WO2016181496A1 - Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel - Google Patents

Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel Download PDF

Info

Publication number
WO2016181496A1
WO2016181496A1 PCT/JP2015/063624 JP2015063624W WO2016181496A1 WO 2016181496 A1 WO2016181496 A1 WO 2016181496A1 JP 2015063624 W JP2015063624 W JP 2015063624W WO 2016181496 A1 WO2016181496 A1 WO 2016181496A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
conductive
organic acid
film
metal salt
Prior art date
Application number
PCT/JP2015/063624
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 海老原
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2015/063624 priority Critical patent/WO2016181496A1/en
Publication of WO2016181496A1 publication Critical patent/WO2016181496A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive film preparation liquid set, a conductive film preparation liquid, a transfer-type conductive film, a transfer-type photosensitive conductive film, a substrate with a conductive film, a method for forming a conductive pattern, a touch panel, and a conductivity improver.
  • Liquid crystal display elements and touch panels are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones, and electronic dictionaries, and display devices such as OA devices and FA devices. These liquid crystal display elements and touch panels have a conductive pattern formed from a transparent electrode material.
  • capacitive touch panels In a capacitive touch panel, when a fingertip (conductor) contacts the touch input surface, the fingertip and the conductive film are capacitively coupled to form a capacitor. The capacitive touch panel detects the coordinates by capturing the change in charge at the contact position of the fingertip.
  • the projected capacitive touch panel has good operability because it can detect multiple points on the fingertip and can give complicated instructions. Due to its good operability, a projected capacitive touch panel is increasingly used as an input device on a display surface in a device having a small display device such as a mobile phone or a portable music player.
  • a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes. Forming. These electrodes are formed by patterning a transparent electrode material.
  • indium tin oxide Indium-Tin-Oxide: ITO
  • indium oxide Indium-Tin-Oxide: ITO
  • tin oxide has been used as the transparent electrode material because it exhibits high light transmittance.
  • ITO Indium-Tin-Oxide
  • indium oxide which is a raw material of ITO
  • rare earth future supply insecurity is a problem.
  • transparent electrode materials are also required to be flexible. From such a background, transparent electrode materials have been studied in place of ITO that can cope with low resistance and flexibility.
  • a transparent electrode material using conductive fibers has higher flexibility than ITO.
  • the transparent electrode material can be formed by a wet process using a liquid containing conductive fibers, the productivity is excellent and the cost can be reduced.
  • a metal fiber as the conductive fiber, it is possible to reduce the resistance value while maintaining high optical characteristics.
  • Patent Document 1 a method for forming a conductive pattern using a photosensitive conductive film having a photosensitive layer containing conductive fibers has been proposed (see Patent Document 1 below). If this technique is used, a conductive pattern can be easily formed directly on various substrates by a photolithography process.
  • An object of the present invention is to provide a conductive film preparation liquid set, a conductive film preparation liquid, a transfer-type conductive film, and a transfer-type photosensitive conductive film capable of forming a conductive film with sufficiently low resistance and high reliability. And a method of forming a conductive pattern, and a substrate with a conductive film having a conductive film having a sufficiently low resistance value and high reliability, and a touch panel. Another object of the present invention is to provide a conductivity improver.
  • the present inventor examined the reliability of the transparent conductive film under high-temperature and high-humidity conditions. As a result, the increase in the resistance value affected the metal supply source contained in the processing solution (Fusing Solution) used in the prior art. I found out that As a result of investigation based on this knowledge, it was found that the resistance value of the conductive film is hardly increased even under a high temperature and high humidity condition by using a specific metal supply source, and the present invention is completed. It came to.
  • the present invention provides a conductive film preparation liquid set having a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid.
  • a conductive film having a sufficiently low resistance and high reliability can be formed. That is, according to the conductive film preparation solution set of the present invention, it is possible to form a conductive film that has a sufficiently low resistance value and that does not easily increase even under high temperature and high humidity conditions.
  • the metal salt of the organic acid may be a fatty acid salt having 5 or more carbon atoms.
  • the second liquid may further contain a reducing agent.
  • the reducing agent may be a compound having a hydroxyl group or a phenolic hydroxyl group.
  • the present invention also provides a conductive film preparation liquid containing conductive fibers and a metal salt of an organic acid.
  • a conductive film having sufficiently low resistance and high reliability can be formed. That is, according to the conductive film preparation liquid of the present invention, it is possible to form a conductive film that has a sufficiently low resistance value and that does not easily increase even under high temperature and high humidity conditions.
  • the metal salt of the organic acid may be a fatty acid salt having 5 or more carbon atoms.
  • the conductive film preparation liquid may further contain a reducing agent.
  • the reducing agent may be a compound having a hydroxyl group or a phenolic hydroxyl group.
  • the present invention also includes a support film and a conductive film provided on the support film, wherein the conductive film is a conductive film formed from the conductive film preparation liquid set or the conductive film preparation liquid described above.
  • a transfer-type conductive film that is a film is provided.
  • a conductive film having a sufficiently low resistance and high reliability can be formed.
  • the present invention also provides a transfer-type conductive film having a support film and a conductive film provided on the support film, wherein the conductive film contains an organic acid or a metal salt of the organic acid.
  • a conductive film having a sufficiently low resistance and high reliability can be formed.
  • the organic acid may be a fatty acid having 5 or more carbon atoms.
  • This invention also has a base material and the electrically conductive film provided on the said base material, and the said electrically conductive film is the electrically conductive film formed from the above-mentioned electrically conductive film preparation liquid set or the above-mentioned electrically conductive film preparation liquid.
  • the base material with a conductive film of the present invention includes a conductive film formed from the conductive film preparation liquid set or the conductive film preparation liquid according to the present invention, the base with a conductive film having sufficiently low resistance and high reliability. Can provide material.
  • This invention has a base material and the electrically conductive film provided on the said base material, and the said electrically conductive film provides the base material with an electrically conductive film containing the organic acid or the metal salt of the said organic acid.
  • the base material with a conductive film of the present invention includes a conductive film formed from the conductive film preparation liquid set or the conductive film preparation liquid according to the present invention, the base with a conductive film having sufficiently low resistance and high reliability. Can provide material.
  • the organic acid may be a fatty acid having 5 or more carbon atoms.
  • the present invention also includes a step of forming a resin-cured portion on the above-mentioned substrate with a conductive film so as to form a predetermined pattern, and removing or deconducting the conductive film in a portion where the resin-cured portion is not formed.
  • a method for forming a conductive pattern comprising a step and a step of removing the cured resin portion.
  • a conductive film having a sufficiently low resistance value and high reliability can be formed.
  • the present invention also includes a support film and a photosensitive layer including a conductive film provided on the support film, wherein the conductive film is from the conductive film preparation liquid set or the conductive film preparation liquid described above.
  • a transfer type photosensitive conductive film which is a conductive film to be formed.
  • a conductive film having a sufficiently low resistance value and high reliability can be formed.
  • the present invention also includes a support film and a photosensitive layer including a conductive film provided on the support film, wherein the conductive film includes an organic acid or a metal salt of the organic acid.
  • a conductive film is provided.
  • a conductive film having a sufficiently low resistance value and high reliability can be formed.
  • the organic acid may be a fatty acid having 5 or more carbon atoms.
  • the present invention also includes a step of transferring a photosensitive layer of the above-described transfer-type photosensitive conductive film onto a substrate, an exposure step of irradiating the photosensitive layer transferred onto the substrate with actinic rays in a pattern, And a conductive pattern forming step of forming a conductive pattern by removing an unexposed portion of the photosensitive layer.
  • a conductive film having a sufficiently low resistance value and high reliability can be formed.
  • the present invention also provides a touch panel having a conductive pattern formed by the above-described method for forming a conductive pattern.
  • the touch panel of the present invention has a conductive pattern formed by the conductive pattern forming method of the present invention, the sensing sensitivity can be increased, and a touch panel with high reliability can be obtained.
  • the present invention also provides a touch panel having a conductive film containing conductive fibers and an organic acid or a metal salt of the organic acid.
  • the touch panel of the present invention can increase the sensing sensitivity and can be a touch panel with high reliability.
  • the organic acid may be a fatty acid having 5 or more carbon atoms.
  • the present invention also provides a conductivity improver comprising a metal salt of a fatty acid having 5 or more carbon atoms.
  • the conductivity improver according to the present invention can suppress an increase in the resistance value of the conductive film.
  • a conductive film preparation liquid set, a conductive film preparation liquid, a transfer-type conductive film, and a transfer-type photosensitive conductive film capable of forming a conductive film with sufficiently low resistance and high reliability.
  • the formation method of a conductive pattern, and the base material with a electrically conductive film and the touch panel which have a conductive film with resistance value sufficiently low and high reliability can be provided.
  • the present invention can provide a conductivity improver.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or methacrylate
  • (Poly) oxyethylene chain means oxyethylene group or polyoxyethylene group
  • (poly) oxypropylene chain” means oxypropylene group or polyoxypropylene group.
  • “A or B” only needs to include one of A and B, or may include both.
  • process includes not only an independent process but also a case where the intended action of the process can be achieved even if it cannot be clearly distinguished from other processes. Included in the term.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
  • the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
  • This embodiment includes a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid, a conductive film preparation liquid set, or conductive fibers, and a metal salt of an organic acid.
  • a conductive film preparation liquid is provided.
  • the 1st liquid containing an electroconductive fiber in this embodiment is demonstrated.
  • the first liquid containing conductive fibers is preferably a dispersion liquid (conductive fiber dispersion liquid) in which conductive fibers are dispersed in a medium (solvent).
  • the conductive fiber is not particularly limited and can be used.
  • the conductive fiber include metal fibers such as gold, silver, copper, and platinum, and carbon fibers such as carbon nanotubes.
  • a metal fiber is preferable as the conductive fiber because a conductive film having both high transparency and a low resistance value can be formed.
  • silver fiber is more preferable from the viewpoint of easy production of the metal fiber.
  • the metal fiber can be prepared by, for example, a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method. Further, as a commercially available silver fiber, ClearOhm-Ink (trade name, manufactured by Cambrios Inc., USA) can be used. Commercially available products such as Unipym's Hipco single-walled carbon nanotubes can be used as the carbon nanotubes.
  • the fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 5 nm to 45 nm, and further preferably 10 nm to 40 nm from the viewpoints of conductivity and light transmittance.
  • the fiber length of the conductive fiber is preferably 1 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 80 ⁇ m, still more preferably 20 ⁇ m to 70 ⁇ m, and more preferably 30 ⁇ m from the viewpoint of conductivity and light transmittance. It is particularly preferable that the thickness is ⁇ 50 ⁇ m.
  • the fiber diameter and fiber length can be measured with a scanning electron microscope.
  • the first liquid containing the conductive fiber can be mixed with the organic conductor together with the conductive fiber.
  • the organic conductor is not particularly limited and can be used, but it is preferable to use an organic conductor such as a polymer of a thiophene derivative or an aniline derivative. Specifically, it is preferable to use polyethylenedioxythiophene, polyhexylthiophene, polyaniline, polyvinylpyrrolidone, or the like.
  • the 1st liquid containing an electroconductive fiber can contain dispersion stabilizers, such as surfactant, as needed.
  • the medium (solvent) of the first liquid water or an organic solvent can be used.
  • organic solvent for example, alcohols, ethers, glycols, ketones, esters, amides and the like can be used.
  • alcohols, ethers, glycols, ketones, esters, amides and the like can be used.
  • water, alcohols, glycols, esters, amides, and the like are preferable.
  • low molecular weight alcohols such as water, methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, and t-butanol, low molecular weight esters, etc. can be removed at low temperatures. Is more preferable.
  • the 2nd liquid containing the metal salt of the organic acid of this embodiment contains the metal salt (metal organic acid salt) of the organic acid which is (M) metal supply source, and (S) solvent.
  • metal salt metal organic acid salt
  • the 2nd liquid containing the metal salt of organic acid can contain the (R) reducing agent. Accordingly, the metal reduction reaction can be advanced more efficiently at a lower temperature, and a conductive film having high transparency and a low resistance value can be formed at a low temperature. It can be said that the 2nd liquid containing the metal salt of the organic acid which concerns on this embodiment is a metal thermal reduction solution containing a metal organic acid salt.
  • the metal source means a compound capable of generating a metal ion such as a single metal, a metal oxide, or a metal salt.
  • a metal salt of an organic acid is used as the metal supply source.
  • a metal salt of an organic acid It can select from viewpoints, such as the solubility with respect to the reactivity of a metal ion, reducibility, or the organic acid metal salt in a solvent.
  • metal salts of organic acids include valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, behenic acid, arachidin Acid, metal salts such as stearic acid, lignoceric acid, neodecanoic acid, serotic acid, montanic acid, melissic acid, acetic acid, propionic acid, citric acid, gallic acid, oxalic acid, lauric acid, etc., 1- (3-carboxyl Propyl) thiourea, salts of carboxyalkylthiourea such as 1- (3-carboxypropyl) -3,3-dimethylthiourea with metals, aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, salicylic acid, benzoic acid, 3,
  • a metal salt of an organic acid is a fatty acid salt (metal fatty acid) having a carbon number of 5 or more because a metal reduction reaction proceeds efficiently at low temperatures and a low-resistance conductive film can be obtained by low-temperature treatment. ) Is preferable.
  • a liquid in which a metal salt of an organic acid is a fatty acid salt having 5 or more carbon atoms (metal fatty acid) can also be used as a conductivity improver.
  • valeric acid valeric acid, caproic acid, enanthate in terms of the solubility of the organic acid metal salt in the solvent and the reactivity of the metal ion (ease of progress of thermal reduction reaction).
  • Acid caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, behenic acid, arachidic acid, stearic acid, neodecanoic acid, lignoceric acid, serotic acid, montanic acid, or melicic acid
  • the metal salt is more preferable, and behenate, arachidate, stearate, or neodecanoate is more preferable from the viewpoint of availability and reactivity (easy progress of thermal reduction reaction).
  • the metal species used in the organic acid metal salt can be used without any particular limitation. From the viewpoint of the stability of the metal formed on the conductive fiber by the reduction reaction, calcium, magnesium, aluminum, tin, zinc, lead, cobalt, nickel, iron, copper, silver, gold, platinum, tungsten, chromium, titanium Manganese is preferred. Iron, copper, silver, gold, platinum, titanium, nickel, and zinc are more preferable from the viewpoint of the availability of metal salts, the resistance value of metals formed on conductive fibers, and stability, and silver, copper Gold, platinum are more preferable.
  • silver behenate, silver arachidate, and stearic acid are easy to obtain, easy to proceed with a thermal reduction reaction, and from the point of resistance of the metal formed on the conductive fiber.
  • Silver or silver neodecanoate is particularly preferred.
  • a metal salt of an organic acid can be obtained by mixing a metal compound and an organic acid in an arbitrary solvent.
  • species in a metal compound said metal seed
  • Specific examples of the method for mixing the organic acid metal salt include a normal mixing method, a back mixing method, a simultaneous mixing method, and a controlled double jet method (for example, see JP-A-9-127463).
  • silver stearate can be obtained by mixing silver nitrate and stearic acid in water.
  • the concentration of the metal salt of the organic acid in the second liquid containing the metal salt of the organic acid is 0.001 mM from the viewpoint of the solubility of the metal salt of the organic acid in the solvent, the stability of the solution, and the reactivity of the metal ion. ⁇ 1000 mM is preferable, 0.01 mM to 100 mM is more preferable, and 0.1 mM to 10 mM is further preferable.
  • the concentration of the metal salt of the organic acid is a concentration per metal ion.
  • the (S) solvent used for the 2nd liquid containing the metal salt of an organic acid is demonstrated.
  • S As a solvent, a conventionally well-known thing is mentioned, Water or organic solvents (For example, alcohols, ethers, glycols, ketones, esters, amides, etc.) can be used. Various solvents may be mixed and used. From the viewpoint of the solubility of the organic acid metal salt and the reducing agent component, water, alcohols, glycols, esters, amides and the like are preferable.
  • low molecular weight alcohols such as water, methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, and t-butanol, low molecular weight esters, etc. can be removed at low temperatures. Is more preferable.
  • the reducing agent will be described. Since the second liquid containing the metal salt of the organic acid contains the (R) reducing agent, the metal reduction reaction can be advanced more efficiently at a lower temperature, and a conductive film having high transparency and a low resistance value is obtained. Can be formed at low temperature.
  • the reducing agent is not particularly limited, and may be arbitrarily selected from the viewpoints of metal ion reactivity, reducibility, solubility of the reducing agent in a solvent, stability of the second liquid containing a metal salt of an organic acid, and the like. Can be selected.
  • (R) reducing agent used in the present embodiment.
  • phenols, polyphenols, naphthols, bisnaphthols, polyhydroxybenzenes having two or more hydroxyl groups, polyhydroxynaphthalenes having two or more hydroxyl groups, ascorbic acids, 3-pyrazolidones examples include pyrazolin-5-ones, pyrazolines, phenylenediamines, hydroxylamines, hydroquinone monoethers, hydrooxamic acids, hydrazides, amide oximes, and N-hydroxyureas.
  • it can be appropriately selected and used in consideration of solubility in a solvent or reactivity as a reducing agent.
  • compounds having a hydroxyl group or a phenolic hydroxyl group are preferable, and polyphenols in which two or more compounds having a phenolic hydroxyl group (particularly, phenols and naphthols) are linked by an alkylene group or a sulfur atom are used.
  • At least one position adjacent to the hydroxy substitution position of the compound having a phenolic hydroxyl group is an alkyl group (for example, a methyl group, an ethyl group, a propyl group, a t-butyl group, a cyclohexyl group, etc.) or an acyl group (for example, More preferred are polyphenols in which two or more of the compounds having a phenolic hydroxyl group substituted with an acetyl group, propionyl group, etc., are linked by an alkylene group or sulfur.
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, a t-butyl group, a cyclohexyl group, etc.
  • an acyl group for example, More preferred are polyphenols in which two or more of the compounds having a phenolic hydroxyl group substituted with an acetyl group, propionyl group, etc., are linked
  • the reducing agent examples include 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol), 1,1-bis (2-hydroxy-3,5-dimethylphenyl) -3. , 5,5-trimethylhexane, 1,1-bis (2-hydroxy-3-tert-butyl-5-methylphenyl) methane, 1,1-bis (2-hydroxy-3,5-di-tert-butyl) Phenyl) methane, 6,6′-benzylidene-bis (2,4-di-t-butylphenol), 6,6′-benzylidene-bis (2-t-butyl-4-methylphenol), 6,6′- Benzylidene-bis (2,4-dimethylphenol), 1,1-bis (2-hydroxy-3,5-dimethylphenyl) -2-methylpropane, 1,1,5,5-tetrakis (2-hydroxy-3) , 5-Dimethyl Phenyl) -2,4-ethylpentane
  • Bisnaphthols include 2,2′-dihydroxy-1,1′-binaphthyl, 6,6′-dibromo-2,2′-dihydroxy-1,1′-binaphthyl, 6,6′-dinitro-2, Examples thereof include 2'-dihydroxy-1,1'-binaphthyl, bis (2-hydroxy-1-naphthyl) methane, 4,4'-dimethoxy-1,1'-dihydroxy-2,2'-binaphthyl and the like.
  • sulfonamidophenols or sulfonamidonaphthols examples include 4-benzenesulfonamidophenol, 2-benzenesulfonamidophenol, 2,6-dichloro-4-benzenesulfonamidophenol, 4-benzenesulfonamidonaphthol and the like.
  • the amount of the (R) reducing agent in the second liquid containing the metal salt of the organic acid varies depending on the metal salt of the organic acid, the type of the reducing agent, and other additives, but generally the metal salt of the organic acid.
  • the amount is preferably from 0.05 to 10 mol, more preferably from 0.1 to 3 mol, based on 1 mol of the metal therein.
  • a conductive fiber is included beforehand. It is good also as a electrically conductive film preparation liquid which mixes a 1st liquid and the 2nd liquid containing the metal salt of an organic acid, and contains an electroconductive fiber and the metal salt of an organic acid.
  • the second liquid containing the metal salt of the organic acid is applied to the conductive film formed by the first liquid containing the conductive fibers, dried, and heated to produce a conductive film. May be.
  • the obtained conductive film can have high transparency, low resistance, and high reliability.
  • the conductive film preparation liquid can be prepared by blending a conductive fiber and a metal salt of an organic acid with a medium.
  • a conductive fiber and a metal salt of an organic acid For the preparation of the conductive film preparation liquid, the above-described conductive fibers, metal salts of organic acids, reducing agents, solvents, and the like can be used.
  • ⁇ Method for Forming Conductive Film> By using the conductive film preparation liquid set or the conductive film preparation liquid according to the present embodiment, it is possible to form a conductive film that is more excellent in visible light transmittance and highly transparent and has a lower resistance value.
  • the formation method of an electrically conductive film is not limited to this.
  • the conductive film forming method 1 includes a step of applying a first liquid containing conductive fibers on a base material or a support base material to form a film containing conductive fibers, and the base material or support of the film.
  • This is a method of forming a conductive film by applying a second liquid containing a metal salt of an organic acid to the surface opposite to the base, drying and heating.
  • the metal can be attached to the surface of the conductive fiber. With the metal adhered between the conductive fibers, the contact resistance value between the conductive fibers can be reduced, and the resistance of the obtained conductive film can be reduced.
  • the metal salt of the organic acid in the second liquid containing the metal salt of the organic acid is a fatty acid salt having 5 or more carbon atoms
  • it can be processed at a lower temperature during the drying and heating, and more resistant.
  • a conductive film having a low value can be obtained.
  • the treatment can be performed at a lower temperature, and a conductive film having a lower resistance value can be obtained.
  • a polymer film such as a polyethylene terephthalate film can be used.
  • the method (coating method) for applying the first liquid containing conductive fibers to the substrate or the supporting substrate to form a film containing conductive fibers is not particularly limited, and a known method may be used. it can.
  • the coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method.
  • the die coating method is preferable from the viewpoints of good film thickness distribution and less contamination of the coating liquid with a closed system.
  • Drying can be performed with a hot air convection dryer or the like.
  • the drying temperature condition is preferably 30 to 150 ° C., more preferably 50 to 150 ° C., further preferably 65 to 120 ° C., and particularly preferably 80 to 100 ° C.
  • the drying temperature is preferably 30 to 150 ° C. or lower, oxidation and damage of the conductive fibers can be suppressed, and an increase in the resistance value of the obtained conductive film can be sufficiently suppressed.
  • the drying temperature to 30 ° C. or higher, the thermal reduction reaction of metal ions can proceed more reliably and the adhesion of metal to the surface of the conductive fiber can proceed, resulting in a sufficient resistance value.
  • a low conductive film can be obtained.
  • the drying time is preferably about 1 to 30 minutes, but is not limited as long as the solvent component can be removed and the thermal reduction reaction of metal ions proceeds sufficiently.
  • the thickness of the conductive film can be adjusted depending on the intended use and required conductivity, but is preferably 1 ⁇ m or less, more preferably 1 nm to 0.5 ⁇ m, and more preferably 5 nm to 0.1 ⁇ m. More preferably it is.
  • the thickness of the conductive film is 1 ⁇ m or less, the light transmittance is high in the wavelength region of 450 to 650 nm, which is suitable for producing a transparent transparent electrode.
  • the thickness of the conductive film refers to a value measured by a scanning electron microscope.
  • it can measure with a transmission electron microscope.
  • the surface resistivity of the conductive film is preferably 500 ⁇ / ⁇ or less, more preferably 300 ⁇ / ⁇ or less, and more preferably 100 ⁇ / ⁇ or less from the viewpoint that the conductive film can be effectively used as the transparent electrode of the touch panel. More preferably.
  • the surface resistivity can be measured by a non-contact type surface resistance meter.
  • the surface resistivity can be adjusted by, for example, the concentration of conductive fibers, organic conductors, etc., or the coating amount.
  • the conductive film formation method 2 is a method for forming a conductive film using a mixed liquid obtained by mixing the first liquid and the second liquid, or a conductive film preparation liquid.
  • the method 2 for forming a conductive film is a mixture of a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid, or a conductive film preparation liquid (A process for forming a film containing conductive fibers by applying conductive fibers and a metal salt of an organic acid), and a process for forming a conductive film by drying and heating the film. It is the formation method of the electrically conductive film containing this. As a result, it is possible to attach a metal to the surface of the conductive fiber, and the metal attached between the conductive fibers reduces the contact resistance value between the conductive fibers, thereby reducing the resistance of the obtained conductive film. Can be planned.
  • the liquid mixture can be prepared by mixing the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid at an arbitrary ratio. Since the mixed liquid is preferably mixed uniformly, the solvent used in the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid may be easily mixed with each other. Preferably, the same solvent is more preferable.
  • the mixed liquid is within 24 hours after mixing the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid, from the viewpoint of the stability and dispersibility of the mixed liquid. It is preferably used, more preferably used within 12 hours, further preferably used within 6 hours, and particularly preferably used within 3 hours. It is preferable to use the mixed solution within such a time because the increase in the amount of the conductive fiber aggregates, precipitation of the conductive fiber, and generation of reduction products of metal ions can be sufficiently suppressed in the mixed solution. .
  • the metal salt of the organic acid in the mixed liquid or the conductive film preparation liquid is a fatty acid salt having 5 or more carbon atoms, it can be processed at a lower temperature during the drying and heating, and more resistant. A conductive film having a low value can be obtained. Moreover, also when the said liquid mixture or the said electrically conductive film preparation liquid contains a reducing agent, a process at lower temperature is possible and the electrically conductive film with a lower resistance value can be obtained.
  • the same materials as described in the formation method 1 can be used.
  • the coating method, the drying method, the drying temperature condition and the drying time are the same as those of the conductive film forming method 1 described above.
  • a base material with a conductive film in which the conductive film 2 is provided on the base material 20 can be obtained. Furthermore, a base material with a conductive film and a base material with a conductive pattern will be described.
  • the base material with a conductive film has a base material and a conductive film provided on the base material.
  • the conductive film in the substrate with a conductive film is formed from a conductive film preparation liquid set or a conductive film preparation liquid having a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid. It is a conductive film. It can also be said that the conductive film in the substrate with a conductive film contains an organic acid or a metal salt of the organic acid.
  • a base material with a conductive film can also be made into a transfer type conductive film by selection of a base material.
  • the transparent substrate transparent substrate
  • the transparent base material with an electrically conductive film which has transparency and electroconductivity can be manufactured.
  • the transparent substrate is not particularly limited, but glass or various polymer films having excellent heat resistance are suitable.
  • polymer films having excellent heat resistance include polyester films such as polyethylene terephthalate films, polycarbonate films, polyvinyl chloride films, polyethylene films, polypropylene films, polyamide films, cellulose acetate films, polysulfone films, and cycloolefin polymers.
  • a polyester film is preferable from the viewpoint of excellent properties such as transparency, dimensional stability, thickness uniformity, strength, heat resistance, chemical resistance, and water resistance.
  • a polyester film that has been stretched in a biaxial direction may be used in order to improve mechanical properties.
  • These polymer films as the transparent substrate are preferably those having a thickness of 50 ⁇ m to 250 ⁇ m in consideration of the function as a transparent electrode.
  • the transparent substrate can be subjected to the following surface activation treatment as required. That is, physical treatment such as glow discharge or corona discharge treatment, or thin film coating treatment with melamine resin, polyurethane resin, polyester resin or the like may be performed.
  • surface activation treatment such as glow discharge or corona discharge treatment, or thin film coating treatment with melamine resin, polyurethane resin, polyester resin or the like may be performed.
  • wear resistance, high surface hardness, solvent resistance, contamination resistance, etc. were imparted to a portion where the conductive film is not provided (for example, the surface opposite to the surface on which the conductive film is formed).
  • a base material that has been subjected to a hard coat treatment can also be used.
  • the minimum value of the total light transmittance in the visible light region is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the base material with a conductive film can be produced by the method described in the method for forming a conductive film.
  • a protective layer may be further formed thereon to form a transparent resin layer containing the conductive film.
  • protective layers for this purpose include those made of organic polymers such as acrylic, polyester, and polyurethane, and polysiloxanes obtained by condensation polymerization of organosilicon compounds such as organoalkoxysilanes by hydrolysis. Can do.
  • the protective layer is preferably obtained by forming a resin film and then curing it by irradiation with light. Specifically, the protective layer can be formed by applying and drying a photocurable acrylic resin solution to form a resin film, and then curing by irradiation with light.
  • the transparent resin layer as described above is useful because it can be made non-conductive efficiently by etching described below.
  • the thickness of the transparent resin layer is not particularly limited, but is preferably 10 nm to 1000 nm, more preferably 30 nm to 500 nm, and more preferably 50 nm from the viewpoint of efficient non-conductivity by etching described below, scratch resistance and long-term stability. More preferably, ⁇ 300 nm.
  • the minimum value of the total light transmittance in the visible light region of the transparent resin layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • a conductive pattern may be formed by providing a conductive part and a non-conductive part on the transparent resin layer. That is, the method for forming a conductive pattern according to this embodiment includes a step of forming a cured resin portion having a predetermined pattern on a substrate with a conductive film, and a removal of the conductive film in a portion where the resin cured portion is not formed. Or the process of making it non-conductor and the process of removing the said resin hardening part are provided.
  • a method of forming a resist layer for example, a resin cured portion
  • a resist layer for example, a resin cured portion
  • a method can be used in which a resist layer is uniformly applied over the entire surface, a resist pattern is formed, and then conductive fibers are made non-conductive (non-conductive) by chemical etching.
  • the material for forming the resist layer is not particularly limited as long as it can withstand the etching process.
  • materials that can withstand the etching process from the viewpoint of availability, price, etc., materials that can be printed with acrylic resin, photocurable, and organic solvents or alkaline solutions before photocuring It is preferable to use an acrylic resin-based resist material, a resist film, or the like having solubility in A known method can be used as a method for forming the resist layer.
  • a conductive film made of a material such as ITO cannot form an insulating part unless the material is completely removed.
  • conductive fibers do not completely remove because they exhibit conductivity due to contact between fibers.
  • the insulating portion can be formed by forming the non-conductive portion. For example, forming a conductive pattern by a method of dissolving a part of the conductive fiber, or a method of disconnecting by chemically changing the surface of the conductive fiber to make a part of the conductive fiber nonconductive. Is possible.
  • the chemical etching solution used for the above-mentioned purpose it is possible to use a normal acidic etching solution, and there is no particular limitation as long as it is a solution that can use conductive fibers as an insulator. Can be used. Especially, when a metal fiber is used as the conductive fiber, an acid such as hydrochloric acid or nitric acid, or a mixture thereof can be used as the acidic etching solution.
  • the liquid temperature at 30 ° C. or higher and 60 ° C. or lower from the viewpoint of reactivity of the deconducting reaction and workability.
  • the resist layer is removed from the conductive film-coated substrate, whereby a conductive film-coated substrate having a desired conductive pattern can be produced.
  • the base material with a conductive film according to this embodiment can be a transfer-type conductive film.
  • the transfer-type conductive film has, for example, a support film 1 and a conductive film 2 provided on the support film 1 as shown in FIG.
  • the support film in this case include polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film.
  • a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
  • these polymer films are removed from the conductive film 2 later, it is preferable not to perform a surface treatment that makes the removal impossible, and it is preferable that the polymer film is not a material that cannot be removed.
  • the thickness of the support film is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and further preferably 15 to 100 ⁇ m.
  • a protective film may be provided so as to be in contact with the surface of the conductive film 2 opposite to the support film 1 side.
  • a polymer film having heat resistance and solvent resistance such as a polyethylene terephthalate film, a polypropylene film, and a polyethylene film can be used. Moreover, you may use the polymer film similar to the above-mentioned support film as a protective film.
  • the adhesive force between the protective film and the conductive film is preferably smaller than the adhesive force between the conductive film 2 and the support film so that the protective film can be easily peeled off from the conductive film.
  • the number of fish eyes with a diameter of 80 ⁇ m or more contained in the protective film is preferably 5 / m 2 or less.
  • “Fisheye” means that materials are melted, kneaded, extruded, biaxially stretched, casting materials, etc., and foreign materials, undissolved materials, oxidized degradation products, etc. are taken into the film. It is a thing.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 30 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the thickness of the protective film is less than 1 ⁇ m, the protective film tends to be broken during lamination, and when it exceeds 100 ⁇ m, the price tends to increase.
  • the photosensitive conductive film which concerns on this embodiment has a support film and the photosensitive layer containing the electrically conductive film provided on the support film.
  • the conductive film in the present embodiment is a conductive film formed from the conductive film preparation liquid set described above or the conductive film preparation liquid described above.
  • the photosensitive conductive film concerning this embodiment can also be used as the transfer type photosensitive conductive film used in order to transfer a photosensitive layer on a base material.
  • the photosensitive conductive film 10 includes a support film 1 and a photosensitive layer 4, and the photosensitive layer 4 includes a conductive film 2 and a photosensitive resin layer 3.
  • the photosensitive electrically conductive film 2 is provided on the support film 1, and the photosensitive resin layer 3 is provided in the surface on the opposite side to the support film of the electrically conductive film 2, the photosensitive electrically conductive film is shown.
  • the photosensitive resin layer 3 may be provided on the support film, and the conductive film 2 may be provided on the surface of the photosensitive resin layer 3 opposite to the support film 1. .
  • the boundary between the conductive film 2 containing conductive fibers and the photosensitive resin layer 3 provided on the conductive film 2 may be clearly separated.
  • the boundary between the conductive film 2 and the photosensitive resin layer 3 is not necessarily clear.
  • the conductive film only needs to have conductivity in the surface direction of the photosensitive layer, and may be a mode in which the photosensitive resin layer is mixed with the conductive film.
  • the composition constituting the photosensitive resin layer may be impregnated in the conductive film, or the composition constituting the photosensitive resin layer may be present on the surface of the conductive film.
  • the support film those exemplified as the base material in the above-mentioned transfer type conductive film can be used.
  • the thickness of the support film 1 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and further preferably 15 to 100 ⁇ m.
  • the step of applying a photosensitive resin composition to form a conductive dispersion or a photosensitive resin layer 3 in order to form a conductive film 2 due to a decrease in mechanical strength, or an exposed photosensitive resin layer 3 From the viewpoint of preventing the support film from being broken in the step of peeling the support film before development, the thickness is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 15 ⁇ m or more.
  • the haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is more preferably from 2.0% to 2.0%, particularly preferably from 0.01% to 1.0%.
  • the haze value can be measured according to JIS K 7375 (established in 2008). It can also be measured with a commercially available turbidimeter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the conductive film 2 is formed on the support film 1 by the method described above using a conductive film preparation liquid set having a conductive fiber dispersion and a metal thermal reduction solution containing a metal organic acid salt according to the present invention. It can be manufactured by forming a conductive film on the substrate.
  • FIG. 3 is a partially cutaway perspective view showing an embodiment of a photosensitive conductive film.
  • the conductive film 2 preferably has a network structure in which conductive fibers are in contact with each other.
  • the conductive film 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film 1 side, but on the surface of the photosensitive layer 4 exposed when the support film 1 is peeled off.
  • the conductive film 2 may be formed so that a part of the photosensitive resin layer 3 enters the conductive film 2, and the conductive film is formed on the surface layer of the photosensitive resin layer 3 on the support film 1 side. 2 may be included.
  • the photosensitive resin layer 3 may be formed from a photosensitive resin composition containing (A) a binder polymer, (B) a photopolymerizable compound having an ethylenically unsaturated bond, and (C) a photopolymerization initiator. preferable.
  • the component (A) is preferably a copolymer containing structural units derived from (a) (meth) acrylic acid and (b) (meth) acrylic acid alkyl ester.
  • Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid 2-ethylhexyl ester, and (meth) acrylic acid ester. ) Acrylic acid hydroxyl ethyl ester and the like.
  • the copolymer may further contain other monomer that can be copolymerized with the component (a) or the component (b) in the structural unit.
  • the component (A) is preferably a polymer having a carboxyl group.
  • the acid value of component (A) is preferably 75 to 200 mgKOH / g, more preferably 75 to 150 mgKOH / g, and 75 to 120 mgKOH / g from the viewpoint of excellent patternability. More preferred is 78 to 120 mg KOH / g.
  • the acid value of the binder polymer as the component (A) can be measured as follows. First, 1 g of the binder polymer that is the object of acid value measurement is precisely weighed. 30 g of acetone is added to the precisely weighed binder polymer and dissolved uniformly. Next, an appropriate amount of phenolphthalein as an indicator is added to the solution, and titration is performed using a 0.1N aqueous KOH solution. And an acid value is computed by following Formula.
  • Acid value 0.1 ⁇ Vf ⁇ 56.1 / (Wp ⁇ I / 100)
  • Vf represents the titration amount (mL) of the KOH aqueous solution
  • Wp represents the measured weight (g) of the solution containing the binder polymer
  • I represents the ratio (mass) of the non-volatile content in the measured solution containing the binder polymer. %).
  • the weight average molecular weight of the binder polymer is preferably 5,000 to 300,000, more preferably 20,000 to 150,000, from the viewpoint of balancing mechanical strength and alkali developability. More preferably, 30,000 to 100,000. In terms of excellent developer resistance, the weight average molecular weight is preferably 5,000 or more. Further, from the viewpoint of development time, it is preferably 300,000 or less.
  • the weight average molecular weight in the present invention is a value measured by a gel permeation chromatography method (GPC) and converted by a calibration curve prepared using standard polystyrene.
  • Examples of the photopolymerizable compound having an ethylenically unsaturated bond as component (B) include a monofunctional vinyl monomer, a bifunctional vinyl monomer, and a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups. Is mentioned.
  • the component (B) is selected from a (meth) acrylate compound having a skeleton derived from pentaerythritol, a (meth) acrylate compound having a skeleton derived from dipentaerythritol, and a (meth) acrylate compound having a skeleton derived from trimethylolpropane. It is preferable that at least one kind is included, and it is more preferable that at least one kind selected from a (meth) acrylate compound having a skeleton derived from dipentaerythritol and a (meth) acrylate compound having a skeleton derived from trimethylolpropane.
  • the content ratio of the component (B) is preferably 30 to 80 parts by mass, and more preferably 40 to 70 parts by mass with respect to 100 parts by mass as a total of the components (A) and (B).
  • it is preferably 30 parts by mass or more, and in terms of excellent storage stability when wound as a film, it is 80 parts by mass or less. Is preferred.
  • the photopolymerization initiator there is no particular limitation as long as the light wavelength of the exposure machine to be used matches the wavelength required for function expression, but from the viewpoint of the formation of a transparent conductive pattern, the oxime ester compound or It is preferable that a phosphine oxide compound is included.
  • Component (C) includes 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methyl) And oxime ester compounds such as benzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), and phosphine oxide compounds such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] is available as IRGACURE OXE 01 (trade name, manufactured by BASF Japan Ltd.).
  • Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is IRGACURE OXE 02 (manufactured by BASF Japan Ltd., (Commercial name) is commercially available.
  • 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide is commercially available as LUCIRIN TPO (trade name, manufactured by BASF Japan Ltd.).
  • the component (C) can be used in combination with a photopolymerization initiator other than the oxime ester compound and the phosphine oxide compound.
  • a photopolymerization initiator other than the oxime ester compound and the phosphine oxide compound.
  • a photopolymerization initiator other than the oxime ester compound and the phosphine oxide compound.
  • benzophenone 4-methoxy-4′-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl
  • An aromatic ketone such as 2-morpholino-propanone-1; a benzoin ether compound such as benzoin methyl ether, benzoin ethyl ether or benzoin phenyl ether; a benzoin compound such as benzoin, methyl benzoin or ethyl benzoin;
  • the content ratio of the (C) photopolymerization initiator is preferably 0.1 to 20 parts by mass, and preferably 1 to 10 parts by mass with respect to 100 parts by mass as a total of the components (A) and (B). More preferred is 1 to 5 parts by mass. In terms of excellent photosensitivity, it is preferably 0.1 parts by mass or more, and in terms of excellent photocurability, it is preferably 20 parts by mass or less.
  • an adhesion imparting agent such as a silane coupling agent, a leveling agent, a plasticizer, a filler, an antifoaming agent, a flame retardant, a stabilizer, an oxidation agent.
  • An inhibitor, a fragrance, a thermal crosslinking agent, a polymerization inhibitor and the like can be contained in an amount of about 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B).
  • the photosensitive resin layer 3 is formed on the conductive film 2 formed on the support film 1 with a solvent such as methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether. It can be formed by applying and drying a solution of a dissolved photosensitive resin composition having a solid content of about 10 to 60% by mass. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
  • a solvent such as methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether. It can be formed by applying and drying a solution of
  • Coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
  • the thickness of the photosensitive resin layer 3 varies depending on the use, but it is preferably 1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 1 to 15 ⁇ m after drying. A thickness of 10 ⁇ m is particularly preferable. By making this thickness 1 ⁇ m or more, it is possible to further improve the workability of coating, and by making it 50 ⁇ m or less, it is possible to sufficiently suppress the sensitivity becoming insufficient due to a decrease in light transmission. And a decrease in the photocurability of the photosensitive layer can be sufficiently suppressed.
  • the laminate of the conductive film 2 and the photosensitive resin layer 3 has a minimum light transmittance of 80% in a wavelength region of 450 to 650 nm when the total film thickness of both layers is 1 to 10 ⁇ m. It is preferable that it is above, and it is more preferable that it is 85% or more.
  • the conductive film and the photosensitive resin layer satisfy such conditions, the visibility on a touch panel, a display panel, or the like is improved.
  • a protective film may be provided so as to be in contact with the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
  • the protective film those exemplified as the protective film in the transfer-type conductive film can be used.
  • the method for forming a conductive pattern according to this embodiment includes a step of transferring a photosensitive layer of a transfer type photosensitive conductive film onto a substrate, and irradiating the photosensitive layer transferred onto the substrate with actinic rays in a pattern. And a conductive pattern forming step of forming a conductive pattern by removing an unexposed portion of the photosensitive layer.
  • FIG. 4 is a schematic cross-sectional view for explaining one embodiment of a conductive pattern forming method using a photosensitive conductive film.
  • the photosensitive resin layer 3 of the photosensitive conductive film 10 having the support film 1, the conductive film 2, and the photosensitive resin layer 3 is laminated on the substrate 20 ((a) of FIG. 4).
  • the photosensitive resin layer 3 is irradiated with an actinic ray L in a pattern through the mask pattern 5 (FIG. 4B), and the unexposed portion is removed by development to form the conductive pattern (2a). It forms ((c) of FIG. 4).
  • Such a method can also be referred to as a method for manufacturing the substrate 40 with a conductive pattern.
  • the obtained conductive pattern has the thickness of the resin cured portion 3b in addition to the thickness of the conductive pattern 2a. These thicknesses form a step Hb with the base material, and if this step is large, it becomes difficult to obtain the smoothness required for a display or the like. Further, when the step is large, the conductive pattern is easily visually recognized. Therefore, the method shown in FIG.
  • FIG. 5 is a schematic cross-sectional view for explaining another embodiment of a method for forming a conductive pattern using a photosensitive conductive film.
  • the support film 1 is peeled off, and then oxygen is present.
  • the second exposure step is performed in the presence of oxygen, for example, preferably in the air. Moreover, the conditions which increased oxygen concentration may be sufficient.
  • the surface portion of the photosensitive resin layer 3 exposed in the second exposure step that has not been sufficiently cured is removed. Specifically, the surface portion of the photosensitive resin layer 3 that is not sufficiently cured by the wet phenomenon, that is, the surface layer including the conductive film 2 is removed and provided on the sufficiently cured resin cured portion 3a and the resin cured portion 3a.
  • the conductive pattern 2a is formed.
  • Such a method can also be referred to as a method for manufacturing the substrate 42 with the conductive pattern.
  • the resin hardening part which does not have a conductive film with a conductive pattern is provided on a base material, and the base material 42 with a conductive pattern is obtained, and a conductive pattern compared with the case where only a conductive pattern is provided on a base material The level difference Ha can be reduced.
  • the substrate 20 is not particularly limited, and examples thereof include a glass substrate, a plastic substrate such as a polycarbonate, a cycloolefin polymer, and the like.
  • the base material preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm.
  • the laminating step is performed, for example, by pressing the photosensitive resin layer side to the substrate while heating the photosensitive conductive film after removing the protective film, if any.
  • the laminating step is preferably performed under reduced pressure from the viewpoint of adhesion and followability.
  • these conditions are not particularly limited.
  • the photosensitive resin layer is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the base material in advance, but the base material is pre-heated to further improve the laminating property. You can also.
  • the actinic light is irradiated in an image form through a negative or positive mask pattern called artwork.
  • a method mask exposure method
  • a known light source is used as the active light source.
  • Exposure at the exposure step may vary depending on the composition of the device or a photosensitive resin composition to be used, it is preferably 5mJ / cm 2 ⁇ 1000mJ / cm 2, is 10mJ / cm 2 ⁇ 200mJ / cm 2 More preferred. In terms of excellent photocurability, it is preferably 10 mJ / cm 2 or more, and in terms of resolution, it is preferably 1000 mJ / cm 2 or less.
  • the exposure process may be performed in two stages, and after the first stage is performed with the above-mentioned exposure amount, the second stage may be performed at 100 to 10,000 mJ / cm 2 .
  • the wet development can be performed using a known developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer.
  • a developing solution can be suitably selected according to the photosensitive resin composition to be used.
  • an alkaline aqueous solution or the like that is safe and stable and has good operability is preferably used.
  • the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide; alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate; potassium phosphate, sodium phosphate, and the like.
  • alkali metal phosphates alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate.
  • alkaline aqueous solution used for development a sodium carbonate aqueous solution, a potassium carbonate aqueous solution, a sodium hydroxide aqueous solution, a sodium tetraborate aqueous solution and the like are preferable.
  • concentration of the alkaline aqueous solution is usually 0.1 to 5% by mass.
  • the pH of the alkaline aqueous solution is preferably in the range of 9 to 11, and the temperature can be adjusted according to the developability of the photosensitive resin layer.
  • a surfactant In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • an aqueous developer composed of water or an aqueous alkaline solution and one or more organic solvents
  • the base contained in the alkaline aqueous solution includes borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3 in addition to the above-mentioned bases.
  • -Propanediol, 1,3-diamino-2-propanol, morpholine and the like may be used.
  • organic solvent examples include acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the like.
  • the aqueous developer preferably has an organic solvent concentration of 2 to 90% by mass, and the temperature can be adjusted according to the developability. Furthermore, the pH of the aqueous developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8-12, and more preferably pH 9-10. A small amount of a surfactant, an antifoaming agent or the like can be added to the aqueous developer.
  • organic solvent developer examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and ⁇ -butyrolactone. These organic solvents are preferably added with water in the range of 1 to 20% by mass in order to prevent ignition.
  • Examples of the developing method include a dip method, a paddle method, a rocking dipping, a spray method, brushing, and slapping. Among these, it is preferable to use a high-pressure spray system from the viewpoint of improving resolution.
  • the conductive pattern may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development.
  • the method for forming a conductive pattern it is possible to easily form a transparent conductive pattern by photolithography on a substrate such as glass or plastic without forming a resist layer.
  • the base material with a conductive pattern preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm, more preferably 85% or more.
  • FIG. 6 is a schematic top view showing an example of a capacitive touch panel sensor.
  • the touch panel sensor shown in FIG. 6 has a touch screen 102 for detecting a touch position on one side of a transparent base material 101, and a transparent electrode 103 that detects a change in capacitance in this region and uses it as an X position coordinate.
  • a transparent electrode 104 having Y position coordinates is provided.
  • the transparent electrodes 103 and 104 are provided with a lead wire 105 for connecting to a driver element circuit for controlling an electric signal as a touch panel, and a connection electrode 106 for connecting the lead wire 105 and the transparent electrodes 103 and 104. ing.
  • a connection terminal 107 connected to the driver element circuit is disposed at the end of the lead line 105 opposite to the connection electrode 106.
  • FIG. 7 is a schematic diagram showing an example of a manufacturing method of the touch panel sensor shown in FIG.
  • the transparent electrodes 103 and 104 are formed by any of the conductive pattern forming methods according to the present embodiment described above.
  • a transparent electrode (X position coordinate) 103 is formed on a transparent substrate 101.
  • the photosensitive conductive film 10 is laminated so that the photosensitive resin layer 3 is in contact with the transparent substrate 101.
  • the transferred photosensitive layer 4 (conductive film 2 and photosensitive resin layer 3) is irradiated with actinic rays in a desired shape through a mask pattern (light-shielding mask) (first exposure step). Thereafter, the mask pattern is removed, the support film is further peeled off, and the photosensitive layer 4 is irradiated with actinic rays (second exposure step).
  • FIG. 7B is a schematic cross-sectional view taken along the line II of FIG.
  • FIG. 7D is a schematic cross-sectional view taken along the line II-II in FIG. Even when the transparent electrode 104 is formed on the transparent electrode 103 by forming the transparent electrode 104 by the method for forming a conductive pattern according to the present invention, the visibility is sufficiently lowered due to a step or bubble entrainment. A suppressed and highly smooth touch panel sensor can be manufactured.
  • a lead wire 105 for connecting to an external circuit and a connection electrode 106 for connecting the lead wire and the transparent electrodes 103 and 104 are formed on the surface of the transparent substrate 101.
  • the lead lines 105 and the connection electrodes 106 are shown to be formed after the formation of the transparent electrodes 103 and 104, but they may be formed at the same time as the formation of each transparent electrode.
  • the lead line 105 can be formed at the same time as the connection electrode 106 is formed by screen printing using a conductive paste material containing flaky silver, for example.
  • the transparent electrodes 103 and 104 can include a conductive fiber and an organic acid or a metal salt of the organic acid.
  • the resistance value of a transparent electrode can be made lower and the sensitivity of a touch panel sensor can be further improved.
  • the organic acid is preferably a fatty acid having 5 or more carbon atoms.
  • Second liquid containing metal salt of organic acid Metal salt of organic acid, silver neodecanoate (Wako Pure Chemical Industries, Ltd., trade name “Silver Resinate MR4704-P”) ⁇ Silver behenate (Tokyo Chemical Industry Co., Ltd.) ⁇ Silver acetate (Wako Pure Chemical Industries, Ltd.) ⁇ Silver citrate (Wako Pure Chemical Industries, Ltd.) ⁇ Silver nitrate (Wako Pure Chemical Industries, Ltd.) Reducing agent AW-500 (Kawaguchi Chemical Industry Co., Ltd., 2,2'-methylene-bis (4-ethyl-6-t-butylphenol), trade name) ⁇ Hydroquinone (Wako Pure Chemical Industries, Ltd.)
  • Production Example 1 ⁇ Preparation of the first liquid W1 containing conductive fibers> Distilled water (manufactured by Wako Pure Chemical Industries Ltd. 70 parts by weight, and 0.35 parts by weight of a dispersant (trade name “ClearOhm SFT-A”, manufactured by Cambrios, USA) )) was added in an amount of 0.12 parts by mass to obtain a first liquid W1 containing conductive fibers.
  • W1 is also a silver fiber dispersion.
  • the diameter of the silver nanowire was 40 nm and the length was 40 ⁇ m.
  • Production Example 2 ⁇ Preparation of solution of binder polymer (A1)> Into a flask equipped with a stirrer, a reflux condenser, an inert gas inlet and a thermometer, the components shown in (1) of Table 1 were charged according to the blending amounts shown in Table 1, and the inside of the system was 80 in a nitrogen gas atmosphere. The temperature was raised to ° C. While maintaining the reaction temperature at 80 ° C. ⁇ 2 ° C., the monomer composition mixed in the components and blending amounts shown in Table 1 (2) was added dropwise uniformly over 4 hours. After dropping of the monomer composition, stirring was continued at 80 ° C. ⁇ 2 ° C.
  • binder polymer (A1) solution solid content 50% by mass having a weight average molecular weight of 45,000.
  • the acid value of the binder polymer (A1) was 78 mgKOH / g.
  • the glass transition temperature (Tg) of the binder polymer (A1) was 60 ° C.
  • the properties of the prepared binder polymer solution were measured by the following method.
  • Weight average molecular weight The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and was derived by conversion using a standard polystyrene calibration curve. The GPC conditions are shown below.
  • the acid value was measured as follows. First, the binder polymer solution was heated at 130 ° C. for 1 hour to remove volatile components, thereby obtaining a solid binder polymer. Then, after precisely weighing 1.0 g of the solid binder polymer, the precisely weighed binder polymer was placed in an Erlenmeyer flask, and 30 g of acetone was added and dissolved uniformly. Next, an appropriate amount of an indicator, phenolphthalein, was added to the solution, and titration was performed using a 0.1N aqueous KOH solution. Then, the number of mg of KOH required to neutralize the acetone solution of the binder polymer was calculated by the following formula, and the acid value was determined.
  • Acid value 0.1 ⁇ Vf ⁇ 56.1 / (Wp ⁇ I / 100)
  • Vf represents the titration amount (mL) of the KOH aqueous solution
  • Wp represents the mass (g) of the measured resin solution
  • I represents the proportion (mass%) of the non-volatile content in the measured resin solution.
  • the coefficient of thermal expansion of the cured film is measured when the temperature is increased at a rate of temperature increase of 5 ° C./min, and the inflection obtained from the curve. The point was determined as the glass transition temperature Tg.
  • Example 1 Preparation of Second Liquid Y1 Containing Metal Salt of Organic Acid> 139.6 mg of silver neodecanoate (manufactured by Wako Pure Chemical Industries, Ltd., trade name “silver resinate MR4704-P”, molecular weight 279.12) was dissolved in 100 mL of distilled water to prepare a 5 mM silver neodecanoate solution. This was designated as a second liquid Y1 containing a metal salt of an organic acid.
  • silver neodecanoate manufactured by Wako Pure Chemical Industries, Ltd., trade name “silver resinate MR4704-P”, molecular weight 279.12
  • the first liquid W1 containing the conductive fibers obtained in Production Example 1 was uniformly applied at 25 g / m 2 on a 50 ⁇ m-thick polyethylene terephthalate film (PET film, manufactured by Teijin Limited, trade name “G2-50”).
  • PET film polyethylene terephthalate film
  • the film was dried for 5 minutes with a hot air convection dryer at 80 ° C., and after confirming that the water had volatilized, the film was pressurized with a linear pressure of 10 kg / cm to form a conductive film on the PET film.
  • the second liquid Y1 containing a metal salt of an organic acid is uniformly applied at 12.5 g / m 2 on the conductive film on the PET film, and heated for 5 minutes with a hot air convection dryer at 80 ° C. Dried.
  • a conductive film obtained after applying and drying the second liquid Y1 containing a metal salt of an organic acid was defined as a conductive film Z1.
  • the film thickness of the conductive film Z1 was 0.1 ⁇ m.
  • the exposure amount is 5 ⁇ 10 2 J / m 2 (from the support film side).
  • the support film is removed, and further irradiated with ultraviolet rays at an exposure amount of 1 ⁇ 10 4 J / m 2 (measured value at i-line) from above the conductive film.
  • a transmittance measurement sample of the photosensitive layer (film thickness 5.0 ⁇ m) including the photosensitive resin layer and the conductive film was obtained.
  • the transmittance of the obtained sample was measured using a haze meter (trade name “NDH-5000” manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • the transmittance of the photosensitive conductive film V1 on the glass substrate was 90.6%.
  • the obtained sample was contacted from the surface of the photosensitive conductive film (opposite surface of the glass substrate) using a non-contact type surface resistance meter (trade name “EC-80P” manufactured by Napson Co., Ltd.)
  • the surface resistivity of the photosensitive conductive film was measured.
  • the measurement mode of the non-contact type surface resistance meter was measured in the MH mode.
  • the surface resistance value of the photosensitive conductive film V1 was 85.2 ⁇ / ⁇ .
  • the exposure amount is 5 ⁇ 10 2 J / m 2 (from the support film side).
  • the support film is removed, and further irradiated with ultraviolet rays at an exposure amount of 1 ⁇ 10 4 J / m 2 (measured value at i-line) from above the conductive film.
  • a sample for high temperature and high humidity reliability evaluation of the photosensitive conductive film was obtained.
  • the obtained sample for high-temperature and high-humidity reliability evaluation is made using a non-contact surface resistance meter (trade name “EC-80P”, measurement mode: MH mode, manufactured by Napson Corporation), and the measurement probe is photosensitive.
  • the surface resistance value was measured by applying from the conductive film surface (opposite surface of the glass substrate). This surface resistance value was taken as the initial value (R0) before the high temperature and high humidity reliability evaluation.
  • the high-temperature and high-humidity reliability of the photosensitive conductive film was evaluated according to the following ratings based on the resistance values R0 and R1 before and after the reliability evaluation.
  • the ratio of R0 to R1 (R1 / R0) was Rr.
  • the score was ⁇ .
  • Examples 2-8 A second solution containing a metal salt of an organic acid was formed on the conductive film on the PET film in the same manner as in Example 1 except that the second liquids Y2 to Y8 containing a metal salt of an organic acid shown in Table 3 were used. Then, a photosensitive conductive film was prepared, and the transmittance, surface resistance value, and high temperature and high humidity reliability were evaluated. The results are shown in Table 4.
  • Comparative Example 1 A conductive film was produced on the PET film in the same manner as in Example 1 except that the second liquid containing the metal salt of the organic acid was not applied and heat-dried, and then the photosensitive conductive film was formed. It produced and evaluated various characteristics. The results are shown in Table 4.
  • Comparative Examples 2-3 In place of the second liquid containing a metal salt of an organic acid, the liquid Y9 or Y10 containing a metal salt of an inorganic acid shown in Table 3 was used in the same manner as in Example 1, and the conductivity on the PET film. On the film, a liquid containing a metal salt of an inorganic acid was applied and heat-dried. Thereafter, a photosensitive conductive film was prepared, and the transmittance, surface resistance value, and high temperature and high humidity reliability were evaluated. The results are shown in Table 4.
  • the above mixed solutions W2-4 were uniformly applied at 25 g / m 2 onto a 50 ⁇ m-thick polyethylene terephthalate film (PET film, product name “G2-50” manufactured by Teijin Ltd.), and dried with hot air convection at 80 ° C. It dried for 5 minutes with the machine, and after confirming that the water
  • the above mixed solutions W2 to W4 were used within 3 hours after preparation of the mixed solution. Then, the photosensitive conductive film was produced by the method similar to Example 1, and various characteristics were evaluated. The results are shown in Table 6.
  • Comparative Example 4 Except for using the mixed solution W5 shown in Table 5, a conductive film was formed on a PET film in the same manner as in Examples 9 to 11, and then a photosensitive conductive film was prepared. High temperature and high humidity reliability was evaluated. The results are shown in Table 6.
  • the conductive films Z in Examples 1 to 8 in which the conductive films containing conductive fibers were treated with the second liquid containing a metal salt of an organic acid had a high transmittance and a low surface resistance. At the same time, it was confirmed that the high temperature and high humidity reliability was excellent.
  • the conductive film in Comparative Example 1 that had not been treated with the second liquid containing the organic acid metal salt had a surface resistance value of 101.0 ⁇ / ⁇ and a low resistance value. There wasn't.
  • the conductive films in Comparative Examples 2 to 3 in which the conductive film was treated with a solution containing silver nitrate, which is a metal salt of an inorganic acid (metal inorganic acid salt) had high transmittance and low surface resistance. It was confirmed that the high humidity reliability was inferior to the conductive film Z of the example.
  • the conductive film Z of Examples 9 to 11 was used. Thus, it was confirmed that it had high transmittance and low surface resistance value, and at the same time, was excellent in high temperature and high humidity reliability.
  • the electrically conductive film preparation liquid set which has the 1st liquid containing the electroconductive fiber of this invention and the 2nd liquid containing the metal salt of organic acid is used, it has high transparency and a low resistance value.
  • the transparent conductive film which has high reliability, the laminated body which has a conductive film, a photosensitive conductive film, a base material with a conductive pattern, and its manufacturing method can be provided.

