WO2013047400A1 - Battery system, state-of-charge estimation device, electric vehicle, mobile body, power storage device, and power supply device - Google Patents

Battery system, state-of-charge estimation device, electric vehicle, mobile body, power storage device, and power supply device Download PDF

Info

Publication number
WO2013047400A1
WO2013047400A1 PCT/JP2012/074324 JP2012074324W WO2013047400A1 WO 2013047400 A1 WO2013047400 A1 WO 2013047400A1 JP 2012074324 W JP2012074324 W JP 2012074324W WO 2013047400 A1 WO2013047400 A1 WO 2013047400A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
battery cell
battery
discharge period
soc
Prior art date
Application number
PCT/JP2012/074324
Other languages
French (fr)
Japanese (ja)
Inventor
智哉 寺内
晶彦 山田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013047400A1 publication Critical patent/WO2013047400A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system, a charging state estimation device, an electric vehicle, a moving body, a power storage device, and a power supply device.
  • a battery system including a chargeable / dischargeable battery cell is used for a moving body driven by electric power such as an electric automobile and a power supply device for storing and supplying electric power.
  • electric power such as an electric automobile
  • power supply device for storing and supplying electric power.
  • it is required to accurately acquire the charging state of the battery cell.
  • an actual measurement is performed using a map (hereinafter referred to as an internal resistance map) including information on the correlation between the battery temperature stored in advance and the internal resistance of the battery.
  • the battery internal resistance is estimated from the battery temperature.
  • An estimated charge / discharge current is obtained from the estimated battery internal resistance, the actually measured battery voltage, and the open circuit voltage of the battery based on the previously estimated SOC (charge / discharge state).
  • the SOC is estimated by integrating the obtained estimated charge / discharge current.
  • the battery internal resistance is calculated from the measured charge / discharge current and the measured battery voltage, and the internal resistance map is calculated based on the calculated battery internal resistance and the measured battery temperature. It is corrected.
  • the open circuit voltage of the battery is required.
  • the open circuit voltage of the battery is obtained from the SOC estimated as described above.
  • the battery internal resistance estimated with reference to the internal resistance map is used.
  • the internal resistance map before correction is not accurate, the battery internal resistance calculated for correction is not accurate. As a result, the internal resistance map cannot be accurately corrected. Further, by repeatedly performing such correction, an error is cumulatively superimposed on the internal resistance map. As a result, the SOC cannot be estimated with high accuracy.
  • An object of the present invention is to provide a battery system, a charging state estimation device, an electric vehicle, a moving body, a power storage device, and a power supply device that can accurately estimate the charging state of a battery cell.
  • a battery system includes a battery cell, a voltage detection unit that detects a terminal voltage of the battery cell, a temperature detection unit that detects a temperature of the battery cell, and a charging state estimation device that estimates a charging state of the battery cell.
  • the charging state estimation device includes a storage unit that stores internal impedance information representing a relationship between the internal impedance and temperature of the battery cell, and estimates a charging state of the battery cell based on the internal impedance information stored in the storage unit And a processing unit that updates the internal impedance information.
  • the processing unit is a first non-charge / discharge in which the battery cell is not charged and discharged before the charge / discharge period in which the battery cell is charged or discharged.
  • the charge / discharge period After the first terminal voltage of the battery cell detected by the voltage detector in the period and the charge / discharge period Calculating the state of charge of the battery cell during the charge / discharge period based on the second terminal voltage of the battery cell detected by the voltage detection unit during the second non-charge period when the battery cell is not being charged or discharged.
  • the internal impedance of the battery cell during the charge / discharge period is calculated based on the current flowing through the battery cell during the discharge period, the terminal voltage of the battery cell detected by the voltage detection unit during the charge / discharge period, and the calculated charge state during the charge / discharge period.
  • the internal impedance information stored in the storage unit is updated based on the temperature detected by the temperature detection unit and the calculated internal impedance during the charge / discharge period.
  • the state of charge of the battery cell can be accurately estimated.
  • the internal resistance of the battery cell is used as the internal impedance of the battery cell.
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment of the present invention.
  • the battery system 500 includes a battery cell group 100, a charge state estimation device 200, a current detection unit 201, a voltage detection unit 202, a temperature detection unit 203, and an output unit 205.
  • the battery cell group 100 includes a plurality of battery cells 10.
  • the plurality of battery cells 10 of the battery cell group 100 are connected in series.
  • secondary batteries such as a lithium ion battery, are used, for example.
  • some or all of the plurality of battery cells 10 may be connected in parallel.
  • a plurality of battery cell groups 100 battery cell group 100 in FIG.
  • the battery cell group 100 may have only one battery cell 10. As the value of the internal impedance of the battery cell 10, the value of the internal resistance of the battery cell 10 can be used without considering the value of the internal reactance of the battery cell 10.
  • the current detection unit 201 includes, for example, a shunt resistor, a differential amplifier, and an A / D (analog / digital) converter.
  • a current sensor may be used as the current detection unit 201.
  • the current detection unit 201 is connected to the battery cell group 100 in series.
  • the current detection unit 201 detects a current flowing through the plurality of battery cells 10 (hereinafter referred to as a battery current), and supplies the detected current value to the charge state estimation device 200 as current information.
  • the voltage detection unit 202 is connected to the positive terminal and the negative terminal of each battery cell 10.
  • the voltage detection unit 202 detects a terminal voltage of each battery cell 10 (hereinafter referred to as a battery voltage), and supplies the detected terminal voltage value to the charge state estimation device 200 as voltage information.
  • the temperature detection unit 203 detects the temperature of each battery cell 10 (hereinafter referred to as the battery temperature), and gives the detected temperature value to the charge state estimation device 200 as temperature information.
  • the temperature detection unit 203 for example, a plurality of thermistors are used, and as the temperature of the battery cell 10, for example, the surface temperature of the battery cell 10 is detected.
  • the thermistor may be attached to each battery cell 10, or the thermistor may be attached only to some of the plurality of battery cells 10.
  • the temperatures of the other battery cells 10 are estimated based on the temperatures of the some battery cells 10.
  • the temperature detected by the thermistor is used as the temperature of some battery cells 10, and the estimated temperature is used as the temperature of other battery cells 10.
  • the charging state estimation device 200 estimates the charging state of each battery cell 10 based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the temperature information from the temperature detection unit 203.
  • the state of charge refers to information related to the amount of charge of the battery cell 10 such as current, amount of electricity stored, or electric capacity. For example, SOC (charge rate), remaining capacity, depth of discharge (DOD), integrated current value or difference in amount of electricity stored including. In the present embodiment, SOC is used as the state of charge.
  • the SOC means the ratio of the remaining capacity to the full charge capacity of each battery cell 10.
  • the depth of discharge means the ratio of the chargeable capacity (capacity obtained by subtracting the remaining capacity from the full charge capacity of the battery cell 10) to the full charge capacity of the battery cell 10, and is represented by (100 ⁇ SOC)%. .
  • the difference in the charged amount means a difference between the SOC of the battery cell 10 and a predetermined reference value.
  • the charging state estimation device 200 outputs the estimated charging state (SOC in this example) to the output unit 205 or an external control device.
  • a main control unit 608 (FIG. 15) described later or a controller 712 (FIG. 16) described later corresponds to an external control device.
  • the output unit 205 includes, for example, a liquid crystal display panel, a plasma display panel, an organic EL (electroluminescence) panel, or a speaker.
  • the output unit 205 includes, for example, at least one of a battery voltage, a battery current, a battery temperature, an internal resistance, an open circuit voltage (OCV), an SOC, an internal resistance table TA (FIG. 3) and an SOC table TB described later, and the like. Display one.
  • the output unit 205 may present an alarm or work instruction to the user or service person when an abnormality occurs in the battery system 500, for example.
  • the abnormality of the battery system 500 includes, for example, overcharge and overdischarge of the battery cell group 100, malfunction and failure of the charge state estimation device 200, and the like.
  • FIG. 2 is a block diagram for explaining details of the charging state estimation device 200.
  • the charging state estimation device 200 includes an internal resistance acquisition unit 211, an SOC acquisition unit 212, a data array storage unit 213, a table update unit 214, and a storage unit 215.
  • the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 are examples of processing units.
  • the internal resistance acquisition unit 211 uses a later-described internal resistance table TA stored in the storage unit 215 to acquire temperature information from the temperature detection unit 203 and an internal resistance corresponding to the SOC acquired by the SOC acquisition unit 212. (FIG. 3 described later).
  • the SOC acquisition unit 212 calculates the open voltage of the battery cell 10 based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the internal resistance acquired by the internal resistance acquisition unit 211, and a storage unit An SOC corresponding to the calculated open-circuit voltage is acquired using an SOC table TB described later stored in 215 (FIG. 4 described later).
  • the SOC acquisition unit 212 outputs the acquired SOC to the output unit 205 (FIG. 1) or an external control device.
  • the SOC acquisition unit 212 calculates a current integrated value that is an integrated value of the current flowing through the battery cell 10 based on the current information from the current detection unit 201.
  • the data array storage unit 213 associates the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, the temperature information from the temperature detection unit 203, and the current integrated value calculated by the SOC acquisition unit 212 with each other. Save as a data array.
  • the table update unit 214 updates the internal resistance table stored in the storage unit 215 based on the data array stored by the data array storage unit 213.
  • the storage unit 215 stores a control program and various information such as an internal resistance table TA, an SOC table TB, and an integrated current value calculated by the SOC acquisition unit 212.
  • the function of the charging state estimation device 200 is realized by hardware such as a CPU (Central Processing Unit) and a memory, a computer program (the above control program), and the like.
  • the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 correspond to a module (for example, a function) of a computer program.
  • the functions of the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 are realized by the CPU executing the computer program stored in the memory. Note that some or all of the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 may be realized by hardware.
  • the first terminal voltage of battery cell 10 in the first non-charge / discharge period before the charge / discharge period and the battery cell in the second non-charge / discharge period after the charge / discharge period is calculated based on the 10 second terminal voltage.
  • An internal resistance is calculated as the internal impedance of the battery cell during the charge / discharge period based on the calculated SOC and the battery current and battery voltage during the charge / discharge period.
  • the SOC in the charge / discharge period can be calculated based on the integrated current value or the elapsed time.
  • an open circuit voltage can be acquired from the calculated SOC, and an internal resistance can be calculated based on the acquired open circuit voltage, battery current, and battery voltage.
  • the internal resistance table TA which is internal impedance information stored in the storage unit 215, is updated based on the calculated internal resistance and the temperature of the battery cell 10 during the charge / discharge period. As a result, the SOC of the battery cell 10 can be accurately estimated without being affected by individual differences and deterioration of the battery cell 10.
  • the internal resistance of the battery cell 10 depends on the temperature and SOC of the battery cell 10.
  • an internal resistance table TA indicating the relationship between the temperature, SOC, and internal resistance of battery cell 10 is stored in storage unit 215 of charge state estimation device 200.
  • the internal resistance table TA is an example of internal impedance information representing the relationship between the internal resistance of the battery cell and the temperature.
  • a function representing the relationship between the temperature of the battery cell and the internal resistance may be used.
  • FIG. 3 is a diagram showing an example of the internal resistance table TA.
  • X11, X12,..., X1m, X21, X22,..., X2m, ..., Xn1, Xn2, ..., Xnm are values of the internal resistance of the battery cell 10.
  • the value of the internal resistance is shown every time the battery temperature differs by 5 ° C. and every time the SOC changes by 10%.
  • the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the temperature information from the temperature detection unit 203 and the SOC acquired by the SOC acquisition unit 212 from the internal resistance table TA.
  • SOC table TB indicating the relationship between the open circuit voltage of battery cell 10 and the SOC is stored in storage unit 215 of charge state estimation device 200.
  • the SOC table TB is an example of charge state information representing the relationship between the charge state of the battery cell 10 and the open circuit voltage.
  • a function representing the relationship between the open voltage of the battery cell and the state of charge may be used.
  • FIG. 4 is a diagram showing an example of the SOC table TB.
  • the horizontal axis indicates the SOC
  • the vertical axis indicates the open circuit voltage.
  • the SOC acquisition unit 212 calculates the open circuit voltage of the battery cell 10 based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the internal resistance acquired by the internal resistance acquisition unit 211, and is calculated.
  • the SOC corresponding to the open circuit voltage is obtained from the SOC table TB. Note that the relationship between the SOC of the battery cell 10 and the open circuit voltage does not depend on the temperature and deterioration of the battery cell 10.
  • FIG. 5 is a diagram illustrating changes in battery current, battery voltage, and battery temperature when the battery cell 10 is charged.
  • the vertical axis indicates the battery current I, the battery voltage V, and the battery temperature T, respectively, and the horizontal axis indicates time.
  • the battery current at the time of charging is represented by a positive value
  • the battery current at the time of discharging is represented by a negative value.
  • the battery cell 10 is charged with a constant current.
  • the battery voltage (terminal voltage of the battery cell 10) is equal to the open voltage of the battery cell 10 at a time before the time t1 when the charging of the battery cell 10 is started. Therefore, the SOC acquisition unit 212 acquires the battery voltage Va detected by the voltage detection unit 202 at this time as voltage information, and acquires the SOC corresponding to the acquired battery voltage Va from the SOC table TB of FIG.
  • the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the battery temperature given as temperature information and the SOC acquired by the SOC acquisition unit 212 from the internal resistance table TA.
  • the SOC acquired by the SOC acquisition unit 212 is the SOC acquired at the time point one cycle before, as will be described later.
  • the internal resistance table TA is the internal resistance table TA updated when the previous charging or discharging is stopped. In this example, as shown in FIG. 5C, when the battery cell 10 is charged, the battery temperature increases from Ta to Tb.
  • the SOC acquisition unit 212 uses the following equation (1) to provide the internal resistance acquired by the internal resistance acquisition unit 211, the battery current I given as current information (detected by the current detection unit 201), and the voltage information.
  • An open circuit voltage E of the battery cell 10 is calculated from a given battery voltage V (detected by the voltage detection unit 202), and an SOC corresponding to the calculated open circuit voltage E is obtained from the SOC table TB.
  • R is an internal resistance of the battery cell 10.
  • the battery current during charging is represented by a positive value
  • the battery current during discharging is represented by a negative value.
  • the battery voltage is released from the battery cell 10 as before the charging of the battery cell 10 is started.
  • the open circuit voltage of the battery cell 10 is equal to the terminal voltage of the battery cell 10 when the battery cell 10 is not charged or discharged and is in a steady state. That is, the transient time TP is a time from when charging / discharging of the battery cell 10 is stopped until the terminal voltage of the battery cell 10 is stabilized (becomes a steady state).
  • the SOC acquisition unit 212 acquires the battery voltage Vb detected by the voltage detection unit 202 at that time as voltage information, and obtains the acquired battery voltage Vb.
  • the corresponding SOC is acquired from the SOC table TB.
  • the SOC of the battery cell 10 is estimated in the charge / discharge period in which the battery cell 10 is charged or discharged and in the non-charge / discharge period in which the battery cell 10 is not charged or discharged.
  • the data array storage unit 213 stores the battery current, the battery voltage, the battery temperature, and the current integrated value as a data array each time a predetermined storage condition SR is satisfied.
  • the storage condition SR is, for example, that the amount of change in battery temperature since the previous storage of the data array is equal to or greater than a predetermined threshold, or the amount of change in SOC since the previous storage of the data array is It is at least one of exceeding a predetermined threshold value.
  • the battery current, the battery voltage, the battery temperature, and the current integrated value immediately before the charging / discharging of the battery cell 10 is started may be stored as a data array.
  • the threshold value for the change amount of the battery temperature is, for example, 5 ° C.
  • the threshold value for the change amount of the SOC is, for example, 10%.
  • a time point when the data array is stored in the data array storage unit 213 (a time point when the storage condition SR is satisfied) is referred to as a storage time point.
  • the storage capacity does not become too large and the internal resistance can be accurately estimated.
  • the value of the internal resistance is shown for every% difference.
  • the threshold value of the change amount of the battery temperature and the change amount of the SOC in the storage condition SR are preferably equal to or less than the battery temperature interval and the SOC interval in the internal resistance table TA.
  • the table update unit 214 updates the internal resistance table TA based on the data array stored by the data array storage unit 213.
  • the data array storage unit 213 stores the SOC and the current integrated value when the charging / discharging of the battery cell 10 is stopped in order to suppress an increase in storage capacity. And erase the other data array.
  • the SOC and current integrated value at the time of charge / discharge stop stored in the data array storage unit 213 are used as the SOC and current integrated value at the start of the next charge / discharge.
  • FIG. 6 shows a change in the integrated current value and a change in the SOC when the battery cell 10 is charged.
  • the vertical axis indicates the current integrated value S_I and the SOC, respectively, and the horizontal axis indicates time.
  • the period from time t0 to time t1 is the previous non-charge / discharge period
  • the period from time t1 to time t2 is the charge / discharge period
  • the period after time t2 is the current non-charge / discharge period.
  • the previous and current non-charging / discharging periods are examples of first and second non-charging / discharging periods before and after the charging / discharging period.
  • the example of FIG. 6 corresponds to the example of FIG. 5 described above, and is an example in which the battery cell 10 is charged with a constant current.
  • the current integrated value S_I increases linearly.
  • the SOC increases or decreases according to the current integrated value S_I, in this case, it increases linearly.
  • the data array storage unit 213 uses the SOC and current integrated value at the time t0 of the previous non-charge / discharge period as well as each storage time in the charge / discharge period (time t1 to t2) as the data array.
  • Pi represents an arbitrary storage time
  • Pn represents the last storage time in the charge / discharge period.
  • the table update unit 214 acquires the SOC at the time t0 of the previous non-charge / discharge period from the data array storage unit 213 as the SOCpre at the start time t1 of the charge / discharge period.
  • the table updating unit 214 after the transition time TP has elapsed from the end time t2 of the charge / discharge period, the SOC corresponding to the battery voltage Vb (FIG. 5B) at that time (for example, the time t3 in FIG. 5). Is obtained as SOCpost from the SOC table TB.
  • the battery voltage Va in FIG. 5B is an example of the first terminal voltage in the first non-charging period, and the battery voltage Vb in FIG.
  • 5B is the second terminal in the second non-charging period. It is an example of a voltage.
  • 6B is an example of the first charge state in the first non-charge / discharge period, and SOCpost in FIG. 6B is the second charge state in the second non-charge / discharge period. It is an example.
  • the time point t1 is an example of the time point in the first non-charge / discharge period in which charging or discharging is not performed
  • the time points t2 and t3 are the time points in the second non-charging / discharging period in which charging or discharging is not performed. It is an example.
  • As the first terminal voltage and the first charging state in the first non-charging / discharging period it is preferable to use the terminal voltage and the charging state immediately before the start of charging / discharging, and the second terminal in the second non-charging / discharging period.
  • As the voltage and the second state of charge it is preferable to use the terminal voltage and the state of charge immediately after the transition time TP has elapsed since charging / discharging was stopped. That is, the time point t1 is an example of a suitable time point in the first non-charge / discharge period, and the time point t3 is an example of a suitable time point in the second non-charge / discharge period.
  • the table updating unit 214 uses the following equation (2) to calculate the storage time point P1 from the current integrated values (FIG. 6A) of the storage time points P1 to Pn stored as the data array in the data array storage unit 213.
  • the SOC of .about.Pn is estimated (FIG. 6 (b)).
  • SOC [i] and S_I [i] are the SOC and current integrated value of the battery cell 10 at an arbitrary storage time point Pi in the charge / discharge period.
  • S_Ipre is an integrated current value at time t0 of the previous non-charge / discharge period stored in the data array storage unit 213.
  • S_Ipost is an integrated current value at the end time t2 of the charge / discharge period.
  • the amount of change in the current integrated value from the start time t1 of the charge / discharge period to the arbitrary storage time Pi (S_I [i] ⁇ S_Ipre) and the current integrated value from the arbitrary storage time Pi to the end time t2 of the charge / discharge period
  • the ratio with the change amount (S_Ipost ⁇ S_I [i]) is calculated from the change amount of SOC (SOC [i] ⁇ SOCpre) from the start time t1 of the charge / discharge period to the arbitrary storage time point Pi and the arbitrary storage time point Pi. It is equal to the ratio with the amount of change in SOC (SOCpost-SOC [i]) until the end time t2 of the charge / discharge period.
  • the SOC [i] at an arbitrary storage time Pi is obtained by the above equation (2).
  • the SOC at each storage point Pi calculated by the table updating unit 214 in this way is referred to as an estimated SOC.
  • the estimated SOC is an example of the state of charge during the charge / discharge period.
  • the table updating unit 214 stores the storage time points P1 to Pn based on the calculated estimated SOCs of the storage time points P1 to Pn and the battery currents and battery voltages of the storage time points P1 to Pn stored in the data array storage unit 213. Estimate the internal resistance. Specifically, the table update unit 214 acquires, from the SOC table TB, the open circuit voltage corresponding to the estimated SOC at the storage time points P1 to Pn as the open circuit voltage at the storage time points P1 to Pn. Further, the table update unit 214 uses the above equation (1) to obtain the obtained release voltage at the storage time points P1 to Pn and the battery currents and battery voltages at the storage time points P1 to Pn stored in the data array storage unit 213.
  • the internal resistance at the storage time points P1 to Pn is calculated.
  • the internal resistance estimated from the estimated SOC by the table updating unit 214 in this way is referred to as an estimated internal resistance Rt.
  • the estimated internal resistance Rt is an example of the internal resistance during the charge / discharge period.
  • FIG. 7 is a diagram for explaining the update of the internal resistance table TA.
  • the horizontal axis indicates the SOC
  • the vertical axis indicates the battery temperature T.
  • internal resistance corresponding to all battery temperatures and all SOCs is not included in the internal resistance table TA.
  • each time the battery temperature differs by a certain value and every time the SOC differs by a certain value The resistance is included in the internal resistance table TA.
  • the relationship between the battery temperature and the SOC corresponding to the internal resistance included in the internal resistance table TA is indicated by a plurality of “ ⁇ ”.
  • the battery temperature and the SOC corresponding to the internal resistance included in the internal resistance table TA are referred to as a table corresponding temperature and a table corresponding SOC, respectively.
  • the relationship between the battery temperature and the estimated SOC at each storage time Pi is represented by “x”.
  • the relationship between the battery temperature and the estimated SOC at the storage time points P1 to P6 is shown.
  • the battery temperature changes from Ta to Tb, and the SOC changes from SOCpre to SOCpost.
  • the table update unit 214 calculates a reference internal resistance Rs at each storage point Pi based on the internal resistance table TA before update. Specifically, when the battery temperature and the estimated SOC at any one of the storage times match the table corresponding temperature and the table corresponding SOC (storage time points P1, P4, P6 in the example of FIG. 7), the table update unit 214 acquires the internal resistance corresponding to the battery temperature and the estimated SOC at the time of storage as the reference internal resistance Rs from the internal resistance table TA before update. On the other hand, when the battery temperature and the estimated SOC at any one of the storage times do not match the table-corresponding temperature and the table-corresponding SOC (storage points P2, P3, P5 in the example of FIG.
  • the table updating unit 214 A plurality of table-corresponding temperatures and a plurality of internal resistances corresponding to the plurality of table-corresponding SOCs close to the estimated battery temperature and the estimated SOC that do not match “ ⁇ ” are acquired from the internal resistance table TA before update.
  • the table updating unit 214 calculates an internal resistance corresponding to the battery temperature and the estimated SOC at the time of storage as a reference internal resistance Rs by interpolation calculation from the plurality of acquired internal resistances.
  • the table updating unit 214 calculates the internal resistance change coefficient Kr at each storage time point P1 to P6 using the following equation (3).
  • Kr [i], Rs [i], and Rt [i] are an internal resistance change coefficient, a reference internal resistance, and an estimated internal resistance at an arbitrary storage point Pi in the charge / discharge period.
  • the table updating unit 214 represents temperature change coefficient information indicating the relationship between the battery temperature and the internal resistance change coefficient, and the relationship between the SOC and the internal resistance change coefficient. Obtain SOC change coefficient information.
  • FIG. 8 (a) is an example of temperature change coefficient information
  • FIG. 8 (b) is an example of SOC change coefficient information
  • the horizontal axis indicates the battery temperature T
  • the vertical axis indicates the internal resistance change coefficient Kr
  • the horizontal axis indicates the SOC
  • the vertical axis indicates the internal resistance change coefficient Kr.
  • the relationship between the battery temperature and the internal resistance change coefficient Kr in a certain temperature range is obtained.
  • the certain temperature range is equal to the temperature range included in the internal resistance table TA.
  • the internal resistance change coefficient Kr is set to be equal to the internal resistance change coefficient Kr at the storage time point P1.
  • the internal resistance change coefficient Kr is set to be equal to the internal resistance change coefficient Kr at the storage time point P6.
  • the change in the internal resistance change coefficient Kr within a certain SOC range is obtained.
  • the constant SOC range is equal to the SOC range included in the internal resistance table TA.
  • the internal resistance change coefficient Kr is set to be constant and equal to the internal resistance change coefficient Kr at the storage time point P1.
  • the internal resistance change coefficient Kr is set to be constant and equal to the internal resistance change coefficient Kr at the storage time point P6.
  • the table updating unit 214 calculates the internal resistance change coefficient Kt corresponding to each combination of the table corresponding temperature and the table corresponding SOC based on the temperature change coefficient information and the SOC change coefficient information. Specifically, the table updating unit 214 acquires the internal resistance change coefficient Kr corresponding to one table-corresponding temperature from the temperature change coefficient information, and also changes the internal resistance corresponding to one table-corresponding SOC from the SOC change coefficient information. The coefficient Kr is acquired. The table updating unit 214 acquires the acquired internal resistance change coefficient Kr corresponding to the acquired one table corresponding temperature as the internal resistance change coefficient Ks corresponding to the combination of the one table corresponding temperature and the one table corresponding SOC. The square root of the product with the internal resistance change coefficient Kr corresponding to the table corresponding SOC is calculated.
  • the internal resistance change coefficient when the table corresponding temperature is T11 is Kr11.
  • the table corresponding SOC is SOC11.
  • the internal resistance change coefficient is Kr21.
  • the table updating unit 214 acquires the internal resistance corresponding to each combination of the table corresponding temperature and the table corresponding SOC as the internal resistance Rtable from the internal resistance table TA before the update. Further, as shown in the following formula (4), the table update unit 214 multiplies the acquired internal resistance Rtable by the internal resistance change coefficient Ks for each combination of the table corresponding temperature and the table corresponding SOC, thereby updating the table update value. Rnew is calculated.
  • the table updating unit 214 updates the internal resistance ( ⁇ in FIG. 7) corresponding to each combination of the table corresponding temperature and the table corresponding SOC of the internal resistance table TA to the table update value Rnew. In this way, the update of the internal resistance table TA is completed.
  • the charge state estimation device 200 performs SOC estimation processing based on the control program stored in the storage unit 215.
  • 9 and 10 are flowcharts of the SOC estimation process.
  • the charging state estimation device 200 repeatedly performs the SOC estimation processing of FIGS. 9 and 10 at a constant cycle (for example, a cycle of 250 ms).
  • the SOC acquisition unit 212 performs battery current and battery voltage based on the current information from the current detection unit 201 and the voltage information from the voltage detection unit 202. To get. Further, the internal resistance acquisition unit 211 acquires the battery temperature based on the temperature information from the temperature detection unit 203. Further, the data array storage unit 213 acquires the battery current, the battery voltage, and the battery temperature based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the temperature information from the temperature detection unit 203 ( Step S1).
  • the SOC acquisition unit 212 updates the current integrated value stored in the storage unit 215 to a value obtained by adding the battery current acquired in step S1 of the current SOC estimation process (step S2). Note that the initial value of the current integrated value stored in the storage unit 215 is zero.
  • the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the battery temperature and the SOC estimated by the SOC acquisition unit 212 during the previous SOC estimation process from the internal resistance table TA stored in the storage unit 215 (Step S1). S3).
  • the SOC acquisition unit 212 calculates the open circuit voltage of the battery cell 10 from the internal resistance, battery current, and battery voltage acquired by the internal resistance acquisition unit 211 using the above equation (1), and the acquired open circuit The SOC corresponding to the voltage is acquired from the SOC table TB stored in the storage unit 215. Further, the SOC acquisition unit 212 outputs the acquired SOC (step S4).
  • the data array storage unit 213 determines whether or not the storage condition SR is satisfied based on the battery temperature and the SOC acquired by the SOC acquisition unit 212 (step S5). If the storage condition SR is not satisfied, the data array storage unit 213 performs a process of step S7 described later.
  • the data array storage unit 213 stores the battery current, battery voltage and battery temperature acquired in step S1, and the current integrated value calculated in step S2 as a data array (step S6). ). Next, the data array storage unit 213 determines whether or not a predetermined update condition is satisfied based on the battery current and the battery voltage (step S7).
  • the update condition is, for example, that a predetermined time has elapsed since the absolute value of the acquired battery current has become equal to or less than a predetermined threshold value.
  • the predetermined threshold is determined according to the accuracy of the current detection unit 201 and is, for example, 500 mA.
  • the predetermined time is determined according to the length of the transition time TP, and is, for example, several minutes. For example, 60 minutes is required to make the battery voltage more stable.
  • the update condition may be immediately before the next charge / discharge of the battery cell 10 is started.
  • the charging state estimation device 200 ends the SOC estimation process.
  • the charging state estimation device 200 performs an internal resistance table update process (step S8), and ends the SOC estimation process.
  • the table update unit 214 calculates the estimated SOC of each storage time point Pi by interpolation calculation using the above equation (2). Calculate (step S11).
  • the table update unit 214 acquires the open circuit voltage corresponding to the estimated SOC at each storage time Pi from the SOC table TB stored in the storage unit 215, and uses the above equation (1) to acquire each acquired storage
  • the estimated internal resistance at each storage time Pi is calculated from the open circuit voltage at the time Pi and the battery current and battery voltage at each storage time Pi stored in the data array storage unit 213 (step S12).
  • the table updating unit 214 calculates the table update value Rnew corresponding to each combination of the table corresponding temperature and the table corresponding SOC as described above based on the estimated SOC, the estimated internal resistance, and the internal resistance table TA (Ste S13).
  • the table update unit 214 updates the internal resistance table TA stored in the storage unit 215 using the calculated table update value Rnew (step S14).
  • the data array storage unit 213 stores the SOC (SOCpost in FIG. 6B) and the current integrated value (S_Ipost in FIG. 6A) at the time of charge / discharge stop (step S15), and the data array Initialization is performed (step S16).
  • initialization of the data array means erasing the data array that has not been saved in step S15. Thereby, the charging state estimation apparatus 200 complete
  • the SOC is calculated as the state of charge of the battery cell 10 during the charge / discharge period based on the battery voltage during the non-charge / discharge period when the battery cell 10 is not charged or discharged. Based on the battery current and battery voltage during the charge / discharge period and the calculated SOC, the internal resistance of the battery cell 10 is calculated.
  • the internal resistance table TA which is internal impedance information stored in the storage unit 215, is updated based on the battery temperature and the calculated internal resistance during the charge / discharge period.
  • the internal resistance for updating the internal resistance table TA is calculated from the battery voltage in the non-charge / discharge periods before and after the charge / discharge period without using the internal resistance table TA.
  • the internal resistance table TA can be updated accurately.
  • the SOC of the battery cell 10 can be accurately estimated without being affected by individual differences and deterioration of the battery cell 10.
  • an open circuit voltage corresponding to the SOC in the charge / discharge period is acquired based on the SOC table TB that is the charge state information stored in the storage unit 215.
  • the internal resistance of the battery cell 10 is calculated based on the acquired open circuit voltage and the battery current and battery voltage during the charge / discharge period. Thereby, the internal resistance of the battery cell 10 in the charge / discharge period can be calculated with high accuracy.
  • the SOC of the battery cell 10 in the non-charge / discharge period is acquired based on the battery voltage in the non-charge / discharge period before and after the charge / discharge period. Based on the obtained SOC in the non-charge / discharge period and the integrated current value in the charge / discharge period, the SOC of the battery cell 10 in the charge / discharge period is calculated. Thereby, the SOC of the battery cell 10 during the charge / discharge period can be calculated with high accuracy.
  • the table updating unit 214 calculates the current integrated value stored in the data array storage unit 213 and the upper The SOC at each storage point Pi in the charging period is calculated by interpolation calculation using Expression (2), but is not limited thereto.
  • the table updating unit 214 performs each storage time point of the charging / discharging period by proportional distribution based on the elapsed time from the start time of the charging / discharging period without performing the interpolation calculation using the current integrated value and the above equation (2).
  • the SOC at Pi may be calculated.
  • step S2 calculation of the current integrated value
  • step S6a the data array storage unit 213 displays the battery current, battery voltage, battery temperature, and elapsed time or time information from the start of the charge / discharge period acquired in step S1. Save as a data array and do not save the integrated current value.
  • the table update unit 214 performs charge / discharge based on the battery current stored in the data array storage unit 213. It is determined whether or not the battery current during the period is constant (step S21). When the battery current in the charging / discharging period is constant, the table updating unit 214 does not perform the interpolation calculation using the current integrated value and the above equation (2) as described above, from the start time of the charging / discharging period. The estimated SOC at each storage time Pi is calculated by proportional distribution based on the elapsed time (step S11a). Thereafter, the table update unit 214 performs the processes of steps S12a to S14a.
  • steps S12a to S14a in FIG. 12 is the same as the processing in steps S12 to S14 in FIG. Subsequently, the data array storage unit 213 stores only the SOC when charging / discharging is stopped (step S15a), and the data array storage unit 213 initializes the data array (step S16a).
  • step S21 the table updating unit 214 does not perform the processes of steps S11a to S14a.
  • step S15a the data array storage unit 213 stores only the SOC when charging / discharging is stopped, and in step S16a, the data array storage unit 213 initializes the data array.
  • the internal resistance table TA is updated when the battery current during the charge / discharge period is constant, and the internal resistance table TA is not updated when the battery current during the charge / discharge period is not constant.
  • the processing load on the charge state estimation device 200 is reduced, and the battery current in the charge / discharge period is reduced.
  • the battery system 500 can be used even when it is not constant.
  • FIG. 13 shows another example of changes in battery current, battery voltage, and battery temperature during the charge / discharge period.
  • the vertical axis represents the battery current I, the battery voltage V, and the battery temperature T, respectively, and the horizontal axis represents time.
  • the battery cell 10 is charged at the time points t1 to t11 and the time points t12 to t2 of the charge / discharge period, and the battery cell 10 is discharged at the time points t11 to t12. Further, the battery current is not constant when the battery cell 10 is charged and discharged.
  • the current integrated value and the above equation (2 ) Can be used to obtain the SOC at each storage point Pi.
  • Examples of battery current fluctuations include, for example, sinusoidal, sawtooth, or random fluctuations. In either case, the SOC at each storage point Pi can be obtained in the same manner.
  • the SOC at each storage point Pi in the charge / discharge period is calculated regardless of the variation form of the battery current in the charge / discharge period. Can do. Thereby, the battery system 500 can be used in any situation.
  • steps S11 to S14 in FIG. 10 and the processing in steps S11a to S16a in FIG. 12 may be selectively performed depending on whether or not the battery current in the charge / discharge period is constant. In this case, steps S2 and S6 in FIG. 9 are performed. For example, if the battery current during the charge / discharge period is constant in step S21 of FIG. 12, the table update unit 214 performs the processes of steps S11a to S16a of FIG. On the other hand, if the battery current during the charging / discharging period is not constant, the table updating unit 214 performs the processes of steps S11 to S16 in FIG.
  • the internal resistance table TA can be easily updated without performing an interpolation calculation using the current integrated value and the above equation (2).
  • the internal resistance table TA can be accurately updated by performing an interpolation calculation using the current integrated value and the above equation (2).
  • the battery current in the charge / discharge period is stored in advance in the storage unit 215, for example, so that the table update unit 214 acquires the open circuit voltage corresponding to the calculated SOC from the SOC table TB, and the acquired open circuit voltage Based on the battery voltage stored in the data array storage unit 213 and the battery current stored in the storage unit 215, the open circuit voltage at each storage time Pi can be calculated. Therefore, the internal resistance at each storage time Pi can be calculated without using the data array storage unit 213, the current during the charge / discharge period, and the current integrated value. Thereby, the processing load on the table updating unit 214 can be reduced, and the storage capacity of the data array storage unit 213 can be reduced.
  • the table updating unit 214 does not update the internal resistance table TA, and the data array storage unit 213 performs the SOC and current when charging / discharging is stopped. Only the storage of the integrated value (step S15 in FIG. 10) and the initialization of the data array (step S16 in FIG. 10) may be performed. In this case, the internal resistance table TA is prevented from being updated to an incorrect value.
  • FIG. 14 (a) is an example of an internal resistance table for charging
  • FIG. 14 (b) is an example of an internal resistance table for discharging.
  • 14A Y11, Y12,..., Y1m, Y21, Y22,..., Y2m,..., Yn1, Yn2, ..., Ynm are values of the internal resistance when the battery cell 10 is charged. It is.
  • Z11, Z12,..., Z1m, Z21, Z22,..., Z2m, ..., Zn1, Zn2, ..., Znm are values of the internal resistance when the battery cell 10 is discharged. It is.
  • the internal resistance acquisition unit 211 acquires the internal resistance from the internal resistance table TA1 when the battery cell 10 is charged, and the internal resistance from the internal resistance table TA2 when the battery cell 10 is discharged. Get resistance. Thereby, depending on whether the battery cell 10 is charged or discharged, the internal resistance can be obtained with high accuracy.
  • the table updating unit 214 updates the internal resistance table TA1 after charging the battery cell 10, and updates the internal resistance table TA2 after discharging the battery cell 10. As a result, the internal resistance tables TA1 and TB1 can be accurately updated. As a result, the SOC of the battery cell 10 can be accurately estimated.
  • the internal resistance table TA shows the relationship between the temperature, SOC, and internal resistance of the battery cell 10, but the present invention is not limited to this, and the internal resistance table TA Only the relationship between the temperature of the cell 10 and the internal resistance may be shown.
  • the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the battery temperature given as temperature information from the internal resistance table TA.
  • the table update unit 214 also updates the internal resistance table TA based on the calculated temperature change coefficient information. This makes it possible to reduce the processing load and the storage capacity.
  • the SOC is estimated for each battery cell 10 by the charging state estimation device 200.
  • the present invention is not limited to this, and for example, the SOC of the entire battery cell group 100 is estimated. Also good.
  • the SOC estimation process is performed at a constant cycle.
  • the present invention is not limited to this, and for example, the SOC may be acquired at an arbitrary timing set in advance.
  • the data array storage unit 213 stores the data array every time a predetermined storage condition SR is satisfied.
  • the present invention is not limited to this, and for example, the data array storage unit 213 every time a certain time elapses. May store the data array.
  • Electric vehicle and moving body An electric vehicle and a moving body according to the second embodiment of the present invention will be described.
  • the electric vehicle and the moving body according to the present embodiment include battery system 500 according to the first embodiment.
  • an electric vehicle will be described as an example of an electric vehicle.
  • FIG. 15 is a block diagram showing the configuration of the electric vehicle.
  • electric vehicle 600 according to the present embodiment includes a vehicle body 610.
  • the vehicle body 610 is provided with the battery system 500, the power conversion unit 601, the motor 602, the drive wheel 603, the accelerator device 604, the brake device 605, the rotation speed sensor 606, and the main control unit 608.
  • motor 602 is an alternating current (AC) motor
  • power conversion unit 601 includes an inverter circuit.
  • the battery system 500 is connected to the motor 602 via the power conversion unit 601 and to the main control unit 608.
  • the main control unit 608 is given the state of charge (for example, SOC) of the battery cell group 100 from the state of charge estimation device 200.
  • an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 608.
  • the main control unit 608 includes, for example, a CPU and a memory, or a microcomputer. Note that the charging state estimation device 200 may have the function of the main control unit 608. In that case, the main control unit 608 may not be provided.
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detection unit 604b detects the operation amount of the accelerator pedal 604a with reference to a state where the accelerator pedal 604a is not operated by the user. The detected operation amount of the accelerator pedal 604a is given to the main control unit 608.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the user.
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 608.
  • the rotation speed sensor 606 detects the rotation speed of the motor 602. The detected rotation speed is given to the main control unit 608.
  • the main controller 608 is given the state of charge of each battery cell 10, the amount of operation of the accelerator pedal 604a, the amount of operation of the brake pedal 605a, and the rotational speed of the motor 602.
  • the main control unit 608 performs charge / discharge control of the battery cell group 100 and power conversion control of the power conversion unit 601 based on these pieces of information. For example, when starting and accelerating the electric automobile 600 based on the accelerator operation, power is supplied from the battery cell group 100 of the battery system 500 to the power conversion unit 601.
  • the main control unit 608 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery cell group 100, and provides the battery cell group 100 with the power. Thereby, each battery cell 10 of the battery cell group 100 is charged.
  • the battery system 500 according to the first embodiment may be mounted on another moving body such as a ship, an aircraft, an elevator, or a walking robot.
  • a ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 15, a screw instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • An aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 15, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. Ships and aircraft do not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop acceleration, the airframe is decelerated due to water resistance or air resistance.
  • An elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 15, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
  • a walking robot equipped with the battery system 500 includes, for example, a trunk instead of the vehicle body 610 in FIG. 15, a foot instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the motor corresponds to the power source
  • the hull, gas, rod and trunk correspond to the main body
  • the screw, propeller, lifting rope and foot correspond to the drive section.
  • the power source receives electric power from the battery system 500 and converts the electric power into motive power
  • the drive unit moves the moving main body portion with the motive power converted by the motive power source.
  • the power supply device includes a battery system 500 according to the first embodiment.
  • FIG. 16 is a block diagram showing a configuration of a power supply device according to the third embodiment.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes a battery system group 711 and a controller 712.
  • the battery system group 711 includes a plurality of battery systems 500 according to the first embodiment. Between the plurality of battery systems 500, the plurality of battery cells 10 may be connected to each other in parallel, or may be connected to each other in series.
  • the controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer.
  • the controller 712 is connected to the charging state estimation device 200 (FIG. 1) of each battery system 500.
  • the charging state estimation device 200 of each battery system 500 calculates the charging state (for example, SOC) of each battery cell 10 and gives the calculated charging state to the controller 712.
  • the controller 712 controls the power conversion device 720 based on the charging state of each battery cell 10 given from each charging state estimation device 200, thereby discharging or charging a plurality of battery cells 10 included in each battery system 500. Control related to
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1, PU2 include, for example, outlets.
  • various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the controller 712, whereby the plurality of battery cells 10 included in the battery system group 711 are discharged and charged.
  • DC / DC direct current / direct current
  • DC / AC direct current / alternating current
  • the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1.
  • the power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2.
  • DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2.
  • the electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
  • the controller 712 performs the following control as an example of control related to discharging of the plurality of battery cells 10 included in each battery system 500. At the time of discharging the battery system group 711, the controller 712 determines whether or not to stop discharging based on the charging state of each battery cell 10 given from each charging state estimation device 200 (FIG. 1), and based on the determination result.
  • the power converter 720 is controlled. For example, when the SOC of any one of the plurality of battery cells 10 (FIG. 1) included in the battery system group 711 is smaller than a predetermined threshold value, the controller 712 stops discharging. Alternatively, the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge current (or discharge power) is limited.
  • the SOC threshold value of the battery cell 10 for stopping the discharge or limiting the discharge current (or discharge power) is set, for example, within a range of 20% to 30%. Thereby, overdischarge of each battery cell 10 is prevented.
  • AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted.
  • AC / DC AC / DC
  • DC DC / DC
  • the controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each battery system 500.
  • the controller 712 determines whether or not to stop charging based on the charging state of each battery cell 10 given from each charging state estimation device 200 (FIG. 1), and based on the determination result.
  • the power converter 720 is controlled. For example, when the SOC of any one of the plurality of battery cells 10 included in the battery system group 711 becomes larger than a predetermined threshold, the controller 712 stops the charging or the charging current ( Alternatively, the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the charging power is limited.
  • the SOC threshold value of the battery cell 10 for stopping charging or limiting the charging current (or charging power) is set, for example, within a range of 70% to 80%. Thereby, overcharge of each battery cell 10 is prevented.
  • power conversion device 720 performs power conversion between the battery cell and the outside.
  • a controller 712 as a system control unit controls the power conversion device 720 to perform control related to charging or discharging of the battery cell 10 of the battery system 500.
  • the SOC that is the state of charge of the battery cell 10 can be accurately estimated. Therefore, the charge / discharge performance of the power supply device 700 is improved.
  • the controller 712 may have the same function as that of the charge / discharge estimation device 200, instead of providing each battery system 500 with the charge / discharge estimation device 200. Further, instead of providing the current detection unit 201 in each battery system 500, a configuration in which one current detection unit 201 is provided in only one battery system 500 may be employed. In this case, the value of the detected current may be output from one current detection unit 201 to the charge state estimation device 200 of each battery system 500, or the charge / discharge estimation device 200 is not provided in each battery system 500. When the controller 712 has the function of the charge / discharge estimation apparatus 200, the current value detected by the controller 712 may be output from one current detection unit 201.
  • the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • a plurality of battery systems 500 are provided, but not limited to this, only one battery system 500 may be provided.
  • the battery cell 10 is an example of a battery cell
  • the charge state estimation device 200 is an example of a charge state estimation device
  • the storage unit 215 is an example of a storage unit
  • the internal resistance acquisition unit 211 The SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 are examples of processing units
  • the SOC is an example of a charged state.
  • the electric automobile 600 is an example of an electric vehicle and a moving body
  • the motor 602 is an example of a motor and a power source
  • the driving wheel 603 is an example of a driving wheel and a driving unit
  • the vehicle body 610 is an example of a moving main body.
  • the power storage device 710 is an example of a power storage device
  • the power supply device 700 is an example of a power supply device
  • the controller 712 is an example of a system control unit
  • the power conversion device 720 is an example of a power conversion device. .

