WO2013047478A1 - Organic el illumination device - Google Patents

Organic el illumination device Download PDF

Info

Publication number
WO2013047478A1
WO2013047478A1 PCT/JP2012/074484 JP2012074484W WO2013047478A1 WO 2013047478 A1 WO2013047478 A1 WO 2013047478A1 JP 2012074484 W JP2012074484 W JP 2012074484W WO 2013047478 A1 WO2013047478 A1 WO 2013047478A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting layers
organic
electrode
layer
Prior art date
Application number
PCT/JP2012/074484
Other languages
French (fr)
Japanese (ja)
Inventor
嘉一 坂口
Original Assignee
Necライティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necライティング株式会社 filed Critical Necライティング株式会社
Priority to JP2013536284A priority Critical patent/JP5773465B2/en
Publication of WO2013047478A1 publication Critical patent/WO2013047478A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an organic EL lighting device.
  • a white organic EL (Electro-Luminescence) panel is conventionally configured by combining an R (red) organic EL panel, a G (green) organic EL panel, and a B (blue) organic EL panel.
  • the organic EL panel varies in characteristics such as current-voltage characteristics, current-luminance characteristics, and color temperature depending on materials and manufacturing processes. For this reason, the conventional white EL panel has a large variation in brightness, color temperature and the like of each panel, and the product yield is low.
  • deterioration of individual panels over time is not uniform, and variations in luminance and color temperature between panels increase depending on usage frequency and the like.
  • Patent Document 1 discloses a configuration in which an anode electrode and a cathode electrode are provided corresponding to each of R, G, and B light emitting layers on the same plane.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a further improved organic EL lighting device.
  • an organic EL lighting device includes: A plurality of light-emitting layers that emit light by recombination of injected charges and have different emission colors; A first electrode provided in a pair with each of the plurality of light emitting layers; A second electrode provided in common to the plurality of light emitting layers; A first transport layer for transporting charges injected from the first electrode to the plurality of light emitting layers; A second transport layer for transporting charges injected from the second electrode to the plurality of light emitting layers; Comprising It is characterized by that.
  • (A)-(c) is a figure which shows arrangement
  • (A)-(c) is a wave form diagram of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 1st Embodiment. It is a wave form diagram which shows the other example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 1st Embodiment.
  • (A), (b) is a wave form diagram which shows the further another example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 1st Embodiment.
  • (A)-(c) is a wave form diagram which shows the example of the drive voltage for PWM drive of the organic electroluminescent illuminating device which concerns on 1st Embodiment.
  • (A)-(c) is a wave form diagram which shows the example of the drive voltage for PAM drive of the organic electroluminescent illuminating device which concerns on 1st Embodiment. It is sectional drawing of the organic electroluminescent illuminating device which concerns on 2nd Embodiment.
  • (A)-(c) is a wave form diagram which shows the example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 2nd Embodiment. It is a wave form diagram which shows the other example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 2nd Embodiment.
  • (A), (b) is a wave form diagram which shows the further another example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 2nd Embodiment.
  • (A)-(c) is a wave form diagram which shows the example of the drive voltage for PWM drive of the organic electroluminescent illuminating device which concerns on 2nd Embodiment.
  • (A)-(c) is a wave form diagram which shows the example of the drive voltage for PAM drive of the organic electroluminescent illuminating device which concerns on 2nd Embodiment. It is sectional drawing of the organic electroluminescent illuminating device of the comparative example 1. FIG. It is sectional drawing of the organic electroluminescent illuminating device of the comparative example 2.
  • the organic EL lighting device 1 is a lighting device capable of emitting multiple colors, and as shown in FIG. 1, a cathode electrode 10, an electron injection layer 20, and an electron transport layer. 30, a hole blocking layer 40, a light emitting layer 50, a hole transport layer 60, a hole injection layer 70, an anode electrode 80, a glass substrate 90, and a diffusion plate 100.
  • a cathode electrode 10 an electron injection layer 20
  • an electron transport layer an electron transport layer.
  • the cathode electrode 10 is composed of a thin film electrode formed by depositing a metal material having a small electrical resistivity such as aluminum or silver and having a high reflectivity to a uniform thickness.
  • the cathode electrode 10 is composed of a single thin film as shown in FIG.
  • the cathode electrode 10 functions as an electrode for injecting electrons into the light emitting layer 50.
  • the electron injection layer 20 is formed on the cathode electrode 10 from an alkali metal such as lithium or cesium or a fluoride or oxide of an alkaline earth metal such as calcium.
  • the electron injection layer 20 can also be formed from an electron-transporting organic compound and a quinolinol-based alkali metal complex such as lithium quinoline as a dopant or an electron-donating metal such as Li.
  • the electron injection layer 20 functions as a layer that increases the efficiency of electron injection from the cathode electrode 10 to the light emitting layer 50.
  • the electron transport layer 30 is formed on the electron injection layer 20 from an electron transporting organic compound.
  • the electron-transporting organic compound include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (Bu-PBD), 1,3-bis Oxadiazole derivatives such as (pt-butylphenyl-1,3,4-oxadiazolyl) phenyl (OXD-7), triazole derivatives, and quinolinol series such as tris (8-quinolinol) aluminum complex (Alq3) Metal complexes having the above ligands, zinc complexes having 2-hydroxyphenylbenzothiazole, 2-hydroxyphenylbenzoxazole and the like as ligands can be used.
  • the electron transport layer 30 transports electrons injected from the cathode electrode 10 through the electron injection layer 20 to the light emitting layer 50.
  • the hole blocking layer 40 is formed on the electron transport layer 30 from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), a triphenyldiamine derivative, a triazole derivative, or the like.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the hole blocking layer 40 functions as a layer that blocks holes that pass through the light emitting layer 50 without contributing to light emission, and increases the probability of recombination within the light emitting layer 50.
  • the light emitting layer 50 includes an R (red) light emitting layer 51R, a G (green) light emitting layer 51G, and a B (blue) light emitting layer 51B that are repeatedly arranged. It is an independent light emitting layer of three primary colors. Electrons are injected from the cathode electrode 10 and holes are injected from the anode electrode 80 into the light emitting layer 50. The holes and electrons injected into the light emitting layer 50 are recombined, and excitons generated along with the recombination transition from the excited state to the ground state, whereby a light emission phenomenon occurs.
  • the light emitting layer 50 is composed of Alq3 (green), bisdiphenylvinylbiphenyl (BDPVBi) (blue), OXD-7 (blue to green), N, N′-bis (2,5-di-t-butylphenyl) perylenetetra. It is formed from carboxylic acid diimide (BPPC) (red) or the like.
  • the light emitting layer 50 may be composed of a binary system of a host and a dopant. In this case, as the host compound, the above-described light emitting material, a hole transport material and an electron transport material described later can be used.
  • the light-emitting layer 50 is formed by adding 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), 4- (dicyanomethylene) to a quinolinol metal complex such as Alq3.
  • DCM 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran
  • 4- (dicyanomethylene) to a quinolinol metal complex such as Alq3.
  • Pyran derivatives such as -2-t-butyl-6- (1,1,7,7-tetramethylurolidyl-9-enyl) -4H-pyran (DCJTB) (the two are red), 2,3 -Doped with a quinacridone derivative such as quinacridone or a coumarin derivative such as 3- (2'-benzothiazole) -7-diethylaminocoumarin (the two are green); bis (2-methyl-8- Hydroxyquinoline) -4-phenylphenol-aluminum complex doped with condensed polycyclic aromatics such as perylene (blue); or 4,4'- as a hole transport material Su (m-tolylphenylamino) biphenyl (TPD) doped with rubrene or the like (yellow); 4,4′-biscarbazolylbiphenyl (CBP), 4,4′-bis (9-carbazolyl) -2 Carbazole compounds such as 2,2'-dimethylbiphenyl
  • the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B are collectively referred to as a single color light emitting layer 51.
  • a single color light emitting layer 51 in FIG. 1, six monochromatic light emitting layers 51 are illustrated, but the organic EL lighting device 1 according to the present embodiment is not limited to this, and the number of colors (3 in the present embodiment) ⁇ N monochromatic light emission.
  • Layer 51 can be disposed.
  • the color arrangement order of each single color light emitting layer 51 is not limited to this, and the number of color arrangements is not limited to this.
  • an XYZ orthogonal coordinate system is set as follows.
  • the direction in which the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B are repeatedly arranged is defined as the X direction, and the direction in which the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B extends is defined as the Y direction.
  • the direction from the electrode 80 toward the cathode electrode 10 is taken as the Z direction.
  • the monochromatic light emitting layer 51 is a non-light emitting portion that does not emit light.
  • an inorganic oxide such as SiOx
  • an inorganic nitride such as SiNx
  • an insulating material such as a photoresist
  • interlayer insulation is formed on the glass substrate 90 in the portion between the monochromatic light emitting layers 51 or between the anode electrodes 80.
  • a film can be formed to separate the light emitting layer 50 into each color. As a result, it is possible to prevent color mixing and short-circuiting due to alignment misalignment of the shadow mask.
  • the hole transport layer 60 and the hole injection layer 70 are similarly separated.
  • the anode electrode 80 is formed on the glass substrate 90 and is made of a light-transmitting conductive material such as a metal oxide, for example, ITO (Indium Tin Oxide). As shown in FIGS. 1 and 2C, the anode electrode 80 is formed in a stripe shape so as to face each single-color light emitting layer 51, and a plurality of anode electrodes 80 are arranged. The anode electrode 80 has a function of injecting holes into the light emitting layer 50 and transmitting light emitted from the light emitting layer 50.
  • a light-transmitting conductive material such as a metal oxide, for example, ITO (Indium Tin Oxide).
  • ITO Indium Tin Oxide
  • the hole injection layer 70 is formed on the anode electrode 80 and is made of copper phthalocyanine (Cu—Pc) or 4,4 ′, 4 ′′ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA). 4,4 ′, 4 ′′ -tris [2-naphthyl (phenyl) amino] triphenylamine (2-TNATA), 4,4 ′, 4 ′′ -tris (N-carbazolyl) -triphenylamine (TCTA) And arylamine derivatives such as starburst type aromatic amines.
  • the hole injection layer 70 may be composed of a hole-transporting organic compound and an electron-accepting compound that is a dopant.
  • the hole injection layer 70 has a function of increasing the efficiency of hole injection from the anode electrode 80.
  • the hole transport layer 60 is formed between the light emitting layer 50 and the hole injection layer 70, and is bis (di (p-tolyl) aminophenyl) -1,1-cyclohexane, N, N′-diphenyl-N—.
  • Hole transport properties such as N-bis (1-naphthyl) -1,1'-biphenyl) -4,4'-diamine ( ⁇ -NPD), TPD, and other triphenyldiamines, starburst aromatic amines, etc. It is comprised from the organic compound.
  • the hole transport layer 60 transports holes injected from the anode electrode 80 through the hole injection layer 70 to the light emitting layer 50.
  • the glass substrate 90 is a translucent substrate made of non-alkali glass.
  • the cathode electrode 10 the electron injection layer 20, the electron transport layer 30, the hole blocking layer 40, the light emitting layer 50, the hole transport layer 60, the hole injection layer 70, and the anode electrode 80 are stacked.
  • the glass substrate 90 supports these and has a function of emitting light from the light emitting layer 50.
  • the diffusing plate 100 is disposed on the light emitting side surface of the glass substrate 90 and is made of polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polyethylene, polypropylene, polyamide, fluororesin, polymethyl methacrylate, acrylic or It is composed of a thin transparent resin film such as a polyarylate resin or a glass whose surface is finely processed.
  • the diffuser plate 100 diffuses the light emitted from the light emitting layer 50 and converts it into uniform planar light.
  • the cathode electrode 10 is arranged as a common electrode facing the all monochromatic light-emitting layers 51 as shown in FIGS. 1 and 2A to 2C.
  • the anode electrode 80 is independently arranged so as to be paired with each monochromatic light emitting layer 51.
  • the control unit 110 is connected to the drive circuit 200.
  • the control unit 110 drives the control circuit to specify the current supplied to the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B so that the light emitting unit 300 emits light of a desired color. Output to 200.
  • the value of the current passed through each monochromatic light-emitting layer 51 is obtained, for example, after manufacturing the organic EL lighting device 1 and by performing tests individually or in units of lots.
  • white illumination light can be obtained by mixing these colors.
  • reddish illumination light can be obtained.
  • the rectifying / smoothing circuit 500 is connected to the commercial power source 600, rectifies and smoothes the current supplied from the commercial power source 600, and supplies the smoothed DC voltage to the converter 400.
  • the converter 400 is configured by a DC-DC converter or the like, and is connected to the rectifying / smoothing circuit 500. From the DC voltage supplied from the rectifying / smoothing circuit 500, the converter 400 generates a plurality of DC voltages used for driving the light emitting unit 300. It is generated and supplied to the drive circuit 200.
  • the driving circuit 200 causes the constant current specified by the control signal received from the control unit 110 to flow through each monochromatic light emitting layer 51 of the light emitting unit 300 using the DC voltage received from the converter 400. Details of the operation of the drive circuit 200 will be described later.
  • the light emitting unit 300 includes the cathode electrode 10, the electron injection layer 20,..., And the anode electrode 80, and is connected to the drive circuit 200.
  • the light emitting unit 300 emits light when a predetermined current is supplied from the drive circuit 200.
  • the control unit 110 When the organic EL lighting device 1 is connected to the commercial power source 600 and the power source is turned on, the control unit 110 outputs a control signal indicating a constant current that flows through the monochromatic light emitting layers 50 of red, green, and blue according to the setting. This is supplied to the drive circuit 200.
  • the rectification / smoothing circuit 500 rectifies and smoothes the AC voltage supplied from the commercial power supply 600 and supplies the rectified and smoothed circuit 500 to the converter 400.
  • the converter 400 generates a voltage used for driving the light emitting unit 300 from the supplied voltage, and supplies the voltage to the drive circuit 200.
  • the drive circuit 200 drives the light emitting unit 300 using the voltage supplied from the converter 400 in accordance with the control signal supplied from the control unit 110.
  • the drive circuit 200 applies the reference potential Vcom to the cathode electrode 10. Subsequently, a common potential VO lower than the reference potential Vcom is applied to each anode electrode 80 for a predetermined time Ts. Subsequently, the drive circuit 200 instructs the monochromatic light emitting elements 51R, 51G, and 51B from the control unit 110 to specify the voltage to be applied to each anode electrode 80 while maintaining the reference potential Vcom applied to the cathode electrode 10. Is set to a voltage required to allow the constant current to flow. In the example of FIG.
  • the drive circuit 200 applies the voltage VpB to the anode electrode 80 corresponding to the red light emitting layer 51R, applies the voltage VpG to the anode electrode 80 corresponding to the green light emitting layer 51G, and emits blue light.
  • a voltage VpB is applied to the anode electrode 80 corresponding to the layer 51 ⁇ / b> B, thereby causing a constant current to flow through each monochromatic light emitting layer 51 to cause each monochromatic light emitting layer 51 to emit light.
  • a part of the light emitted from each monochromatic light emitting layer 51 reaches the diffusion plate 100 via the hole transport layer 60, the hole injection layer 70, the anode electrode 80, and the glass substrate 90.
  • each monochromatic light emitting layer 51 is reflected by the cathode electrode 10 and then passed through the hole transport layer 60, the hole injection layer 70, the anode electrode 80, and the glass substrate 90.
  • the diffusion plate 100 is reached.
  • the diffusion plate 100 mixes and emits light by diffusing incident red, green, and blue light. Thereby, planar light of a desired color is emitted from the diffusion plate 100.
  • the drive circuit 200 stops driving after applying a reverse bias voltage to each monochromatic light emitting layer 51 for a certain period of time.
  • the cathode electrode 10 is common to the plurality of monochromatic light emitting layers 51, and the number of electrodes to be controlled is N + 1 if the number of monochromatic light emitting layers 51 is N. It only takes a piece. Therefore, the configuration and operation of the drive circuit 200, the drive circuit 200, the light emitting layer 300, the wiring, and the like are simple and easy to manufacture.
  • the constant current that flows through the monochromatic light emitting layer 51 of each color is adjusted by adjusting the control signal output from the control unit 110. Can be adjusted to obtain a desired amount of emitted light. As a result, the color (temperature color) of the output light of the organic EL light-emitting illuminating device 1 can be appropriately adjusted.
  • the drive circuit 200 sets the potential VO of the anode electrode 80 to a negative potential with respect to the reference potential Vcom at the time of startup, power off, etc.
  • a reverse bias is applied to the light emitting layer 51.
  • the reverse bias voltage is set to be equal to or lower than the dielectric breakdown potential of the organic EL lighting panel, for example, 0 to -5V.
  • Carrier conductivity of organic materials is realized by repeating oxidation and reduction of molecules. For this reason, the continuous application of the one-polarity voltage promotes the deterioration of the material, which causes the luminance deterioration of the organic EL and the voltage increase.
  • the organic EL lighting device 1 according to this embodiment can suppress the deterioration of the material due to the accumulation of electric charges and improve the lifetime by applying a reverse bias.
  • An organic EL lighting device having the above configuration was manufactured and its characteristics were measured.
  • an ITO thin film was formed on the glass substrate 90 by sputtering.
  • the ITO thin film was patterned into the shape of the color light emitting region by using a photoetching method and a photolithography method, thereby forming an anode electrode 80.
  • Cu—Pc was deposited on the anode electrode 80 by a vacuum evaporation method to form the hole injection layer 70.
  • ⁇ -NPD was deposited to a uniform thickness on the hole injection layer 70 by a vacuum vapor deposition method to form the hole transport layer 60.
  • a striped CBP film was formed on the hole transport layer 60. Further, Ir (ppy) 3 is diffused in the CBP layer to form the green light emitting layer 51G, Btp2Ir (acac) is diffused in the CBP layer to form the red light emitting layer 51R, and FIr (pic) is further added to the CBP layer.
  • the light emitting layer 50 was formed by diffusing to form the blue light emitting layer 51B. At this time, a shadow mask was formed by a vacuum deposition method or the like, and the light emitting layer 50 was separated into each color.
  • BCP was deposited on the light emitting layer 50 to form the hole blocking layer 40.
  • Alq3 was deposited on the hole block 40 to form the electron transport layer 30 having a uniform thickness.
  • LiF was deposited on the electron transport layer 30 to form the electron injection layer 20.
  • the cathode electrode 10 was formed by depositing Al in a uniform thickness. Thus, an organic EL lighting panel was produced.
  • a drive current of 27 A / m 2 was supplied to the red light emitting part, 25 A / m 2 to the green light emitting part, and 23 A / m 2 to the blue light emitting part.
  • the drive voltage (voltage between the anode electrode 80 and the common cathode electrode 10) is 2.7V, 2.6V, 4.1V, respectively, and the power efficiency of the organic EL lighting panel is 31 lm / W, color
  • the temperature was 2800K.
  • the luminance unevenness in the panel surface of this lighting panel was 6% or less as a difference between the maximum luminance and the minimum luminance.
  • FIG. 16 shows an example of the element structure of a lighting panel (hereinafter referred to as Comparative Example 1) of the conventional organic EL lighting device 2.
  • the cathode electrode 10 of this comparative example is disposed for each monochromatic light emitting layer 51.
  • the driving voltage increased due to an increase in wiring resistance, etc., and the power efficiency was 24 lm / W.
  • the lighting panel of the organic EL lighting device 1 created by the above method Lower than the power efficiency.
  • the difference in power efficiency between the lighting panel of the organic EL lighting device 1 and the comparative example created by the method described above is difficult to accurately separate, but also includes a difference in reflectance due to the cathode area.
  • Comparative Example 1 19% in-plane luminance unevenness was observed.
  • each of the light emitting layers is provided with a cathode electrode, so that the drive circuit becomes complicated, resulting in a 30% increase in cost and cost.
  • the lighting panel of another organic EL lighting device 3 that is a white element formed by superimposing red, green, and blue light-emitting layers in one organic EL element layer (hereinafter referred to as a comparative example). 2) and the luminance lifetime of the organic EL lighting device 1 were compared.
  • the luminance life the time when the luminance is 70% is compared with the initial luminance of 1000 nit.
  • the luminance life of Comparative Example 2 was 35% shorter than the luminance life of the lighting panel of the organic EL lighting device 1.
  • the comparative example 2 has different brightness reduction speeds of red, green, and blue, and the comparative example 2 cannot make corrections thereof, the color misalignment / chromaticity difference between the initial stage and the end of the lifetime is different from the organic EL lighting apparatus 1. It was confirmed that ⁇ xy was 5 times or more larger than the lighting panel. In general, when the luminance of blue is faster than other colors and white illumination is used, the color shifts in the direction of lower color temperature along with driving. However, the organic EL lighting device 1 independently adjusts the luminance of each emission color. Since it can be adjusted, the color shift can be minimized by adjusting the luminance of the blue light emitting layer 51B.
  • a reverse bias is applied to the monochromatic light emitting layer 51 before and after a constant current is passed through the monochromatic light emitting layer 51, but it is not necessary to apply a reverse bias.
  • the drive circuit 200 applies a voltage Vp for supplying a reference voltage Vcom and a constant current to each anode electrode 80.
  • a constant current is continuously supplied to each monochromatic light emitting layer 51 from the power-on to the power-off of the organic EL lighting device 1.
  • the present invention is not limited to this, and a constant current may be intermittently passed through each monochromatic light emitting layer 51.
  • the effective current flowing through each monochromatic light emitting layer 51 is adjusted by intermittently turning on and off the voltage applied to the anode electrode 80. Can do.
  • the effective current is determined by the applied voltage and the duty.
  • the duty may be different for each monochromatic light emitting layer 51 or may be the same.
  • the duty may be adjusted. That is, the voltage Vp applied to each anode electrode 80 may be PWM (Pulse Width Modulation, pulse width modulation).
  • the control unit 110 includes an operation knob for adjusting the brightness. The control unit 110 adjusts the duty of the constant current flowing through each monochromatic light emitting layer 51 according to the operation of the operation knob, and instructs the drive circuit 200 by a control signal. As shown in FIGS. 7A to 7C, the drive circuit 200 adjusts the duty Ton / Tp of the voltage Vp0 applied to each anode electrode 80 in accordance with the instruction of the control signal.
  • the control unit 110 increases the duty Ton / Tp when increasing the light emission amount of the light emitting unit 300, and decreases the duty Ton / Tp when decreasing the light emission amount. It should be noted that the duty of the current passed through each of the red, green, and blue monochromatic light emitting layers 51 may be the same or different.
  • FIGS. 7A to 7C show an example in which the voltage applied to the monochromatic light emitting layer 51 and the current flowing are controlled by PWM, but the current passed through each monochromatic light emitting layer 51 is changed to PAM (Pulse Amplitude Modulation, pulse amplitude). Modulation) control.
  • the control unit 110 instructs the drive circuit 200 with a current for obtaining the brightness designated by the operation knob.
  • the drive circuit 200 applies the voltage VpB, which is applied to each anode electrode 80, so that a constant current instructed by the control signal flows through each monochromatic light emitting layer 51.
  • VpR and VpG are adjusted.
  • the organic EL lighting device 1 By driving in this way, the organic EL lighting device 1 can be lit to have a desired luminance and color temperature.
  • movement is operation
  • the cathode electrode 10 is used as a common electrode for each monochromatic light emitting layer 51. Therefore, unlike the case where each light emitting layer is provided with a cathode electrode, the number of drivers for control during lighting and driving can be reduced, and the driving method can be simplified.
  • the cathode electrode 10 including the non-light emitting portion between the monochromatic light emitting layers 51 can be formed with a metal thin film, the wiring resistance can be reduced and the driving voltage is lowered, resulting in power saving. . Moreover, the reflectance of the organic EL light emission of the cathode electrode 10 can be improved by forming into a uniform film. Furthermore, as described above, luminance unevenness can be reduced.
  • each monochromatic light emitting layer 51 is driven independently, the color temperature, luminance, etc. of each monochromatic light emitting layer 51 can be corrected, and even when monochromatic light emitting layers having different luminance degradation rates are combined, The luminance life can be extended.
  • an organic EL lighting device having a configuration in which cathodes for a plurality of light emitting layers are used as a common electrode has been described.
  • the present invention is not limited to this. It is also possible to use the anode as a common electrode.
  • an organic EL lighting device 1 ′ having a common anode for a plurality of light emitting layers will be described with reference to FIG.
  • the anode electrode 80 is arranged as a common electrode facing the all-monochromatic light emitting layer 51.
  • the cathode electrode 10 is independently arranged so as to be paired with each monochromatic light emitting layer 51.
  • Other basic configurations of the organic EL lighting device 1 ′ are the same as those of the organic EL lighting device 1 according to the first embodiment.
  • FIG. 10 shows a circuit configuration of the organic EL lighting device 1 ′.
  • the drive circuit 200 is based on the control signal received from the control unit 110 so that each single color light emitting layer 51 has a desired luminance and color temperature according to the control signal.
  • a constant current is supplied between the electrodes 80.
  • the drive circuit 200 applies a reference potential Vcom to the anode electrode 80, and applies a common potential VO higher than the reference potential Vcom to each cathode electrode 10 for a predetermined time Ts. Subsequently, the drive circuit 200 maintains the reference potential Vcom applied to the anode electrode 80 while applying a constant current instructed from the control unit 110 to the light-emitting elements 51R, 51G, It is set to a voltage necessary for flowing to 51B.
  • the drive circuit 200 applies a reverse bias to the potential of the cathode electrode 10 in order to suppress deterioration of the material due to charge accumulation.
  • the positive potential as the reverse bias is set to be equal to or lower than the dielectric breakdown potential of the organic EL lighting panel of 0 to 5 V, for example.
  • the drive circuit 200 does not necessarily need to reverse bias the monochromatic light emitting layer 51.
  • An example of the drive waveform in this case is shown in FIG.
  • the drive circuit 200 may allow a constant current to flow intermittently.
  • a constant current may be intermittently passed.
  • the drive circuit 200 Based on the control signal received from the control unit 110, the drive circuit 200, for example, the effective current supplied to each monochromatic light-emitting layer 51 by PWM control as shown in FIG. 14 or PAM control as shown in FIG. And the amount of emitted light may be controlled.
  • the organic EL lighting device 1 ′ By driving in this way, the organic EL lighting device 1 ′ can be lit to have a desired luminance and color temperature.
  • movement is an operation
  • An organic EL lighting device 1 ′ having the above-described configuration was manufactured and its characteristics were measured.
  • an ITO thin film was formed to a uniform thickness on a glass substrate by sputtering, and an anode electrode 80 was formed.
  • a hole injection layer 70 was formed on the anode electrode 80 by depositing Cu—Pc by a vacuum deposition method.
  • ⁇ -NPD was deposited on the hole injection layer 70 by a vacuum evaporation method to form the hole transport layer 60.
  • a CBP film was formed on the hole transport layer 60. Further, Ir (ppy) 3 is diffused on the stripe in the CBP layer to form a green light emitting layer 51G, Btp2Ir (acac) is diffused on the stripe in the CBP layer to form a red light emitting layer 51R, and further the CBP layer
  • the light emitting layer 50 was formed by diffusing FIr (pic) on the stripes to form the blue light emitting layer 51B. At this time, a shadow mask was formed by vacuum deposition or the like, and the light emitting layer 50 was separated into each color.
  • CP was deposited on the light emitting layer 50 to form the hole blocking layer 40.
  • Alq3 was deposited on the hole block 40 to form the electron transport layer 30 having a uniform thickness.
  • LiF was deposited on the electron transport layer 30 to form the electron injection layer 20.
  • the cathode electrode 10 was formed by depositing Al in a uniform thickness. In this way, a lighting panel was produced.
  • the drive current of 27 A / m 2 , 25 A / m 2 of green light emission, and 23 A / m 2 of blue light emission were passed through the red light emission part of the lighting panel of the organic EL lighting device 1 ′.
  • the driving voltage was 2.6V, 2.5V, 3.9V
  • the power efficiency was 32.4 lm / W
  • the color temperature was 2800K.
  • the luminance unevenness in the illumination panel surface was 3.5% or less as a difference between the maximum luminance and the minimum luminance.
  • Comparative Example 1 is a lighting panel of a conventional organic EL lighting device 2. An example of the element structure is shown in FIG. The anode electrode 80 of the comparative example 1 is disposed for each monochromatic light emitting layer 51.
  • the same color temperature as that described above was set as the color temperature of Comparative Example 1, the drive voltage increased due to an increase in wiring resistance and the like, and the power efficiency became 24 lm / W.
  • the organic EL lighting device produced by the above method It was lower than the power efficiency of the 1 'panel.
  • the lighting panel of the organic EL lighting device 1 ′ can reduce the wiring resistance by uniformly forming the anode electrode 80 as compared with the case where the electrode is not uniformly formed. Accordingly, power efficiency is increased. Furthermore, since the sheet resistance of the ITO transparent electrode, which has a high volume resistivity, can be reduced, the effect is great. By reducing the sheet resistance, a decrease in electric field is also suppressed, and the carrier injection efficiency is improved.
  • the in-plane luminance unevenness of Comparative Example 1 is 20%, and the luminance unevenness of the illumination panel of the organic EL lighting device 1 ′ according to this embodiment is lower. Furthermore, since it is not necessary to use an auxiliary electrode such as a metal, the cost can be reduced.
  • the drive method can be simplified by reducing the number of control drivers during driving.
  • the drive circuit is complicated and the cost is increased by 30% compared to the organic EL illumination device 1 ′ according to the present embodiment.
  • each single color light emitting layer 51 is driven independently, the color temperature, luminance, etc. of each single color light emitting layer 51 can be respectively corrected, and the single color light emitting layers having different luminance degradation rates. Even when these are combined, the luminance life of the organic EL lighting panel can be extended.
  • the anode electrode 80 is used as a common electrode of the single color light emitting layers 51. Unlike the case where each light emitting layer is provided with an anode electrode, the number of drivers for control during lighting and driving can be reduced, and the driving method can be simplified. That is, the same effect as the organic EL lighting device 1 according to the first embodiment can be obtained.
  • three colors of red, green, and blue are used for the light emitting layer 50, and white is formed by additive color mixing for illumination.
  • white color is formed by mixing two colors for illumination.
  • blue and yellow may be used for the light emitting layer.
  • the yellow light-emitting layer may be a single light-emitting material such as rubrene dopant shown in the above examples, or a red light-emitting material and a green light-emitting material are doped into the same light-emitting layer and formed by color mixing. May be.
  • the number of non-light emitting portions between the respective light emitting colors can be reduced and the area thereof can be reduced, so that the light emitting portion area (aperture ratio) can be increased. Will improve.
  • the cathode electrode 10 has been described as an electrode in which, for example, an aluminum metal thin film electrode is formed to have a uniform thickness.
  • the present invention is not limited to this, and a metal conductive film and a reflective film with poor light reflectivity are used. It may be a two-layer structure with a metal thin film having excellent properties.
  • the glass substrate 90 has been described as a translucent substrate made of glass, but is not limited thereto, and may be a substrate made of a plastic film. With such a configuration, the organic EL lighting panel can be variously modified.
  • Appendix 1 A plurality of light-emitting layers that emit light by recombination of injected charges and have different emission colors; A first electrode provided in a pair with each of the plurality of light emitting layers; A second electrode provided in common to the plurality of light emitting layers; A first transport layer for transporting charges injected from the first electrode to the plurality of light emitting layers; A second transport layer for transporting charges injected from the second electrode to the plurality of light emitting layers; Comprising An organic EL lighting device.
  • the drive circuit uses a potential of either the first electrode or the second electrode as a reference potential, and supplies a constant-current rectangular wave to each of the plurality of light emitting layers,
  • the plurality of light emitting layers are colored based on a current supplied from the drive circuit,
  • the organic EL lighting device according to Supplementary Note 1, wherein:
  • the plurality of light emitting layers are arranged at predetermined intervals, respectively.
  • the plurality of light emitting layers, a region that does not emit light between the respective light emitting layers, and a metal thin film are formed with a uniform thickness,
  • the organic EL lighting device according to any one of appendices 1 to 5, characterized in that:
  • Appendix 7 The organic EL lighting device according to appendix 1 or 6, wherein a reverse bias voltage equal to or lower than a dielectric breakdown voltage is applied to the plurality of light emitting layers.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL illumination device (1) having a configuration in which: a negative electrode (10); an electron injection layer (20); an electron transportation layer (30); a hole block layer (40); a light-emitting layer (50); a hole transportation layer (60); a hole injection layer (70); a positive electrode (80); a glass substrate (90); and a diffusion plate (100) are stacked. The light-emitting layer (50) is a layer that independently emits light of the three primary colors, the layer comprising red light-emitting layers (51R), green light-emitting layers (51G), and blue light-emitting layers (51B) arranged in repetition. The negative electrode (10) is arranged evenly as a shared electrode of each of the single-color light-emitting layers (51), and the positive electrode (80) is arranged so as to be independent from each of the corresponding single-color light-emitting layers (51).

Description

有機EL照明装置Organic EL lighting device
 本発明は、有機EL照明装置に関する。 The present invention relates to an organic EL lighting device.
 白色有機EL(Electro-Luminescence)パネルは、従来、R(赤)の有機ELパネル、G(緑)の有機ELパネル、B(青)の有機ELパネルを組み合わせて構成される。
 有機ELパネルは、材料や製造プロセス等によって、その電流-電圧特性、電流-輝度特性、色温度等、各特性にばらつきが生じる。このため、従来の白色ELパネルは、個々のパネルの輝度や色温度等のばらつきが大きく、製品歩留まりが低かった。また、個々のパネルの経時的な劣化は一様ではなく、使用頻度等によってパネル間の輝度や色温度のばらつきが大きくなってしまう。
A white organic EL (Electro-Luminescence) panel is conventionally configured by combining an R (red) organic EL panel, a G (green) organic EL panel, and a B (blue) organic EL panel.
The organic EL panel varies in characteristics such as current-voltage characteristics, current-luminance characteristics, and color temperature depending on materials and manufacturing processes. For this reason, the conventional white EL panel has a large variation in brightness, color temperature and the like of each panel, and the product yield is low. In addition, deterioration of individual panels over time is not uniform, and variations in luminance and color temperature between panels increase depending on usage frequency and the like.
 このような問題を改善するために、R、G、Bの3原色の発光層を一つのパネル内に備える有機EL照明装置が提案されている。このようなパネルの一例として、特許文献1は、同一平面上のR、G、Bの発光層それぞれに対応して陽極電極と陰極電極を設ける構成を開示している。 In order to improve such a problem, an organic EL lighting device having a light emitting layer of three primary colors of R, G, and B in one panel has been proposed. As an example of such a panel, Patent Document 1 discloses a configuration in which an anode electrode and a cathode electrode are provided corresponding to each of R, G, and B light emitting layers on the same plane.
特開2003-163075号公報JP 2003-163075 A
 特許文献1が開示する構成の有機EL照明装置の点灯、駆動制御には、多数の走査ドライバIC、データドライバICが必要となり、駆動方法も複雑となる。また、陽極電極と陰極電極をマトリクス状にパターニングするため、開口率が低く、比抵抗が高く、高い駆動電圧が必要で、消費電力も大きくなる。 For lighting and driving control of the organic EL lighting device having the configuration disclosed in Patent Document 1, a large number of scanning driver ICs and data driver ICs are required, and the driving method is complicated. Further, since the anode electrode and the cathode electrode are patterned in a matrix shape, the aperture ratio is low, the specific resistance is high, a high driving voltage is required, and the power consumption is increased.
 本発明は上記事情に鑑みてなされたものであり、より改善された有機EL照明装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a further improved organic EL lighting device.
 上記目的を達成するため、本発明に係る有機EL照明装置は、
 注入された電荷の再結合により発光し、その発光色が異なる複数の発光層と、
 前記複数の発光層のそれぞれと対に設けられた第1電極と、
 前記複数の発光層に共通に設けられた第2電極と、
 前記第1電極から注入された電荷を前記複数の発光層へと輸送する第1輸送層と、
 前記第2電極から注入された電荷を前記複数の発光層へと輸送する第2輸送層と、
 を備える、
 ことを特徴とする。
In order to achieve the above object, an organic EL lighting device according to the present invention includes:
A plurality of light-emitting layers that emit light by recombination of injected charges and have different emission colors;
A first electrode provided in a pair with each of the plurality of light emitting layers;
A second electrode provided in common to the plurality of light emitting layers;
A first transport layer for transporting charges injected from the first electrode to the plurality of light emitting layers;
A second transport layer for transporting charges injected from the second electrode to the plurality of light emitting layers;
Comprising
It is characterized by that.
 本発明によれば、省電力かつ高品質を実現することができる。 According to the present invention, power saving and high quality can be realized.
第1実施形態に係る有機EL照明装置の断面図である。It is sectional drawing of the organic electroluminescent illuminating device which concerns on 1st Embodiment. (a)~(c)は、第1実施形態に係る有機EL照明装置の陰極、発光層及び陽極の配置を示す図である。(A)-(c) is a figure which shows arrangement | positioning of the cathode of the organic electroluminescent illuminating device which concerns on 1st Embodiment, a light emitting layer, and an anode. 第1実施形態に係る有機EL照明装置の回路図である。It is a circuit diagram of the organic EL lighting device according to the first embodiment. (a)~(c)は、第1実施形態に係る有機EL照明装置に印加する駆動電圧の波形図である。(A)-(c) is a wave form diagram of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 1st Embodiment. 第1実施形態に係る有機EL照明装置に印加する駆動電圧の他の例を示す波形図である。It is a wave form diagram which shows the other example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 1st Embodiment. (a)、(b)は、第1実施形態に係る有機EL照明装置に印加する駆動電圧のさらに他の例を示す波形図である。(A), (b) is a wave form diagram which shows the further another example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 1st Embodiment. (a)~(c)は、第1実施形態に係る有機EL照明装置のPWM駆動用の駆動電圧の例を示す波形図である。(A)-(c) is a wave form diagram which shows the example of the drive voltage for PWM drive of the organic electroluminescent illuminating device which concerns on 1st Embodiment. (a)~(c)は、第1実施形態に係る有機EL照明装置のPAM駆動用の駆動電圧の例を示す波形図である。(A)-(c) is a wave form diagram which shows the example of the drive voltage for PAM drive of the organic electroluminescent illuminating device which concerns on 1st Embodiment. 第2実施形態に係る有機EL照明装置の断面図である。It is sectional drawing of the organic electroluminescent illuminating device which concerns on 2nd Embodiment. 第2実施形態に係る有機EL照明装置の回路図である。It is a circuit diagram of the organic electroluminescent illuminating device which concerns on 2nd Embodiment. (a)~(c)は、第2実施形態に係る有機EL照明装置に印加する駆動電圧の例を示す波形図である。(A)-(c) is a wave form diagram which shows the example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 2nd Embodiment. 第2実施形態に係る有機EL照明装置に印加する駆動電圧の他の例を示す波形図である。It is a wave form diagram which shows the other example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 2nd Embodiment. (a)、(b)は、第2実施形態に係る有機EL照明装置に印加する駆動電圧のさらに他の例を示す波形図である。(A), (b) is a wave form diagram which shows the further another example of the drive voltage applied to the organic electroluminescent illuminating device which concerns on 2nd Embodiment. (a)~(c)は、第2実施形態に係る有機EL照明装置のPWM駆動用の駆動電圧の例を示す波形図である。(A)-(c) is a wave form diagram which shows the example of the drive voltage for PWM drive of the organic electroluminescent illuminating device which concerns on 2nd Embodiment. (a)~(c)は、第2実施形態に係る有機EL照明装置のPAM駆動用の駆動電圧の例を示す波形図である。(A)-(c) is a wave form diagram which shows the example of the drive voltage for PAM drive of the organic electroluminescent illuminating device which concerns on 2nd Embodiment. 比較例1の有機EL照明装置の断面図である。It is sectional drawing of the organic electroluminescent illuminating device of the comparative example 1. FIG. 比較例2の有機EL照明装置の断面図である。It is sectional drawing of the organic electroluminescent illuminating device of the comparative example 2.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態]
 本発明の第1実施形態に係る有機EL照明装置1は、多色に発光することができる照明装置であり、図1に示すように、陰極電極10と、電子注入層20と、電子輸送層30と、正孔ブロック層40と、発光層50と、正孔輸送層60と、正孔注入層70と、陽極電極80と、ガラス基板90と、拡散板100と、が積層された構成を有する。
[First Embodiment]
The organic EL lighting device 1 according to the first embodiment of the present invention is a lighting device capable of emitting multiple colors, and as shown in FIG. 1, a cathode electrode 10, an electron injection layer 20, and an electron transport layer. 30, a hole blocking layer 40, a light emitting layer 50, a hole transport layer 60, a hole injection layer 70, an anode electrode 80, a glass substrate 90, and a diffusion plate 100. Have.
 陰極電極10は、例えばアルミニウムや銀などの電気抵抗率が小さく、反射率の高い金属材料を一様の厚さに成膜して形成された薄膜電極から構成される。陰極電極10は、図2(a)に示すように、1枚薄膜から構成される。陰極電極10は、発光層50へ電子を注入する電極として機能する。 The cathode electrode 10 is composed of a thin film electrode formed by depositing a metal material having a small electrical resistivity such as aluminum or silver and having a high reflectivity to a uniform thickness. The cathode electrode 10 is composed of a single thin film as shown in FIG. The cathode electrode 10 functions as an electrode for injecting electrons into the light emitting layer 50.
 電子注入層20は、陰極電極10上に、リチウムやセシウム等のアルカリ金属、若しくは、カルシウム等のアルカリ土類金属のフッ化物や酸化物等から形成される。また、電子注入層20は、電子輸送性の有機化合物とドーパントであるリチウムキノリン等のキノリノール系のアルカリ金属錯体やLi等の電子供与性の金属から形成されることもできる。電子注入層20は、陰極電極10から発光層50への電子注入効率を高める層として機能する。 The electron injection layer 20 is formed on the cathode electrode 10 from an alkali metal such as lithium or cesium or a fluoride or oxide of an alkaline earth metal such as calcium. The electron injection layer 20 can also be formed from an electron-transporting organic compound and a quinolinol-based alkali metal complex such as lithium quinoline as a dopant or an electron-donating metal such as Li. The electron injection layer 20 functions as a layer that increases the efficiency of electron injection from the cathode electrode 10 to the light emitting layer 50.
 電子輸送層30は、電子注入層20上に、電子輸送性の有機化合物から形成されている。電子輸送性の有機化合物としては、例えば、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(Bu-PBD)、1,3-ビス(p-t-ブチルフェニル-1,3,4-オキサジアゾールイル)フェニル(OXD-7)等のオキサジアゾール誘導体、トリアゾール誘導体、トリス(8-キノリノール)アルミニウム錯体(Alq3)等のキノリノール系の配位子をもつ金属錯体、2-ヒドロキシフェニルベンゾチアゾール、2-ヒドロキシフェニルベンゾオキサゾールなどを配位子とする亜鉛錯体等、が使用できる。電子輸送層30は、陰極電極10から電子注入層20を介して注入された電子を発光層50へ輸送する。 The electron transport layer 30 is formed on the electron injection layer 20 from an electron transporting organic compound. Examples of the electron-transporting organic compound include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (Bu-PBD), 1,3-bis Oxadiazole derivatives such as (pt-butylphenyl-1,3,4-oxadiazolyl) phenyl (OXD-7), triazole derivatives, and quinolinol series such as tris (8-quinolinol) aluminum complex (Alq3) Metal complexes having the above ligands, zinc complexes having 2-hydroxyphenylbenzothiazole, 2-hydroxyphenylbenzoxazole and the like as ligands can be used. The electron transport layer 30 transports electrons injected from the cathode electrode 10 through the electron injection layer 20 to the light emitting layer 50.
 正孔ブロック層40は、電子輸送層30上に、2,9‐ジメチル‐4,7‐ジフェニル‐1,10‐フェナントロリン(BCP)、トリフェニルジアミン誘導体、トリアゾール誘導体等から形成される。正孔ブロック層40は、発光に寄与しないで発光層50を通過する正孔をブロックする層として機能し、発光層50内での再結合の確率を高める。 The hole blocking layer 40 is formed on the electron transport layer 30 from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), a triphenyldiamine derivative, a triazole derivative, or the like. The hole blocking layer 40 functions as a layer that blocks holes that pass through the light emitting layer 50 without contributing to light emission, and increases the probability of recombination within the light emitting layer 50.
 発光層50は、図1及び図2(b)に示すように、繰り返し配置されたR(赤色)発光層51R、G(緑色)発光層51G及びB(青色)発光層51B、から構成される三原色の独立発光層である。発光層50には、陰極電極10から電子が注入され、陽極電極80から正孔が注入される。発光層50に注入された正孔と電子とが再結合し、再結合に伴って生成される励起子が励起状態から基底状態へ遷移することで発光現象が生じる。 As shown in FIGS. 1 and 2B, the light emitting layer 50 includes an R (red) light emitting layer 51R, a G (green) light emitting layer 51G, and a B (blue) light emitting layer 51B that are repeatedly arranged. It is an independent light emitting layer of three primary colors. Electrons are injected from the cathode electrode 10 and holes are injected from the anode electrode 80 into the light emitting layer 50. The holes and electrons injected into the light emitting layer 50 are recombined, and excitons generated along with the recombination transition from the excited state to the ground state, whereby a light emission phenomenon occurs.
 発光層50は、Alq3(緑色)、ビスジフェニルビニルビフェニル(BDPVBi)(青色)、OXD-7(青~緑色)、N,N'-ビス(2,5-ジ-t-ブチルフェニル)ペリレンテトラカルボン酸ジイミド(BPPC)(赤色)等から形成される。
 また、発光層50は、ホストとドーパントの二成分系からなるものであってもよい。この場合、ホスト化合物としては、上記発光材料や後述する正孔輸送材料、電子輸送材料を用いることができる。より具体的には、発光層50は、Alq3等のキノリノール金属錯体に4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン(DCM)、4-(ジシアノ メチレン)-2-t-ブチル-6-(1,1,7,7-テトラメチルユロリジル-9-エニル) -4H-ピラン(DCJTB)等のピラン系誘導体(前記2つは赤色)、2,3-キナクリドン等のキナクリドン誘導体や、3-(2'-ベンゾチアゾール)-7-ジエチルアミノクマリン等のクマリン誘導体をドープしたもの(前記2つは緑色);電子輸送材料のビス(2-メチル-8-ヒドロキシキノリン)-4-フェニルフェノール-アルミニウム錯体に、ペリレン等の縮合多環芳香族をドープしたもの(青色);あるいは正孔輸送材料の4,4'-ビス(m-トリルフェニルアミノ)ビフェニル(TPD)にルブレン等をドープしたもの(黄色);4,4’-ビスカルバゾリルビフェニル(CBP)、4,4´-ビス(9-カルバゾリル)-2,2’-ジメチルビフェニル(CDBP)等のカルバゾール系化合物に、トリス-(2フェリニルピリジン)イリジウム(Ir(ppy)3)(緑色)、ビス(4,6-ジ-フルオロフェニル)-ピリジネート-N,C2) イリジウム(ピコリネート)(FIr(pic))(青色)、ビス(2-2’-ベンゾチエニル)-ピリジネート-N,C3イリジウム(アセチルアセトネート)(Btp2Ir(acac))(赤色)、トリス-(ピコリネート)イリジウム(Ir(pic)3)(赤色)、ビス(2-フェニルベンゾチオゾラト-N,C2)イリジウム(アセチルアセトネート)(Bt2Ir(acac))(黄色)等のイリジウム錯体や白金錯体をドープしたもの;等から形成される。
The light emitting layer 50 is composed of Alq3 (green), bisdiphenylvinylbiphenyl (BDPVBi) (blue), OXD-7 (blue to green), N, N′-bis (2,5-di-t-butylphenyl) perylenetetra. It is formed from carboxylic acid diimide (BPPC) (red) or the like.
The light emitting layer 50 may be composed of a binary system of a host and a dopant. In this case, as the host compound, the above-described light emitting material, a hole transport material and an electron transport material described later can be used. More specifically, the light-emitting layer 50 is formed by adding 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), 4- (dicyanomethylene) to a quinolinol metal complex such as Alq3. Pyran derivatives such as -2-t-butyl-6- (1,1,7,7-tetramethylurolidyl-9-enyl) -4H-pyran (DCJTB) (the two are red), 2,3 -Doped with a quinacridone derivative such as quinacridone or a coumarin derivative such as 3- (2'-benzothiazole) -7-diethylaminocoumarin (the two are green); bis (2-methyl-8- Hydroxyquinoline) -4-phenylphenol-aluminum complex doped with condensed polycyclic aromatics such as perylene (blue); or 4,4'- as a hole transport material Su (m-tolylphenylamino) biphenyl (TPD) doped with rubrene or the like (yellow); 4,4′-biscarbazolylbiphenyl (CBP), 4,4′-bis (9-carbazolyl) -2 Carbazole compounds such as 2,2'-dimethylbiphenyl (CDBP), tris- (2 ferrinylpyridine) iridium (Ir (ppy) 3) (green), bis (4,6-difluorophenyl) -pyridinate- N, C2) iridium (picolinate) (FIr (pic)) (blue), bis (2-2′-benzothienyl) -pyridinate-N, C3 iridium (acetylacetonate) (Btp2Ir (acac)) (red), Tris- (picolinate) iridium (Ir (pic) 3) (red), bis (2-phenylbenzothiozolato-N, C2) iridium (a Cetylacetonate) (Bt2Ir (acac)) (yellow) or the like doped with an iridium complex or platinum complex;
 なお、以下の説明において、赤色発光層51R、緑色発光層51G、青色発光層51Bを総称して単色発光層51とする。また、図1では、6つの単色発光層51を図示しているが、本実施形態に係る有機EL照明装置1はこれに限られず、色数(本実施形態では3)×N個の単色発光層51を配置することができる。さらに、各単色発光層51の配色順序はこれに限られず、配色数もこれに限られない。 In the following description, the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B are collectively referred to as a single color light emitting layer 51. Further, in FIG. 1, six monochromatic light emitting layers 51 are illustrated, but the organic EL lighting device 1 according to the present embodiment is not limited to this, and the number of colors (3 in the present embodiment) × N monochromatic light emission. Layer 51 can be disposed. Furthermore, the color arrangement order of each single color light emitting layer 51 is not limited to this, and the number of color arrangements is not limited to this.
 なお、本明細書においては、以下のようにXYZ直交座標系を設定する。赤色発光層51R、緑色発光層51G、青色発光層51Bが繰り返し配列されている方向をX方向とし、赤色発光層51R、緑色発光層51G、青色発光層51Bが延伸する方向をY方向とし、陽極電極80から陰極電極10に向かう方向をZ方向とする。 In this specification, an XYZ orthogonal coordinate system is set as follows. The direction in which the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B are repeatedly arranged is defined as the X direction, and the direction in which the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B extends is defined as the Y direction. The direction from the electrode 80 toward the cathode electrode 10 is taken as the Z direction.
 また、単色発光層51の間は発光しない非発光部である。SiOxなどの無機酸化物やSiNxなどの無機窒化物、またはフォトレジスト等の絶縁性材料を用いて、各単色発光層51の間となる部分のガラス基板90上、または陽極電極80間に層間絶縁膜を形成し、発光層50を各色に分離することができる。これにより、シャドーマスクのアライメントズレ等による混色や短絡を防ぐことができる。また、このとき、正孔輸送層60、正孔注入層70も同様に分離される。 Further, the monochromatic light emitting layer 51 is a non-light emitting portion that does not emit light. Using an inorganic oxide such as SiOx, an inorganic nitride such as SiNx, or an insulating material such as a photoresist, interlayer insulation is formed on the glass substrate 90 in the portion between the monochromatic light emitting layers 51 or between the anode electrodes 80. A film can be formed to separate the light emitting layer 50 into each color. As a result, it is possible to prevent color mixing and short-circuiting due to alignment misalignment of the shadow mask. At this time, the hole transport layer 60 and the hole injection layer 70 are similarly separated.
 陽極電極80は、ガラス基板90の上に形成され、金属酸化物等の光透過性導電性材料、例えば、ITO(Indium Tin Oxide)等から構成されている。陽極電極80は、図1及び図2(c)に示すように、各単色発光層51に対向してストライプ状に形成され、複数個配置されている。陽極電極80は、発光層50に正孔を注入し、また、発光層50で発せられた光を透過する機能を備える。 The anode electrode 80 is formed on the glass substrate 90 and is made of a light-transmitting conductive material such as a metal oxide, for example, ITO (Indium Tin Oxide). As shown in FIGS. 1 and 2C, the anode electrode 80 is formed in a stripe shape so as to face each single-color light emitting layer 51, and a plurality of anode electrodes 80 are arranged. The anode electrode 80 has a function of injecting holes into the light emitting layer 50 and transmitting light emitted from the light emitting layer 50.
 正孔注入層70は、陽極電極80上に形成され、銅フタロシアニン(Cu-Pc)や4,4’,4“-トリス〔3-メチルフェニル(フェニル)アミノ〕トリフェニルアミン(m-MTDATA)、4,4’,4“-トリス〔2-ナフチル(フェニル)アミノ〕トリフェニルアミン(2-TNATA)、4,4',4''-トリス(N-カルバゾリル)-トリフェニルアミン(TCTA)などのスターバースト型芳香族アミンのようなアリールアミン誘導体等から構成される。正孔注入層70は、正孔輸送性の有機化合物とドーパントである電子受容性の化合物から構成されてもよい。正孔注入層70は、陽極電極80からの正孔の注入効率を高める機能を備える。 The hole injection layer 70 is formed on the anode electrode 80 and is made of copper phthalocyanine (Cu—Pc) or 4,4 ′, 4 ″ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA). 4,4 ′, 4 ″ -tris [2-naphthyl (phenyl) amino] triphenylamine (2-TNATA), 4,4 ′, 4 ″ -tris (N-carbazolyl) -triphenylamine (TCTA) And arylamine derivatives such as starburst type aromatic amines. The hole injection layer 70 may be composed of a hole-transporting organic compound and an electron-accepting compound that is a dopant. The hole injection layer 70 has a function of increasing the efficiency of hole injection from the anode electrode 80.
 正孔輸送層60は、発光層50と正孔注入層70との間に形成され、ビス(ジ(p-トリル)アミノフェニル)-1,1-シクロヘキサン、N,N’-ジフェニル-N-N-ビス(1-ナフチル)-1,1’-ビフェニル)-4,4’-ジアミン(α-NPD)、TPD等のトリフェニルジアミン類や、スターバースト型芳香族アミン等、正孔輸送性の有機化合物から構成されている。正孔輸送層60は、陽極電極80から正孔注入層70を介して注入された正孔を発光層50へ輸送する。 The hole transport layer 60 is formed between the light emitting layer 50 and the hole injection layer 70, and is bis (di (p-tolyl) aminophenyl) -1,1-cyclohexane, N, N′-diphenyl-N—. Hole transport properties such as N-bis (1-naphthyl) -1,1'-biphenyl) -4,4'-diamine (α-NPD), TPD, and other triphenyldiamines, starburst aromatic amines, etc. It is comprised from the organic compound. The hole transport layer 60 transports holes injected from the anode electrode 80 through the hole injection layer 70 to the light emitting layer 50.
 ガラス基板90は、無アルカリガラスから構成される透光性の基板である。ガラス基板90上に陰極電極10と、電子注入層20と、電子輸送層30と、正孔ブロック層40と、発光層50と、正孔輸送層60と、正孔注入層70と、陽極電極80と、が積層される。ガラス基板90はこれらを支持すると共に、発光層50からの光を出射する機能を備える。 The glass substrate 90 is a translucent substrate made of non-alkali glass. On the glass substrate 90, the cathode electrode 10, the electron injection layer 20, the electron transport layer 30, the hole blocking layer 40, the light emitting layer 50, the hole transport layer 60, the hole injection layer 70, and the anode electrode 80 are stacked. The glass substrate 90 supports these and has a function of emitting light from the light emitting layer 50.
 拡散板100は、ガラス基板90の光出射側の面上に配置され、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、フッ素樹脂、ポリメチルメタクリレート、アクリルあるいはポリアリレート類樹脂等、薄い透過性樹脂フィルムや表面が微細加工されたガラス等から構成されている。拡散板100は、発光層50から出射された光を拡散させ、均一な面状の光に変換する。 The diffusing plate 100 is disposed on the light emitting side surface of the glass substrate 90 and is made of polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polyethylene, polypropylene, polyamide, fluororesin, polymethyl methacrylate, acrylic or It is composed of a thin transparent resin film such as a polyarylate resin or a glass whose surface is finely processed. The diffuser plate 100 diffuses the light emitted from the light emitting layer 50 and converts it into uniform planar light.
 本実施形態では、陰極電極10は図1及び図2(a)~(c)に示すように、全単色発光層51に対向する共通電極として配置されている。一方、陽極電極80は、各単色発光層51と対となるようにそれぞれ独立して配置されている。 In the present embodiment, the cathode electrode 10 is arranged as a common electrode facing the all monochromatic light-emitting layers 51 as shown in FIGS. 1 and 2A to 2C. On the other hand, the anode electrode 80 is independently arranged so as to be paired with each monochromatic light emitting layer 51.
 陰極電極10と陽極電極80との間に直流電圧が印加されると、電子と正孔が発光層50に注入され、それぞれの単色発光層51に注入された電子と正孔が再結合することにより発光する。 When a DC voltage is applied between the cathode electrode 10 and the anode electrode 80, electrons and holes are injected into the light emitting layer 50, and the electrons and holes injected into the respective monochromatic light emitting layers 51 are recombined. Emits light.
 続いて、上記構成を有する有機EL照明装置1の回路構成について図3を参照して説明する。 Subsequently, a circuit configuration of the organic EL lighting device 1 having the above configuration will be described with reference to FIG.
 制御部110は、駆動回路200に接続されている。制御部110は、発光部300に、所望の色の光を発光させるように、赤の発光層51R、緑の発光層51G、青の発光層51Bに供給する電流を指定する制御信号を駆動回路200へ出力する。各単色発光層51に流す電流の値は、例えば、有機EL照明装置1の製造後、個々に或いはロット単位でテストを行って求められる。 The control unit 110 is connected to the drive circuit 200. The control unit 110 drives the control circuit to specify the current supplied to the red light emitting layer 51R, the green light emitting layer 51G, and the blue light emitting layer 51B so that the light emitting unit 300 emits light of a desired color. Output to 200. The value of the current passed through each monochromatic light-emitting layer 51 is obtained, for example, after manufacturing the organic EL lighting device 1 and by performing tests individually or in units of lots.
 例えば、赤の発光層51Rの発光強度、緑の発光層51Gの発光強度、青の発光層51Bの発光強度をバランス良く調整すれば、これらの混色により白色の照明光を得ることができる。また、例えば、赤の発光層51Rの発光強度を相対的に強くすれば,赤みがかった照明光を得ることができる。 For example, if the emission intensity of the red emission layer 51R, the emission intensity of the green emission layer 51G, and the emission intensity of the blue emission layer 51B are adjusted in a well-balanced manner, white illumination light can be obtained by mixing these colors. For example, if the emission intensity of the red light emitting layer 51R is relatively increased, reddish illumination light can be obtained.
 整流・平滑回路500は、商用電源600に接続され、商用電源600から供給された電流を整流及び平滑し、平滑した直流電圧をコンバータ400に供給する。 The rectifying / smoothing circuit 500 is connected to the commercial power source 600, rectifies and smoothes the current supplied from the commercial power source 600, and supplies the smoothed DC voltage to the converter 400.
 コンバータ400は、DC-DCコンバータ等から構成され、整流・平滑回路500に接続されており、整流・平滑回路500から供給された直流電圧から、発光部300の駆動に使用する複数の直流電圧を生成し、駆動回路200に供給する。 The converter 400 is configured by a DC-DC converter or the like, and is connected to the rectifying / smoothing circuit 500. From the DC voltage supplied from the rectifying / smoothing circuit 500, the converter 400 generates a plurality of DC voltages used for driving the light emitting unit 300. It is generated and supplied to the drive circuit 200.
 駆動回路200は、コンバータ400から受信した直流電圧を用いて、発光部300の各単色発光層51に制御部110から受信した制御信号により指定された定電流を流す。駆動回路200の動作の詳細は後述する。 The driving circuit 200 causes the constant current specified by the control signal received from the control unit 110 to flow through each monochromatic light emitting layer 51 of the light emitting unit 300 using the DC voltage received from the converter 400. Details of the operation of the drive circuit 200 will be described later.
 発光部300は、前述の陰極電極10、電子注入層20、…、陽極電極80から構成され、駆動回路200に接続されている。発光部300は、駆動回路200から所定の電流が供給されると発光する。 The light emitting unit 300 includes the cathode electrode 10, the electron injection layer 20,..., And the anode electrode 80, and is connected to the drive circuit 200. The light emitting unit 300 emits light when a predetermined current is supplied from the drive circuit 200.
 続いて、上記構成を有する有機EL照明装置1について説明する。 Subsequently, the organic EL lighting device 1 having the above configuration will be described.
 有機EL照明装置1が商用電源600に接続され、且つ、電源がオンされると、制御部110は、設定に従って、赤、緑、青の各単色発光層50に流す定電流を示す制御信号を駆動回路200に供給する。
 一方、整流・平滑回路500は、商用電源600から供給される交流電圧を整流し、平滑化して、コンバータ400に供給する。コンバータ400は、供給された電圧から、発光部300の駆動に使用する電圧を生成し、駆動回路200に供給する。
 駆動回路200は、制御部110から供給された制御信号に従って、コンバータ400から供給された電圧を使用して、発光部300を駆動する。
When the organic EL lighting device 1 is connected to the commercial power source 600 and the power source is turned on, the control unit 110 outputs a control signal indicating a constant current that flows through the monochromatic light emitting layers 50 of red, green, and blue according to the setting. This is supplied to the drive circuit 200.
On the other hand, the rectification / smoothing circuit 500 rectifies and smoothes the AC voltage supplied from the commercial power supply 600 and supplies the rectified and smoothed circuit 500 to the converter 400. The converter 400 generates a voltage used for driving the light emitting unit 300 from the supplied voltage, and supplies the voltage to the drive circuit 200.
The drive circuit 200 drives the light emitting unit 300 using the voltage supplied from the converter 400 in accordance with the control signal supplied from the control unit 110.
 駆動回路200の駆動動作を図4(a)~(c)を参照して説明する。
 まず、駆動回路200は、陰極電極10に基準電位Vcomを印加する。続いて、各陽極電極80に、基準電位Vcomよりも低い、共通電位VOを所定時間Tsだけ印加する。続いて、駆動回路200は、陰極電極10に印加している基準電位Vcomを維持したまま、各陽極電極80に印加する電圧を、単色発光素子51R、51G、51Bのそれぞれに制御部110から指示された定電流を流すために必要な電圧に設定する。
 図4の例では、駆動回路200は、赤の発光層51Rに対応する陽極電極80に電圧VpBを印加し、緑の発光層51Gに対応する陽極電極80に電圧VpGを印加し、青の発光層51Bに対応する陽極電極80に電圧VpBを印加し、これにより、各単色発光層51に、定電流を流し、各単色発光層51を発光させる。
 各単色発光層51で発光された光の一部は、正孔輸送層60、正孔注入層70、陽極電極80,ガラス基板90を介して、拡散板100に到達する。また、各単色発光層51で発光された光の他の一部は、陰極電極10で反射された後、正孔輸送層60,正孔注入層70,陽極電極80,ガラス基板90を介して、拡散板100に到達する。
The drive operation of the drive circuit 200 will be described with reference to FIGS. 4 (a) to 4 (c).
First, the drive circuit 200 applies the reference potential Vcom to the cathode electrode 10. Subsequently, a common potential VO lower than the reference potential Vcom is applied to each anode electrode 80 for a predetermined time Ts. Subsequently, the drive circuit 200 instructs the monochromatic light emitting elements 51R, 51G, and 51B from the control unit 110 to specify the voltage to be applied to each anode electrode 80 while maintaining the reference potential Vcom applied to the cathode electrode 10. Is set to a voltage required to allow the constant current to flow.
In the example of FIG. 4, the drive circuit 200 applies the voltage VpB to the anode electrode 80 corresponding to the red light emitting layer 51R, applies the voltage VpG to the anode electrode 80 corresponding to the green light emitting layer 51G, and emits blue light. A voltage VpB is applied to the anode electrode 80 corresponding to the layer 51 </ b> B, thereby causing a constant current to flow through each monochromatic light emitting layer 51 to cause each monochromatic light emitting layer 51 to emit light.
A part of the light emitted from each monochromatic light emitting layer 51 reaches the diffusion plate 100 via the hole transport layer 60, the hole injection layer 70, the anode electrode 80, and the glass substrate 90. Further, another part of the light emitted from each monochromatic light emitting layer 51 is reflected by the cathode electrode 10 and then passed through the hole transport layer 60, the hole injection layer 70, the anode electrode 80, and the glass substrate 90. The diffusion plate 100 is reached.
 拡散板100は、入射した赤,緑、青の光を拡散することにより混色して、出射する。これにより、拡散板100からは、所望の色の平面光が出射される。
 その後、有機EL照明装置の電源がオフされると、駆動回路200は、逆バイアス電圧を各単色発光層51に一定時間印加した後、駆動を停止する。
The diffusion plate 100 mixes and emits light by diffusing incident red, green, and blue light. Thereby, planar light of a desired color is emitted from the diffusion plate 100.
After that, when the power source of the organic EL lighting device is turned off, the drive circuit 200 stops driving after applying a reverse bias voltage to each monochromatic light emitting layer 51 for a certain period of time.
 以上説明した有機EL照明装置では、陰極電極10が複数の単色発光層51に共通であり、制御対象の電極の数は、単色発光層51の数をNとすれば、電極の数は、N+1個で済む。従って、駆動回路200の構成及び動作、駆動回路200と発光層300と配線等が簡単であり製造が容易である。 In the organic EL lighting device described above, the cathode electrode 10 is common to the plurality of monochromatic light emitting layers 51, and the number of electrodes to be controlled is N + 1 if the number of monochromatic light emitting layers 51 is N. It only takes a piece. Therefore, the configuration and operation of the drive circuit 200, the drive circuit 200, the light emitting layer 300, the wiring, and the like are simple and easy to manufacture.
 また、製造ばらつき、経年劣化などにより、単色発光層51の発光光量が設計値からずれた場合でも、制御部110が出力する制御信号を調整することにより、各色の単色発光層51に流す定電流を調整して、所望の発光光量を得ることができる。ひいては、有機EL発光照明装置1の出力光の色(温度色)を適当に調整することが可能となる。 In addition, even when the amount of light emitted from the monochromatic light emitting layer 51 deviates from the design value due to manufacturing variations, aging deterioration, etc., the constant current that flows through the monochromatic light emitting layer 51 of each color is adjusted by adjusting the control signal output from the control unit 110. Can be adjusted to obtain a desired amount of emitted light. As a result, the color (temperature color) of the output light of the organic EL light-emitting illuminating device 1 can be appropriately adjusted.
 また、駆動回路200は、図4(a)~(c)に示すように、起動時及び電源切断時等に、陽極電極80の電位VOを基準電位Vcomに対して負の電位として、各単色発光層51に逆バイアスをかける。この逆バイアス電圧は、有機EL照明パネルの絶縁破壊電位以下、例えば0~-5V、となるように設定される。有機材料のキャリア伝導性は、分子の酸化と還元を繰り返すことで実現されている。このため、一方極性の電圧の継続的な印加は材料の劣化を促進し、有機ELの輝度劣化や電圧上昇の原因となる。本実施形態に係る有機EL照明装置1は、逆バイアスを印加することで、電荷の蓄積による材料の劣化を抑制し、その寿命を向上することができる。 Further, as shown in FIGS. 4A to 4C, the drive circuit 200 sets the potential VO of the anode electrode 80 to a negative potential with respect to the reference potential Vcom at the time of startup, power off, etc. A reverse bias is applied to the light emitting layer 51. The reverse bias voltage is set to be equal to or lower than the dielectric breakdown potential of the organic EL lighting panel, for example, 0 to -5V. Carrier conductivity of organic materials is realized by repeating oxidation and reduction of molecules. For this reason, the continuous application of the one-polarity voltage promotes the deterioration of the material, which causes the luminance deterioration of the organic EL and the voltage increase. The organic EL lighting device 1 according to this embodiment can suppress the deterioration of the material due to the accumulation of electric charges and improve the lifetime by applying a reverse bias.
 上記構成を有する有機EL照明装置を製造し、その特性を測定した。
 まず、ガラス基板90上に、スパッタ法によりITO薄膜を成膜した。次に、ITO薄膜を色発光領域の形状に、フォトエッチング法およびフォトリソグラフィ法を用いてパターニングし、陽極電極80を形成した。
 次に、陽極電極80上に、Cu-Pcを真空蒸着法により堆積して正孔注入層70を形成した。さらに、正孔注入層70上に、α-NPDを真空蒸着法により一様な厚さに堆積して正孔輸送層60を形成した。
An organic EL lighting device having the above configuration was manufactured and its characteristics were measured.
First, an ITO thin film was formed on the glass substrate 90 by sputtering. Next, the ITO thin film was patterned into the shape of the color light emitting region by using a photoetching method and a photolithography method, thereby forming an anode electrode 80.
Next, Cu—Pc was deposited on the anode electrode 80 by a vacuum evaporation method to form the hole injection layer 70. Further, α-NPD was deposited to a uniform thickness on the hole injection layer 70 by a vacuum vapor deposition method to form the hole transport layer 60.
 次に、正孔輸送層60上にストライプ状のCBP膜を形成した。さらに、CBP層にIr(ppy)3を拡散して緑色発光層51Gを形成し、CBP層にBtp2Ir(acac)を拡散して赤色発光層51Rを形成し、さらにCBP層にFIr(pic)を拡散して青色発光層51Bを形成することにより、発光層50を形成した。この際、真空蒸着法等により、シャドーマスクを形成し、発光層50を各色に分離した。 Next, a striped CBP film was formed on the hole transport layer 60. Further, Ir (ppy) 3 is diffused in the CBP layer to form the green light emitting layer 51G, Btp2Ir (acac) is diffused in the CBP layer to form the red light emitting layer 51R, and FIr (pic) is further added to the CBP layer. The light emitting layer 50 was formed by diffusing to form the blue light emitting layer 51B. At this time, a shadow mask was formed by a vacuum deposition method or the like, and the light emitting layer 50 was separated into each color.
 次に、発光層50上に、BCPを堆積して正孔ブロック層40を形成した。さらに、正孔ブロック40の上に、Alq3を堆積して、一様な厚さの電子輸送層30を形成した。さらに、電子輸送層30上にLiFを堆積して、電子注入層20を形成した。
 さらに、Alを一様な厚さに成膜することにより、陰極電極10を形成した。
 こうして、有機EL照明パネルを作製した。
Next, BCP was deposited on the light emitting layer 50 to form the hole blocking layer 40. Furthermore, Alq3 was deposited on the hole block 40 to form the electron transport layer 30 having a uniform thickness. Further, LiF was deposited on the electron transport layer 30 to form the electron injection layer 20.
Further, the cathode electrode 10 was formed by depositing Al in a uniform thickness.
Thus, an organic EL lighting panel was produced.
 この有機EL照明パネルの、赤色発光部に駆動電流として27A/m2、緑色発光部に25A/m2、青色発光部に23A/m2を流した。このとき、駆動電圧(陽極電極80と共通の陰極電極10との間の電圧)はそれぞれ2.7V、2.6V、4.1V、有機EL照明パネルの電力効率は、31 lm/W、色温度は2800Kであった。また、この照明パネルのパネル面内の輝度ムラは、最大輝度と最小輝度の差で6%以下であった。 In this organic EL lighting panel, a drive current of 27 A / m 2 was supplied to the red light emitting part, 25 A / m 2 to the green light emitting part, and 23 A / m 2 to the blue light emitting part. At this time, the drive voltage (voltage between the anode electrode 80 and the common cathode electrode 10) is 2.7V, 2.6V, 4.1V, respectively, and the power efficiency of the organic EL lighting panel is 31 lm / W, color The temperature was 2800K. Further, the luminance unevenness in the panel surface of this lighting panel was 6% or less as a difference between the maximum luminance and the minimum luminance.
 従来の有機EL照明装置2の照明パネル(以下、比較例1という)の素子構造の例を図16に示す。この比較例の陰極電極10は単色発光層51毎に配置されている。この比較例に、上記と同じ色温度を設定したところ、配線抵抗の上昇等より駆動電圧が上昇し、電力効率は24 lm/Wとなり、上述の方法で作成した有機EL照明装置1の照明パネルの電力効率より低下した。上述の方法で作成した有機EL照明装置1の照明パネルと比較例の電力効率の差には、正確な切り分けは難しいところもあるが、陰極面積による反射率の差も含まれている。また、比較例1では、19%の面内輝度ムラが認められた。また、比較例1は、それぞれの発光層に陰極電極を備えるため駆動回路も複雑となり30%の原価上昇、コストアップとなった。 FIG. 16 shows an example of the element structure of a lighting panel (hereinafter referred to as Comparative Example 1) of the conventional organic EL lighting device 2. The cathode electrode 10 of this comparative example is disposed for each monochromatic light emitting layer 51. In this comparative example, when the same color temperature as above was set, the driving voltage increased due to an increase in wiring resistance, etc., and the power efficiency was 24 lm / W. The lighting panel of the organic EL lighting device 1 created by the above method Lower than the power efficiency. The difference in power efficiency between the lighting panel of the organic EL lighting device 1 and the comparative example created by the method described above is difficult to accurately separate, but also includes a difference in reflectance due to the cathode area. In Comparative Example 1, 19% in-plane luminance unevenness was observed. In Comparative Example 1, each of the light emitting layers is provided with a cathode electrode, so that the drive circuit becomes complicated, resulting in a 30% increase in cost and cost.
 さらに、図17に示すようにひとつの有機EL素子の層内に赤、緑および青色発光層を重ね合わせて形成された白色素子とした他の有機EL照明装置3の照明パネル(以下、比較例2という)と有機EL照明装置1の輝度寿命を比較した。ここでは、輝度寿命として、初期輝度1000nitに対し、その輝度が70%となる時間を比較した。その結果、比較例2の輝度寿命は、有機EL照明装置1の照明パネルの輝度寿命に対し35%短かった。また、比較例2は、赤、緑および青色の輝度低下速度がそれぞれ異なり、且つ比較例2ではその補正ができないため、初期と寿命到達時の色ズレ・色度差が、有機EL照明装置1の照明パネルに対しΔxyで5倍以上大きいことが認められた。一般的に、青色の輝度劣化が他色に対し早く、白色照明としたときに、駆動と共に色温度の低い方向へずれて行くが、有機EL照明装置1は各発光色の輝度を独立して調整することができるため、青色発光層51Bの輝度を調整することにより、色ズレを最低限に留めることができる。 Furthermore, as shown in FIG. 17, the lighting panel of another organic EL lighting device 3 that is a white element formed by superimposing red, green, and blue light-emitting layers in one organic EL element layer (hereinafter referred to as a comparative example). 2) and the luminance lifetime of the organic EL lighting device 1 were compared. Here, as the luminance life, the time when the luminance is 70% is compared with the initial luminance of 1000 nit. As a result, the luminance life of Comparative Example 2 was 35% shorter than the luminance life of the lighting panel of the organic EL lighting device 1. Further, since the comparative example 2 has different brightness reduction speeds of red, green, and blue, and the comparative example 2 cannot make corrections thereof, the color misalignment / chromaticity difference between the initial stage and the end of the lifetime is different from the organic EL lighting apparatus 1. It was confirmed that Δxy was 5 times or more larger than the lighting panel. In general, when the luminance of blue is faster than other colors and white illumination is used, the color shifts in the direction of lower color temperature along with driving. However, the organic EL lighting device 1 independently adjusts the luminance of each emission color. Since it can be adjusted, the color shift can be minimized by adjusting the luminance of the blue light emitting layer 51B.
 なお、上記実施の形態では、単色発光層51に定電流を流す前及び後に、単色発光層51に逆バイアスを印加したが、逆バイアスを印加する必要はない。この場合、駆動回路200は、例えば、図5に示すように、各陽極電極80に基準電圧Vcomと定電流を流すための電圧Vpを印加する。 In the above embodiment, a reverse bias is applied to the monochromatic light emitting layer 51 before and after a constant current is passed through the monochromatic light emitting layer 51, but it is not necessary to apply a reverse bias. In this case, for example, as shown in FIG. 5, the drive circuit 200 applies a voltage Vp for supplying a reference voltage Vcom and a constant current to each anode electrode 80.
 また、図4、図5の例では、有機EL照明装置1の電源オンから電源オフまで、各単色発光層51に連続して定電流を流す例を示した。この発明はこれに限定されず、各単色発光層51に定電流を断続的に流すようにしてもよい。この場合、例えば、図6(a)、(b)に示すように、陽極電極80に印加する電圧を断続的にオン・オフすることにより、各単色発光層51に流す実効電流を調整することができる。実効電流は、印加電圧とデューティにより定まる。デューティは、単色発光層51毎に異なってもよく、同一でもよい。 Further, in the examples of FIGS. 4 and 5, an example is shown in which a constant current is continuously supplied to each monochromatic light emitting layer 51 from the power-on to the power-off of the organic EL lighting device 1. The present invention is not limited to this, and a constant current may be intermittently passed through each monochromatic light emitting layer 51. In this case, for example, as shown in FIGS. 6A and 6B, the effective current flowing through each monochromatic light emitting layer 51 is adjusted by intermittently turning on and off the voltage applied to the anode electrode 80. Can do. The effective current is determined by the applied voltage and the duty. The duty may be different for each monochromatic light emitting layer 51 or may be the same.
 さらに、デューティを調整できるようにしてもよい。即ち、各陽極電極80に印加する電圧VpをPWM(Pulse Width Modulation、パルス幅変調)するようにしてもよい。この場合、例えば、制御部110は明るさを調整するための操作つまみなどを備える。制御部110は、操作つまみの操作に従って、各単色発光層51に流す定電流のデューティを調整し、制御信号により駆動回路200に指示する。駆動回路200は、図7(a)~(c)に示すように、制御信号の指示に従って、各陽極電極80に印加する電圧Vp0のデューティTon/Tpを調整する。制御部110は、発光部300の発光量を大きくする場合には、デューティTon/Tpを大きく、発光量を小さくする場合には、デューティTon/Tpを小さく制御する。なお、赤、緑、青の各単色発光層51に流す電流のデューティは同一でも異なっていてもよい。 Furthermore, the duty may be adjusted. That is, the voltage Vp applied to each anode electrode 80 may be PWM (Pulse Width Modulation, pulse width modulation). In this case, for example, the control unit 110 includes an operation knob for adjusting the brightness. The control unit 110 adjusts the duty of the constant current flowing through each monochromatic light emitting layer 51 according to the operation of the operation knob, and instructs the drive circuit 200 by a control signal. As shown in FIGS. 7A to 7C, the drive circuit 200 adjusts the duty Ton / Tp of the voltage Vp0 applied to each anode electrode 80 in accordance with the instruction of the control signal. The control unit 110 increases the duty Ton / Tp when increasing the light emission amount of the light emitting unit 300, and decreases the duty Ton / Tp when decreasing the light emission amount. It should be noted that the duty of the current passed through each of the red, green, and blue monochromatic light emitting layers 51 may be the same or different.
 図7(a)~(c)には、単色発光層51に印加する電圧及び流す電流をPWM制御する例を示したが、各単色発光層51に流す電流をPAM(Pulse Amplitude Modulation、パルス振幅変調)制御してもよい。この場合、制御部110は、操作つまみにより指示された明るさを得るための電流を駆動回路200に指示する。駆動回路200は、各単色発光層51に制御信号により指示された定電流を流すように、、図8(a)~(c)に例示するように、各陽極電極80に印加する電圧VpB,VpR,VpGを調整する。 FIGS. 7A to 7C show an example in which the voltage applied to the monochromatic light emitting layer 51 and the current flowing are controlled by PWM, but the current passed through each monochromatic light emitting layer 51 is changed to PAM (Pulse Amplitude Modulation, pulse amplitude). Modulation) control. In this case, the control unit 110 instructs the drive circuit 200 with a current for obtaining the brightness designated by the operation knob. As illustrated in FIGS. 8A to 8C, the drive circuit 200 applies the voltage VpB, which is applied to each anode electrode 80, so that a constant current instructed by the control signal flows through each monochromatic light emitting layer 51. VpR and VpG are adjusted.
 このように駆動することで、有機EL照明装置1を所望の輝度、色温度となるように点灯することができる。なお、上述の動作は、有機EL照明装置1が白色に点灯する場合の動作であるが、これに限られず、有機EL照明装置1は多色に点灯することができる。 By driving in this way, the organic EL lighting device 1 can be lit to have a desired luminance and color temperature. In addition, although the above-mentioned operation | movement is operation | movement in case the organic EL lighting apparatus 1 lights white, it is not restricted to this, The organic EL lighting apparatus 1 can be lighted in multiple colors.
 以上説明したように、本実施形態に係る有機EL照明装置1によれば、陰極電極10を各単色発光層51の共通電極として使用する。したがって、それぞれの発光層に陰極電極を備える場合と異なり、点灯、駆動時の制御用ドライバを削減することができ、駆動方法を簡略化できる。 As described above, according to the organic EL lighting device 1 according to the present embodiment, the cathode electrode 10 is used as a common electrode for each monochromatic light emitting layer 51. Therefore, unlike the case where each light emitting layer is provided with a cathode electrode, the number of drivers for control during lighting and driving can be reduced, and the driving method can be simplified.
 また、各単色発光層51間の非発光部も含めて陰極電極10を金属薄膜で成膜することができるため、配線抵抗を低減でき、駆動電圧の低電圧化となり結果として省電力化につながる。また、一様成膜することで、陰極電極10の有機EL発光の反射率を向上できる。さらに、上述したように輝度ムラを低減できる。 Further, since the cathode electrode 10 including the non-light emitting portion between the monochromatic light emitting layers 51 can be formed with a metal thin film, the wiring resistance can be reduced and the driving voltage is lowered, resulting in power saving. . Moreover, the reflectance of the organic EL light emission of the cathode electrode 10 can be improved by forming into a uniform film. Furthermore, as described above, luminance unevenness can be reduced.
 また、各単色発光層51を独立して駆動するため、各単色発光層51の色温度、輝度等をそれぞれ補正することができ、輝度劣化速度が異なる単色発光層を組み合わせた場合でも、パネルの輝度寿命を長くすることができる。 Further, since each monochromatic light emitting layer 51 is driven independently, the color temperature, luminance, etc. of each monochromatic light emitting layer 51 can be corrected, and even when monochromatic light emitting layers having different luminance degradation rates are combined, The luminance life can be extended.
 [第2実施形態]
 第1実施形態では、複数の発光層に対する陰極を共通電極とする構成を備える有機EL照明装置を説明した。この発明はこれに限定されない。陽極を共通電極とすることも可能である。以下、複数の発光層に共通の陽極を備える有機EL照明装置1’を、図9を参照して説明する。
[Second Embodiment]
In the first embodiment, an organic EL lighting device having a configuration in which cathodes for a plurality of light emitting layers are used as a common electrode has been described. The present invention is not limited to this. It is also possible to use the anode as a common electrode. Hereinafter, an organic EL lighting device 1 ′ having a common anode for a plurality of light emitting layers will be described with reference to FIG.
 第2の実施形態では、図9に示すように、陽極電極80は、全単色発光層51に対向する共通電極として配置されている。一方、陰極電極10は各単色発光層51と対となるようにそれぞれ独立して配置されている。有機EL照明装置1’のその他の基本構成は、第1実施形態に係る有機EL照明装置1と同様である。 In the second embodiment, as shown in FIG. 9, the anode electrode 80 is arranged as a common electrode facing the all-monochromatic light emitting layer 51. On the other hand, the cathode electrode 10 is independently arranged so as to be paired with each monochromatic light emitting layer 51. Other basic configurations of the organic EL lighting device 1 ′ are the same as those of the organic EL lighting device 1 according to the first embodiment.
 有機EL照明装置1’の回路構成を図10に示す。 FIG. 10 shows a circuit configuration of the organic EL lighting device 1 ′.
 図10の回路において、駆動回路200は、制御部110から受信した制御信号を基に、各単色発光層51が制御信号に従った所望の輝度、色温度となるように、陰極電極10と陽極電極80の間に定電流を供給する。 In the circuit of FIG. 10, the drive circuit 200 is based on the control signal received from the control unit 110 so that each single color light emitting layer 51 has a desired luminance and color temperature according to the control signal. A constant current is supplied between the electrodes 80.
 駆動回路200が陰極電圧10及び陽極電圧80に印加する電圧の例を図11(a)~(c)に示す。駆動回路200は、陽極電極80に基準電位Vcomを印加し、各陰極電極10に基準電位Vcomよりも高い共通電位VOを所定時間Tsだけ印加する。続いて、駆動回路200は、陽極電極80に印加している基準電位Vcomを維持したまま、各陰極電極10に印加する電圧を、制御部110から指示された定電流を発光素子51R,51G,51Bに流すため必要な電圧に設定する。このように、駆動回路200は、電荷の蓄積による材料の劣化を抑制すべく、陰極電極10の電位に逆バイアスをかける。逆バイアスとなる正電位は、例えば0~5Vの有機EL照明パネルの絶縁破壊電位以下となるように設定する。 Examples of voltages applied to the cathode voltage 10 and the anode voltage 80 by the drive circuit 200 are shown in FIGS. The drive circuit 200 applies a reference potential Vcom to the anode electrode 80, and applies a common potential VO higher than the reference potential Vcom to each cathode electrode 10 for a predetermined time Ts. Subsequently, the drive circuit 200 maintains the reference potential Vcom applied to the anode electrode 80 while applying a constant current instructed from the control unit 110 to the light-emitting elements 51R, 51G, It is set to a voltage necessary for flowing to 51B. Thus, the drive circuit 200 applies a reverse bias to the potential of the cathode electrode 10 in order to suppress deterioration of the material due to charge accumulation. The positive potential as the reverse bias is set to be equal to or lower than the dielectric breakdown potential of the organic EL lighting panel of 0 to 5 V, for example.
 駆動回路200は、必ずしも単色発光層51に逆バイアスをかける必要はない。この場合の、駆動波形の一例を図12に示す。 The drive circuit 200 does not necessarily need to reverse bias the monochromatic light emitting layer 51. An example of the drive waveform in this case is shown in FIG.
 駆動回路200は、定電流を断続的に流すようにしてもよい。この場合、例えば、図13(a)、(b)に示すように、定電流を断続的に流すようにしてもよい。 The drive circuit 200 may allow a constant current to flow intermittently. In this case, for example, as shown in FIGS. 13A and 13B, a constant current may be intermittently passed.
 駆動回路200は、制御部110から受信した制御信号を基に、例えば、図14に示すようにPWM制御、あるいは、図15に示すようにPAM制御によって、各単色発光層51に供給する実効電流を制御し、その発光光量を制御してもよい。 Based on the control signal received from the control unit 110, the drive circuit 200, for example, the effective current supplied to each monochromatic light-emitting layer 51 by PWM control as shown in FIG. 14 or PAM control as shown in FIG. And the amount of emitted light may be controlled.
 このように駆動することで、有機EL照明装置1’を所望の輝度、色温度となるように点灯することができる。なお、上述の動作は、有機EL照明装置1’が白色に点灯する場合の動作であるが、これに限られず、有機EL照明装置1’は多色に点灯することができる。 By driving in this way, the organic EL lighting device 1 ′ can be lit to have a desired luminance and color temperature. In addition, although the above-mentioned operation | movement is an operation | movement when the organic EL lighting apparatus 1 'lights in white, it is not restricted to this, The organic EL lighting apparatus 1' can be lighted in multiple colors.
 上記構成を有する有機EL照明装置1’を製造し、その特性を測定した。
 まず、ガラス基板上に、スパッタ法によりITO薄膜を一様な厚さに成膜し、陽極電極80を形成した。さらに、陽極電極80上に、Cu-Pcを真空蒸着法により堆積して正孔注入層70を形成した。さらに、正孔注入層70上に、α-NPDを真空蒸着法により堆積して正孔輸送層60を形成した。
An organic EL lighting device 1 ′ having the above-described configuration was manufactured and its characteristics were measured.
First, an ITO thin film was formed to a uniform thickness on a glass substrate by sputtering, and an anode electrode 80 was formed. Further, a hole injection layer 70 was formed on the anode electrode 80 by depositing Cu—Pc by a vacuum deposition method. Further, α-NPD was deposited on the hole injection layer 70 by a vacuum evaporation method to form the hole transport layer 60.
 次に、正孔輸送層60上にCBP膜を形成した。さらに、CBP層にIr(ppy)3をストライプ上に拡散して緑色発光層51Gを形成し、CBP層にBtp2Ir(acac)をストライプ上に拡散して赤色発光層51Rを形成し、さらにCBP層にFIr(pic)をストライプ上に拡散して青色発光層51Bを形成することにより、発光層50を形成した。この際、真空蒸着等により、シャドーマスクを形成し、発光層50を各色に分離した。 Next, a CBP film was formed on the hole transport layer 60. Further, Ir (ppy) 3 is diffused on the stripe in the CBP layer to form a green light emitting layer 51G, Btp2Ir (acac) is diffused on the stripe in the CBP layer to form a red light emitting layer 51R, and further the CBP layer The light emitting layer 50 was formed by diffusing FIr (pic) on the stripes to form the blue light emitting layer 51B. At this time, a shadow mask was formed by vacuum deposition or the like, and the light emitting layer 50 was separated into each color.
 次に、発光層50上に、CPを堆積して正孔ブロック層40を形成した。さらに、正孔ブロック40の上に、Alq3を堆積して、一様な厚さの電子輸送層30を形成した。さらに、電子輸送層30上にLiFを堆積して、電子注入層20を形成した。
 さらに、Alを一様な厚さに成膜することにより、陰極電極10を形成した。
 こうして、照明パネルを作製した。
Next, CP was deposited on the light emitting layer 50 to form the hole blocking layer 40. Furthermore, Alq3 was deposited on the hole block 40 to form the electron transport layer 30 having a uniform thickness. Further, LiF was deposited on the electron transport layer 30 to form the electron injection layer 20.
Further, the cathode electrode 10 was formed by depositing Al in a uniform thickness.
In this way, a lighting panel was produced.
 この有機EL照明装置1’の照明パネルの赤色発光部に駆動電流として27A/m2、緑色発光部に25A/m2、青色発光部に23A/m2を流した。このとき、駆動電圧はそれぞれ2.6V、2.5V、3.9V、電力効率は、32.4 lm/W、色温度は2800Kであった。また、この照明パネル面内の輝度ムラは、最大輝度と最小輝度の差で3.5%以下であった。 The drive current of 27 A / m 2 , 25 A / m 2 of green light emission, and 23 A / m 2 of blue light emission were passed through the red light emission part of the lighting panel of the organic EL lighting device 1 ′. At this time, the driving voltage was 2.6V, 2.5V, 3.9V, the power efficiency was 32.4 lm / W, and the color temperature was 2800K. In addition, the luminance unevenness in the illumination panel surface was 3.5% or less as a difference between the maximum luminance and the minimum luminance.
 ここで、上述の照明パネルの特性と、第1実施形態で比較対象として使用した比較例1の特性とを比較する。
 比較例1は、従来の有機EL照明装置2の照明パネルである。その素子構造の例を図16に示す。この比較例1の陽極電極80は単色発光層51毎に配置されている。
 この比較例1の色温度を、上記と同じ色温度を設定したところ、配線抵抗の上昇等より駆動電圧が上昇し、電力効率は24 lm/Wとなり、上述の方法で作成した有機EL照明装置1’のパネルの電力効率より低下した。有機EL照明装置1’の照明パネルは、陽極電極80を一様成膜することで、電極を一様成膜していない場合と比べ、配線抵抗を低減することができる。従って、電力効率が上がる。さらに、体積抵抗率が高いとされるITOの透明電極のシート抵抗を低減することができるため、その効果は大きい。シート抵抗の低減によって、電界の低下も抑えられキャリアの注入効率が向上する。また、比較例1の面内輝度ムラは20%であり、本実施形態に係る有機EL照明装置1’の照明パネルの輝度ムラの方が低い。さらに、金属などの補助電極を用いなくてもよくなるため、コストダウンに繋げることができる。
Here, the characteristic of the above-mentioned lighting panel and the characteristic of the comparative example 1 used as a comparison object in 1st Embodiment are compared.
Comparative Example 1 is a lighting panel of a conventional organic EL lighting device 2. An example of the element structure is shown in FIG. The anode electrode 80 of the comparative example 1 is disposed for each monochromatic light emitting layer 51.
When the same color temperature as that described above was set as the color temperature of Comparative Example 1, the drive voltage increased due to an increase in wiring resistance and the like, and the power efficiency became 24 lm / W. The organic EL lighting device produced by the above method It was lower than the power efficiency of the 1 'panel. The lighting panel of the organic EL lighting device 1 ′ can reduce the wiring resistance by uniformly forming the anode electrode 80 as compared with the case where the electrode is not uniformly formed. Accordingly, power efficiency is increased. Furthermore, since the sheet resistance of the ITO transparent electrode, which has a high volume resistivity, can be reduced, the effect is great. By reducing the sheet resistance, a decrease in electric field is also suppressed, and the carrier injection efficiency is improved. The in-plane luminance unevenness of Comparative Example 1 is 20%, and the luminance unevenness of the illumination panel of the organic EL lighting device 1 ′ according to this embodiment is lower. Furthermore, since it is not necessary to use an auxiliary electrode such as a metal, the cost can be reduced.
 また、駆動時の制御用ドライバを削減することで、駆動方法を簡略化できる。なお、従来の照明パネルでは、本実施形態に係る有機EL照明装置1’と比較して、駆動回路が複雑となり、30%のコストアップとなる。 Also, the drive method can be simplified by reducing the number of control drivers during driving. In the conventional illumination panel, the drive circuit is complicated and the cost is increased by 30% compared to the organic EL illumination device 1 ′ according to the present embodiment.
 また、第1実施形態と同様に、各単色発光層51を独立して駆動するため、各単色発光層51の色温度、輝度等をそれぞれ補正することができ、輝度劣化速度が異なる単色発光層を組み合わせた場合でも、有機EL照明パネルの輝度寿命を長くすることができる。 Further, as in the first embodiment, since each single color light emitting layer 51 is driven independently, the color temperature, luminance, etc. of each single color light emitting layer 51 can be respectively corrected, and the single color light emitting layers having different luminance degradation rates. Even when these are combined, the luminance life of the organic EL lighting panel can be extended.
 以上説明したように、第2実施形態に係る有機EL照明装置1’によれば、陽極電極80を各単色発光層51の共通電極として使用する。それぞれの発光層に陽極電極を備える場合と異なり、点灯、駆動時の制御用ドライバを削減することができ、駆動方法を簡略化できる。すなわち、第1実施形態に係る有機EL照明装置1と同様の効果を得ることができる。 As described above, according to the organic EL lighting device 1 ′ according to the second embodiment, the anode electrode 80 is used as a common electrode of the single color light emitting layers 51. Unlike the case where each light emitting layer is provided with an anode electrode, the number of drivers for control during lighting and driving can be reduced, and the driving method can be simplified. That is, the same effect as the organic EL lighting device 1 according to the first embodiment can be obtained.
 [変形例]
 本発明は、上記実施形態に限定されず、種々の変形例及び応用が可能である。以下、本発明に適用可能な上記実施形態の変形例について説明する。
[Modification]
The present invention is not limited to the above embodiment, and various modifications and applications are possible. Hereinafter, modifications of the above-described embodiment applicable to the present invention will be described.
 上記実施形態では、発光層50に赤・緑・青の3色を用い、加法混色により白色を形成し照明としているが、これに限らず、2色を混色することにより白色を形成し照明としてもよい。例えば、発光層として青色と黄色を用いてもよい。黄色の発光層は、前記実施例中に示した、ルブレンドーパントのような単一発光材料を用いてもよく、また、赤色発光材料と緑色発光材料を同一発光層中にドーピングし、混色により形成してもよい。2色とすることにより、各発光色間の非発光部を少なく、その面積を小さくすることができるため、発光部面積(開口率)を広げることができ、同一駆動条件でみると、光束量が向上する。 In the above-described embodiment, three colors of red, green, and blue are used for the light emitting layer 50, and white is formed by additive color mixing for illumination. However, the present invention is not limited to this, and white color is formed by mixing two colors for illumination. Also good. For example, blue and yellow may be used for the light emitting layer. The yellow light-emitting layer may be a single light-emitting material such as rubrene dopant shown in the above examples, or a red light-emitting material and a green light-emitting material are doped into the same light-emitting layer and formed by color mixing. May be. By using two colors, the number of non-light emitting portions between the respective light emitting colors can be reduced and the area thereof can be reduced, so that the light emitting portion area (aperture ratio) can be increased. Will improve.
 上記実施形態では、陰極電極10は、例えばアルミニウムの金属薄膜電極を一様な厚さに成膜した電極であるとして説明したが、これに限られず、光の反射性が悪い金属導電膜と反射性に優れた金属薄膜との2層構造であってもよい。 In the above embodiment, the cathode electrode 10 has been described as an electrode in which, for example, an aluminum metal thin film electrode is formed to have a uniform thickness. However, the present invention is not limited to this, and a metal conductive film and a reflective film with poor light reflectivity are used. It may be a two-layer structure with a metal thin film having excellent properties.
 上記実施形態では、ガラス基板90はガラスから構成される透光性の基板であるとして説明したが、これに限られず、プラスチックフィルムから構成される基板であってもよい。このような構成にすることで、有機EL照明パネルを多様に変形させることが可能となる。 In the above embodiment, the glass substrate 90 has been described as a translucent substrate made of glass, but is not limited thereto, and may be a substrate made of a plastic film. With such a configuration, the organic EL lighting panel can be variously modified.
 なお、上記実施形態及び図面の一部又は全部は、以下の付記のようにも記載されうるが、以下に限定されるわけではない。本発明の要旨を変更しない範囲で実施形態及び図面に変更を加えることができるのはもちろんである。 It should be noted that a part or all of the above embodiment and drawings can be described as the following supplementary notes, but are not limited to the following. It goes without saying that the embodiments and the drawings can be modified without changing the gist of the present invention.
(付記1)
 注入された電荷の再結合により発光し、その発光色が異なる複数の発光層と、
 前記複数の発光層のそれぞれと対に設けられた第1電極と、
 前記複数の発光層に共通に設けられた第2電極と、
 前記第1電極から注入された電荷を前記複数の発光層へと輸送する第1輸送層と、
 前記第2電極から注入された電荷を前記複数の発光層へと輸送する第2輸送層と、
 を備える、
 ことを特徴とする有機EL照明装置。
(Appendix 1)
A plurality of light-emitting layers that emit light by recombination of injected charges and have different emission colors;
A first electrode provided in a pair with each of the plurality of light emitting layers;
A second electrode provided in common to the plurality of light emitting layers;
A first transport layer for transporting charges injected from the first electrode to the plurality of light emitting layers;
A second transport layer for transporting charges injected from the second electrode to the plurality of light emitting layers;
Comprising
An organic EL lighting device.
(付記2)
 前記第1電極及び前記第2電極を介して前記複数の発光層に電流を供給する駆動回路をさらに備え、
 前記駆動回路は、前記第1電極又は前記第2電極のいずれか一方の電位を基準電位とし、前記複数の発光層それぞれに定電流を供給し、
 前記複数の発光層は、前記駆動回路から供給された定電流に基づいて発光する、
 ことを特徴とする付記1に記載の有機EL照明装置。
(Appendix 2)
A drive circuit for supplying current to the plurality of light emitting layers through the first electrode and the second electrode;
The drive circuit uses a potential of either the first electrode or the second electrode as a reference potential, and supplies a constant current to each of the plurality of light emitting layers,
The plurality of light emitting layers emit light based on a constant current supplied from the drive circuit.
The organic EL lighting device according to Supplementary Note 1, wherein:
(付記3)
 前記第1電極及び前記第2電極を介して前記複数の発光層に電流を供給する駆動回路をさらに備え、
 前記駆動回路は、前記第1電極又は前記第2電極のいずれか一方の電位を基準電位とし、前記複数の発光層それぞれに定電流の矩形波を供給し、
 前記複数の発光層は、前記駆動回路から供給された電流に基づいて発色する、
 ことを特徴とする付記1に記載の有機EL照明装置。
(Appendix 3)
A drive circuit for supplying current to the plurality of light emitting layers through the first electrode and the second electrode;
The drive circuit uses a potential of either the first electrode or the second electrode as a reference potential, and supplies a constant-current rectangular wave to each of the plurality of light emitting layers,
The plurality of light emitting layers are colored based on a current supplied from the drive circuit,
The organic EL lighting device according to Supplementary Note 1, wherein:
(付記4)
 前記複数の発光層は、前記駆動回路がパルス幅変調により供給する定電流の矩形波に基づいて調光する、
 ことを特徴とする付記3に記載の有機EL照明装置。
(Appendix 4)
The plurality of light emitting layers are dimmed based on a rectangular wave of a constant current supplied by the drive circuit by pulse width modulation.
The organic EL lighting device according to Supplementary Note 3, wherein
(付記5)
 前記複数の発光層は、前記駆動回路がパルス振幅変調により供給する定電流の矩形波に基づいて調光する、
 ことを特徴とする付記3に記載の有機EL照明装置。
(Appendix 5)
The plurality of light emitting layers are dimmed based on a rectangular wave of a constant current supplied by the drive circuit by pulse amplitude modulation.
The organic EL lighting device according to Supplementary Note 3, wherein
(付記6)
 前記複数の発光層は、それぞれ所定の間隔で配置されており、
 前記複数の発光層と、それぞれの発光層の間の発光しない領域と、金属薄膜で一様な厚さで成膜されている、
 ことを特徴とする付記1乃至5のいずれか1つに記載の有機EL照明装置。
(Appendix 6)
The plurality of light emitting layers are arranged at predetermined intervals, respectively.
The plurality of light emitting layers, a region that does not emit light between the respective light emitting layers, and a metal thin film are formed with a uniform thickness,
The organic EL lighting device according to any one of appendices 1 to 5, characterized in that:
(付記7)
 前記複数の発光層に、絶縁破壊電圧以下の逆バイアス電圧が印加される
 ことを特徴とする付記1又は6に記載の有機EL照明装置。
(Appendix 7)
The organic EL lighting device according to appendix 1 or 6, wherein a reverse bias voltage equal to or lower than a dielectric breakdown voltage is applied to the plurality of light emitting layers.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications made within the scope of the claims and the equivalent invention are considered to be within the scope of the present invention.
 本発明は、2011年9月26日に出願された日本国特許出願2011-210006号に基づく。本明細書中に日本国特許出願2011-210006号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 The present invention is based on Japanese Patent Application No. 2011-210006 filed on Sep. 26, 2011. The specification, claims, and entire drawings of Japanese Patent Application No. 2011-210006 are incorporated herein by reference.
 本発明によれば、省電力かつ高品質を実現することができる。 According to the present invention, power saving and high quality can be realized.
1、1’、2、3 有機EL照明装置
10       陰極電極
20       電子注入層
30       電子輸送層
40       正孔ブロック層
50       発光層
51       単色発光層
51R      赤色発光層
51G      緑色発光層
51B      青色発光層
60       正孔輸送層
70       正孔注入層
80       陽極電極
90       ガラス基板
100      拡散板
110      制御部
200      駆動回路
300      発光部
400      コンバータ
500      整流・平滑回路
600      商用電源
1, 1 ', 2, 3 Organic EL lighting device 10 Cathode electrode 20 Electron injection layer 30 Electron transport layer 40 Hole blocking layer 50 Light emitting layer 51 Monochromatic light emitting layer 51R Red light emitting layer 51G Green light emitting layer 51B Blue light emitting layer 60 Holes Transport layer 70 Hole injection layer 80 Anode electrode 90 Glass substrate 100 Diffusion plate 110 Control unit 200 Drive circuit 300 Light emitting unit 400 Converter 500 Rectification / smoothing circuit 600 Commercial power supply

Claims (7)

  1.  注入された電荷の再結合により発光し、その発光色が異なる複数の発光層と、
     前記複数の発光層のそれぞれと対に設けられた第1電極と、
     前記複数の発光層に共通に設けられた第2電極と、
     前記第1電極から注入された電荷を前記複数の発光層へと輸送する第1輸送層と、
     前記第2電極から注入された電荷を前記複数の発光層へと輸送する第2輸送層と、
     を備える、
     ことを特徴とする有機EL照明装置。
    A plurality of light-emitting layers that emit light by recombination of injected charges and have different emission colors;
    A first electrode provided in a pair with each of the plurality of light emitting layers;
    A second electrode provided in common to the plurality of light emitting layers;
    A first transport layer for transporting charges injected from the first electrode to the plurality of light emitting layers;
    A second transport layer for transporting charges injected from the second electrode to the plurality of light emitting layers;
    Comprising
    An organic EL lighting device.
  2.  前記第1電極及び前記第2電極を介して前記複数の発光層に電流を供給する駆動回路をさらに備え、
     前記駆動回路は、前記第1電極又は前記第2電極のいずれか一方の電位を基準電位とし、前記複数の発光層それぞれに定電流を供給し、
     前記複数の発光層は、前記駆動回路から供給された定電流に基づいて発光する、
     ことを特徴とする請求項1に記載の有機EL照明装置。
    A drive circuit for supplying current to the plurality of light emitting layers through the first electrode and the second electrode;
    The drive circuit uses a potential of either the first electrode or the second electrode as a reference potential, and supplies a constant current to each of the plurality of light emitting layers,
    The plurality of light emitting layers emit light based on a constant current supplied from the drive circuit.
    The organic EL lighting device according to claim 1.
  3.  前記第1電極及び前記第2電極を介して前記複数の発光層に電流を供給する駆動回路をさらに備え、
     前記駆動回路は、前記第1電極又は前記第2電極のいずれか一方の電位を基準電位とし、前記複数の発光層それぞれに定電流の矩形波を供給し、
     前記複数の発光層は、前記駆動回路から供給された電流に基づいて発色する、
     ことを特徴とする請求項1に記載の有機EL照明装置。
    A drive circuit for supplying current to the plurality of light emitting layers through the first electrode and the second electrode;
    The drive circuit uses a potential of either the first electrode or the second electrode as a reference potential, and supplies a constant-current rectangular wave to each of the plurality of light emitting layers,
    The plurality of light emitting layers are colored based on a current supplied from the drive circuit,
    The organic EL lighting device according to claim 1.
  4.  前記複数の発光層は、前記駆動回路がパルス幅変調により供給する定電流の矩形波に基づいて調光する、
     ことを特徴とする請求項3に記載の有機EL照明装置。
    The plurality of light emitting layers are dimmed based on a rectangular wave of a constant current supplied by the drive circuit by pulse width modulation.
    The organic EL lighting device according to claim 3.
  5.  前記複数の発光層は、前記駆動回路がパルス振幅変調により供給する定電流の矩形波に基づいて調光する、
     ことを特徴とする請求項3に記載の有機EL照明装置。
    The plurality of light emitting layers are dimmed based on a rectangular wave of a constant current supplied by the drive circuit by pulse amplitude modulation.
    The organic EL lighting device according to claim 3.
  6.  前記複数の発光層は、それぞれ所定の間隔で配置されており、
     前記複数の発光層と、それぞれの発光層の間の発光しない領域と、金属薄膜で一様な厚さで成膜されている、
     ことを特徴とする請求項1乃至5のいずれか1項に記載の有機EL照明装置。
    The plurality of light emitting layers are arranged at predetermined intervals, respectively.
    The plurality of light emitting layers, a region that does not emit light between the respective light emitting layers, and a metal thin film are formed with a uniform thickness,
    The organic EL lighting device according to any one of claims 1 to 5, wherein
  7.  前記複数の発光層に、絶縁破壊電圧以下の逆バイアス電圧が印加される
     ことを特徴とする請求項1乃至6のいずれか1項に記載の有機EL照明装置。
    The organic EL lighting device according to any one of claims 1 to 6, wherein a reverse bias voltage equal to or lower than a dielectric breakdown voltage is applied to the plurality of light emitting layers.
PCT/JP2012/074484 2011-09-26 2012-09-25 Organic el illumination device WO2013047478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536284A JP5773465B2 (en) 2011-09-26 2012-09-25 Organic EL lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011210006 2011-09-26
JP2011-210006 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013047478A1 true WO2013047478A1 (en) 2013-04-04

Family

ID=47995510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074484 WO2013047478A1 (en) 2011-09-26 2012-09-25 Organic el illumination device

Country Status (2)

Country Link
JP (1) JP5773465B2 (en)
WO (1) WO2013047478A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006165A1 (en) * 2014-07-07 2016-01-14 パナソニックIpマネジメント株式会社 Portable mirror
JP2020020995A (en) * 2018-08-02 2020-02-06 株式会社デンソー Display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175200A (en) * 1998-12-01 2001-06-29 Sanyo Electric Co Ltd Display device
JP2002025781A (en) * 2000-07-07 2002-01-25 Nec Corp Organic el element and its manufacturing method
JP2004114506A (en) * 2002-09-26 2004-04-15 Seiko Epson Corp Image forming apparatus
JP2005502994A (en) * 2001-09-14 2005-01-27 ノヴァレッド ゲーエムベーハー White LED with a multicolored light emitting layer with a macroscopic structure width arranged on a scattering screen
JP2005149744A (en) * 2003-11-11 2005-06-09 Konica Minolta Holdings Inc Lighting system
WO2010113831A1 (en) * 2009-03-31 2010-10-07 東レ株式会社 Light-emitting element material precursor body and production method therefor
JP2010232268A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Lighting device, display device and electronic equipment
WO2010140549A1 (en) * 2009-06-03 2010-12-09 コニカミノルタホールディングス株式会社 Organic electroluminescent element, method for driving same, and illuminating device comprising same
JP2011165781A (en) * 2010-02-08 2011-08-25 Nippon Seiki Co Ltd Organic el element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164170A (en) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd White color organic electroluminescence panel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175200A (en) * 1998-12-01 2001-06-29 Sanyo Electric Co Ltd Display device
JP2002025781A (en) * 2000-07-07 2002-01-25 Nec Corp Organic el element and its manufacturing method
JP2005502994A (en) * 2001-09-14 2005-01-27 ノヴァレッド ゲーエムベーハー White LED with a multicolored light emitting layer with a macroscopic structure width arranged on a scattering screen
JP2004114506A (en) * 2002-09-26 2004-04-15 Seiko Epson Corp Image forming apparatus
JP2005149744A (en) * 2003-11-11 2005-06-09 Konica Minolta Holdings Inc Lighting system
JP2010232268A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Lighting device, display device and electronic equipment
WO2010113831A1 (en) * 2009-03-31 2010-10-07 東レ株式会社 Light-emitting element material precursor body and production method therefor
WO2010140549A1 (en) * 2009-06-03 2010-12-09 コニカミノルタホールディングス株式会社 Organic electroluminescent element, method for driving same, and illuminating device comprising same
JP2011165781A (en) * 2010-02-08 2011-08-25 Nippon Seiki Co Ltd Organic el element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006165A1 (en) * 2014-07-07 2016-01-14 パナソニックIpマネジメント株式会社 Portable mirror
JP2020020995A (en) * 2018-08-02 2020-02-06 株式会社デンソー Display device
JP7052624B2 (en) 2018-08-02 2022-04-12 株式会社デンソー Display device

Also Published As

Publication number Publication date
JP5773465B2 (en) 2015-09-02
JPWO2013047478A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
US6447934B1 (en) Organic electroluminescent panel
TWI267822B (en) Organic electroluminescence device that can adjust chromaticity
US7629062B2 (en) Organic light-emitting element and display device
US6750472B2 (en) Organic electroluminescent device
JP4895742B2 (en) White organic electroluminescence device
Wu et al. Efficient white organic light emitting devices with dual emitting layers
JP2007502534A (en) Circuit arrangement for organic diode AC drive
JP2005267990A (en) Organic light emitting display device
JP2007011063A (en) Organic electroluminescence display device
JP2008041894A (en) Organic electroluminescent device and manufacturing method thereof
US20120187859A1 (en) Organic Electroluminescent Component
US10839734B2 (en) OLED color tuning by driving mode variation
US9741956B2 (en) Organic light-emitting diode apparatus
KR101877195B1 (en) Method for driving organic electroluminescent element
JP3279310B2 (en) Aging method for organic EL device
JP2006269100A (en) Display device
JP5773465B2 (en) Organic EL lighting device
JP2012209504A (en) Organic el lighting system
JP2005108572A (en) Organic electroluminescent element
KR100547055B1 (en) Organic Electroluminescent Device
JP2007329176A (en) Organic electroluminescence element
JP2002134273A (en) Organic el element
JP5743244B2 (en) Organic EL lighting device
US20190386252A1 (en) Luminance and color temperature tunable tandem oled
Shen et al. High bright white organic light-emitting diode based on mixing orange and blue emission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836067

Country of ref document: EP

Kind code of ref document: A1