in particular as a shape of the said metal nanowire. It can be appropriately selected depending on the purpose, and can take any shape such as a columnar shape, a rectangular parallelepiped shape, or a columnar shape with a polygonal cross section. In applications where high transparency is required, a cylindrical shape or a cross-sectional shape with rounded polygonal corners is preferable.
 前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。 The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
 -平均短軸長さ及び平均長軸長さ-
 前記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、1nm~50nmが好ましく、10nm~40nmがより好ましく、15nm~35nmが更に好ましい。
-Average minor axis length and average major axis length-
The average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 1 nm to 50 nm, more preferably 10 nm to 40 nm, and even more preferably 15 nm to 35 nm. .
 前記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、50nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。 When the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the average minor axis length is more than 50 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
 前記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、前記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。 The average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
 前記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~50μmであることが好ましく、5μm~45μmがより好ましく、10μm~40μmが更に好ましい。 The average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 μm to 50 μm, more preferably 5 μm to 45 μm, and even more preferably 10 μm to 40 μm.
 前記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、50μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。 If the average major axis length is less than 1 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If the average major axis length exceeds 50 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
 前記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、及び曲率から算出される値を長軸長さとした。 The average major axis length of the metal nanowire is, for example, observed with 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average major axis length was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
 -製造方法-
 前記金属ナノワイヤーの製造方法としては、特に制限はなく、いかなる方法で製造してもよいが、以下のようにハロゲン化合物と分散添加剤とを溶解した溶媒中で加熱しながら金属イオンを還元することによって製造することが好ましい。
-Production method-
There is no restriction | limiting in particular as a manufacturing method of the said metal nanowire, Although it may manufacture by what kind of method, a metal ion is reduce | restored, heating in the solvent which melt | dissolved the halogen compound and the dispersion additive as follows. It is preferable to manufacture by.
 また、金属ナノワイヤーの製造方法としては、特開2009-215594号公報、特開2009-242880号公報、特開2009-299162号公報、特開2010-84173号公報、特開2010-86714号公報などに記載の方法を用いることができる。 In addition, as a method for producing metal nanowires, JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-86714A are disclosed. Etc. can be used.
 <<金属ナノチューブ>>
 -材料-
 前記金属ナノチューブの材料としては、特に制限はなく、いかなる金属であってもよく、例えば、前記した金属ナノワイヤーの材料などを使用することができる。
<< Metal Nanotubes >>
-material-
There is no restriction | limiting in particular as a material of the said metal nanotube, What kind of metal may be sufficient, For example, the material of the above-mentioned metal nanowire etc. can be used.
 -形状-
 前記金属ナノチューブの形状としては、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層が好ましい。
-shape-
The shape of the metal nanotube may be a single layer or a multilayer, but a single layer is preferable from the viewpoint of excellent conductivity and thermal conductivity.
 -平均短軸長さ、平均長軸長さ、厚み-
 前記金属ナノチューブの厚み(外径と内径との差)としては、3nm~80nmが好ましく、3nm~30nmがより好ましい。
-Average minor axis length, average major axis length, thickness-
The thickness of the metal nanotube (difference between the outer diameter and the inner diameter) is preferably 3 nm to 80 nm, and more preferably 3 nm to 30 nm.
 前記厚みが、3nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、80nmを超えると、金属ナノチューブ起因の散乱が生じることがある。 When the thickness is less than 3 nm, the oxidation resistance is deteriorated and the durability may be deteriorated. When the thickness is more than 80 nm, scattering due to the metal nanotube may occur.
 前記金属ナノチューブの平均長軸長さは、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。 The average major axis length of the metal nanotubes is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, still more preferably 5 μm to 30 μm.
 <<カーボンナノチューブ>>
 前記カーボンナノチューブ(CNT)は、グラファイト状炭素原子面(グラフェンシート)が、単層あるいは多層の同軸管状になった物質である。前記単層のカーボンナノチューブはシングルウォールナノチューブ(SWNT)、前記多層のカーボンナノチューブはマルチウォールナノチューブ(MWNT)と呼ばれ、特に、2層のカーボンナノチューブはダブルウォールナノチューブ(DWNT)とも呼ばれる。本発明で用いられる導電性繊維において、前記カーボンナノチューブは、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層が好ましい。
<< Carbon nanotube >>
The carbon nanotube (CNT) is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube. The single-walled carbon nanotubes are called single-walled nanotubes (SWNT), the multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT), and the double-walled carbon nanotubes are also called double-walled nanotubes (DWNT). In the conductive fiber used in the present invention, the carbon nanotube may be a single wall or a multilayer, but a single wall is preferable from the viewpoint of excellent conductivity and thermal conductivity.
 -アスペクト比-
 前記導電性繊維のアスペクト比としては、10以上であることが好ましい。前記アスペクト比とは、一般的には繊維状の物質の長辺と短辺との比(平均長軸長さ/平均短軸長さの比)を意味する。
-aspect ratio-
The aspect ratio of the conductive fiber is preferably 10 or more. The aspect ratio generally means the ratio between the long side and the short side of a fibrous material (ratio of average major axis length / average minor axis length).
 前記アスペクト比の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子顕微鏡等により測定する方法などが挙げられる。 The method for measuring the aspect ratio is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for measuring with an electron microscope.
 前記導電性繊維のアスペクト比を電子顕微鏡で測定する場合、前記導電性繊維のアスペクト比が10以上であるか否かは、電子顕微鏡の1視野で確認できればよい。また、前記導電性繊維の長軸長さと短軸長さとを各々別に測定することによって、前記導電性繊維全体のアスペクト比を見積もることができる。 When measuring the aspect ratio of the conductive fiber with an electron microscope, it is only necessary to confirm whether the aspect ratio of the conductive fiber is 10 or more with one field of view of the electron microscope. In addition, the aspect ratio of the entire conductive fiber can be estimated by measuring the major axis length and the minor axis length of the conductive fiber separately.
 なお、前記導電性繊維がチューブ状の場合には、前記アスペクト比を算出するための直径としては、該チューブの外径を用いる。 In the case where the conductive fiber is in a tube shape, the outer diameter of the tube is used as the diameter for calculating the aspect ratio.
 前記導電性繊維のアスペクト比としては、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、50~1,000,000が好ましく、100~1,000,000がより好ましい。 The aspect ratio of the conductive fiber is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, preferably 100 to 1,000,000. More preferred.
 前記アスペクト比が、10未満であると、前記導電性繊維によるネットワーク形成がなされず導電性が十分取れないことがあり、1,000,000を超えると、導電性繊維の形成時やその後の取り扱いにおいて、成膜前に導電性繊維が絡まり凝集するため、安定な液が得られないことがある。 When the aspect ratio is less than 10, network formation by the conductive fibers may not be performed and sufficient conductivity may not be obtained. When the aspect ratio exceeds 1,000,000, the conductive fibers may be formed or handled thereafter. In this case, since the conductive fibers are entangled and aggregate before film formation, a stable liquid may not be obtained.
 -アスペクト比が10以上の導電性繊維の比率-
 前記アスペクト比が10以上の導電性繊維の比率としては、全導電性組成物中に体積比で、50%以上が好ましく、60%以上がより好ましく、75%以上が特に好ましい。これらの導電性繊維の割合を、以下、「導電性繊維の比率」と呼ぶことがある。
-Ratio of conductive fibers with an aspect ratio of 10 or more-
The ratio of the conductive fibers having an aspect ratio of 10 or more is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more in volume ratio in the total conductive composition. Hereinafter, the ratio of these conductive fibers may be referred to as “the ratio of conductive fibers”.
 前記導電性繊維の比率が、50%未満であると、導電性に寄与する導電性物質が減少し導電性が低下してしまうことがあり、同時に密なネットワークを形成できないために電圧集中が生じ、耐久性が低下してしまうことがある。また、導電性繊維以外の形状の粒子は、導電性に大きく寄与しない上に吸収を持つため好ましくない。特に金属の場合で、球形などのプラズモン吸収が強い場合には透明度が悪化してしまうことがある。 If the ratio of the conductive fibers is less than 50%, the conductive material contributing to the conductivity may decrease and the conductivity may decrease. At the same time, a voltage concentration may occur because a dense network cannot be formed. , Durability may be reduced. In addition, particles having a shape other than the conductive fiber are not preferable because they do not greatly contribute to conductivity and have absorption. In particular, in the case of metal, transparency may be deteriorated when plasmon absorption such as a spherical shape is strong.
 ここで、前記導電性繊維の比率は、例えば、導電性繊維が銀ナノワイヤーである場合には、銀ナノワイヤー水分散液をろ過して、銀ナノワイヤーと、それ以外の粒子とを分離し、ICP発光分析装置を用いてろ紙に残っている銀の量と、ろ紙を透過した銀の量とを各々測定することで、導電性繊維の比率を求めることができる。ろ紙に残っている導電性繊維をTEMで観察し、300個の導電性繊維の短軸長さを観察し、その分布を調べることにより、短軸長さが200nm以下であり、かつ長軸長さが1μm以上である導電性繊維であることを確認する。なお、ろ紙は、TEM像で短軸長さが200nm以下であり、かつ長軸長さが1μm以上である導電性繊維以外の粒子の最長軸を計測し、その最長軸の2倍以上であり、かつ導電性繊維の長軸の最短長以下の長さのものを用いることが好ましい。 Here, the ratio of the conductive fibers is, for example, when the conductive fibers are silver nanowires, the silver nanowire aqueous dispersion is filtered to separate the silver nanowires from the other particles. The ratio of the conductive fibers can be determined by measuring the amount of silver remaining on the filter paper and the amount of silver that has passed through the filter paper using an ICP emission analyzer. By observing the conductive fibers remaining on the filter paper with a TEM, observing the short axis lengths of 300 conductive fibers and examining their distribution, the short axis length is 200 nm or less and the long axis length is It confirms that it is an electroconductive fiber whose length is 1 micrometer or more. Note that the filter paper has a short axis length of 200 nm or less in the TEM image and the longest axis of particles other than conductive fibers having a long axis length of 1 μm or more is measured, and is at least twice the longest axis. And it is preferable to use the thing of the length below the shortest length of the long axis of an electroconductive fiber.
 ここで、前記導電性繊維の平均短軸長さ及び平均長軸長さは、例えば、透過型電子顕微鏡(TEM)や光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができ、本発明においては、導電性繊維の平均短軸長さ及び平均長軸長さは、透過型電子顕微鏡(TEM)により300個の導電性繊維を観察し、その平均値から求めたものである。 Here, the average minor axis length and the average major axis length of the conductive fiber can be obtained by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) or an optical microscope. In the present invention, the average minor axis length and the average major axis length of the conductive fibers are obtained by observing 300 conductive fibers with a transmission electron microscope (TEM) and obtaining the average value. is there.