Abstract

A battery system (500) comprises battery cells (10) and a state-of-charge estimation device (200). A processing unit of the state-of-charge estimation device (200) calculates the states of charge of the battery cells (10) during charging and discharging periods on the basis of the terminal voltages of the battery cells (10) during non-charging and non-discharging periods before and after the charging and discharging periods, calculates the internal impedances of the battery cells (10) during the charging and discharging periods on the basis of the current flowing through the battery cells (10) during the charging and discharging periods, the terminal voltages of the battery cells (10) during the charging and discharging periods, and the calculated state of charge during the charging and discharging periods, and updates internal impedance information to be stored in a storage unit on the basis of the temperatures of the battery cells (10) during the charging and discharging periods and the calculated internal impedances.

Description

バッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置BATTERY SYSTEM, CHARGE STATE ESTIMATION DEVICE, ELECTRIC VEHICLE, MOBILE BODY, POWER STORAGE DEVICE, AND POWER SUPPLY DEVICE
 本発明は、バッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置に関する。 The present invention relates to a battery system, a charging state estimation device, an electric vehicle, a moving body, a power storage device, and a power supply device.
 電動自動車等の電力により駆動される移動体ならびに電力を貯蔵および供給する電源装置には、充放電可能なバッテリセルを備えたバッテリシステムが用いられる。バッテリセルの充放電を適切に制御するため、バッテリセルの充電状態を精度よく取得することが求められる。 A battery system including a chargeable / dischargeable battery cell is used for a moving body driven by electric power such as an electric automobile and a power supply device for storing and supplying electric power. In order to appropriately control charging / discharging of the battery cell, it is required to accurately acquire the charging state of the battery cell.
 特許文献1に記載されるバッテリ充電状態推定装置においては、予め記憶されるバッテリ温度とバッテリの内部抵抗との相関関係の情報を含むマップ(以下、内部抵抗マップと呼ぶ)を用いて、実測のバッテリ温度からバッテリ内部抵抗が推定される。推定されたバッテリ内部抵抗、実測のバッテリ電圧、および前回推定されたSOC(充放電状態)に基づくバッテリの開放電圧から、推定充放電電流が求められる。求められた推定充放電電流が積算されることによりSOCが推定される。 In the battery state-of-charge estimation device described in Patent Document 1, an actual measurement is performed using a map (hereinafter referred to as an internal resistance map) including information on the correlation between the battery temperature stored in advance and the internal resistance of the battery. The battery internal resistance is estimated from the battery temperature. An estimated charge / discharge current is obtained from the estimated battery internal resistance, the actually measured battery voltage, and the open circuit voltage of the battery based on the previously estimated SOC (charge / discharge state). The SOC is estimated by integrating the obtained estimated charge / discharge current.
 SOCの推定動作が所定の回数に達した場合、実測の充放電電流および実測のバッテリ電圧からバッテリ内部抵抗が算出され、算出されたバッテリ内部抵抗および実測のバッテリ温度に基づいて、内部抵抗マップが補正される。 When the SOC estimation operation reaches a predetermined number of times, the battery internal resistance is calculated from the measured charge / discharge current and the measured battery voltage, and the internal resistance map is calculated based on the calculated battery internal resistance and the measured battery temperature. It is corrected.
特開2004-93551号公報JP 2004-93551 A
 上記のバッテリ充電状態推定装置において、内部抵抗マップの補正に用いられるバッテリ内部抵抗を算出するためには、バッテリの開放電圧が必要となる。一方、バッテリの開放電圧は、上記のようにして推定されたSOCから求められる。当該SOCの推定時には、内部抵抗マップを参照して推定されたバッテリ内部抵抗が用いられる。 In the above battery charge state estimation device, in order to calculate the battery internal resistance used for correcting the internal resistance map, the open circuit voltage of the battery is required. On the other hand, the open circuit voltage of the battery is obtained from the SOC estimated as described above. When estimating the SOC, the battery internal resistance estimated with reference to the internal resistance map is used.
 したがって、補正前の内部抵抗マップが正確でない場合には、補正のために算出されるバッテリ内部抵抗も正確ではない。それにより、内部抵抗マップを正確に補正することができない。また、このような補正が繰り返し行われることにより内部抵抗マップに累積的に誤差が重畳される。その結果、SOCを精度よく推定することができない。 Therefore, if the internal resistance map before correction is not accurate, the battery internal resistance calculated for correction is not accurate. As a result, the internal resistance map cannot be accurately corrected. Further, by repeatedly performing such correction, an error is cumulatively superimposed on the internal resistance map. As a result, the SOC cannot be estimated with high accuracy.
 本発明の目的は、バッテリセルの充電状態を精度よく推定することが可能なバッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置を提供することである。 An object of the present invention is to provide a battery system, a charging state estimation device, an electric vehicle, a moving body, a power storage device, and a power supply device that can accurately estimate the charging state of a battery cell.
 本発明に係るバッテリシステムは、バッテリセルと、バッテリセルの端子電圧を検出する電圧検出部と、バッテリセルの温度を検出する温度検出部と、バッテリセルの充電状態を推定する充電状態推定装置とを備え、充電状態推定装置は、バッテリセルの内部インピーダンスおよび温度の関係を表す内部インピーダンス情報を記憶する記憶部と、記憶部に記憶された内部インピーダンス情報に基づいてバッテリセルの充電状態を推定するとともに、内部インピーダンス情報を更新する処理部とを含み、処理部は、バッテリセルが充電または放電を行っている充放電期間の前におけるバッテリセルが充電および放電を行っていない第1の非充放電期間で電圧検出部により検出されるバッテリセルの第1の端子電圧ならびに充放電期間の後におけるバッテリセルが充電および放電を行っていない第2の非充電期間で電圧検出部により検出されるバッテリセルの第2の端子電圧に基づいて充放電期間におけるバッテリセルの充電状態を算出し、充放電期間においてバッテリセルに流れる電流、充放電期間に電圧検出部により検出されるバッテリセルの端子電圧および算出された充放電期間における充電状態に基づいて充放電期間におけるバッテリセルの内部インピーダンスを算出し、充放電期間で温度検出部により検出される温度および算出された内部インピーダンスに基づいて記憶部に記憶される内部インピーダンス情報を更新するように構成されるものである。 A battery system according to the present invention includes a battery cell, a voltage detection unit that detects a terminal voltage of the battery cell, a temperature detection unit that detects a temperature of the battery cell, and a charging state estimation device that estimates a charging state of the battery cell. The charging state estimation device includes a storage unit that stores internal impedance information representing a relationship between the internal impedance and temperature of the battery cell, and estimates a charging state of the battery cell based on the internal impedance information stored in the storage unit And a processing unit that updates the internal impedance information. The processing unit is a first non-charge / discharge in which the battery cell is not charged and discharged before the charge / discharge period in which the battery cell is charged or discharged. After the first terminal voltage of the battery cell detected by the voltage detector in the period and the charge / discharge period Calculating the state of charge of the battery cell during the charge / discharge period based on the second terminal voltage of the battery cell detected by the voltage detection unit during the second non-charge period when the battery cell is not being charged or discharged. The internal impedance of the battery cell during the charge / discharge period is calculated based on the current flowing through the battery cell during the discharge period, the terminal voltage of the battery cell detected by the voltage detection unit during the charge / discharge period, and the calculated charge state during the charge / discharge period. The internal impedance information stored in the storage unit is updated based on the temperature detected by the temperature detection unit and the calculated internal impedance during the charge / discharge period.
 本発明によれば、バッテリセルの充電状態を精度よく推定することが可能となる。 According to the present invention, the state of charge of the battery cell can be accurately estimated.
実施の形態に係るバッテリシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system which concerns on embodiment. 充電状態推定装置の詳細について説明するためのブロック図である。It is a block diagram for demonstrating the detail of a charge condition estimation apparatus. 内部抵抗テーブルの一例を示す図である。It is a figure which shows an example of an internal resistance table. SOCテーブルの一例を示す図である。It is a figure which shows an example of an SOC table. バッテリセルの充電時におけるバッテリ電流、バッテリ電圧およびバッテリ温度の変化を示す図である。It is a figure which shows the change of the battery current at the time of charge of a battery cell, a battery voltage, and battery temperature. バッテリセルの充電時における電流積算値の変化およびSOCの変化を示す図である。It is a figure which shows the change of the electric current integration value at the time of charge of a battery cell, and the change of SOC. 内部抵抗テーブルの更新について説明するための図である。It is a figure for demonstrating the update of an internal resistance table. 温度変化係数情報およびSOC変化係数情報の一例である。It is an example of temperature change coefficient information and SOC change coefficient information. SOC推定処理のフローチャートである。It is a flowchart of a SOC estimation process. SOC推定処理のフローチャートである。It is a flowchart of a SOC estimation process. SOC推定処理の他の例を示すフローチャートである。It is a flowchart which shows the other example of a SOC estimation process. SOC推定処理の他の例を示すフローチャートである。It is a flowchart which shows the other example of a SOC estimation process. 充放電期間におけるバッテリ電流、バッテリ電圧およびバッテリ温度の他の変化例を示す図である。It is a figure which shows the other example of a change of the battery current in the charging / discharging period, battery voltage, and battery temperature. 充電時用の内部抵抗テーブルおよび放電時用の内部抵抗テーブルの例を示す図である。It is a figure which shows the example of the internal resistance table for charge, and the internal resistance table for discharge. 実施の形態にかかる電動自動車の構成を示すブロック図である。It is a block diagram which shows the structure of the electric vehicle concerning embodiment. 実施の形態に係る電源装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power supply device which concerns on embodiment.
 以下、本発明の実施の形態に係るバッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置について図面を参照しながら説明する。以下の実施の形態では、バッテリセルの内部インピーダンスとして、バッテリセルの内部抵抗が用いられる。 Hereinafter, a battery system, a charging state estimation device, an electric vehicle, a moving body, a power storage device, and a power supply device according to embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the internal resistance of the battery cell is used as the internal impedance of the battery cell.
 (1)バッテリシステム
 (1-1)構成
 図1は、本発明の第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。図1に示すように、バッテリシステム500は、バッテリセル群100、充電状態推定装置200、電流検出部201、電圧検出部202、温度検出部203および出力部205を備える。バッテリセル群100は複数のバッテリセル10を含む。本例では、バッテリセル群100の複数のバッテリセル10は直列接続される。各バッテリセル10として、例えばリチウムイオン電池等の二次電池が用いられる。なお、複数のバッテリセル10の一部または全部が並列に接続されてもよい。例えば、直接接続された複数のバッテリセル10を含むバッテリセル群100(図1のバッテリセル群100)が複数組設けられ、それらの複数組のバッテリセル群100が互いに並列に接続されてもよい。または、並列接続された複数のバッテリセル10を含むバッテリセル群100’が複数組設けられ、それらの複数組のバッテリセル群100’が互いに直列に接続されてもよい。あるいは、このようなバッテリセル群100およびバッテリセル群100’が混在してもよい。また、バッテリセル群100が1つのバッテリセル10のみを有してもよい。バッテリセル10の内部インピーダンスの値としては、バッテリセル10の内部リアクタンスの値を考慮することなく、バッテリセル10の内部抵抗の値を用いることができる。
(1) Battery System (1-1) Configuration FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment of the present invention. As shown in FIG. 1, the battery system 500 includes a battery cell group 100, a charge state estimation device 200, a current detection unit 201, a voltage detection unit 202, a temperature detection unit 203, and an output unit 205. The battery cell group 100 includes a plurality of battery cells 10. In this example, the plurality of battery cells 10 of the battery cell group 100 are connected in series. As each battery cell 10, secondary batteries, such as a lithium ion battery, are used, for example. Note that some or all of the plurality of battery cells 10 may be connected in parallel. For example, a plurality of battery cell groups 100 (battery cell group 100 in FIG. 1) including a plurality of directly connected battery cells 10 may be provided, and the plurality of battery cell groups 100 may be connected in parallel to each other. . Alternatively, a plurality of battery cell groups 100 ′ including a plurality of battery cells 10 connected in parallel may be provided, and the plurality of battery cell groups 100 ′ may be connected in series with each other. Or such battery cell group 100 and battery cell group 100 'may coexist. Further, the battery cell group 100 may have only one battery cell 10. As the value of the internal impedance of the battery cell 10, the value of the internal resistance of the battery cell 10 can be used without considering the value of the internal reactance of the battery cell 10.
 電流検出部201は、例えばシャント抵抗、差動増幅器およびA/D(アナログ/デジタル)変換器により構成される。電流検出部201として、電流センサを用いてもよい。電流検出部201は、バッテリセル群100に直列に接続される。電流検出部201は、複数のバッテリセル10に流れる電流(以下、バッテリ電流と呼ぶ)を検出し、検出した電流の値を電流情報として充電状態推定装置200に与える。 The current detection unit 201 includes, for example, a shunt resistor, a differential amplifier, and an A / D (analog / digital) converter. A current sensor may be used as the current detection unit 201. The current detection unit 201 is connected to the battery cell group 100 in series. The current detection unit 201 detects a current flowing through the plurality of battery cells 10 (hereinafter referred to as a battery current), and supplies the detected current value to the charge state estimation device 200 as current information.
 電圧検出部202は、各バッテリセル10の正極端子および負極端子に接続される。電圧検出部202は、各バッテリセル10の端子電圧(以下、バッテリ電圧と呼ぶ)を検出し、検出した端子電圧の値を電圧情報として充電状態推定装置200に与える。 The voltage detection unit 202 is connected to the positive terminal and the negative terminal of each battery cell 10. The voltage detection unit 202 detects a terminal voltage of each battery cell 10 (hereinafter referred to as a battery voltage), and supplies the detected terminal voltage value to the charge state estimation device 200 as voltage information.
 温度検出部203は、各バッテリセル10の温度(以下、バッテリ温度と呼ぶ)を検出し、検出した温度の値を温度情報として充電状態推定装置200に与える。温度検出部203としては、例えば複数のサーミスタが用いられ、バッテリセル10の温度として、例えば、バッテリセル10の表面温度が検出される。この場合、各バッテリセル10にサーミスタが取り付けられてもよく、一部の複数のバッテリセル10にのみサーミスタが取り付けられてもよい。一部のバッテリセル10にのみサーミスタが取り付けられる場合、例えば、それらの一部のバッテリセル10の温度に基づいて、他のバッテリセル10の温度が推定される。一部のバッテリセル10の温度としては、サーミスタにより検出された温度が用いられ、他のバッテリセル10の温度としては、推定された温度が用いられる。 The temperature detection unit 203 detects the temperature of each battery cell 10 (hereinafter referred to as the battery temperature), and gives the detected temperature value to the charge state estimation device 200 as temperature information. As the temperature detection unit 203, for example, a plurality of thermistors are used, and as the temperature of the battery cell 10, for example, the surface temperature of the battery cell 10 is detected. In this case, the thermistor may be attached to each battery cell 10, or the thermistor may be attached only to some of the plurality of battery cells 10. When the thermistors are attached only to some of the battery cells 10, for example, the temperatures of the other battery cells 10 are estimated based on the temperatures of the some battery cells 10. The temperature detected by the thermistor is used as the temperature of some battery cells 10, and the estimated temperature is used as the temperature of other battery cells 10.
 充電状態推定装置200は、電流検出部201からの電流情報、電圧検出部202からの電圧情報および温度検出部203からの温度情報に基づいて、各バッテリセル10の充電状態を推定する。充電状態とは、電流、蓄電量または電気容量等のバッテリセル10の電荷量に関する情報をいい、例えば、SOC(充電率)、残容量、放電深度(DOD)、電流積算値または蓄電量差等を含む。本実施の形態では、充電状態としてSOCが用いられる。SOCとは、各バッテリセル10の満充電容量に対する残容量の比率を意味する。なお、放電深度とは、バッテリセル10の満充電容量に対する充電可能容量(バッテリセル10の満充電容量から残容量を減算した容量)の比率を意味し、(100-SOC)%で表される。蓄電量差とは、バッテリセル10のSOCと予め定められた基準値との差を意味する。充電状態推定装置200は、推定された充電状態(本例では、SOC)を出力部205または外部の制御装置に出力する。例えば、後述の主制御部608(図15)または後述のコントローラ712(図16)が外部の制御装置に相当する。 The charging state estimation device 200 estimates the charging state of each battery cell 10 based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the temperature information from the temperature detection unit 203. The state of charge refers to information related to the amount of charge of the battery cell 10 such as current, amount of electricity stored, or electric capacity. For example, SOC (charge rate), remaining capacity, depth of discharge (DOD), integrated current value or difference in amount of electricity stored including. In the present embodiment, SOC is used as the state of charge. The SOC means the ratio of the remaining capacity to the full charge capacity of each battery cell 10. The depth of discharge means the ratio of the chargeable capacity (capacity obtained by subtracting the remaining capacity from the full charge capacity of the battery cell 10) to the full charge capacity of the battery cell 10, and is represented by (100−SOC)%. . The difference in the charged amount means a difference between the SOC of the battery cell 10 and a predetermined reference value. The charging state estimation device 200 outputs the estimated charging state (SOC in this example) to the output unit 205 or an external control device. For example, a main control unit 608 (FIG. 15) described later or a controller 712 (FIG. 16) described later corresponds to an external control device.
 出力部205は、例えば液晶ディスプレイパネル、プラズマディスプレイパネル、有機EL(エレクトロルミネッセンス)パネルまたはスピーカ等を含む。出力部205は、例えば、バッテリ電圧、バッテリ電流、バッテリ温度、内部抵抗、開放電圧(OCV;Open Circuit Voltage)、SOCならびに後述の内部抵抗テーブルTA(図3)およびSOCテーブルTB等のうち少なくとも1つを表示する。また、出力部205は、例えば、バッテリシステム500に異常が発生した場合に、ユーザまたはサービスマンに対する警報または作業指示等を提示してもよい。バッテリシステム500の異常は、例えば、バッテリセル群100の過充電および過放電、ならびに充電状態推定装置200の動作不良および故障等を含む。 The output unit 205 includes, for example, a liquid crystal display panel, a plasma display panel, an organic EL (electroluminescence) panel, or a speaker. The output unit 205 includes, for example, at least one of a battery voltage, a battery current, a battery temperature, an internal resistance, an open circuit voltage (OCV), an SOC, an internal resistance table TA (FIG. 3) and an SOC table TB described later, and the like. Display one. Further, the output unit 205 may present an alarm or work instruction to the user or service person when an abnormality occurs in the battery system 500, for example. The abnormality of the battery system 500 includes, for example, overcharge and overdischarge of the battery cell group 100, malfunction and failure of the charge state estimation device 200, and the like.
 (1-2)充電状態推定装置
 図2は、充電状態推定装置200の詳細について説明するためのブロック図である。図2に示すように、充電状態推定装置200は、内部抵抗取得部211、SOC取得部212、データ配列保存部213、テーブル更新部214および記憶部215を含む。内部抵抗取得部211、SOC取得部212、データ配列保存部213およびテーブル更新部214は、処理部の例である。
(1-2) Charging State Estimation Device FIG. 2 is a block diagram for explaining details of the charging state estimation device 200. As shown in FIG. 2, the charging state estimation device 200 includes an internal resistance acquisition unit 211, an SOC acquisition unit 212, a data array storage unit 213, a table update unit 214, and a storage unit 215. The internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 are examples of processing units.
 内部抵抗取得部211は、記憶部215に記憶される後述の内部抵抗テーブルTAを使用して、温度検出部203からの温度情報およびSOC取得部212により取得されるSOCに対応する内部抵抗を取得する(後述の図3)。SOC取得部212は、電流検出部201からの電流情報、電圧検出部202からの電圧情報および内部抵抗取得部211により取得される内部抵抗に基づいてバッテリセル10の開放電圧を算出し、記憶部215に記憶される後述のSOCテーブルTBを使用して、算出された開放電圧に対応するSOCを取得する(後述の図4)。SOC取得部212は、取得されたSOCを出力部205(図1)または外部の制御装置に出力する。また、SOC取得部212は、電流検出部201からの電流情報に基づいて、バッテリセル10に流れる電流の積算値である電流積算値を算出する。 The internal resistance acquisition unit 211 uses a later-described internal resistance table TA stored in the storage unit 215 to acquire temperature information from the temperature detection unit 203 and an internal resistance corresponding to the SOC acquired by the SOC acquisition unit 212. (FIG. 3 described later). The SOC acquisition unit 212 calculates the open voltage of the battery cell 10 based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the internal resistance acquired by the internal resistance acquisition unit 211, and a storage unit An SOC corresponding to the calculated open-circuit voltage is acquired using an SOC table TB described later stored in 215 (FIG. 4 described later). The SOC acquisition unit 212 outputs the acquired SOC to the output unit 205 (FIG. 1) or an external control device. Moreover, the SOC acquisition unit 212 calculates a current integrated value that is an integrated value of the current flowing through the battery cell 10 based on the current information from the current detection unit 201.
 データ配列保存部213は、電流検出部201からの電流情報、電圧検出部202からの電圧情報、温度検出部203からの温度情報、およびSOC取得部212により算出された電流積算値を互いに関連付けてデータ配列として保存する。テーブル更新部214は、データ配列保存部213により保存されるデータ配列に基づいて、記憶部215に記憶される内部抵抗テーブルを更新する。記憶部215は、制御プログラムを記憶するとともに、内部抵抗テーブルTA、SOCテーブルTBおよびSOC取得部212により算出される電流積算値等の種々の情報を記憶する。 The data array storage unit 213 associates the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, the temperature information from the temperature detection unit 203, and the current integrated value calculated by the SOC acquisition unit 212 with each other. Save as a data array. The table update unit 214 updates the internal resistance table stored in the storage unit 215 based on the data array stored by the data array storage unit 213. The storage unit 215 stores a control program and various information such as an internal resistance table TA, an SOC table TB, and an integrated current value calculated by the SOC acquisition unit 212.
 充電状態推定装置200の機能は、例えば、CPU(中央演算処理装置)およびメモリ等のハードウェア、およびコンピュータプログラム(上記の制御プログラム)等により実現される。例えば、内部抵抗取得部211、SOC取得部212、データ配列保存部213およびテーブル更新部214は、コンピュータプログラムのモジュール(例えば、関数)等に相当する。この場合、CPUがメモリに記憶されたコンピュータプログラムを実行することにより、内部抵抗取得部211、SOC取得部212、データ配列保存部213およびテーブル更新部214の機能が実現される。なお、内部抵抗取得部211、SOC取得部212、データ配列保存部213およびテーブル更新部214の一部または全てがハードウェアにより実現されてもよい。 The function of the charging state estimation device 200 is realized by hardware such as a CPU (Central Processing Unit) and a memory, a computer program (the above control program), and the like. For example, the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 correspond to a module (for example, a function) of a computer program. In this case, the functions of the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 are realized by the CPU executing the computer program stored in the memory. Note that some or all of the internal resistance acquisition unit 211, the SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 may be realized by hardware.