Abstract

The present invention provides an electroconductive-film-forming liquid set that includes a first liquid containing electroconductive fibers and a second liquid containing a metal salt of an organic acid.

Description

導電膜作製液セット、導電パターンの形成方法、及びタッチパネルConductive film preparation liquid set, conductive pattern forming method, and touch panel
 本発明は、導電膜作製液セット、導電膜作製液、転写形導電フィルム、転写形感光性導電フィルム、導電膜付き基材、導電パターンの形成方法、タッチパネル、及び導電性向上剤に関する。 The present invention relates to a conductive film preparation liquid set, a conductive film preparation liquid, a transfer-type conductive film, a transfer-type photosensitive conductive film, a substrate with a conductive film, a method for forming a conductive pattern, a touch panel, and a conductivity improver.
 パソコン、テレビ等の大型電子機器、カーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA機器、FA機器等の表示機器などには、液晶表示素子やタッチパネルが用いられている。これら液晶表示素子やタッチパネルは透明電極材から形成される導電パターンを備えている。 Liquid crystal display elements and touch panels are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones, and electronic dictionaries, and display devices such as OA devices and FA devices. These liquid crystal display elements and touch panels have a conductive pattern formed from a transparent electrode material.
 タッチパネルは、すでに各種の方式が実用化されている。近年、静電容量方式のタッチパネルの利用が進んでいる。静電容量方式タッチパネルでは、指先(導電体)がタッチ入力面に接触すると、指先と導電膜との間が静電容量結合し、コンデンサを形成する。静電容量方式タッチパネルは、指先の接触位置における電荷の変化を捉えることによって、その座標を検出している。 Various types of touch panels have already been put to practical use. In recent years, the use of capacitive touch panels has progressed. In a capacitive touch panel, when a fingertip (conductor) contacts the touch input surface, the fingertip and the conductive film are capacitively coupled to form a capacitor. The capacitive touch panel detects the coordinates by capturing the change in charge at the contact position of the fingertip.
 投影型静電容量方式のタッチパネルは、指先の多点検出が可能なため、複雑な指示を行うことができるという良好な操作性を備える。その操作性の良さから、投影型静電容量方式のタッチパネルは、携帯電話や携帯型音楽プレーヤ等の小型の表示装置を有する機器における表示面上の入力装置として利用が進んでいる。 The projected capacitive touch panel has good operability because it can detect multiple points on the fingertip and can give complicated instructions. Due to its good operability, a projected capacitive touch panel is increasingly used as an input device on a display surface in a device having a small display device such as a mobile phone or a portable music player.
 一般に、投影型静電容量方式のタッチパネルでは、X軸とY軸による2次元座標を表現するために、複数のX電極と、上記X電極に直交する複数のY電極とが、2層構造を形成している。これらの電極は透明電極材をパターン化することで形成されている。 In general, in a projected capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes. Forming. These electrodes are formed by patterning a transparent electrode material.
 従来、透明電極材には、高い光透過率を示すことから、酸化インジウムスズ(Indium-Tin-Oxide:ITO)、酸化インジウム、又は酸化スズが用いられている。しかしながら、ITOの原料であるインジウムは、いわゆるレアアースであることから、将来の供給不安が問題となっている。 Conventionally, indium tin oxide (Indium-Tin-Oxide: ITO), indium oxide, or tin oxide has been used as the transparent electrode material because it exhibits high light transmittance. However, since indium, which is a raw material of ITO, is a so-called rare earth, future supply insecurity is a problem.
 また、近年、タッチパネルの大型化やセンシング領域の感度向上の観点から、透明電極材の低抵抗化が求められている。ITOをパターン化して形成した電極の抵抗値を下げるためには、ITO膜厚を厚くする必要があるが、厚膜化に伴い、透明電極材の全光線透過率が低下したり、着色したりといった光学特性の低下が問題となる。 In recent years, from the viewpoint of increasing the size of the touch panel and improving the sensitivity of the sensing area, it is required to reduce the resistance of the transparent electrode material. In order to reduce the resistance value of the electrode formed by patterning ITO, it is necessary to increase the ITO film thickness. However, as the film thickness increases, the total light transmittance of the transparent electrode material decreases or is colored. Such deterioration of optical characteristics becomes a problem.
 さらに、タッチパネルのフレキシブル化の要求が強まっており、透明電極材にもフレキシブル性が求められている。このような背景から、低抵抗値化、及びフレキシブル化に対応可能なITOに代わる透明電極材が検討されている。 Furthermore, there is an increasing demand for flexible touch panels, and transparent electrode materials are also required to be flexible. From such a background, transparent electrode materials have been studied in place of ITO that can cope with low resistance and flexibility.
 ITOに代わる透明電極材として、導電性繊維を用いた透明電極材が提案されている。導電性繊維を用いた透明電極材は、ITOと比較して、高いフレキシブル性を有している。また、導電性繊維を含む液を用いたウェットプロセスで透明電極材を形成できることから、生産性に優れ、低コスト化が可能である。特に導電性繊維として、金属繊維を用いることで、高い光学特性を維持したまま、低抵抗値化することが可能である。 As a transparent electrode material replacing ITO, a transparent electrode material using conductive fibers has been proposed. A transparent electrode material using conductive fibers has higher flexibility than ITO. In addition, since the transparent electrode material can be formed by a wet process using a liquid containing conductive fibers, the productivity is excellent and the cost can be reduced. In particular, by using a metal fiber as the conductive fiber, it is possible to reduce the resistance value while maintaining high optical characteristics.
 具体的には、導電性繊維を含有する感光層を有する感光性導電フィルムを用いた導電パターンの形成方法が提案されている(下記特許文献1参照)。この技術を用いれば、種々の基材上にフォトリソグラフィー工程で直接導電パターンを簡便に形成できる。 Specifically, a method for forming a conductive pattern using a photosensitive conductive film having a photosensitive layer containing conductive fibers has been proposed (see Patent Document 1 below). If this technique is used, a conductive pattern can be easily formed directly on various substrates by a photolithography process.
 また、金属繊維を用いた高い透明性と低い抵抗値を有する透明電極材を得る手段として、金属繊維を含む透明電極膜において金属繊維のネットワークを、溶融処理(Fusing Process)する方法が提案されている(下記特許文献2参照)。 Further, as a means for obtaining a transparent electrode material having high transparency and low resistance value using metal fibers, a method of melting a metal fiber network in a transparent electrode film containing metal fibers (Fusing Process) has been proposed. (See Patent Document 2 below).
国際特許公開第2010/021224号公報International Patent Publication No. 2010/021224 国際特許公開第2014/133890号公報International Patent Publication No. 2014/133890
 しかしながら、特許文献2に開示されている方法により、金属繊維を含む透明導電膜を作製し、環境放置加速試験を実施したところ、信頼性に改善の余地があることがわかった。具体的には、特許文献2で開示されている方法で作製した金属繊維を含む透明導電膜は、高温高湿条件下での信頼性試験において、透明導電膜の抵抗値が上昇する現象が確認された。 However, when a transparent conductive film containing metal fibers was prepared by the method disclosed in Patent Document 2 and subjected to an environmental standing acceleration test, it was found that there was room for improvement in reliability. Specifically, the transparent conductive film containing metal fibers produced by the method disclosed in Patent Document 2 has been confirmed to exhibit a phenomenon that the resistance value of the transparent conductive film increases in a reliability test under high temperature and high humidity conditions. It was done.
 本発明の目的は、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することが可能な導電膜作製液セット、導電膜作製液、転写形導電フィルム、転写形感光性導電フィルム、及び導電パターンの形成方法、並びに抵抗値が充分低く、且つ高い信頼性を備える導電膜を有する導電膜付き基材、及びタッチパネルを提供することである。また、本発明の目的は、導電性向上剤を提供することである。 An object of the present invention is to provide a conductive film preparation liquid set, a conductive film preparation liquid, a transfer-type conductive film, and a transfer-type photosensitive conductive film capable of forming a conductive film with sufficiently low resistance and high reliability. And a method of forming a conductive pattern, and a substrate with a conductive film having a conductive film having a sufficiently low resistance value and high reliability, and a touch panel. Another object of the present invention is to provide a conductivity improver.
 本発明者は、透明導電膜の高温高湿条件下での信頼性について検討したところ、抵抗値の上昇が、従来技術において使用されていた処理液(Fusing Solution)に含まれる金属供給源に影響されることを見出した。そして、この知見に基づき検討を行った結果、特定の金属供給源を用いることにより、高温高湿条件下であっても導電膜の抵抗値が上昇しにくくなることを見出し、本発明を完成するに至った。 The present inventor examined the reliability of the transparent conductive film under high-temperature and high-humidity conditions. As a result, the increase in the resistance value affected the metal supply source contained in the processing solution (Fusing Solution) used in the prior art. I found out that As a result of investigation based on this knowledge, it was found that the resistance value of the conductive film is hardly increased even under a high temperature and high humidity condition by using a specific metal supply source, and the present invention is completed. It came to.
 本発明は、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液と、を有する、導電膜作製液セットを提供する。 The present invention provides a conductive film preparation liquid set having a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid.
 本発明の導電膜作製液セットによれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。すなわち、本発明の導電膜作製液セットによれば、抵抗値が充分に低く、かつ高温高湿条件下であっても抵抗値が上昇しにくい導電膜を形成することができる。 According to the conductive film preparation liquid set of the present invention, a conductive film having a sufficiently low resistance and high reliability can be formed. That is, according to the conductive film preparation solution set of the present invention, it is possible to form a conductive film that has a sufficiently low resistance value and that does not easily increase even under high temperature and high humidity conditions.
 上記有機酸の金属塩が炭素数5以上の脂肪酸塩であってもよい。 The metal salt of the organic acid may be a fatty acid salt having 5 or more carbon atoms.
 第2の液が還元剤をさらに含んでもよい。 The second liquid may further contain a reducing agent.
 上記還元剤がヒドロキシル基又はフェノール性水酸基を有する化合物であってもよい。 The reducing agent may be a compound having a hydroxyl group or a phenolic hydroxyl group.
 本発明はまた、導電性繊維と、有機酸の金属塩と、を含む、導電膜作製液を提供する。 The present invention also provides a conductive film preparation liquid containing conductive fibers and a metal salt of an organic acid.
 本発明の導電膜作製液によれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。すなわち、本発明の導電膜作製液によれば、抵抗値が充分に低く、かつ高温高湿条件下であっても抵抗値が上昇しにくい導電膜を形成することができる。 According to the conductive film preparation liquid of the present invention, a conductive film having sufficiently low resistance and high reliability can be formed. That is, according to the conductive film preparation liquid of the present invention, it is possible to form a conductive film that has a sufficiently low resistance value and that does not easily increase even under high temperature and high humidity conditions.
 上記有機酸の金属塩が炭素数5以上の脂肪酸塩であってもよい。 The metal salt of the organic acid may be a fatty acid salt having 5 or more carbon atoms.
 上記導電膜作製液は、還元剤をさらに含んでもよい。 The conductive film preparation liquid may further contain a reducing agent.
 上記還元剤がヒドロキシル基又はフェノール性水酸基を有する化合物であってもよい。 The reducing agent may be a compound having a hydroxyl group or a phenolic hydroxyl group.
 本発明はまた、支持フィルムと、上記支持フィルム上に設けられた導電膜と、を有し、上記導電膜は、上述の導電膜作製液セット、又は上述の導電膜作製液から形成される導電膜である、転写形導電フィルムを提供する。 The present invention also includes a support film and a conductive film provided on the support film, wherein the conductive film is a conductive film formed from the conductive film preparation liquid set or the conductive film preparation liquid described above. A transfer-type conductive film that is a film is provided.
 本発明の転写形導電フィルムによれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。 According to the transfer type conductive film of the present invention, a conductive film having a sufficiently low resistance and high reliability can be formed.
 本発明はまた、支持フィルムと、上記支持フィルム上に設けられた導電膜と、を有し、上記導電膜は、有機酸又は上記有機酸の金属塩を含む、転写形導電フィルムを提供する。 The present invention also provides a transfer-type conductive film having a support film and a conductive film provided on the support film, wherein the conductive film contains an organic acid or a metal salt of the organic acid.
 本発明の転写形導電フィルムによれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。 According to the transfer type conductive film of the present invention, a conductive film having a sufficiently low resistance and high reliability can be formed.
 上記有機酸が炭素数5以上の脂肪酸であってもよい。 The organic acid may be a fatty acid having 5 or more carbon atoms.
 本発明はまた、基材と、上記基材上に設けられた導電膜と、を有し、上記導電膜は、上述の導電膜作製液セット、又は上述の導電膜作製液から形成される導電膜である、導電膜付き基材を提供する。 This invention also has a base material and the electrically conductive film provided on the said base material, and the said electrically conductive film is the electrically conductive film formed from the above-mentioned electrically conductive film preparation liquid set or the above-mentioned electrically conductive film preparation liquid. A substrate with a conductive film, which is a film, is provided.
 本発明の導電膜付き基材は、本発明に係る導電膜作製液セット又は導電膜作製液から形成される導電膜を備えるため、抵抗値が充分低く、かつ高い信頼性を備える導電膜付き基材を提供できる。 Since the base material with a conductive film of the present invention includes a conductive film formed from the conductive film preparation liquid set or the conductive film preparation liquid according to the present invention, the base with a conductive film having sufficiently low resistance and high reliability. Can provide material.
 本発明は、基材と、上記基材上に設けられた導電膜と、を有し、上記導電膜は、有機酸又は上記有機酸の金属塩を含む、導電膜付き基材を提供する。 This invention has a base material and the electrically conductive film provided on the said base material, and the said electrically conductive film provides the base material with an electrically conductive film containing the organic acid or the metal salt of the said organic acid.
 本発明の導電膜付き基材は、本発明に係る導電膜作製液セット又は導電膜作製液から形成される導電膜を備えるため、抵抗値が充分低く、かつ高い信頼性を備える導電膜付き基材を提供できる。 Since the base material with a conductive film of the present invention includes a conductive film formed from the conductive film preparation liquid set or the conductive film preparation liquid according to the present invention, the base with a conductive film having sufficiently low resistance and high reliability. Can provide material.
 上記有機酸が炭素数5以上の脂肪酸であってもよい。 The organic acid may be a fatty acid having 5 or more carbon atoms.
 本発明はまた、上述の導電膜付き基材上に所定のパターンとなるように樹脂硬化部を形成する工程と、上記樹脂硬化部が形成されていない部分の導電膜を除去又は不導体化する工程と、上記樹脂硬化部を除去する工程と、を備える、導電パターンの形成方法を提供する。 The present invention also includes a step of forming a resin-cured portion on the above-mentioned substrate with a conductive film so as to form a predetermined pattern, and removing or deconducting the conductive film in a portion where the resin-cured portion is not formed. Provided is a method for forming a conductive pattern comprising a step and a step of removing the cured resin portion.
 本発明の導電パターンの形成方法によれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。 According to the method for forming a conductive pattern of the present invention, a conductive film having a sufficiently low resistance value and high reliability can be formed.
 本発明はまた、支持フィルムと、上記支持フィルム上に設けられた導電膜を含む感光層と、を有し、上記導電膜は、上述の導電膜作製液セット、又は上述の導電膜作製液から形成される導電膜である、転写形感光性導電フィルムを提供する。 The present invention also includes a support film and a photosensitive layer including a conductive film provided on the support film, wherein the conductive film is from the conductive film preparation liquid set or the conductive film preparation liquid described above. Provided is a transfer type photosensitive conductive film which is a conductive film to be formed.
 本発明の転写形感光性導電フィルムによれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。 According to the transfer type photosensitive conductive film of the present invention, a conductive film having a sufficiently low resistance value and high reliability can be formed.
 本発明はまた、支持フィルムと、上記支持フィルム上に設けられた導電膜を含む感光層と、を有し、上記導電膜は、有機酸又は上記有機酸の金属塩を含む、転写形感光性導電フィルムを提供する。 The present invention also includes a support film and a photosensitive layer including a conductive film provided on the support film, wherein the conductive film includes an organic acid or a metal salt of the organic acid. A conductive film is provided.
 本発明の転写形感光性導電フィルムによれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。 According to the transfer type photosensitive conductive film of the present invention, a conductive film having a sufficiently low resistance value and high reliability can be formed.
 上記有機酸が炭素数5以上の脂肪酸であってもよい。 The organic acid may be a fatty acid having 5 or more carbon atoms.
 本発明はまた、上述の転写形感光性導電フィルムが有する感光層を基材上に転写する工程と、基材上に転写された感光層に、パターン状に活性光線を照射する露光工程と、上記感光層の未露光部を除去することにより導電パターンを形成する導電パターン形成工程と、を備える、導電パターンの形成方法を提供する。 The present invention also includes a step of transferring a photosensitive layer of the above-described transfer-type photosensitive conductive film onto a substrate, an exposure step of irradiating the photosensitive layer transferred onto the substrate with actinic rays in a pattern, And a conductive pattern forming step of forming a conductive pattern by removing an unexposed portion of the photosensitive layer.
 本発明の導電パターンの形成方法によれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することができる。 According to the method for forming a conductive pattern of the present invention, a conductive film having a sufficiently low resistance value and high reliability can be formed.
 本発明はまた、上述の導電パターンの形成方法により形成された導電パターンを有する、タッチパネルを提供する。 The present invention also provides a touch panel having a conductive pattern formed by the above-described method for forming a conductive pattern.
 本発明のタッチパネルは、本発明の導電パターンの形成方法により形成される導電パターンを有することから、センシング感度を高くすることができ、そして高い信頼性を備えるタッチパネルにできる。 Since the touch panel of the present invention has a conductive pattern formed by the conductive pattern forming method of the present invention, the sensing sensitivity can be increased, and a touch panel with high reliability can be obtained.
 本発明はまた、導電性繊維と、有機酸又は上記有機酸の金属塩と、を含む導電膜を有する、タッチパネルを提供する。 The present invention also provides a touch panel having a conductive film containing conductive fibers and an organic acid or a metal salt of the organic acid.
 本発明のタッチパネルは、センシング感度を高くすることができ、そして高い信頼性を備えるタッチパネルにできる。 The touch panel of the present invention can increase the sensing sensitivity and can be a touch panel with high reliability.
 上記有機酸が炭素数5以上の脂肪酸であってもよい。 The organic acid may be a fatty acid having 5 or more carbon atoms.
 本発明はまた、炭素数5以上の脂肪酸の金属塩を含む、導電性向上剤を提供する。 The present invention also provides a conductivity improver comprising a metal salt of a fatty acid having 5 or more carbon atoms.
 本発明に係る導電性向上剤によれば、導電膜の抵抗値上昇を抑制することができる。 The conductivity improver according to the present invention can suppress an increase in the resistance value of the conductive film.
 本発明によれば、抵抗値が充分低く、かつ高い信頼性を備える、導電膜を形成することが可能な導電膜作製液セット、導電膜作製液、転写形導電フィルム、転写形感光性導電フィルム、及び導電パターンの形成方法、並びに抵抗値が充分低く、且つ高い信頼性を備える導電膜を有する導電膜付き基材、及びタッチパネルを提供することができる。また本発明は、導電性向上剤を提供することができる。 According to the present invention, a conductive film preparation liquid set, a conductive film preparation liquid, a transfer-type conductive film, and a transfer-type photosensitive conductive film capable of forming a conductive film with sufficiently low resistance and high reliability. And the formation method of a conductive pattern, and the base material with a electrically conductive film and the touch panel which have a conductive film with resistance value sufficiently low and high reliability can be provided. In addition, the present invention can provide a conductivity improver.
導電性フィルムの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of an electroconductive film. 感光性導電フィルムの一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of a photosensitive conductive film. 感光性導電フィルムの一実施形態を示す一部切欠き斜視図である。It is a partially cutaway perspective view showing one embodiment of a photosensitive conductive film. 感光性導電フィルムを用いた導電パターン形成方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating one Embodiment of the conductive pattern formation method using the photosensitive conductive film. 感光性導電フィルムを用いた導電パターンの形成方法の別の実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating another embodiment of the formation method of the conductive pattern using the photosensitive conductive film. 静電容量式のタッチパネルセンサの一例を示す模式上面図である。It is a model top view which shows an example of an electrostatic capacitance type touch panel sensor. 図6に示されるタッチパネルセンサの製造方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing method of the touch panel sensor shown by FIG.
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。「(ポリ)オキシエチレン鎖」はオキシエチレン基又はポリオキシエチレン基を意味し、「(ポリ)オキシプロピレン鎖」はオキシプロピレン基又はポリオキシプロピレン基を意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 In this specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acrylate” means acrylate or methacrylate. “(Poly) oxyethylene chain” means oxyethylene group or polyoxyethylene group, and “(poly) oxypropylene chain” means oxypropylene group or polyoxypropylene group. “A or B” only needs to include one of A and B, or may include both.
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されるものであれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In this specification, the term “process” includes not only an independent process but also a case where the intended action of the process can be achieved even if it cannot be clearly distinguished from other processes. Included in the term. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means. In addition, the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
 本実施形態は、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液と、を有する、導電膜作製液セット、又は導電性繊維と、有機酸の金属塩と、を含む、導電膜作製液を提供する。 This embodiment includes a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid, a conductive film preparation liquid set, or conductive fibers, and a metal salt of an organic acid. A conductive film preparation liquid is provided.
<導電性繊維を含む第1の液>
 本実施形態における、導電性繊維を含む第1の液について説明する。導電性繊維を含む第1の液としては、導電性繊維が媒体(溶媒)に分散している分散液(導電性繊維分散液)の態様が好ましい。
<First liquid containing conductive fibers>
The 1st liquid containing an electroconductive fiber in this embodiment is demonstrated. The first liquid containing conductive fibers is preferably a dispersion liquid (conductive fiber dispersion liquid) in which conductive fibers are dispersed in a medium (solvent).
 上記導電性繊維としては、特に制限は無く使用できる。導電性繊維としては、金、銀、銅、白金等の金属繊維、カーボンナノチューブ等の炭素繊維などが挙げられる。高い透明性と低い抵抗値とを両立した導電膜を形成できる点から、導電性繊維としては、金属繊維が好ましい。金属繊維としては、金属繊維の作製のし易さの点から、銀繊維がより好ましい。 The conductive fiber is not particularly limited and can be used. Examples of the conductive fiber include metal fibers such as gold, silver, copper, and platinum, and carbon fibers such as carbon nanotubes. A metal fiber is preferable as the conductive fiber because a conductive film having both high transparency and a low resistance value can be formed. As the metal fiber, silver fiber is more preferable from the viewpoint of easy production of the metal fiber.
 上記金属繊維は、例えば、金属イオンをNaBH等の還元剤で還元する方法、又は、ポリオール法により調製することができる。また、市販品の銀繊維として、ClearOhm-Ink(米カンブリオス株式会社製、商品名)を用いることができる。カーボンナノチューブは、Unidym社のHipco単層カーボンナノチューブ等の市販品を用いることができる。 The metal fiber can be prepared by, for example, a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method. Further, as a commercially available silver fiber, ClearOhm-Ink (trade name, manufactured by Cambrios Inc., USA) can be used. Commercially available products such as Unipym's Hipco single-walled carbon nanotubes can be used as the carbon nanotubes.
 導電性繊維の繊維径は、導電性と光透過率の観点から、1nm~50nmであることが好ましく、5nm~45nmであることがより好ましく、10nm~40nmであることがさらに好ましい。また、導電性繊維の繊維長は、導電性と光透過率の観点から、1μm~100μmであることが好ましく、10μm~80μmであることがより好ましく、20μm~70μmであることがさらに好ましく、30μm~50μmであることが特に好ましい。繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。 The fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 5 nm to 45 nm, and further preferably 10 nm to 40 nm from the viewpoints of conductivity and light transmittance. The fiber length of the conductive fiber is preferably 1 μm to 100 μm, more preferably 10 μm to 80 μm, still more preferably 20 μm to 70 μm, and more preferably 30 μm from the viewpoint of conductivity and light transmittance. It is particularly preferable that the thickness is ˜50 μm. The fiber diameter and fiber length can be measured with a scanning electron microscope.
 本実施形態において、導電性繊維を含む第1の液は、導電性繊維と合わせて有機導電体を混合することができる。有機導電体としては、特に制限は無く用いることができるが、チオフェン誘導体、アニリン誘導体のポリマー等の有機導電体を用いることが好ましい。具体的には、ポリエチレンジオキシチオフェン、ポリヘキシルチオフェン、ポリアニリン、ポリビニルピロリドン等を用いることが好ましい。また、導電性繊維を含む第1の液は、必要に応じて界面活性剤等の分散安定剤を含むことができる。 In the present embodiment, the first liquid containing the conductive fiber can be mixed with the organic conductor together with the conductive fiber. The organic conductor is not particularly limited and can be used, but it is preferable to use an organic conductor such as a polymer of a thiophene derivative or an aniline derivative. Specifically, it is preferable to use polyethylenedioxythiophene, polyhexylthiophene, polyaniline, polyvinylpyrrolidone, or the like. Moreover, the 1st liquid containing an electroconductive fiber can contain dispersion stabilizers, such as surfactant, as needed.
 第1の液の媒体(溶媒)としては、水又は有機溶剤を用いることができる。有機溶剤としては、例えば、アルコール類、エーテル類、グリコール類、ケトン類、エステル類、アミド類等を使用することができる。導電性繊維の分散性の観点から、水、アルコール類、グリコール類、エステル類、アミド類等が好ましい。なかでも、低温で溶媒成分を乾燥除去できる点から、水、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール等の低分子量アルコール類、低分子量エステル類などがより好ましい。 As the medium (solvent) of the first liquid, water or an organic solvent can be used. As the organic solvent, for example, alcohols, ethers, glycols, ketones, esters, amides and the like can be used. From the viewpoint of dispersibility of the conductive fiber, water, alcohols, glycols, esters, amides, and the like are preferable. Among them, low molecular weight alcohols such as water, methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, and t-butanol, low molecular weight esters, etc. can be removed at low temperatures. Is more preferable.
<有機酸の金属塩を含む第2の液>
 本実施形態の有機酸の金属塩を含む第2の液について説明する。本実施形態に係る有機酸の金属塩を含む第2の液は、(M)金属供給源である有機酸の金属塩(金属有機酸塩)と(S)溶媒とを含む。金属供給源として有機酸の金属塩を用いることで、高い信頼性を有する導電膜を作製することができる。また、有機酸の金属塩を含む第2の液は、(R)還元剤を含むことができる。これによって、より低温でより効率よく金属還元反応を進めることができ、高い透明性と低い抵抗値とを有する導電膜を、低温で形成することができる。本実施形態に係る有機酸の金属塩を含む第2の液は、金属有機酸塩を含む金属熱還元溶液ともいえる。