 以下には、導電性繊維とバインダー(感光性樹脂)を一層に含有した導電層について記載したが、感光性樹脂を含有する感光層(パターニング材料)は導電性繊維を含有する導電層と必ずしも一体化していなくてもよく、導電層と感光層(パターニング層)が積層されていたり、導電層を被転写体に転写した後に感光層(パターニング層)を積層転写したり、レジスト材料を印刷してパターニング用マスクを形成してもよい。 The conductive layer containing conductive fibers and a binder (photosensitive resin) in one layer is described below, but the photosensitive layer (patterning material) containing the photosensitive resin is not necessarily integrated with the conductive layer containing conductive fibers. The conductive layer and the photosensitive layer (patterning layer) may be laminated, or the photosensitive layer (patterning layer) may be laminated and transferred after the conductive layer is transferred to the transfer target, or the resist material may be printed. A patterning mask may be formed.
 <<バインダー>>
 前記バインダーとしては、有機高分子重合体であって、分子(好ましくは、アクリル系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。
<< Binder >>
The binder is an organic high molecular polymer, and at least one group (for example, carboxyl group, phosphate group) that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer as a main chain). , Sulfonic acid groups, etc.) can be selected appropriately from alkali-soluble resins.
 これらの中でも、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものが好ましく、また、酸解離性基を有し、酸の作用により酸解離性基が解離した時にアルカリ可溶となるものが特に好ましい。 Among these, those that are soluble in an organic solvent and that can be developed with a weak alkaline aqueous solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid. Particularly preferred.
 ここで、前記酸解離性基とは、酸の存在下で解離することが可能な官能基を表す。 Here, the acid dissociable group represents a functional group capable of dissociating in the presence of an acid.
 前記バインダーの製造には、例えば公知のラジカル重合法による方法を適用することができる。前記ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることができる。 For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
 前記有機高分子重合体としては、側鎖にカルボン酸を有するポリマー(酸性基を有する感光性樹脂)が好ましい。 The organic polymer is preferably a polymer having a carboxylic acid in the side chain (photosensitive resin having an acidic group).
 前記側鎖にカルボン酸を有するポリマーとしては、例えば特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等であり、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。 Examples of the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester A maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, a polymer having a hydroxyl group with an acid anhydride added, and a polymer having a (meth) acryloyl group in the side chain Polymers are also preferred.
 これらの中でも、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が特に好ましい。 Among these, benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
 更に、側鎖に(メタ)アクリロイル基を有する高分子重合体や(メタ)アクリル酸/グリシジル(メタ)アクリレート/他のモノマーからなる多元共重合体も有用なものとして挙げられる。該ポリマーは任意の量で混合して用いることができる。 Furthermore, a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful. The polymer can be used by mixing in an arbitrary amount.
 前記以外にも、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、などが挙げられる。 In addition to the above, 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer , Etc.
 前記アルカリ可溶性樹脂における具体的な構成単位としては、(メタ)アクリル酸と、該(メタ)アクリル酸と共重合可能な他の単量体とが好適である。 As the specific structural unit in the alkali-soluble resin, (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
 前記(メタ)アクリル酸と共重合可能な他の単量体としては、例えばアルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。これらは、アルキル基及びアリール基の水素原子は、置換基で置換されていてもよい。 Examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. In these, the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
 前記アルキル(メタ)アクリレート又はアリール(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the alkyl (meth) acrylate or aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth). Acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meta ) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and the like. These may be used individually by 1 type and may use 2 or more types together.
 前記ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、CH=CR、CH=C(R)(COOR)〔ただし、Rは水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数6~10の芳香族炭化水素環を表し、Rは炭素数1~8のアルキル基又は炭素数6~12のアラルキル基を表す。〕、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the vinyl compound include styrene, α-methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, CH 2 ═CR. 1 R 2 , CH 2 ═C (R 1 ) (COOR 3 ) [wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 2 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms. R 3 represents an alkyl group having 1 to 8 carbon atoms or an aralkyl group having 6 to 12 carbon atoms. ] And the like. These may be used individually by 1 type and may use 2 or more types together.
 前記バインダーの重量平均分子量は、アルカリ溶解速度、膜物性等の点から、1,000~500,000が好ましく、3,000~300,000がより好ましく、5,000~200,000が更に好ましい。 The weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
 ここで、前記重量平均分子量は、ゲルパーミエイションクロマトグラフィ法により測定し、標準ポリスチレン検量線を用いて求めることができる。 Here, the weight average molecular weight is measured by gel permeation chromatography and can be determined using a standard polystyrene calibration curve.
 前記バインダーの含有量は、前記導電層全体に対し40質量%~95質量%であることが好ましく、50質量%~90質量%がより好ましく、70質量%~90質量%が更に好ましい。前記含有量の範囲にあると、現像性と金属ナノワイヤーの導電性の両立が図れる。 The content of the binder is preferably 40% by mass to 95% by mass with respect to the entire conductive layer, more preferably 50% by mass to 90% by mass, and still more preferably 70% by mass to 90% by mass. When the content is in the range, both developability and conductivity of the metal nanowire can be achieved.
 -感光性化合物-
 前記感光性化合物とは、露光により画像を形成する機能を導電層に付与するか、又はそのきっかけを与える化合物を意味する。具体的には、(1)露光による酸を発生する化合物(光酸発生剤)、(2)感光性のキノンジアジド化合物、(3)光ラジカル発生剤等を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、感度調整のために、増感剤などを併用して用いることもできる。
-Photosensitive compounds-
The said photosensitive compound means the compound which provides the function which forms an image by exposure, or gives the trigger to it. Specific examples include (1) a compound that generates acid upon exposure (photoacid generator), (2) a photosensitive quinonediazide compound, and (3) a photoradical generator. These may be used individually by 1 type and may use 2 or more types together. Moreover, a sensitizer etc. can also be used together for sensitivity adjustment.
 --(1)光酸発生剤--
 前記(1)光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸を発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
-(1) Photoacid generator--
(1) As the photoacid generator, a photoinitiator for photocationic polymerization, a photoinitiator for radical photopolymerization, a photodecolorant for dyes, a photochromic agent, an actinic ray used for a micro resist, etc. Alternatively, known compounds that generate an acid upon irradiation with radiation and a mixture thereof can be appropriately selected and used.
 前記(1)光酸発生剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートなどが挙げられる。これらの中でも、スルホン酸を発生する化合物であるイミドスルホネート、オキシムスルホネート、o-ニトロベンジルスルホネートが特に好ましい。 The (1) photoacid generator is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, Examples include disulfone and o-nitrobenzyl sulfonate. Among these, imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate, which are compounds that generate sulfonic acid, are particularly preferable.
 また、活性光線又は放射線の照射により酸を発生する基、あるいは化合物を樹脂の主鎖又は側鎖に導入した化合物、例えば、米国特許第3,849,137号明細書、独国特許第3914407号明細書、特開昭63-26653号、特開昭55-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号の各公報等に記載の化合物を用いることができる。 Further, a group capable of generating an acid upon irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin, such as US Pat. No. 3,849,137, German Patent No. 3914407. Description, JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 The compounds described in JP-A-63-146029, etc. can be used.
 更に、米国特許第3,779,778号、欧州特許第126,712号等の各明細書に記載の光により酸を発生する化合物も使用することができる。 Furthermore, compounds that generate an acid by light described in each specification such as US Pat. No. 3,779,778 and European Patent 126,712 can also be used.
 --(2)キノンジアジド化合物--
 前記(2)キノンジアジド化合物としては、例えば、1,2-キノンジアジドスルホニルクロリド類、ヒドロキシ化合物、アミノ化合物などを脱塩酸剤の存在下で縮合反応させることで得られる。
-(2) Quinonediazide compound--
The (2) quinonediazide compound can be obtained, for example, by subjecting 1,2-quinonediazidesulfonyl chlorides, hydroxy compounds, amino compounds and the like to a condensation reaction in the presence of a dehydrochlorinating agent.
 前記(1)光酸発生剤、及び前記(2)キノンジアジド化合物の配合量は、露光部と未露光部の溶解速度差と、感度の許容幅の点から、前記バインダーの総量100質量部に対して、1質量部~100質量部であることが好ましく、3質量部~80質量部がより好ましい。 The blending amount of the (1) photoacid generator and the (2) quinonediazide compound is based on the difference in dissolution rate between the exposed part and the unexposed part, and the allowable range of sensitivity, with respect to 100 parts by weight of the total amount of the binder. The amount is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight.
 なお、前記(1)光酸発生剤と、前記(2)キノンジアジド化合物とを併用してもよい。 The (1) photoacid generator and the (2) quinonediazide compound may be used in combination.
 本発明においては、前記(1)光酸発生剤の中でもスルホン酸を発生する化合物が好ましく、下記のようなオキシムスルホネート化合物が高感度である観点から特に好ましい。 In the present invention, among the above (1) photoacid generators, compounds that generate sulfonic acid are preferable, and the following oxime sulfonate compounds are particularly preferable from the viewpoint of high sensitivity.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記(2)キノンジアジド化合物として、1,2-ナフトキノンジアジド基を有する化合物を用いると高感度で現像性が良好である。 When a compound having a 1,2-naphthoquinonediazide group is used as the (2) quinonediazide compound, high sensitivity and good developability are obtained.
 前記(2)キノンジアジド化合物の中で下記の化合物でDが独立して水素原子又は1,2-ナフトキノンジアジド基であるものが高感度である観点から好ましい。 Among the above (2) quinonediazide compounds, the following compounds in which D is independently a hydrogen atom or a 1,2-naphthoquinonediazide group are preferred from the viewpoint of high sensitivity.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 --(3)光ラジカル発生剤--
 前記光ラジカル発生剤は、光を直接吸収し、又は光増感されて分解反応若しくは水素引き抜き反応を起こし、重合活性ラジカルを発生する機能を有する。前記光ラジカル発生剤は波長300nm~500nmの領域に吸収を有するものであることが好ましい。
--- (3) Photoradical generator--
The photoradical generator has a function of directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction to generate a polymerization active radical. The photo radical generator is preferably one having absorption in a wavelength region of 300 nm to 500 nm.