 本実施の形態に係るバッテリシステム500においては、充放電期間前の第1の非充放電期間におけるバッテリセル10の第1の端子電圧および充放電期間後の第2の非充放電期間におけるバッテリセル10の第2の端子電圧に基づいて充放電期間におけるバッテリセル10の充電状態であるSOCが算出される。算出されたSOC、ならびに充放電期間におけるバッテリ電流およびバッテリ電圧に基づいて充放電期間におけるバッテリセルの内部インピーダンスとして内部抵抗が算出される。この場合、例えば後述のように、電流積算値または経過時間等に基づいて、充放電期間におけるSOCを算出することができる。また、算出されたSOCから開放電圧を取得することができ、取得された開放電圧、バッテリ電流およびバッテリ電圧に基づいて内部抵抗を算出することができる。 In battery system 500 according to the present embodiment, the first terminal voltage of battery cell 10 in the first non-charge / discharge period before the charge / discharge period and the battery cell in the second non-charge / discharge period after the charge / discharge period. The SOC that is the state of charge of the battery cell 10 during the charge / discharge period is calculated based on the 10 second terminal voltage. An internal resistance is calculated as the internal impedance of the battery cell during the charge / discharge period based on the calculated SOC and the battery current and battery voltage during the charge / discharge period. In this case, for example, as described later, the SOC in the charge / discharge period can be calculated based on the integrated current value or the elapsed time. Moreover, an open circuit voltage can be acquired from the calculated SOC, and an internal resistance can be calculated based on the acquired open circuit voltage, battery current, and battery voltage.
 算出された内部抵抗および充放電期間におけるバッテリセル10の温度に基づいて記憶部215に記憶される内部インピーダンス情報である内部抵抗テーブルTAが更新される。これにより、バッテリセル10の個体差および劣化等に影響されることなく、バッテリセル10のSOCを精度よく推定することが可能となる。 The internal resistance table TA, which is internal impedance information stored in the storage unit 215, is updated based on the calculated internal resistance and the temperature of the battery cell 10 during the charge / discharge period. As a result, the SOC of the battery cell 10 can be accurately estimated without being affected by individual differences and deterioration of the battery cell 10.
 (1-3)内部抵抗テーブルおよびSOCテーブル
 バッテリセル10の内部抵抗は、バッテリセル10の温度およびSOCに依存する。本実施の形態では、バッテリセル10の温度、SOCおよび内部抵抗の関係を示す内部抵抗テーブルTAが充電状態推定装置200の記憶部215に記憶される。内部抵抗テーブルTAは、バッテリセルの内部抵抗と温度との関係を表す内部インピーダンス情報の例である。内部抵抗テーブルTAの代わりに、バッテリセルの温度と内部抵抗との関係を表す関数等が用いられてもよい。
(1-3) Internal Resistance Table and SOC Table The internal resistance of the battery cell 10 depends on the temperature and SOC of the battery cell 10. In the present embodiment, an internal resistance table TA indicating the relationship between the temperature, SOC, and internal resistance of battery cell 10 is stored in storage unit 215 of charge state estimation device 200. The internal resistance table TA is an example of internal impedance information representing the relationship between the internal resistance of the battery cell and the temperature. Instead of the internal resistance table TA, a function representing the relationship between the temperature of the battery cell and the internal resistance may be used.
 図3は、内部抵抗テーブルTAの一例を示す図である。図3において、X11、X12、…、X1m、X21、X22、…、X2m、…、Xn1、Xn2、…、Xnmは、バッテリセル10の内部抵抗の値である。図3の例では、バッテリ温度が5℃だけ異なる毎にかつSOCが10%だけ異なる毎に内部抵抗の値が示される。内部抵抗取得部211は、温度検出部203からの温度情報およびSOC取得部212により取得されるSOCに対応する内部抵抗を内部抵抗テーブルTAから取得する。 FIG. 3 is a diagram showing an example of the internal resistance table TA. In FIG. 3, X11, X12,..., X1m, X21, X22,..., X2m, ..., Xn1, Xn2, ..., Xnm are values of the internal resistance of the battery cell 10. In the example of FIG. 3, the value of the internal resistance is shown every time the battery temperature differs by 5 ° C. and every time the SOC changes by 10%. The internal resistance acquisition unit 211 acquires the internal resistance corresponding to the temperature information from the temperature detection unit 203 and the SOC acquired by the SOC acquisition unit 212 from the internal resistance table TA.
 また、バッテリセル10のSOCは、バッテリセル10の開放電圧に依存する。本実施の形態では、バッテリセル10の開放電圧およびSOCの関係を示すSOCテーブルTBが充電状態推定装置200の記憶部215に記憶される。SOCテーブルTBは、バッテリセル10の充電状態と開放電圧との関係を表す充電状態情報の例である。SOCテーブルTBの代わりに、バッテリセルの開放電圧と充電状態との関係を表す関数等が用いられてもよい。 Also, the SOC of the battery cell 10 depends on the open voltage of the battery cell 10. In the present embodiment, SOC table TB indicating the relationship between the open circuit voltage of battery cell 10 and the SOC is stored in storage unit 215 of charge state estimation device 200. The SOC table TB is an example of charge state information representing the relationship between the charge state of the battery cell 10 and the open circuit voltage. Instead of the SOC table TB, a function representing the relationship between the open voltage of the battery cell and the state of charge may be used.
 図4は、SOCテーブルTBの一例を示す図である。図4において、横軸はSOCを示し、縦軸は開放電圧を示す。SOC取得部212は、電流検出部201からの電流情報、電圧検出部202からの電圧情報および内部抵抗取得部211により取得される内部抵抗に基づいてバッテリセル10の開放電圧を算出し、算出された開放電圧に対応するSOCをSOCテーブルTBから取得する。なお、バッテリセル10のSOCおよび開放電圧の関係は、バッテリセル10の温度および劣化に依存しない。 FIG. 4 is a diagram showing an example of the SOC table TB. In FIG. 4, the horizontal axis indicates the SOC, and the vertical axis indicates the open circuit voltage. The SOC acquisition unit 212 calculates the open circuit voltage of the battery cell 10 based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the internal resistance acquired by the internal resistance acquisition unit 211, and is calculated. The SOC corresponding to the open circuit voltage is obtained from the SOC table TB. Note that the relationship between the SOC of the battery cell 10 and the open circuit voltage does not depend on the temperature and deterioration of the battery cell 10.
 (1-4)SOCの推定
 充電状態推定装置200によるSOCの推定について、バッテリセル10の充電時を例に説明する。図5は、バッテリセル10の充電時におけるバッテリ電流、バッテリ電圧およびバッテリ温度の変化を示す図である。図5(a)~(c)において、縦軸は各々バッテリ電流I、バッテリ電圧Vおよびバッテリ温度Tを示し、横軸は、時間を示す。図5(a)において、充電時のバッテリ電流は正の値で表され、放電時のバッテリ電流は負の値で表される。本例では、図5(a)に示すように、定電流でバッテリセル10の充電が行われる。
(1-4) Estimation of SOC The estimation of the SOC by the state-of-charge estimation device 200 will be described by taking the battery cell 10 as an example. FIG. 5 is a diagram illustrating changes in battery current, battery voltage, and battery temperature when the battery cell 10 is charged. 5A to 5C, the vertical axis indicates the battery current I, the battery voltage V, and the battery temperature T, respectively, and the horizontal axis indicates time. In FIG. 5A, the battery current at the time of charging is represented by a positive value, and the battery current at the time of discharging is represented by a negative value. In this example, as shown in FIG. 5A, the battery cell 10 is charged with a constant current.
 バッテリセル10の充電が開始される時点t1よりも前の時点では、バッテリ電圧(バッテリセル10の端子電圧)がバッテリセル10の開放電圧と等しい。そこで、SOC取得部212は、この時点で電圧検出部202により検出されるバッテリ電圧Vaを電圧情報として取得し、取得されたバッテリ電圧Vaに対応するSOCを図4のSOCテーブルTBから取得する。 The battery voltage (terminal voltage of the battery cell 10) is equal to the open voltage of the battery cell 10 at a time before the time t1 when the charging of the battery cell 10 is started. Therefore, the SOC acquisition unit 212 acquires the battery voltage Va detected by the voltage detection unit 202 at this time as voltage information, and acquires the SOC corresponding to the acquired battery voltage Va from the SOC table TB of FIG.
 時点t1において、バッテリセル10の充電が開始されると、図5(b)に示すように、バッテリ電圧がバッテリセル10の開放電圧よりも内部抵抗による電圧降下分だけ上昇する。この場合、内部抵抗取得部211が、温度情報として与えられるバッテリ温度およびSOC取得部212により取得されるSOCに対応する内部抵抗を内部抵抗テーブルTAから取得する。この場合、SOC取得部212により取得されるSOCは、後述のように、1周期前の時点で取得されるSOCである。また、内部抵抗テーブルTAは、前回の充電または放電の停止時に更新された内部抵抗テーブルTAである。本例では、図5(c)に示すように、バッテリセル10の充電時に、バッテリ温度がTaからTbに上昇する。 When charging of the battery cell 10 is started at time t1, the battery voltage rises by the voltage drop due to the internal resistance from the open voltage of the battery cell 10, as shown in FIG. In this case, the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the battery temperature given as temperature information and the SOC acquired by the SOC acquisition unit 212 from the internal resistance table TA. In this case, the SOC acquired by the SOC acquisition unit 212 is the SOC acquired at the time point one cycle before, as will be described later. The internal resistance table TA is the internal resistance table TA updated when the previous charging or discharging is stopped. In this example, as shown in FIG. 5C, when the battery cell 10 is charged, the battery temperature increases from Ta to Tb.
 SOC取得部212は、下記式(1)を用いて、内部抵抗取得部211により取得された内部抵抗、電流情報として与えられる(電流検出部201により検出される)バッテリ電流I、および電圧情報として与えられる(電圧検出部202により検出される)バッテリ電圧Vからバッテリセル10の開放電圧Eを算出し、算出された開放電圧Eに対応するSOCをSOCテーブルTBから取得する。下式(1)において、Rは、バッテリセル10の内部抵抗である。式(1)において、充電時のバッテリ電流は正の値で表され、放電時のバッテリ電流は負の値で表される。 The SOC acquisition unit 212 uses the following equation (1) to provide the internal resistance acquired by the internal resistance acquisition unit 211, the battery current I given as current information (detected by the current detection unit 201), and the voltage information. An open circuit voltage E of the battery cell 10 is calculated from a given battery voltage V (detected by the voltage detection unit 202), and an SOC corresponding to the calculated open circuit voltage E is obtained from the SOC table TB. In the following formula (1), R is an internal resistance of the battery cell 10. In equation (1), the battery current during charging is represented by a positive value, and the battery current during discharging is represented by a negative value.
 E=V+IR…(1)
 時点t2においてバッテリセル10の充電が停止された後、一定の時間(以下、過渡時間と呼ぶ)TPが経過すると、バッテリセル10の充電の開始前と同様に、バッテリ電圧がバッテリセル10の開放電圧と等しくなる。ここで、バッテリセル10の開放電圧は、バッテリセル10が充電または放電を行っておらずかつ定常状態にあるときのバッテリセル10の端子電圧に等しい。すなわち、過渡時間TPは、バッテリセル10の充放電が停止されてからバッテリセル10の端子電圧が安定する(定常状態となる)までの時間である。そのため、時点t2から過渡時間TPが経過した時点t3以後において、SOC取得部212は、その時点で電圧検出部202により検出されるバッテリ電圧Vbを電圧情報として取得し、取得されたバッテリ電圧Vbに対応するSOCをSOCテーブルTBから取得する。
E = V + IR (1)
After the charging of the battery cell 10 is stopped at the time t2, when a certain time (hereinafter referred to as a transient time) TP elapses, the battery voltage is released from the battery cell 10 as before the charging of the battery cell 10 is started. Equal to the voltage. Here, the open circuit voltage of the battery cell 10 is equal to the terminal voltage of the battery cell 10 when the battery cell 10 is not charged or discharged and is in a steady state. That is, the transient time TP is a time from when charging / discharging of the battery cell 10 is stopped until the terminal voltage of the battery cell 10 is stabilized (becomes a steady state). Therefore, after time t3 when the transition time TP has elapsed from time t2, the SOC acquisition unit 212 acquires the battery voltage Vb detected by the voltage detection unit 202 at that time as voltage information, and obtains the acquired battery voltage Vb. The corresponding SOC is acquired from the SOC table TB.
 このようにして、バッテリセル10の充電または放電が行われる充放電期間およびバッテリセル10の充電または放電が行われない非充放電期間において、バッテリセル10のSOCが推定される。 Thus, the SOC of the battery cell 10 is estimated in the charge / discharge period in which the battery cell 10 is charged or discharged and in the non-charge / discharge period in which the battery cell 10 is not charged or discharged.
 (1-5)内部抵抗テーブルの更新
 上記のように、バッテリセル10のSOCを推定するためには、バッテリセル10の内部抵抗の値が必要である。この場合、より最新の内部抵抗の値を用いることが望ましい。
(1-5) Update of Internal Resistance Table As described above, in order to estimate the SOC of the battery cell 10, the value of the internal resistance of the battery cell 10 is required. In this case, it is desirable to use the latest internal resistance value.
 バッテリセル10の充放電期間において、データ配列保存部213は、予め定められた保存条件SRが満たされるごとに、バッテリ電流、バッテリ電圧、バッテリ温度、および電流積算値をデータ配列として保存する。保存条件SRは、例えば、前回のデータ配列の保存時からのバッテリ温度の変化量が予め定められたしきい値以上になること、または前回のデータ配列の保存時からのSOCの変化量が予め定められたしきい値以上になることの少なくとも一方である。なお、バッテリセル10の充放電が開始される直前のバッテリ電流、バッテリ電圧、バッテリ温度、および電流積算値もデータ配列として保存されてもよい。バッテリ温度の変化量のしきい値は、例えば5℃であり、SOCの変化量のしきい値は、例えば10%である。以下、データ配列保存部213にデータ配列が保存される時点(保存条件SRが満たされる時点)を保存時点と呼ぶ。内部抵抗テーブルTAにおいては、その記憶容量が大きくなり過ぎずかつ内部抵抗を精度よく推定可能なように、例えば、図3に示したように、バッテリ温度が5℃だけ異なる毎にかつSOCが10%だけ異なる毎に内部抵抗の値が示される。保存条件SRにおけるバッテリ温度の変化量のしきい値およびSOCの変化量は、内部抵抗テーブルTAにおけるバッテリ温度の間隔およびSOCの間隔に等しいかまたはそれ以下であることが好ましい。 During the charge / discharge period of the battery cell 10, the data array storage unit 213 stores the battery current, the battery voltage, the battery temperature, and the current integrated value as a data array each time a predetermined storage condition SR is satisfied. The storage condition SR is, for example, that the amount of change in battery temperature since the previous storage of the data array is equal to or greater than a predetermined threshold, or the amount of change in SOC since the previous storage of the data array is It is at least one of exceeding a predetermined threshold value. Note that the battery current, the battery voltage, the battery temperature, and the current integrated value immediately before the charging / discharging of the battery cell 10 is started may be stored as a data array. The threshold value for the change amount of the battery temperature is, for example, 5 ° C., and the threshold value for the change amount of the SOC is, for example, 10%. Hereinafter, a time point when the data array is stored in the data array storage unit 213 (a time point when the storage condition SR is satisfied) is referred to as a storage time point. In the internal resistance table TA, the storage capacity does not become too large and the internal resistance can be accurately estimated. For example, as shown in FIG. The value of the internal resistance is shown for every% difference. The threshold value of the change amount of the battery temperature and the change amount of the SOC in the storage condition SR are preferably equal to or less than the battery temperature interval and the SOC interval in the internal resistance table TA.
 バッテリセル10の充放電が停止されると、テーブル更新部214が、データ配列保存部213により保存されるデータ配列に基づいて内部抵抗テーブルTAを更新する。また、本例では、内部抵抗テーブルTAの更新の終了後、データ配列保存部213が、保存容量の増大を抑制するために、バッテリセル10の充放電停止時におけるSOCおよび電流積算値をデータ配列として保存し、それ以外のデータ配列を消去する。以下に示すように、データ配列保存部213に保存される充放電停止時のSOCおよび電流積算値は、次回の充放電開始時のSOCおよび電流積算値として用いられる。 When charging / discharging of the battery cell 10 is stopped, the table update unit 214 updates the internal resistance table TA based on the data array stored by the data array storage unit 213. In this example, after the update of the internal resistance table TA is completed, the data array storage unit 213 stores the SOC and the current integrated value when the charging / discharging of the battery cell 10 is stopped in order to suppress an increase in storage capacity. And erase the other data array. As shown below, the SOC and current integrated value at the time of charge / discharge stop stored in the data array storage unit 213 are used as the SOC and current integrated value at the start of the next charge / discharge.
 以下、内部抵抗テーブルTAの更新について、バッテリセル10の充電の停止時を例に説明する。図6は、バッテリセル10の充電時における電流積算値の変化およびSOCの変化を示す。図6(a)および図6(b)において、縦軸は電流積算値S_IおよびSOCをそれぞれ示し、横軸は時間を示す。また、時点t0から時点t1までを前回の非充放電期間とし、時点t1から時点t2までを充放電期間とし、時点t2以後を今回の非充放電期間とする。前回および今回の非充放電期間は、充放電期間の前後における第1および第2の非充放電期間の例である。図6の例は、上記の図5の例に対応し、定電流でバッテリセル10の充電が行われる例である。この場合、電流積算値S_Iは直線的に増加する。また、SOCは電流積算値S_Iに応じて増減するので、この場合には直線的に増加する。 Hereinafter, the update of the internal resistance table TA will be described by taking as an example a case where the charging of the battery cell 10 is stopped. FIG. 6 shows a change in the integrated current value and a change in the SOC when the battery cell 10 is charged. In FIG. 6A and FIG. 6B, the vertical axis indicates the current integrated value S_I and the SOC, respectively, and the horizontal axis indicates time. Also, the period from time t0 to time t1 is the previous non-charge / discharge period, the period from time t1 to time t2 is the charge / discharge period, and the period after time t2 is the current non-charge / discharge period. The previous and current non-charging / discharging periods are examples of first and second non-charging / discharging periods before and after the charging / discharging period. The example of FIG. 6 corresponds to the example of FIG. 5 described above, and is an example in which the battery cell 10 is charged with a constant current. In this case, the current integrated value S_I increases linearly. Further, since the SOC increases or decreases according to the current integrated value S_I, in this case, it increases linearly.
 充放電期間の終了時点t2において、データ配列保存部213は、データ配列として、前回の非充放電期間の時点t0のSOCおよび電流積算値、ならびに充放電期間(時点t1~t2)における各保存時点P1,P2,…,Pi,…,Pnのバッテリ電流、バッテリ電圧、バッテリ温度および電流積算値を保存している。ここで、Piは任意の保存時点を示し、Pnは充放電期間内の最後の保存時点を示す。 At the end time t2 of the charge / discharge period, the data array storage unit 213 uses the SOC and current integrated value at the time t0 of the previous non-charge / discharge period as well as each storage time in the charge / discharge period (time t1 to t2) as the data array. The battery current, battery voltage, battery temperature, and current integrated value of P1, P2,..., Pi,. Here, Pi represents an arbitrary storage time, and Pn represents the last storage time in the charge / discharge period.
 まず、テーブル更新部214は、データ配列保存部213から前回の非充放電期間の時点t0のSOCを充放電期間の開始時点t1におけるSOCpreとして取得する。また、テーブル更新部214は、充放電期間の終了時点t2から過渡時間TPが経過した後、その時点(例えば、図5の時点t3)のバッテリ電圧Vb(図5(b))に対応するSOCをSOCテーブルTBからSOCpostとして取得する。図5(b)のバッテリ電圧Vaは、第1の非充電期間における第1の端子電圧の例であり、図5(b)のバッテリ電圧Vbは、第2の非充電期間における第2の端子電圧の例である。図6(b)のSOCpreは、第1の非充放電期間における第1の充電状態の例であり、図6(b)のSOCpostは、第2の非充放電期間における第2の充電状態の例である。 First, the table update unit 214 acquires the SOC at the time t0 of the previous non-charge / discharge period from the data array storage unit 213 as the SOCpre at the start time t1 of the charge / discharge period. In addition, the table updating unit 214, after the transition time TP has elapsed from the end time t2 of the charge / discharge period, the SOC corresponding to the battery voltage Vb (FIG. 5B) at that time (for example, the time t3 in FIG. 5). Is obtained as SOCpost from the SOC table TB. The battery voltage Va in FIG. 5B is an example of the first terminal voltage in the first non-charging period, and the battery voltage Vb in FIG. 5B is the second terminal in the second non-charging period. It is an example of a voltage. 6B is an example of the first charge state in the first non-charge / discharge period, and SOCpost in FIG. 6B is the second charge state in the second non-charge / discharge period. It is an example.
 なお、時点t1は、充電または放電が行われない第1の非充放電期間における時点の一例であり、時点t2,t3は、充電または放電が行われない第2の非充放電期間における時点の一例である。第1の非充放電期間における第1の端子電圧および第1の充電状態として、充放電開始直前の端子電圧および充電状態が用いられることが好ましく、第2の非充放電期間における第2の端子電圧および第2の充電状態として、充放電が停止されてから過渡時間TPが経過した直後の端子電圧および充電状態が用いられることが好ましい。すなわち、時点t1は、第1の非充放電期間において好適な時点の例であり、時点t3は、第2の非充放電期間において好適な時点の例である。 The time point t1 is an example of the time point in the first non-charge / discharge period in which charging or discharging is not performed, and the time points t2 and t3 are the time points in the second non-charging / discharging period in which charging or discharging is not performed. It is an example. As the first terminal voltage and the first charging state in the first non-charging / discharging period, it is preferable to use the terminal voltage and the charging state immediately before the start of charging / discharging, and the second terminal in the second non-charging / discharging period. As the voltage and the second state of charge, it is preferable to use the terminal voltage and the state of charge immediately after the transition time TP has elapsed since charging / discharging was stopped. That is, the time point t1 is an example of a suitable time point in the first non-charge / discharge period, and the time point t3 is an example of a suitable time point in the second non-charge / discharge period.
 続いて、テーブル更新部214は、下式(2)を用いて、データ配列保存部213にデータ配列として保存される保存時点P1~Pnの電流積算値(図6(a))から保存時点P1~PnのSOCを推定する(図6(b))。下式(2)において、SOC[i]およびS_I[i]は、充放電期間の任意の保存時点Piにおけるバッテリセル10のSOCおよび電流積算値である。S_Ipreは、データ配列保存部213に保存される前回の非充放電期間の時点t0における電流積算値である。S_Ipostは、充放電期間の終了時点t2における電流積算値である。 Subsequently, the table updating unit 214 uses the following equation (2) to calculate the storage time point P1 from the current integrated values (FIG. 6A) of the storage time points P1 to Pn stored as the data array in the data array storage unit 213. The SOC of .about.Pn is estimated (FIG. 6 (b)). In the following formula (2), SOC [i] and S_I [i] are the SOC and current integrated value of the battery cell 10 at an arbitrary storage time point Pi in the charge / discharge period. S_Ipre is an integrated current value at time t0 of the previous non-charge / discharge period stored in the data array storage unit 213. S_Ipost is an integrated current value at the end time t2 of the charge / discharge period.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 充放電期間の開始時点t1から任意の保存時点Piまでの電流積算値の変化量(S_I[i]-S_Ipre)と、任意の保存時点Piから充放電期間の終了時点t2までの電流積算値の変化量(S_Ipost-S_I[i])との比は、充放電期間の開始時点t1から任意の保存時点PiまでのSOCの変化量(SOC[i]-SOCpre)と、任意の保存時点Piから充放電期間の終了時点t2までのSOCの変化量(SOCpost-SOC[i])との比と等しい。したがって、上式(2)により、任意の保存時点PiのSOC[i]が得られる。以下、このようにしてテーブル更新部214により算出される各保存時点PiのSOCを推定SOCと呼ぶ。推定SOCは、充放電期間における充電状態の例である。 The amount of change in the current integrated value from the start time t1 of the charge / discharge period to the arbitrary storage time Pi (S_I [i] −S_Ipre) and the current integrated value from the arbitrary storage time Pi to the end time t2 of the charge / discharge period The ratio with the change amount (S_Ipost−S_I [i]) is calculated from the change amount of SOC (SOC [i] −SOCpre) from the start time t1 of the charge / discharge period to the arbitrary storage time point Pi and the arbitrary storage time point Pi. It is equal to the ratio with the amount of change in SOC (SOCpost-SOC [i]) until the end time t2 of the charge / discharge period. Therefore, the SOC [i] at an arbitrary storage time Pi is obtained by the above equation (2). Hereinafter, the SOC at each storage point Pi calculated by the table updating unit 214 in this way is referred to as an estimated SOC. The estimated SOC is an example of the state of charge during the charge / discharge period.
