JP5743244B2 - Organic EL lighting device - Google Patents

Organic EL lighting device Download PDF

Info

Publication number
JP5743244B2
JP5743244B2 JP2013525647A JP2013525647A JP5743244B2 JP 5743244 B2 JP5743244 B2 JP 5743244B2 JP 2013525647 A JP2013525647 A JP 2013525647A JP 2013525647 A JP2013525647 A JP 2013525647A JP 5743244 B2 JP5743244 B2 JP 5743244B2
Authority
JP
Japan
Prior art keywords
organic
voltage
light emitting
lighting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013525647A
Other languages
Japanese (ja)
Other versions
JPWO2013015094A1 (en
Inventor
嘉一 坂口
嘉一 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2013525647A priority Critical patent/JP5743244B2/en
Publication of JPWO2013015094A1 publication Critical patent/JPWO2013015094A1/en
Application granted granted Critical
Publication of JP5743244B2 publication Critical patent/JP5743244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、有機EL照明装置に関し、特に、電源投入時や駆動時の破壊防止技術に関する。   The present invention relates to an organic EL lighting device, and more particularly, to a technology for preventing destruction at the time of power-on or driving.

有機EL照明パネルは、発光ダイオードであると同時に、構造的に大きな並行平板を備えたコンデンサとなっている。そのため、初期状態(電荷が溜まっていない状態)から電源投入時、または初期通電(電圧印加)を行うと、まずそれらのコンデンサの充電を行わなければならないため、過大電流・突入電流が発生、または定電流域からオーバーシュートし、過大電流による絶縁破壊や電気的短絡が発生してしまう。   The organic EL lighting panel is not only a light emitting diode but also a capacitor having a structurally large parallel plate. Therefore, when the power is turned on from the initial state (the state where no electric charge is accumulated), or when initial energization (voltage application) is performed, the capacitors must first be charged. Overshooting from the constant current range will cause breakdown and electrical short circuit due to excessive current.

また、有機ELパネルは容量を持ったコンデンサ成分を具備しているため、静電気の蓄積等により電極間に高電界が掛かるとコンデンサ(有機ELパネル)が絶縁破壊を起こしてしまう。そのため、有機EL照明の実用化には、この電気的短絡の対策が必須となっている。   In addition, since the organic EL panel includes a capacitor component having a capacity, when a high electric field is applied between the electrodes due to accumulation of static electricity, the capacitor (organic EL panel) causes dielectric breakdown. Therefore, measures for this electrical short circuit are indispensable for practical use of organic EL lighting.

ここで、放電灯を点灯させる際に電圧を段階的、ステップ状に上昇、下降させることにより、立ち上がり、立ち下がりを緩やかにする技術が考えられており、特許文献1に開示されている。   Here, a technique for gradually increasing the rise and fall by increasing and decreasing the voltage stepwise and stepwise when turning on the discharge lamp is disclosed in Patent Document 1.

特開2010−232064号公報JP 2010-2332064 A

しかしながら、特許文献1に開示された技術は、蛍光灯等の放電灯に関するものであり、有機ELは全く異なった発光方式を用いているため、回路の観点からすると上記のような問題点を解決できるものではない。   However, the technique disclosed in Patent Document 1 relates to a discharge lamp such as a fluorescent lamp, and the organic EL uses a completely different light emission method, and thus solves the above problems from the viewpoint of the circuit. It is not possible.

具体的には、放電灯(蛍光灯)や白熱灯は、電圧駆動方式であるのに対し、有機ELは電流駆動方式であり、有機ELに流れる電流を制御することにより輝度・照度を調節するものであるため、電圧駆動方式の蛍光灯や白熱灯の照明器具に用いられている回路方式をそのまま有機ELの照明器具に適用することはできない。   Specifically, discharge lamps (fluorescent lamps) and incandescent lamps are voltage-driven, whereas organic EL is current-driven, and the brightness and illuminance are adjusted by controlling the current flowing through the organic EL. Therefore, the circuit system used for the voltage-driven fluorescent lamp and the incandescent lamp cannot be directly applied to the organic EL lighting apparatus.

また、蛍光灯は、交流駆動型照明であるのに対し、有機ELは、一方向の電流時のみ発光する直流駆動型の電子デバイスである。蛍光灯は、内部を真空にした蛍光管の両端にフィラメントを設け、この両端のフィラメント間に電流を流し、このときに水銀蒸気の助けを借りて両端のフィラメント間で生じる真空放電によって発光することになる。このように、蛍光灯管の内部に封じられた水銀蒸気は、直流で点灯した場合、−極の方に集まってしまい、点灯を持続することができない。   A fluorescent lamp is an AC drive type illumination, whereas an organic EL is a DC drive type electronic device that emits light only when current flows in one direction. Fluorescent lamps are provided with filaments at both ends of a fluorescent tube whose interior is evacuated, and an electric current is passed between the filaments at both ends. At this time, light is emitted by a vacuum discharge generated between the filaments at both ends with the help of mercury vapor. become. As described above, when the mercury vapor sealed inside the fluorescent lamp tube is lit with direct current, it collects toward the negative electrode and cannot be lit continuously.

本発明は、上述したような技術が有する問題点に鑑みてなされたものであって、電源投入時における破壊を防止することができる有機EL照明装置を提供することを目的とする。   The present invention has been made in view of the problems of the above-described technology, and an object thereof is to provide an organic EL lighting device capable of preventing destruction at the time of power-on.

上記目的を達成するために本発明は、
電流の大きさに応じて輝度が変化する発光素子部と、前記発光素子部に電流を制御して電圧を印加する電源供給部と、前記発光素子部を発光させるための信号を前記電源供給部に与える制御部とを有し、前記電源供給部が、前記制御部から与えられた信号に応じて電流を制御することにより電圧を前記発光素子部に印加する有機EL照明装置において、
前記電源供給部は、電源投入時または電源切断時に、前記発光素子部に印加する電圧を線形に上昇または降下させる制御を行うことを特徴とする。
In order to achieve the above object, the present invention provides:
A light-emitting element portion whose luminance changes in accordance with the magnitude of the current; a power supply portion for controlling the current to apply a voltage to the light-emitting element portion; and a signal for causing the light-emitting element portion to emit light. An organic EL lighting device that applies a voltage to the light emitting element unit by controlling a current according to a signal given from the control unit,
The power supply unit performs control to linearly increase or decrease the voltage applied to the light emitting element unit when power is turned on or off.

また、電流の大きさに応じて輝度が変化する発光素子部と、前記発光素子部に電流を制御して電圧を印加する電源供給部と、前記発光素子部を発光させるための信号を前記電源供給部に与える制御部とを有し、前記電源供給部が、前記制御部から与えられた信号に応じて電流を制御することにより電圧を前記発光素子部に印加する有機EL照明装置において、
前記電源供給部は、電源投入時または電源切断時に、前記発光素子部に印加する電圧を段階的またはステップ状に上昇または降下させる制御を行うことを特徴とする。
In addition, a light emitting element portion whose luminance changes in accordance with the magnitude of current, a power supply portion for controlling the current to apply a voltage to the light emitting element portion, and a signal for causing the light emitting element portion to emit light An organic EL lighting device that applies a voltage to the light emitting element unit by controlling a current in accordance with a signal given from the control unit.
The power supply unit performs control to increase or decrease the voltage applied to the light emitting element unit stepwise or stepwise when power is turned on or off.

また、電流の大きさに応じて輝度が変化する発光素子部と、前記発光素子部に電流を制御して電圧を印加する電源供給部と、前記発光素子部を発光させるための信号を前記電源供給部に与える制御部とを有し、前記電源供給部が、前記制御部から与えられた信号に応じて電流を制御することにより電圧を前記発光素子部に印加する有機EL照明装置において、
前記電源供給部は、電源投入時に、前記発光素子部に対して、前記発光素子部が駆動するための電圧未満の電圧を印加し、その後、前記発光素子部が駆動するための電圧を印加する制御を行うことを特徴とする。
In addition, a light emitting element portion whose luminance changes in accordance with the magnitude of current, a power supply portion for controlling the current to apply a voltage to the light emitting element portion, and a signal for causing the light emitting element portion to emit light An organic EL lighting device that applies a voltage to the light emitting element unit by controlling a current in accordance with a signal given from the control unit.
The power supply unit applies a voltage lower than a voltage for driving the light emitting element unit to the light emitting element unit when power is turned on, and then applies a voltage for driving the light emitting element unit. Control is performed.

本発明は、以上説明したように構成されているため、工数やコストを増大させることなく、電源投入時に、通電開始時等または駆動時に急激な過大電流や突入電流があった場合においても、有機ELパネルの絶縁破壊を防止することができる。   Since the present invention is configured as described above, even when there is a sudden excessive current or inrush current at the time of power-on, at the start of energization or at the time of driving without increasing man-hours and costs, The dielectric breakdown of the EL panel can be prevented.