<Second liquid containing metal salt of organic acid>
The 2nd liquid containing the metal salt of the organic acid of this embodiment is demonstrated. The 2nd liquid containing the metal salt of the organic acid which concerns on this embodiment contains the metal salt (metal organic acid salt) of the organic acid which is (M) metal supply source, and (S) solvent. By using a metal salt of an organic acid as a metal supply source, a highly reliable conductive film can be manufactured. Moreover, the 2nd liquid containing the metal salt of organic acid can contain the (R) reducing agent. Accordingly, the metal reduction reaction can be advanced more efficiently at a lower temperature, and a conductive film having high transparency and a low resistance value can be formed at a low temperature. It can be said that the 2nd liquid containing the metal salt of the organic acid which concerns on this embodiment is a metal thermal reduction solution containing a metal organic acid salt.
 <金属供給源>
 (M)金属供給源について説明する。本明細書において、金属供給源とは、単一金属、金属酸化物、金属塩等の金属イオンを生成することができる化合物を意味する。本実施形態においては、金属供給源として有機酸の金属塩を用いる。有機酸の金属塩としては、特に制限は無く、金属イオンの反応性、還元性、又は有機酸の金属塩の溶媒に対する溶解性等の観点から選択することができる。
<Metal supply source>
(M) A metal supply source will be described. In the present specification, the metal source means a compound capable of generating a metal ion such as a single metal, a metal oxide, or a metal salt. In this embodiment, a metal salt of an organic acid is used as the metal supply source. There is no restriction | limiting in particular as a metal salt of an organic acid, It can select from viewpoints, such as the solubility with respect to the reactivity of a metal ion, reducibility, or the organic acid metal salt in a solvent.
 有機酸の金属塩としては、具体的には、バレリアン酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ベヘン酸、アラキジン酸、ステアリン酸、リグノセリン酸、ネオデカン酸、セロチン酸、モンタン酸、メリシン酸、酢酸、プロピオン酸、クエン酸、没食子酸、蓚酸、ラウリル酸等の酸と金属との塩、1-(3-カルボキシプロピル)チオ尿素、1-(3-カルボキシプロピル)-3,3-ジメチルチオ尿素等のカルボキシアルキルチオ尿素と金属との塩、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド等のアルデヒド類と、サリチル酸、安息香酸、3,5-ジヒドロキシ安息香酸、5,5-チオジサリチル酸等のヒドロキシ置換芳香族カルボン酸との反応生成物と金属との金属塩の錯体、3-(2-カルボキシエチル)-4-ヒドロキシメチル-4-チアゾリン-2-チオエン、3-カルボキシメチル-4-チアゾリン-2-チオエン等のチオエン類と金属との金属塩又は金属塩の錯体、イミダゾール、ピラゾール、ウラゾール、1,2,4-チアゾール、1H-テトラゾール、3-アミノ-5-ベンジルチオ-1,2,4-トリアゾール、ベンゾトリアゾール等の窒素酸と金属との塩又は金属錯体、サッカリンの金属塩、5-クロロサリチルアルドキシムの金属塩、メルカプチド類の金属塩などが挙げられる。これらの中でも、低温で、効率よく金属の還元反応が進行し、低温処理で低抵抗値な導電膜を得る事ができる点から、有機酸の金属塩が炭素数5以上の脂肪酸塩(金属脂肪酸)であることが好ましい。 Specific examples of metal salts of organic acids include valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, behenic acid, arachidin Acid, metal salts such as stearic acid, lignoceric acid, neodecanoic acid, serotic acid, montanic acid, melissic acid, acetic acid, propionic acid, citric acid, gallic acid, oxalic acid, lauric acid, etc., 1- (3-carboxyl Propyl) thiourea, salts of carboxyalkylthiourea such as 1- (3-carboxypropyl) -3,3-dimethylthiourea with metals, aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, salicylic acid, benzoic acid, 3, Hydroxy such as 5-dihydroxybenzoic acid and 5,5-thiodisalicylic acid Complex of metal salt of reaction product with substituted aromatic carboxylic acid and metal, 3- (2-carboxyethyl) -4-hydroxymethyl-4-thiazoline-2-thioene, 3-carboxymethyl-4-thiazoline Metal salts or metal salt complexes of thioenes such as 2-thioene and metals, imidazole, pyrazole, urazole, 1,2,4-thiazole, 1H-tetrazole, 3-amino-5-benzylthio-1,2,4 -Metal salts or metal complexes of nitrogen acids and metals such as triazole and benzotriazole, metal salts of saccharin, metal salts of 5-chlorosalicylaldoxime, metal salts of mercaptides and the like. Among these, a metal salt of an organic acid is a fatty acid salt (metal fatty acid) having a carbon number of 5 or more because a metal reduction reaction proceeds efficiently at low temperatures and a low-resistance conductive film can be obtained by low-temperature treatment. ) Is preferable.
 有機酸の金属塩が炭素数5以上の脂肪酸塩(金属脂肪酸)である液は、導電性向上剤として使用することもできる。 A liquid in which a metal salt of an organic acid is a fatty acid salt having 5 or more carbon atoms (metal fatty acid) can also be used as a conductivity improver.
 上述の有機酸の金属塩のうち、有機酸の金属塩の溶媒への溶解性と、金属イオンの反応性(熱還元反応の進行のしやすさ)の点で、バレリアン酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ベヘン酸、アラキジン酸、ステアリン酸、ネオデカン酸、リグノセリン酸、セロチン酸、モンタン酸、又はメリシン酸の金属塩がより好ましく、入手のしやすさと反応性(熱還元反応の進行のしやすさ)の点から、ベヘン酸塩、アラキジン酸塩、ステアリン酸塩、又はネオデカン酸塩がより好ましい。 Among the above-mentioned organic acid metal salts, valeric acid, caproic acid, enanthate in terms of the solubility of the organic acid metal salt in the solvent and the reactivity of the metal ion (ease of progress of thermal reduction reaction). Acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, behenic acid, arachidic acid, stearic acid, neodecanoic acid, lignoceric acid, serotic acid, montanic acid, or melicic acid The metal salt is more preferable, and behenate, arachidate, stearate, or neodecanoate is more preferable from the viewpoint of availability and reactivity (easy progress of thermal reduction reaction).
 有機酸の金属塩に用いられる金属種としては、特に制限なく用いることができる。還元反応によって導電性繊維上に形成される金属の安定性の観点から、カルシウム、マグネシウム、アルミニウム、スズ、亜鉛、鉛、コバルト、ニッケル、鉄、銅、銀、金、白金、タングステン、クロム、チタン、マンガンが好ましい。金属塩の入手のし易さ、導電性繊維上に形成される金属の抵抗値、安定性の観点から、鉄、銅、銀、金、白金、チタン、ニッケル、亜鉛がより好ましく、銀、銅、金、白金がさらに好ましい。 The metal species used in the organic acid metal salt can be used without any particular limitation. From the viewpoint of the stability of the metal formed on the conductive fiber by the reduction reaction, calcium, magnesium, aluminum, tin, zinc, lead, cobalt, nickel, iron, copper, silver, gold, platinum, tungsten, chromium, titanium Manganese is preferred. Iron, copper, silver, gold, platinum, titanium, nickel, and zinc are more preferable from the viewpoint of the availability of metal salts, the resistance value of metals formed on conductive fibers, and stability, and silver, copper Gold, platinum are more preferable.
 有機酸の金属塩としては、入手のし易さ、熱還元反応の進行のし易さ、導電性繊維上に形成される金属の抵抗値の点から、ベヘン酸銀、アラキジン酸銀、ステアリン酸銀、又はネオデカン酸銀が特に好ましい。 As organic acid metal salts, silver behenate, silver arachidate, and stearic acid are easy to obtain, easy to proceed with a thermal reduction reaction, and from the point of resistance of the metal formed on the conductive fiber. Silver or silver neodecanoate is particularly preferred.
 有機酸の金属塩は、金属化合物と有機酸とを、任意の溶媒中で混合することにより得られる。金属化合物における金属種としては、上記の金属種が好ましいものとして挙げられる。有機酸の金属塩の混合法としては、具体的には、正混合法、逆混合法、同時混合法、コントロールドダブルジェット法(例えば特開平9-127643号参照)等が好ましく用いられる。例えば、水中で硝酸銀とステアリン酸を混合することで、ステアリン酸銀を得る事ができる。 A metal salt of an organic acid can be obtained by mixing a metal compound and an organic acid in an arbitrary solvent. As a metal seed | species in a metal compound, said metal seed | species is mentioned as a preferable thing. Specific examples of the method for mixing the organic acid metal salt include a normal mixing method, a back mixing method, a simultaneous mixing method, and a controlled double jet method (for example, see JP-A-9-127463). For example, silver stearate can be obtained by mixing silver nitrate and stearic acid in water.
 有機酸の金属塩を含む第2の液における有機酸の金属塩の濃度としては、溶媒に対する有機酸の金属塩の溶解性、溶液の安定性、金属イオンの反応性の点から、0.001mM~1000mMが好ましく、0.01mM~100mMがより好ましく、0.1mM~10mMがさらに好ましい。ここで、有機酸の金属塩の濃度は、金属イオン当たりの濃度である。 The concentration of the metal salt of the organic acid in the second liquid containing the metal salt of the organic acid is 0.001 mM from the viewpoint of the solubility of the metal salt of the organic acid in the solvent, the stability of the solution, and the reactivity of the metal ion. ˜1000 mM is preferable, 0.01 mM to 100 mM is more preferable, and 0.1 mM to 10 mM is further preferable. Here, the concentration of the metal salt of the organic acid is a concentration per metal ion.
 <溶媒>
 有機酸の金属塩を含む第2の液に使用される(S)溶媒について説明する。(S)溶媒としては、従来公知のものが挙げられ、水、又は有機溶媒(例えば、アルコール類、エーテル類、グリコール類、ケトン類、エステル類、アミド類等)が使用できる。各種溶媒を混合して使用してもよい。有機酸の金属塩及び還元剤成分の溶解性の点から、水、アルコール類、グリコール類、エステル類、アミド類等が好ましい。なかでも、低温で溶媒成分を乾燥除去できる点から、水、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール等の低分子量アルコール類、低分子量エステル類などがより好ましい。
<Solvent>
The (S) solvent used for the 2nd liquid containing the metal salt of an organic acid is demonstrated. (S) As a solvent, a conventionally well-known thing is mentioned, Water or organic solvents (For example, alcohols, ethers, glycols, ketones, esters, amides, etc.) can be used. Various solvents may be mixed and used. From the viewpoint of the solubility of the organic acid metal salt and the reducing agent component, water, alcohols, glycols, esters, amides and the like are preferable. Among them, low molecular weight alcohols such as water, methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, and t-butanol, low molecular weight esters, etc. can be removed at low temperatures. Is more preferable.
 (S)溶媒のなかでも、1級アルコール又は2級アルコールといった低級アルコールは、溶媒自身が金属イオンを還元する能力があるため、より低温で金属熱還元反応を進行できる。上記の観点からは、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、又はその混合溶媒、水との混合溶媒を用いることが好ましい。
 また、(S)溶媒のなかでも、水及び3級アルコールは、溶媒自身が金属イオンを還元する能力を有していないことから、有機酸の金属塩を含む溶液の安定性をより向上させることができる(溶液状態での金属の析出を防ぐことができる)。上記の観点からは、溶媒としては、水、t-ブタノール、又はその混合溶媒を用いることが好ましい。
(S) Among the solvents, lower alcohols such as primary alcohols or secondary alcohols have the ability to reduce metal ions by themselves, so that the metal thermal reduction reaction can proceed at a lower temperature. From the above viewpoint, it is preferable to use methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, or a mixed solvent thereof, and a mixed solvent with water.
In addition, among the (S) solvents, water and tertiary alcohols do not have the ability to reduce metal ions, so that the stability of a solution containing a metal salt of an organic acid is further improved. (Prevents metal precipitation in solution). From the above viewpoint, it is preferable to use water, t-butanol, or a mixed solvent thereof as the solvent.
 <還元剤>
 (R)還元剤について説明する。有機酸の金属塩を含む第2の液が(R)還元剤を含むことで、より低温でより効率よく金属還元反応を進めることができ、高い透明性と低い抵抗値とを有する導電膜を、低温で形成することができる。(R)還元剤としては、特に制限は無く、金属イオンの反応性、還元性、還元剤の溶媒への溶解性、有機酸の金属塩を含む第2の液の安定性等の観点から任意に選択することができる。
<Reducing agent>
(R) The reducing agent will be described. Since the second liquid containing the metal salt of the organic acid contains the (R) reducing agent, the metal reduction reaction can be advanced more efficiently at a lower temperature, and a conductive film having high transparency and a low resistance value is obtained. Can be formed at low temperature. (R) The reducing agent is not particularly limited, and may be arbitrarily selected from the viewpoints of metal ion reactivity, reducibility, solubility of the reducing agent in a solvent, stability of the second liquid containing a metal salt of an organic acid, and the like. Can be selected.
 本実施形態に用いられる(R)還元剤としては、従来公知の化合物を用いることができる。具体的には、フェノール類、ポリフェノール類、ナフトール類、ビスナフトール類、2個以上の水酸基を有するポリヒドロキシベンゼン類、2個以上の水酸基を有するポリヒドロキシナフタレン類、アスコルビン酸類、3-ピラゾリドン類、ピラゾリン-5-オン類、ピラゾリン類、フェニレンジアミン類、ヒドロキシルアミン類、ハイドロキノンモノエーテル類、ヒドロオキサミン酸類、ヒドラジド類、アミドオキシム類、N-ヒドロキシ尿素類等が挙げられる。本実施形態においては、上述した還元剤の中から、溶媒への溶解性、又は還元剤としての反応性を考慮して、適宜選択して用いることができる。 Conventionally known compounds can be used as the (R) reducing agent used in the present embodiment. Specifically, phenols, polyphenols, naphthols, bisnaphthols, polyhydroxybenzenes having two or more hydroxyl groups, polyhydroxynaphthalenes having two or more hydroxyl groups, ascorbic acids, 3-pyrazolidones, Examples include pyrazolin-5-ones, pyrazolines, phenylenediamines, hydroxylamines, hydroquinone monoethers, hydrooxamic acids, hydrazides, amide oximes, and N-hydroxyureas. In the present embodiment, among the reducing agents described above, it can be appropriately selected and used in consideration of solubility in a solvent or reactivity as a reducing agent.
 上記還元剤の中でも、ヒドロキシル基又はフェノール性水酸基を有する化合物が好ましく、フェノール性水酸基を有する化合物(特には、フェノール類、ナフトール類)の2以上がアルキレン基又は硫黄原子によって連結されたポリフェノール類がより好ましく、フェノール性水酸基を有する化合物のヒドロキシ置換位置に隣接した位置の少なくとも一つにアルキル基(例えば、メチル基、エチル基、プロピル基、t-ブチル基、シクロヘキシル基等)又はアシル基(例えば、アセチル基、プロピオニル基等)が置換したフェノール性水酸基を有する化合物の2個以上がアルキレン基又は硫黄によって連結されたポリフェノール類がさらに好ましい。 Among the reducing agents, compounds having a hydroxyl group or a phenolic hydroxyl group are preferable, and polyphenols in which two or more compounds having a phenolic hydroxyl group (particularly, phenols and naphthols) are linked by an alkylene group or a sulfur atom are used. More preferably, at least one position adjacent to the hydroxy substitution position of the compound having a phenolic hydroxyl group is an alkyl group (for example, a methyl group, an ethyl group, a propyl group, a t-butyl group, a cyclohexyl group, etc.) or an acyl group (for example, More preferred are polyphenols in which two or more of the compounds having a phenolic hydroxyl group substituted with an acetyl group, propionyl group, etc., are linked by an alkylene group or sulfur.
 上記還元剤としては、具体的には、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、1,1-ビス(2-ヒドロキシ-3,5-ジメチルフェニル)-3,5,5-トリメチルヘキサン、1,1-ビス(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)メタン、1,1-ビス(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)メタン、6,6’-ベンジリデン-ビス(2,4-ジ-t-ブチルフェノール)、6,6’-ベンジリデン-ビス(2-t-ブチル-4-メチルフェノール)、6,6’-ベンジリデン-ビス(2,4-ジメチルフェノール)、1,1-ビス(2-ヒドロキシ-3,5-ジメチルフェニル)-2-メチルプロパン、1,1,5,5-テトラキス(2-ヒドロキシ-3,5-ジメチルフェニル)-2,4-エチルペンタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロパン等が好ましい。 Specific examples of the reducing agent include 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol), 1,1-bis (2-hydroxy-3,5-dimethylphenyl) -3. , 5,5-trimethylhexane, 1,1-bis (2-hydroxy-3-tert-butyl-5-methylphenyl) methane, 1,1-bis (2-hydroxy-3,5-di-tert-butyl) Phenyl) methane, 6,6′-benzylidene-bis (2,4-di-t-butylphenol), 6,6′-benzylidene-bis (2-t-butyl-4-methylphenol), 6,6′- Benzylidene-bis (2,4-dimethylphenol), 1,1-bis (2-hydroxy-3,5-dimethylphenyl) -2-methylpropane, 1,1,5,5-tetrakis (2-hydroxy-3) , 5-Dimethyl Phenyl) -2,4-ethylpentane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-di-t-butylphenyl) Propane and the like are preferred.
 ビスナフトール類としては、2,2’-ジヒドロキシ-1,1’-ビナフチル、6,6’-ジブロモ-2,2’-ジヒドロキシ-1,1’-ビナフチル、6,6’-ジニトロ-2,2’-ジヒドロキシ-1,1’-ビナフチル、ビス(2-ヒドロキシ-1-ナフチル)メタン、4,4’-ジメトキシ-1,1’-ジヒドロキシ-2,2’-ビナフチル等が挙げられる。 Bisnaphthols include 2,2′-dihydroxy-1,1′-binaphthyl, 6,6′-dibromo-2,2′-dihydroxy-1,1′-binaphthyl, 6,6′-dinitro-2, Examples thereof include 2'-dihydroxy-1,1'-binaphthyl, bis (2-hydroxy-1-naphthyl) methane, 4,4'-dimethoxy-1,1'-dihydroxy-2,2'-binaphthyl and the like.
 スルホンアミドフェノール又はスルホンアミドナフトール類としては、4-ベンゼンスルホンアミドフェノール、2-ベンゼンスルホンアミドフェノール、2,6-ジクロロ-4-ベンゼンスルホンアミドフェノール、4-ベンゼンスルホンアミドナフトール等が挙げられる。 Examples of sulfonamidophenols or sulfonamidonaphthols include 4-benzenesulfonamidophenol, 2-benzenesulfonamidophenol, 2,6-dichloro-4-benzenesulfonamidophenol, 4-benzenesulfonamidonaphthol and the like.
 有機酸の金属塩を含む第2の液における(R)還元剤の量は、有機酸の金属塩、還元剤の種類、その他の添加剤によって変化するが、一般的には有機酸の金属塩中の金属1molに対して0.05~10molが好ましく、0.1~3molがより好ましい。 The amount of the (R) reducing agent in the second liquid containing the metal salt of the organic acid varies depending on the metal salt of the organic acid, the type of the reducing agent, and other additives, but generally the metal salt of the organic acid. The amount is preferably from 0.05 to 10 mol, more preferably from 0.1 to 3 mol, based on 1 mol of the metal therein.
 本実施形態は、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液とを有する、導電膜作製液セットを例に説明したが、あらかじめ、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液とを混合して、導電性繊維と、有機酸の金属塩とを含む、導電膜作製液としてもよい。
 また、上記有機酸の金属塩を含む第2の液を、上記導電性繊維を含む第1の液により形成された導電膜に対して、塗布し、乾燥、加熱することにより導電膜を作製してもよい。いずれの方法でも、得られる導電膜は、高透明性、低抵抗値かつ高い信頼性を有するものとすることができる。
Although this embodiment demonstrated the conductive film preparation liquid set which has the 1st liquid containing a conductive fiber and the 2nd liquid containing the metal salt of an organic acid as an example, a conductive fiber is included beforehand. It is good also as a electrically conductive film preparation liquid which mixes a 1st liquid and the 2nd liquid containing the metal salt of an organic acid, and contains an electroconductive fiber and the metal salt of an organic acid.
In addition, the second liquid containing the metal salt of the organic acid is applied to the conductive film formed by the first liquid containing the conductive fibers, dried, and heated to produce a conductive film. May be. In any method, the obtained conductive film can have high transparency, low resistance, and high reliability.
 導電膜作製液は、媒体に対して導電性繊維と有機酸の金属塩とを配合して調製することもできる。導電膜作製液の調製には、上述した導電性繊維、有機酸の金属塩、還元剤、溶媒等を使用することができる。 The conductive film preparation liquid can be prepared by blending a conductive fiber and a metal salt of an organic acid with a medium. For the preparation of the conductive film preparation liquid, the above-described conductive fibers, metal salts of organic acids, reducing agents, solvents, and the like can be used.
<導電膜の形成方法>
 本実施形態にかかる導電膜作製液セット又は導電膜作製液を使用することで、より可視光透過率に優れ高透明であり、かつ、より抵抗値が低い導電膜を形成することができる。以下、導電膜の形成方法の例について説明するが、導電膜の形成方法は、これに限定されるものではない。
<Method for Forming Conductive Film>
By using the conductive film preparation liquid set or the conductive film preparation liquid according to the present embodiment, it is possible to form a conductive film that is more excellent in visible light transmittance and highly transparent and has a lower resistance value. Hereinafter, although the example of the formation method of an electrically conductive film is demonstrated, the formation method of an electrically conductive film is not limited to this.
 <形成方法1:有機酸の金属塩を含む第2液による、導電性繊維を含む導電膜の処理>
 導電膜の形成方法1は、基材又は支持基材上に、導電性繊維を含む第1の液を塗布して導電性繊維を含む膜を形成する工程と、該膜の上記基材又は支持基材とは反対側の面に、有機酸の金属塩を含む第2の液を塗布し、乾燥、加熱することで導電膜を形成する方法である。導電性繊維を含む膜に対して、有機酸の金属塩を含む第2の液を接触させることにより、導電性繊維表面に金属を付着させることができる。導電性繊維間に付着した金属により、導電性繊維間の接触抵抗値を低下させ、得られる導電膜の低抵抗化を図ることができる。
<Formation Method 1: Treatment of Conductive Film Containing Conductive Fiber by Second Liquid Containing Metal Salt of Organic Acid>
The conductive film forming method 1 includes a step of applying a first liquid containing conductive fibers on a base material or a support base material to form a film containing conductive fibers, and the base material or support of the film. This is a method of forming a conductive film by applying a second liquid containing a metal salt of an organic acid to the surface opposite to the base, drying and heating. By bringing the second liquid containing a metal salt of an organic acid into contact with the film containing the conductive fiber, the metal can be attached to the surface of the conductive fiber. With the metal adhered between the conductive fibers, the contact resistance value between the conductive fibers can be reduced, and the resistance of the obtained conductive film can be reduced.
 有機酸の金属塩を含む第2の液における有機酸の金属塩が炭素数5以上の脂肪酸塩である場合、上記の乾燥、加熱の際に、より低温での処理が可能であり、より抵抗値の低い導電膜を得る事ができる。また、有機酸の金属塩を含む第2の液が還元剤を含む場合にも、より低温での処理が可能であり、より抵抗値の低い導電膜を得ることができる。 When the metal salt of the organic acid in the second liquid containing the metal salt of the organic acid is a fatty acid salt having 5 or more carbon atoms, it can be processed at a lower temperature during the drying and heating, and more resistant. A conductive film having a low value can be obtained. In addition, even when the second liquid containing the metal salt of the organic acid contains a reducing agent, the treatment can be performed at a lower temperature, and a conductive film having a lower resistance value can be obtained.
 上記基材又は支持基材としては、例えば、ポリエチレンテレフタレートフィルム等の高分子フィルムを使用することができる。 As the substrate or support substrate, for example, a polymer film such as a polyethylene terephthalate film can be used.
 上記基材又は支持基材に導電性繊維を含む第1の液を塗布し、導電性繊維を含む膜を形成する方法(塗工方法)は、特に制限は無く、公知の方法を用いることができる。塗工は、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。これらの塗工方法のうち、膜厚分布が良好であること、及び密閉系で塗液への異物混入が少ないという観点からダイコート法が好ましい。 The method (coating method) for applying the first liquid containing conductive fibers to the substrate or the supporting substrate to form a film containing conductive fibers is not particularly limited, and a known method may be used. it can. The coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. Among these coating methods, the die coating method is preferable from the viewpoints of good film thickness distribution and less contamination of the coating liquid with a closed system.
 乾燥は、熱風対流式乾燥機等で行うことができる。乾燥の温度条件としては、30~150℃が好ましく、50~150℃がより好ましく、65~120℃がさらに好ましく、80~100℃が特に好ましい。乾燥の温度を150℃以下とすることにより、導電性繊維の酸化、損傷などを抑制することができ、得られる導電膜の抵抗値が上昇することを充分抑制することができる。また、乾燥の温度を30℃以上とすることにより、金属イオンの熱還元反応をより確実に進行させ、導電性繊維表面への金属の付着を進行させることができ、結果として、抵抗値の充分低い導電膜を得ることができる。乾燥時間としては、1~30分間程度が好ましいが、溶媒成分を除去できて、かつ金属イオンの熱還元反応が充分に進行する時間であれば、制限されるものではない。 Drying can be performed with a hot air convection dryer or the like. The drying temperature condition is preferably 30 to 150 ° C., more preferably 50 to 150 ° C., further preferably 65 to 120 ° C., and particularly preferably 80 to 100 ° C. By setting the drying temperature to 150 ° C. or lower, oxidation and damage of the conductive fibers can be suppressed, and an increase in the resistance value of the obtained conductive film can be sufficiently suppressed. In addition, by setting the drying temperature to 30 ° C. or higher, the thermal reduction reaction of metal ions can proceed more reliably and the adhesion of metal to the surface of the conductive fiber can proceed, resulting in a sufficient resistance value. A low conductive film can be obtained. The drying time is preferably about 1 to 30 minutes, but is not limited as long as the solvent component can be removed and the thermal reduction reaction of metal ions proceeds sufficiently.
 導電膜の厚みは、使用される用途、求められる導電性等によって調整することができるが、1μm以下であることが好ましく、1nm~0.5μmであることがより好ましく、5nm~0.1μmであることがさらに好ましい。導電膜の厚みが1μm以下であると、450~650nmの波長域での光透過率が高く、透明な透明電極の作製に好適なものとなる。導電膜の厚みは、走査型電子顕微鏡によって測定される値を指す。また、厚みが50nm以下の導電層の厚みを測定する場合は、透過型電子顕微鏡によって測定することができる。 The thickness of the conductive film can be adjusted depending on the intended use and required conductivity, but is preferably 1 μm or less, more preferably 1 nm to 0.5 μm, and more preferably 5 nm to 0.1 μm. More preferably it is. When the thickness of the conductive film is 1 μm or less, the light transmittance is high in the wavelength region of 450 to 650 nm, which is suitable for producing a transparent transparent electrode. The thickness of the conductive film refers to a value measured by a scanning electron microscope. Moreover, when measuring the thickness of the conductive layer whose thickness is 50 nm or less, it can measure with a transmission electron microscope.
 導電膜の表面抵抗率は、導電膜をタッチパネルの透明電極として有効に活用できる観点から、500Ω/□以下であることが好ましく、300Ω/□以下であることがより好ましく、100Ω/□以下であることがさらに好ましい。表面抵抗率は、非接触型表面抵抗計によって測定することができる。表面抵抗率は、例えば、導電性繊維、有機導電体等の濃度又は塗工量によって調整することができる。 The surface resistivity of the conductive film is preferably 500Ω / □ or less, more preferably 300Ω / □ or less, and more preferably 100Ω / □ or less from the viewpoint that the conductive film can be effectively used as the transparent electrode of the touch panel. More preferably. The surface resistivity can be measured by a non-contact type surface resistance meter. The surface resistivity can be adjusted by, for example, the concentration of conductive fibers, organic conductors, etc., or the coating amount.
 <形成方法2:導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液との混合液の使用、又は導電膜作製液の使用>
 導電膜の形成方法2は、第1の液と、第2の液とを混合した混合液、又は導電膜作製液を用いて導電膜を作製する方法である。
<Formation method 2: Use of mixed liquid of first liquid containing conductive fiber and second liquid containing metal salt of organic acid, or use of conductive film preparation liquid>
The conductive film formation method 2 is a method for forming a conductive film using a mixed liquid obtained by mixing the first liquid and the second liquid, or a conductive film preparation liquid.
 導電膜の形成方法2は、基材又は支持基材上に、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液との混合液、又は導電膜作製液(導電性繊維と、有機酸の金属塩とを含む導電膜作製液)を塗布し、導電性繊維を含む膜を形成する工程と、該膜を乾燥、加熱することにより導電膜を形成する工程とを含む、導電膜の形成方法である。これにより、導電性繊維表面に金属を付着させることが可能であり、かつ導電性繊維間に付着した金属により、導電性繊維間の接触抵抗値を低下させ、得られる導電膜の低抵抗化を図ることができる。 The method 2 for forming a conductive film is a mixture of a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid, or a conductive film preparation liquid ( A process for forming a film containing conductive fibers by applying conductive fibers and a metal salt of an organic acid), and a process for forming a conductive film by drying and heating the film. It is the formation method of the electrically conductive film containing this. As a result, it is possible to attach a metal to the surface of the conductive fiber, and the metal attached between the conductive fibers reduces the contact resistance value between the conductive fibers, thereby reducing the resistance of the obtained conductive film. Can be planned.
 上記混合液は、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液とを、任意の割合で混合することで調製することができる。混合液が均一に混ざることが好ましいので、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液に使用されている溶媒は、それぞれが混ざりやすい溶媒であることが好ましく、同じ溶媒であることがより好ましい。 The liquid mixture can be prepared by mixing the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid at an arbitrary ratio. Since the mixed liquid is preferably mixed uniformly, the solvent used in the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid may be easily mixed with each other. Preferably, the same solvent is more preferable.