 続いて、テーブル更新部214は、算出された保存時点P1~Pnの推定SOCおよびデータ配列保存部213に保存される保存時点P1~Pnのバッテリ電流およびバッテリ電圧に基づいて、保存時点P1~Pnの内部抵抗を推定する。具体的には、テーブル更新部214は、保存時点P1~Pnの開放電圧として、保存時点P1~Pnの推定SOCに対応する開放電圧をSOCテーブルTBから取得する。さらに、テーブル更新部214は、上式(1)を用いて、取得された保存時点P1~Pnの開放電圧、ならびにデータ配列保存部213に保存される保存時点P1~Pnのバッテリ電流およびバッテリ電圧に基から保存時点P1~Pnの内部抵抗を算出する。以下、このようにしてテーブル更新部214により推定SOCから推定される内部抵抗を推定内部抵抗Rtと呼ぶ。推定内部抵抗Rtは、充放電期間における内部抵抗の例である。 Subsequently, the table updating unit 214 stores the storage time points P1 to Pn based on the calculated estimated SOCs of the storage time points P1 to Pn and the battery currents and battery voltages of the storage time points P1 to Pn stored in the data array storage unit 213. Estimate the internal resistance. Specifically, the table update unit 214 acquires, from the SOC table TB, the open circuit voltage corresponding to the estimated SOC at the storage time points P1 to Pn as the open circuit voltage at the storage time points P1 to Pn. Further, the table update unit 214 uses the above equation (1) to obtain the obtained release voltage at the storage time points P1 to Pn and the battery currents and battery voltages at the storage time points P1 to Pn stored in the data array storage unit 213. Based on the above, the internal resistance at the storage time points P1 to Pn is calculated. Hereinafter, the internal resistance estimated from the estimated SOC by the table updating unit 214 in this way is referred to as an estimated internal resistance Rt. The estimated internal resistance Rt is an example of the internal resistance during the charge / discharge period.
 図7は、内部抵抗テーブルTAの更新について説明するための図である。図7において、横軸はSOCを示し、縦軸はバッテリ温度Tを示す。上記のように、全てのバッテリ温度および全てのSOCに対応する内部抵抗が内部抵抗テーブルTAに含まれるのではなく、例えば、バッテリ温度が一定値だけ異なる毎かつSOCが一定値だけ異なる毎の内部抵抗が内部抵抗テーブルTAに含まれる。図7において、内部抵抗テーブルTAに含まれる内部抵抗に対応するバッテリ温度とSOCとの関係が複数の「□」で示される。以下、内部抵抗テーブルTAに含まれる内部抵抗に対応するバッテリ温度およびSOCをそれぞれテーブル対応温度およびテーブル対応SOCと呼ぶ。 FIG. 7 is a diagram for explaining the update of the internal resistance table TA. In FIG. 7, the horizontal axis indicates the SOC, and the vertical axis indicates the battery temperature T. As described above, internal resistance corresponding to all battery temperatures and all SOCs is not included in the internal resistance table TA. For example, each time the battery temperature differs by a certain value and every time the SOC differs by a certain value The resistance is included in the internal resistance table TA. In FIG. 7, the relationship between the battery temperature and the SOC corresponding to the internal resistance included in the internal resistance table TA is indicated by a plurality of “□”. Hereinafter, the battery temperature and the SOC corresponding to the internal resistance included in the internal resistance table TA are referred to as a table corresponding temperature and a table corresponding SOC, respectively.
 また、図7において、各保存時点Piにおけるバッテリ温度および推定SOCの関係が「×」で表される。本例では、保存時点P1~P6におけるバッテリ温度および推定SOCの関係が示される。保存時点P1~P6において、バッテリ温度がTaからTbに変化し、SOCがSOCpreからSOCpostに変化する。 In FIG. 7, the relationship between the battery temperature and the estimated SOC at each storage time Pi is represented by “x”. In this example, the relationship between the battery temperature and the estimated SOC at the storage time points P1 to P6 is shown. At storage time points P1 to P6, the battery temperature changes from Ta to Tb, and the SOC changes from SOCpre to SOCpost.
 まず、テーブル更新部214は、更新前の内部抵抗テーブルTAに基づいて、各保存時点Piの参照内部抵抗Rsを算出する。具体的には、いずれかの保存時点のバッテリ温度および推定SOCが、テーブル対応温度およびテーブル対応SOCにそれぞれ一致している場合(図7の例における保存時点P1,P4,P6)、テーブル更新部214は、その保存時点のバッテリ温度および推定SOCに対応する内部抵抗を更新前の内部抵抗テーブルTAから参照内部抵抗Rsとして取得する。一方、いずれかの保存時点のバッテリ温度および推定SOCが、テーブル対応温度およびテーブル対応SOCにそれぞれ一致していない場合(図7の例における保存時点P2,P3,P5)、テーブル更新部214は、「□」に一致していないその保存時点のバッテリ温度および推定SOCに近い複数のテーブル対応温度および複数のテーブル対応SOCに対応する複数の内部抵抗を更新前の内部抵抗テーブルTAから取得する。テーブル更新部214は、取得された複数の内部抵抗から補間計算によりその保存時点のバッテリ温度および推定SOCに対応する内部抵抗を参照内部抵抗Rsとして算出する。 First, the table update unit 214 calculates a reference internal resistance Rs at each storage point Pi based on the internal resistance table TA before update. Specifically, when the battery temperature and the estimated SOC at any one of the storage times match the table corresponding temperature and the table corresponding SOC (storage time points P1, P4, P6 in the example of FIG. 7), the table update unit 214 acquires the internal resistance corresponding to the battery temperature and the estimated SOC at the time of storage as the reference internal resistance Rs from the internal resistance table TA before update. On the other hand, when the battery temperature and the estimated SOC at any one of the storage times do not match the table-corresponding temperature and the table-corresponding SOC (storage points P2, P3, P5 in the example of FIG. 7), the table updating unit 214 A plurality of table-corresponding temperatures and a plurality of internal resistances corresponding to the plurality of table-corresponding SOCs close to the estimated battery temperature and the estimated SOC that do not match “□” are acquired from the internal resistance table TA before update. The table updating unit 214 calculates an internal resistance corresponding to the battery temperature and the estimated SOC at the time of storage as a reference internal resistance Rs by interpolation calculation from the plurality of acquired internal resistances.
 続いて、テーブル更新部214は、下式(3)を用いて、各保存時点P1~P6の内部抵抗変化係数Krを算出する。下式(3)において、Kr[i]、Rs[i]およびRt[i]は、充放電期間の任意の保存時点Piにおける内部抵抗変化係数、参照内部抵抗および推定内部抵抗である。 Subsequently, the table updating unit 214 calculates the internal resistance change coefficient Kr at each storage time point P1 to P6 using the following equation (3). In the following equation (3), Kr [i], Rs [i], and Rt [i] are an internal resistance change coefficient, a reference internal resistance, and an estimated internal resistance at an arbitrary storage point Pi in the charge / discharge period.
 Kr[i]=Rs[i]÷Rt[i]…(3)
 続いて、テーブル更新部214は、算出された内部抵抗変化係数Krに基づいて、バッテリ温度と内部抵抗変化係数との関係を表す温度変化係数情報、およびSOCと内部抵抗変化係数との関係を表すSOC変化係数情報を取得する。
Kr [i] = Rs [i] ÷ Rt [i] (3)
Subsequently, based on the calculated internal resistance change coefficient Kr, the table updating unit 214 represents temperature change coefficient information indicating the relationship between the battery temperature and the internal resistance change coefficient, and the relationship between the SOC and the internal resistance change coefficient. Obtain SOC change coefficient information.
 図8(a)は、温度変化係数情報の一例であり、図8(b)は、SOC変化係数情報の一例である。図8(a)において、横軸はバッテリ温度Tを示し、縦軸は内部抵抗変化係数Krを示す。図8(b)において、横軸はSOCを示し、縦軸は内部抵抗変化係数Krを示す。 FIG. 8 (a) is an example of temperature change coefficient information, and FIG. 8 (b) is an example of SOC change coefficient information. In FIG. 8A, the horizontal axis indicates the battery temperature T, and the vertical axis indicates the internal resistance change coefficient Kr. In FIG. 8B, the horizontal axis indicates the SOC, and the vertical axis indicates the internal resistance change coefficient Kr.
 図8(a)に示すように、複数の保存時点P1~P6におけるバッテリ温度と内部抵抗変化係数Krとの関係に基づいて、各保存時点P1~P6に対応する「X」の間を補間する計算により、実線L1で示すように、一定の温度範囲におけるバッテリ温度と内部抵抗変化係数Krとの関係が求められる。ここで、一定の温度範囲は、内部抵抗テーブルTAに含まれる温度範囲と等しい。なお、図8(a)の例では、保存時点P1のバッテリ温度Tよりも低い温度範囲においては、内部抵抗変化係数Krが、保存時点P1の内部抵抗変化係数Krと等しく一定に設定される。また、保存時点P6のバッテリ温度Tよりも高い温度範囲においては、内部抵抗変化係数Krが、保存時点P6の内部抵抗変化係数Krと等しく一定に設定される。 As shown in FIG. 8A, based on the relationship between the battery temperature and the internal resistance change coefficient Kr at a plurality of storage time points P1 to P6, interpolation is performed between “X” corresponding to each storage time point P1 to P6. By the calculation, as shown by the solid line L1, the relationship between the battery temperature and the internal resistance change coefficient Kr in a certain temperature range is obtained. Here, the certain temperature range is equal to the temperature range included in the internal resistance table TA. In the example of FIG. 8A, in the temperature range lower than the battery temperature T at the storage time point P1, the internal resistance change coefficient Kr is set to be equal to the internal resistance change coefficient Kr at the storage time point P1. Further, in the temperature range higher than the battery temperature T at the storage time point P6, the internal resistance change coefficient Kr is set to be equal to the internal resistance change coefficient Kr at the storage time point P6.
 同様に、図8(b)に示すように、各保存時点P1~P6におけるSOCと内部抵抗変化係数Krとの関係に基づいて、各保存時点P1~P6に対応する「X」の間を補間する計算により、実線L2で示すように、一定のSOCの範囲における内部抵抗変化係数Krの変化が求められる。ここで、一定のSOCの範囲は、内部抵抗テーブルTAに含まれるSOCの範囲と等しい。なお、図8(b)の例では、保存時点P1の推定SOCよりも低いSOCの範囲においては、内部抵抗変化係数Krが、保存時点P1の内部抵抗変化係数Krと等しく一定に設定され、保存時点P6の推定SOCよりも高いSOCの範囲においては、内部抵抗変化係数Krが、保存時点P6の内部抵抗変化係数Krと等しく一定に設定される。 Similarly, as shown in FIG. 8B, based on the relationship between the SOC and the internal resistance change coefficient Kr at each storage time point P1 to P6, interpolation between “X” corresponding to each storage time point P1 to P6 is performed. Thus, as shown by the solid line L2, the change in the internal resistance change coefficient Kr within a certain SOC range is obtained. Here, the constant SOC range is equal to the SOC range included in the internal resistance table TA. In the example of FIG. 8B, in the SOC range lower than the estimated SOC at the storage time point P1, the internal resistance change coefficient Kr is set to be constant and equal to the internal resistance change coefficient Kr at the storage time point P1. In the SOC range higher than the estimated SOC at the time point P6, the internal resistance change coefficient Kr is set to be constant and equal to the internal resistance change coefficient Kr at the storage time point P6.
 テーブル更新部214は、温度変化係数情報およびSOC変化係数情報に基づいて、テーブル対応温度およびテーブル対応SOCの各組み合わせに対応する内部抵抗変化係数Ktを算出する。具体的には、テーブル更新部214は、温度変化係数情報から一のテーブル対応温度に対応する内部抵抗変化係数Krを取得するとともに、SOC変化係数情報から一のテーブル対応SOCに対応する内部抵抗変化係数Krを取得する。テーブル更新部214は、一のテーブル対応温度および一のテーブル対応SOCの組み合わせに対応する内部抵抗変化係数Ksとして、取得された一のテーブル対応温度に対応する内部抵抗変化係数Krと取得された一のテーブル対応SOCに対応する内部抵抗変化係数Krとの積の平方根を算出する。 The table updating unit 214 calculates the internal resistance change coefficient Kt corresponding to each combination of the table corresponding temperature and the table corresponding SOC based on the temperature change coefficient information and the SOC change coefficient information. Specifically, the table updating unit 214 acquires the internal resistance change coefficient Kr corresponding to one table-corresponding temperature from the temperature change coefficient information, and also changes the internal resistance corresponding to one table-corresponding SOC from the SOC change coefficient information. The coefficient Kr is acquired. The table updating unit 214 acquires the acquired internal resistance change coefficient Kr corresponding to the acquired one table corresponding temperature as the internal resistance change coefficient Ks corresponding to the combination of the one table corresponding temperature and the one table corresponding SOC. The square root of the product with the internal resistance change coefficient Kr corresponding to the table corresponding SOC is calculated.
 例えば、図8(a)の温度変化係数情報において、テーブル対応温度がT11である場合の内部抵抗変化係数はKr11であり、図8(b)のSOC変化係数情報において、テーブル対応SOCがSOC11である場合の内部抵抗変化係数はKr21である。この場合、図7において、テーブル対応温度のT11とテーブル対応SOCのSOC11との組み合わせC11に対応する内部抵抗変化係数Ksは、
Ks=√(Kr11×Kr21)
となる。このようにして、テーブル対応温度およびテーブル対応SOCの各組み合わせに対応する内部抵抗変化係数Ktを算出する。
For example, in the temperature change coefficient information of FIG. 8A, the internal resistance change coefficient when the table corresponding temperature is T11 is Kr11. In the SOC change coefficient information of FIG. 8B, the table corresponding SOC is SOC11. In some cases, the internal resistance change coefficient is Kr21. In this case, in FIG. 7, the internal resistance change coefficient Ks corresponding to the combination C11 of the table corresponding temperature T11 and the table corresponding SOC SOC11 is
Ks = √ (Kr11 × Kr21)
It becomes. In this way, the internal resistance change coefficient Kt corresponding to each combination of the table corresponding temperature and the table corresponding SOC is calculated.
 続いて、テーブル更新部214は、テーブル対応温度およびテーブル対応SOCの各組み合わせに対応する内部抵抗を更新前の内部抵抗テーブルTAから内部抵抗Rtableとして取得する。さらに、テーブル更新部214は、下式(4)に示すように、テーブル対応温度およびテーブル対応SOCの各組み合わせに関して、取得された内部抵抗Rtableに内部抵抗変化係数Ksを乗ずることにより、テーブル更新値Rnewを算出する。 Subsequently, the table updating unit 214 acquires the internal resistance corresponding to each combination of the table corresponding temperature and the table corresponding SOC as the internal resistance Rtable from the internal resistance table TA before the update. Further, as shown in the following formula (4), the table update unit 214 multiplies the acquired internal resistance Rtable by the internal resistance change coefficient Ks for each combination of the table corresponding temperature and the table corresponding SOC, thereby updating the table update value. Rnew is calculated.
 Rnew=Ks×Rtable…(4)
 続いて、テーブル更新部214は、内部抵抗テーブルTAのテーブル対応温度およびテーブル対応SOCの各組み合わせに対応する内部抵抗(図7における□)をテーブル更新値Rnewに更新する。このようにして、内部抵抗テーブルTAの更新が完了する。
Rnew = Ks × Rtable (4)
Subsequently, the table updating unit 214 updates the internal resistance (□ in FIG. 7) corresponding to each combination of the table corresponding temperature and the table corresponding SOC of the internal resistance table TA to the table update value Rnew. In this way, the update of the internal resistance table TA is completed.
 (1-5)SOC推定処理
 充電状態推定装置200は、記憶部215に記憶される制御プログラムに基づいて、SOC推定処理を行う。図9および図10は、SOC推定処理のフローチャートである。充電状態推定装置200は、図9および図10のSOC推定処理を一定の周期(例えば250ms周期)で繰り返し行う。
(1-5) SOC Estimation Processing The charge state estimation device 200 performs SOC estimation processing based on the control program stored in the storage unit 215. 9 and 10 are flowcharts of the SOC estimation process. The charging state estimation device 200 repeatedly performs the SOC estimation processing of FIGS. 9 and 10 at a constant cycle (for example, a cycle of 250 ms).
 図9に示すように、まず、図2を用いて述べたように、SOC取得部212が、電流検出部201からの電流情報および電圧検出部202からの電圧情報に基づいてバッテリ電流およびバッテリ電圧を取得する。また、内部抵抗取得部211が、温度検出部203からの温度情報に基づいてバッテリ温度を取得する。また、データ配列保存部213が、電流検出部201からの電流情報、電圧検出部202からの電圧情報および温度検出部203からの温度情報に基づいてバッテリ電流、バッテリ電圧およびバッテリ温度を取得する(ステップS1)。 As shown in FIG. 9, first, as described with reference to FIG. 2, the SOC acquisition unit 212 performs battery current and battery voltage based on the current information from the current detection unit 201 and the voltage information from the voltage detection unit 202. To get. Further, the internal resistance acquisition unit 211 acquires the battery temperature based on the temperature information from the temperature detection unit 203. Further, the data array storage unit 213 acquires the battery current, the battery voltage, and the battery temperature based on the current information from the current detection unit 201, the voltage information from the voltage detection unit 202, and the temperature information from the temperature detection unit 203 ( Step S1).
 次に、SOC取得部212が、記憶部215に記憶される電流積算値を今回のSOC推定処理のステップS1において取得されたバッテリ電流が加算された値に更新する(ステップS2)。なお、記憶部215に記憶される電流積算値の初期値は0である。次に、内部抵抗取得部211が、バッテリ温度および前回のSOC推定処理時にSOC取得部212により推定されたSOCに対応する内部抵抗を記憶部215に記憶される内部抵抗テーブルTAから取得する(ステップS3)。 Next, the SOC acquisition unit 212 updates the current integrated value stored in the storage unit 215 to a value obtained by adding the battery current acquired in step S1 of the current SOC estimation process (step S2). Note that the initial value of the current integrated value stored in the storage unit 215 is zero. Next, the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the battery temperature and the SOC estimated by the SOC acquisition unit 212 during the previous SOC estimation process from the internal resistance table TA stored in the storage unit 215 (Step S1). S3).
 次に、SOC取得部212が、上式(1)を用いて、内部抵抗取得部211により取得された内部抵抗、バッテリ電流およびバッテリ電圧からバッテリセル10の開放電圧を算出し、取得された開放電圧に対応するSOCを記憶部215に記憶されるSOCテーブルTBから取得する。また、SOC取得部212は、取得されたSOCを出力する(ステップS4)。 Next, the SOC acquisition unit 212 calculates the open circuit voltage of the battery cell 10 from the internal resistance, battery current, and battery voltage acquired by the internal resistance acquisition unit 211 using the above equation (1), and the acquired open circuit The SOC corresponding to the voltage is acquired from the SOC table TB stored in the storage unit 215. Further, the SOC acquisition unit 212 outputs the acquired SOC (step S4).
 次に、データ配列保存部213が、バッテリ温度およびSOC取得部212により取得されたSOCに基づいて、上記の保存条件SRが満たされたか否かを判定する(ステップS5)。保存条件SRが満たされていない場合、データ配列保存部213は、後述のステップS7の処理を行う。 Next, the data array storage unit 213 determines whether or not the storage condition SR is satisfied based on the battery temperature and the SOC acquired by the SOC acquisition unit 212 (step S5). If the storage condition SR is not satisfied, the data array storage unit 213 performs a process of step S7 described later.
 保存条件SRが満たされた場合、データ配列保存部213は、ステップS1において取得されたバッテリ電流、バッテリ電圧およびバッテリ温度、ならびにステップS2において算出された電流積算値をデータ配列として保存する(ステップS6)。次に、データ配列保存部213は、バッテリ電流およびバッテリ電圧に基づいて、予め定められた更新条件が満たされたか否かを判定する(ステップS7)。 When the storage condition SR is satisfied, the data array storage unit 213 stores the battery current, battery voltage and battery temperature acquired in step S1, and the current integrated value calculated in step S2 as a data array (step S6). ). Next, the data array storage unit 213 determines whether or not a predetermined update condition is satisfied based on the battery current and the battery voltage (step S7).
 更新条件は、例えば、取得されるバッテリ電流の絶対値が予め定められたしきい値以下になってから予め定められた時間が経過したことである。予め定められたしきい値は、電流検出部201の精度等に応じて決定され、例えば500mAである。予め定められた時間は、過渡時間TPの長さに応じて決定され、例えば数分であり、バッテリ電圧をより安定させるためには、例えば60分である。なお、更新条件は、バッテリセル10の次の充放電が開始される直前となることであってもよい。 The update condition is, for example, that a predetermined time has elapsed since the absolute value of the acquired battery current has become equal to or less than a predetermined threshold value. The predetermined threshold is determined according to the accuracy of the current detection unit 201 and is, for example, 500 mA. The predetermined time is determined according to the length of the transition time TP, and is, for example, several minutes. For example, 60 minutes is required to make the battery voltage more stable. The update condition may be immediately before the next charge / discharge of the battery cell 10 is started.
 更新条件が満たされていない場合、充電状態推定装置200は、SOC推定処理を終了する。更新条件が満たされた場合、充電状態推定装置200は、内部抵抗テーブル更新処理を行い(ステップS8)、SOC推定処理を終了する。 If the update condition is not satisfied, the charging state estimation device 200 ends the SOC estimation process. When the update condition is satisfied, the charging state estimation device 200 performs an internal resistance table update process (step S8), and ends the SOC estimation process.
 図10に示すように、ステップS8の内部抵抗テーブル更新処理においては、まず、テーブル更新部214が、上記のように、上式(2)を用いた補間計算により各保存時点Piの推定SOCを算出する(ステップS11)。次に、テーブル更新部214が、各保存時点Piの推定SOCに対応する開放電圧を記憶部215に記憶されるSOCテーブルTBから取得し、上式(1)を用いて、取得された各保存時点Piの開放電圧、ならびにデータ配列保存部213に保存される各保存時点Piのバッテリ電流およびバッテリ電圧から各保存時点Piの推定内部抵抗を算出する(ステップS12)。 As shown in FIG. 10, in the internal resistance table update process in step S8, first, as described above, the table update unit 214 calculates the estimated SOC of each storage time point Pi by interpolation calculation using the above equation (2). Calculate (step S11). Next, the table update unit 214 acquires the open circuit voltage corresponding to the estimated SOC at each storage time Pi from the SOC table TB stored in the storage unit 215, and uses the above equation (1) to acquire each acquired storage The estimated internal resistance at each storage time Pi is calculated from the open circuit voltage at the time Pi and the battery current and battery voltage at each storage time Pi stored in the data array storage unit 213 (step S12).
 次に、テーブル更新部214が、推定SOC、推定内部抵抗および内部抵抗テーブルTAに基づいて、上記のように、テーブル対応温度およびテーブル対応SOCの各組み合わせに対応するテーブル更新値Rnewを算出する(ステップS13)。次に、テーブル更新部214が、算出されたテーブル更新値Rnewを用いて、記憶部215に記憶される内部抵抗テーブルTAを更新する(ステップS14)。次に、データ配列保存部213が、充放電停止時におけるSOC(図6(b)のSOCpost)および電流積算値(図6(a)のS_Ipost)を保存するとともに(ステップS15)、データ配列を初期化する(ステップS16)。ここで、データ配列の初期化とは、ステップS15で保存されていないデータ配列を消去することを意味する。これにより、充電状態推定装置200は、内部抵抗テーブル更新処理を終了する。 Next, the table updating unit 214 calculates the table update value Rnew corresponding to each combination of the table corresponding temperature and the table corresponding SOC as described above based on the estimated SOC, the estimated internal resistance, and the internal resistance table TA ( Step S13). Next, the table update unit 214 updates the internal resistance table TA stored in the storage unit 215 using the calculated table update value Rnew (step S14). Next, the data array storage unit 213 stores the SOC (SOCpost in FIG. 6B) and the current integrated value (S_Ipost in FIG. 6A) at the time of charge / discharge stop (step S15), and the data array Initialization is performed (step S16). Here, initialization of the data array means erasing the data array that has not been saved in step S15. Thereby, the charging state estimation apparatus 200 complete | finishes an internal resistance table update process.