本発明の有機EL照明装置の実施の一形態を示す図である。It is a figure which shows one Embodiment of the organic electroluminescent illuminating device of this invention. 図1に示した有機EL発光部の構成を示す図である。It is a figure which shows the structure of the organic electroluminescent light emission part shown in FIG. 図1に示した有機EL照明装置の動作の第1の実施の形態を説明するための図である。It is a figure for demonstrating 1st Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第2の実施の形態を説明するための図である。It is a figure for demonstrating 2nd Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第3の実施の形態を説明するための図である。It is a figure for demonstrating 3rd Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第4の実施の形態を説明するための図である。It is a figure for demonstrating 4th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第5の実施の形態を説明するための図である。It is a figure for demonstrating 5th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第6の実施の形態を説明するための図である。It is a figure for demonstrating 6th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第7の実施の形態を説明するための図である。It is a figure for demonstrating 7th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第8の実施の形態を説明するための図である。It is a figure for demonstrating 8th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第9の実施の形態を説明するための図である。It is a figure for demonstrating 9th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第10の実施の形態を説明するための図である。It is a figure for demonstrating 10th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第11の実施の形態を説明するための図である。It is a figure for demonstrating 11th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第12の実施の形態を説明するための図である。It is a figure for demonstrating 12th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第13の実施の形態を説明するための図である。It is a figure for demonstrating 13th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第14の実施の形態を説明するための図である。It is a figure for demonstrating 14th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG. 図1に示した有機EL照明装置の動作の第15の実施の形態を説明するための図である。It is a figure for demonstrating 15th Embodiment of operation | movement of the organic electroluminescent illuminating device shown in FIG.

以下に、本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の有機EL照明装置の実施の一形態を示す図である。   FIG. 1 is a diagram showing an embodiment of an organic EL lighting device of the present invention.

本形態は図1に示すように、電流の大きさに応じて輝度が変化する発光素子部となる有機EL発光部10と、商用電源40と、商用電源40を用いて有機EL発光部10に電流を制御して電圧を印加する電源供給部20と、有機EL発光部10を発光させるための信号を電源供給部20に与える制御部30とから構成されている。制御部30は、有機EL発光部10を発光させるための輝度制御信号を生成する輝度制御信号生成部31を有している。また、電源供給部20は、商用電源40による交流電圧を整流、平滑する整流・平滑回路21と、整流・平滑回路21にて整流、平滑された交流電圧を直流電圧に変換するコンバータ22と、コンバータ22にて変換された直流電圧を用いて制御部30から与えられた信号に応じて電流を制御し、電圧を有機EL発光部10に印加する駆動回路23とを有している。   In the present embodiment, as shown in FIG. 1, an organic EL light emitting unit 10 serving as a light emitting element unit whose luminance changes according to the magnitude of current, a commercial power source 40, and a commercial power source 40 are used for the organic EL light emitting unit 10. The power supply unit 20 controls the current and applies a voltage, and the control unit 30 provides the power supply unit 20 with a signal for causing the organic EL light emitting unit 10 to emit light. The control unit 30 includes a luminance control signal generation unit 31 that generates a luminance control signal for causing the organic EL light emitting unit 10 to emit light. Further, the power supply unit 20 includes a rectification / smoothing circuit 21 that rectifies and smoothes an AC voltage from the commercial power supply 40, a converter 22 that converts the AC voltage rectified and smoothed by the rectification / smoothing circuit 21 into a DC voltage, A drive circuit 23 that controls the current according to a signal given from the control unit 30 using the DC voltage converted by the converter 22 and applies the voltage to the organic EL light emitting unit 10 is provided.

図2は、図1に示した有機EL発光部10の構成を示す図であり、積層構造を示す。   FIG. 2 is a diagram illustrating a configuration of the organic EL light emitting unit 10 illustrated in FIG. 1 and illustrates a stacked structure.

図1に示した有機EL発光部10は図2に示すように、陰極11と、電子注入層12と、電子輸送層13と、発光層14と、正孔輸送層15と、正孔注入層16と、透明電極(ITO)17と、ガラス基板18と、拡散板19とが積層された構造を有し、陰極11と透明電極17との間の電位差によって電流駆動する一般的なものである。なお、電子輸送層13と、発光層14との間に、正孔ブロック層を設けてもよい。また、前記構造に限らず、正孔注入輸送層や発光層に高分子材料を用いた素子構成とすることもできる。   As shown in FIG. 2, the organic EL light emitting unit 10 shown in FIG. 1 includes a cathode 11, an electron injection layer 12, an electron transport layer 13, a light emitting layer 14, a hole transport layer 15, and a hole injection layer. 16, a transparent electrode (ITO) 17, a glass substrate 18, and a diffusion plate 19 are laminated, and the current is driven by a potential difference between the cathode 11 and the transparent electrode 17. . Note that a hole blocking layer may be provided between the electron transport layer 13 and the light emitting layer 14. Moreover, not only the said structure but it can also be set as the element structure which used the polymeric material for the positive hole injection transport layer and the light emitting layer.

各層の材料としては、以下に例を挙げた中から選択して用いることができるが、これに限ったものではない。   The material of each layer can be selected from the examples given below, but is not limited thereto.

正孔注入層16には銅フタロシアニン(Cu-Pc)やスターバースト型芳香族アミンのようなアリールアミン誘導体等、正孔輸送層15には、ビス(ジ(p−トリル)アミノフェニル)−1,1−シクロヘキサン、N,N’−ジフェニル−N−N−ビス(1−ナフチル)−1,1’−ビフェニル)−4,4’−ジアミン(α−NPD)、4,4'−ビス(m−トリルフェニルアミノ)ビフェニル(TPD)等のトリフェニルジアミン類や、スターバースト型芳香族アミン等を用いることができる。   The hole injection layer 16 has an arylamine derivative such as copper phthalocyanine (Cu—Pc) or a starburst type aromatic amine, and the hole transport layer 15 has bis (di (p-tolyl) aminophenyl) -1. , 1-cyclohexane, N, N′-diphenyl-N—N-bis (1-naphthyl) -1,1′-biphenyl) -4,4′-diamine (α-NPD), 4,4′-bis ( Triphenyldiamines such as m-tolylphenylamino) biphenyl (TPD), starburst aromatic amines, and the like can be used.

発光層14には、トリス(8−キノリノール)アルミニウム錯体(Alq3)、ビスジフェニルビニルビフェニル(BDPVBi)、1,3−ビス(p−t−ブチルフェニル−1,3,4−オキサジアゾールイル)フェニル(OXD−7)、N,N'−ビス(2,5−ジ−t−ブチルフェニル)ペリレンテトラカルボン酸ジイミド(BPPC)、1,4ビス(N−p−トリル−N−4−(4−メチルスチリル)フェニルアミノ)ナフタレン等を用いて形成することができる。   The light emitting layer 14 includes tris (8-quinolinol) aluminum complex (Alq3), bisdiphenylvinylbiphenyl (BDPVBi), 1,3-bis (pt-butylphenyl-1,3,4-oxadiazolyl). Phenyl (OXD-7), N, N′-bis (2,5-di-t-butylphenyl) perylenetetracarboxylic acid diimide (BPPC), 1,4 bis (Np-tolyl-N-4- ( 4-methylstyryl) phenylamino) naphthalene and the like can be used.