 前記光ラジカル発生剤は、1種単独で用いてもよく、2種以上を併用してもよい。前記光ラジカル発生剤の含有量は、透明導電膜用の塗布液全固形量に対して、0.1質量%~50質量%であることが好ましく、0.5質量%~30質量%がより好ましく、1質量%~20質量%が更に好ましい。前記数値範囲において、良好な感度とパターン形成性が得られる。 The photo radical generator may be used alone or in combination of two or more. The content of the photo radical generator is preferably 0.1% by mass to 50% by mass and more preferably 0.5% by mass to 30% by mass with respect to the total solid content of the coating liquid for the transparent conductive film. Preferably, 1% by mass to 20% by mass is more preferable. In the numerical range, good sensitivity and pattern formability can be obtained.
 前記光ラジカル発生剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば特開2008-268884号公報に記載の化合物群が挙げられる。これらの中でも、トリアジン系化合物、アセトフェノン系化合物、アシルホスフィン(オキシド)系化合物、オキシム系化合物、イミダゾール系化合物、ベンゾフェノン系化合物が露光感度の観点から特に好ましい。 The photo radical generator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a group of compounds described in JP-A-2008-268884. Among these, triazine compounds, acetophenone compounds, acylphosphine (oxide) compounds, oxime compounds, imidazole compounds, and benzophenone compounds are particularly preferable from the viewpoint of exposure sensitivity.
 前記光ラジカル発生剤としては、露光感度と透明性の観点から、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、N,N-ジエチルアミノベンゾフェノン、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]が好適である。 As the photo radical generator, from the viewpoint of exposure sensitivity and transparency, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1 -Butanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, , 2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, N, N-diethylaminobenzophenone, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)] is preferred.
 透明導電膜用の塗布液は、露光感度向上のために、光ラジカル発生剤と連鎖移動剤を併用してもよい。 The coating liquid for the transparent conductive film may be used in combination with a photoradical generator and a chain transfer agent in order to improve exposure sensitivity.
 前記連鎖移動剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステルなどのN,N-ジアルキルアミノ安息香酸アルキルエステル、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、N-フェニルメルカプトベンゾイミダゾール、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなどの複素環を有するメルカプト化合物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタンなどの脂肪族多官能メルカプト化合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the chain transfer agent include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzoimidazole, Heterocycles such as N-phenylmercaptobenzimidazole, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione Mercapto compounds having an aliphatic polyfunctional mercapto compound such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together.
 前記連鎖移動剤の含有量は、前記透明導電膜用の塗布液の全固形分に対し、0.01質量%~15質量%が好ましく、0.1質量%~10質量%がより好ましく、0.5質量%~5質量%が更に好ましい。 The content of the chain transfer agent is preferably 0.01% by mass to 15% by mass, more preferably 0.1% by mass to 10% by mass, based on the total solid content of the coating liquid for the transparent conductive film. More preferably, the content is 5 to 5% by mass.
 -その他の成分-
 前記その他の成分としては、例えば架橋剤、分散剤、溶媒、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種の添加剤などが挙げられる。
-Other ingredients-
Examples of the other components include various additives such as a crosslinking agent, a dispersing agent, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity modifier, and an antiseptic.
 --架橋剤--
 前記架橋剤は、フリーラジカル又は酸及び熱により化学結合を形成し、導電層を硬化させる化合物であり、例えばメチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも1つの基で置換されたメラミン系化合物、グアナミン系化合物、グリコールウリル系化合物、ウレア系化合物、フェノール系化合物もしくはフェノールのエーテル化合物、エポキシ系化合物、オキセタン系化合物、チオエポキシ系化合物、イソシアネート系化合物、又はアジド系化合物;メタクリロイル基又はアクリロイル基などを含むエチレン性不飽和基を有する化合物、などが挙げられる。これらの中でも、膜物性、耐熱性、溶剤耐性の点でエポキシ系化合物、オキセタン系化合物、エチレン性不飽和基を有する化合物が特に好ましい。
-Crosslinking agent-
The crosslinking agent is a compound that forms a chemical bond by free radical or acid and heat to cure the conductive layer, and is substituted with at least one group selected from, for example, a methylol group, an alkoxymethyl group, and an acyloxymethyl group. Melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, phenol compounds or phenol ether compounds, epoxy compounds, oxetane compounds, thioepoxy compounds, isocyanate compounds, or azide compounds; methacryloyl groups or And compounds having an ethylenically unsaturated group containing an acryloyl group. Among these, an epoxy compound, an oxetane compound, and a compound having an ethylenically unsaturated group are particularly preferable in terms of film properties, heat resistance, and solvent resistance.
 また、前記オキセタン樹脂は、1種単独で又はエポキシ樹脂と混合して使用することができる。特にエポキシ樹脂との併用で用いた場合には反応性が高く、膜物性を向上させる観点から好ましい。 The oxetane resin can be used alone or in combination with an epoxy resin. In particular, when used in combination with an epoxy resin, the reactivity is high, which is preferable from the viewpoint of improving film properties.
 前記架橋剤の含有量は、前記バインダー総量100質量部に対して、1質量部~250質量部が好ましく、3質量部~200質量部がより好ましい。 The content of the crosslinking agent is preferably 1 part by weight to 250 parts by weight, and more preferably 3 parts by weight to 200 parts by weight with respect to 100 parts by weight of the total amount of the binder.
 --分散剤--
 前記分散剤は、前記導電性繊維の凝集を防ぎ、分散させるために用いる。前記分散剤としては、前記導電性繊維を分散させることができれば特に制限はなく、目的に応じて適宜選択することができ、例えば、市販の低分子顔料分散剤、高分子顔料分散剤を利用でき、特に高分子分散剤で導電性繊維に吸着する性質を持つものが好ましく用いられ、例えばポリビニルピロリドン、BYKシリーズ(ビックケミー社製)、ソルスパースシリーズ(日本ルーブリゾール社製など)、アジスパーシリーズ(味の素株式会社製)などが挙げられる。
-Dispersant-
The dispersant is used for preventing and dispersing the conductive fibers. The dispersant is not particularly limited as long as the conductive fibers can be dispersed, and can be appropriately selected according to the purpose. For example, a commercially available low molecular pigment dispersant or polymer pigment dispersant can be used. In particular, a polymer dispersant having a property of adsorbing to conductive fibers is preferably used. For example, polyvinylpyrrolidone, BYK series (manufactured by Big Chemie), Solsperse series (manufactured by Nippon Lubrizol, etc.), Ajisper series ( Ajinomoto Co., Inc.).
 前記分散剤の含有量としては、前記バインダー100質量部に対し、0.1質量部~50質量部が好ましく、0.5質量部~40質量部がより好ましく、1質量部~30質量部が特に好ましい。 The content of the dispersant is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 40 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the binder. Particularly preferred.
 前記含有量が、0.1質量部未満であると、分散液中で導電性繊維が凝集してしまうことがあり、50質量部を超えると、塗布工程において安定な液膜が形成できず、塗布ムラが発生することがある。 When the content is less than 0.1 parts by mass, the conductive fibers may aggregate in the dispersion, and when it exceeds 50 parts by mass, a stable liquid film cannot be formed in the coating process. Application unevenness may occur.
 --溶媒--
 前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、乳酸エチル、3-メトキシブタノール、水、1-メトキシ-2-プロパノール、イソプロピルアセテート、乳酸メチル、N-メチルピロリドン(NMP)、γ-ブチロラクトン(GBL)、プロピレンカーボネート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--solvent--
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl lactate , 3-methoxybutanol, water, 1-methoxy-2-propanol, isopropyl acetate, methyl lactate, N-methylpyrrolidone (NMP), γ-butyrolactone (GBL), propylene carbonate, and the like. These may be used individually by 1 type and may use 2 or more types together.
 --金属腐食防止剤--
 前記金属腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばチオール類、アゾール類などが好適である。
--- Metal corrosion inhibitor ---
There is no restriction | limiting in particular as said metal corrosion inhibitor, Although it can select suitably according to the objective, For example, thiols, azoles, etc. are suitable.
 前記金属腐食防止剤を含有することで、一段と優れた防錆効果を発揮することができる。 By containing the metal corrosion inhibitor, a further excellent rust prevention effect can be exhibited.
 前記金属腐食防止剤は透明導電膜用の塗布液に溶解した中に、適した溶媒で溶解した状態、又は粉末で添加するか、後述する透明導電膜用の塗布液による導電膜を作製後に、これを金属腐食防止剤浴に浸すことで付与することができる。 While the metal corrosion inhibitor is dissolved in the coating liquid for the transparent conductive film, it is added in a state dissolved in a suitable solvent, or powder, or after producing a conductive film with the coating liquid for the transparent conductive film described later, This can be applied by immersing in a metal corrosion inhibitor bath.
 次に、図4~図6Cを参照しながら転写方法を利用したタッチパネルの製造方法について説明する。 Next, a method for manufacturing a touch panel using a transfer method will be described with reference to FIGS. 4 to 6C.
 (導電層転写材料)
 タッチパネルの製造方法において導電層転写材料が使用される。転写基材と、該転写基材上に、被転写体への転写均一性を向上させるためのクッション層と、バインダーと導電性繊維を含有する導電層とをこの順に有してなる。前記導電層転写材料は、前記導電層の上に、密着層を有していることが好ましく、必要に応じて防汚層、UVカット層、反射防止層等のその他の層を有していてもよい。また、導電層等の機能層の傷付き防止や性能劣化防止のために、易接着性の保護フィルムを積層していてもよい。
(Conductive layer transfer material)
A conductive layer transfer material is used in the touch panel manufacturing method. A transfer base, a cushion layer for improving the transfer uniformity to the transfer target, and a conductive layer containing a binder and conductive fibers are provided in this order on the transfer base. The conductive layer transfer material preferably has an adhesion layer on the conductive layer, and has other layers such as an antifouling layer, a UV cut layer, and an antireflection layer as necessary. Also good. Moreover, in order to prevent a functional layer such as a conductive layer from being damaged or to prevent performance deterioration, an easily adhesive protective film may be laminated.
 前記導電層転写材料は、上記構成を備えていればその形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、膜状、シート状などが挙げられ、前記構造としては、単層構造、積層構造などが挙げられ、前記大きさとしては、用途等に応じて適宜選択することができる。 The conductive layer transfer material is not particularly limited in its shape, structure, size and the like as long as it has the above-described configuration, and can be appropriately selected according to the purpose. Examples of the structure include a single-layer structure and a laminated structure, and the size can be appropriately selected depending on the application and the like.
 前記導電層転写材料は、可撓性を有し、透明であることが好ましく、前記透明には、無色透明のほか、有色透明、半透明、有色半透明などが含まれる。 The conductive layer transfer material is flexible and preferably transparent, and the transparent includes colorless and transparent, colored transparent, translucent, colored translucent and the like.