 (1-6)効果
 本実施の形態では、バッテリセル10が充電または放電していない非充放電期間におけるバッテリ電圧に基づいて、充放電期間におけるバッテリセル10の充電状態としてSOCが算出される。充放電期間におけるバッテリ電流およびバッテリ電圧ならびに算出されたSOCに基づいて、バッテリセル10の内部抵抗が算出される。充放電期間におけるバッテリ温度および算出された内部抵抗に基づいて記憶部215に記憶される内部インピーダンス情報である内部抵抗テーブルTAが更新される。
(1-6) Effect In the present embodiment, the SOC is calculated as the state of charge of the battery cell 10 during the charge / discharge period based on the battery voltage during the non-charge / discharge period when the battery cell 10 is not charged or discharged. Based on the battery current and battery voltage during the charge / discharge period and the calculated SOC, the internal resistance of the battery cell 10 is calculated. The internal resistance table TA, which is internal impedance information stored in the storage unit 215, is updated based on the battery temperature and the calculated internal resistance during the charge / discharge period.
 この場合、内部抵抗テーブルTAを用いることなく、充放電期間の前後の非充放電期間におけるバッテリ電圧から内部抵抗テーブルTAを更新するための内部抵抗が算出される。これにより、内部抵抗テーブルTAが正確でない場合でも、内部抵抗を精度よく推定することができる。したがって、内部抵抗テーブルTAを正確に更新することができる。その結果、バッテリセル10の個体差および劣化等に影響されることなく、バッテリセル10のSOCを精度よく推定することができる。 In this case, the internal resistance for updating the internal resistance table TA is calculated from the battery voltage in the non-charge / discharge periods before and after the charge / discharge period without using the internal resistance table TA. Thereby, even when the internal resistance table TA is not accurate, the internal resistance can be accurately estimated. Therefore, the internal resistance table TA can be updated accurately. As a result, the SOC of the battery cell 10 can be accurately estimated without being affected by individual differences and deterioration of the battery cell 10.
 また、本実施の形態では、記憶部215に記憶される充電状態情報であるSOCテーブルTBに基づいて、充放電期間におけるSOCに対応する開放電圧が取得される。取得された開放電圧および充放電期間におけるバッテリ電流およびバッテリ電圧に基づいて、バッテリセル10の内部抵抗が算出される。これにより、充放電期間におけるバッテリセル10の内部抵抗を精度よく算出することができる。 Further, in the present embodiment, an open circuit voltage corresponding to the SOC in the charge / discharge period is acquired based on the SOC table TB that is the charge state information stored in the storage unit 215. The internal resistance of the battery cell 10 is calculated based on the acquired open circuit voltage and the battery current and battery voltage during the charge / discharge period. Thereby, the internal resistance of the battery cell 10 in the charge / discharge period can be calculated with high accuracy.
 また、本実施の形態では、充放電期間の前後の非充放電期間におけるバッテリ電圧に基づいて非充放電期間におけるバッテリセル10のSOCが取得される。取得された非充放電期間におけるSOCおよび充放電期間における電流積算値に基づいて、充放電期間におけるバッテリセル10のSOCが算出される。これにより、充放電期間におけるバッテリセル10のSOCを精度よく算出することができる。 In the present embodiment, the SOC of the battery cell 10 in the non-charge / discharge period is acquired based on the battery voltage in the non-charge / discharge period before and after the charge / discharge period. Based on the obtained SOC in the non-charge / discharge period and the integrated current value in the charge / discharge period, the SOC of the battery cell 10 in the charge / discharge period is calculated. Thereby, the SOC of the battery cell 10 during the charge / discharge period can be calculated with high accuracy.
 (1-7)第1の変形例
 (1-7-1)経過時間に基づいてSOCを算出
 上記の例では、テーブル更新部214が、データ配列保存部213に保存される電流積算値および上式(2)を用いた補間計算により充電期間の各保存時点PiにおけるSOCを算出するが、これに限らない。上記の例のように、充放電期間においてバッテリ電流が一定である場合には、単位時間当たりにおけるSOCの変化量が一定である。そのため、テーブル更新部214は、電流積算値および上式(2)を用いた補間計算を行うことなく、充放電期間の開始時点からの経過時間に基づく比例配分により、充放電期間の各保存時点PiにおけるSOCを算出してもよい。
(1-7) First Modification (1-7-1) Calculation of SOC Based on Elapsed Time In the above example, the table updating unit 214 calculates the current integrated value stored in the data array storage unit 213 and the upper The SOC at each storage point Pi in the charging period is calculated by interpolation calculation using Expression (2), but is not limited thereto. As in the above example, when the battery current is constant during the charge / discharge period, the amount of change in SOC per unit time is constant. Therefore, the table updating unit 214 performs each storage time point of the charging / discharging period by proportional distribution based on the elapsed time from the start time of the charging / discharging period without performing the interpolation calculation using the current integrated value and the above equation (2). The SOC at Pi may be calculated.
 図11および図12は、SOC推定処理の他の例を示すフローチャートである。図11および図12の例について、図9および図10の例と異なる点を説明する。図11のSOC推定処理では、ステップS2の処理(電流積算値の算出)が行われない。また、ステップS6の代わりに、ステップS6aにおいて、データ配列保存部213は、ステップS1において取得されたバッテリ電流、バッテリ電圧、バッテリ温度、および充放電期間の開始時点からの経過時間または時刻情報等をデータ配列として保存し、電流積算値を保存しない。 11 and 12 are flowcharts showing another example of the SOC estimation process. The example of FIGS. 11 and 12 will be described while referring to differences from the examples of FIGS. 9 and 10. In the SOC estimation process of FIG. 11, the process of step S2 (calculation of the current integrated value) is not performed. Further, instead of step S6, in step S6a, the data array storage unit 213 displays the battery current, battery voltage, battery temperature, and elapsed time or time information from the start of the charge / discharge period acquired in step S1. Save as a data array and do not save the integrated current value.
 ステップS8aの内部抵抗テーブル更新処理においては、図12に示すように、図10の例と異なり、まず、テーブル更新部214が、データ配列保存部213に保存されるバッテリ電流に基づいて、充放電期間におけるバッテリ電流が一定であったか否かを判定する(ステップS21)。充放電期間におけるバッテリ電流が一定であった場合、テーブル更新部214が、上記のように、電流積算値および上式(2)を用いた補間計算を行うことなく、充放電期間の開始時点からの経過時間に基づく比例配分により、各保存時点Piにおける推定SOCを算出する(ステップS11a)。その後、テーブル更新部214が、ステップS12a~S14aの処理を行う。図12のステップS12a~S14aの処理は、図10のステップS12~S14の処理と同様である。続いて、データ配列保存部213が、充放電停止時におけるSOCのみを保存し(ステップS15a)、データ配列保存部213が、データ配列を初期化する(ステップS16a)。 In the internal resistance table update process of step S8a, as shown in FIG. 12, unlike the example of FIG. 10, first, the table update unit 214 performs charge / discharge based on the battery current stored in the data array storage unit 213. It is determined whether or not the battery current during the period is constant (step S21). When the battery current in the charging / discharging period is constant, the table updating unit 214 does not perform the interpolation calculation using the current integrated value and the above equation (2) as described above, from the start time of the charging / discharging period. The estimated SOC at each storage time Pi is calculated by proportional distribution based on the elapsed time (step S11a). Thereafter, the table update unit 214 performs the processes of steps S12a to S14a. The processing in steps S12a to S14a in FIG. 12 is the same as the processing in steps S12 to S14 in FIG. Subsequently, the data array storage unit 213 stores only the SOC when charging / discharging is stopped (step S15a), and the data array storage unit 213 initializes the data array (step S16a).
 一方、ステップS21において、充放電期間におけるバッテリ電流が一定でなかった場合、テーブル更新部214が、ステップS11a~S14aの処理を行わない。ステップS15aにおいて、データ配列保存部213が、充放電停止時におけるSOCのみを保存し、ステップS16aにおいて、データ配列保存部213が、データ配列を初期化する。 On the other hand, if the battery current during the charging / discharging period is not constant in step S21, the table updating unit 214 does not perform the processes of steps S11a to S14a. In step S15a, the data array storage unit 213 stores only the SOC when charging / discharging is stopped, and in step S16a, the data array storage unit 213 initializes the data array.
 (1-7-2)効果
 本例では、充放電期間におけるバッテリ電流が一定である場合、充放電期間の前後の非充電期間におけるSOCおよび充放電期間の開始時点からの経過時間に基づいて、充放電期間におけるバッテリセル10の充電状態が算出される。この場合、電流積算値および上式(2)を用いた補間計算を行う場合に比べて演算量が少なくなるので、テーブル更新部214の処理負担が低減される。また、電流積算値を保存する必要がないので、データ配列保存部213の保存容量を削減することができる。
(1-7-2) Effect In this example, when the battery current in the charge / discharge period is constant, based on the SOC in the non-charge period before and after the charge / discharge period and the elapsed time from the start time of the charge / discharge period, The state of charge of the battery cell 10 during the charge / discharge period is calculated. In this case, the amount of calculation is reduced as compared with the case where the interpolation calculation using the current integrated value and the above equation (2) is performed, so that the processing load on the table updating unit 214 is reduced. In addition, since it is not necessary to store the integrated current value, the storage capacity of the data array storage unit 213 can be reduced.
 また、本例では、充放電期間におけるバッテリ電流が一定である場合に内部抵抗テーブルTAが更新され、充放電期間におけるバッテリ電流が一定でない場合に内部抵抗テーブルTAが更新されない。この場合、充放電期間におけるバッテリ電流が一定である場合にのみ選択的に内部抵抗テーブルTAが更新されるので、充電状態推定装置200の処理負担が低減されるとともに、充放電期間におけるバッテリ電流が一定でないことがある場合でも本バッテリシステム500を用いることが可能となる。 Further, in this example, the internal resistance table TA is updated when the battery current during the charge / discharge period is constant, and the internal resistance table TA is not updated when the battery current during the charge / discharge period is not constant. In this case, since the internal resistance table TA is selectively updated only when the battery current in the charge / discharge period is constant, the processing load on the charge state estimation device 200 is reduced, and the battery current in the charge / discharge period is reduced. The battery system 500 can be used even when it is not constant.
 (1-8)第2の変形例
 上記のように、充放電期間におけるバッテリ電流が一定である場合には、電流積算値および上式(2)を用いた補間計算を行うことなく、各保存時点PiのSOCを求めることができる。一方、充放電期間におけるバッテリ電流が一定でない場合には、電流積算値および上式(2)を用いた補間計算を行うことにより、各保存時点PiのSOCを求めることができる。
(1-8) Second Modification As described above, when the battery current during the charge / discharge period is constant, each storage is performed without performing the interpolation calculation using the current integrated value and the above equation (2). The SOC of the time point Pi can be obtained. On the other hand, when the battery current during the charge / discharge period is not constant, the SOC at each storage time Pi can be obtained by performing interpolation calculation using the current integrated value and the above equation (2).
 図13は、充放電期間におけるバッテリ電流、バッテリ電圧およびバッテリ温度の他の変化例を示す。図13(a)~(c)において、縦軸は各々、バッテリ電流I、バッテリ電圧Vおよびバッテリ温度Tを示し、横軸は、時間を示す。 FIG. 13 shows another example of changes in battery current, battery voltage, and battery temperature during the charge / discharge period. 13A to 13C, the vertical axis represents the battery current I, the battery voltage V, and the battery temperature T, respectively, and the horizontal axis represents time.
 図13の例では、充放電期間の時点t1~t11および時点t12~t2において、バッテリセル10が充電され、時点t11~t12において、バッテリセル10が放電される。また、バッテリセル10が充電時および放電時の各々において、バッテリ電流が一定ではない。 In the example of FIG. 13, the battery cell 10 is charged at the time points t1 to t11 and the time points t12 to t2 of the charge / discharge period, and the battery cell 10 is discharged at the time points t11 to t12. Further, the battery current is not constant when the battery cell 10 is charged and discharged.
 本例のように、充放電期間のバッテリ電流が一定でない場合、または充電および放電が交互に行われる場合でも、図5および図6を用いて述べたように、電流積算値および上式(2)を用いた補間計算により、各保存時点PiのSOCを得ることができる。バッテリ電流の変動例として、例えば正弦波状、のこぎり波状、またはランダムな変動が考えられるが、いずれの場合でも同様にして各保存時点PiのSOCを得ることができる。 Even when the battery current during the charge / discharge period is not constant as in this example, or when charging and discharging are performed alternately, as described with reference to FIGS. 5 and 6, the current integrated value and the above equation (2 ) Can be used to obtain the SOC at each storage point Pi. Examples of battery current fluctuations include, for example, sinusoidal, sawtooth, or random fluctuations. In either case, the SOC at each storage point Pi can be obtained in the same manner.
 このように、電流積算値および上式(2)を用いた補間計算を行うことにより、充放電期間におけるバッテリ電流の変動形態に拘わらず、充放電期間の各保存時点PiにおけるSOCを算出することができる。それにより、任意の状況で本バッテリシステム500を用いることが可能となる。 Thus, by performing the interpolation calculation using the current integrated value and the above equation (2), the SOC at each storage point Pi in the charge / discharge period is calculated regardless of the variation form of the battery current in the charge / discharge period. Can do. Thereby, the battery system 500 can be used in any situation.
 なお、充放電期間におけるバッテリ電流が一定であるか否かに応じて、図10のステップS11~S14の処理と、図12のステップS11a~S16aの処理とが選択的に行われてもよい。この場合には、図9のステップS2,S6の処理が行われる。例えば、図12のステップS21において、充放電期間におけるバッテリ電流が一定であった場合、テーブル更新部214が図12のステップS11a~S16aの処理を行う。一方、充放電期間におけるバッテリ電流が一定でなかった場合、テーブル更新部214が図10のステップS11~S16の処理を行う。 Note that the processing in steps S11 to S14 in FIG. 10 and the processing in steps S11a to S16a in FIG. 12 may be selectively performed depending on whether or not the battery current in the charge / discharge period is constant. In this case, steps S2 and S6 in FIG. 9 are performed. For example, if the battery current during the charge / discharge period is constant in step S21 of FIG. 12, the table update unit 214 performs the processes of steps S11a to S16a of FIG. On the other hand, if the battery current during the charging / discharging period is not constant, the table updating unit 214 performs the processes of steps S11 to S16 in FIG.
 これにより、定電流で充電または放電が行われる場合には、電流積算値および上式(2)を用いた補間計算を行うことなく簡易的に内部抵抗テーブルTAを更新することができる。一方、定電流以外で充電または放電が行われる場合には、電流積算値および上式(2)を用いた補間計算を行って正確に内部抵抗テーブルTAを更新することができる。 Thus, when charging or discharging is performed at a constant current, the internal resistance table TA can be easily updated without performing an interpolation calculation using the current integrated value and the above equation (2). On the other hand, when charging or discharging is performed at a current other than a constant current, the internal resistance table TA can be accurately updated by performing an interpolation calculation using the current integrated value and the above equation (2).
 (1-9)第3の変形例
 上記第2の変形例のように、バッテリセル10の充放電が定電流で行わる場合において、さらに、いずれの充放電期間においても予め定められた一定のバッテリ電流でのみ充放電が行われる場合には、データ配列保存部213が、充放電期間の電流および電流積算値を保存しなくてもよい。この場合、上記のように、テーブル更新部214が、充放電期間の開始時点からの経過時間に基づいて、各保存時点PiにおけるSOCを算出することができる。また、充放電期間におけるバッテリ電流が例えば記憶部215に予め記憶されることにより、テーブル更新部214が、算出されたSOCに対応する開放電圧をSOCテーブルTBから取得するとともに、取得された開放電圧、データ配列保存部213に保存されるバッテリ電圧ならびに記憶部215に記憶されるバッテリ電流に基づいて、各保存時点Piにおける開放電圧を算出することができる。したがって、データ配列保存部213、充放電期間の電流および電流積算値を用いることなく、各保存時点Piにおける内部抵抗を算出することができる。これにより、テーブル更新部214の処理負担を低減することができるとともに、データ配列保存部213の保存容量を削減することができる。
(1-9) Third Modification In the case where charging / discharging of the battery cell 10 is performed at a constant current as in the second modification, a predetermined constant value is used in any charge / discharge period. When charging / discharging is performed only with the battery current, the data array storage unit 213 does not have to store the current and integrated current value during the charging / discharging period. In this case, as described above, the table updating unit 214 can calculate the SOC at each storage time Pi based on the elapsed time from the start time of the charge / discharge period. In addition, the battery current in the charge / discharge period is stored in advance in the storage unit 215, for example, so that the table update unit 214 acquires the open circuit voltage corresponding to the calculated SOC from the SOC table TB, and the acquired open circuit voltage Based on the battery voltage stored in the data array storage unit 213 and the battery current stored in the storage unit 215, the open circuit voltage at each storage time Pi can be calculated. Therefore, the internal resistance at each storage time Pi can be calculated without using the data array storage unit 213, the current during the charge / discharge period, and the current integrated value. Thereby, the processing load on the table updating unit 214 can be reduced, and the storage capacity of the data array storage unit 213 can be reduced.
 (1-10)第4の変形例
 上記のように、電流積算値および上式(2)を用いて充放電期間の各保存時点PiにおけるSOCを算出する場合、一の充放電期間が長くなると、その期間に電流検出部201による検出誤差が蓄積され、電流積算値の積算誤差が大きくなる。それにより、SOCを精度よく算出することができない可能性がある。
(1-10) Fourth Modification As described above, when the SOC at each storage point Pi in the charge / discharge period is calculated using the integrated current value and the above equation (2), if one charge / discharge period becomes longer In this period, detection errors by the current detection unit 201 are accumulated, and the integration error of the current integration value increases. Thereby, there is a possibility that the SOC cannot be calculated accurately.
 そこで、一の充放電期間が予め定められた期間よりも長くなった場合には、テーブル更新部214が内部抵抗テーブルTAを更新せず、データ配列保存部213が充放電停止時におけるSOCおよび電流積算値の保存(図10のステップS15)ならびにデータ配列の初期化(図10のステップS16)のみを行ってもよい。この場合、内部抵抗テーブルTAが不正確な値に更新されることが防止される。 Therefore, when one charging / discharging period becomes longer than a predetermined period, the table updating unit 214 does not update the internal resistance table TA, and the data array storage unit 213 performs the SOC and current when charging / discharging is stopped. Only the storage of the integrated value (step S15 in FIG. 10) and the initialization of the data array (step S16 in FIG. 10) may be performed. In this case, the internal resistance table TA is prevented from being updated to an incorrect value.
 (1-11)第5の変形例
 バッテリセル10の充電時におけるバッテリセル10の温度、SOCおよび内部抵抗の関係と、バッテリセル10の放電時におけるバッテリセル10の温度、SOCおよび内部抵抗の関係とは異なることがある。その場合、バッテリセル10の充電時と放電時とで異なる内部抵抗テーブルTAが用いられてもよい。
(1-11) Fifth Modification Relationship between the temperature, SOC and internal resistance of the battery cell 10 during charging of the battery cell 10 and the relationship between the temperature, SOC and internal resistance of the battery cell 10 during discharging of the battery cell 10 May be different. In that case, different internal resistance tables TA may be used when the battery cell 10 is charged and discharged.
 図14(a)は、充電時用の内部抵抗テーブルの例であり、図14(b)は、放電時用の内部抵抗テーブルの例である。図14(a)の内部抵抗テーブルTA1において、Y11、Y12、…、Y1m、Y21、Y22、…、Y2m、…、Yn1、Yn2、…、Ynmは、バッテリセル10の充電時における内部抵抗の値である。図14(b)の内部抵抗テーブルTA2において、Z11、Z12、…、Z1m、Z21、Z22、…、Z2m、…、Zn1、Zn2、…、Znmは、バッテリセル10の放電時における内部抵抗の値である。 FIG. 14 (a) is an example of an internal resistance table for charging, and FIG. 14 (b) is an example of an internal resistance table for discharging. 14A, Y11, Y12,..., Y1m, Y21, Y22,..., Y2m,..., Yn1, Yn2, ..., Ynm are values of the internal resistance when the battery cell 10 is charged. It is. In the internal resistance table TA2 of FIG. 14B, Z11, Z12,..., Z1m, Z21, Z22,..., Z2m, ..., Zn1, Zn2, ..., Znm are values of the internal resistance when the battery cell 10 is discharged. It is.
 内部抵抗取得部211は、バッテリセル10の充電が行われている場合に、内部抵抗テーブルTA1から内部抵抗を取得し、バッテリセル10の放電が行われている場合に、内部抵抗テーブルTA2から内部抵抗を取得する。これにより、バッテリセル10が充電されているかまたは放電されているかに応じて、内部抵抗を精度よく取得することができる。また、テーブル更新部214は、バッテリセル10の充電後に内部抵抗テーブルTA1を更新し、バッテリセル10の放電後に内部抵抗テーブルTA2を更新する。これにより、内部抵抗テーブルTA1,TB1を正確に更新することができる。その結果、バッテリセル10のSOCを精度よく推定することができる。 The internal resistance acquisition unit 211 acquires the internal resistance from the internal resistance table TA1 when the battery cell 10 is charged, and the internal resistance from the internal resistance table TA2 when the battery cell 10 is discharged. Get resistance. Thereby, depending on whether the battery cell 10 is charged or discharged, the internal resistance can be obtained with high accuracy. The table updating unit 214 updates the internal resistance table TA1 after charging the battery cell 10, and updates the internal resistance table TA2 after discharging the battery cell 10. As a result, the internal resistance tables TA1 and TB1 can be accurately updated. As a result, the SOC of the battery cell 10 can be accurately estimated.
 (1-12)第6の変形例
 上記実施の形態では、内部抵抗テーブルTAが、バッテリセル10の温度、SOCおよび内部抵抗の関係を示すが、これに限らず、内部抵抗テーブルTAが、バッテリセル10の温度および内部抵抗の関係のみを示してもよい。この場合、内部抵抗取得部211が、温度情報として与えられるバッテリ温度に対応する内部抵抗を内部抵抗テーブルTAから取得する。また、テーブル更新部214は、算出された温度変化係数情報に基づいて、内部抵抗テーブルTAを更新する。これにより、処理負担の低減および保存容量の削減が可能となる。
(1-12) Sixth Modification In the above embodiment, the internal resistance table TA shows the relationship between the temperature, SOC, and internal resistance of the battery cell 10, but the present invention is not limited to this, and the internal resistance table TA Only the relationship between the temperature of the cell 10 and the internal resistance may be shown. In this case, the internal resistance acquisition unit 211 acquires the internal resistance corresponding to the battery temperature given as temperature information from the internal resistance table TA. The table update unit 214 also updates the internal resistance table TA based on the calculated temperature change coefficient information. This makes it possible to reduce the processing load and the storage capacity.
 (1-13)他の変形例
 上記の例では、充電状態推定装置200によりバッテリセル10毎にSOCが推定されるが、これに限らず、例えば、バッテリセル群100全体のSOCが推定されてもよい。 
(1-13) Other Modifications In the above example, the SOC is estimated for each battery cell 10 by the charging state estimation device 200. However, the present invention is not limited to this, and for example, the SOC of the entire battery cell group 100 is estimated. Also good.
 また、上記の例では、一定の周期でSOC推定処理が行われるが、これに限らず、例えば、予め設定された任意のタイミングでSOCが取得されてもよい。 In the above example, the SOC estimation process is performed at a constant cycle. However, the present invention is not limited to this, and for example, the SOC may be acquired at an arbitrary timing set in advance.