 上記混合液は、混合液の安定性、分散性等の点から、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液とを混合した後の24時間以内に使用されることが好ましく、12時間以内に使用されることがより好ましく、6時間以内に使用されることがさらに好ましく、3時間以内に使用されることが特に好ましい。混合液をこのような時間内で使用することにより、混合液中で導電性繊維の凝集物量の増加、導電性繊維の沈殿、金属イオンの還元生成物の発生を充分抑制することができるため好ましい。 The mixed liquid is within 24 hours after mixing the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid, from the viewpoint of the stability and dispersibility of the mixed liquid. It is preferably used, more preferably used within 12 hours, further preferably used within 6 hours, and particularly preferably used within 3 hours. It is preferable to use the mixed solution within such a time because the increase in the amount of the conductive fiber aggregates, precipitation of the conductive fiber, and generation of reduction products of metal ions can be sufficiently suppressed in the mixed solution. .
 上記混合液、又は上記導電膜作製液における、有機酸の金属塩が炭素数5以上の脂肪酸塩である場合、上記の乾燥、加熱の際に、より低温での処理が可能であり、より抵抗値の低い導電膜を得ることができる。また、上記混合液、又は上記導電膜作製液が還元剤を含む場合にも、より低温での処理が可能であり、より抵抗値の低い導電膜を得ることができる。 When the metal salt of the organic acid in the mixed liquid or the conductive film preparation liquid is a fatty acid salt having 5 or more carbon atoms, it can be processed at a lower temperature during the drying and heating, and more resistant. A conductive film having a low value can be obtained. Moreover, also when the said liquid mixture or the said electrically conductive film preparation liquid contains a reducing agent, a process at lower temperature is possible and the electrically conductive film with a lower resistance value can be obtained.
 上記基材又は支持基材としては、上記形成方法1で説明したものと同様の物を使用できる。 As the base material or the support base material, the same materials as described in the formation method 1 can be used.
 塗工方法、乾燥方法、乾燥の温度条件及び乾燥時間は、上述の導電膜の形成方法1と同様である。 The coating method, the drying method, the drying temperature condition and the drying time are the same as those of the conductive film forming method 1 described above.
 以上より、例えば、図1(a)に示されるように、基材20上に導電膜2が設けられた導電膜付き基材を得ることができる。さらに、導電膜付き基材、及び導電パターン付き基材について説明する。 From the above, for example, as shown in FIG. 1A, a base material with a conductive film in which the conductive film 2 is provided on the base material 20 can be obtained. Furthermore, a base material with a conductive film and a base material with a conductive pattern will be described.
<導電膜付き基材:基材上に形成した導電膜>
 導電膜付き基材は、基材と、上記基材上に設けられた導電膜とを有している。
導電膜付き基材における導電膜は、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液とを有する導電膜作製液セット、又は導電膜作製液から形成される導電膜である。導電膜付き基材における導電膜は、有機酸又は上記有機酸の金属塩を含むということもできる。なお、導電膜付き基材は、基材の選択により、転写形導電フィルムとすることもできる。
<Substrate with conductive film: conductive film formed on substrate>
The base material with a conductive film has a base material and a conductive film provided on the base material.
The conductive film in the substrate with a conductive film is formed from a conductive film preparation liquid set or a conductive film preparation liquid having a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid. It is a conductive film. It can also be said that the conductive film in the substrate with a conductive film contains an organic acid or a metal salt of the organic acid. In addition, a base material with a conductive film can also be made into a transfer type conductive film by selection of a base material.
 基材としては、透明性を有している基材(透明基材)を用いることが好ましい。これにより、透明かつ導電性を有した、導電膜付き透明基材を製造することができる。 It is preferable to use a transparent substrate (transparent substrate) as the substrate. Thereby, the transparent base material with an electrically conductive film which has transparency and electroconductivity can be manufactured.
 透明基材としては、特に限定されないが、ガラス、又は耐熱性の優れた各種高分子フィルムが適している。耐熱性に優れる高分子フィルムとしては、具体的には、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリアミドフィルム、セルロースアセテートフィルム、ポリサルフォンフィルム、シクロオレフィンポリマーなどの広範な高分子フィルムを挙げることができる。これらの中でも、透明性、寸法安定性、厚みの均一性、強度、耐熱性、耐薬品性、耐水性等の性質に優れる観点から、ポリエステルフィルムが好ましい。ポリエステルフィルムは、機械的性質を向上させるために二軸方向に延伸されたものを使用してもよい。透明基材としてのこれら高分子フィルムは、透明電極としての機能を考慮し、通常、50μm~250μmの厚みを有するものが好ましい。 The transparent substrate is not particularly limited, but glass or various polymer films having excellent heat resistance are suitable. Specific examples of polymer films having excellent heat resistance include polyester films such as polyethylene terephthalate films, polycarbonate films, polyvinyl chloride films, polyethylene films, polypropylene films, polyamide films, cellulose acetate films, polysulfone films, and cycloolefin polymers. And a wide variety of polymer films. Among these, a polyester film is preferable from the viewpoint of excellent properties such as transparency, dimensional stability, thickness uniformity, strength, heat resistance, chemical resistance, and water resistance. A polyester film that has been stretched in a biaxial direction may be used in order to improve mechanical properties. These polymer films as the transparent substrate are preferably those having a thickness of 50 μm to 250 μm in consideration of the function as a transparent electrode.
 透明基材は、必要に応じて次のような表面活性化処理を行うことができる。すなわち、グロー放電、コロナ放電処理等の物理的処理、又はメラミン樹脂、ポリウレタン樹脂、ポリエステル樹脂等による薄膜コーティング処理を行ってもよい。また、透明基材としては、導電膜を設けない部分(例えば、導電膜を形成する面とは反対側の面)に耐摩耗性、高表面硬度、耐溶剤性、耐汚染性等を付与したハードコート処理が施された基材を用いることもできる。 The transparent substrate can be subjected to the following surface activation treatment as required. That is, physical treatment such as glow discharge or corona discharge treatment, or thin film coating treatment with melamine resin, polyurethane resin, polyester resin or the like may be performed. In addition, as a transparent substrate, wear resistance, high surface hardness, solvent resistance, contamination resistance, etc. were imparted to a portion where the conductive film is not provided (for example, the surface opposite to the surface on which the conductive film is formed). A base material that has been subjected to a hard coat treatment can also be used.
 透明基材としては、可視光線領域における全光線透過率の最小値が80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。 As the transparent substrate, the minimum value of the total light transmittance in the visible light region is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
 導電膜付き基材は、上述の導電膜の形成方法に記載の方法により製造することができる。 The base material with a conductive film can be produced by the method described in the method for forming a conductive film.
 基材上に形成した導電膜は、耐擦過性、耐候性に乏しいため、さらにその上に、保護層を形成して導電膜を含む透明樹脂層としてもよい。このための保護層としては、アクリル系、ポリエステル系、ポリウレタン系等の有機系高分子によるものや、オルガノアルコキシシランなどの有機ケイ素化合物を加水分解により縮重合したポリシロキサンによるものなどを例示することができる。保護層としては、樹脂膜を形成した後、光照射して硬化させて得られるものが好ましい。具体的には、光硬化型アクリル系樹脂溶液を塗布乾燥して、樹脂膜を形成した後、光照射して硬化することにより保護層を形成することができる。上記のような透明樹脂層は、次に述べるエッチングにより効率よく非導電化することができるため有用である。 Since the conductive film formed on the substrate is poor in scratch resistance and weather resistance, a protective layer may be further formed thereon to form a transparent resin layer containing the conductive film. Examples of protective layers for this purpose include those made of organic polymers such as acrylic, polyester, and polyurethane, and polysiloxanes obtained by condensation polymerization of organosilicon compounds such as organoalkoxysilanes by hydrolysis. Can do. The protective layer is preferably obtained by forming a resin film and then curing it by irradiation with light. Specifically, the protective layer can be formed by applying and drying a photocurable acrylic resin solution to form a resin film, and then curing by irradiation with light. The transparent resin layer as described above is useful because it can be made non-conductive efficiently by etching described below.
 透明樹脂層の厚みは特に限定されないが、次に述べるエッチングによって、効率よく非導電化できる点、耐擦過性や長期安定性の点から、10nm~1000nmが好ましく、30nm~500nmがより好ましく、50nm~300nmがさらに好ましい。 The thickness of the transparent resin layer is not particularly limited, but is preferably 10 nm to 1000 nm, more preferably 30 nm to 500 nm, and more preferably 50 nm from the viewpoint of efficient non-conductivity by etching described below, scratch resistance and long-term stability. More preferably, ˜300 nm.
 透明樹脂層の可視光線領域における全光線透過率の最小値は、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。 The minimum value of the total light transmittance in the visible light region of the transparent resin layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
 本実施形態にかかる導電膜付き基材をタッチパネル等の透明電極材料として応用する場合には、透明樹脂層に導電性部と非導電性部とを設けて導電パターンを形成してもよい。つまり、本実施形態にかかる導電パターンの形成方法は、導電膜付き基材上に所定のパターンを有する樹脂硬化部を形成する工程と、上記樹脂硬化部が形成されていない部分の導電膜を除去又は不導体化する工程と、上記樹脂硬化部を除去する工程と、を備える。より具体的には、所定のパターン状となるようにレジスト層(例えば、樹脂硬化部)を印刷等で形成し、レジスト層が形成されていない部分の導電膜又は透明樹脂層をエッチング除去する方法、レジスト層を全面に均一に塗布して形成し、レジストパターンを形成した後、化学エッチングにより導電性繊維を不導体化(非導電化)する方法を用いることができる。 When applying the substrate with a conductive film according to the present embodiment as a transparent electrode material such as a touch panel, a conductive pattern may be formed by providing a conductive part and a non-conductive part on the transparent resin layer. That is, the method for forming a conductive pattern according to this embodiment includes a step of forming a cured resin portion having a predetermined pattern on a substrate with a conductive film, and a removal of the conductive film in a portion where the resin cured portion is not formed. Or the process of making it non-conductor and the process of removing the said resin hardening part are provided. More specifically, a method of forming a resist layer (for example, a resin cured portion) by printing or the like so as to have a predetermined pattern, and etching away a conductive film or a transparent resin layer in a portion where the resist layer is not formed. A method can be used in which a resist layer is uniformly applied over the entire surface, a resist pattern is formed, and then conductive fibers are made non-conductive (non-conductive) by chemical etching.
 上記のレジスト層を形成する材料としては、エッチング工程に耐える材料であれば特に制限は無く用いることができる。エッチング工程に耐える材料のなかでも、入手のしやすさ、価格などの点から、アクリル樹脂系の印刷が可能な材料や、光硬化性を有し、且つ光硬化する前は有機溶剤又はアルカリ性溶液に対する溶解性を有している、アクリル樹脂系のレジスト材料、レジストフィルム等を用いることが好ましい。レジスト層の形成方法としては、公知の方法が使用できる。 The material for forming the resist layer is not particularly limited as long as it can withstand the etching process. Among materials that can withstand the etching process, from the viewpoint of availability, price, etc., materials that can be printed with acrylic resin, photocurable, and organic solvents or alkaline solutions before photocuring It is preferable to use an acrylic resin-based resist material, a resist film, or the like having solubility in A known method can be used as a method for forming the resist layer.
 ITO等の材料からなる導電膜は、完全に材料を除去しないと絶縁部を形成することができないが、導電性繊維では繊維同士の絡まりによる接触で導電性を発現するため、完全に除去しなくとも、非導電性部を形成することにより絶縁部を形成することができる。例えば、導電性繊維の一部を溶解させる方法、又は導電性繊維の表面を化学的に変化させ導電性繊維の一部を不導体化することにより断線させる方法などにより、導電パターンを形成することが可能である。 A conductive film made of a material such as ITO cannot form an insulating part unless the material is completely removed. However, conductive fibers do not completely remove because they exhibit conductivity due to contact between fibers. In both cases, the insulating portion can be formed by forming the non-conductive portion. For example, forming a conductive pattern by a method of dissolving a part of the conductive fiber, or a method of disconnecting by chemically changing the surface of the conductive fiber to make a part of the conductive fiber nonconductive. Is possible.
 上述の目的のために使用する化学エッチング液としては、通常の酸性エッチング液を使用することが可能であり、その他に、導電性繊維を絶縁体とすることができる液であれば、特に制限無く使用できる。なかでも、導電性繊維として金属繊維を使用した場合は、酸性エッチング液として、塩酸、硝酸等の酸、又はこれらの混合物などを使用することができる。エッチング液を使用した不導体化処理において、不導体化反応の反応性と、作業性の点から、液温度を30℃以上60℃以下で用いることが好ましい。 As the chemical etching solution used for the above-mentioned purpose, it is possible to use a normal acidic etching solution, and there is no particular limitation as long as it is a solution that can use conductive fibers as an insulator. Can be used. Especially, when a metal fiber is used as the conductive fiber, an acid such as hydrochloric acid or nitric acid, or a mixture thereof can be used as the acidic etching solution. In the deconducting treatment using the etching liquid, it is preferable to use the liquid temperature at 30 ° C. or higher and 60 ° C. or lower from the viewpoint of reactivity of the deconducting reaction and workability.
 上記の導電膜の不導体化処理の後に、レジスト層を導電膜付き基材から除去することで、所望の導電パターンを有する導電膜付き基材を製造することができる。 After removing the conductive film from the conductive film, the resist layer is removed from the conductive film-coated substrate, whereby a conductive film-coated substrate having a desired conductive pattern can be produced.
 また、本実施形態に係る導電膜付き基材は、転写形導電フィルムとすることができる。転写形導電フィルムは、例えば、図1(b)に示すように支持フィルム1と、支持フィルム1上に設けられた導電膜2とを有する。この場合の支持フィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムが挙げられる。これらのうち、透明性や耐熱性の観点からは、ポリエチレンテレフタレートフィルムが好ましい。尚、これらの重合体フィルムは、後に導電膜2から除去するため、除去が不可能となるような表面処理が施されないことが好ましく、除去が不可能となる材質でないことが好ましい。 Moreover, the base material with a conductive film according to this embodiment can be a transfer-type conductive film. The transfer-type conductive film has, for example, a support film 1 and a conductive film 2 provided on the support film 1 as shown in FIG. Examples of the support film in this case include polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film. Among these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance. In addition, since these polymer films are removed from the conductive film 2 later, it is preferable not to perform a surface treatment that makes the removal impossible, and it is preferable that the polymer film is not a material that cannot be removed.
 また、支持フィルムの厚みは、5~300μmであることが好ましく、10~200μmであることがより好ましく、15~100μmであることがさらに好ましい。 The thickness of the support film is preferably 5 to 300 μm, more preferably 10 to 200 μm, and further preferably 15 to 100 μm.
 転写形導電フィルムにおいて、導電膜2の支持フィルム1側と反対側の面に接するように保護フィルムを設けてもよい。 In the transfer type conductive film, a protective film may be provided so as to be in contact with the surface of the conductive film 2 opposite to the support film 1 side.
 保護フィルムとしては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。また、保護フィルムとして上述の支持フィルムと同様の重合体フィルムを用いてもよい。 As the protective film, a polymer film having heat resistance and solvent resistance such as a polyethylene terephthalate film, a polypropylene film, and a polyethylene film can be used. Moreover, you may use the polymer film similar to the above-mentioned support film as a protective film.
 保護フィルムと導電膜との間の接着力は、保護フィルムを導電膜から剥離しやすくするために、導電膜2と支持フィルムとの間の接着力よりも小さいことが好ましい。 The adhesive force between the protective film and the conductive film is preferably smaller than the adhesive force between the conductive film 2 and the support film so that the protective film can be easily peeled off from the conductive film.
 保護フィルムは、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が5個/m以下であることが好ましい。「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸、キャスティング法等によりフィルムを製造する際に、材料の異物、未溶解物、酸化劣化物等がフィルム中に取り込まれたものである。 The number of fish eyes with a diameter of 80 μm or more contained in the protective film is preferably 5 / m 2 or less. “Fisheye” means that materials are melted, kneaded, extruded, biaxially stretched, casting materials, etc., and foreign materials, undissolved materials, oxidized degradation products, etc. are taken into the film. It is a thing.
 保護フィルムの厚みは、1~100μmであることが好ましく、5~50μmであることがより好ましく、5~30μmであることがさらに好ましく、15~30μmであることが特に好ましい。保護フィルムの厚みが1μm未満ではラミネートの際、保護フィルムが破れやすくなる傾向があり、100μmを超えると価格が高くなる傾向がある。 The thickness of the protective film is preferably 1 to 100 μm, more preferably 5 to 50 μm, still more preferably 5 to 30 μm, and particularly preferably 15 to 30 μm. When the thickness of the protective film is less than 1 μm, the protective film tends to be broken during lamination, and when it exceeds 100 μm, the price tends to increase.
<感光性導電フィルム>
 本実施形態に係る感光性導電フィルムは、支持フィルムと、支持フィルム上に設けられた導電膜を含む感光層と、を有する。本実施形態における導電膜は、上述の導電膜作製液セット、又は、上述の導電膜作製液から形成される導電膜である。なお、本実施形態にかかる感光性導電フィルムは感光層を、基材上に転写するために使用される、転写形感光性導電フィルムとすることもできる。
<Photosensitive conductive film>
The photosensitive conductive film which concerns on this embodiment has a support film and the photosensitive layer containing the electrically conductive film provided on the support film. The conductive film in the present embodiment is a conductive film formed from the conductive film preparation liquid set described above or the conductive film preparation liquid described above. In addition, the photosensitive conductive film concerning this embodiment can also be used as the transfer type photosensitive conductive film used in order to transfer a photosensitive layer on a base material.
 感光性導電フィルムの一実施形態を図2に示す。感光性導電フィルム10は、支持フィルム1と感光層4からなり、感光層4は、導電膜2と感光性樹脂層3とからなる。図2においては、支持フィルム1上に導電膜2が設けられ、導電膜2の支持フィルムとは反対側の面に感光性樹脂層3が設けられた態様を示しているが、感光性導電フィルムとしては、この態様に限らず、支持フィルム上に感光性樹脂層3が設けられ、感光性樹脂層3の支持フィルム1とは反対側の面に導電膜2が設けられる態様であってもよい。 One embodiment of the photosensitive conductive film is shown in FIG. The photosensitive conductive film 10 includes a support film 1 and a photosensitive layer 4, and the photosensitive layer 4 includes a conductive film 2 and a photosensitive resin layer 3. In FIG. 2, although the electrically conductive film 2 is provided on the support film 1, and the photosensitive resin layer 3 is provided in the surface on the opposite side to the support film of the electrically conductive film 2, the photosensitive electrically conductive film is shown. For example, the photosensitive resin layer 3 may be provided on the support film, and the conductive film 2 may be provided on the surface of the photosensitive resin layer 3 opposite to the support film 1. .
 感光性導電フィルムは、図2に示す様に、導電性繊維を含む導電膜2と、上記導電膜2上に設けられた感光性樹脂層3との境界が、明確に分かれていてもよいが、導電膜2と感光性樹脂層3との境界は必ずしも明確になっていなくともよい。導電膜は、感光層の面方向に導電性が得られるものであればよく、導電膜に感光性樹脂層が混じり合った態様であってもよい。例えば、導電膜中に感光性樹脂層を構成する組成物が含浸されていたり、感光性樹脂層を構成する組成物が導電膜の表面に存在していたりしてもよい。 In the photosensitive conductive film, as shown in FIG. 2, the boundary between the conductive film 2 containing conductive fibers and the photosensitive resin layer 3 provided on the conductive film 2 may be clearly separated. The boundary between the conductive film 2 and the photosensitive resin layer 3 is not necessarily clear. The conductive film only needs to have conductivity in the surface direction of the photosensitive layer, and may be a mode in which the photosensitive resin layer is mixed with the conductive film. For example, the composition constituting the photosensitive resin layer may be impregnated in the conductive film, or the composition constituting the photosensitive resin layer may be present on the surface of the conductive film.
 以下、感光性導電フィルム10を構成する支持フィルム1、導電膜2及び感光性樹脂層3のそれぞれについて詳細に説明する。 Hereinafter, each of the support film 1, the conductive film 2, and the photosensitive resin layer 3 constituting the photosensitive conductive film 10 will be described in detail.
 支持フィルム1としては、上記の転写形導電フィルムにおける基材として例示したものを使用することができる。 As the support film 1, those exemplified as the base material in the above-mentioned transfer type conductive film can be used.
 また、支持フィルム1の厚みは、5~300μmであることが好ましく、10~200μmであることがより好ましく、15~100μmであることがさらに好ましい。機械的強度が低下し、導電膜2を形成するために導電性分散液若しくは感光性樹脂層3を形成するために感光性樹脂組成物を塗工する工程、又は露光した感光性樹脂層3を現像する前に支持フィルムを剥離する工程において、支持フィルムが破れることを防止する観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましい。また、支持フィルムを介して活性光線を感光性樹脂層に照射後のパターンの解像度に優れる点では、300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。 The thickness of the support film 1 is preferably 5 to 300 μm, more preferably 10 to 200 μm, and further preferably 15 to 100 μm. The step of applying a photosensitive resin composition to form a conductive dispersion or a photosensitive resin layer 3 in order to form a conductive film 2 due to a decrease in mechanical strength, or an exposed photosensitive resin layer 3 From the viewpoint of preventing the support film from being broken in the step of peeling the support film before development, the thickness is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 15 μm or more. Moreover, in the point which is excellent in the resolution of the pattern after irradiating an active ray to a photosensitive resin layer through a support film, it is preferable that it is 300 micrometers or less, It is more preferable that it is 200 micrometers or less, It is further that it is 100 micrometers or less. preferable.
 支持フィルム1のヘーズ値は、感度及び解像度を良好にできる観点から、0.01~5.0%であることが好ましく、0.01~3.0%であることがより好ましく、0.01~2.0%であることがさらに好ましく、0.01~1.0%であることが特に好ましい。尚、ヘーズ値はJIS K 7375(2008年制定)に準拠して測定することができる。また、NDH-1001DP(日本電色工業株式会社製、商品名)等の市販の濁度計などでも測定可能である。 The haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is more preferably from 2.0% to 2.0%, particularly preferably from 0.01% to 1.0%. The haze value can be measured according to JIS K 7375 (established in 2008). It can also be measured with a commercially available turbidimeter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
 導電膜2は、本発明による、導電性繊維分散液と、金属有機酸塩を含む金属熱還元溶液とを有する導電膜作製液セットを使用して、上記で説明した方法で、支持フィルム1上に導電膜を形成することで、作製することができる。 The conductive film 2 is formed on the support film 1 by the method described above using a conductive film preparation liquid set having a conductive fiber dispersion and a metal thermal reduction solution containing a metal organic acid salt according to the present invention. It can be manufactured by forming a conductive film on the substrate.
 図3は、感光性導電フィルムの一実施形態を示す一部切欠き斜視図である。導電膜2は、図3に示すように、導電性繊維同士が接触してなる網目構造を有することが好ましい。このような網目構造を有する導電膜2は、感光性樹脂層3の支持フィルム1側の表面に形成されていてもよいが、支持フィルム1を剥離したときに露出する感光層4の表面においてその面方向に導電性が得られるのであれば、導電膜2に感光性樹脂層3の一部が入り込む形態で形成されていてもよく、感光性樹脂層3の支持フィルム1側の表層に導電膜2が含まれる形態で形成されていてもよい。 FIG. 3 is a partially cutaway perspective view showing an embodiment of a photosensitive conductive film. As shown in FIG. 3, the conductive film 2 preferably has a network structure in which conductive fibers are in contact with each other. The conductive film 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film 1 side, but on the surface of the photosensitive layer 4 exposed when the support film 1 is peeled off. As long as conductivity is obtained in the surface direction, the conductive film 2 may be formed so that a part of the photosensitive resin layer 3 enters the conductive film 2, and the conductive film is formed on the surface layer of the photosensitive resin layer 3 on the support film 1 side. 2 may be included.
 感光性樹脂層3としては、(A)バインダーポリマー、(B)エチレン性不飽和結合を有する光重合性化合物及び(C)光重合開始剤を含有する感光性樹脂組成物から形成されることが好ましい。 The photosensitive resin layer 3 may be formed from a photosensitive resin composition containing (A) a binder polymer, (B) a photopolymerizable compound having an ethylenically unsaturated bond, and (C) a photopolymerization initiator. preferable.
 本実施形態において、(A)成分は、(a)(メタ)アクリル酸、及び(b)(メタ)アクリル酸アルキルエステルに由来する構造単位を含有する共重合体が好適である。 In the present embodiment, the component (A) is preferably a copolymer containing structural units derived from (a) (meth) acrylic acid and (b) (meth) acrylic acid alkyl ester.
 上記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、及び(メタ)アクリル酸ヒドロキシルエチルエステル等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid 2-ethylhexyl ester, and (meth) acrylic acid ester. ) Acrylic acid hydroxyl ethyl ester and the like.
 上記共重合体は、さらに、上記の(a)成分又は(b)成分と共重合し得るその他のモノマーを構造単位に含有していてもよい。 The copolymer may further contain other monomer that can be copolymerized with the component (a) or the component (b) in the structural unit.
 (A)成分は、カルボキシル基を有するポリマーであることが好ましい。また、(A)成分の酸価は、パターン性に優れる観点から、75~200mgKOH/gであることが好ましく、75~150mgKOH/gであることがより好ましく、75~120mgKOH/gであることがさらに好ましく、78~120mgKOH/gであることが特に好ましい。 The component (A) is preferably a polymer having a carboxyl group. The acid value of component (A) is preferably 75 to 200 mgKOH / g, more preferably 75 to 150 mgKOH / g, and 75 to 120 mgKOH / g from the viewpoint of excellent patternability. More preferred is 78 to 120 mg KOH / g.
 (A)成分であるバインダーポリマーの酸価は、次のようにして測定することができる。まず、酸価の測定対象であるバインダーポリマー1gを精秤する。上記精秤したバインダーポリマーにアセトンを30g添加し、これを均一に溶解する。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行う。そして、次式により酸価を算出する。
酸価=0.1×Vf×56.1/(Wp×I/100)
 式中、VfはKOH水溶液の滴定量(mL)を示し、Wpは測定したバインダーポリマー含有する溶液の重量(g)を示し、Iは測定したバインダーポリマー含有する溶液中の不揮発分の割合(質量%)を示す。
 なお、バインダーポリマーを合成溶媒、希釈溶媒等の揮発分と混合した状態で配合する場合は、精秤前に予め、揮発分の沸点よりも10℃以上高い温度で1~4時間加熱し、揮発分を除去してから酸価を測定する。
The acid value of the binder polymer as the component (A) can be measured as follows. First, 1 g of the binder polymer that is the object of acid value measurement is precisely weighed. 30 g of acetone is added to the precisely weighed binder polymer and dissolved uniformly. Next, an appropriate amount of phenolphthalein as an indicator is added to the solution, and titration is performed using a 0.1N aqueous KOH solution. And an acid value is computed by following Formula.
Acid value = 0.1 × Vf × 56.1 / (Wp × I / 100)
In the formula, Vf represents the titration amount (mL) of the KOH aqueous solution, Wp represents the measured weight (g) of the solution containing the binder polymer, and I represents the ratio (mass) of the non-volatile content in the measured solution containing the binder polymer. %).
When blending the binder polymer in a state mixed with volatile components such as a synthetic solvent and a diluting solvent, the mixture is volatilized by heating for 1 to 4 hours at a temperature 10 ° C. higher than the boiling point of the volatile component in advance before precise weighing. The acid value is measured after removing the fraction.
 (A)バインダーポリマーの重量平均分子量は、機械強度及びアルカリ現像性のバランスを図る観点から、5,000~300,000であることが好ましく、20,000~150,000であることがより好ましく、30,000~100,000であることがさらに好ましい。耐現像液性に優れる点では、重量平均分子量が、5,000以上であることが好ましい。また、現像時間の観点からは、300,000以下であることが好ましい。本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により測定され、標準ポリスチレンを用いて作成した検量線により換算された値である。 (A) The weight average molecular weight of the binder polymer is preferably 5,000 to 300,000, more preferably 20,000 to 150,000, from the viewpoint of balancing mechanical strength and alkali developability. More preferably, 30,000 to 100,000. In terms of excellent developer resistance, the weight average molecular weight is preferably 5,000 or more. Further, from the viewpoint of development time, it is preferably 300,000 or less. The weight average molecular weight in the present invention is a value measured by a gel permeation chromatography method (GPC) and converted by a calibration curve prepared using standard polystyrene.
 (B)成分であるエチレン性不飽和結合を有する光重合性化合物としては、例えば、一官能ビニルモノマー、二官能ビニルモノマー、少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマー等が挙げられる。 Examples of the photopolymerizable compound having an ethylenically unsaturated bond as component (B) include a monofunctional vinyl monomer, a bifunctional vinyl monomer, and a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups. Is mentioned.
 (B)成分は、ペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物及びトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物から選択される少なくとも1種を含むことが好ましく、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物及びトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物から選択される少なくとも1種を含むことがより好ましい。 The component (B) is selected from a (meth) acrylate compound having a skeleton derived from pentaerythritol, a (meth) acrylate compound having a skeleton derived from dipentaerythritol, and a (meth) acrylate compound having a skeleton derived from trimethylolpropane. It is preferable that at least one kind is included, and it is more preferable that at least one kind selected from a (meth) acrylate compound having a skeleton derived from dipentaerythritol and a (meth) acrylate compound having a skeleton derived from trimethylolpropane.
 (B)成分の含有割合は、(A)成分及び(B)成分の合計100質量部に対して、30~80質量部であることが好ましく、40~70質量部であることがより好ましい。感光性樹脂組成物の光硬化性及び塗膜性に優れる点では、30質量部以上であることが好ましく、フィルムとして巻き取った場合の保管安定性に優れる点では、80質量部以下であることが好ましい。 The content ratio of the component (B) is preferably 30 to 80 parts by mass, and more preferably 40 to 70 parts by mass with respect to 100 parts by mass as a total of the components (A) and (B). In terms of excellent photocurability and coating properties of the photosensitive resin composition, it is preferably 30 parts by mass or more, and in terms of excellent storage stability when wound as a film, it is 80 parts by mass or less. Is preferred.
 次に(C)光重合開始剤について説明する。光重合開始剤としては、用いる露光機の光波長と、機能発現に必要な波長とが合うものを選択すれば、特に制限は無いが、透明導電パターンの形成性の観点から、オキシムエステル化合物又はホスフィンオキサイド化合物を含むことが好ましい。 Next, (C) the photopolymerization initiator will be described. As the photopolymerization initiator, there is no particular limitation as long as the light wavelength of the exposure machine to be used matches the wavelength required for function expression, but from the viewpoint of the formation of a transparent conductive pattern, the oxime ester compound or It is preferable that a phosphine oxide compound is included.
 (C)成分としては、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル化合物、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のホスフィンオキサイド化合物などが挙げられる。1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)]は、IRGACURE OXE 01(BASFジャパン株式会社製、商品名)として入手可能である。また、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)は、IRGACURE OXE 02(BASFジャパン株式会社製、商品名)として商業的に入手可能である。2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドは、LUCIRIN TPO(BASFジャパン株式会社製、商品名)として商業的に入手可能である。 Component (C) includes 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methyl) And oxime ester compounds such as benzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), and phosphine oxide compounds such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] is available as IRGACURE OXE 01 (trade name, manufactured by BASF Japan Ltd.). Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is IRGACURE OXE 02 (manufactured by BASF Japan Ltd., (Commercial name) is commercially available. 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide is commercially available as LUCIRIN TPO (trade name, manufactured by BASF Japan Ltd.).
 (C)成分は、オキシムエステル化合物及びホスフィンオキサイド化合物以外の光重合開始剤を併用して使用することもできる。例えば、ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1等の芳香族ケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物、ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン、N-フェニルグリシン誘導体;クマリン系化合物;オキサゾール系化合物などが挙げられる。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組合せのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。 The component (C) can be used in combination with a photopolymerization initiator other than the oxime ester compound and the phosphine oxide compound. For example, benzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl An aromatic ketone such as 2-morpholino-propanone-1; a benzoin ether compound such as benzoin methyl ether, benzoin ethyl ether or benzoin phenyl ether; a benzoin compound such as benzoin, methyl benzoin or ethyl benzoin; a benzyl such as benzyldimethyl ketal; Derivatives; acridine derivatives such as 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane; N-phenylglycine, N-phenylglycine derivatives; coumarin compounds; oxazole compounds, etc.Moreover, you may combine a thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylamino benzoic acid.
 (C)光重合開始剤の含有割合は、(A)成分及び(B)成分の合計100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。光感度に優れる点では、0.1質量部以上であることが好ましく、光硬化性に優れる点では、20質量部以下であることが好ましい。 The content ratio of the (C) photopolymerization initiator is preferably 0.1 to 20 parts by mass, and preferably 1 to 10 parts by mass with respect to 100 parts by mass as a total of the components (A) and (B). More preferred is 1 to 5 parts by mass. In terms of excellent photosensitivity, it is preferably 0.1 parts by mass or more, and in terms of excellent photocurability, it is preferably 20 parts by mass or less.
 本実施形態の感光性樹脂組成物には、その他、必要に応じて、シランカップリング剤等の密着性付与剤、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、熱架橋剤、重合禁止剤などを(A)成分及び(B)成分の合計量100質量部に対し、各々0.01~20質量部程度含有させることができる。 In addition to the photosensitive resin composition of the present embodiment, if necessary, an adhesion imparting agent such as a silane coupling agent, a leveling agent, a plasticizer, a filler, an antifoaming agent, a flame retardant, a stabilizer, an oxidation agent. An inhibitor, a fragrance, a thermal crosslinking agent, a polymerization inhibitor and the like can be contained in an amount of about 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B).
 感光性樹脂層3は、支持フィルム1上に形成した導電膜2上にメタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶剤に溶解した、固形分10~60質量%程度の感光性樹脂組成物の溶液を塗布、乾燥することにより形成できる。ただし、この場合、乾燥後の感光性樹脂層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止するため、2質量%以下であることが好ましい。 The photosensitive resin layer 3 is formed on the conductive film 2 formed on the support film 1 with a solvent such as methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether. It can be formed by applying and drying a solution of a dissolved photosensitive resin composition having a solid content of about 10 to 60% by mass. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
 塗工は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。塗工後、有機溶剤等を除去するための乾燥は、70~150℃で5~30分間程度、熱風対流式乾燥機等で行うことができる。 Coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
 感光性樹脂層3の厚みは、用途により異なるが、乾燥後の厚みで1~50μmであることが好ましく、1~30μmであることがより好ましく、1~15μmであることがさらに好ましく、1~10μmであることが特に好ましい。この厚みを1μm以上とすることにより塗工の作業性をより向上させることが可能であり、50μm以下とすることにより、光透過の低下により感度が不充分となることを充分に抑制することができ、感光層の光硬化性の低下を充分に抑制することができる。 The thickness of the photosensitive resin layer 3 varies depending on the use, but it is preferably 1 to 50 μm, more preferably 1 to 30 μm, and further preferably 1 to 15 μm after drying. A thickness of 10 μm is particularly preferable. By making this thickness 1 μm or more, it is possible to further improve the workability of coating, and by making it 50 μm or less, it is possible to sufficiently suppress the sensitivity becoming insufficient due to a decrease in light transmission. And a decrease in the photocurability of the photosensitive layer can be sufficiently suppressed.
 感光性導電フィルムにおいて、上記導電膜2及び上記感光性樹脂層3の積層体は、両層の合計膜厚を1~10μmとしたときに450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。導電膜及び感光性樹脂層がこのような条件を満たす場合、タッチパネルやディスプレイパネル等での視認性が向上する。 In the photosensitive conductive film, the laminate of the conductive film 2 and the photosensitive resin layer 3 has a minimum light transmittance of 80% in a wavelength region of 450 to 650 nm when the total film thickness of both layers is 1 to 10 μm. It is preferable that it is above, and it is more preferable that it is 85% or more. When the conductive film and the photosensitive resin layer satisfy such conditions, the visibility on a touch panel, a display panel, or the like is improved.
 感光性導電フィルムにおいて、感光性樹脂層3の支持フィルム1側と反対側の面に接するように保護フィルムを設けてもよい。 In the photosensitive conductive film, a protective film may be provided so as to be in contact with the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
 保護フィルムとしては、上記の転写形導電フィルムにおける保護フィルムとして例示したものを使用することができる。保護フィルムと感光性樹脂層との間の接着力、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数、保護フィルムの厚み等についても同様である。 As the protective film, those exemplified as the protective film in the transfer-type conductive film can be used. The same applies to the adhesive force between the protective film and the photosensitive resin layer, the number of fish eyes with a diameter of 80 μm or more contained in the protective film, the thickness of the protective film, and the like.
 以下、感光性導電フィルムを使用した導電パターンの形成方法を説明する。本実施形態に係る導電パターンの形成方法は、転写形感光性導電フィルムが有する感光層を基材上に転写する工程と、基材上に転写された感光層に、パターン状に活性光線を照射する露光工程と、感光層の未露光部を除去することにより導電パターンを形成する導電パターン形成工程と、を備える。 Hereinafter, a method for forming a conductive pattern using a photosensitive conductive film will be described. The method for forming a conductive pattern according to this embodiment includes a step of transferring a photosensitive layer of a transfer type photosensitive conductive film onto a substrate, and irradiating the photosensitive layer transferred onto the substrate with actinic rays in a pattern. And a conductive pattern forming step of forming a conductive pattern by removing an unexposed portion of the photosensitive layer.
 図4は、感光性導電フィルムを用いた導電パターン形成方法の一実施形態を説明するための模式断面図である。図4に示すように、支持フィルム1、導電膜2及び感光性樹脂層3を有する感光性導電フィルム10の感光性樹脂層3を、基材20上にラミネートし(図4の(a))、次に、感光性樹脂層3にマスクパターン5を介して活性光線Lをパターン状に照射し(図4の(b))、現像により未露光部を除去することにより導電パターン(2a)を形成する(図4の(c))。かかる方法は、導電パターン付き基材40の製造方法ということもできる。また得られる導電パターンは、導電パターン2aの厚みに加えて樹脂硬化部3bの厚みを有している。これらの厚みは基材との段差Hbとなり、この段差が大きいとディスプレイ等に要求される平滑性が得られにくくなる。また、段差が大きいと導電パターンが視認されやすくなる。そのため、用途によって図5に示す方法と使い分ければよい。 FIG. 4 is a schematic cross-sectional view for explaining one embodiment of a conductive pattern forming method using a photosensitive conductive film. As shown in FIG. 4, the photosensitive resin layer 3 of the photosensitive conductive film 10 having the support film 1, the conductive film 2, and the photosensitive resin layer 3 is laminated on the substrate 20 ((a) of FIG. 4). Next, the photosensitive resin layer 3 is irradiated with an actinic ray L in a pattern through the mask pattern 5 (FIG. 4B), and the unexposed portion is removed by development to form the conductive pattern (2a). It forms ((c) of FIG. 4). Such a method can also be referred to as a method for manufacturing the substrate 40 with a conductive pattern. The obtained conductive pattern has the thickness of the resin cured portion 3b in addition to the thickness of the conductive pattern 2a. These thicknesses form a step Hb with the base material, and if this step is large, it becomes difficult to obtain the smoothness required for a display or the like. Further, when the step is large, the conductive pattern is easily visually recognized. Therefore, the method shown in FIG.
 図5は、感光性導電フィルムを用いた導電パターンの形成方法の別の実施形態を説明するための模式断面図である。図5に記載のように、支持フィルム1を有する感光層4の所定部分に活性光線を照射する第一の露光工程(図5(b))後に、支持フィルム1を剥離してから、酸素存在下で、第一の露光工程での露光部及び未露光部の一部又は全部に活性光線を照射する第二の露光工程(図5(c))と、を備えることが好ましい。第二の露光工程は、酸素存在下で行われ、例えば、空気中で行うことが好ましい。また、酸素濃度を増やした条件でもよい。 FIG. 5 is a schematic cross-sectional view for explaining another embodiment of a method for forming a conductive pattern using a photosensitive conductive film. As shown in FIG. 5, after the first exposure step (FIG. 5 (b)) in which a predetermined portion of the photosensitive layer 4 having the support film 1 is irradiated with actinic rays, the support film 1 is peeled off, and then oxygen is present. It is preferable to provide the 2nd exposure process (FIG.5 (c)) which irradiates an actinic ray to a part or all of the exposure part and unexposed part in a 1st exposure process below. The second exposure step is performed in the presence of oxygen, for example, preferably in the air. Moreover, the conditions which increased oxygen concentration may be sufficient.
 図5の導電パターンの形成方法の現像工程では、第二の露光工程で露光した感光性樹脂層3の充分硬化していない表面部分が除去される。具体的には、ウェット現象により感光性樹脂層3の充分硬化していない表面部分、つまり導電膜2を含む表面層が除去され、充分硬化した樹脂硬化部3a及び樹脂硬化部3a上に設けられた導電パターン2aが形成される。かかる方法は、導電パターン付き基材42の製造方法ということもできる。これにより、基材上に導電パターンとともに導電膜を有していない樹脂硬化部が設けられ、導電パターン付き基材42が得られ、基材上に導電パターンのみを設けた場合に比べて導電パターンの段差Haを小さくすることができる。 In the developing step of the conductive pattern forming method of FIG. 5, the surface portion of the photosensitive resin layer 3 exposed in the second exposure step that has not been sufficiently cured is removed. Specifically, the surface portion of the photosensitive resin layer 3 that is not sufficiently cured by the wet phenomenon, that is, the surface layer including the conductive film 2 is removed and provided on the sufficiently cured resin cured portion 3a and the resin cured portion 3a. The conductive pattern 2a is formed. Such a method can also be referred to as a method for manufacturing the substrate 42 with the conductive pattern. Thereby, the resin hardening part which does not have a conductive film with a conductive pattern is provided on a base material, and the base material 42 with a conductive pattern is obtained, and a conductive pattern compared with the case where only a conductive pattern is provided on a base material The level difference Ha can be reduced.
 基材20としては、特に制限は無いが、ガラス基材、ポリカーボネート、シクロオレフィンポリマー等のプラスチック基材などが挙げられる。基材は、450~650nmの波長域での最小光透過率が80%以上であるものが好ましい。 The substrate 20 is not particularly limited, and examples thereof include a glass substrate, a plastic substrate such as a polycarbonate, a cycloolefin polymer, and the like. The base material preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm.
 ラミネート工程は、例えば、感光性導電フィルムを、保護フィルムがある場合はそれを除去した後、加熱しながら感光性樹脂層側を基材に圧着することにより行われる。ラミネート工程は、密着性及び追従性の見地から減圧下で行われることが好ましい。感光性導電フィルムの積層は、感光性樹脂層又は基材を70~130℃に加熱することが好ましく、圧着圧力は、0.1~1.0MPa程度(1~10kgf/cm程度)とすることが好ましいが、これらの条件には特に制限はない。また、感光性樹脂層を上述のように70~130℃に加熱すれば、予め基材を予熱処理することは必要ではないが、積層性をさらに向上させるために基材の予熱処理を行うこともできる。 The laminating step is performed, for example, by pressing the photosensitive resin layer side to the substrate while heating the photosensitive conductive film after removing the protective film, if any. The laminating step is preferably performed under reduced pressure from the viewpoint of adhesion and followability. In the lamination of the photosensitive conductive film, it is preferable to heat the photosensitive resin layer or the substrate to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). However, these conditions are not particularly limited. In addition, if the photosensitive resin layer is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the base material in advance, but the base material is pre-heated to further improve the laminating property. You can also.
 支持フィルムを付けたまま基材上の感光性樹脂層の所定部分に活性光線を照射する露光工程において、露光方法としては、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線を画像状に照射する方法(マスク露光法)が挙げられる。活性光線の光源としては、公知の光源が用いられる。 In the exposure step of irradiating a predetermined portion of the photosensitive resin layer on the base material with actinic light with the support film attached, as an exposure method, the actinic light is irradiated in an image form through a negative or positive mask pattern called artwork. A method (mask exposure method). A known light source is used as the active light source.
 露光工程での露光量は、用いる装置や感光性樹脂組成物の組成によって異なるが、5mJ/cm~1000mJ/cmであることが好ましく、10mJ/cm~200mJ/cmであることがより好ましい。光硬化性に優れる点では、10mJ/cm以上であることが好ましく、解像性の点では1000mJ/cm以下であることが好ましい。 Exposure at the exposure step may vary depending on the composition of the device or a photosensitive resin composition to be used, it is preferably 5mJ / cm 2 ~ 1000mJ / cm 2, is 10mJ / cm 2 ~ 200mJ / cm 2 More preferred. In terms of excellent photocurability, it is preferably 10 mJ / cm 2 or more, and in terms of resolution, it is preferably 1000 mJ / cm 2 or less.
 露光工程は2段階で行ってもよく、1段階目を上記の露光量で行ったあと、2段階目を100~10000mJ/cmで行ってもよい。 The exposure process may be performed in two stages, and after the first stage is performed with the above-mentioned exposure amount, the second stage may be performed at 100 to 10,000 mJ / cm 2 .
 ウェット現像は、アルカリ性水溶液、水系現像液、有機溶剤系現像液等の公知の現像液を用いて行うことができる。現像液は、用いる感光性樹脂組成物に合わせて適宜選択することができる。 The wet development can be performed using a known developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer. A developing solution can be suitably selected according to the photosensitive resin composition to be used.
 現像液としては、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが好ましく用いられる。アルカリ性水溶液の塩基としては、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが挙げられる。 As the developer, an alkaline aqueous solution or the like that is safe and stable and has good operability is preferably used. Examples of the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide; alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate; potassium phosphate, sodium phosphate, and the like. Examples include alkali metal phosphates; alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate.
 現像に用いるアルカリ性水溶液としては、炭酸ナトリウム水溶液、炭酸カリウム水溶液、水酸化ナトリウム水溶液、四ホウ酸ナトリウム水溶液等が好ましい。アルカリ性水溶液の濃度は0.1~5質量%が通常用いられる。 As the alkaline aqueous solution used for development, a sodium carbonate aqueous solution, a potassium carbonate aqueous solution, a sodium hydroxide aqueous solution, a sodium tetraborate aqueous solution and the like are preferable. The concentration of the alkaline aqueous solution is usually 0.1 to 5% by mass.
 アルカリ性水溶液のpHは9~11の範囲とすることが好ましく、その温度は、感光性樹脂層の現像性に合わせて調節することができる。 The pH of the alkaline aqueous solution is preferably in the range of 9 to 11, and the temperature can be adjusted according to the developability of the photosensitive resin layer.
 アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。 In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
 現像液は、水又はアルカリ水溶液と、一種以上の有機溶剤とからなる水系現像液を用いてもよい。この場合、アルカリ水溶液に含まれる塩基としては、上述の塩基以外に、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール、1,3-ジアミノ-2-プロパノール、モルホリン等を用いてもよい。 As the developer, an aqueous developer composed of water or an aqueous alkaline solution and one or more organic solvents may be used. In this case, the base contained in the alkaline aqueous solution includes borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3 in addition to the above-mentioned bases. -Propanediol, 1,3-diamino-2-propanol, morpholine and the like may be used.
 有機溶剤としては、アセトン、酢酸エチル、炭素数1~4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。 Examples of the organic solvent include acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the like.
 水系現像液は、有機溶剤の濃度を2~90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。さらに、水系現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12とすることが好ましく、pH9~10とすることがより好ましい。水系現像液中には、界面活性剤、消泡剤等を少量添加することもできる。 The aqueous developer preferably has an organic solvent concentration of 2 to 90% by mass, and the temperature can be adjusted according to the developability. Furthermore, the pH of the aqueous developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8-12, and more preferably pH 9-10. A small amount of a surfactant, an antifoaming agent or the like can be added to the aqueous developer.
 有機溶剤系現像液としては、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、シクロヘキサノン、メチルイソブチルケトン、γ-ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1~20質量%の範囲で水を添加することが好ましい。 Examples of the organic solvent developer include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and γ-butyrolactone. These organic solvents are preferably added with water in the range of 1 to 20% by mass in order to prevent ignition.
 現像の方式としては、例えば、ディップ方式、パドル方式、揺動浸漬、スプレー方式、ブラッシング、スラッピング等が挙げられる。これらのうち、高圧スプレー方式を用いることが、解像度向上の観点から好ましい。 Examples of the developing method include a dip method, a paddle method, a rocking dipping, a spray method, brushing, and slapping. Among these, it is preferable to use a high-pressure spray system from the viewpoint of improving resolution.
 導電パターンの形成方法においては、現像後に必要に応じて、60~250℃程度の加熱又は0.2~10J/cm程度の露光を行うことにより導電パターンをさらに硬化してもよい。 In the method for forming a conductive pattern, the conductive pattern may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development.
 導電パターンの形成方法によれば、レジスト層を形成することなく、ガラス、プラスチック等の基材上に、フォトリソグラフィーによって容易に透明導電パターンを形成することが可能である。 According to the method for forming a conductive pattern, it is possible to easily form a transparent conductive pattern by photolithography on a substrate such as glass or plastic without forming a resist layer.
 導電パターン付き基材は、450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。 The base material with a conductive pattern preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm, more preferably 85% or more.
 次に、本実施形態に係るタッチパネルについて説明する。 Next, the touch panel according to this embodiment will be described.
 図6は、静電容量式のタッチパネルセンサの一例を示す模式上面図である。図6に示されるタッチパネルセンサは、透明基材101の片面にタッチ位置を検出するためのタッチ画面102があり、この領域に静電容量変化を検出して、X位置座標とする透明電極103と、Y位置座標とする透明電極104を備えている。これらの透明電極103、104には、タッチパネルとしての電気信号を制御するドライバー素子回路と接続するための引き出し線105と、その引き出し線105と透明電極103、104を接続する接続電極106が配置されている。さらに、引き出し線105の接続電極106と反対側の端部には、ドライバー素子回路と接続する接続端子107が配置されている。 FIG. 6 is a schematic top view showing an example of a capacitive touch panel sensor. The touch panel sensor shown in FIG. 6 has a touch screen 102 for detecting a touch position on one side of a transparent base material 101, and a transparent electrode 103 that detects a change in capacitance in this region and uses it as an X position coordinate. , A transparent electrode 104 having Y position coordinates is provided. The transparent electrodes 103 and 104 are provided with a lead wire 105 for connecting to a driver element circuit for controlling an electric signal as a touch panel, and a connection electrode 106 for connecting the lead wire 105 and the transparent electrodes 103 and 104. ing. Further, a connection terminal 107 connected to the driver element circuit is disposed at the end of the lead line 105 opposite to the connection electrode 106.
 図7は、図6に示されるタッチパネルセンサの製造方法の一例を示す模式図である。本実施形態においては、上述の本実施形態に係る導電パターンの形成方法のいずれかによって透明電極103、104が形成される。 FIG. 7 is a schematic diagram showing an example of a manufacturing method of the touch panel sensor shown in FIG. In the present embodiment, the transparent electrodes 103 and 104 are formed by any of the conductive pattern forming methods according to the present embodiment described above.
 まず、図7(a)に示すように、透明基材101上に透明電極(X位置座標)103を形成する。具体的には、感光性導電フィルム10を感光性樹脂層3が透明基材101に接するようラミネートする。転写した感光層4(導電膜2及び感光性樹脂層3)に対し、所望の形状にマスクパターン(遮光マスク)を介してパターン状に活性光線を照射する(第一の露光工程)。その後、マスクパターンを除き、さらに支持フィルムを剥離したうえで感光層4に活性光線を照射する(第二の露光工程)。露光工程の後、現像を行うことで、硬化が不充分な感光性樹脂層3と共に、導電膜2が除去され、導電パターン2aが形成される。この導電パターン2aによりX位置座標を検知する透明電極103が形成される(図7(b))。図7(b)は、図7(a)のI-I切断面の模式断面図である。本実施形態に係る導電パターンの形成方法により透明電極103を形成することで、段差の小さな透明電極103を設けることができる。 First, as shown in FIG. 7A, a transparent electrode (X position coordinate) 103 is formed on a transparent substrate 101. Specifically, the photosensitive conductive film 10 is laminated so that the photosensitive resin layer 3 is in contact with the transparent substrate 101. The transferred photosensitive layer 4 (conductive film 2 and photosensitive resin layer 3) is irradiated with actinic rays in a desired shape through a mask pattern (light-shielding mask) (first exposure step). Thereafter, the mask pattern is removed, the support film is further peeled off, and the photosensitive layer 4 is irradiated with actinic rays (second exposure step). By performing development after the exposure step, the conductive film 2 is removed together with the photosensitive resin layer 3 that is not sufficiently cured, and a conductive pattern 2a is formed. The transparent electrode 103 for detecting the X position coordinate is formed by the conductive pattern 2a (FIG. 7B). FIG. 7B is a schematic cross-sectional view taken along the line II of FIG. By forming the transparent electrode 103 by the conductive pattern forming method according to the present embodiment, the transparent electrode 103 having a small step can be provided.
 続いて、図7(c)に示すように透明電極(Y位置座標)104を形成する。上記の工程により形成された透明電極103を備える透明基材101に、さらに、新たな感光性導電フィルム10をラミネートし、上記同様の操作により、Y位置座標を検知する透明電極104が形成される(図7(d))。図7(d)は、図7(c)のII-II切断面の模式断面図である。本発明に係る導電パターンの形成方法により透明電極104を形成することで、透明電極103上に透明電極104を形成する場合であっても、段差や気泡の捲き込みによる視認性の低下が充分に抑制された、平滑性の高いタッチパネルセンサを製造することができる。 Subsequently, a transparent electrode (Y position coordinate) 104 is formed as shown in FIG. Further, a new photosensitive conductive film 10 is laminated on the transparent substrate 101 including the transparent electrode 103 formed by the above process, and the transparent electrode 104 for detecting the Y position coordinate is formed by the same operation as described above. (FIG. 7D). FIG. 7D is a schematic cross-sectional view taken along the line II-II in FIG. Even when the transparent electrode 104 is formed on the transparent electrode 103 by forming the transparent electrode 104 by the method for forming a conductive pattern according to the present invention, the visibility is sufficiently lowered due to a step or bubble entrainment. A suppressed and highly smooth touch panel sensor can be manufactured.
 次に、透明基材101の表面に、外部回路と接続するための引き出し線105と、この引き出し線と透明電極103、104を接続する接続電極106を形成する。図7では、引き出し線105及び接続電極106は、透明電極103及び104の形成後に形成するように示しているが、各透明電極形成時に同時に形成してもよい。引き出し線105は、例えば、フレーク状の銀を含有する導電ペースト材料を使って、スクリーン印刷法を用いて、接続電極106を形成するのと同時に形成することができる。 Next, a lead wire 105 for connecting to an external circuit and a connection electrode 106 for connecting the lead wire and the transparent electrodes 103 and 104 are formed on the surface of the transparent substrate 101. In FIG. 7, the lead lines 105 and the connection electrodes 106 are shown to be formed after the formation of the transparent electrodes 103 and 104, but they may be formed at the same time as the formation of each transparent electrode. The lead line 105 can be formed at the same time as the connection electrode 106 is formed by screen printing using a conductive paste material containing flaky silver, for example.
 本実施形態においては、透明電極103及び104が、導電性繊維と、有機酸又は上記有機酸の金属塩と、を含むことができる。これにより、透明電極の抵抗値をより低くすることができ、タッチパネルセンサの感度をさらに向上させることができる。また、タッチパネルセンサの信頼性の点では、上記有機酸が炭素数5以上の脂肪酸であることが好ましい。 In the present embodiment, the transparent electrodes 103 and 104 can include a conductive fiber and an organic acid or a metal salt of the organic acid. Thereby, the resistance value of a transparent electrode can be made lower and the sensitivity of a touch panel sensor can be further improved. In terms of the reliability of the touch panel sensor, the organic acid is preferably a fatty acid having 5 or more carbon atoms.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
<導電性繊維を含む第1の液の成分>
・銀ナノワイヤー溶液(米Cambrios社製、商品名「ClearOhm G4-04 Ink」、溶液中の銀の割合0.135質量%)
・分散剤(米Cambrios社製、商品名「ClearOhm SFT-A」)
・防錆剤(米Cambrios社製、商品名「ClearOhm SFT-D」)
<Component of the first liquid containing conductive fibers>
Silver nanowire solution (manufactured by Camrios, Inc., trade name “ClearOhm G4-04 Ink”, silver ratio in solution 0.135% by mass)
・ Dispersant (trade name “ClearOhm SFT-A” manufactured by Cambrios, USA)
・ Antirust agent (trade name “ClearOhm SFT-D”, manufactured by Cambrios, USA)
<有機酸の金属塩を含む第2の液の成分>
有機酸の金属塩
・ネオデカン酸銀(和光純薬工業株式会社、商品名「銀レジネートMR4704-P」)
・ベヘン酸銀(東京化成工業株式会社)
・酢酸銀(和光純薬工業株式会社)
・クエン酸銀(和光純薬工業株式会社)
・硝酸銀(和光純薬工業株式会社)
還元剤
・AW-500(川口化学工業株式会社、2、2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、商品名)
・ヒドロキノン(和光純薬株式会社)
<Component of second liquid containing metal salt of organic acid>
Metal salt of organic acid, silver neodecanoate (Wako Pure Chemical Industries, Ltd., trade name “Silver Resinate MR4704-P”)
・ Silver behenate (Tokyo Chemical Industry Co., Ltd.)
・ Silver acetate (Wako Pure Chemical Industries, Ltd.)
・ Silver citrate (Wako Pure Chemical Industries, Ltd.)
・ Silver nitrate (Wako Pure Chemical Industries, Ltd.)
Reducing agent AW-500 (Kawaguchi Chemical Industry Co., Ltd., 2,2'-methylene-bis (4-ethyl-6-t-butylphenol), trade name)
・ Hydroquinone (Wako Pure Chemical Industries, Ltd.)
<感光性樹脂層の成分>
(A)成分
・メタクリル酸(和光純薬株式会社)
・メタクリル酸メチル(和光純薬株式会社)
・アクリル酸エチル(和光純薬株式会社)
・2,2’-アゾビス(イソブチロニトリル)(和光純薬株式会社)
・プロピレングリコールモノメチルエーテル(和光純薬株式会社)
・トルエン(和光純薬株式会社)
(B)成分
・トリメチロールプロパントリアクリレート(日本化薬株式会社、商品名「TMPTA」)
(C)成分
・2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASFジャパン株式会社、商品名「LUCIRIN TPO」)
<Components of photosensitive resin layer>
(A) Component / Methacrylic acid (Wako Pure Chemical Industries, Ltd.)
・ Methyl methacrylate (Wako Pure Chemical Industries, Ltd.)
・ Ethyl acrylate (Wako Pure Chemical Industries, Ltd.)
・ 2,2'-Azobis (isobutyronitrile) (Wako Pure Chemical Industries, Ltd.)
・ Propylene glycol monomethyl ether (Wako Pure Chemical Industries, Ltd.)
・ Toluene (Wako Pure Chemical Industries, Ltd.)
(B) component, trimethylolpropane triacrylate (Nippon Kayaku Co., Ltd., trade name "TMPTA")
Component (C) 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide (BASF Japan Ltd., trade name “LUCIRIN TPO”)
<その他の成分>
レベリング剤
・オクタメチルシクロテトラシロキサン(東レ・ダウコーニング株式会社、商品名「SH-30」)
溶媒
・蒸留水(和光純薬株式会社)
・イソプロパノール(和光純薬株式会社)
・メチルエチルケトン(東燃化学株式会社製)
<Other ingredients>
Leveling agent, octamethylcyclotetrasiloxane (Toray Dow Corning Co., Ltd., trade name “SH-30”)
Solvent / distilled water (Wako Pure Chemical Industries, Ltd.)
・ Isopropanol (Wako Pure Chemical Industries, Ltd.)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.)
製造例1
 <導電性繊維を含む第1の液W1の調製>
 銀ナノワイヤー溶液(米Cambrios社製、商品名「ClearOhm G4-04 Ink」、溶液中の銀の割合0.135質量%)30質量部あたり、蒸留水(和光純薬工業株式会社社製、商品名)を70質量部加えて、さらに分散剤(米Cambrios社製、商品名「ClearOhm SFT-A」)を0.35質量部、防錆剤(米Cambrios社製、商品名「ClearOhm SFT-D」)を0.12質量部添加して、導電性繊維を含む第1の液W1とした。W1は銀繊維分散液でもある。銀ナノワイヤーの直径は、40nmであり、長さは40μmであった。
Production Example 1
<Preparation of the first liquid W1 containing conductive fibers>
Distilled water (manufactured by Wako Pure Chemical Industries Ltd. 70 parts by weight, and 0.35 parts by weight of a dispersant (trade name “ClearOhm SFT-A”, manufactured by Cambrios, USA) )) Was added in an amount of 0.12 parts by mass to obtain a first liquid W1 containing conductive fibers. W1 is also a silver fiber dispersion. The diameter of the silver nanowire was 40 nm and the length was 40 μm.
製造例2
<バインダーポリマー(A1)の溶液の調製>
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、表1の(1)に示す成分を表1に記載の配合量に従って仕込み、窒素ガス雰囲気下で系内を80℃に昇温した。反応温度を80℃±2℃に保ちながら、表1の(2)に示す成分、配合量で混合した単量体組成物を4時間かけて均一に滴下した。単量体組成物の滴下後、80℃±2℃で6時間撹拌を続け、重量平均分子量が45,000のバインダーポリマー(A1)の溶液(固形分50質量%)を得た。バインダーポリマー(A1)の酸価は、78mgKOH/gであった。また、バインダーポリマー(A1)のガラス転移温度(Tg)は60℃であった。
Production Example 2
<Preparation of solution of binder polymer (A1)>
Into a flask equipped with a stirrer, a reflux condenser, an inert gas inlet and a thermometer, the components shown in (1) of Table 1 were charged according to the blending amounts shown in Table 1, and the inside of the system was 80 in a nitrogen gas atmosphere. The temperature was raised to ° C. While maintaining the reaction temperature at 80 ° C. ± 2 ° C., the monomer composition mixed in the components and blending amounts shown in Table 1 (2) was added dropwise uniformly over 4 hours. After dropping of the monomer composition, stirring was continued at 80 ° C. ± 2 ° C. for 6 hours to obtain a binder polymer (A1) solution (solid content 50% by mass) having a weight average molecular weight of 45,000. The acid value of the binder polymer (A1) was 78 mgKOH / g. Moreover, the glass transition temperature (Tg) of the binder polymer (A1) was 60 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製したバインダーポリマー溶液の特性は、以下の方法で測定した。 The properties of the prepared binder polymer solution were measured by the following method.
(1)重量平均分子量
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC)によって測定し、標準ポリスチレンの検量線を用いて換算することにより導出した。GPCの条件を以下に示す。
(1) Weight average molecular weight The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and was derived by conversion using a standard polystyrene calibration curve. The GPC conditions are shown below.
 ポンプ:日立 L-6000型(株式会社日立製作所製、商品名)
 カラム:Gelpack GL-R420、Gelpack GL-R430、Gelpack GL-R440(以上、日立化成株式会社製、商品名)
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:2.05mL/分
 検出器:日立 L-3300型RI(株式会社日立製作所製、商品名)
Pump: Hitachi L-6000 (manufactured by Hitachi, Ltd., trade name)
Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (trade name, manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 2.05 mL / min Detector: Hitachi L-3300 type RI (manufactured by Hitachi, Ltd., trade name)
(2)酸価
 酸価は、次のようにして測定した。まず、バインダーポリマーの溶液を、130℃で1時間加熱し、揮発分を除去して、固形のバインダーポリマーを得た。そして、固形のバインダーポリマー1.0gを精秤した後、精秤したバインダーポリマーを三角フラスコに入れ、アセトンを30g添加し、均一に溶解した。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行った。そして、バインダーポリマーのアセトン溶液を中和するのに必要なKOHのmg数を次式により算出し、酸価を求めた。
 酸価=0.1×Vf×56.1/(Wp×I/100)
 式中、VfはKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合(質量%)を示す。
(2) Acid value The acid value was measured as follows. First, the binder polymer solution was heated at 130 ° C. for 1 hour to remove volatile components, thereby obtaining a solid binder polymer. Then, after precisely weighing 1.0 g of the solid binder polymer, the precisely weighed binder polymer was placed in an Erlenmeyer flask, and 30 g of acetone was added and dissolved uniformly. Next, an appropriate amount of an indicator, phenolphthalein, was added to the solution, and titration was performed using a 0.1N aqueous KOH solution. Then, the number of mg of KOH required to neutralize the acetone solution of the binder polymer was calculated by the following formula, and the acid value was determined.
Acid value = 0.1 × Vf × 56.1 / (Wp × I / 100)
In the formula, Vf represents the titration amount (mL) of the KOH aqueous solution, Wp represents the mass (g) of the measured resin solution, and I represents the proportion (mass%) of the non-volatile content in the measured resin solution.
(3)ガラス転移温度(Tg)
 上記で作製したバインダーポリマーの溶液をポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA53」)上に均一に塗布し、90℃の熱風対流式乾燥機で10分間乾燥して、乾燥後の厚さが40μmであるバインダーポリマーからなる膜を形成した。次いで高圧水銀灯を有する露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて、照射エネルギー量が400mJ/cm(i線(波長365nm)における測定値)となるように上記膜を露光した。露光された膜をホットプレート上にて65℃で2分間、次いで95℃で8分間加熱し、熱風対流式乾燥機にて180℃で60分間加熱処理をした後、ポリエチレンテレフタレートフィルムから剥離し、TMA/SS6000(セイコーインスツルメンツ株式会社製、商品名)を用いて、昇温速度5℃/分で温度を上昇させたときの上記硬化膜の熱膨張率を測定し、その曲線から得られる変曲点をガラス転移温度Tgとして求めた。
(3) Glass transition temperature (Tg)
The binder polymer solution prepared above was uniformly applied on a polyethylene terephthalate film (trade name “Purex A53” manufactured by Teijin DuPont Films Ltd.) and dried for 10 minutes with a hot air convection dryer at 90 ° C. A film made of a binder polymer having a thickness of 40 μm after drying was formed. Next, using an exposure machine having a high-pressure mercury lamp (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.), the irradiation energy amount is 400 mJ / cm 2 (measured value at i-line (wavelength 365 nm)). The film was exposed. The exposed film was heated on a hot plate at 65 ° C. for 2 minutes, then at 95 ° C. for 8 minutes, heated at 180 ° C. for 60 minutes in a hot air convection dryer, and then peeled off from the polyethylene terephthalate film, Using TMA / SS6000 (manufactured by Seiko Instruments Inc., trade name), the coefficient of thermal expansion of the cured film is measured when the temperature is increased at a rate of temperature increase of 5 ° C./min, and the inflection obtained from the curve. The point was determined as the glass transition temperature Tg.
[感光性樹脂組成物の溶液X1の調製]
 表2に示す材料を、表2に示す配合量(質量部)で攪拌機を用いて15分間混合し、感光性樹脂組成物の溶液X1を調製した。表2中、(A)成分の配合量はその固形分のみの質量を記載した。
[Preparation of Photosensitive Resin Composition Solution X1]
The materials shown in Table 2 were mixed at a blending amount (parts by mass) shown in Table 2 for 15 minutes using a stirrer to prepare a solution X1 of a photosensitive resin composition. In Table 2, the blending amount of the component (A) describes the mass of only the solid content.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例1
 <有機酸の金属塩を含む第2の液Y1の調製>
 ネオデカン酸銀(和光純薬工業株式会社製、商品名「銀レジネートMR4704-P」、分子量279.12)139.6mgを、100mLの蒸留水に溶解し、5mMのネオデカン酸銀溶液を作製した。これを、有機酸の金属塩を含む第2の液Y1とした。
Example 1
<Preparation of Second Liquid Y1 Containing Metal Salt of Organic Acid>
139.6 mg of silver neodecanoate (manufactured by Wako Pure Chemical Industries, Ltd., trade name “silver resinate MR4704-P”, molecular weight 279.12) was dissolved in 100 mL of distilled water to prepare a 5 mM silver neodecanoate solution. This was designated as a second liquid Y1 containing a metal salt of an organic acid.
[感光性導電フィルムの導電膜Z1の作製]
 製造例1で得られた導電性繊維を含む第1の液W1を、50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会社製、商品名「G2-50」)上に25g/mで均一に塗布し、80℃の熱風対流式乾燥機で5分間乾燥し、水分が揮発したことを確認後、10kg/cmの線圧で加圧することにより、PETフィルム上に導電膜を形成した。その後、有機酸の金属塩を含む第2の液Y1を、PETフィルム上の導電膜上に、12.5g/mで均一に塗布し、80℃の熱風対流式乾燥機で5分間、加熱乾燥した。有機酸の金属塩を含む第2の液Y1の塗布、乾燥後に得られる導電膜を導電膜Z1とした。導電膜Z1の膜厚は、0.1μmであった。
[Preparation of conductive film Z1 of photosensitive conductive film]
The first liquid W1 containing the conductive fibers obtained in Production Example 1 was uniformly applied at 25 g / m 2 on a 50 μm-thick polyethylene terephthalate film (PET film, manufactured by Teijin Limited, trade name “G2-50”). The film was dried for 5 minutes with a hot air convection dryer at 80 ° C., and after confirming that the water had volatilized, the film was pressurized with a linear pressure of 10 kg / cm to form a conductive film on the PET film. Thereafter, the second liquid Y1 containing a metal salt of an organic acid is uniformly applied at 12.5 g / m 2 on the conductive film on the PET film, and heated for 5 minutes with a hot air convection dryer at 80 ° C. Dried. A conductive film obtained after applying and drying the second liquid Y1 containing a metal salt of an organic acid was defined as a conductive film Z1. The film thickness of the conductive film Z1 was 0.1 μm.
[感光性導電フィルムV1の作製]
 感光性樹脂組成物の溶液X1を、上記PETフィルム上の導電膜Z1上に均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層を形成した。その後、感光性樹脂層を、ポリエチレンフィルム(タマポリ株式会社製、商品名「NF-13」)で覆い、感光性導電フィルムV1を得た。尚、感光性樹脂層の乾燥後の膜厚は5μmであった。
[Preparation of photosensitive conductive film V1]
The solution X1 of the photosensitive resin composition was uniformly applied onto the conductive film Z1 on the PET film, and dried for 10 minutes with a hot air convection dryer at 100 ° C. to form a photosensitive resin layer. Thereafter, the photosensitive resin layer was covered with a polyethylene film (trade name “NF-13” manufactured by Tamapoly Co., Ltd.) to obtain a photosensitive conductive film V1. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
<感光性導電フィルムV1の評価>
[感光性導電フィルムV1の光透過率の測定]
 得られた感光性導電フィルムV1のポリエチレンフィルムを剥がしながら、厚さ0.7mmのガラス基材上に、感光性樹脂層が接するようにラミネータ(日立化成株式会社製、商品名「HLM-3000」)を用いて、ロール温度110℃、基材送り速度1m/分、圧着圧力(シリンダ圧力)4×10Pa(厚さが1mm、縦10cm×横10cmの基材を用いたため、この時の線圧は9.8×10N/m)の条件でラミネートして、ガラス基材上に、支持フィルムを含む感光性導電フィルムV1が積層された基材を作製した。
<Evaluation of photosensitive conductive film V1>
[Measurement of light transmittance of photosensitive conductive film V1]
While peeling off the polyethylene film of the resulting photosensitive conductive film V1, a laminator (manufactured by Hitachi Chemical Co., Ltd., trade name “HLM-3000”) was placed so that the photosensitive resin layer was in contact with a glass substrate having a thickness of 0.7 mm. ), A roll temperature of 110 ° C., a substrate feed speed of 1 m / min, a pressure bonding pressure (cylinder pressure) of 4 × 10 5 Pa (thickness of 1 mm, length of 10 cm × width of 10 cm is used. The substrate was laminated under the condition of a linear pressure of 9.8 × 10 3 N / m) to prepare a substrate in which a photosensitive conductive film V1 including a support film was laminated on a glass substrate.
 次いで、ガラス基材上の感光性導電フィルムに、平行光線露光機(オーク製作所株式会社製、商品名「EXM1201」)を使用して、支持フィルム側より露光量5×10J/m(i線(波長365nm)における測定値)で、紫外線を照射した後、支持フィルムを除去し、さらに導電膜上方より露光量1×10J/m(i線における測定値)で紫外線を照射し、感光性樹脂層と導電膜とを含む感光層(膜厚5.0μm)の透過率測定用試料を得た。 Next, using a parallel light exposure machine (trade name “EXM1201” manufactured by Oak Manufacturing Co., Ltd.) on the photosensitive conductive film on the glass substrate, the exposure amount is 5 × 10 2 J / m 2 (from the support film side). After irradiating with ultraviolet rays at i-line (measured value at 365 nm wavelength), the support film is removed, and further irradiated with ultraviolet rays at an exposure amount of 1 × 10 4 J / m 2 (measured value at i-line) from above the conductive film. Thus, a transmittance measurement sample of the photosensitive layer (film thickness 5.0 μm) including the photosensitive resin layer and the conductive film was obtained.
 次いで、得られた試料をヘーズメータ(日本電飾工業株式会社製、商品名「NDH-5000」)を使用して、透過率を測定した。ガラス基材上に感光性導電フィルムV1の透過率は、90.6%であった。 Next, the transmittance of the obtained sample was measured using a haze meter (trade name “NDH-5000” manufactured by Nippon Denshoku Kogyo Co., Ltd.). The transmittance of the photosensitive conductive film V1 on the glass substrate was 90.6%.
[感光性導電フィルムV1の表面抵抗値の測定]
 得られた感光性導電フィルムV1のポリエチレンフィルムを剥がしながら、厚さ0.7mmのガラス基材上に、感光性樹脂層が接するようにラミネータ(日立化成株式会社製、商品名「HLM-3000」型)を用いて、ロール温度110℃、基材送り速度1m/分、圧着圧力(シリンダ圧力)4×10Pa(厚さが1mm、縦10cm×横10cmの基材を用いたため、この時の線圧は9.8×10N/m)の条件でラミネートして、ガラス基材上に、感光性導電フィルムV1の支持フィルム及び感光層が積層された基材を作製した。
[Measurement of surface resistance value of photosensitive conductive film V1]
While peeling off the polyethylene film of the resulting photosensitive conductive film V1, a laminator (manufactured by Hitachi Chemical Co., Ltd., trade name “HLM-3000”) was placed so that the photosensitive resin layer was in contact with a glass substrate having a thickness of 0.7 mm. Mold), a roll temperature of 110 ° C., a substrate feed speed of 1 m / min, and a pressure bonding pressure (cylinder pressure) of 4 × 10 5 Pa (thickness of 1 mm, length of 10 cm × width of 10 cm). Was laminated under the condition of 9.8 × 10 3 N / m) to prepare a substrate in which the support film of the photosensitive conductive film V1 and the photosensitive layer were laminated on the glass substrate.
 次いで、ガラス基材上の上記感光層に、平行光線露光機(オーク製作所株式会社製、商品名「EXM1201」)を使用して、支持フィルム側より露光量5×10J/m(i線(波長365nm)における測定値)で、紫外線を照射した後、支持フィルムを除去し、さらに導電膜上方より露光量1×10J/m(i線における測定値)で紫外線を照射し、感光性導電フィルムの表面抵抗値測定試料を得た。 Next, using a parallel light exposure machine (trade name “EXM1201” manufactured by Oak Manufacturing Co., Ltd.) on the photosensitive layer on the glass substrate, an exposure amount of 5 × 10 2 J / m 2 (i (Measured value at a wavelength of 365 nm) is irradiated with ultraviolet rays, the support film is removed, and further irradiated with ultraviolet rays from above the conductive film at an exposure amount of 1 × 10 4 J / m 2 (measured value at i-line). A sample for measuring the surface resistance of the photosensitive conductive film was obtained.
 次いで、得られた試料を非接触型表面抵抗計(ナプソン株式会社製、商品名「EC-80P」)を用い、測定プローブを感光性導電フィルム面(ガラス基材の反対面)から当てて、感光性導電フィルムの表面抵抗率を測定した。非接触型表面抵抗計の測定モードは、M-Hモードで測定した。感光性導電フィルムV1の表面抵抗値は、85.2Ω/□であった。 Next, the obtained sample was contacted from the surface of the photosensitive conductive film (opposite surface of the glass substrate) using a non-contact type surface resistance meter (trade name “EC-80P” manufactured by Napson Co., Ltd.) The surface resistivity of the photosensitive conductive film was measured. The measurement mode of the non-contact type surface resistance meter was measured in the MH mode. The surface resistance value of the photosensitive conductive film V1 was 85.2Ω / □.
[感光性導電フィルムV1の高温高湿信頼性]
 得られた感光性導電フィルムV1のポリエチレンフィルムを剥がしながら、厚さ0.7mmのガラス基材上に、感光性樹脂層が接するようにラミネータ(日立化成株式会社製、商品名「HLM-3000型」)を用いて、ロール温度110℃、基材送り速度1m/分、圧着圧力(シリンダ圧力)4×10Pa(厚さが1mm、縦10cm×横10cmの基材を用いたため、この時の線圧は9.8×10N/m)の条件でラミネートして、ガラス基材上に、支持フィルムを含む感光性導電フィルムV1が積層された基材を作製した。
[High-temperature and high-humidity reliability of photosensitive conductive film V1]
While peeling off the polyethylene film of the obtained photosensitive conductive film V1, a laminator (manufactured by Hitachi Chemical Co., Ltd., trade name “HLM-3000 type” so that the photosensitive resin layer is in contact with a 0.7 mm thick glass substrate. )), A roll temperature of 110 ° C., a substrate feed speed of 1 m / min, and a pressure bonding pressure (cylinder pressure) of 4 × 10 5 Pa (thickness of 1 mm, length of 10 cm × width of 10 cm are used. Was laminated under the condition of 9.8 × 10 3 N / m) to prepare a base material in which a photosensitive conductive film V1 including a support film was laminated on a glass base material.
 次いで、ガラス基材上の感光性導電フィルムに、平行光線露光機(オーク製作所株式会社製、商品名「EXM1201」)を使用して、支持フィルム側より露光量5×10J/m(i線(波長365nm)における測定値)で、紫外線を照射した後、支持フィルムを除去し、さらに導電膜上方より露光量1×10J/m(i線における測定値)で紫外線を照射し、感光性導電フィルムの高温高湿信頼性評価用の試料を得た。 Next, using a parallel light exposure machine (trade name “EXM1201” manufactured by Oak Manufacturing Co., Ltd.) on the photosensitive conductive film on the glass substrate, the exposure amount is 5 × 10 2 J / m 2 (from the support film side). After irradiating with ultraviolet rays at i-line (measured value at 365 nm wavelength), the support film is removed, and further irradiated with ultraviolet rays at an exposure amount of 1 × 10 4 J / m 2 (measured value at i-line) from above the conductive film. Thus, a sample for high temperature and high humidity reliability evaluation of the photosensitive conductive film was obtained.
 得られた高温高湿信頼性評価用の試料について、非接触型表面抵抗計(ナプソン株式会社製、商品名「EC-80P」、測定モード:M-Hモード)を用い、測定プローブを感光性導電フィルム面(ガラス基材の反対面)から当てて、表面抵抗値を測定した。この表面抵抗値を、高温高湿信頼性評価前の初期値(R0)とした。 The obtained sample for high-temperature and high-humidity reliability evaluation is made using a non-contact surface resistance meter (trade name “EC-80P”, measurement mode: MH mode, manufactured by Napson Corporation), and the measurement probe is photosensitive. The surface resistance value was measured by applying from the conductive film surface (opposite surface of the glass substrate). This surface resistance value was taken as the initial value (R0) before the high temperature and high humidity reliability evaluation.
 次いで、高温高湿信頼性評価用の試料を、温度85℃、湿度85%の高温高湿槽に500時間投入した後、大気中に室温で1時間静置してから、改めて表面抵抗値を測定した。この表面抵抗値を、高温高湿信頼性評価後の抵抗値(R1)とした。 Next, after putting a sample for reliability evaluation of high temperature and high humidity into a high temperature and high humidity tank of 85 ° C. and 85% humidity and leaving it in the atmosphere at room temperature for 1 hour, the surface resistance value was again measured. It was measured. This surface resistance value was defined as a resistance value (R1) after high temperature and high humidity reliability evaluation.
 感光性導電フィルムの高温高湿信頼性を、信頼性評価前後の抵抗値R0及びR1をもとに、以下の評点に従って評価した。ここで、R0とR1の比(R1/R0)をRrとした。
◎:Rr≦1.20 
○:1.20<Rr≦1.5 
△:1.5<Rr≦2 
×:Rr>2
 感光性導電フィルムV1の高温高湿信頼性を評価したところ、評点は◎だった。
The high-temperature and high-humidity reliability of the photosensitive conductive film was evaluated according to the following ratings based on the resistance values R0 and R1 before and after the reliability evaluation. Here, the ratio of R0 to R1 (R1 / R0) was Rr.
A: Rr ≦ 1.20
○: 1.20 <Rr ≦ 1.5
Δ: 1.5 <Rr ≦ 2
×: Rr> 2
When the high-temperature and high-humidity reliability of the photosensitive conductive film V1 was evaluated, the score was ◎.
実施例2~8
 表3に示す有機酸の金属塩を含む第2の液Y2~Y8を用いた以外は、実施例1と同様にして、PETフィルム上の導電膜上に、有機酸の金属塩を含む第2の液を塗布し、加熱乾燥処理し、その後、感光性導電フィルムを作製し、透過率、表面抵抗値、高温高湿信頼性を評価した。結果を表4に示す。
Examples 2-8
A second solution containing a metal salt of an organic acid was formed on the conductive film on the PET film in the same manner as in Example 1 except that the second liquids Y2 to Y8 containing a metal salt of an organic acid shown in Table 3 were used. Then, a photosensitive conductive film was prepared, and the transmittance, surface resistance value, and high temperature and high humidity reliability were evaluated. The results are shown in Table 4.
比較例1
 有機酸の金属塩を含む第2の液の塗布、加熱乾燥処理を実施しなかった以外は、実施例1と同様にして、PETフィルム上に導電膜を作製し、その後、感光性導電フィルムを作製し、各種特性を評価した。結果を表4に示す。
Comparative Example 1
A conductive film was produced on the PET film in the same manner as in Example 1 except that the second liquid containing the metal salt of the organic acid was not applied and heat-dried, and then the photosensitive conductive film was formed. It produced and evaluated various characteristics. The results are shown in Table 4.
比較例2~3
 有機酸の金属塩を含む第2の液に代えて、表3に示す無機酸の金属塩を含む液Y9、又はY10を用いた以外は、実施例1と同様にして、PETフィルム上の導電膜上に、無機酸の金属塩を含む液を塗布し、加熱乾燥処理し、その後、感光性導電フィルムを作製し、透過率、表面抵抗値、高温高湿信頼性を評価した。結果を表4に示す。
Comparative Examples 2-3
In place of the second liquid containing a metal salt of an organic acid, the liquid Y9 or Y10 containing a metal salt of an inorganic acid shown in Table 3 was used in the same manner as in Example 1, and the conductivity on the PET film. On the film, a liquid containing a metal salt of an inorganic acid was applied and heat-dried. Thereafter, a photosensitive conductive film was prepared, and the transmittance, surface resistance value, and high temperature and high humidity reliability were evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[導電性繊維を含む第1の液と有機酸の金属塩を含む第2の液との混合液の検討]
実施例9~11
 表5に示す材料を、表6に示す配合量(質量部)で攪拌機を用いて15分間混合し、混合液W2~4を調製した。混合する順番としては、導電性繊維を含む第1の液と有機酸の金属塩を含む第2の液とを、それぞれ別々に調製したのち、導電性繊維を含む第1の液に有機酸の金属塩を含む第2の液を滴下することにより調製した。
[Examination of liquid mixture of first liquid containing conductive fiber and second liquid containing metal salt of organic acid]
Examples 9-11
The materials shown in Table 5 were mixed for 15 minutes using a stirrer in the blending amounts (parts by mass) shown in Table 6 to prepare mixed solutions W2-4. As the mixing order, the first liquid containing the conductive fibers and the second liquid containing the metal salt of the organic acid were prepared separately, and then the organic acid was added to the first liquid containing the conductive fibers. It was prepared by dropping a second liquid containing a metal salt.
 上記混合液W2~4を、50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会社製、商品名「G2-50」)上に25g/mで均一に塗布し、80℃の熱風対流式乾燥機で5分間乾燥し、水分が揮発したことを確認後、10kg/cmの線圧で加圧することにより、PETフィルム上に導電膜を形成した。上記混合液W2~4は、混合液の調製後3時間以内に使用した。その後、実施例1と同様の方法で、感光性導電フィルムを作製し、各種特性を評価した。結果を表6に示す。 The above mixed solutions W2-4 were uniformly applied at 25 g / m 2 onto a 50 μm-thick polyethylene terephthalate film (PET film, product name “G2-50” manufactured by Teijin Ltd.), and dried with hot air convection at 80 ° C. It dried for 5 minutes with the machine, and after confirming that the water | moisture content volatilized, the electrically conductive film was formed on PET film by pressurizing with the linear pressure of 10 kg / cm. The above mixed solutions W2 to W4 were used within 3 hours after preparation of the mixed solution. Then, the photosensitive conductive film was produced by the method similar to Example 1, and various characteristics were evaluated. The results are shown in Table 6.

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
比較例4
 表5に示す混合液W5を用いた以外は、実施例9~11と同様にして、PETフィルム上に導電膜上を形成し、その後、感光性導電フィルムを作製し、透過率、表面抵抗値、高温高湿信頼性を評価した。結果を表6に示す。
Comparative Example 4
Except for using the mixed solution W5 shown in Table 5, a conductive film was formed on a PET film in the same manner as in Examples 9 to 11, and then a photosensitive conductive film was prepared. High temperature and high humidity reliability was evaluated. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4に示すように、有機酸の金属塩を含む第2の液によって、導電性繊維を含む導電膜を処理した実施例1~8における導電膜Zは、高い透過率と低い表面抵抗値とを有すると同時に、高温高湿信頼性に優れることが確認された。 As shown in Table 4, the conductive films Z in Examples 1 to 8 in which the conductive films containing conductive fibers were treated with the second liquid containing a metal salt of an organic acid had a high transmittance and a low surface resistance. At the same time, it was confirmed that the high temperature and high humidity reliability was excellent.
 一方、表4に示すように、有機酸の金属塩を含む第2の液による処理を経ていない比較例1における導電膜は、表面抵抗値が101.0Ω/□であり、低い抵抗値を示さなかった。また、無機酸の金属塩(金属無機酸塩)である硝酸銀を含む溶液によって、導電膜を処理した比較例2~3における導電膜は、高い透過率と低い表面抵抗値とを有するものの、高温高湿信頼性は実施例の導電膜Zと比べ劣る結果となることが確認された。 On the other hand, as shown in Table 4, the conductive film in Comparative Example 1 that had not been treated with the second liquid containing the organic acid metal salt had a surface resistance value of 101.0 Ω / □ and a low resistance value. There wasn't. In addition, the conductive films in Comparative Examples 2 to 3 in which the conductive film was treated with a solution containing silver nitrate, which is a metal salt of an inorganic acid (metal inorganic acid salt), had high transmittance and low surface resistance. It was confirmed that the high humidity reliability was inferior to the conductive film Z of the example.
 また、表6に示すように、導電性繊維を含む第1の液と有機酸の金属塩を含む第2の液との混合液を使用した場合でも、実施例9~11における導電膜Zのように、高い透過率と低い表面抵抗値とを有すると同時に、高温高湿信頼性に優れることが確認された。 Further, as shown in Table 6, even when a mixed liquid of the first liquid containing conductive fibers and the second liquid containing a metal salt of an organic acid was used, the conductive film Z of Examples 9 to 11 was used. Thus, it was confirmed that it had high transmittance and low surface resistance value, and at the same time, was excellent in high temperature and high humidity reliability.
 本発明の、導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液と、を有する導電膜作製液セットを用いれば、高い透明性と低い抵抗値とを有し、かつ高い信頼性を有する透明導電膜、導電膜を有する積層体、感光性導電フィルム、導電パターン付基材及びその製造方法を提供できる。 If the electrically conductive film preparation liquid set which has the 1st liquid containing the electroconductive fiber of this invention and the 2nd liquid containing the metal salt of organic acid is used, it has high transparency and a low resistance value. And the transparent conductive film which has high reliability, the laminated body which has a conductive film, a photosensitive conductive film, a base material with a conductive pattern, and its manufacturing method can be provided.
 1…支持フィルム、2…導電膜、2a…導電パターン、3…感光性樹脂層、3a…樹脂硬化部、4…感光層、5…マスクパターン、10…感光性導電フィルム、20…基材、40,42…導電パターン付き基材、101…透明基材、102…タッチ画面、103…透明電極(X位置座標)、104…透明電極(Y位置座標)、105…引き出し線、106…接続電極、107…接続端子。 DESCRIPTION OF SYMBOLS 1 ... Support film, 2 ... Conductive film, 2a ... Conductive pattern, 3 ... Photosensitive resin layer, 3a ... Resin hardening part, 4 ... Photosensitive layer, 5 ... Mask pattern, 10 ... Photosensitive conductive film, 20 ... Base material, 40, 42 ... Substrate with conductive pattern, 101 ... Transparent substrate, 102 ... Touch screen, 103 ... Transparent electrode (X position coordinate), 104 ... Transparent electrode (Y position coordinate), 105 ... Lead wire, 106 ... Connection electrode 107 Connection terminals.

Claims (23)

  1.  導電性繊維を含む第1の液と、有機酸の金属塩を含む第2の液とを有する、導電膜作製液セット。 A conductive film preparation liquid set having a first liquid containing conductive fibers and a second liquid containing a metal salt of an organic acid.
  2.  前記有機酸の金属塩が炭素数5以上の脂肪酸塩である、請求項1に記載の導電膜作製液セット。 The conductive film preparation liquid set according to claim 1, wherein the metal salt of the organic acid is a fatty acid salt having 5 or more carbon atoms.
  3.  前記第2の液が還元剤をさらに含む、請求項1又は2に記載の導電膜作製液セット。 The conductive film preparation liquid set according to claim 1 or 2, wherein the second liquid further contains a reducing agent.
  4.  前記還元剤がヒドロキシル基又はフェノール性水酸基を有する化合物である、請求項3に記載の導電膜作製液セット。 The conductive film preparation liquid set according to claim 3, wherein the reducing agent is a compound having a hydroxyl group or a phenolic hydroxyl group.
  5.  導電性繊維と、有機酸の金属塩とを含む、導電膜作製液。 A conductive film preparation liquid containing conductive fibers and a metal salt of an organic acid.
  6.  前記有機酸の金属塩が炭素数5以上の脂肪酸塩である、請求項5に記載の導電膜作製液。 The conductive film preparation liquid according to claim 5, wherein the metal salt of the organic acid is a fatty acid salt having 5 or more carbon atoms.
  7.  還元剤をさらに含む、請求項5又は6に記載の導電膜作製液。 The electrically conductive film preparation liquid of Claim 5 or 6 which further contains a reducing agent.
  8.  前記還元剤がヒドロキシル基又はフェノール性水酸基を有する化合物である、請求項7に記載の導電膜作製液。 The conductive film preparation liquid according to claim 7, wherein the reducing agent is a compound having a hydroxyl group or a phenolic hydroxyl group.
  9.  支持フィルムと、前記支持フィルム上に設けられた導電膜と、を有し、
     前記導電膜は、請求項1~4のいずれか一項に記載の導電膜作製液セット、又は請求項5~8のいずれか一項に記載の導電膜作製液から形成される導電膜である、転写形導電フィルム。
    A support film, and a conductive film provided on the support film,
    The conductive film is a conductive film formed from the conductive film preparation liquid set according to any one of claims 1 to 4 or the conductive film preparation liquid according to any one of claims 5 to 8. Transfer type conductive film.
  10.  支持フィルムと、前記支持フィルム上に設けられた導電膜と、を有し、
     前記導電膜は、有機酸又は前記有機酸の金属塩を含む、転写形導電フィルム。
    A support film, and a conductive film provided on the support film,
    The conductive film is a transfer-type conductive film containing an organic acid or a metal salt of the organic acid.
  11.  前記有機酸が炭素数5以上の脂肪酸である、請求項10に記載の転写形導電フィルム。 The transfer-type conductive film according to claim 10, wherein the organic acid is a fatty acid having 5 or more carbon atoms.
  12.  基材と、前記基材上に設けられた導電膜と、を有し、
     前記導電膜は、請求項1~4のいずれか一項に記載の導電膜作製液セット、又は請求項5~8のいずれか一項に記載の導電膜作製液から形成される導電膜である、導電膜付き基材。
    A base material, and a conductive film provided on the base material,
    The conductive film is a conductive film formed from the conductive film preparation liquid set according to any one of claims 1 to 4 or the conductive film preparation liquid according to any one of claims 5 to 8. , Substrate with conductive film.
  13.  基材と、前記基材上に設けられた導電膜と、を有し、
     前記導電膜は、有機酸又は前記有機酸の金属塩を含む、導電膜付き基材。
    A base material, and a conductive film provided on the base material,
    The said electrically conductive film is a base material with an electrically conductive film containing the organic acid or the metal salt of the said organic acid.
  14.  前記有機酸が炭素数5以上の脂肪酸である、請求項13に記載の導電膜付き基材。 The base material with a conductive film according to claim 13, wherein the organic acid is a fatty acid having 5 or more carbon atoms.
  15.  請求項12~14のいずれか一項に記載の導電膜付き基材上に所定のパターンを有する樹脂硬化部を形成する工程と、
     前記樹脂硬化部が形成されていない部分の導電膜を除去又は不導体化する工程と、
     前記樹脂硬化部を除去する工程と、を備える、導電パターンの形成方法。
    Forming a resin cured portion having a predetermined pattern on the conductive film-coated substrate according to any one of claims 12 to 14,
    Removing or non-conducting the conductive film of the portion where the resin cured portion is not formed, and
    And a step of removing the cured resin portion.
  16.  支持フィルムと、前記支持フィルム上に設けられた導電膜を含む感光層と、を有し、
     前記導電膜は、請求項1~4のいずれか一項に記載の導電膜作製液セット、又は請求項5~8のいずれか一項に記載の導電膜作製液から形成される導電膜である、転写形感光性導電フィルム。
    A support film, and a photosensitive layer including a conductive film provided on the support film,
    The conductive film is a conductive film formed from the conductive film preparation liquid set according to any one of claims 1 to 4 or the conductive film preparation liquid according to any one of claims 5 to 8. Transfer type photosensitive conductive film.
  17.  支持フィルムと、前記支持フィルム上に設けられた導電膜を含む感光層と、を有し、
     前記導電膜は、有機酸又は前記有機酸の金属塩を含む、転写形感光性導電フィルム。
    A support film, and a photosensitive layer including a conductive film provided on the support film,
    The conductive film is a transfer photosensitive conductive film containing an organic acid or a metal salt of the organic acid.
  18.  前記有機酸が炭素数5以上の脂肪酸である、請求項17に記載の転写形感光性導電フィルム。 The transfer type photosensitive conductive film according to claim 17, wherein the organic acid is a fatty acid having 5 or more carbon atoms.
  19.  請求項16~18のいずれか一項に記載の転写形感光性導電フィルムが有する前記感光層を基材上に転写する工程と、
     基材上に転写された前記感光層に、パターン状に活性光線を照射する露光工程と、
     前記感光層の未露光部を除去することにより導電パターンを形成する導電パターン形成工程と、を備える、導電パターンの形成方法。
    Transferring the photosensitive layer of the transfer photosensitive conductive film according to any one of claims 16 to 18 onto a substrate;
    An exposure step of irradiating the photosensitive layer transferred onto the substrate with actinic rays in a pattern; and
    A conductive pattern forming step of forming a conductive pattern by removing an unexposed portion of the photosensitive layer.
  20.  請求項15又は請求項19に記載の方法により形成された導電パターンを有する、タッチパネル。 A touch panel having a conductive pattern formed by the method according to claim 15 or 19.
  21.  導電性繊維と、有機酸又は前記有機酸の金属塩と、を含む導電膜を有する、タッチパネル。 A touch panel having a conductive film containing conductive fibers and an organic acid or a metal salt of the organic acid.
  22.  前記有機酸が炭素数5以上の脂肪酸である、請求項21に記載のタッチパネル。 The touch panel according to claim 21, wherein the organic acid is a fatty acid having 5 or more carbon atoms.
  23.  炭素数5以上の脂肪酸の金属塩を含む、導電性向上剤。 A conductivity improver containing a metal salt of a fatty acid having 5 or more carbon atoms.
PCT/JP2015/063624 2015-05-12 2015-05-12 Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel WO2016181496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063624 WO2016181496A1 (en) 2015-05-12 2015-05-12 Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063624 WO2016181496A1 (en) 2015-05-12 2015-05-12 Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel

Publications (1)

Publication Number Publication Date
WO2016181496A1 true WO2016181496A1 (en) 2016-11-17

Family

ID=57249118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063624 WO2016181496A1 (en) 2015-05-12 2015-05-12 Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel

Country Status (1)

Country Link
WO (1) WO2016181496A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129882A (en) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
JP2012038846A (en) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The Paste for solar cell electrode, and solar cell
JP2012216535A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Transparent conductive film containing metal nanowire and coating liquid thereof
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129882A (en) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
JP2012038846A (en) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The Paste for solar cell electrode, and solar cell
JP2012216535A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Transparent conductive film containing metal nanowire and coating liquid thereof
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor

Similar Documents

Publication Publication Date Title
JP5257558B1 (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP5418523B2 (en) Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
JP6176295B2 (en) Method for forming conductive pattern
JP6206028B2 (en) Manufacturing method of conductive pattern, conductive pattern substrate including conductive pattern manufactured by the method, touch panel sensor including the conductive pattern substrate, and photosensitive conductive film
JP6205925B2 (en) Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate
JPWO2016167228A1 (en) Photosensitive conductive film, method for forming conductive pattern, substrate with conductive pattern, and touch panel sensor
WO2015137278A1 (en) Photosensitive conductive film
JP2017201354A (en) Photosensitive conductive film, method for forming conductive pattern, conductive pattern substrate and touch panel sensor
JP5569144B2 (en) Photosensitive conductive film, method for forming conductive film, and method for forming conductive pattern
JP2016151748A (en) Photosensitive conductive film, method for forming conductive pattern using the same, conductive pattern substrate, and touch panel sensor
WO2016181496A1 (en) Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel
JP6399175B2 (en) Manufacturing method of conductive pattern, conductive pattern substrate including conductive pattern manufactured by the method, touch panel sensor including the conductive pattern substrate, and photosensitive conductive film
WO2014196154A1 (en) Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate
JP2017198878A (en) Photosensitive conductive film and conductive pattern comprising the same, conductive pattern substrate, and method for producing touch panel sensor
JP2012162601A (en) Photocurable resin composition for overcoat, photocurable element for overcoat, method for producing conductive film substrate, and conductive film substrate
JP2017201350A (en) Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
WO2016006024A1 (en) Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern
JP2017072679A (en) Photosensitive conductive film, and method of forming conductive pattern
JP2017068734A (en) Photosensitive conductive film, forming method for conductive pattern using the same
JP2017068158A (en) Photosensitive conductive film and method for forming conductive pattern using the same
JP2016070973A (en) Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate
WO2020044467A1 (en) Photosensitive conductive film, layered body and method for manufacturing same, and touch panel sensor
WO2018138879A1 (en) Photosensitive conductive film, conductive pattern formation method, conductive pattern substrate production method, conductive pattern substrate, and touch panel sensor
JP2017228312A (en) Photosensitive conductive film, and method of forming conductive pattern using the same, and conductive pattern substrate including the same
WO2018008599A1 (en) Photosensitive conductive film, method for manufacturing conductive pattern, conductive pattern substrate, and touch panel sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15891821

Country of ref document: EP

Kind code of ref document: A1