 ここで、図4は、導電層転写材料の一例を示す概略図である。この図4の導電層転写材料6は、転写基材1と、該基材の一の面にクッション層2及び導電層3をこの順に有している。 Here, FIG. 4 is a schematic view showing an example of the conductive layer transfer material. The conductive layer transfer material 6 in FIG. 4 has a transfer base 1 and a cushion layer 2 and a conductive layer 3 in this order on one surface of the base.
 また、図5は、導電層転写材料の他の一例を示す概略図である。この図5の導電層転写材料7は、図4の導電層転写材料6において、導電層3の上に密着層4を設けたものである。 FIG. 5 is a schematic view showing another example of the conductive layer transfer material. The conductive layer transfer material 7 in FIG. 5 is obtained by providing the adhesion layer 4 on the conductive layer 3 in the conductive layer transfer material 6 in FIG. 4.
 なお、図示を省略しているが、前記導電層転写材料における導電層はパターニングされていてもよく、パターニングされてなくてもよい。前記パターニングとしては、既存のITO透明導電膜で施されている電極形状が挙げられる。具体的には、WO2005/114369号パンフレット、WO2004/061808号パンフレット、特開2010-33478号公報、特開2010-44453号公報に開示されているストライプ形状のパターン、ダイヤモンドパターンと呼ばれているものなどが挙げられる。 In addition, although illustration is abbreviate | omitted, the conductive layer in the said conductive layer transfer material may be patterned, and does not need to be patterned. Examples of the patterning include electrode shapes applied with an existing ITO transparent conductive film. Specifically, stripe patterns and diamond patterns disclosed in WO 2005/114369 pamphlet, WO 2004/061808 pamphlet, JP 2010-33478 A, and JP 2010-44453 A are referred to. Etc.
 前記導電層と前記クッション層の合計平均厚みAと、前記転写基材の平均厚みBとが、次式、A/B=0.01~0.7を満たし、A/B=0.02~0.6を満たしていることが好ましい。前記A/Bが、0.01未満であると、被転写体への転写均一性が低くなることがあり、0.7を超えると、カールバランスが崩れてしまうことがある。 The total average thickness A of the conductive layer and the cushion layer and the average thickness B of the transfer substrate satisfy the following formula: A / B = 0.01 to 0.7, and A / B = 0.02 to It is preferable to satisfy 0.6. If the A / B is less than 0.01, the transfer uniformity to the transfer medium may be lowered, and if it exceeds 0.7, the curl balance may be lost.
 前記転写基材の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、1μm~500μmが好ましく、3μm~400μmがより好ましく、5μm~300μmが更に好ましい。 The average thickness of the transfer substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 500 μm, more preferably 3 μm to 400 μm, and even more preferably 5 μm to 300 μm.
 前記平均厚みが、1μm未満であると、導電層転写材料のハンドリングが難しくなることがあり、500μmを超えると、転写基材の剛性が高くなり、転写均一性が損なわれることがある。 When the average thickness is less than 1 μm, it may be difficult to handle the conductive layer transfer material, and when it exceeds 500 μm, the rigidity of the transfer substrate may be increased, and transfer uniformity may be impaired.
 前記導電層の平均厚みは、0.01μm~2μmであることが好ましく、0.03μm~1μmであることがより好ましい。前記平均厚みが、0.01μm未満であると、導電性の面内分布が不均一になることがあり、2μmを超えると、透過率が低くなり、透明性が損なわれてしまうことがある。 The average thickness of the conductive layer is preferably 0.01 μm to 2 μm, and more preferably 0.03 μm to 1 μm. If the average thickness is less than 0.01 μm, the in-plane conductivity distribution may be non-uniform, and if it exceeds 2 μm, the transmittance may be lowered and the transparency may be impaired.
 前記クッション層の平均厚みは、1μm~50μmであることが好ましく、1μm~30μmであることがより好ましく、5μm~20μmであることがより好ましい。前記平均厚みが、1μm未満であると、転写均一性が損なわれることがあり、50μmを超えると、転写材料のカールバランスが低くなることがある。 The average thickness of the cushion layer is preferably 1 μm to 50 μm, more preferably 1 μm to 30 μm, and even more preferably 5 μm to 20 μm. When the average thickness is less than 1 μm, transfer uniformity may be impaired, and when it exceeds 50 μm, the curl balance of the transfer material may be lowered.
 ここで、前記転写基材の平均厚み、前記導電層の平均厚み、及び前記クッション層の平均厚みは、例えばミクロトーム切削で材料の断面を出した後SEM観察することにより、あるいはエポキシ樹脂で包埋した後ミクロトームで作製した切片をTEM観察することにより測定することができる。これら各層の平均厚みは、10箇所測定の平均値である。 Here, the average thickness of the transfer substrate, the average thickness of the conductive layer, and the average thickness of the cushion layer are embedded by, for example, SEM observation after taking out a cross section of the material by microtome cutting or by embedding with an epoxy resin. Then, it can be measured by TEM observation of a section prepared with a microtome. The average thickness of each of these layers is an average value measured at 10 points.
 <転写基材>
 前記転写基材の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、膜状、シート状などが挙げられる。前記構造としては、単層構造、積層構造などが挙げられる。前記大きさとしては、用途等に応じて適宜選択することができる。
<Transfer substrate>
There is no restriction | limiting in particular about the shape, structure, size, etc. of the said transfer base material, According to the objective, it can select suitably, For example, a film form, a sheet form, etc. are mentioned as said shape. Examples of the structure include a single layer structure and a laminated structure. The size can be appropriately selected according to the application.
 前記転写基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、透明ガラス基板、合成樹脂製シート(フィルム)、金属基板、セラミック板、光電変換素子を有する半導体基板などが挙げられる。前記基板には、所望により、シランカップリング剤等の薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などの前処理を行うことができる。 There is no restriction | limiting in particular as said transfer base material, According to the objective, it can select suitably, For example, a semiconductor substrate which has a transparent glass substrate, a synthetic resin sheet (film), a metal substrate, a ceramic board, a photoelectric conversion element. Etc. If necessary, the substrate can be subjected to pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
 前記透明ガラス基板としては、例えば、白板ガラス、青板ガラス、シリカコート青板ガラスなどが挙げられる。また近年開発された厚みが10μm~数百μmの薄層ガラス基材でもよい。 Examples of the transparent glass substrate include white plate glass, blue plate glass, and silica-coated blue plate glass. Further, a thin glass substrate having a thickness of 10 μm to several hundred μm developed recently may be used.
 前記合成樹脂製シートとしては、例えば、ポリエチレンテレフタレート(PET)シート、ポリカーボネートシート、トリアセチルセルロース(TAC)シート、ポリエーテルスルホンシート、ポリエステルシート、アクリル樹脂シート、塩化ビニル樹脂シート、芳香族ポリアミド樹脂シート、ポリアミドイミドシート、ポリイミドシートなどが挙げられる。 Examples of the synthetic resin sheet include a polyethylene terephthalate (PET) sheet, a polycarbonate sheet, a triacetyl cellulose (TAC) sheet, a polyethersulfone sheet, a polyester sheet, an acrylic resin sheet, a vinyl chloride resin sheet, and an aromatic polyamide resin sheet. , Polyamideimide sheet, polyimide sheet and the like.
 前記金属基板としては、例えば、アルミニウム板、銅板、ニッケル板、ステンレス板などが挙げられる。 Examples of the metal substrate include an aluminum plate, a copper plate, a nickel plate, and a stainless plate.
 前記転写基材の全可視光透過率としては、70%以上が好ましく、85%以上がより好ましく、90%以上が更に好ましい。前記全可視光透過率が、70%未満であると、透過率が低く実用上問題となることがある。 The total visible light transmittance of the transfer substrate is preferably 70% or more, more preferably 85% or more, and still more preferably 90% or more. If the total visible light transmittance is less than 70%, the transmittance may be low and may cause a problem in practical use.
 なお、本発明では、転写基材として本発明の目的を妨げない程度に着色したものを用いることもできる。 In the present invention, a transfer substrate that is colored to the extent that the object of the present invention is not hindered can also be used.
  <クッション層>
 前記クッション層の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、膜状、シート状などが挙げられる。前記構造としては、単層構造、積層構造などが挙げられる。前記大きさとしては、用途等に応じて適宜選択することができる。
<Cushion layer>
There is no restriction | limiting in particular about the shape, structure, size, etc. of the said cushion layer, According to the objective, it can select suitably, For example, a film | membrane form, a sheet form, etc. are mentioned as said shape. Examples of the structure include a single layer structure and a laminated structure. The size can be appropriately selected according to the application.
 前記クッション層は、被転写体との転写性を向上させる役割を果たす層であり、少なくともポリマーを含有し、更に必要に応じてその他の成分を含有してなる。 The cushion layer is a layer that plays a role of improving transferability with the transfer target, and contains at least a polymer, and further contains other components as necessary.
 -ポリマー-
 前記ポリマーとしては、加熱時に軟化する熱可塑性樹脂であれば特に制限はなく、目的に応じて適宜選択することができ、例えばアクリル樹脂、スチレン-アクリル共重合体、ポリビニルアルコール、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-メタクリル酸共重合体、ポリ塩化ビニル、ゼラチン;セルロースナイトレート、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート等のセルロースエステル;塩化ビニリデン、塩化ビニル、スチレン、アクリロニトリル、酢酸ビニル、アルキル(炭素数1~4)アクリレート、ビニルピロリドン等を含むホモポリマー又は共重合体、可溶性ポリエステル、ポリカーボネート、可溶性ポリアミドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-polymer-
The polymer is not particularly limited as long as it is a thermoplastic resin that softens when heated, and can be appropriately selected according to the purpose. For example, acrylic resin, styrene-acrylic copolymer, polyvinyl alcohol, polyethylene, ethylene-acetic acid Vinyl copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, polyvinyl chloride, gelatin; cellulose nitrate, cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate, etc. Cellulose ester: Homopolymer or copolymer containing vinylidene chloride, vinyl chloride, styrene, acrylonitrile, vinyl acetate, alkyl (1 to 4 carbon atoms) acrylate, vinyl pyrrolidone, soluble polyester, polycarbonate Boneto, soluble polyamide. These may be used individually by 1 type and may use 2 or more types together.
 前記クッション層に用いるポリマーは、加熱により軟化する熱可塑性樹脂が好ましい。クッション層のガラス転移温度は40℃から150℃であることが好ましい。40℃より低いと室温で軟らかすぎてハンドリング性に劣ることがあり、150℃より高いと熱ラミネート方式でクッション層が軟化せず導電層の転写性が劣ることがある。また可塑剤等の添加により、ガラス転移温度を調整してもよい。 The polymer used for the cushion layer is preferably a thermoplastic resin that is softened by heating. The glass transition temperature of the cushion layer is preferably 40 ° C to 150 ° C. If it is lower than 40 ° C., it may be too soft at room temperature to be inferior in handling properties, and if it is higher than 150 ° C., the cushion layer may not be softened by the heat laminating method and the transferability of the conductive layer may be inferior. Further, the glass transition temperature may be adjusted by adding a plasticizer or the like.
 前記その他の成分として、特開平5-72724号公報の段落[0007]以降に記載されている有機高分子物質、前記転写基材との接着力を調節するための各種可塑剤、過冷却物質、密着改良剤、界面活性剤、離型剤、熱重合禁止剤、溶剤などが挙げられる。 Examples of the other components include organic polymer materials described in paragraph [0007] and subsequent paragraphs of JP-A-5-72724, various plasticizers for adjusting adhesive force with the transfer substrate, supercooling materials, Examples thereof include adhesion improvers, surfactants, mold release agents, thermal polymerization inhibitors, and solvents.
 前記クッション層は、前記ポリマー、及び必要に応じて前記その他の成分を含有するクッション層用塗布液を転写基材上に塗布し、乾燥させることにより形成することができる。 The cushion layer can be formed by applying a coating solution for the cushion layer containing the polymer and, if necessary, the other components, onto a transfer substrate and drying it.
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィラー、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種添加剤などが挙げられる。 The other components are not particularly limited and may be appropriately selected depending on the intended purpose. For example, fillers, surfactants, antioxidants, sulfurization inhibitors, metal corrosion inhibitors, viscosity modifiers, preservatives And various other additives.
 前記クッション層は、前記ポリマー、及び必要に応じて前記その他の成分を含有するクッション層用塗布液を基材上に塗布し、乾燥させることにより形成することができる。 The cushion layer can be formed by applying a coating solution for the cushion layer containing the polymer and, if necessary, the other components, onto a base material and drying it.
 前記塗布方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えばロールコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。 The coating method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a roll coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a bar coating method, a gravure method Examples thereof include a coating method, a curtain coating method, a spray coating method, and a doctor coating method.
 ここで、図6A~図6Cは、本発明の導電層転写材料6を用いた転写方法の一例を示す図である。 Here, FIGS. 6A to 6C are diagrams showing an example of a transfer method using the conductive layer transfer material 6 of the present invention.
 図6Aに、転写基材1と、該転写基材の一の面にクッション層2及び導電層3をこの順に有している導電層転写材料6を示す。図6Bに示すように、図6Aに示す導電層転写材料6のクッション層2及び導電層3を被転写体としてのガラス基板8(タッチパネルの透明基板に相当)にラミネーターを用いて加圧、加熱して貼り合わせる。続いて、図6Cに示すように、転写基材1を剥離することにより、クッション層2及び導電層3がガラス基板8に転写される。 FIG. 6A shows a transfer substrate 1 and a conductive layer transfer material 6 having a cushion layer 2 and a conductive layer 3 in this order on one surface of the transfer substrate. As shown in FIG. 6B, the cushion layer 2 and the conductive layer 3 of the conductive layer transfer material 6 shown in FIG. 6A are pressed and heated using a laminator on a glass substrate 8 (corresponding to a transparent substrate of a touch panel) as a transfer target. And paste them together. Subsequently, as shown in FIG. 6C, the cushioning layer 2 and the conductive layer 3 are transferred to the glass substrate 8 by peeling the transfer substrate 1.
 転写基材1上の導電層3をガラス基板8上に転写するとき、ガラス基板8が90℃以上120℃以下の温度範囲であることが好ましい。この範囲とすることにより導電層が絶縁化することなく、導電層3をガラス基板8上に転写することができる。基板温度が90℃未満の場合、導電層3はガラス基板8上に転写できず、120℃を超えると導電性繊維が熱により変形を起こし、導電層3が絶縁化する。 When transferring the conductive layer 3 on the transfer substrate 1 onto the glass substrate 8, it is preferable that the glass substrate 8 has a temperature range of 90 ° C. or higher and 120 ° C. or lower. By setting it as this range, the conductive layer 3 can be transferred onto the glass substrate 8 without insulating the conductive layer. When the substrate temperature is lower than 90 ° C., the conductive layer 3 cannot be transferred onto the glass substrate 8, and when it exceeds 120 ° C., the conductive fibers are deformed by heat, and the conductive layer 3 is insulated.
 また、転写基材1上の導電層3をガラス基板8上に転写するとき、転写圧力が0.4MPa以上0.8MPa以下の範囲であることが好ましい。この範囲とすることにより断線なしに導電層3をガラス基板8上に転写することができる。0.4MPa未満の転写圧力だと転写の際の圧力不足により、ガラス基板に導電層が転写されず、また0.8MPaを超えると転写圧力により、導電性繊維が潰されて導電層が断線する。 Further, when the conductive layer 3 on the transfer substrate 1 is transferred onto the glass substrate 8, the transfer pressure is preferably in the range of 0.4 MPa to 0.8 MPa. By setting this range, the conductive layer 3 can be transferred onto the glass substrate 8 without disconnection. If the transfer pressure is less than 0.4 MPa, the conductive layer is not transferred to the glass substrate due to insufficient pressure at the time of transfer. If the transfer pressure exceeds 0.8 MPa, the conductive fiber is crushed and the conductive layer is disconnected due to the transfer pressure.
 次いで、導電層3をガラス基板8上に転写後、導電層3を露光、現像することにより、複数の第1透明導電パターン、及び複数の第2透明導電パターンが形成される。 Next, after transferring the conductive layer 3 onto the glass substrate 8, the conductive layer 3 is exposed and developed to form a plurality of first transparent conductive patterns and a plurality of second transparent conductive patterns.
 上述の工程を経てタッチパネルを製造することができる。 The touch panel can be manufactured through the above steps.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
 (合成例1)
 <バインダー(A-1)の合成>
 共重合体を構成するモノマー成分としてメタクリル酸(MAA)7.79g、ベンジルメタクリレート(BzMA)37.21gを使用し、ラジカル重合開始剤としてアゾビスイソブチロニトリル(AIBN)0.5gを使用し、これらを溶剤プロピレングリコールモノメチルエーテルアセテート(PGMEA)55.00g中において重合反応させることにより、下記式で表されるバインダー(A-1)のPGMEA溶液(固形分濃度:45質量%)を得た。なお、重合温度は、温度60℃乃至100℃に調整した。
(Synthesis Example 1)
<Synthesis of binder (A-1)>
7.79 g of methacrylic acid (MAA) and 37.21 g of benzyl methacrylate (BzMA) are used as monomer components constituting the copolymer, and 0.5 g of azobisisobutyronitrile (AIBN) is used as a radical polymerization initiator. These were polymerized in 55.00 g of a solvent propylene glycol monomethyl ether acetate (PGMEA) to obtain a PGMEA solution (solid content concentration: 45% by mass) of the binder (A-1) represented by the following formula. . The polymerization temperature was adjusted to 60 to 100 ° C.
 バインダー(A-1)の重量平均分子量(Mw)は、ゲルパーミエイションクロマトグラフィ法(GPC)を用いて測定した結果、ポリスチレン換算による重量平均分子量(Mw)が30,000、分子量分布(Mw/Mn)が2.21であった。 The weight average molecular weight (Mw) of the binder (A-1) was measured using gel permeation chromatography (GPC). As a result, the weight average molecular weight (Mw) in terms of polystyrene was 30,000, and the molecular weight distribution (Mw / Mn) was 2.21.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (調製例1)
 -銀ナノワイヤー水分散液の調製-
 予め、下記の添加液A、G、及びHを調製した。
(Preparation Example 1)
-Preparation of silver nanowire aqueous dispersion-
The following additive solutions A, G, and H were prepared in advance.
 〔添加液A〕
 硝酸銀粉末0.51gを純水50mLに溶解した。その後、1Nのアンモニア水を透明になるまで添加した。そして、全量が100mLになるように純水を添加した。
[Additive liquid A]
0.51 g of silver nitrate powder was dissolved in 50 mL of pure water. Then, 1N ammonia water was added until it became transparent. And pure water was added so that the whole quantity might be 100 mL.
 〔添加液G〕
 グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
[Additive liquid G]
An additive solution G was prepared by dissolving 0.5 g of glucose powder in 140 mL of pure water.
 〔添加液H〕
 HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
[Additive liquid H]
An additive solution H was prepared by dissolving 0.5 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 27.5 mL of pure water.
 次に、以下のようにして、銀ナノワイヤー水分散液を調製した。 Next, a silver nanowire aqueous dispersion was prepared as follows.
 純水410mLを三口フラスコ内に入れ、20℃にて攪拌しながら、添加液H 82.5mL、及び添加液G 206mLをロートにて添加した(一段目)。この液に、添加液A 206mLを流量2.0mL/min、攪拌回転数800rpmで添加した(二段目)。その10分間後、添加液Hを82.5mL添加した(三段目)。その後、3℃/分で内温75℃まで昇温した。その後、攪拌回転数を200rpmに落とし、5時間加熱した。 410 mL of pure water was placed in a three-necked flask, and 82.5 mL of additive solution H and 206 mL of additive solution G were added through a funnel while stirring at 20 ° C. (first stage). To this solution, 206 mL of additive solution A was added at a flow rate of 2.0 mL / min and a stirring rotation speed of 800 rpm (second stage). Ten minutes later, 82.5 mL of additive liquid H was added (third stage). Thereafter, the internal temperature was raised to 75 ° C. at 3 ° C./min. Then, the stirring rotation speed was reduced to 200 rpm and heated for 5 hours.
 得られた水分散液を冷却した後、限外濾過モジュールSIP1013(旭化成株式会社製、分画分子量6,000)、マグネットポンプ、及びステンレスカップをシリコーン製チューブで接続し、限外濾過装置とした。 After the obtained aqueous dispersion was cooled, an ultrafiltration module SIP1013 (manufactured by Asahi Kasei Co., Ltd., molecular weight cut off 6,000), a magnet pump, and a stainless steel cup were connected with a silicone tube to form an ultrafiltration device. .
 得られた水分散液(水溶液)をステンレスカップに入れ、ポンプを稼動させて限外濾過を行った。モジュールからの濾液が50mLになった時点で、ステンレスカップに950mLの蒸留水を加え、洗浄を行った。前記の洗浄を電導度が50μS/cm以下になるまで繰り返した後、濃縮を行い、調製例1の銀ナノワイヤー水分散液を得た。 The obtained aqueous dispersion (aqueous solution) was put into a stainless steel cup, and ultrafiltration was performed by operating a pump. When the filtrate from the module reached 50 mL, 950 mL of distilled water was added to the stainless steel cup for washing. The above washing was repeated until the conductivity reached 50 μS / cm or less, followed by concentration to obtain a silver nanowire aqueous dispersion of Preparation Example 1.
 得られた調製例1の銀ナノワイヤー水分散液中の銀ナノワイヤーについて、以下のようにして、平均短軸長さ、平均長軸長さを測定した。結果を表1に示す。 For the silver nanowires in the silver nanowire aqueous dispersion of Preparation Example 1 obtained, the average minor axis length and the average major axis length were measured as follows. The results are shown in Table 1.
 <銀ナノワイヤーの平均短軸長さ(平均直径)及び平均長軸長さ>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の銀ナノワイヤーを観察し、銀ナノワイヤーの平均短軸長さ及び平均長軸長さを求めた。
<Average minor axis length (average diameter) and average major axis length of silver nanowires>
Using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.), 300 silver nanowires were observed, and the average minor axis length and average major axis length of the silver nanowires were determined.
 <銀ナノワイヤーの短軸長さの変動係数>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、銀ナノワイヤーの短軸長さを300個観察し、ろ紙を透過した銀の量を各々測定し、短軸長さが50nm以下であり、かつ長軸長さが5μm以上である銀ナノワイヤーをアスペクト比が10以上の銀ナノワイヤーの比率(%)として求めた。
<Coefficient of variation of minor axis length of silver nanowires>
Using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.), 300 short axis lengths of the silver nanowires were observed, and the amount of silver transmitted through the filter paper was measured. Of silver nanowires having a major axis length of 5 μm or more was determined as a ratio (%) of silver nanowires having an aspect ratio of 10 or more.
 なお、銀ナノワイヤーの比率を求める際の銀ナノワイヤーの分離は、メンブレンフィルター(Millipore社製、FALP 02500、孔径1.0μm)を用いて行った。 The silver nanowires were separated when determining the ratio of silver nanowires using a membrane filter (Millipore, FALP 02500, pore size 1.0 μm).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <試料No.101の導電層転写材料>
 <<クッション層の形成>>
 基材としての平均厚み30μmのポリエチレンテレフタレート(PET)フィルム上に、下記組成のクッション層用塗布液を塗布し、乾燥させて、平均厚み10μmのクッション層を形成した。
<Sample No. 101 conductive layer transfer material>
<< Formation of cushion layer >>
On a polyethylene terephthalate (PET) film having an average thickness of 30 μm as a base material, a cushion layer coating solution having the following composition was applied and dried to form a cushion layer having an average thickness of 10 μm.
 -クッション層用塗布液の組成-
 ・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/30/10/5、重量平均分子量=10万、ガラス転移温度(Tg)=70℃)・・・6.0質量部
 ・スチレン/アクリル酸共重合体(共重合組成比(モル比)=65/35、重量平均分子量=1万、ガラス転移温度(Tg)=100℃)・・・14.0質量部
 ・BPE-500(新中村化学株式会社製)・・・9.0質量部
 ・メガファックF-780-F(大日本インキ化学工業株式会社製)・・・0.5質量部
 ・メタノール・・・10.0質量部
 ・プロピレングリコールモノメチルエーテルアセテート・・・5.0質量部
 ・メチルエチルケトン・・・55.5質量部
 <<導電層の作製>>
 -銀ナノワイヤーのMFG分散液(Ag-1)の調製-
 調製例1の銀ナノワイヤーの水分散液へ、ポリビニルピロリドン(K-30、和光純薬工業株式会社製)と1-メトキシ-2-プロパノール(MFG)を添加し、遠心分離の後、デカンテーションにて上澄みの水を除去し、MFGを添加し、再分散を行い、その操作を3回繰り返し、銀ナノワイヤーのMFG分散液(Ag-1)を得た。最後のMFGの添加量は銀の含有量が、銀1質量%となるように調節した。
-Composition of coating solution for cushion layer-
Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio) = 55/30/10/5, weight average molecular weight = 100,000, glass transition temperature (Tg) = 70 ° C) ... 6.0 parts by mass Styrene / acrylic acid copolymer (copolymerization composition ratio (molar ratio) = 65/35, weight average molecular weight = 10,000, glass transition temperature (Tg) = 100 ° C.) -14.0 parts by mass-BPE-500 (manufactured by Shin-Nakamura Chemical Co., Ltd.) ... 9.0 parts by mass-Mega-Fuck F-780-F (manufactured by Dainippon Ink & Chemicals, Inc.) ... 5 parts by mass-Methanol ... 10.0 parts by mass-Propylene glycol monomethyl ether acetate ... 5.0 parts by mass-Methyl ethyl ketone ... 55.5 parts by mass << Preparation of conductive layer>>
-Preparation of silver nanowire MFG dispersion (Ag-1)-
Polyvinylpyrrolidone (K-30, manufactured by Wako Pure Chemical Industries, Ltd.) and 1-methoxy-2-propanol (MFG) are added to the silver nanowire aqueous dispersion of Preparation Example 1, and after centrifuging, decantation is performed. The supernatant water was removed at, MFG was added, redispersion was performed, and the operation was repeated three times to obtain an MFG dispersion (Ag-1) of silver nanowires. The final MFG addition amount was adjusted so that the silver content was 1% by mass of silver.
 -ネガ型導電層用組成物の調製-
 合成例1のバインダー(A-1)0.241質量部、KAYARAD DPHA(日本化薬株式会社製)0.252質量部、IRGACURE379(チバ・スペシャルティ・ケミカルズ株式会社製)0.0252質量部、架橋剤としてのEHPE-3150(ダイセル化学株式会社製)0.0237質量部、メガファックF781F(DIC株式会社製)0.0003質量部、プロピレングリコールモノメチルエーテルアセテート(PGMEA)0.9611質量部、及び1-メトキシ-2-プロパノール(MFG)44.3質量部、前記銀ナノワイヤーのMFG分散液(Ag-1)を18.0質量部加え、攪拌し、ネガ型導電層用組成物を調製した。
-Preparation of negative conductive layer composition-
0.241 parts by mass of binder (A-1) of Synthesis Example 1, 0.252 parts by mass of KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.), 0.0252 parts by mass of IRGACURE 379 (manufactured by Ciba Specialty Chemicals Co., Ltd.), crosslinking EHPE-3150 (manufactured by Daicel Chemical Co., Ltd.) 0.0237 parts by mass, Megafac F781F (manufactured by DIC Corporation) 0.0003 parts by mass, propylene glycol monomethyl ether acetate (PGMEA) 0.9611 parts by mass, and 1 44.3 parts by mass of -methoxy-2-propanol (MFG) and 18.0 parts by mass of the MFG dispersion of silver nanowire (Ag-1) were added and stirred to prepare a negative conductive layer composition.
 -導電層の形成-
 得られたネガ型導電層用組成物を、前記クッション層を形成したフィルム上に塗布し、乾燥させて、平均厚み0.1μmの導電層を形成した。以上により、試料No.101の導電層転写材料を作製した。
-Formation of conductive layer-
The obtained negative conductive layer composition was applied onto the film on which the cushion layer was formed and dried to form a conductive layer having an average thickness of 0.1 μm. As described above, sample No. 101 conductive layer transfer material was produced.
 <透明導電膜の形成>
 以下の方法にて、透明導電膜の形成を行った。
<Formation of transparent conductive film>
The transparent conductive film was formed by the following method.
 〔被転写体〕
 厚み0.7mmのガラス基板上に、金属層と前記金属層の一部を露出するための開口を有する形状の異なる絶縁膜とを備える複数の被転写体を準備した。
[Transfered material]
A plurality of objects to be transferred including a metal layer and insulating films having different shapes having openings for exposing a part of the metal layer were prepared on a glass substrate having a thickness of 0.7 mm.
 〔転写〕
 被転写体(厚み0.7mmのガラス基板)に、前記導電層転写材料の導電層及びクッション層を転写した。なお、クッション層は、シャワー現像により除去される。
[Transcription]
The conductive layer and cushion layer of the conductive layer transfer material were transferred to a transfer target (a glass substrate having a thickness of 0.7 mm). The cushion layer is removed by shower development.
 〔露光〕
 マスク上から、高圧水銀灯i線(365nm)を40mJ/cm(照度20mW/cm)露光を行った。なお、本導電膜はネガ型導電層組成物より構成されている為に、i線が照射された部分に透明導電膜は形成される。
〔exposure〕
From the mask, 40 mJ / cm 2 (illuminance 20 mW / cm 2 ) exposure was performed with a high-pressure mercury lamp i-line (365 nm). In addition, since this electrically conductive film is comprised from the negative type conductive layer composition, a transparent conductive film is formed in the part irradiated with i line | wire.
 〔現像〕
 露光後の基板を、純水5,000gに炭酸水素ナトリウム5gと炭酸ナトリウム2.5gを溶解した現像液でシャワー現像30秒間(シャワー圧0.04MPa)を行った。次に、純水のシャワーでリンスした。
〔developing〕
The exposed substrate was subjected to shower development for 30 seconds (shower pressure 0.04 MPa) with a developer in which 5 g of sodium bicarbonate and 2.5 g of sodium carbonate were dissolved in 5,000 g of pure water. Next, it rinsed with the shower of pure water.
 〔接続構造〕
 図7A~7Cは、それぞれ、金属層100(周辺配線に相当)、絶縁膜102、銀ナノワイヤーを含む透明導電膜104(透明導電パターンに相当)で構成される接続構造1~3を示す。接続構造1~3に関して、絶縁膜102は一方向を開放するU字形状を有しており、かつ透明導電膜104は、金属層100の露出部をすべて覆う。図7Aに示す接続構造1では、絶縁膜102の開放方向が透明導電膜104の延長する方向と同じ方向である。図7Bに示す接続構造2では、絶縁膜102の開放方向は透明導電膜104の延長する方向と反対の方向である。図7Cに示す接続構造3では、絶縁膜102の開放方向は透明導電膜104の延長する方向と直交する方向である。
[Connection structure]
7A to 7C show connection structures 1 to 3 each including a metal layer 100 (corresponding to peripheral wiring), an insulating film 102, and a transparent conductive film 104 (corresponding to a transparent conductive pattern) including silver nanowires. Regarding the connection structures 1 to 3, the insulating film 102 has a U-shape that opens in one direction, and the transparent conductive film 104 covers all exposed portions of the metal layer 100. In the connection structure 1 shown in FIG. 7A, the opening direction of the insulating film 102 is the same direction as the direction in which the transparent conductive film 104 extends. In the connection structure 2 shown in FIG. 7B, the opening direction of the insulating film 102 is opposite to the direction in which the transparent conductive film 104 extends. In the connection structure 3 shown in FIG. 7C, the opening direction of the insulating film 102 is a direction orthogonal to the extending direction of the transparent conductive film 104.
 図8A及び8Bは、それぞれ、金属層100、絶縁膜102、透明導電膜104で構成される接続構造4及び5を示す。図8Aに示す接続構造4では、絶縁膜102は、金属層100の露出部を囲む矩形であり、開放部を備えていない。透明導電膜104は金属層100の露出部をすべて覆う。 FIGS. 8A and 8B show connection structures 4 and 5 including a metal layer 100, an insulating film 102, and a transparent conductive film 104, respectively. In the connection structure 4 shown in FIG. 8A, the insulating film 102 has a rectangular shape that surrounds the exposed portion of the metal layer 100, and does not include an open portion. The transparent conductive film 104 covers all exposed portions of the metal layer 100.
 図8Bに示す接続構造5では、絶縁膜102の開放方向は透明導電膜104の延長する方向と反対の方向であり、透明導電膜104は金属層100の露出部の一部のみを覆う。 8B, the opening direction of the insulating film 102 is opposite to the direction in which the transparent conductive film 104 extends, and the transparent conductive film 104 covers only a part of the exposed portion of the metal layer 100.
 〔製造条件〕
 接続構造1~5に対して、絶縁膜102の厚さ、絶縁膜102の開口長、転写時のガラス基板の温度、転写圧力、及び透明導電膜104の厚さの異なる複数のサンプル1~21を準備した。
[Production conditions]
For the connection structures 1 to 5, a plurality of samples 1 to 21 having different thicknesses of the insulating film 102, the opening length of the insulating film 102, the temperature of the glass substrate during transfer, the transfer pressure, and the thickness of the transparent conductive film 104 are different. Prepared.
 〔評価〕
 サンプル1~21に関して、金属層100と透明導電膜104とのコンタクト性、及び金属層100の腐食性について評価した。コンタクト性について、テスタを用いて、金属層100と透明導電膜104と間の抵抗値を測定することにより評価を行った。抵抗値が1MΩ以上のものはコンタクト性不良と判断した。腐食性について、サンプルをアルカリ現像液(水酸化カリウム水溶液)に10分間浸漬し、腐食の有無で評価を行った。図9に示す表は、サンプル1~21の製造条件と評価結果とを示す。
[Evaluation]
With respect to Samples 1 to 21, the contact property between the metal layer 100 and the transparent conductive film 104 and the corrosiveness of the metal layer 100 were evaluated. The contact property was evaluated by measuring a resistance value between the metal layer 100 and the transparent conductive film 104 using a tester. Those having a resistance value of 1 MΩ or more were judged to have poor contact properties. The corrosivity was evaluated by immersing the sample in an alkaline developer (potassium hydroxide aqueous solution) for 10 minutes and checking for corrosion. The table shown in FIG. 9 shows the manufacturing conditions and evaluation results of Samples 1 to 21.
 サンプル1~3は、絶縁膜102が平面視でU字形状を有し、開口長/膜厚が25以上であるので、コンタクト性、腐食性について良好な結果が得られた。サンプル4は、絶縁膜102が露出部を囲む矩形であり、開放部を備えていないので、コンタクト性について良好な結果が得られなかった。サンプル5について、金属層100の一部が透明導電膜104で被覆されていないので、腐食性について良好な結果が得られなかった。 In Samples 1 to 3, since the insulating film 102 has a U shape in a plan view and the opening length / film thickness is 25 or more, good results were obtained in terms of contact properties and corrosivity. In sample 4, since the insulating film 102 is a rectangle surrounding the exposed portion and does not have an open portion, good results with respect to contactability were not obtained. Regarding sample 5, since a part of the metal layer 100 was not covered with the transparent conductive film 104, good results were not obtained with respect to corrosivity.
 サンプル6~21は、接続構造2を適用した。サンプル8,9について、開口長/膜厚が25以下であったので、コンタクト性について良好な結果が得られなかった。 The connection structure 2 was applied to samples 6 to 21. For Samples 8 and 9, since the opening length / film thickness was 25 or less, good results were not obtained for contactability.
 サンプル16,20について、透明導電膜104が転写されなかったので、コンタクト性について良好な結果が得られなかった。 As for the samples 16 and 20, the transparent conductive film 104 was not transferred, so that a good result was not obtained for the contact property.
 <変形例>
 図1では、縦横の両方向に本発明に係る接続構造を適用したタッチパネルを例示している。しかし、本発明の構成はこれらの例に限定されない。例えば、縦横方向のうちのいずれかの方向に本発明に係る接続構造を適用したタッチパネルも、当然可能である。
<Modification>
FIG. 1 illustrates a touch panel to which the connection structure according to the present invention is applied in both vertical and horizontal directions. However, the configuration of the present invention is not limited to these examples. For example, a touch panel to which the connection structure according to the present invention is applied in any one of the vertical and horizontal directions is naturally possible.
10…タッチパネル、20…透明基板、30…第1透明導電パターン、32…第1感知部、34…第1接続部、36…接続部、38…第1絶縁膜、48…第2透明導電パターン、42…第2感知部、44…第2接続部、46…接続部、40…第2絶縁膜、50…絶縁膜、60…第1周辺配線、70…第2周辺配線、S…センサエリア DESCRIPTION OF SYMBOLS 10 ... Touch panel, 20 ... Transparent substrate, 30 ... 1st transparent conductive pattern, 32 ... 1st sensing part, 34 ... 1st connection part, 36 ... Connection part, 38 ... 1st insulating film, 48 ... 2nd transparent conductive pattern , 42 ... second sensing part, 44 ... second connecting part, 46 ... connecting part, 40 ... second insulating film, 50 ... insulating film, 60 ... first peripheral wiring, 70 ... second peripheral wiring, S ... sensor area

Claims (10)

  1.  タッチパネルであって、
     透明基板と、
     前記透明基板上に第1方向に沿って形成され、且つ、バインダーと導電性繊維とを含む、複数の第1透明導電パターンと、
     前記透明基板上に前記第1方向と直交する第2方向に沿って形成され、且つ、バインダーと導電性繊維とを含む、複数の第2透明導電パターンと、
     前記透明基板上に形成され、前記各第1透明導電パターンの端部と電気的に接続する複数の第1周辺配線と、
     前記透明基板上に形成され、前記各第2透明導電パターンの端部と電気的に接続する複数の第2周辺配線と、
     前記各第1透明導電パターンと前記各第1周辺配線とを接続する第1接続構造と、
     前記各第2透明導電パターンと前記各第2周辺配線とを接続する第2接続構造とを備え、
     前記第1接続構造は、
     前記第1周辺配線と、前記第1周辺配線上に形成され前記第1周辺配線の一部を露出するための開口を有するU字形状の第1絶縁膜と、露出された前記第1周辺配線を覆う前記第1透明導電パターンとを備え、
     前記第1絶縁膜の膜厚と前記第1絶縁膜の開口長との比(第1絶縁膜の開口長/第1絶縁膜の膜厚)は25以上である、
     タッチパネル。
    A touch panel,
    A transparent substrate;
    A plurality of first transparent conductive patterns formed along the first direction on the transparent substrate and including a binder and conductive fibers;
    A plurality of second transparent conductive patterns formed on the transparent substrate along a second direction orthogonal to the first direction and including a binder and conductive fibers;
    A plurality of first peripheral wirings formed on the transparent substrate and electrically connected to ends of the first transparent conductive patterns;
    A plurality of second peripheral wirings formed on the transparent substrate and electrically connected to ends of the second transparent conductive patterns;
    A first connection structure for connecting the first transparent conductive patterns and the first peripheral wirings;
    A second connection structure for connecting each second transparent conductive pattern and each second peripheral wiring;
    The first connection structure includes:
    The first peripheral wiring, a U-shaped first insulating film formed on the first peripheral wiring and having an opening for exposing a part of the first peripheral wiring, and the exposed first peripheral wiring The first transparent conductive pattern covering
    The ratio of the film thickness of the first insulating film to the opening length of the first insulating film (opening length of the first insulating film / film thickness of the first insulating film) is 25 or more.
    Touch panel.
  2.  前記第2接続構造は、
     前記第2周辺配線と、前記第2周辺配線上に形成され前記第2周辺配線の一部を露出するための開口を有するU字形状の第2絶縁膜と、露出された前記第2周辺配線を覆う前記第2透明導電パターンとを備え、
     前記第2絶縁膜の膜厚と前記第2絶縁膜の開口長との比(第2絶縁膜の開口長/第2絶縁膜の膜厚)は25以上である、
     請求項1に記載のタッチパネル。
    The second connection structure includes:
    The second peripheral wiring, a U-shaped second insulating film formed on the second peripheral wiring and having an opening for exposing a part of the second peripheral wiring, and the exposed second peripheral wiring And the second transparent conductive pattern covering
    The ratio of the film thickness of the second insulating film to the opening length of the second insulating film (the opening length of the second insulating film / the film thickness of the second insulating film) is 25 or more.
    The touch panel according to claim 1.
  3.  前記第1透明導電パターンの膜厚と前記第1絶縁膜の膜厚との比(第1絶縁層の膜厚/第1透明導電パターンの膜厚)は5以上20以下である、請求項1に記載のタッチパネル。 The ratio (film thickness of the first insulating layer / film thickness of the first transparent conductive pattern) between the film thickness of the first transparent conductive pattern and the film thickness of the first insulating film is 5 or more and 20 or less. Touch panel as described in 1.
  4.  前記第2透明導電パターンの膜厚と前記第2絶縁膜の膜厚との比(第2絶縁層の膜厚/第2透明導電パターンの膜厚)は5以上20以下である請求項2に記載のタッチパネル。 The ratio between the thickness of the second transparent conductive pattern and the thickness of the second insulating film (the thickness of the second insulating layer / the thickness of the second transparent conductive pattern) is 5 or more and 20 or less. The touch panel described.
  5.  前記導電性繊維は銀ナノワイヤーである請求項1から4のいずれか記載のタッチパネル。 The touch panel according to claim 1, wherein the conductive fiber is a silver nanowire.
  6.  前記第1周辺配線、及び前記第2周辺配線は金属膜で構成される請求項1から5のいずれか記載のタッチパネル。 The touch panel according to claim 1, wherein the first peripheral wiring and the second peripheral wiring are made of a metal film.
  7.  前記導電性繊維は50nm以下の短軸を有する請求項1から6のいずれか記載のタッチパネル。 The touch panel according to any one of claims 1 to 6, wherein the conductive fiber has a minor axis of 50 nm or less.
  8.  複数の第1周辺配線と複数の第2周辺配線とを透明基板上に形成する工程と、
     前記各第1周辺配線上に前記第1周辺配線の一部を露出するための開口を有するU字形状の第1絶縁膜、及び/又は前記各第2周辺配線上に前記第2周辺配線の一部を露出するための開口を有するU字形状の第2絶縁膜とを形成する工程と、
     バインダーと導電性繊維とを含む導電層を転写基材上に形成する工程と、
     前記転写基材上の前記導電層を前記透明基板上に転写し、前記第1周辺配線、及び/又は前記第2周辺配線の露出部を覆い、前記各第1周辺配線と前記第2周辺配線とを前記導電層と電気的に接続する工程と、
     前記導電層をパターニングし、第1方向に延びる複数の第1透明導電パターンと、前記第1方向と直交する第2方向に延びる複数の第2透明導電パターンとを形成する工程と、
    を備えるタッチパネルの製造方法。
    Forming a plurality of first peripheral wirings and a plurality of second peripheral wirings on a transparent substrate;
    A U-shaped first insulating film having an opening for exposing a part of the first peripheral wiring on each first peripheral wiring, and / or the second peripheral wiring on each second peripheral wiring. Forming a U-shaped second insulating film having an opening for exposing a portion thereof;
    Forming a conductive layer containing a binder and conductive fibers on a transfer substrate;
    The conductive layer on the transfer substrate is transferred onto the transparent substrate, covers the first peripheral wiring and / or the exposed portion of the second peripheral wiring, and each of the first peripheral wiring and the second peripheral wiring. Electrically connecting to the conductive layer;
    Patterning the conductive layer to form a plurality of first transparent conductive patterns extending in a first direction and a plurality of second transparent conductive patterns extending in a second direction orthogonal to the first direction;
    A method for manufacturing a touch panel comprising:
  9.  前記転写基材上の前記導電層を前記透明基板上に転写するとき、前記透明基板が90℃以上120℃以下の温度範囲である請求項8記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to claim 8, wherein when the conductive layer on the transfer base material is transferred onto the transparent substrate, the transparent substrate is in a temperature range of 90 ° C or higher and 120 ° C or lower.
  10.  前記転写基材上の前記導電層を前記透明基板上に転写するとき、転写圧力が0.4MPa以上0.8MPa以下の範囲である請求項8又は9記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to claim 8 or 9, wherein when the conductive layer on the transfer substrate is transferred onto the transparent substrate, a transfer pressure is in a range of 0.4 MPa to 0.8 MPa.
PCT/JP2012/074643 2011-09-30 2012-09-26 Touch panel and method for producing touch panel WO2013047556A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147008305A KR101637106B1 (en) 2011-09-30 2012-09-26 Touch panel and method for producing touch panel
CN201280046982.7A CN103827790B (en) 2011-09-30 2012-09-26 Touch screen and the manufacture method of touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217887A JP5721601B2 (en) 2011-09-30 2011-09-30 Touch panel and method for manufacturing touch panel
JP2011-217887 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047556A1 true WO2013047556A1 (en) 2013-04-04

Family

ID=47995587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074643 WO2013047556A1 (en) 2011-09-30 2012-09-26 Touch panel and method for producing touch panel

Country Status (5)

Country Link
JP (1) JP5721601B2 (en)
KR (1) KR101637106B1 (en)
CN (1) CN103827790B (en)
TW (1) TW201314532A (en)
WO (1) WO2013047556A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048293A1 (en) * 2013-09-27 2015-04-02 Cambrios Technologies Corporation Silver nanostructure-based optical stacks and touch sensors with uv protection
US10781324B2 (en) 2012-06-22 2020-09-22 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10870772B2 (en) 2014-07-31 2020-12-22 C3Nano Inc. Transparent conductive films with fused networks
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US11968787B2 (en) 2018-06-26 2024-04-23 C3 Nano, Inc. Metal nanowire networks and transparent conductive material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075754B2 (en) * 2012-09-24 2017-02-08 京セラ株式会社 Input device, display device, and electronic device
CN104345929B (en) * 2013-07-25 2018-01-12 南昌欧菲光科技有限公司 Touch-screen
JP6645188B2 (en) 2013-12-17 2020-02-14 日産化学株式会社 Composition for forming protective film for transparent conductive film
CN104020893B (en) * 2014-05-30 2017-01-04 京东方科技集团股份有限公司 A kind of In-cell touch panel and display device
CN105448423B (en) * 2014-06-12 2018-06-22 宸鸿科技(厦门)有限公司 The production method of conductive film and the production method of touch panel and touch panel
KR102084298B1 (en) * 2014-09-04 2020-03-03 후지필름 가부시키가이샤 Conductive film laminate, conductor, and method for manufacturing conductor
WO2016170943A1 (en) * 2015-04-21 2016-10-27 東レ株式会社 Laminate member and touch panel
JP2017016241A (en) * 2015-06-29 2017-01-19 プロマティック株式会社 Method for manufacturing electrode film, touch panel sensor including electrode film, and sticking device
WO2018029750A1 (en) * 2016-08-08 2018-02-15 東レ株式会社 Laminated member and touch panel
WO2019191990A1 (en) * 2018-04-04 2019-10-10 Microsoft Technology Licensing, Llc. Systems and methods of reducing corrosion in electrical contacts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192252A (en) * 2010-03-16 2011-09-29 Samsung Mobile Display Co Ltd Touch screen panel and fabrication method thereof
JP2011192251A (en) * 2010-03-16 2011-09-29 Samsung Mobile Display Co Ltd Touch screen panel and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627843B2 (en) * 1999-07-22 2011-02-09 株式会社半導体エネルギー研究所 Semiconductor device
JP5401814B2 (en) 2008-03-22 2014-01-29 コニカミノルタ株式会社 Method for producing transparent conductive film and transparent conductive film
TWI367440B (en) * 2008-06-26 2012-07-01 Qisda Corp Touch panel with touch keys
KR101726623B1 (en) * 2010-03-16 2017-04-14 엘지디스플레이 주식회사 Touch Panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192252A (en) * 2010-03-16 2011-09-29 Samsung Mobile Display Co Ltd Touch screen panel and fabrication method thereof
JP2011192251A (en) * 2010-03-16 2011-09-29 Samsung Mobile Display Co Ltd Touch screen panel and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781324B2 (en) 2012-06-22 2020-09-22 C3Nano Inc. Metal nanostructured networks and transparent conductive material
CN105793806B (en) * 2013-09-27 2019-09-24 凯姆控股有限公司 With UV protection based on silver nanostructured optical laminated and touch sensor
US9759846B2 (en) 2013-09-27 2017-09-12 Cam Holding Corporation Silver nanostructure-based optical stacks and touch sensors with UV protection
WO2015048293A1 (en) * 2013-09-27 2015-04-02 Cambrios Technologies Corporation Silver nanostructure-based optical stacks and touch sensors with uv protection
CN111240532A (en) * 2013-09-27 2020-06-05 凯姆控股有限公司 Silver nanostructure-based optical stack with UV protection and touch sensor
EP3667478A1 (en) 2013-09-27 2020-06-17 Cambrios Film Solutions Corporation Silver nanostructure-based optical stacks and touch sensors with uv protection
CN105793806A (en) * 2013-09-27 2016-07-20 凯博瑞奥斯技术公司 Silver nanostructure-based optical stacks and touch sensors with uv protection
CN111240532B (en) * 2013-09-27 2023-11-10 英属维京群岛商天材创新材料科技股份有限公司 Silver nanostructure-based optical stack with UV protection and touch sensor
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US10870772B2 (en) 2014-07-31 2020-12-22 C3Nano Inc. Transparent conductive films with fused networks
US11512215B2 (en) 2014-07-31 2022-11-29 C3 Nano, Inc. Metal nanowire ink and method for forming conductive film
US11814531B2 (en) 2014-07-31 2023-11-14 C3Nano Inc. Metal nanowire ink for the formation of transparent conductive films with fused networks
US11968787B2 (en) 2018-06-26 2024-04-23 C3 Nano, Inc. Metal nanowire networks and transparent conductive material

Also Published As

Publication number Publication date
KR20140069060A (en) 2014-06-09
CN103827790A (en) 2014-05-28
CN103827790B (en) 2016-10-12
TW201314532A (en) 2013-04-01
KR101637106B1 (en) 2016-07-06
JP2013077234A (en) 2013-04-25
JP5721601B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5721601B2 (en) Touch panel and method for manufacturing touch panel
JP5750017B2 (en) Wiring structure, manufacturing method of wiring structure, and touch panel
JP5806066B2 (en) Electrode pattern, touch panel, liquid crystal display device, and organic EL display
WO2012002332A1 (en) Conductive layer transfer material and touch panel
KR101707288B1 (en) Composition for forming silver-ion-diffusion inhibition layer, film for silver-ion diffusion inhibition layer, wiring board, electronic device, conductive film laminate, and touch panel
JP2012008255A (en) Polarizing plate and display device with touch panel function
JP6176295B2 (en) Method for forming conductive pattern
WO2013140975A1 (en) Method of manufacturing conductive member, conductive member, and touch panel using same
WO2013141274A1 (en) Electroconductive member, touch panel using same, display device, and input device
JP5749207B2 (en) Transparent conductive film laminate and touch panel
JP2012022844A (en) Laminate for conductive film formation and method of manufacturing the same, and method of forming pattern, touch panel and integrated solar battery
WO2011162322A1 (en) Conductive film, touch panel, and solar cell
JP2012009219A (en) Conductive material and touch panel
JP2008216875A (en) Photosensitive resin composition, photosensitive resin composition film, photosensitive resin composition film stacked substrate, photosensitive resin composition cured film and photosensitive resin composition cured film stacked substrate
JP2012209232A (en) Conductive patterning material and touch panel
JP2012028183A (en) Conductive material and touch panel and display device with touch panel function
JP5606769B2 (en) Conductive film and method for manufacturing the same, touch panel and integrated solar cell
JP2011254046A (en) Manufacturing method of three-dimensional curved surface structure
TW201502704A (en) Photosensitive conductive film, fabricating method of conductive pattern using the same and conductive pattern substrate
JP2017072679A (en) Photosensitive conductive film, and method of forming conductive pattern
JP2016070973A (en) Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate
JP2013073449A (en) Stereoscopic image display device having touch panel function, and touch panel
WO2018138879A1 (en) Photosensitive conductive film, conductive pattern formation method, conductive pattern substrate production method, conductive pattern substrate, and touch panel sensor
JP2018004810A (en) Photosensitive conductive film, method for forming conductive pattern, conductive pattern substrate and touch panel sensor
WO2016181496A1 (en) Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836308

Country of ref document: EP

Kind code of ref document: A1