 上記の例では、予め定められた保存条件SRが満たされるごとにデータ配列保存部213がデータ配列を保存するが、これに限らず、例えば、一定の時間が経過する毎にデータ配列保存部213がデータ配列を保存してもよい。 In the above example, the data array storage unit 213 stores the data array every time a predetermined storage condition SR is satisfied. However, the present invention is not limited to this, and for example, the data array storage unit 213 every time a certain time elapses. May store the data array.
 (2)電動車両および移動体
 本発明の第2の実施の形態に係る電動車両および移動体について説明する。本実施の形態に係る電動車両および移動体は、第1の実施の形態に係るバッテリシステム500を備える。なお、以下では、電動車両の一例として電動自動車を説明する。
(2) Electric vehicle and moving body An electric vehicle and a moving body according to the second embodiment of the present invention will be described. The electric vehicle and the moving body according to the present embodiment include battery system 500 according to the first embodiment. In the following, an electric vehicle will be described as an example of an electric vehicle.
 (2-1)構成および動作
 図15は、電動自動車の構成を示すブロック図である。図15に示すように、本実施の形態に係る電動自動車600は車体610を備える。車体610に、上記のバッテリシステム500ならびに電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、回転速度センサ606および主制御部608が設けられる。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。
(2-1) Configuration and Operation FIG. 15 is a block diagram showing the configuration of the electric vehicle. As shown in FIG. 15, electric vehicle 600 according to the present embodiment includes a vehicle body 610. The vehicle body 610 is provided with the battery system 500, the power conversion unit 601, the motor 602, the drive wheel 603, the accelerator device 604, the brake device 605, the rotation speed sensor 606, and the main control unit 608. When motor 602 is an alternating current (AC) motor, power conversion unit 601 includes an inverter circuit.
 バッテリシステム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部608に接続される。主制御部608には、充電状態推定装置200からバッテリセル群100の充電状態(例えば、SOC)が与えられる。また、主制御部608には、アクセル装置604、ブレーキ装置605、回転速度センサ606が接続される。主制御部608は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。なお、充電状態推定装置200が主制御部608の機能を有してもよい。その場合、主制御部608が設けられなくてもよい。 The battery system 500 is connected to the motor 602 via the power conversion unit 601 and to the main control unit 608. The main control unit 608 is given the state of charge (for example, SOC) of the battery cell group 100 from the state of charge estimation device 200. Further, an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 608. The main control unit 608 includes, for example, a CPU and a memory, or a microcomputer. Note that the charging state estimation device 200 may have the function of the main control unit 608. In that case, the main control unit 608 may not be provided.
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。ユーザによりアクセルペダル604aが操作されると、アクセル検出部604bは、ユーザにより操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部608に与えられる。 The accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a. When the accelerator pedal 604a is operated by the user, the accelerator detection unit 604b detects the operation amount of the accelerator pedal 604a with reference to a state where the accelerator pedal 604a is not operated by the user. The detected operation amount of the accelerator pedal 604a is given to the main control unit 608.
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、ユーザによるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。ユーザによりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部608に与えられる。回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部608に与えられる。 The brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the user. When the user operates the brake pedal 605a, the operation amount is detected by the brake detection unit 605b. The detected operation amount of the brake pedal 605a is given to the main control unit 608. The rotation speed sensor 606 detects the rotation speed of the motor 602. The detected rotation speed is given to the main control unit 608.
 上記のように、主制御部608には、各バッテリセル10の充電状態、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、およびモータ602の回転速度が与えられる。主制御部608は、これらの情報に基づいてバッテリセル群100の充放電制御および電力変換部601の電力変換制御を行う。例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム500のバッテリセル群100から電力変換部601に電力が供給される。 As described above, the main controller 608 is given the state of charge of each battery cell 10, the amount of operation of the accelerator pedal 604a, the amount of operation of the brake pedal 605a, and the rotational speed of the motor 602. The main control unit 608 performs charge / discharge control of the battery cell group 100 and power conversion control of the power conversion unit 601 based on these pieces of information. For example, when starting and accelerating the electric automobile 600 based on the accelerator operation, power is supplied from the battery cell group 100 of the battery system 500 to the power conversion unit 601.
 さらに、主制御部608は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。 Further, the main control unit 608 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
 上記の制御信号を受けた電力変換部601は、バッテリシステム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。 The power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリセル群100の充電に適した電力に変換し、バッテリセル群100に与える。それにより、バッテリセル群100の各バッテリセル10が充電される。 On the other hand, when the electric automobile 600 is decelerated based on the brake operation, the motor 602 functions as a power generator. In this case, the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery cell group 100, and provides the battery cell group 100 with the power. Thereby, each battery cell 10 of the battery cell group 100 is charged.
 (2-2)効果
 本実施の形態に係る電動車両としての電動自動車600においては、バッテリシステム500からの電力によりモータ602が駆動される。モータ602の回転力によって駆動輪603が回転することにより、電動自動車600が移動する。この場合、上記第1の実施の形態に係るバッテリシステム500が用いられるため、バッテリセル10の充電状態であるSOCを精度よく推定することができる。それにより、電動自動車600の走行性能が向上される。
(2-2) Effect In electric vehicle 600 as the electric vehicle according to the present embodiment, motor 602 is driven by electric power from battery system 500. When the driving wheel 603 is rotated by the rotational force of the motor 602, the electric automobile 600 moves. In this case, since the battery system 500 according to the first embodiment is used, the SOC that is the charged state of the battery cell 10 can be accurately estimated. Thereby, the running performance of the electric automobile 600 is improved.
 (2-3)他の移動体
 第1の実施の形態に係るバッテリシステム500が船、航空機、エレベータまたは歩行ロボット等の他の移動体に搭載されてもよい。
(2-3) Other Moving Body The battery system 500 according to the first embodiment may be mounted on another moving body such as a ship, an aircraft, an elevator, or a walking robot.
 バッテリシステム500が搭載された船は、例えば、図15の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。 A ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 15, a screw instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
 バッテリシステム500が搭載された航空機は、例えば、図15の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。なお、船および航空機は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して加速を停止することにより、水の抵抗または空気抵抗によって機体が減速する。 An aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 15, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. Ships and aircraft do not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop acceleration, the airframe is decelerated due to water resistance or air resistance.
 バッテリシステム500が搭載されたエレベータは、例えば、図15の車体610の代わりに籠を備え、駆動輪603の代わりに籠に取り付けられる昇降用ロープを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 An elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 15, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
 バッテリシステム500が搭載された歩行ロボットは、例えば、図15の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 A walking robot equipped with the battery system 500 includes, for example, a trunk instead of the vehicle body 610 in FIG. 15, a foot instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. A deceleration input unit is provided instead of.
 これらの移動体においては、モータが動力源に相当し、船体、気体、籠および胴体が本体部に相当し、スクリュー、プロペラ、昇降用ロープおよび足が駆動部に相当する。動力源がバッテリシステム500からの電力を受けてその電力を動力に変換し、駆動部が動力源により変換された動力により移動本体部を移動させる。 In these moving bodies, the motor corresponds to the power source, the hull, gas, rod and trunk correspond to the main body, and the screw, propeller, lifting rope and foot correspond to the drive section. The power source receives electric power from the battery system 500 and converts the electric power into motive power, and the drive unit moves the moving main body portion with the motive power converted by the motive power source.
 (2-4)他の移動体における効果
 本実施の形態に係る移動体においては、バッテリシステム500からの電力が動力源により動力に変換され、その動力により駆動部が移動本体部を移動させる。この場合、上記第1の実施の形態に係るバッテリシステム500が用いられるため、バッテリセル10の充電状態であるSOCを精度よく推定することができる。それにより、移動体の移動性能が向上される。
(2-4) Effects in Other Moving Body In the moving body according to the present embodiment, the electric power from battery system 500 is converted into motive power by the power source, and the drive unit moves the moving main body by the motive power. In this case, since the battery system 500 according to the first embodiment is used, the SOC that is the charged state of the battery cell 10 can be accurately estimated. Thereby, the moving performance of the moving body is improved.
 (3)電源装置
 本発明の第3の実施の形態に係る電源装置について説明する。本実施の形態に係る電源装置は、第1の実施の形態に係るバッテリシステム500を備える。
(3) Power supply device A power supply device according to a third embodiment of the present invention will be described. The power supply device according to the present embodiment includes a battery system 500 according to the first embodiment.
 (3-1)構成および動作
 図16は、第3の実施の形態に係る電源装置の構成を示すブロック図である。図16に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、バッテリシステム群711およびコントローラ712を備える。バッテリシステム群711は、第1の実施の形態に係る複数のバッテリシステム500を含む。複数のバッテリシステム500間において、複数のバッテリセル10は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。
(3-1) Configuration and Operation FIG. 16 is a block diagram showing a configuration of a power supply device according to the third embodiment. As illustrated in FIG. 16, the power supply device 700 includes a power storage device 710 and a power conversion device 720. The power storage device 710 includes a battery system group 711 and a controller 712. The battery system group 711 includes a plurality of battery systems 500 according to the first embodiment. Between the plurality of battery systems 500, the plurality of battery cells 10 may be connected to each other in parallel, or may be connected to each other in series.
 コントローラ712は、システム制御部の例であり、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。コントローラ712は、各バッテリシステム500の充電状態推定装置200(図1)に接続される。各バッテリシステム500の充電状態推定装置200は、各バッテリセル10の充電状態(例えば、SOC)を算出し、算出された充電状態をコントローラ712に与える。コントローラ712は、各充電状態推定装置200から与えられた各バッテリセル10の充電状態に基づいて電力変換装置720を制御することにより、各バッテリシステム500に含まれる複数のバッテリセル10の放電または充電に関する制御を行う。 The controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer. The controller 712 is connected to the charging state estimation device 200 (FIG. 1) of each battery system 500. The charging state estimation device 200 of each battery system 500 calculates the charging state (for example, SOC) of each battery cell 10 and gives the calculated charging state to the controller 712. The controller 712 controls the power conversion device 720 based on the charging state of each battery cell 10 given from each charging state estimation device 200, thereby discharging or charging a plurality of battery cells 10 included in each battery system 500. Control related to
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710のバッテリシステム群711に接続される。DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が電源装置に接続される外部の例である。 The power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722. The DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b. The input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710. The input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1. The input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system. The power output units PU1, PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2. Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
 DC/DCコンバータ721およびDC/ACインバータ722がコントローラ712によって制御されることにより、バッテリシステム群711に含まれる複数のバッテリセル10の放電および充電が行われる。 The DC / DC converter 721 and the DC / AC inverter 722 are controlled by the controller 712, whereby the plurality of battery cells 10 included in the battery system group 711 are discharged and charged.
 バッテリシステム群711の放電時には、バッテリシステム群711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。 When the battery system group 711 is discharged, power supplied from the battery system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further DC / AC (direct current / alternating current) conversion is performed by the DC / AC inverter 722. Is done.
 DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。電力出力部PU1から外部に直流の電力が出力され、電力出力部PU2から外部に交流の電力が出力される。DC/ACインバータ722により交流に変換された電力が他の電力系統に供給されてもよい。 The power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. The power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2. The electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
 コントローラ712は、各バッテリシステム500に含まれる複数のバッテリセル10の放電に関する制御の一例として、次の制御を行う。バッテリシステム群711の放電時に、コントローラ712は、各充電状態推定装置200(図1)から与えられる各バッテリセル10の充電状態に基づいて放電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。例えば、バッテリシステム群711に含まれる複数のバッテリセル10(図1)のうちいずれかのバッテリセル10のSOCが予め定められたしきい値よりも小さくなると、コントローラ712は、放電が停止されるまたは放電電流(または放電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。放電を停止するまたは放電電流(または放電電力)を制限するためのバッテリセル10のSOCのしきい値は、例えば20%以上30%以下の範囲内で設定される。これにより、各バッテリセル10の過放電が防止される。 The controller 712 performs the following control as an example of control related to discharging of the plurality of battery cells 10 included in each battery system 500. At the time of discharging the battery system group 711, the controller 712 determines whether or not to stop discharging based on the charging state of each battery cell 10 given from each charging state estimation device 200 (FIG. 1), and based on the determination result. The power converter 720 is controlled. For example, when the SOC of any one of the plurality of battery cells 10 (FIG. 1) included in the battery system group 711 is smaller than a predetermined threshold value, the controller 712 stops discharging. Alternatively, the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge current (or discharge power) is limited. The SOC threshold value of the battery cell 10 for stopping the discharge or limiting the discharge current (or discharge power) is set, for example, within a range of 20% to 30%. Thereby, overdischarge of each battery cell 10 is prevented.
 一方、バッテリシステム群711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721からバッテリシステム群711に電力が与えられることにより、バッテリシステム群711に含まれる複数のバッテリセル10(図1)が充電される。 On the other hand, when the battery system group 711 is charged, AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted. When power is supplied from the DC / DC converter 721 to the battery system group 711, the plurality of battery cells 10 (FIG. 1) included in the battery system group 711 are charged.
 コントローラ712は、各バッテリシステム500に含まれる複数のバッテリセル10の充電に関する制御の一例として、次の制御を行う。バッテリシステム群711の充電時に、コントローラ712は、各充電状態推定装置200(図1)から与えられる各バッテリセル10の充電状態に基づいて充電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。例えば、バッテリシステム群711に含まれる複数のバッテリセル10のうちいずれかのバッテリセル10のSOCが予め定められたしきい値よりも大きくなると、コントローラ712は、充電が停止されるまたは充電電流(または充電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。充電を停止するまたは充電電流(または充電電力)を制限するためのバッテリセル10のSOCのしきい値は、例えば70%以上80%以下の範囲内で設定される。これにより、各バッテリセル10の過充電が防止される。 The controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each battery system 500. When charging the battery system group 711, the controller 712 determines whether or not to stop charging based on the charging state of each battery cell 10 given from each charging state estimation device 200 (FIG. 1), and based on the determination result. The power converter 720 is controlled. For example, when the SOC of any one of the plurality of battery cells 10 included in the battery system group 711 becomes larger than a predetermined threshold, the controller 712 stops the charging or the charging current ( Alternatively, the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the charging power is limited. The SOC threshold value of the battery cell 10 for stopping charging or limiting the charging current (or charging power) is set, for example, within a range of 70% to 80%. Thereby, overcharge of each battery cell 10 is prevented.
 (3-2)効果
 本実施の形態に係る電源装置700においては、電力変換装置720がバッテリセルと外部との間で電力変換を行う。システム制御部としてのコントローラ712が、電力変換装置720を制御することにより、バッテリシステム500のバッテリセル10の充電または放電に関する制御を行う。それにより、バッテリセル10の劣化、過放電および過充電を防止することができる。また、上記第1の実施の形態に係るバッテリシステム500が用いられるため、バッテリセル10の充電状態であるSOCを精度よく推定することができる。したがって、電源装置700の充放電性能が向上される。
(3-2) Effect In power supply device 700 according to the present embodiment, power conversion device 720 performs power conversion between the battery cell and the outside. A controller 712 as a system control unit controls the power conversion device 720 to perform control related to charging or discharging of the battery cell 10 of the battery system 500. Thereby, deterioration, overdischarge, and overcharge of the battery cell 10 can be prevented. Moreover, since the battery system 500 according to the first embodiment is used, the SOC that is the state of charge of the battery cell 10 can be accurately estimated. Therefore, the charge / discharge performance of the power supply device 700 is improved.
 (3-3)電源装置の変形例
 電源装置700において、各バッテリシステム500に充放電推定装置200が設けられる代わりに、コントローラ712が充放電推定装置200と同様の機能を有してもよい。また、各バッテリシステム500に電流検出部201が設けられる代わりに、1つのバッテリシステム500にのみ電流検出部201が1つ設けられる構成であってもよい。この場合、1つの電流検出部201から各バッテリシステム500の充電状態推定装置200に検出された電流の値が出力されてもよく、または、各バッテリシステム500に充放電推定装置200が設けられずにコントローラ712が充放電推定装置200の機能を有する場合には、1つの電流検出部201からコントローラ712に検出された電流の値が出力されてもよい。
(3-3) Modification of Power Supply Device In the power supply device 700, the controller 712 may have the same function as that of the charge / discharge estimation device 200, instead of providing each battery system 500 with the charge / discharge estimation device 200. Further, instead of providing the current detection unit 201 in each battery system 500, a configuration in which one current detection unit 201 is provided in only one battery system 500 may be employed. In this case, the value of the detected current may be output from one current detection unit 201 to the charge state estimation device 200 of each battery system 500, or the charge / discharge estimation device 200 is not provided in each battery system 500. When the controller 712 has the function of the charge / discharge estimation apparatus 200, the current value detected by the controller 712 may be output from one current detection unit 201.
 電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。 As long as power can be supplied between the power supply apparatus 700 and the outside, the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
 図16の電源装置700においては、複数のバッテリシステム500が設けられるが、これに限らず、1つのバッテリシステム500のみが設けられてもよい。 In the power supply device 700 of FIG. 16, a plurality of battery systems 500 are provided, but not limited to this, only one battery system 500 may be provided.
 (4)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
(4) Correspondence between each component of claim and each part of embodiment The following describes an example of a correspondence between each component of the claim and each part of the embodiment. It is not limited.
 上記実施の形態においては、バッテリセル10がバッテリセルの例であり、充電状態推定装置200が充電状態推定装置の例であり、記憶部215が記憶部の例であり、内部抵抗取得部211、SOC取得部212、データ配列保存部213およびテーブル更新部214が処理部の例であり、SOCが充電状態の例である。 In the above embodiment, the battery cell 10 is an example of a battery cell, the charge state estimation device 200 is an example of a charge state estimation device, the storage unit 215 is an example of a storage unit, the internal resistance acquisition unit 211, The SOC acquisition unit 212, the data array storage unit 213, and the table update unit 214 are examples of processing units, and the SOC is an example of a charged state.
 また、電動自動車600が電動車両および移動体の例であり、モータ602がモータおよび動力源の例であり、駆動輪603が駆動輪および駆動部の例であり、車体610が移動本体部の例であり、電力貯蔵装置710が電力貯蔵装置の例であり、電源装置700が電源装置の例であり、コントローラ712がシステム制御部の例であり、電力変換装置720が電力変換装置の例である。 The electric automobile 600 is an example of an electric vehicle and a moving body, the motor 602 is an example of a motor and a power source, the driving wheel 603 is an example of a driving wheel and a driving unit, and the vehicle body 610 is an example of a moving main body. The power storage device 710 is an example of a power storage device, the power supply device 700 is an example of a power supply device, the controller 712 is an example of a system control unit, and the power conversion device 720 is an example of a power conversion device. .
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 10 バッテリセル
 100 バッテリセル群
 200 充電状態推定装置
 201 電流検出部
 202 電圧検出部
 203 温度検出部
 205 出力部
 211 内部抵抗取得部
 212 SOC取得部
 213 データ配列保存部
 214 テーブル更新部
 215 記憶部
 500 バッテリシステム
 600 電動自動車
 602 モータ
 603 駆動輪
 610 車体
 700 電源装置
 710 電力貯蔵装置
 712 コントローラ
 720 電力変換装置
DESCRIPTION OF SYMBOLS 10 Battery cell 100 Battery cell group 200 Charging state estimation apparatus 201 Current detection part 202 Voltage detection part 203 Temperature detection part 205 Output part 211 Internal resistance acquisition part 212 SOC acquisition part 213 Data arrangement | sequence storage part 214 Table update part 215 Storage part 500 Battery System 600 Electric automobile 602 Motor 603 Driving wheel 610 Car body 700 Power supply device 710 Power storage device 712 Controller 720 Power conversion device