また、発光層14は、ホストとドーパントの二成分系からなるものであってもよく、ホスト化合物として、上記発光材料や正孔輸送材料、後述する電子輸送材料を用いることができる。例えば、Alq3等のキノリノール金属錯体に4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン(DCM)、4−(ジシアノ メチレン)−2−t−ブチル−6−(1,1,7,7−テトラメチルユロリジル−9−エニル) −4H−ピラン(DCJTB)等のピラン系誘導体(赤色)、2,3−キナクリドン等のキナクリドン誘導体や、3−(2'−ベンゾチアゾール)−7−ジエチルアミノクマリン等のクマリン誘導体をドープしたもの(緑色)、電子輸送材料のビス(2−メチル−8−ヒドロキシキノリン)−4−フェニルフェノール−アルミニウム錯体に、ペリレン等の縮合多環芳香族をドープしたもの(青色)、あるいは正孔輸送材料のTPDにルブレン等をドープしたもの(黄色)、4,4’−ビスカルバゾリルビフェニル(CBP)、4,4´−ビス(9−カルバゾリル)−2,2’−ジメチルビフェニル(CDBP)等のカルバゾール系化合物に、トリス−(2フェリニルピリジン)イリジウム(Ir(ppy)3)(緑色)、ビス(4,6−ジ−フルオロフェニル)−ピリジネート−N,C2) イリジウム(ピコリネート) (FIr(pic))(青色)、ビス(2−2’−ベンゾチエニル)−ピリジネート−N, C3イリジウム(アセチルアセトネート) (Btp2Ir(acac))(赤色)、トリス−(ピコリネート)イリジウム (Ir(pic)3)(赤色)、ビス(2−フェニルベンゾチオゾラト−N,C2)イリジウム(アセチルアセトネート) (Bt2Ir(acac))(黄色)等のイリジウム錯体や白金錯体をドープしたもの等を用いることができる。   The light emitting layer 14 may be composed of a two-component system of a host and a dopant, and the above light emitting material, hole transport material, and electron transport material described later can be used as the host compound. For example, quinolinol metal complexes such as Alq3 may be added to 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), 4- (dicyanomethylene) -2-t-butyl-6- (1,1,7,7-tetramethyleurolidyl-9-enyl) -4H-pyran (DCJTB) and other pyran derivatives (red), quinacridone derivatives such as 2,3-quinacridone, and 3- (2 ′ -Benzothiazole) -7-diethylaminocoumarin-doped coumarin derivative (green), electron transport material bis (2-methyl-8-hydroxyquinoline) -4-phenylphenol-aluminum complex, condensation of perylene, etc. One doped with a polycyclic aromatic (blue), or one doped with rubrene or the like on a hole transporting material TPD (yellow), 4, To carbazole compounds such as' -biscarbazolylbiphenyl (CBP) and 4,4'-bis (9-carbazolyl) -2,2'-dimethylbiphenyl (CDBP), tris- (2 ferrinylpyridine) iridium ( Ir (ppy) 3) (green), bis (4,6-di-fluorophenyl) -pyridinate-N, C2) Iridium (picolinate) (FIr (pic)) (blue), bis (2-2'-benzo Thienyl) -pyridinate-N, C3 iridium (acetylacetonate) (Btp2Ir (acac)) (red), tris- (picolinate) iridium (Ir (pic) 3) (red), bis (2-phenylbenzothiozolato -N, C2) Iridium complexes such as iridium (acetylacetonate) (Bt2Ir (acac)) (yellow) Or what doped the platinum complex etc. can be used.

正孔ブロック層には、2,9‐ジメチル‐4,7‐ジフェニル‐1,10‐フェナントロリン(BCP)、トリフェニルジアミン誘導体、トリアゾール誘導体等、電子輸送層には、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(Bu−PBD)、OXD−7等のオキサジアゾール誘導体、トリアゾール誘導体、キノリノール系の金属錯体等を用いることができる。電子輸送層には、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(Bu−PBD)、OXD−7等のオキサジアゾール誘導体、トリアゾール誘導体、キノリノール系の金属錯体等を用いることができる。電子注入層12には、リチウムやセシウム等のアルカリ金属、若しくは、カルシウム等のアルカリ土類金属のフッ化物や酸化物等を用いることができる。陰極11には、アルミニウムや銀などの比抵抗が小さく、反射率の高い材料を用いることができる。   2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), triphenyldiamine derivatives, triazole derivatives, etc. for the hole blocking layer, 2- (4-biphenylyl) for the electron transport layer Use of oxadiazole derivatives such as -5- (4-t-butylphenyl) -1,3,4-oxadiazole (Bu-PBD) and OXD-7, triazole derivatives, quinolinol-based metal complexes, and the like. it can. For the electron transport layer, oxadiazole derivatives such as 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole (Bu-PBD) and OXD-7, A triazole derivative, a quinolinol-based metal complex, or the like can be used. For the electron injection layer 12, an alkali metal such as lithium or cesium or a fluoride or oxide of an alkaline earth metal such as calcium can be used. For the cathode 11, a material having a small specific resistance such as aluminum or silver and having a high reflectance can be used.

発光材料は赤緑青や黄色に発光し、照明として白色を得る場合は、これらの中から選択して素子を作製し、加法混色して所望の色温度の白色を得る。   When the light emitting material emits red, green, blue, or yellow and white is obtained as illumination, an element is selected from these, and additive color mixing is performed to obtain white at a desired color temperature.

以下に、上記のように構成された有機EL照明装置の動作について説明する。   Below, operation | movement of the organic electroluminescent illuminating device comprised as mentioned above is demonstrated.

(第1の実施の形態)
図3は、図1に示した有機EL照明装置の動作の第1の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。なお、図中Vpは有機EL照明パネル駆動電位、Vgは接地電位を示す。
(First embodiment)
FIG. 3 is a diagram for explaining the first embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows the voltage applied to the organic EL light emitting unit 10. In the figure, Vp represents an organic EL lighting panel drive potential, and Vg represents a ground potential.

図3に示すように、本形態においては、電源供給部20において、電源投入時(立ち上げ時)または電源切断時(立ち下げ時)に、有機EL発光部10に印加する電圧を線形に上昇または降下させる制御を行い、それにより、突入電流による急峻な電位変動を防止する。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、時間が長いと点灯の応答速度が遅く感じられる。突入電流を防止するだけの充電量があればよい。   As shown in FIG. 3, in the present embodiment, in the power supply unit 20, the voltage applied to the organic EL light emitting unit 10 increases linearly when the power is turned on (when starting up) or when the power is turned off (when turning off). Alternatively, a control for lowering is performed, thereby preventing a steep potential fluctuation due to an inrush current. The time until the voltage applied to the organic EL light emitting unit 10 reaches the stable driving voltage is preferably equal to or longer than the time constant of the circuit. However, if the time is long, the response speed of lighting is felt to be slow. It is sufficient if there is enough charge to prevent inrush current.

正孔注入材料にCu−Pc、正孔輸送材料にα−NPD、発光材料としてCBPにIr(ppy)3、Btp2Ir(acac)をドープ、さらにCBPにFIr(pic)をドープし、正孔ブロック層にBCP、電子輸送層にAlq3、電子注入材料にLiF、陰極にAlを用いて素子を作製し、駆動電流を25A/m2流したところ、駆動電圧は4.8V、輝度は925cd/m2、この照明パネルとしての時定数は、0.22m秒であった。この有機EL照明点灯装置を、点灯開始から10m秒を掛けて電流を制御し、定常時駆動電流、安定駆動電圧となるまで上昇させ、消灯時に10m秒を掛けて電圧を降下させた。評価サンプル数n=25で24時間点灯試験を行い、ショート不良を確認したところ、不良は発生しなかった。Hole injection material is Cu-Pc, hole transport material is α-NPD, light emission material is CBP doped with Ir (ppy) 3, Btp2Ir (acac), CBP is doped with FIr (pic), and hole blocking A device was fabricated using BCP for the layer, Alq3 for the electron transport layer, LiF for the electron injection material, and Al for the cathode, and a drive current of 25 A / m 2 was applied. The drive voltage was 4.8 V and the luminance was 925 cd / m. 2. The time constant for this lighting panel was 0.22 ms. This organic EL illumination lighting device was controlled to take 10 ms from the start of lighting, and increased to a steady state drive current and a stable drive voltage, and lowered to 10 ms when turned off. When a lighting test was conducted for 24 hours with the number of evaluation samples n = 25 and a short circuit defect was confirmed, no defect occurred.

比較例として、同じ構成の素子に従来の駆動方法と同じく、電源投入時に定常駆動電流を流す、または止めたところ、駆動開始から24時間以内に評価サンプル数n=25中、19パネルでショート不良が認められた。   As a comparative example, as in the conventional driving method, when a power source is turned on, a steady driving current is supplied to or stopped from an element having the same configuration. Was recognized.

(第2の実施の形態)
図4は、図1に示した有機EL照明装置の動作の第2の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Second Embodiment)
FIG. 4 is a diagram for explaining the second embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows the voltage applied to the organic EL light emitting unit 10.

図4に示すように、本形態においては、電源供給部20において、電源投入時(立ち上げ時)または電源切断時(立ち下げ時)に、有機EL発光部10に印加する電圧を段階的にまたはステップ状に上昇または降下させる制御を行い、それにより、突入電流による急峻な電位変動を防止する。この際、ステップ数(段数)とステップ幅、ステップ高さを可変とし、これらによって充電を制御できる。例えば、立ち上がり初期はステップ幅を大きく、かつステップ高さを小さくし、駆動電圧に近づくに従ってステップ幅を小さく、かつ高さを大きくすれば、電圧の急峻な上昇がなく、電気的短絡による不良を回避することができる。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、人の目に認識される点灯の応答速度が遅くなる。突入電流を防止するだけの充電量があればよい。   As shown in FIG. 4, in the present embodiment, in the power supply unit 20, the voltage applied to the organic EL light emitting unit 10 is stepwise when the power is turned on (when starting up) or when the power is turned off (when turning off). Alternatively, control to increase or decrease stepwise is performed, thereby preventing steep potential fluctuations due to inrush current. At this time, the number of steps (the number of steps), the step width, and the step height can be made variable to control charging. For example, if the step width is increased and the step height is decreased at the beginning of the rise, the step width is decreased and the height is increased as the drive voltage is approached. It can be avoided. Note that the time until the voltage applied to the organic EL light emitting unit 10 becomes a stable driving voltage is preferably equal to or more than the time constant of the circuit, but the lighting response speed recognized by human eyes is slow. It is sufficient if there is enough charge to prevent inrush current.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は930cd/m2であった。この有機EL照明点灯装置を、点灯開始から定常時駆動電流、安定駆動電圧となるまで10m秒をかけて電流値を制御し、3段階で電圧を上昇、消灯時には10m秒をかけて3段階で降下させた。詳細には、最初の5m秒で0.3V、次の3m秒で1.2V、次の2m秒で3.3Vのステップで昇圧した。評価サンプル数n=25で24時間点灯試験を行い、ショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.8 V and the luminance was 930 cd / m 2 . This organic EL lighting lighting device takes 10 milliseconds to control the current value from the start of lighting until it reaches a steady state driving current and a stable driving voltage. Lowered. Specifically, the voltage was boosted in steps of 0.3 V in the first 5 ms, 1.2 V in the next 3 ms, and 3.3 V in the next 2 ms. When a lighting test was conducted for 24 hours with the number of evaluation samples n = 25 and a short circuit defect was confirmed, no defect occurred.

(第3の実施の形態)
図5は、図1に示した有機EL照明装置の動作の第3の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Third embodiment)
FIG. 5 is a diagram for explaining the third embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows the voltage applied to the organic EL light emitting unit 10.

図5に示すように、本形態においては、電源供給部20において、電源投入時(立ち上げ時)に、有機EL発光部10に対して、発光開始電圧Vth以下、少なくとも有機EL発光部10を駆動させるための電圧Vf以下の電圧となる電流を流し、この電圧分で有機ELパネルの充電を行い、その後、有機EL発光部10が駆動するための安定駆動電圧(定電流駆動時の到達電圧)を印加する制御を行い、それにより、突入電流による急峻な電位変動を防止する。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、人の目に認識される点灯の応答速度が遅くなる。突入電流を防止するだけの充電量があればよい。As shown in FIG. 5, in the present embodiment, the power supply unit 20 has a light emission start voltage V th or lower and at least the organic EL light emitting unit 10 with respect to the organic EL light emitting unit 10 when the power is turned on (at startup). A current that is equal to or lower than the voltage V f for driving the battery is supplied, the organic EL panel is charged with this voltage, and then the stable drive voltage for driving the organic EL light emitting unit 10 (at the time of constant current driving). (Applied voltage) is applied, whereby abrupt potential fluctuation due to inrush current is prevented. Note that the time until the voltage applied to the organic EL light emitting unit 10 becomes a stable driving voltage is preferably equal to or more than the time constant of the circuit, but the lighting response speed recognized by human eyes is slow. It is sufficient if there is enough charge to prevent inrush current.

第1の実施の形態と同じ構成の有機ELパネルを作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.7V、輝度は920cd/m2であった。駆動開始から6m秒間、有機EL発光部の電位が1.9Vとなるよう電流を流した後、定常時駆動電流、安定駆動電圧となるまで電圧を上昇、消灯時には1.9Vを6m秒間維持した後、0V(装置接地電位)まで降下させた。評価サンプル数n=25で24時間点灯試験を行い、ショート不良を確認したところ、不良は発生しなかった。When an organic EL panel having the same configuration as that of the first embodiment was produced and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.7 V and the luminance was 920 cd / m 2 . After flowing the current so that the potential of the organic EL light emitting unit becomes 1.9 V for 6 msec from the start of driving, the voltage is increased until the steady driving voltage and the stable driving voltage are reached, and 1.9 V is maintained for 6 msec when extinguished. Thereafter, the voltage was lowered to 0 V (device ground potential). When a lighting test was conducted for 24 hours with the number of evaluation samples n = 25 and a short circuit defect was confirmed, no defect occurred.

(第4の実施の形態)
図6は、図1に示した有機EL照明装置の動作の第4の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Fourth embodiment)
FIG. 6 is a diagram for explaining the fourth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図6に示すように、本形態においては、電源供給部20において、電源投入時(立ち上げ時)または電源切断時(立ち下げ時)に、有機EL発光部10に印加する電圧を、最初の印加電圧を小さく、徐々に電圧の上昇幅を大きくするよう指数関数波形に上昇、または逆の波形で降下させる制御を行い、それにより、突入電流による急峻な電位変動を防止する。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、時間が長いと点灯の応答速度が遅く感じられる。突入電流を防止するだけの充電量があればよい。   As shown in FIG. 6, in the present embodiment, in the power supply unit 20, the voltage applied to the organic EL light emitting unit 10 at the time of turning on (starting up) or turning off (turning off) Control is performed to increase the exponential waveform so that the applied voltage is decreased and gradually increase the voltage, or to decrease the waveform with the reverse waveform, thereby preventing abrupt potential fluctuation due to inrush current. The time until the voltage applied to the organic EL light emitting unit 10 reaches the stable driving voltage is preferably equal to or longer than the time constant of the circuit. However, if the time is long, the response speed of lighting is felt to be slow. It is sufficient if there is enough charge to prevent inrush current.

第1の実施例の形態と同じ構成の有機ELパネルを作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は920cd/m2であった。この有機EL照明点灯装置を、点灯開始から10m秒を掛けて電流を制御し、定常時駆動電流、安定駆動電圧となるまで指数関数波形となるよう上昇させ、消灯時に10m秒を掛けて同様な波形で電圧を降下させた。評価サンプル数n=25で24時間点灯試験を行い、ショート不良を確認したところ、不良は発生しなかった。When an organic EL panel having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.8 V and the luminance was 920 cd / m 2 . . This organic EL illumination lighting device is controlled to have a current of 10 ms from the start of lighting, and is increased to an exponential function waveform until it reaches a steady-state driving current and a stable driving voltage. The voltage was dropped in the waveform. When a lighting test was conducted for 24 hours with the number of evaluation samples n = 25 and a short circuit defect was confirmed, no defect occurred.

(第5の実施の形態)
図7は、図1に示した有機EL照明装置の動作の第5の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Fifth embodiment)
FIG. 7 is a diagram for explaining a fifth embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows a voltage applied to the organic EL light emitting unit 10.

図7に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、そのパルス信号の立ち上がりまたは立ち下がり時にパルス信号について第1の実施の形態に示したものと同様の制御を行う。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   As shown in FIG. 7, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. In the power supply unit 20, the same control as that described in the first embodiment is performed on the pulse signal when the pulse signal rises or falls. The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

このように、有機EL照明装置の調光・調色時でPWM(パルス幅変調)駆動を行う場合においても、本発明を適用できる。   As described above, the present invention can also be applied to the case where PWM (pulse width modulation) driving is performed at the time of light adjustment / color adjustment of the organic EL lighting device.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は925cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。そのパルス信号の立ち上がり時に、電流を制御することにより点灯開始から2m秒を掛けて定常時駆動電流、安定駆動電圧となるまで上昇させ、または立ち下がり時に2m秒を掛けて電圧を降下させた。これを1サイクルとし、Duty比10〜70%で24時間点灯試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.8 V and the luminance was 925 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. At the rising edge of the pulse signal, the current was controlled to increase the steady-state driving current and the stable driving voltage by taking 2 msec from the start of lighting, or dropped to 2 msec at the falling to reduce the voltage. This was one cycle, and a lighting test was performed for 24 hours at a duty ratio of 10 to 70%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

比較例として、同じ構成の素子に従来のパルス幅変調方法と同じく、パルス信号の立ち上がりまたは立ち下がり時に定常駆動電流、駆動電圧を瞬時に加えるまたは止めたところ、駆動開始から24時間以内に評価サンプル数n=25中、21パネルでショート不良が認められた。   As a comparative example, as in the case of the conventional pulse width modulation method, when a steady drive current and drive voltage are instantaneously applied or stopped at the rising or falling edge of a pulse signal to an element having the same configuration, an evaluation sample is obtained within 24 hours from the start of driving. In the number n = 25, a short circuit failure was observed on 21 panels.

(第6の実施の形態)
図8は、図1に示した有機EL照明装置の動作の第6の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Sixth embodiment)
FIG. 8 is a diagram for explaining the sixth embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows the voltage applied to the organic EL light emitting unit 10.

図8に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、そのパルス信号の立ち上がりまたは立ち下がり時にパルス信号について第2の実施の形態に示したものと同様の制御を行う。この際、ステップ数(段数)とステップ幅、ステップ高さを可変とし、これらによって充電を制御できる。例えば、立ち上がり初期はステップ幅を大きく、かつステップ高さを小さくし、駆動電圧に近づくに従ってステップ幅を小さく、かつ高さを大きくすれば、電圧の急峻な上昇がなく、電気的短絡による不良を回避することができる。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   As shown in FIG. 8, in the present embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. Then, the power supply unit 20 performs the same control as that described in the second embodiment for the pulse signal when the pulse signal rises or falls. At this time, the number of steps (the number of steps), the step width, and the step height can be made variable to control charging. For example, if the step width is increased and the step height is decreased at the beginning of the rise, the step width is decreased and the height is increased as the drive voltage is approached. It can be avoided. The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

このように、有機EL照明装置の調光・調色時でPWM(パルス幅変調)駆動を行う場合においても、本発明を適用できる。   As described above, the present invention can also be applied to the case where PWM (pulse width modulation) driving is performed at the time of light adjustment / color adjustment of the organic EL lighting device.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.6V、輝度は915cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。そのパルス信号の立ち上がり時に、定常時駆動電流、安定駆動電圧となるまで2m秒をかけて電流を制御し、3段階で電圧を上昇、消灯時には2m秒をかけて3段階で降下させた。詳細には、最初の1m秒で0.2V、次の0.7m秒で1.3V、次の0.3m秒で3.1Vのステップで昇圧し、また、立ち下がり時には、同様に、2m秒を掛けて3段階で電圧を降圧した。これを1サイクルとし、Duty比10〜70%で24時間点灯試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.6 V and the luminance was 915 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. At the rising edge of the pulse signal, the current was controlled by taking 2 ms until the steady-state driving current and the stable driving voltage were reached, and the voltage was increased in three steps, and when the light was extinguished, the current was lowered in three steps over 2 ms. Specifically, the voltage is boosted in steps of 0.2 V for the first 1 msec, 1.3 V for the next 0.7 msec, and 3.1 V for the next 0.3 msec. The voltage was stepped down in three stages taking 2 seconds. This was one cycle, and a lighting test was performed for 24 hours at a duty ratio of 10 to 70%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

(第7の実施の形態)
図9は、図1に示した有機EL照明装置の動作の第7の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Seventh embodiment)
FIG. 9 is a diagram for explaining the seventh embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図9に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、そのパルス信号の立ち上がりまたは立ち下がり時にパルス信号について第3の実施の形態に示したものと同様の制御を行う。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   As shown in FIG. 9, in the present embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal to perform light control and color adjustment. In the power supply unit 20, the same control as that described in the third embodiment is performed for the pulse signal when the pulse signal rises or falls. The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は920cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。点灯開始から1m秒間電流を制御し、2.0Vを印加した後、定常時駆動電流、安定駆動電圧となるまで電圧を上昇、非点灯区間は2.0Vまで電圧を降下させた。消灯時には2.0Vを1m秒間維持した後、0V(装置接地電位)まで降下させた。これを1サイクルとし、Duty比10〜70%で24時間点灯試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady driving current was supplied at 25 A / m 2 , the steady driving voltage was 4.8 V and the luminance was 920 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. The current was controlled for 1 msec from the start of lighting, and after applying 2.0 V, the voltage was increased until the steady-state driving current and the stable driving voltage were reached, and the voltage was decreased to 2.0 V in the non-lighting period. When the light was extinguished, 2.0 V was maintained for 1 msec and then lowered to 0 V (device ground potential). This was one cycle, and a lighting test was performed for 24 hours at a duty ratio of 10 to 70%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

このように、有機EL照明装置の調光・調色時でPWM(パルス幅変調)駆動を行う場合においても、本発明を適用できる。   As described above, the present invention can also be applied to the case where PWM (pulse width modulation) driving is performed at the time of light adjustment / color adjustment of the organic EL lighting device.

(第8の実施の形態)
図10は、図1に示した有機EL照明装置の動作の第8の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Eighth embodiment)
FIG. 10 is a diagram for explaining the eighth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図10に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、そのパルス信号の立ち上がりまたは立ち下がり時にパルス信号について第4の実施の形態に示したものと同様の制御を行う。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   As shown in FIG. 10, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs light control and color adjustment. Then, the power supply unit 20 performs the same control as that described in the fourth embodiment for the pulse signal when the pulse signal rises or falls. The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

第1の実施例の形態と同じ構成の有機ELパネルを作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は915cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。そのパルス信号の立ち上がり時に、電流を制御することにより点灯開始から2m秒を掛けて定常時駆動電流、安定駆動電圧となるまで指数関数波形となるよう上昇させ、または立ち下がり時に2m秒を掛けて同様な波形で電圧を降下させた。これを1サイクルとし、Duty比10〜70%で24時間点灯試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an organic EL panel having the same configuration as that of the first example was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.8 V and the luminance was 915 cd / m 2 . . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. At the rise of the pulse signal, by controlling the current, it is multiplied by 2 ms from the start of lighting and increased to an exponential waveform until it reaches the steady-state drive current and stable drive voltage, or at the fall by 2 ms. The voltage was dropped with a similar waveform. This was one cycle, and a lighting test was performed for 24 hours at a duty ratio of 10 to 70%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

(第9の実施の形態)
図11は、図1に示した有機EL照明装置の動作の第9の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Ninth embodiment)
FIG. 11 is a diagram for explaining the ninth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図11に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、立ち下がり時の電圧を0Vまたは接地電位以下としておき、パルス信号の立ち上がりまたは立ち下がり時にパルス信号について第1または第5の実施の形態に示したものと同様の制御を行う。有機材料のキャリア伝導性は、分子間の酸化と還元を繰り返しているが、一方向への継続的な電圧印加は材料の劣化を促進し、有機ELの輝度劣化、電圧上昇の一因となっている。そこで、本形態のように、駆動電圧とは逆極性の電圧を印加しておくことで、電荷蓄積による劣化促進を抑制することができ、長寿命化を図ることができる。また、逆極性の電圧により前のパルス(サイクル)による電荷蓄積が無くなるため、次のパルスによる立ち上がり時の鈍りによる駆動品質の低下を防ぐことができる。   As shown in FIG. 11, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs light control and color adjustment. In the power supply unit 20, the voltage at the time of falling is set to 0 V or the ground potential or less, and the control similar to that shown in the first or fifth embodiment is performed for the pulse signal at the rising or falling of the pulse signal. I do. The carrier conductivity of organic materials repeats oxidation and reduction between molecules, but continuous application of voltage in one direction promotes deterioration of the material and contributes to deterioration of luminance and voltage increase of organic EL. ing. Therefore, as in this embodiment, by applying a voltage having a polarity opposite to that of the drive voltage, deterioration promotion due to charge accumulation can be suppressed, and a longer life can be achieved. In addition, since charge accumulation due to the previous pulse (cycle) is eliminated due to the reverse polarity voltage, it is possible to prevent a decrease in drive quality due to dullness at the rising edge due to the next pulse.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は920cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、パルス信号の立ち下がり時の電圧を−5Vとし、パルス信号の立ち上がり時に、電流を制御することにより定常時駆動電流、安定駆動電圧となるまで2m秒をかけて上昇させ、または立ち下がり時に2m秒を掛けて電圧を降下させ、これを1サイクルとし、交番電界を印加した。評価サンプル数n=25で、Duty比10〜70%で24時間点灯試験を行った。ショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady driving current was supplied at 25 A / m 2 , the steady driving voltage was 4.8 V and the luminance was 920 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, the voltage at the falling edge of the pulse signal is set to -5 V, and at the rising edge of the pulse signal, the current is controlled to increase the steady-state driving current and the stable driving voltage over 2 milliseconds, or At the time of falling, the voltage was lowered by applying 2 ms, and this was taken as one cycle, and an alternating electric field was applied. A lighting test was performed for 24 hours with the number of evaluation samples n = 25 and a duty ratio of 10 to 70%. When short-circuit defect was confirmed, no defect occurred.

(第10の実施の形態)
図12は、図1に示した有機EL照明装置の動作の第10の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Tenth embodiment)
FIG. 12 is a diagram for explaining the tenth embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows the voltage applied to the organic EL light emitting unit 10.

図12に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、立ち下がり時の電圧を0Vまたは接地電位以下としておき、パルス信号の立ち上がりまたは立ち下がり時にパルス信号について第2または第6の実施の形態に示したものと同様の制御を行う。有機材料のキャリア伝導性は、分子間の酸化と還元を繰り返しているが、一方向への継続的な電圧印加は材料の劣化を促進し、有機ELの輝度劣化、電圧上昇の一因となっている。そこで、本形態のように、駆動電圧とは逆極性の電圧を印加しておくことで、電荷蓄積による劣化促進を抑制することができ、長寿命化を図ることができる。また、逆極性の電圧により前のパルス(サイクル)による電荷蓄積が無くなるため、次のパルスによる立ち上がり時の鈍りによる駆動品質低下を防ぐことができる。   As shown in FIG. 12, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. In the power supply unit 20, the voltage at the time of falling is set to 0 V or the ground potential or less, and the control similar to that shown in the second or sixth embodiment is performed on the pulse signal at the rising or falling of the pulse signal. I do. The carrier conductivity of organic materials repeats oxidation and reduction between molecules, but continuous application of voltage in one direction promotes deterioration of the material and contributes to deterioration of luminance and voltage increase of organic EL. ing. Therefore, as in this embodiment, by applying a voltage having a polarity opposite to that of the drive voltage, deterioration promotion due to charge accumulation can be suppressed, and a longer life can be achieved. In addition, since charge accumulation due to the previous pulse (cycle) is eliminated due to the reverse polarity voltage, it is possible to prevent a decrease in drive quality due to dullness at the rising edge due to the next pulse.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.7V、輝度は915cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、パルス信号の立ち下がり時の電圧を−4Vとし、立ち上がり時に、定常時駆動電流、安定駆動電圧となるまで2m秒をかけて電流を制御し、3段階で電圧を上昇、立ち下り時には2m秒をかけて3段階で降下させた。詳細には、最初の1m秒で0.3V、次の0.7m秒で1.2V、次の0.3m秒で3.2Vのステップで昇圧し、また、立ち下がり時には、同様に、2m秒を掛けて3段階で電圧を降圧した。これを1サイクルとし、交番電界を印加した。評価サンプル数n=25で、Duty比10〜70%で24時間点灯試験を行った。ショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.7 V and the luminance was 915 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, the voltage at the falling edge of the pulse signal is set to -4 V, and at the time of rising, the current is controlled over 2 msec until it reaches the steady state driving current and the stable driving voltage, and the voltage is increased and raised in three stages. When descending, it was lowered in 3 steps over 2 msec. Specifically, the voltage is boosted in steps of 0.3 V in the first 1 msec, 1.2 V in the next 0.7 msec, and 3.2 V in the next 0.3 msec. The voltage was stepped down in three stages taking 2 seconds. This was defined as one cycle, and an alternating electric field was applied. A lighting test was performed for 24 hours with the number of evaluation samples n = 25 and a duty ratio of 10 to 70%. When short-circuit defect was confirmed, no defect occurred.

(第11の実施の形態)
図13は、図1に示した有機EL照明装置の動作の第11の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Eleventh embodiment)
FIG. 13 is a diagram for explaining the eleventh embodiment of the operation of the organic EL lighting device shown in FIG. 1, and shows the voltage applied to the organic EL light emitting unit 10.

図13に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、立ち下がり時の電圧を0Vまたは接地電位以下としておき、パルス信号の立ち上がりまたは立ち下がり時にパルス信号について第3または第7の実施の形態に示したものと同様の制御を行う。有機材料のキャリア伝導性は、分子間の酸化と還元を繰り返しているが、一方向への継続的な電圧印加は材料の劣化を促進し、有機ELの輝度劣化、電圧上昇の一因となっている。そこで、本形態のように、駆動電圧とは逆極性の電圧を印加しておくことで、電荷蓄積による劣化促進を抑制することができ、長寿命化を図ることができる。また、逆極性の電圧により前のパルス(サイクル)による電荷蓄積が無くなるため、次のパルスによる立ち上がり時の鈍りによる駆動品質低下を防ぐことができる。   As shown in FIG. 13, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. In the power supply unit 20, the voltage at the time of falling is set to 0 V or the ground potential or less, and the control similar to that shown in the third or seventh embodiment is performed on the pulse signal at the rising or falling of the pulse signal. I do. The carrier conductivity of organic materials repeats oxidation and reduction between molecules, but continuous application of voltage in one direction promotes deterioration of the material and contributes to deterioration of luminance and voltage increase of organic EL. ing. Therefore, as in this embodiment, by applying a voltage having a polarity opposite to that of the drive voltage, deterioration promotion due to charge accumulation can be suppressed, and a longer life can be achieved. In addition, since charge accumulation due to the previous pulse (cycle) is eliminated due to the reverse polarity voltage, it is possible to prevent a decrease in drive quality due to dullness at the rising edge due to the next pulse.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は920cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、立ち下がり時の電圧を−4Vとし、パルス信号の立ち上がり時に、定常時駆動電流、安定駆動電圧となるまで2m秒間1.8Vを印加した後、定常時駆動電流、安定駆動電圧となるまで電圧を上昇、立ち下り時には1.8Vを2m秒間維持した後、0V(装置接地電位)まで降下させた。これを1サイクルとし、交番電界を印加した。評価サンプル数n=25で、Duty比10〜70%で24時間点灯試験を行った。ショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady driving current was supplied at 25 A / m 2 , the steady driving voltage was 4.8 V and the luminance was 920 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, the voltage at the falling time is set to -4 V, and at the rising edge of the pulse signal, 1.8 V is applied for 2 msec until the steady driving voltage and the stable driving voltage are obtained, and then the steady driving voltage and the stable driving voltage are applied. The voltage was increased until the voltage reached and maintained at 1.8 V for 2 msec at the time of falling, and then decreased to 0 V (device ground potential). This was defined as one cycle, and an alternating electric field was applied. A lighting test was performed for 24 hours with the number of evaluation samples n = 25 and a duty ratio of 10 to 70%. When short-circuit defect was confirmed, no defect occurred.

(第12の実施の形態)
図14は、図1に示した有機EL照明装置の動作の第12の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Twelfth embodiment)
FIG. 14 is a diagram for explaining the twelfth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図14に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、立ち下がり時の電圧を0Vまたは接地電位以下としておき、パルス信号の立ち上がりまたは立ち下がり時にパルス信号について第4または第8の実施の形態に示したものと同様の制御を行う。有機材料のキャリア伝導性は、分子間の酸化と還元を繰り返しているが、一方向への継続的な電圧印加は材料の劣化を促進し、有機ELの輝度劣化、電圧上昇の一因となっている。そこで、本形態のように、駆動電圧とは逆極性の電圧を印加しておくことで、電荷蓄積による劣化促進を抑制することができ、長寿命化を図ることができる。また、逆極性の電圧により前のパルス(サイクル)による電荷蓄積が無くなるため、次のパルスによる立ち上がり時の鈍りによる駆動品質低下を防ぐことができる。   As shown in FIG. 14, in the present embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. In the power supply unit 20, the voltage at the time of falling is set to 0 V or the ground potential or less, and the control similar to that shown in the fourth or eighth embodiment is performed on the pulse signal at the rising or falling of the pulse signal. I do. The carrier conductivity of organic materials repeats oxidation and reduction between molecules, but continuous application of voltage in one direction promotes deterioration of the material and contributes to deterioration of luminance and voltage increase of organic EL. ing. Therefore, as in this embodiment, by applying a voltage having a polarity opposite to that of the drive voltage, deterioration promotion due to charge accumulation can be suppressed, and a longer life can be achieved. In addition, since charge accumulation due to the previous pulse (cycle) is eliminated due to the reverse polarity voltage, it is possible to prevent a decrease in drive quality due to dullness at the rising edge due to the next pulse.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.7V、輝度は910cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、パルス信号の立ち下がり時の電圧を−5Vとし、パルス信号の立ち上がり時に、電流を制御することにより定常時駆動電流、安定駆動電圧となるまで指数関数波形となるよう2m秒をかけて上昇させ、または立ち下がり時に2m秒を掛けて同様な波形で電圧を降下させ、これを1サイクルとし、交番電界を印加した。評価サンプル数n=25で、Duty比10〜70%で24時間点灯試験を行った。ショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.7 V and the luminance was 910 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, the voltage at the falling edge of the pulse signal is set to -5 V, and at the rising edge of the pulse signal, the current is controlled so that an exponential function waveform is obtained until a steady driving voltage and a stable driving voltage are obtained. The voltage was dropped with a similar waveform by applying 2 msec at the time of falling, and this was taken as one cycle, and an alternating electric field was applied. A lighting test was performed for 24 hours with the number of evaluation samples n = 25 and a duty ratio of 10 to 70%. When short-circuit defect was confirmed, no defect occurred.

(第13の実施の形態)
図15は、図1に示した有機EL照明装置の動作の第13の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Thirteenth embodiment)
FIG. 15 is a diagram for explaining the thirteenth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図15に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、有機EL発光部10の正負極にともにプラス電圧を印加しておき、有機EL発光部10を発光させる際に、負極に印加している電圧をゼロ電位(装置設置電位)または正負極間電位差が点灯電位となるようにすることにより、正負極間に電位差を持たせ、有機EL素子を発光させる。この立ち下がり時または立ち上がり時に、第5の実施の形態に示したものと同様の制御を行う。通常、有機EL素子にゼロ電位から正極側にプラス電位を印加すると、有機ELの容量成分があって立ち上がりが遅くなるが、この方式を用いることにより前記現象を防ぐことができ、応答速度を向上することができる。本形態の点灯方式を用いることにより、PWM駆動を行った場合においても波形が鈍ることがなく高速応答が可能で、高駆動周波数時においても、また低デューティ駆動時においても良好な点灯を維持できる。そのため、低輝度から高輝度において連続的な調光も可能となる。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   As shown in FIG. 15, in the present embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. In the power supply unit 20, a positive voltage is applied to both the positive and negative electrodes of the organic EL light emitting unit 10, and when the organic EL light emitting unit 10 emits light, the voltage applied to the negative electrode is set to zero potential (device installation). Potential) or a potential difference between positive and negative electrodes becomes a lighting potential, thereby causing a potential difference between the positive and negative electrodes to cause the organic EL element to emit light. At the time of falling or rising, the same control as that shown in the fifth embodiment is performed. Normally, when a positive potential is applied to the organic EL element from zero potential to the positive electrode side, there is a capacitance component of the organic EL, and the rise is slowed. By using this method, the above phenomenon can be prevented and the response speed is improved. can do. By using the lighting method of this embodiment, even when PWM driving is performed, the waveform does not become dull and a high-speed response is possible, and good lighting can be maintained even at a high driving frequency and at a low duty driving. . Therefore, continuous light control is possible from low luminance to high luminance. The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は915cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、有機EL素子の正負極にともに+4.0Vを印加し、有機EL素子を発光させる際に、負極側の電圧を、正負極間が点灯電位差となるよう−0.8Vとした。パルス信号の立ち下がり時に、安定駆動電圧となるまで1m秒を掛けて下降させ、または立ち上がり時に1m秒を掛けて電圧を上昇させた。これを1サイクルとし、Duty比10〜80%で信頼性試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.8 V and the luminance was 915 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, when +4.0 V is applied to both the positive and negative electrodes of the organic EL element to cause the organic EL element to emit light, the voltage on the negative electrode side is set to −0.8 V so that the lighting potential difference is between the positive and negative electrodes. . At the fall of the pulse signal, the voltage was lowered by taking 1 msec until a stable driving voltage was reached, or at the rise, the voltage was raised by taking 1 msec. This was defined as one cycle, and a reliability test was performed at a duty ratio of 10 to 80%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

(第14の実施の形態)
図16は、図1に示した有機EL照明装置の動作の第14の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Fourteenth embodiment)
FIG. 16 is a view for explaining the fourteenth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図16に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、有機EL発光部10の正負極にともにプラス電圧を印加しておき、有機EL発光部10を発光させる際に、負極に印加している電圧をゼロ電位(装置設置電位)または正負極間電位差が点灯電位となるようにすることにより、正負極間に電位差を持たせ、有機EL素子を発光させる。この立ち下がり時または立ち上がり時に、第6の実施の形態に示したものと同様の制御を行う。この際、ステップ数(段数)とステップ幅、ステップ高さを可変とし、これらによって充電を制御できる。例えば、立ち上がり初期はステップ幅を大きく、かつステップ高さを小さくし、駆動電圧に近づくに従ってステップ幅を小さく、かつ高さを大きくすれば、電圧の急峻な上昇がなく、電気的短絡による不良を回避することができる。なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   As shown in FIG. 16, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs light control and color adjustment. In the power supply unit 20, a positive voltage is applied to both the positive and negative electrodes of the organic EL light emitting unit 10, and when the organic EL light emitting unit 10 emits light, the voltage applied to the negative electrode is set to zero potential (device installation). Potential) or a potential difference between positive and negative electrodes becomes a lighting potential, thereby causing a potential difference between the positive and negative electrodes to cause the organic EL element to emit light. At the time of falling or rising, the same control as that shown in the sixth embodiment is performed. At this time, the number of steps (the number of steps), the step width, and the step height can be made variable to control charging. For example, if the step width is increased and the step height is decreased at the beginning of the rise, the step width is decreased and the height is increased as the drive voltage is approached. It can be avoided. The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は920cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、有機EL素子の正負極にともに+4.8Vを印加し、有機EL素子を発光させる際に、負極側の電圧を、正負極間が点灯電位差となるよう0Vとした。そのパルス信号の立ち下がり時に、定常時駆動電流、安定駆動電圧となるまで1m秒をかけて3段階で電圧を下降、消灯時には1m秒をかけて3段階で上昇させた。詳細には、最初の0.5m秒で−0.3V、次の0.35m秒で−1.2V、次の0.15m秒で−3.3Vのステップで降圧し、また、立ち上がり時には、同様に、1m秒を掛けて3段階で電圧を昇圧した。これを1サイクルとし、Duty比10〜80%で信頼性試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady driving current was supplied at 25 A / m 2 , the steady driving voltage was 4.8 V and the luminance was 920 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, +4.8 V was applied to both the positive and negative electrodes of the organic EL element, and when the organic EL element was caused to emit light, the voltage on the negative electrode side was set to 0 V so that the lighting potential difference was between the positive and negative electrodes. At the fall of the pulse signal, the voltage was lowered in three stages over 1 msec until it reached a steady-state driving current and a stable driving voltage, and when extinguished, it was raised in 3 stages over 1 msec. Specifically, the voltage is stepped down in steps of -0.3 V in the first 0.5 ms, -1.2 V in the next 0.35 ms, -3.3 V in the next 0.15 ms, Similarly, the voltage was boosted in three stages over 1 msec. This was defined as one cycle, and a reliability test was performed at a duty ratio of 10 to 80%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

(第15の実施の形態)
図17は、図1に示した有機EL照明装置の動作の第15の実施の形態を説明するための図であり、有機EL発光部10に印加される電圧を示す。
(Fifteenth embodiment)
FIG. 17 is a view for explaining the fifteenth embodiment of the operation of the organic EL lighting device shown in FIG. 1 and shows the voltage applied to the organic EL light emitting unit 10.

図17に示すように、本形態においては、制御部30において、有機EL発光部10を発光させるための信号をパルス信号によって電源供給部20に供給し、調光・調色を行う。そして、電源供給部20において、有機EL発光部10の正負極にともにプラス電圧を印加しておき、有機EL発光部10を発光させる際に、負極に印加している電圧をゼロ電位(装置接地電位)または正負極間電位差が点灯電位となるようにすることにより、正負極間に電位差を持たせ、有機EL素子を発光させる。この立ち下がり時または立ち上がり時に、第8の実施の形態に示したものと同様の制御を行う。通常、有機EL素子にゼロ電位から正極側にプラス電位を印加すると、有機ELの容量成分があって立ち上がりが遅くなるが、この方式を用いることにより前記現象を防ぐことができ、応答速度を向上することができる。   As shown in FIG. 17, in this embodiment, the control unit 30 supplies a signal for causing the organic EL light emitting unit 10 to emit light to the power supply unit 20 by a pulse signal, and performs dimming and toning. In the power supply unit 20, a positive voltage is applied to both the positive and negative electrodes of the organic EL light emitting unit 10, and when the organic EL light emitting unit 10 emits light, the voltage applied to the negative electrode is set to zero potential (device grounding). Potential) or a potential difference between positive and negative electrodes becomes a lighting potential, thereby causing a potential difference between the positive and negative electrodes to cause the organic EL element to emit light. At the time of falling or rising, the same control as that shown in the eighth embodiment is performed. Normally, when a positive potential is applied to the organic EL element from zero potential to the positive electrode side, there is a capacitance component of the organic EL, and the rise is slowed. By using this method, the above phenomenon can be prevented and the response speed is improved. can do.

なお、有機EL発光部10に印加する電圧が安定駆動電圧となるまでの時間は、回路の時定数以上であることが望ましいが、安定電圧時間が短く、例えば60Hz以下と周波数が小さくなったときにフリッカとして認識される場合があるので、突入電流を防ぐだけの充電量があればよい。   The time until the voltage applied to the organic EL light emitting unit 10 becomes the stable driving voltage is preferably equal to or greater than the circuit time constant, but the stable voltage time is short, for example, when the frequency is reduced to 60 Hz or less. May be recognized as flicker, so that it is sufficient to have an amount of charge sufficient to prevent inrush current.

第1の実施の形態と同じ構成の素子を作製し、定常時駆動電流を25A/m2流したところ、定常時における駆動電圧は4.8V、輝度は915cd/m2であった。この有機EL照明点灯装置を調光するために、パルス幅変調駆動を行った。具体的には、有機EL素子の正負極にともに+4.0Vを印加し、有機EL素子を発光させる際に、負極側の電圧を、正負極間が点灯電位差となるよう−0.8Vとした。パルス信号の立ち下がり時に、安定駆動電圧となるまで1m秒を掛けて下降させ、または立ち上がり時に1m秒を掛けて電圧を上昇させた。これを1サイクルとし、Duty比10〜80%で信頼性試験を行った。評価サンプル数n=25でショート不良を確認したところ、不良は発生しなかった。When an element having the same configuration as that of the first embodiment was manufactured and a steady-state drive current was supplied at 25 A / m 2 , the steady-state drive voltage was 4.8 V and the luminance was 915 cd / m 2 . In order to dimm this organic EL illumination lighting device, pulse width modulation driving was performed. Specifically, when +4.0 V is applied to both the positive and negative electrodes of the organic EL element to cause the organic EL element to emit light, the voltage on the negative electrode side is set to −0.8 V so that the lighting potential difference is between the positive and negative electrodes. . At the fall of the pulse signal, the voltage was lowered by taking 1 msec until a stable driving voltage was reached, or at the rise, the voltage was raised by taking 1 msec. This was defined as one cycle, and a reliability test was performed at a duty ratio of 10 to 80%. When a short defect was confirmed with the number of evaluation samples n = 25, no defect occurred.

以上、上記各実施の形態を参照して本願発明を説明したが、本願発明は上記各実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。   While the present invention has been described with reference to the above embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

この出願は、2011年7月28日に出願された日本出願特願2011−165064を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-165064 for which it applied on July 28, 2011, and takes in those the indications of all here.

本発明の活用例としては、有機EL一般用照明装置、液晶ディスプレイ等のバックライト等が挙げられる。   Examples of utilization of the present invention include backlights for organic EL general illumination devices and liquid crystal displays.

Claims (5)

電流の大きさに応じて輝度が変化する発光素子部と、前記発光素子部に電流を制御して電圧を印加する電源供給部と、前記発光素子部を発光させるための信号を前記電源供給部に与える制御部とを有し、前記電源供給部が、前記制御部から与えられた信号に応じて電流を制御することにより電圧を前記発光素子部に印加する有機EL照明装置において、
前記電源供給部は、電源投入時または電源切断時に、前記発光素子部に印加する電圧を段階的またはステップ状に上昇または降下させる制御を行い、電源投入初期は、前記段階的またはステップ状のステップ幅を大きく、かつステップ高さを小さくし、前記発光素子部が駆動する駆動電圧に近づくに従って前記ステップ幅を小さく、かつ前記ステップ高さを大きくすることを特徴とする有機EL照明装置。
A light-emitting element portion whose luminance changes in accordance with the magnitude of the current; a power supply portion for controlling the current to apply a voltage to the light-emitting element portion; and a signal for causing the light-emitting element portion to emit light. An organic EL lighting device that applies a voltage to the light emitting element unit by controlling a current according to a signal given from the control unit,
The power supply unit performs control to increase or decrease the voltage applied to the light emitting element unit stepwise or stepwise when the power is turned on or off, and the initial stage of power-on is the stepped or stepped step. An organic EL lighting device, wherein the width is increased and the step height is decreased, and the step width is decreased and the step height is increased as approaching a driving voltage driven by the light emitting element portion.
請求項1に記載の有機EL照明装置において、
前記電源供給部は、前記段階的またはステップ状のステップ数とステップ幅とステップ高さとが可変である有機EL照明装置。
The organic EL lighting device according to claim 1,
The power supply unit is an organic EL lighting device in which the number of steps, the step width, and the step height in steps or steps are variable.
請求項1または請求項2に記載の有機EL照明装置において、
前記制御部は、前記発光素子部を発光させるための信号をパルス信号によって前記電源供給部に供給し、
前記電源供給部は、前記パルス信号の立ち上がりまたは立ち下がり時に当該パルス信号について前記制御を行う有機EL照明装置。
The organic EL lighting device according to claim 1 or 2 ,
The control unit supplies a signal for causing the light emitting element unit to emit light to the power supply unit by a pulse signal,
The organic EL lighting device, wherein the power supply unit performs the control on the pulse signal when the pulse signal rises or falls.
請求項に記載の有機EL照明装置において、
前記電源供給部は、立ち下がり時の電圧を0Vまたはグランド電位以下とする有機EL照明装置。
The organic EL lighting device according to claim 3 .
The power supply unit is an organic EL lighting device in which a voltage at the time of falling is set to 0 V or a ground potential or less.
請求項に記載の有機EL照明装置において、
前記電源供給部は、前記発光素子部の正負極にともにプラス電圧を印加しておき、前記発光素子部を発光させる際に、前記発光素子部の負極に印加している電圧を低下させることにより前記正負極間に電位差を生じさせる有機EL照明装置。
The organic EL lighting device according to claim 3 .
The power supply unit applies a positive voltage to both the positive and negative electrodes of the light emitting element unit, and reduces the voltage applied to the negative electrode of the light emitting element unit when the light emitting element unit emits light. An organic EL lighting device that generates a potential difference between the positive and negative electrodes.
JP2013525647A 2011-07-28 2012-07-06 Organic EL lighting device Active JP5743244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525647A JP5743244B2 (en) 2011-07-28 2012-07-06 Organic EL lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011165064 2011-07-28
JP2011165064 2011-07-28
PCT/JP2012/067275 WO2013015094A1 (en) 2011-07-28 2012-07-06 Organic electroluminescent element lighting device
JP2013525647A JP5743244B2 (en) 2011-07-28 2012-07-06 Organic EL lighting device

Publications (2)

Publication Number Publication Date
JPWO2013015094A1 JPWO2013015094A1 (en) 2015-02-23
JP5743244B2 true JP5743244B2 (en) 2015-07-01

Family

ID=47600948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013525647A Active JP5743244B2 (en) 2011-07-28 2012-07-06 Organic EL lighting device

Country Status (2)

Country Link
JP (1) JP5743244B2 (en)
WO (1) WO2013015094A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284340B2 (en) * 2013-10-23 2018-02-28 パイオニア株式会社 Light emitting device
JP2017204434A (en) * 2016-05-13 2017-11-16 株式会社小糸製作所 Vehicle lamp and inspection method for organic EL element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229819B2 (en) * 1996-07-26 2001-11-19 スタンレー電気株式会社 EL element driving method
JP4306026B2 (en) * 1999-06-23 2009-07-29 コニカミノルタホールディングス株式会社 Method for driving light emission of organic electroluminescence device
US7129918B2 (en) * 2000-03-10 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving electronic device
JP4617645B2 (en) * 2003-08-12 2011-01-26 ソニー株式会社 Matrix type display device and driving method thereof
JP2006113471A (en) * 2004-10-18 2006-04-27 Shimadzu Corp Organic el panel protection circuit and organic el panel inspection instrument

Also Published As

Publication number Publication date
JPWO2013015094A1 (en) 2015-02-23
WO2013015094A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
KR101135761B1 (en) Light control apparatus and lighting appliance using the same
JP4818494B2 (en) Organic EL device
KR101121302B1 (en) Light control apparatus and lighting appliance using the same
US8928240B2 (en) Method and system for driving organic LED's
JP2007502534A (en) Circuit arrangement for organic diode AC drive
JP2015503193A (en) Drive circuit and associated method for a solid state lighting device including a high voltage LED component
JP2006210848A (en) Light-emitting device and driving method of organic electroluminescent element
US20060279227A1 (en) Method for Operating an Organic Light Emitting Component and Organic Light Emitting Component
JP2016134282A (en) Lighting device, illumination equipment and illumination system
KR20030086428A (en) Driving method of electroluminescent device
US20130069552A1 (en) Organic electroluminescent device with space charge/voltage instability stabilization drive
JP5743244B2 (en) Organic EL lighting device
Jacobs et al. Drivers for oleds
CN110148593B (en) Organic electroluminescent device
JP5773465B2 (en) Organic EL lighting device
JP5964415B2 (en) Organic light emitting device and light emitting device including the same
KR101777566B1 (en) LED Lamp
Kluge et al. Power electronics in railway lighting systems
JP6288814B2 (en) Light emitting element driving device
JP2010021085A (en) Electroluminescent element
JP2007266088A (en) Lighting system and illuminator for organic el
JP2011134469A (en) Light emission driving device of organic el panel, and lighting system
JP2712634B2 (en) Organic thin film EL device
JP2008283116A (en) Organic light-emitting element, and lighting apparatus
JP2011134468A (en) Constant power driving device of organic el panel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5743244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250