Claims (10)

  1.  バッテリセルと、
     前記バッテリセルの端子電圧を検出する電圧検出部と、
     前記バッテリセルの温度を検出する温度検出部と、
     前記バッテリセルの充電状態を推定する充電状態推定装置とを備え、
     前記充電状態推定装置は、
     前記バッテリセルの内部インピーダンスおよび温度の関係を表す内部インピーダンス情報を記憶する記憶部と、
     前記記憶部に記憶された前記内部インピーダンス情報に基づいて前記バッテリセルの充電状態を推定するとともに、前記内部インピーダンス情報を更新する処理部とを含み、
     前記処理部は、前記バッテリセルが充電または放電を行っている充放電期間の前における前記バッテリセルが充電および放電を行っていない第1の非充放電期間で前記電圧検出部により検出される前記バッテリセルの第1の端子電圧ならびに前記充放電期間の後における前記バッテリセルが充電および放電を行っていない第2の非充電期間で前記電圧検出部により検出される前記バッテリセルの第2の端子電圧に基づいて前記充放電期間における前記バッテリセルの充電状態を算出し、前記充放電期間において前記バッテリセルに流れる電流、前記充放電期間に前記電圧検出部により検出される前記バッテリセルの端子電圧および前記算出された前記充放電期間における充電状態に基づいて前記充放電期間における前記バッテリセルの内部インピーダンスを算出し、前記充放電期間で前記温度検出部により検出される温度および前記算出された内部インピーダンスに基づいて前記記憶部に記憶される前記内部インピーダンス情報を更新するように構成される、バッテリシステム。
    A battery cell;
    A voltage detector for detecting a terminal voltage of the battery cell;
    A temperature detector for detecting the temperature of the battery cell;
    A charging state estimation device for estimating a charging state of the battery cell;
    The state of charge estimating device is:
    A storage unit for storing internal impedance information representing a relationship between the internal impedance and temperature of the battery cell;
    A processing unit that estimates the state of charge of the battery cell based on the internal impedance information stored in the storage unit and updates the internal impedance information;
    The processing unit is detected by the voltage detection unit in a first non-charge / discharge period in which the battery cell is not charged and discharged before a charge / discharge period in which the battery cell is charging or discharging. The first terminal voltage of the battery cell and the second terminal of the battery cell detected by the voltage detection unit in a second non-charging period in which the battery cell is not charged and discharged after the charging / discharging period. The charge state of the battery cell during the charge / discharge period is calculated based on the voltage, the current flowing through the battery cell during the charge / discharge period, and the terminal voltage of the battery cell detected by the voltage detection unit during the charge / discharge period And an internal battery cell in the charge / discharge period based on the calculated charge state in the charge / discharge period. A battery configured to calculate a impedance and update the internal impedance information stored in the storage unit based on the temperature detected by the temperature detection unit and the calculated internal impedance during the charge / discharge period. system.
  2.  前記記憶部は、前記バッテリセルの充電状態と、前記バッテリセルが充電および放電を行っておらずかつ定常状態にあるときの端子電圧である開放電圧との関係を表す充電状態情報をさらに記憶し、
     前記処理部は、前記記憶部に記憶された前記充電状態情報に基づいて、前記算出された前記充放電期間における充電状態に対応する開放電圧を取得し、前記充放電期間で前記バッテリセルに流れる電流、前記充放電期間における前記バッテリセルの端子電圧および前記算出された開放電圧に基づいて前記バッテリセルの内部インピーダンスを算出する、請求項1記載のバッテリシステム。
    The storage unit further stores charge state information representing a relationship between a charge state of the battery cell and an open-circuit voltage that is a terminal voltage when the battery cell is not charged and discharged and is in a steady state. ,
    The processing unit acquires an open-circuit voltage corresponding to the calculated charge state in the charge / discharge period based on the charge state information stored in the storage unit, and flows to the battery cell in the charge / discharge period. The battery system according to claim 1, wherein an internal impedance of the battery cell is calculated based on a current, a terminal voltage of the battery cell in the charge / discharge period, and the calculated open circuit voltage.
  3.  前記処理部は、前記第1の端子電圧に基づいて前記第1の非充放電期間における前記バッテリセルの第1の充電状態を取得し、前記第2の端子電圧に基づいて前記第2の非充放電期間における前記バッテリセルの第2の充電状態を取得し、前記充放電期間において前記バッテリセルに流れる電流の積算値を算出し、前記取得された前記第1および第2の非充放電期間における第1および第2の充電状態および前記算出された積算値に基づいて前記充放電期間における前記バッテリセルの充電状態を算出する、請求項1または2記載のバッテリシステム。 The processing unit acquires a first charge state of the battery cell in the first non-charge / discharge period based on the first terminal voltage, and the second non-charge based on the second terminal voltage. The second charge state of the battery cell in the charge / discharge period is acquired, an integrated value of the current flowing through the battery cell in the charge / discharge period is calculated, and the acquired first and second non-charge / discharge periods 3. The battery system according to claim 1, wherein a charge state of the battery cell in the charge / discharge period is calculated based on the first and second charge states and the calculated integrated value.
  4.  前記処理部は、前記充放電期間に前記バッテリセルに流れる電流が一定である場合、前記前記第1の端子電圧に基づいて前記第1の非充放電期間における前記バッテリセルの第1の充電状態を取得し、前記第2の端子電圧に基づいて前記第2の非充放電期間における前記バッテリセルの第2の充電状態を取得し、前記取得された前記第1および第2の非充放電期間における前記第1および第2の充電状態および前記充放電期間の開始時点からの経過時間に基づいて前記充放電期間における前記バッテリセルの充電状態を算出する、請求項1~3のいずれか一項に記載のバッテリシステム。 When the current flowing through the battery cell during the charge / discharge period is constant, the processing unit is configured to perform a first charge state of the battery cell during the first non-charge / discharge period based on the first terminal voltage. And obtaining the second charge state of the battery cell in the second non-charge / discharge period based on the second terminal voltage, and obtaining the first and second non-charge / discharge periods. The charge state of the battery cell in the charge / discharge period is calculated based on the first and second charge states and the elapsed time from the start time of the charge / discharge period. The battery system described in.
  5.  前記処理部は、前記充放電期間に前記バッテリセルに流れる電流が一定でない場合、前記内部インピーダンス情報を更新しない、請求項4記載のバッテリシステム。 The battery system according to claim 4, wherein the processing unit does not update the internal impedance information when a current flowing through the battery cell is not constant during the charge / discharge period.
  6.  バッテリセルの内部インピーダンスおよび温度の関係を表す内部インピーダンス情報を記憶する記憶部と、
     前記記憶部に記憶された前記内部インピーダンス情報に基づいて前記バッテリセルの充電状態を推定するとともに、前記内部インピーダンス情報を更新する処理部とを含み、
     前記処理部は、前記バッテリセルが充電または放電を行っている充放電期間の前における前記バッテリセルが充電および放電を行っていない第1の非充放電期間での前記バッテリセルの第1の端子電圧ならびに前記充放電期間の後における前記バッテリセルが充電および放電を行っていない第2の非充電期間での前記バッテリセルの第2の端子電圧に基づいて前記充放電期間における前記バッテリセルの充電状態を算出し、前記充放電期間において前記バッテリセルに流れる電流、前記充放電期間における前記バッテリセルの端子電圧および前記算出された前記充放電期間における充電状態に基づいて前記充放電期間における前記バッテリセルの内部インピーダンスを算出し、前記充放電期間における前記バッテリセルの温度および前記算出された内部インピーダンスに基づいて前記記憶部に記憶される前記内部インピーダンス情報を更新するように構成される、充電状態推定装置。
    A storage unit for storing internal impedance information representing the relationship between the internal impedance and temperature of the battery cell;
    A processing unit that estimates the state of charge of the battery cell based on the internal impedance information stored in the storage unit and updates the internal impedance information;
    The processing unit includes a first terminal of the battery cell in a first non-charge / discharge period in which the battery cell is not charged and discharged before a charge / discharge period in which the battery cell is charging or discharging. Charging the battery cell during the charge / discharge period based on a voltage and a second terminal voltage of the battery cell during a second non-charge period during which the battery cell is not charged and discharged after the charge / discharge period. The battery in the charge / discharge period is calculated based on the current flowing through the battery cell in the charge / discharge period, the terminal voltage of the battery cell in the charge / discharge period, and the calculated charge state in the charge / discharge period. Calculate the internal impedance of the cell, the temperature of the battery cell during the charge and discharge period and the calculation Wherein configured to update the internal impedance information, the device for estimating charged state stored in the storage unit based on the internal impedances.
  7.  請求項1~5のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
    A battery system according to any one of claims 1 to 5;
    A motor driven by power from the battery system;
    An electric vehicle comprising drive wheels that are rotated by the rotational force of the motor.
  8.  請求項1~5のいずれか一項に記載のバッテリシステムと、
     移動本体部と、
     前記バッテリシステムからの電力を前記移動本体部を移動させるための動力に変換する動力源と、
     前記動力源により変換された動力により前記移動本体部を移動させる駆動部とを備える、移動体。
    A battery system according to any one of claims 1 to 5;
    A moving body,
    A power source that converts electric power from the battery system into power for moving the moving main body;
    A moving body comprising: a drive unit that moves the moving main body unit by power converted by the power source.
  9.  請求項1~5のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムの前記バッテリセルの充電または放電に関する制御を行うシステム制御部とを備える、電力貯蔵装置。
    A battery system according to any one of claims 1 to 5;
    And a system control unit that performs control related to charging or discharging of the battery cell of the battery system.
  10.  外部に接続可能であり、
     請求項9記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記システム制御部により制御され、前記電力貯蔵装置の前記バッテリシステムの前記バッテリセルと前記外部との間で電力変換を行う電力変換装置とを備える、電源装置。
    Can be connected to the outside,
    The power storage device according to claim 9,
    A power supply device comprising: a power conversion device that is controlled by the system control unit of the power storage device and performs power conversion between the battery cell of the battery system of the power storage device and the outside.
PCT/JP2012/074324 2011-09-27 2012-09-24 Battery system, state-of-charge estimation device, electric vehicle, mobile body, power storage device, and power supply device WO2013047400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011210599A JP2014231988A (en) 2011-09-27 2011-09-27 Battery system, charging state estimation device, electric vehicle, traveling object, power storage device and power supply device
JP2011-210599 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047400A1 true WO2013047400A1 (en) 2013-04-04

Family

ID=47995433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074324 WO2013047400A1 (en) 2011-09-27 2012-09-24 Battery system, state-of-charge estimation device, electric vehicle, mobile body, power storage device, and power supply device

Country Status (2)

Country Link
JP (1) JP2014231988A (en)
WO (1) WO2013047400A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001751A1 (en) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 Vehicle storage battery management device, vehicle power unit, and vehicle storage battery management method
JP2018037332A (en) * 2016-09-01 2018-03-08 トヨタ自動車株式会社 Method of estimating battery temperature
EP3267551A4 (en) * 2015-03-02 2018-10-24 Hitachi Automotive Systems, Ltd. Battery control device and vehicle system
CN109521315A (en) * 2018-11-19 2019-03-26 北京新能源汽车股份有限公司 A kind of detection method of internal short-circuit of battery, device and automobile
WO2021018582A1 (en) * 2019-07-26 2021-02-04 Siemens Mobility GmbH Method for operating a rail vehicle and rail vehicle
CN112677769A (en) * 2020-12-28 2021-04-20 重庆大学 Battery system power limit estimation method based on multi-factor fusion
EP3871919A1 (en) * 2020-02-25 2021-09-01 Samsung SDI Co., Ltd. Method and detection unit for detecting inhomogeneous cell performance of a battery system
US20210405123A1 (en) * 2020-06-24 2021-12-30 Kai Ming WONG Method, apparatus, storage medium and terminal equipment for estimating the impedance of battery
WO2022017773A1 (en) * 2020-07-20 2022-01-27 Daimler Ag Method for determining a state of charge in a battery-powered vehicle comprising a plurality of batteries during operation of the vehicle, and battery-powered vehicle comprising a plurality of batteries

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6548387B2 (en) * 2014-12-15 2019-07-24 川崎重工業株式会社 Method and apparatus for estimating state of charge of secondary battery
JP2019017124A (en) * 2015-11-19 2019-01-31 株式会社東芝 Storage battery device and storage battery system
JP6763195B2 (en) * 2016-05-16 2020-09-30 株式会社豊田自動織機 Charge rate estimation device
JP6881192B2 (en) * 2017-09-28 2021-06-02 トヨタ自動車株式会社 Secondary battery management device
KR102203245B1 (en) 2017-11-01 2021-01-13 주식회사 엘지화학 Apparatus and method for estimating SOC of battery
JP6965839B2 (en) * 2018-07-12 2021-11-10 トヨタ自動車株式会社 How to charge the secondary battery
JP6826152B2 (en) * 2019-04-26 2021-02-03 川崎重工業株式会社 Secondary battery charge status estimation method and estimation device
JP2023006978A (en) * 2021-07-01 2023-01-18 株式会社Gsユアサ Power storage device management device and management method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328154A (en) * 2001-05-01 2002-11-15 Honda Motor Co Ltd Remaining capacity detector for electric storage device
JP2008261669A (en) * 2007-04-10 2008-10-30 Sanyo Electric Co Ltd Battery full-charge capacity detection method
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328154A (en) * 2001-05-01 2002-11-15 Honda Motor Co Ltd Remaining capacity detector for electric storage device
JP2008261669A (en) * 2007-04-10 2008-10-30 Sanyo Electric Co Ltd Battery full-charge capacity detection method
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001751A1 (en) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 Vehicle storage battery management device, vehicle power unit, and vehicle storage battery management method
JP2015014487A (en) * 2013-07-03 2015-01-22 パナソニックIpマネジメント株式会社 Vehicle storage battery management device, vehicle electric power unit and management method of vehicle electric power unit
EP3267551A4 (en) * 2015-03-02 2018-10-24 Hitachi Automotive Systems, Ltd. Battery control device and vehicle system
US10589732B2 (en) 2015-03-02 2020-03-17 Vehicle Energy Japan Inc. Battery control device and vehicle system
JP2018037332A (en) * 2016-09-01 2018-03-08 トヨタ自動車株式会社 Method of estimating battery temperature
CN109521315A (en) * 2018-11-19 2019-03-26 北京新能源汽车股份有限公司 A kind of detection method of internal short-circuit of battery, device and automobile
WO2021018582A1 (en) * 2019-07-26 2021-02-04 Siemens Mobility GmbH Method for operating a rail vehicle and rail vehicle
EP3871919A1 (en) * 2020-02-25 2021-09-01 Samsung SDI Co., Ltd. Method and detection unit for detecting inhomogeneous cell performance of a battery system
US20210405123A1 (en) * 2020-06-24 2021-12-30 Kai Ming WONG Method, apparatus, storage medium and terminal equipment for estimating the impedance of battery
GB2601022A (en) * 2020-06-24 2022-05-18 Ming Wong Kai Method, apparatus, storage medium and terminal equipment for estimating the impedance of battery
GB2601022B (en) * 2020-06-24 2022-11-02 Ming Wong Kai Method, apparatus, storage medium and terminal equipment for estimating the impedance of battery
WO2022017773A1 (en) * 2020-07-20 2022-01-27 Daimler Ag Method for determining a state of charge in a battery-powered vehicle comprising a plurality of batteries during operation of the vehicle, and battery-powered vehicle comprising a plurality of batteries
CN112677769A (en) * 2020-12-28 2021-04-20 重庆大学 Battery system power limit estimation method based on multi-factor fusion
CN112677769B (en) * 2020-12-28 2022-10-11 重庆大学 Battery system power limit estimation method based on multi-factor fusion

Also Published As

Publication number Publication date
JP2014231988A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2013047400A1 (en) Battery system, state-of-charge estimation device, electric vehicle, mobile body, power storage device, and power supply device
WO2013031558A1 (en) Battery system, charged state estimation device, electric vehicle, movable body, power storage device, and power supply device
CN102778651B (en) Determine the system and method for battery cell capacity value in many battery
JP5882336B2 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
EP3267552A1 (en) Battery control device and vehicle system
CN103760493B (en) The detection method of health state of extended-range electric vehicle power battery and system
WO2011111350A1 (en) Battery control device, battery system, electric vehicle, mobile body, electric power storage device, and power supply device
JP5468442B2 (en) AD conversion circuit and error correction method
US8935043B2 (en) Temperature compensated battery parameter estimation
US10124789B2 (en) In-range current sensor fault detection
CN109997050A (en) The system and method for state-of-charge and volume calculation for rechargeable battery group
US20140111164A1 (en) Battery control device and battery system
JP5370492B2 (en) Vehicle and vehicle control method
WO2011061809A1 (en) Vehicle and method for controlling vehicle
CN110289455B (en) Secondary battery system and method for estimating deterioration state of secondary battery
CN107923949A (en) Managing device and accumulating system
US20080007224A1 (en) Determination of battery predictive power limits
JP2011177011A (en) Device for adjusting state of charge, battery system with the same, electric vehicle, moving body, power storage device, power supply device, and program for processing state of charge adjustment
JP2003303627A (en) Status detecting device and various devices using the same
US11814030B2 (en) Electrified vehicle control using battery state of charge and power capability strategy
JP7040601B2 (en) Battery control device, battery control method, uninterruptible power supply, power system and electric vehicle
CN105393129A (en) Battery state detection device
JP5803849B2 (en) Power storage system
JP2020065424A (en) Display device and vehicle comprising the same
JP2011221012A (en) Battery module state detecting device, battery module state control device, battery system, electric vehicle, mobile body, power storage device and power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP