WO2013047399A1 - Battery system, electric vehicle, moving body, power storage device, power source device, battery unit, and housing body - Google Patents

Battery system, electric vehicle, moving body, power storage device, power source device, battery unit, and housing body Download PDF

Info

Publication number
WO2013047399A1
WO2013047399A1 PCT/JP2012/074323 JP2012074323W WO2013047399A1 WO 2013047399 A1 WO2013047399 A1 WO 2013047399A1 JP 2012074323 W JP2012074323 W JP 2012074323W WO 2013047399 A1 WO2013047399 A1 WO 2013047399A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
battery unit
power
state
Prior art date
Application number
PCT/JP2012/074323
Other languages
French (fr)
Japanese (ja)
Inventor
計美 大倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013047399A1 publication Critical patent/WO2013047399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, a battery unit, and a container.
  • Rechargeable secondary batteries are used in various fields.
  • the secondary battery is used as a power source for a hybrid electric vehicle (HEV), a battery electric vehicle (EV), a household power storage system, or a business power storage system.
  • HEV hybrid electric vehicle
  • EV battery electric vehicle
  • a household power storage system or a business power storage system.
  • Such an electric power storage system includes, for example, an assembled battery in which a plurality of secondary batteries are incorporated in a rack installed outside or inside a building, and the plurality of secondary batteries incorporated in the rack are electrically connected to each other. It has a structure.
  • the power storage system described in Patent Document 1 has a configuration in which an electric room and a battery room are provided in a casing.
  • a power converter, a protection circuit, and the like are housed inside the electrical chamber.
  • a plurality of module batteries are accommodated in a rack inside the battery chamber.
  • four secondary batteries are accommodated in a case.
  • the four secondary batteries are connected in series via a plurality of strip-shaped wires.
  • one end of one wiring is connected to the positive electrode of the secondary battery on one end side, and the other end of the wiring is drawn out of the case.
  • one end of another wiring is connected to the negative electrode of the secondary battery on the other end side, and the other end of the wiring is drawn out of the case.
  • the other end of one wiring drawn from the case and the other end of the other wiring are exposed outside the case.
  • An object of the present invention is to provide a battery system, an electric vehicle, a movable body, a power storage device, a power supply device, and a battery unit that can improve the working efficiency of housing and removing the battery unit from the housing while ensuring safety. And providing a container.
  • a battery system includes a battery unit including one or a plurality of battery cells and an external connector connected to the outside, a container configured to be able to accommodate the battery unit, and a connection function unit. Is connected in series with the one or a plurality of battery cells, the external connector, and the connection function unit, and the connection function unit is connected in series with the operation of taking out the battery unit from the container. Disconnects the connection.
  • the present invention it is possible to improve the work efficiency of housing and removing the battery unit from the housing while ensuring safety.
  • FIG. 4 is a schematic plan view showing a state in which the battery unit of FIG. 2 is housed in the housing space of the battery rack of FIG. 3. It is a schematic plan view which shows the modification of the battery system which concerns on 1st Embodiment. It is a schematic plan view which shows one structural example of the battery unit which concerns on 2nd Embodiment.
  • FIG. 7 is a schematic plan view showing a state in which the battery unit of FIG.
  • FIG. 6 is housed in a battery rack according to a second embodiment. It is a figure for demonstrating the detail of the slide member of FIG. 7, and a fixing groove. It is a typical step view which shows the 1st modification of the battery system which concerns on 2nd Embodiment. It is a typical step view which shows the 2nd modification of the battery system which concerns on 2nd Embodiment. It is a typical top view which shows one structural example of the battery unit which concerns on 3rd Embodiment. It is a block diagram which shows the structure of an electric vehicle provided with the battery unit of FIG.
  • FIG. 1 is a block diagram showing the configuration of the power supply device according to the first embodiment.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes a battery system 711 and a system controller 712.
  • the battery system 711 includes a plurality of battery units 500 and a battery rack 750.
  • a plurality of battery units 500 are accommodated in the battery rack 750.
  • the battery rack 750 is an example of a container.
  • the plurality of battery units 500 may be connected to each other in parallel, or may be connected to each other in series.
  • the configuration of the battery unit 500 will be described. Details of the configuration and operation of the power supply device 700 will be described in item (3-1) of the first embodiment.
  • FIG. 2 is a schematic plan view showing a configuration example of the battery unit 500 according to the first embodiment.
  • the battery unit 500 mainly includes a plurality (four in this example) of battery modules 100a, 100b, 100c, and 100d, a service plug 510, a contactor 512, an HV (High Voltage) connector 511, a housing.
  • the body 550 and the communication connection part CC are provided.
  • the plurality of battery modules 100a to 100d each include a plurality of battery cells 10 and a detection circuit 20.
  • a plurality of (for example, 18) battery cells 10 having a flat and substantially rectangular parallelepiped shape are arranged so as to be aligned in one direction in a stacked state.
  • the plurality of battery cells 10 and the pair of end surface frames 92a, 92b are integrally fixed in a state where the pair of end surface frames 92a, 92b having a substantially plate shape are disposed so as to sandwich the plurality of battery cells 10.
  • the detection circuit 20 is attached to one end face frame 92a.
  • a positive electrode and a negative electrode are provided on the upper surface of each battery cell 10. Between two adjacent battery cells 10, the positive electrode of one battery cell 10 and the negative electrode of the other battery cell 10 are close to each other, and the negative electrode of one battery cell 10 and the positive electrode of the other battery cell 10 are Close to each other.
  • the bus bar B is attached to two adjacent electrodes.
  • the bus bar B is attached to the positive electrode of one battery cell 10 and the negative electrode of the other battery cell 10 that are close to each other, and the negative electrode of one battery cell 10 and the positive electrode of the other battery cell 10 that are close to each other
  • the mounting of the bus bar B is alternately repeated, and the plurality of battery cells 10 are connected in series by the plurality of bus bars B.
  • a flexible printed circuit board (hereinafter abbreviated as FPC board) 50 is connected to a plurality of bus bars B in common.
  • the FPC board 50 has a configuration in which a plurality of conductor wires are mainly formed on an insulating layer, and has flexibility and flexibility.
  • the FPC board 50 is connected to the detection circuit 20.
  • the detection circuit 20 is connected to the plus electrode and the minus electrode of each battery cell 10.
  • the detection circuit 20 is composed of, for example, an ASIC (Application Specific Integrated Circuit).
  • Each detection circuit 20 detects, for example, the voltage, current, and temperature of the plurality of battery cells 10 of each of the battery modules 100a to 100d.
  • the detection circuit 20 of this example detects, for example, a voltage between both ends of a shunt resistor (not shown) provided in any of the above-described bus bars B, so that a plurality of battery cells 10 are based on the detection result.
  • the flowing current can be detected.
  • the detection circuit 20 of this example is based on information obtained by a temperature sensor when a temperature sensor (thermocouple or the like) (not shown) is attached to the surface of an arbitrary battery cell 10 in each of the battery modules 100a to 100d, for example.
  • a temperature sensor thermocouple or the like
  • the surface temperature of any battery cell 10 can be detected.
  • the battery modules 100a to 100d, the service plug 510, the HV connector 511, and the contactor 512 are accommodated in a box-shaped housing 550.
  • the housing 550 includes a side surface portion 550a, a back surface portion 550b, a side surface portion 550c, and a front surface portion 550d formed of an insulating material.
  • the side surface portions 550a and 550c are parallel to each other, and the back surface portion 550b and the front surface portion 550d are parallel to each other and perpendicular to the side surface portions 550a and 550c.
  • the battery modules 100a and 100b are arranged so as to be spaced apart from each other along the stacking direction of the battery cells 10. Further, the battery modules 100c and 100d are arranged so as to be spaced apart from each other along the stacking direction of the battery cells 10.
  • the battery modules 100a and 100b arranged to be spaced apart from each other are referred to as a module row T1
  • the battery modules 100c and 100d arranged to be spaced apart from each other are referred to as a module row T2.
  • the module row T1 is disposed along and close to the side surface portion 550a, and the module row T2 is disposed along and close to the side surface portion 550c. Thereby, the module row T1 and the module row T2 are arranged in parallel to each other.
  • the service plug 510 is switched between an on state and an off state by an on / off switching unit 764 (FIG. 4) described in the item (2-1) of the first embodiment.
  • an on / off switching unit 764 FIG. 4
  • the service plug 510 is turned on, a series connection between the battery module 100a and the battery module 100d is formed in the battery unit 500.
  • the service plug 510 is turned off, the serial connection between the battery module 100a and the battery module 100d is disconnected.
  • the service plug 510 is turned on and a series connection is formed between the battery module 100a and the battery module 100d, whereby a voltage is generated in the HV connector 511.
  • the service plug 510 is turned off, and the series connection is disconnected between the battery module 100a and the battery module 100d, that is, the electrical path is electrically cut off, so that no voltage is generated in the HV connector 511.
  • the service person works for maintenance, the service person turns off the service plug 510 and disconnects the serial connection between the battery module 100a and the battery module 100d.
  • a service plug 510 is provided on the back surface portion 550b of the housing 550 so as to be adjacent to the battery module 100b. Further, the HV connector 511 is provided on the back surface portion 550b of the housing 550 so as to be adjacent to the battery module 100c. Further, a contactor 512 is provided between the battery module 100c and the back surface portion 550b of the housing 550.
  • the potential of the positive electrode of the battery cell 10 adjacent to the end face frame 92a is the highest, and the potential of the negative electrode of the battery cell 10 adjacent to the end face frame 92b is the lowest.
  • the end surface frame 92a of the battery module 100a is directed to the front surface portion 550d, and the end surface frame 92b of the battery module 100b is directed to the side surface portion rear surface portion 550b.
  • the end surface frame 92a of the battery module 100c is directed to the side surface portion rear surface portion 550b, and the end surface frame 92b of the battery module 100d is directed to the front surface portion 550d.
  • the low potential electrode 10B (the lowest potential negative electrode 10b) of the battery module 100a and the high potential electrode 10A (the highest potential positive electrode 10a) of the battery module 100b are connected to each other via the power line D21.
  • the low potential electrode 10B of the battery module 100c and the high potential electrode 10A of the battery module 100d are connected to each other via the power line D22.
  • a conductive relay member TM is attached to the high potential electrode 10A of the battery module 100a, the low potential electrode 10B of the battery module 100b, the high potential electrode 10A of the battery module 100c, and the low potential electrode 10B of the battery module 100d.
  • the relay member TM attached to the high potential electrode 10A of the battery module 100a is connected to the service plug 510 via the power line D23, and the relay member TM attached to the low potential electrode 10B of the battery module 100d is serviced via the power line D24. Connected to plug 510.
  • the relay member TM attached to the low potential electrode 10B of the battery module 100b is connected to the contactor 512 via the power line D25a, and the relay member TM attached to the high potential electrode 10A of the battery module 100c is connected to the contactor 512 via the power line D26a.
  • Contactor 512 is connected to HV connector 511 through power lines D25b and D26b.
  • the contactor 512 includes at least one of a switch for electrically connecting or electrically separating the power line D25a and the power line D25b, and a switch for electrically connecting or electrically separating the power line D26a and the power line D26b.
  • the contactor 512 When the contactor 512 has only a switch provided between the power line D25a and the power line D25b, the power line D26a and the power line D26b may not be connected to the contactor 512. Similarly, when the contactor 512 includes only a switch provided between the power line D26a and the power line D26b, the power line D25a and the power line D25b may not be connected to the contactor 512.
  • the contactor 512 includes a switch provided between the power line D25a and the power line D25b and a switch provided between the power line D26a and the power line D26b, the two switches are turned on or off at the same timing.
  • HV connector 511 is electrically connected to power converter 720 (FIG. 1) while battery unit 500 is housed in battery rack 750 (FIG. 1). On the other hand, the HV connector 511 is electrically separated from the power converter 720 (FIG. 1) in a state where the battery unit 500 is taken out from the battery rack 750 (FIG. 1).
  • the service plug 510 is switched from the off state to the on state by the on / off switching unit 764 (FIG. 4) in conjunction with the housing operation in which the battery unit 500 (FIG. 1) is housed in the battery rack 750 (FIG. 1).
  • the service plug 510 is switched from the on state to the off state by the on / off switching unit 764 (FIG. 4) in conjunction with the removal operation in which the battery unit 500 (FIG. 1) is taken out from the battery rack 750 (FIG. 1).
  • the series connection between the battery module 100a and the battery module 100d is disconnected. Details of the storing operation and the extracting operation will be described in item (2-1) of the first embodiment.
  • the low potential electrode 10B of the battery module 100b is connected to the HV connector 511 via the power supply lines D25a and D25b, and the high potential electrode 10A of the battery module 100c is connected to the power supply lines D26a and D26b.
  • the HV connector 511 To the HV connector 511.
  • the contactor 512 is not necessarily provided in the battery unit 500.
  • the relay member TM attached to the low potential electrode 10B of the battery module 100b is connected to the HV connector 511 via the power line D25a, and the relay member TM attached to the high potential electrode 10A of the battery module 100c is connected to the power line D26a.
  • the HV connector 511 To the HV connector 511.
  • the detection circuit 20 of the battery module 100a and the detection circuit 20 of the battery module 100b are connected to each other via a communication line P21.
  • the detection circuit 20 of the battery module 100a and the detection circuit 20 of the battery module 100d are connected to each other via a communication line P22.
  • the detection circuit 20 of the battery module 100c and the detection circuit 20 of the battery module 100d are connected to each other via a communication line P23.
  • a communication connection portion CC for connection with the system controller 712 (FIG. 1) is provided on the back surface portion 550b of the housing 550.
  • the detection circuit 20 of the battery module 100b is connected to the communication connection part CC via the communication line P24.
  • vent hole 591 is formed on the extension line of the vent path R1 between the module rows T1 and T2.
  • vents 592 are formed at the position of the back surface portion 550b close to the side surface portion 550a and the position of the back surface portion 550b close to the side surface portion 550c.
  • FIG. 3 is a perspective view of the battery system 711 of FIG. 3, a plurality of battery units 500 and a battery rack 750 of the battery system 711 in FIG. 1 are shown in a perspective view.
  • the battery rack 750 includes side portions 751 and 752, a top surface portion 753, a bottom surface portion 754, a back surface portion 755, and a plurality of partition portions 756.
  • the side surface portions 751 and 752 extend vertically in parallel with each other.
  • the upper surface portion 753 extends horizontally so as to connect the upper end portions of the side surface portions 751 and 752 to each other, and the bottom surface portion 754 extends horizontally so as to connect the lower end portions of the side surface portions 751 and 752 to each other.
  • a back surface portion 755 extends vertically up and down perpendicular to the side surface portions 751 and 752 along one side of the side surface portion 751 and one side of the side surface portion 752.
  • a plurality of partition portions 756 are provided in parallel to the top surface portion 753 and the bottom surface portion 754 at equal intervals.
  • a plurality of storage spaces 757 are provided between the top surface portion 753, the plurality of partition portions 756, and the bottom surface portion 754.
  • Each accommodation space 757 opens to the front surface (surface opposite to the back surface portion 755) of the battery rack 750.
  • the battery unit 500 of FIG. 2 is accommodated in each accommodation space 757 from the front surface of the rack 750.
  • FIG. 4 is a schematic plan view showing a state in which the battery unit 500 of FIG. 2 is accommodated in the accommodation space 757 of the battery rack 750 of FIG. As shown in FIG. 4, the battery unit 500 is housed in the housing space 757 of the battery rack 750 such that the back surface portion 550 b of the battery unit 500 faces the back surface portion 755 of the battery rack 750.
  • the rear surface 755 of the battery rack 750 is provided with a cooling fan 761, two vent holes 762, a communication connection unit 763, an on / off switching unit 764, and a power connection unit 765 for each storage space 757.
  • the cooling fan 761 is provided at a position facing the vent 591 of the battery unit 500.
  • the vent 762 is provided at a position facing the vent 592 of the battery unit 500.
  • the communication connection unit 763 is provided at a position facing the communication connection unit CC of the battery unit 500.
  • the on / off switching unit 764 is provided at a position facing the service plug 510 of the battery unit 500.
  • the power connection portion 765 is provided at a position facing the HV connector 511 of the battery unit 500.
  • the communication connection unit 763 is electrically connected to the system controller 712.
  • the power connection unit 765 is electrically connected to the power conversion device 720.
  • the contactor 512 of FIG. 2 and the battery module 100a to 100d of the battery unit 500, the service plug 510, the HV connector 511, the on / off switching unit 764, and the power connection unit 765 are easily understood.
  • the illustration of the plurality of communication lines P21 to P24 is omitted, and the high potential electrode 10A and the low potential electrode 10B of the plurality of battery modules 100a to 100d and the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b are provided. This is schematically illustrated by a thick solid line.
  • the service plug 510 includes a first terminal 510A and a second terminal 510B.
  • the HV connector 511 includes a first terminal 511A and a second terminal 511B.
  • the on / off switching unit 764 includes a third terminal 764A and a fourth terminal 764B.
  • the power connection portion 765 includes a third terminal 765A and a fourth terminal 765B.
  • the on / off switching unit 764 is made of a conductive material. In the on / off switching unit 764, the third terminal 764A and the fourth terminal 764B are integrally configured.
  • service plug 510 and on / off switching unit 764 are examples of connection function units
  • service plug 510 is an example of a contacted portion
  • on / off switching unit 764 is an example of a contact member and a conductive member.
  • the ON operation of the service plug 510 is an example in which a serial connection is formed
  • the OFF operation of the service plug 510 is an example in which the serial connection is disconnected.
  • the HV connector 511 is an example of an external connector
  • the first terminal 510A and the second terminal 510B of the service plug 510 are examples of first and second terminals.
  • the battery unit 500 including the service plug 510 is an example of a battery unit
  • the battery rack 750 including the on / off switching unit 764 is an example of a container
  • the cooling fan 761 is an example of a cooling device.
  • the accommodating operation refers to, for example, inserting the battery unit 500 into the accommodating space 757 from the outside of the battery rack 750 and bringing the back surface portion 550b of the battery unit 500 close to the back surface portion 755 of the battery rack 750.
  • the operation movement which accommodates the battery unit 500 in the battery rack 750 is said.
  • the removal operation refers to an operation of taking out the battery unit 500 to the outside of the battery rack 750 by, for example, pulling out the battery unit 500 existing in the storage space 757 from the storage space 757.
  • the first terminal 510A and the second terminal 510B of the service plug 510 are respectively connected to the third terminal 764A and the third terminal 764A of the on / off switching unit 764. Connected to 4 terminals 764B. That is, the on / off switching unit 764 contacts the service plug 510. Thereby, the first terminal 510A and the second terminal 510B of the service plug 510 are electrically connected, and the service plug 510 is turned on. As a result, the plurality of battery modules 100a to 100d of the battery unit 500 are connected in series.
  • B (FIG. 2) and the relay member TM (FIG. 2) automatically form an electrical path for electrically connecting the plurality of battery modules 100a to 100d and the HV connector 511 in conjunction with the housing operation.
  • the first terminal 511A and the second terminal 511B of the HV connector 511 are connected to the third terminal 765A and the Each is connected to 4 terminals 765B. Accordingly, the first terminal 511A and the second terminal 511B of the HV connector 511 are connected to the power conversion device 720, respectively.
  • the service plug 510 is turned on, the plurality of battery modules 100a to 100d and the HV connector 511 are electrically connected, and the plurality of battery modules 100a to 100d of the battery unit 500 and the power conversion device are connected. Power can be exchanged with 720.
  • the communication connection part CC of the battery unit 500 and the communication connection part 763 of the battery rack 750 are connected in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the accommodating space 757 of the battery rack 750.
  • the detection circuits 20 of the battery modules 100a to 100d are connected to the communication connection part CC via the communication lines P21 to P24. Therefore, the detection circuit 20 of the battery modules 100a to 100d and the system controller 712 are connected to be communicable.
  • the first terminal 510A and the second terminal 510B of the service plug 510 are respectively connected to the third terminal 764A and the fourth terminal 764A of the on / off switching unit 764 in conjunction with the extraction operation in which the battery unit 500 is extracted from the storage space 757 of the battery rack 750. It is pulled out from the terminal 764B. That is, the on / off switching unit 764 is separated from the service plug 510. Thereby, the electrical path between the first terminal 510A and the second terminal 510B of the service plug 510 is cut off, and the service plug 510 is turned off. As a result, the series connection between the battery modules 100a and 100b of the battery unit 500 and the battery modules 100c and 100d is disconnected.
  • the battery modules 100a and 100b and the battery modules 100c and 100d of the battery unit 500 are automatically and electrically separated from each other in conjunction with the take-out operation. Accordingly, no voltage is generated between the first terminal 511A and the second terminal 511B.
  • the total voltage of the series circuit composed of the battery modules 100a and 100b and the total voltage of the series circuit composed of the battery modules 100c and 100d are about half of the total voltage of the series circuit composed of the battery modules 100a, 100b, 100c and 100d. be able to.
  • the first terminal 511A and the second terminal 511B of the HV connector 511 are respectively connected to the third terminal 765A and the fourth terminal 765A of the power connection portion 765. It is pulled out from the terminal 765B.
  • the first terminal 511 ⁇ / b> A and the second terminal 511 ⁇ / b> B of the HV connector 511 are electrically separated from the power converter 720. Therefore, power is not exchanged between the plurality of battery modules 100a to 100d of the battery unit 500 and the power conversion device 720.
  • the communication connection part CC of the battery unit 500 is pulled out from the communication connection part 763 of the battery rack 750 in conjunction with the take-out operation in which the battery unit 500 is taken out from the storage space 757 of the battery rack 750.
  • the communication connection part CC and the communication connection part 763 are electrically separated.
  • the cooling gas is introduced into the housing 550 through the vent 591 by the cooling fan 761.
  • the heat of each battery cell 10 (FIG. 2) of the battery modules 100a to 100d is absorbed by the cooling gas in the housing 550.
  • the cooling gas that has absorbed heat in the housing 550 is discharged through the vent 592 of the housing 550 and the vent 762 of the battery rack 750. In this way, each battery cell 10 of the battery modules 100a to 100d is cooled.
  • each battery unit 500 may be provided with a cooling fan as long as the cooling gas can be introduced into the housing 550 of each battery unit 500.
  • all the battery units 500 are accommodated in one battery rack 750, but all the battery units 500 may be accommodated in a plurality of battery racks 750.
  • a plurality of battery racks 750 corresponding to all of the battery units 500 may be prepared, and all of the battery units 500 may be individually accommodated in the plurality of battery racks 750 respectively corresponding to the battery racks 750.
  • the service plug 510 is connected by the on / off switching unit 764 in conjunction with the take-out operation in which the battery unit 500 is taken out from the battery rack 750 as a container.
  • the on-state is changed to the off-state, and the series connection between the battery modules 100a and 100b and the battery modules 100c and 100d is disconnected. That is, the electrical path between the battery modules 100a and 100b and the battery modules 100c and 100d is blocked.
  • the service plug 510 is changed from the off state to the on state by the on / off switching unit 764 in conjunction with the housing operation in which the battery unit 500 is housed in the battery rack 750 as the housing body, so that the battery modules 100a and 100b, A series connection with 100d is formed.
  • an electrical path including the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b, the service plug 510, the on / off switching unit 764, the plurality of bus bars B, and the relay member TM is formed.
  • the plurality of battery modules 100a to 100d and the HV connector 511 as an external connector are electrically connected.
  • the HV connector 511 as the external connector
  • the plurality of battery modules 100a to 100d, the service plug 510, and the on / off switching unit 764 constitute a series circuit.
  • the operator does not need to individually turn on and off the service plug 510. Therefore, the work efficiency of assembly and maintenance of the battery system 711 is further improved.
  • the service plug 510 as the contacted portion includes a first terminal 510A and a second terminal 510B provided as first and second terminals so as to be separated from each other.
  • the on / off switching unit 764 as a contact member is made of a conductive material.
  • the HV connector 511 as an external connector is connected to the power connection portion 765 in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the accommodating space 757 of the battery rack 750.
  • the HV connector 511 and the power connection portion 765 are electrically separated in conjunction with the removal operation for removing the battery unit 500 from the battery rack 750.
  • the worker accommodates the battery unit 500 in the battery rack 750 so that the battery unit 500 can be externally connected to the power connection unit 765 (the power conversion device 720 or another battery unit 500) without performing wiring connection work. Can be easily connected to.
  • the operator can easily remove the battery unit 500 from the outside (the power conversion device 720 or the other battery unit 500) without removing the wiring by removing the battery unit 500 from the battery rack 750. .
  • the battery rack 750 is provided with a cooling fan 761 for cooling the battery unit 500 in a state where the battery unit 500 is accommodated in the battery rack 750. In this case, since it is not necessary to provide the cooling fan 761 in the battery unit 500, the cost of the battery unit 500 is reduced.
  • each of the battery modules 100a to 100d is based on the information about the voltage, current, and temperature detected by the detection circuit 20 of each of the battery modules 100a to 100d.
  • a detection circuit 20 of each of the battery modules 100a to 100d and an external device as a communication control unit while performing a process of detecting an abnormality of each of the battery modules 100a to 100d.
  • the battery rack 750 may be provided with a battery ECU 101 (FIG. 11) in addition to the cooling fan 761 described above. In this case, since it is not necessary to provide the battery ECU 500 (FIG. 11) in the battery unit 500, the cost of the battery unit 500 is reduced.
  • a service plug 510 and an HV connector 511 are provided with a vent 591 interposed therebetween. Therefore, a certain interval is provided between the service plug 510 and the HV connector 511. Thereby, in a state where the battery unit 500 is taken out from the battery rack 750, the operator can connect the first terminal 510A or the second terminal 510B of the service plug 510 with the first terminal 511A or the second terminal 511B of the HV connector 511. Touching both is prevented.
  • the system controller 712 in FIG. 1 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer.
  • the system controller 712 is connected to the detection circuits 20 (FIG. 2) of the battery modules 100a to 100d (FIG. 2) in each battery unit 500 in a state where the battery units 500 are accommodated in the battery rack 750.
  • the voltage, current and temperature detected by the detection circuit 20 of each of the battery modules 100a to 100d are given to the system controller 712.
  • the system controller 712 calculates the charge amount of each battery cell 10 (FIG. 2) based on the voltage, current, and temperature given from each detection circuit 20, and controls the power conversion device 720 based on the calculated charge amount. By doing so, control regarding discharging or charging of the plurality of battery cells 10 included in each battery unit 500 is performed.
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system 711 of the power storage device 710.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1, PU2 include, for example, outlets.
  • various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells.
  • the power output units PU1, PU2 and other power systems are external examples connected to the power supply device.
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the system controller 712, whereby the plurality of battery cells 10 included in the battery system 711 are discharged and charged.
  • the power supplied from the battery system 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721 and further DC / AC (direct current / alternate current) converted by the DC / AC inverter 722. .
  • the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1.
  • the power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2.
  • DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2.
  • the electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
  • the system controller 712 determines whether to stop discharging the battery system 711 based on the calculated charge amount, and controls the power conversion device 720 based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 2) included in the battery system 711 becomes smaller than a predetermined threshold, the system controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge of the system 711 is stopped. Thereby, overdischarge of each battery cell 10 is prevented.
  • the system controller 712 determines whether to stop charging the battery system 711 based on the calculated charge amount, and controls the power conversion device 720 based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 2) included in the battery system 711 is larger than a predetermined threshold, the system controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that charging of the system 711 is stopped. Thereby, overcharge of each battery cell 10 is prevented.
  • power conversion device 720 performs power conversion between battery cell 10 and the outside.
  • a system controller 712 as a system control unit controls the power conversion device 720 to perform control related to charging or discharging of the battery cell 10 of the battery system 711.
  • the battery unit 500 described above is used, the workability of assembly and maintenance of the battery system 711 is improved while ensuring safety. Therefore, the manufacturing cost of the power supply device 700 is reduced, and the operation cost of the power supply device 700 is also reduced.
  • FIG. 5 is a schematic plan view showing a modified example of the battery system 711 according to the first embodiment.
  • FIG. 5 shows a state in which the battery unit 500 according to the modification is housed in the housing space 757 of the battery rack 750. Differences between the battery system 711 in FIG. 5 and the battery system 711 in FIG. 1 will be described.
  • a plurality of FPC boards 50 (FIG. 2) provided in the plurality of battery modules 100a to 100d are connected to the communication connection portion CC via a wiring member (not shown) such as a harness.
  • a wiring member such as a harness.
  • the communication connection portion CC of the battery unit 500 and the communication connection portion 763 of the battery rack 750 are connected in conjunction with the above-described housing operation, whereby the detection circuit 766 is connected to all of the battery modules 100a to 100d.
  • the battery cell 10 is connected to the plus electrode and the minus electrode.
  • the detection circuit 766 detects, for example, the voltage, current, and temperature of the plurality of battery cells 10 of each of the battery modules 100a to 100d.
  • the voltage, current, and temperature detected by the detection circuit 766 are supplied to the system controller 712.
  • the battery rack 750 is provided with the detection circuit 766, it is not necessary to provide the detection circuit 20 for each battery module. Thereby, the cost of the battery unit 500 is reduced.
  • the power conversion device 720 can select any of the DC / DC converter 721 and the DC / AC inverter 722. You may have only one of them. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • a plurality of battery units 500 are provided, but not limited to this, only one battery unit 500 may be provided.
  • the cooling fan 761 is used to introduce cooling gas into the housing 550 of each battery unit 500.
  • the cooling fan 761 may operate to suck the atmosphere in the housing 550 of each battery unit 500 and discharge it to the outside of the battery rack 750.
  • the atmosphere in the housing 550 is discharged to the outside of the battery rack 750 through the vent 591 in a state where the battery unit 500 is housed in the housing space 757 of the battery rack 750.
  • the atmosphere outside the casing 550 is introduced into the casing 550 through the vent 762 of the battery rack 750 and the vent 592 of the casing 550. In this manner, the gas circulates between the inside of the housing 550 and the outside of the battery rack 750, whereby each battery cell 10 of the battery modules 100a to 100d is cooled.
  • the configuration for cooling the plurality of battery cells 10 in the battery unit 500 is not limited to the above example.
  • a unit side refrigerant pipe is attached in the battery unit 500 so as to contact the plurality of battery cells 10.
  • a refrigerant inflow connection port including a gasket is provided at one end of the unit side refrigerant pipe attached to the battery unit 500
  • a refrigerant outflow connection port including a gasket is provided at the other end of the unit side refrigerant pipe.
  • the battery rack 750 is connected to the refrigerant pump, the refrigerant pump and the rack side refrigerant pipe configured to be connectable to the refrigerant inflow connection port of the battery unit 500, and the battery unit 500 connected to the refrigerant pump.
  • a rack side refrigerant pipe configured to be connectable to the refrigerant outflow connection port is provided.
  • the refrigerant is connected between the unit side refrigerant pipe in the battery unit 500 and the refrigerant pump of the battery rack 750.
  • the circulation path is configured.
  • a refrigerant such as cooling water flows into the refrigerant inflow connection port of the battery unit 500 by the refrigerant pump, the refrigerant passes through the unit side refrigerant pipe and flows out from the refrigerant outflow connection port.
  • coolant piping is cooled.
  • the battery unit 500 may include one battery module. Further, each of the battery modules 100a to 100d may be constituted by one battery cell 10. Further, the number of battery cells 10 constituting the plurality of battery modules 100a to 100d may be different for each battery module.
  • each of the battery modules 100a to 100d a plurality of battery cells 10 are connected in series by a plurality of bus bars B. Not limited to this, in each of the battery modules 100a to 100d, all of the plurality of battery cells 10 may be connected in parallel, or the plurality of battery cells 10 may be connected in a combination of series and parallel. In this case, each of the battery modules 100a to 100d functions as a battery cell in the claims.
  • the battery unit 500 includes n battery cells 10 connected in series (n is a natural number of 2 or more), n battery cells 10 connected in parallel, or n connected in series and parallel.
  • One battery cell 10 may be included.
  • a service plug 510 may be provided as a connection function unit between the first electrode and the second terminal 511B of the HV connector 511.
  • the battery unit 500 may include a cluster of i (i is a natural number of 2 or more) battery cells 10 and a cluster of j (j is a natural number of 2 or more) battery cells 10.
  • the i battery cells 10 may be connected in series or in parallel.
  • i battery cells 10 may be connected in a combination of series and parallel.
  • j battery cells 10 may be connected in series or in parallel.
  • j battery cells 10 may be connected in a combination of series and parallel.
  • a service plug 510 may be provided as a connection function unit between a cluster of i battery cells 10 and a cluster of j battery cells 10.
  • the battery unit 500 is not limited to the above-described two battery cell 10 blocks (i battery cells 10 and j battery cells 10), and may include three or more battery cell 10 blocks. . In that case, for example, the connection function unit (for example, the service plug 510) exists between any of the masses of the battery cells 10.
  • Second Embodiment A battery system according to a second embodiment will be described while referring to differences from the battery system 711 according to the first embodiment.
  • FIG. 6 is a schematic plan view showing a configuration example of the battery unit 500 according to the second embodiment.
  • the battery unit 500 according to the present embodiment includes a slide member 90 in addition to the configuration of the battery unit 500 of FIG.
  • the service plug 510 is provided on the front surface portion 550d of the housing 550 so as to be adjacent to the battery module 100a.
  • a slide member 90 is provided on the front surface portion 550d so as to face the service plug 510.
  • FIG. 7 is a schematic plan view showing a state in which the battery unit 500 of FIG. 6 is accommodated in the battery rack according to the second embodiment.
  • the contactor 512 and the plurality of communication lines P21 in FIG. 6 are easy to understand the connection relationship among the plurality of battery modules 100a to 100d, the service plug 510, the HV connector 511, and the power connection unit 765 of the battery unit 500.
  • the illustration of P24 is omitted, and the high potential electrode 10A and the low potential electrode 10B and the power lines D21, D22, D23, D24, D25a, D25b, D26a, and D26b of the plurality of battery modules 100a to 100d are schematically illustrated by thick solid lines. Illustrated in FIG.
  • a fixing groove 90g into which a part of the slide member 90 can be fitted is formed inside the side surface portion 751.
  • the slide member 90 and the fixing groove 90g are examples of the fixing mechanism. Details of the slide member 90 and the fixing groove 90g will be described.
  • FIG. 8 is a diagram for explaining the details of the slide member 90 and the fixing groove 90g of FIG.
  • FIG. 8A shows a part of a side view (front view) of the battery system 711 showing a state in which the battery unit 500 is housed in the housing space 757 of the battery rack 750, and FIG. A sectional view taken along line AA of a) is shown.
  • the slide member 90 of this example is a rod-shaped member having a rectangular cross section.
  • the slide member 90 is attached to the front surface portion 550d so as to be movable in a direction parallel to the front surface portion 550d and perpendicular to the side surface portions 550a and 550c (FIG. 7). Thereby, the slide member 90 is movable between the first position p1 and the second position p2 on the front surface portion 550d. With the slide member 90 in the first position p1, the entire slide member 90 is located on the front surface portion 550d.
  • the fixing groove 90g of the battery rack 750 is formed at a position facing the slide member 90 in a state where the battery unit 500 is disposed in the accommodation space 757.
  • the battery unit 500 is arranged in the accommodation space 757 in a state where the slide member 90 is in the first position p1, and the slide member 90 is moved from the first position p1 to the second position p2.
  • a part of the slide member 90 protruding from one side of the front surface portion 550d is fitted into the fixed groove 90g of the battery rack 750.
  • the battery unit 500 is fixed to the battery rack 750 in a state where the battery unit 500 is disposed in the battery rack 750.
  • the service plug 510 of the battery unit 500 includes a first terminal 510A, a second terminal 510B, and a terminal support 510C.
  • the power line D23 of FIGS. 6 and 7 is connected to the first terminal 510A
  • the power line D24 of FIGS. 6 and 7 is connected to the second terminal 510B.
  • the terminal support portion 510C is made of an insulating material.
  • the terminal support portion 510C fixes the first terminal 510A and the second terminal 510B to the front surface portion 550d so as to be aligned vertically with a space therebetween. At this time, part of the first terminal 510A and the second terminal 510B (the hatched part in FIG. 8A) is exposed to the outside of the front surface part 550d.
  • the slide member 90 includes a main body 91 and a metal plate 92.
  • the main body 91 is made of an insulating material.
  • a cutout is provided in a part of the main body 91 made of a rod-shaped member having a rectangular cross section.
  • a metal plate 92 is fitted into the portion of the main body 91 where the notch is formed.
  • the metal plate 92 does not face the service plug 510 when the slide member 90 is at the first position p1, and the metal plate 92 is at the service plug when the slide member 90 is at the second position p2.
  • the slide member 90 is attached to the front surface portion 550d so as to face 510.
  • the metal plate 92 is separated from the first terminal 510A and the second terminal 510B of the service plug 510 with the slide member 90 in the first position p1, and between the first terminal 510A and the second terminal 510B.
  • the electrical path is interrupted and the service plug 510 is turned off.
  • the series connection between the battery modules 100a and 100b (FIG. 7) of the battery unit 500 and the battery modules 100c and 100d (FIG. 7) is disconnected, and the battery modules 100a and 100b, the battery modules 100c and 100d, Are electrically isolated from each other. Accordingly, in the HV connector 511, no voltage is generated between the first terminal 511A and the second terminal 511B.
  • the total voltage of the series circuit composed of the battery modules 100a and 100b and the total voltage of the series circuit composed of the battery modules 100c and 100d are about half of the total voltage of the series circuit composed of the battery modules 100a, 100b, 100c and 100d. Therefore, when the slide member 90 is in the first position p1, the voltage generated in the battery unit 500 is half of the voltage generated during normal use.
  • the metal plate 92 contacts the first terminal 510A and the second terminal 510B of the service plug 510, and the first terminal 510A and the second terminal 510B are electrically connected. Connected and the service plug 510 is turned on. As a result, a series connection is formed between the plurality of battery modules 100a to 100d of the battery unit 500.
  • the metal plate 92 (FIG. 8), the plurality of bus bars B (FIG. 6), and the relay member TM (FIG. 6) form an electrical path that electrically connects the plurality of battery modules 100a to 100d and the HV connector 511.
  • the service plug 510 and the slide member 90 are examples of connection function units
  • the service plug 510 is an example of a contacted portion
  • the metal plate 92 of the slide member 90 is an example of a contact member
  • HV The connector 511 is an example of an external connector
  • the slide member 90 and the fixing groove 90g of the battery rack 750 are examples of the fixing mechanism.
  • the battery unit 500 including the service plug 510 and the slide member 90 is an example of a battery unit.
  • a state where a part of the slide member 90 is fitted in the fixing groove 90g is an example of a fixed state
  • a state where the slide member 90 is detached from the fixing groove 90g is an example of a released state.
  • the moving operation in which the slide member 90 moves from the first position p1 to the second position p2 in a state where the battery unit 500 is disposed in the battery rack 750 is an example of the first switching operation.
  • An example of the second switching operation is a moving operation in which the slide member 90 moves from the second position p2 to the first position p1 in a state where is disposed in the battery rack 750.
  • the slide member 90 is provided on the front surface portion 550d of the battery unit 500.
  • the slide member 90 may be provided on the side surface 751 of the battery rack 750.
  • the fixing groove 90g may be formed in the side surface portion 550a of the battery unit 500 facing the slide member 90 in a state where the battery unit 500 is arranged in the accommodation space 757. Also in this case, the slide member 90 is moved in a state where the battery unit 500 is disposed in the accommodation space 757, and a part of the slide member 90 is fitted into the fixed groove 90g. Thereby, the battery unit 500 is fixed to the battery rack 750.
  • the service plug 510 has the first terminal 510A and the second terminal 510B, and the metal plate 92 of the slide member 90 comes into contact with the first terminal 510A and the second terminal 510B.
  • the service plug 510 is turned on. Further, the service plug 510 is turned off by separating the metal plate 92 of the slide member 90 from the first terminal 510A and the second terminal 510B.
  • the service plug 510 electrically connects between the power line D23 and the power line D24 in conjunction with a moving operation in which the slide member 90 moves from the first position p1 to the second position p2.
  • the member 90 may be configured by a switch that electrically separates the power line D23 and the power line D24 in conjunction with a moving operation in which the member 90 moves from the second position p2 to the first position p1. In this case, it is not necessary to provide the metal plate 92 on the slide member 90.
  • the housing operation includes a moving operation in which the slide member 90 moves from the first position p1 to the second position p2.
  • the take-out operation includes a moving operation in which the slide member 90 moves from the second position p2 to the first position p1.
  • the slide member 90 that is a fixing mechanism is moved from the first position p1 to the second position p2 as the first switching operation in the housing operation.
  • the service plug 510 is turned on in conjunction with the operation.
  • a series connection between the battery modules 100a and 100b (FIG. 7) of the battery unit 500 and the battery modules 100c and 100d (FIG. 7) is formed.
  • a plurality of battery modules 100a to 100d and the HV connector 511 are electrically connected by the electrical path.
  • the battery unit 500 is fixed to the battery rack 750 in conjunction with the movement of the slide member 90 from the first position p1 to the second position p2.
  • the slide member 90 as the fixing mechanism is moved from the second position p2 to the first position p1 as the second switching operation in the take-out operation.
  • the service plug 510 is turned off in conjunction with the moved operation.
  • the serial connection between the battery modules 100a and 100b and the battery modules 100c and 100d is cut, and the electrical path between the battery modules 100a and 100b and the battery modules 100c and 100d is cut off.
  • the battery unit 500 can be detached from the battery rack 750 in conjunction with the movement of the slide member 90 from the second position p2 to the first position p1.
  • the battery unit 500 is fixed to the battery rack 750, and when the slide member 90 is in the first position p1, the battery unit 500 is in the battery rack 750. Not fixed. Therefore, the operator cannot take out the battery unit 500 from the battery rack 750 in a state where the service plug 510 is turned on. Therefore, the worker does not touch the HV connector 511 where the voltage is generated. On the other hand, the operator can take out the battery unit 500 from the battery rack 750 with the service plug 510 turned off. Therefore, no voltage is generated in the HV connector 511 in a state where the operator may touch the HV connector 511. As a result, the work efficiency of the worker is improved.
  • FIG. 9 is a schematic step view showing a first modification of the battery system according to the second embodiment.
  • FIG. 9A shows a state in which the battery unit 500 according to the first modification is being accommodated in one accommodation space 757 of the battery rack 750.
  • FIG. 9B shows a state after the battery unit 500 according to the first modification is accommodated in one accommodation space 757 of the battery rack 750.
  • the battery unit 500 of this example includes a cover 590 and a pair of rotating members 80 in addition to the configuration of the battery unit 500 of FIGS.
  • the lid portion 590 is made of a rectangular plate member and is configured to cover the upper portion of the housing 550 of FIG.
  • Each of the pair of rotating members 80 has a substantially L shape.
  • the pair of rotating members 80 are attached to the vicinity of two corners of the lid portion 590 adjacent to the front surface portion 550d so as to be rotatable by the support shafts 89, respectively.
  • a service plug 510 is provided between the battery module 100a (FIG. 6) and the front surface portion 550d of the housing 550.
  • service plug 510 is configured by a switch that can electrically connect and electrically isolate power line D23 (FIG. 6) and power line D24 (FIG. 6). .
  • the switch is configured to be switched between an on state and an off state in conjunction with the rotational operation of the pair of rotating members 80.
  • a fixing groove 80g into which a part of the rotating member 80 can be inserted is formed inside the side surface portion 751.
  • the fixing groove 80g includes a slide surface 758a and a contact surface 758b orthogonal to the partition portion 756 (FIG. 8) of the battery rack 750.
  • the slide surface 758a and the contact surface 758b face each other.
  • the slide surface 758a is located farther from the back surface portion 755 of the battery rack 750 than the contact surface 758b.
  • the slide surface 758 a is inclined with respect to the back surface portion 755, and the contact surface 758 b is parallel to the back surface portion 755.
  • the rotating member 80 and the fixing groove 80g function as a fixing mechanism. Details of the rotating member 80 and the fixed groove 80g will be described.
  • each rotating member 80 includes a long shaft portion 81 and a short shaft portion 82.
  • the long shaft portion 81 and the short shaft portion 82 can rotate around the support shaft 89.
  • the tip portion of the short shaft portion 82 of each rotating member 80 is inserted into the fixed groove 80g.
  • the operator rotates the long shaft portions 81 of the pair of rotating members 80 so as to approach each other.
  • the tip of each short shaft portion 82 moves on the slide surface 758a toward the contact surface 758a.
  • the battery unit 500 moves toward the back surface portion 755 in the accommodation space 757.
  • the switch of the service plug 510 is configured to be switched from the off state to the on state in conjunction with a rotation operation in which the pair of long shaft portions 81 are rotated so as to approach each other.
  • the pair of long shaft portions 81 are rotated away from each other. Thereby, the tip end portion of the short shaft portion 82 is pulled out from the inside of the fixed groove 80g, and the battery unit 500 is pulled out from the storage space 757.
  • the switch of the service plug 510 is configured to be switched from the on state to the off state in conjunction with the rotation operation in which the pair of long shaft portions 81 are rotated so as to be separated from each other.
  • the service plug 510 is an example of a connection function unit
  • the rotating member 80 and the fixing groove 80g are examples of a fixing mechanism.
  • the state in which the short shaft portion 82 of each rotating member 80 is in contact with the contact surface 758b of the fixed groove 80g is an example of a fixed state
  • the short shaft portion 82 of each rotating member 80 is the contact surface 758b of the fixed groove 80g.
  • the state separated from the is an example of the release state.
  • the operation of rotating the pair of long shaft portions 81 so as to approach each other is an example of the first switching operation
  • the operation of rotating the pair of long shaft portions 81 so as to be separated from each other is an example of the second switching operation.
  • the battery unit 500 including the service plug 510 is an example of a battery unit.
  • the battery unit 500 is fixed to the battery rack 750 by rotating the pair of long shaft portions 81 so as to approach each other, and the service plug 510 is turned on from the off state.
  • the battery unit 500 can be removed from the battery rack 750, and the service plug 510 is changed from the on state to the off state. Therefore, when the service plug 510 is in the on state, the operator cannot take out the battery unit 500 from the battery rack 750. Therefore, the worker does not touch the HV connector 511 where the voltage is generated.
  • the service plug 510 is in the off state, the operator can take out the battery unit 500 from the battery rack 750. Therefore, no voltage is generated in the HV connector 511 in a state where the operator may touch the HV connector 511. As a result, the work efficiency of the worker is improved.
  • a member for fixing the positional relationship between the pair of long shaft portions 81 may be attached in a state where the battery unit 500 is disposed in the battery rack 750. In this case, the battery unit 500 is more firmly fixed in the battery rack 750.
  • the shape of the rotating member 80 is not limited to the substantially L shape described above.
  • the rotating member 80 may have any other shape and structure as long as it can fix the battery unit 500 to the battery rack 750 by rotating.
  • FIG. 10 is a schematic step view showing a second modification of the battery system according to the second embodiment.
  • FIG. 10A shows a state in which the battery unit 500 according to the second modification is being accommodated in one accommodation space 757 of the battery rack 750.
  • FIG. 10B shows a state after the battery unit 500 according to the second modification is accommodated in one accommodation space 757 of the battery rack 750.
  • the battery unit 500 of this modification includes the same lid portion 590 and a pair of rotating members 80 as those of the example of FIG. 9 in addition to the configuration of the battery unit 500 of FIG.
  • the service plug 510 is provided on the back surface portion 550b of the housing 550, as in the example of FIG.
  • an on / off switching portion 764 is provided as a conductive member on the back surface portion 755 of the battery rack 750. Furthermore, in the battery rack 750 of this modification, the same fixing groove 80g as that of the example of FIG. 9 is formed. Also in this modified example, the rotating member 80 and the fixing groove 80g function as a fixing mechanism.
  • the tip portion of the short shaft portion 82 of each rotating member 80 is inserted into the fixing groove 80g while the battery unit 500 is housed in the housing space 757. Then, the long shaft portions 81 of the pair of rotating members 80 are rotated so as to approach each other. Thereby, the communication connection part CC, the service plug 510, and the HV connector 511 provided on the back surface part 550b of the battery unit 500 are respectively connected to the communication connection part 763, the on / off switching part 764, and the power connection part 765 provided in the battery rack 750. It is securely inserted by a strong pressing force.
  • the communication connection part CC, the service plug 510 and the HV connector 511 of the battery unit 500 are connected to the communication connection part 763, the on / off switching part 764 and the power connection part 765 provided in the battery rack 750, respectively. Is done.
  • the first plug 510A and the second plug 510B of the service plug 510 are plugged into the on / off switching portion 764 in conjunction with the housing operation in which the battery unit 500 is housed in the battery rack 750. 510 goes from the off state to the on state.
  • the pair of long shaft portions 81 are rotated away from each other. Thereby, the tip end portion of the short shaft portion 82 is pulled out from the inside of the fixed groove 80g, and the battery unit 500 is pulled out from the storage space 757.
  • the communication connection part CC, the service plug 510 and the HV connector 511 of the battery unit 500 are electrically connected from the communication connection part 763, the on / off switching part 764 and the power connection part 765 provided in the battery rack 750, respectively. Separated. During this separation, the first plug 510A and the second plug 510B of the service plug 510 are pulled out from the on / off switching unit 764 in conjunction with the pulling-out operation in which the battery unit 500 is pulled out from the battery rack 750, whereby the service plug 510 Changes from on to off.
  • the service plug 510 and the on / off switching unit 764 are examples of connection function units, the service plug 510 is an example of a contacted unit, and the on / off switching unit 764 is an example of a contact member and a conductive member.
  • the rotating member 80 and the fixing groove 80g are examples of the fixing mechanism.
  • the first terminal 510A and the second terminal 510B of the service plug 510 are examples of first and second terminals, and the on / off switching unit 764 is an example of a conductive member.
  • the state in which the short shaft portion 82 of each rotating member 80 is in contact with the contact surface 758b of the fixed groove 80g is an example of a fixed state
  • the short shaft portion 82 of each rotating member 80 is the contact surface 758b of the fixed groove 80g.
  • the state separated from the is an example of the release state.
  • the operation of rotating the pair of long shaft portions 81 so as to approach each other is an example of the first switching operation
  • the operation of rotating the pair of long shaft portions 81 so as to be separated from each other is an example of the second switching operation.
  • the battery unit 500 including the service plug 510 is an example of a battery unit
  • the battery rack 750 including the on / off switching unit 764 is an example of a container.
  • FIG. 11 is a schematic plan view showing a configuration example of the battery unit 500 according to the third embodiment.
  • a battery unit 500 according to the third embodiment includes a battery ECU 101 in addition to the configuration of the battery unit 500 of FIG.
  • the battery ECU 101 is provided between the battery module 100b and the back surface portion 550b of the housing 550.
  • the detection circuit 20 of the battery module 100b is connected to the battery ECU 101 via the communication line P24, and the battery ECU 101 is connected to the main control part 300 (described later) via the communication line P25 and the communication connection part CC. 12).
  • the detection circuit 20 of each of the battery modules 100a to 100d gives information on the voltage, current and temperature of each battery cell 10 to the other battery modules 100a to 100d or the battery ECU 101, for example.
  • the information on the voltage, current, and temperature is referred to as cell information.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 based on, for example, cell information given from each battery module 100a to 100d, and performs charge / discharge control of each battery module 100a to 100d based on the charge amount.
  • the battery ECU 101 detects an abnormality of each of the battery modules 100a to 100d based on the cell information given from the detection circuit 20 of each of the battery modules 100a to 100d.
  • the abnormality of the battery modules 100a to 100d is, for example, overdischarge, overcharge or temperature abnormality of the battery cell 10.
  • the battery ECU 101 performs charge / discharge control of each of the battery modules 100a to 100d and performs processing for detecting an abnormality of each of the battery modules 100a to 100d, and detects each of the battery modules 100a to 100d as a communication control unit. Communication is performed between the circuit 20 and an external device (main control unit 300 in FIG. 12 described later).
  • the battery ECU 101 may be provided in the battery rack 750 of FIG. 1 instead of being provided in the battery unit 500.
  • FIG. 12 is a block diagram showing a configuration of an electric vehicle including the battery unit 500 of FIG.
  • the electric automobile 600 includes a vehicle body 610.
  • the vehicle body 610 is provided with the battery system 711, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, the rotation speed sensor 606, and the main control unit 300 described above.
  • the battery system 711 includes the battery unit 500 and the battery rack 750 of FIG.
  • motor 602 is an alternating current (AC) motor
  • power conversion unit 601 includes an inverter circuit.
  • the battery system 711 is connected to the motor 602 via the power converter 601 and also connected to the main controller 300.
  • the main control unit 300 is given a charge amount of each battery cell 10 of each of the battery modules 100a to 100d, an abnormality of the battery modules 100a to 100d, and the like from the battery ECU 101 of FIG.
  • an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 300.
  • the main control unit 300 includes, for example, a CPU and a memory, or a microcomputer. *
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 300.
  • Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
  • the main control unit 300 is given the charge amount of each battery cell 10 of the battery modules 100a to 100d, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, the rotation speed of the motor 602, and the like.
  • the main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
  • the power of the battery modules 100a to 100d is supplied from the battery system 711 to the power conversion unit 601.
  • the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the battery system 711 into power (drive power) necessary to drive the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery modules 100a to 100d and supplies the power to the battery modules 100a to 100d. Thereby, the battery modules 100a to 100d are charged.
  • the motor 602 is driven by the electric power from the battery system 711.
  • the driving wheel 603 rotates by the rotational force of the motor 602, the electric automobile 600 moves.
  • a battery system 711 including the battery unit 500 of FIG. 11 is used for this electric vehicle.
  • the service plug 510 in FIG. 11 is automatically turned on in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the battery rack 750, and the battery unit 500 is removed from the battery rack 750.
  • the service plug 510 in FIG. 11 is automatically turned off in conjunction with the take-out operation.
  • the battery system 711 may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
  • a ship equipped with the battery system 711 includes, for example, a hull instead of the vehicle body 610 in FIG. 12, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • the hull corresponds to the moving main body
  • the motor corresponds to the power source
  • the screw corresponds to the drive unit.
  • the ship does not have to include a deceleration input unit.
  • the motor receives electric power from the battery system 711 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
  • An aircraft equipped with the battery system 711 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 12, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. Ships and aircraft do not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop acceleration, the airframe is decelerated due to water resistance or air resistance.
  • the elevator equipped with the battery system 711 includes, for example, a saddle instead of the vehicle body 610 in FIG. 12, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
  • the walking robot equipped with the battery system 711 includes, for example, a torso instead of the vehicle body 610 in FIG. 12, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the motor corresponds to the power source
  • the hull, the fuselage, the anchor and the trunk correspond to the moving main body
  • the screw, the propeller, the lifting rope and the foot correspond to the driving section.
  • the power source receives electric power from the battery system 711 and converts the electric power into motive power
  • the drive unit moves the moving main body portion with the motive power converted by the power source.
  • the moving body according to the present embodiment is configured to move the moving main body unit from the battery system 711, the moving main body unit, and the power from the battery cell 10 of the battery system 711.
  • a power source that converts power into power and a drive unit that moves the moving main body by the power converted by the power source are provided.
  • the electric power from the battery system 711 is converted into power by a power source, and the drive unit moves the moving main body by the power.
  • the battery system 711 including the battery unit 500 of FIG. 11 is used for this moving body, the workability at the time of assembling and maintaining the battery system 711 and replacing the battery unit 500 is improved while ensuring safety. . Therefore, the work efficiency of assembling the moving body and the work efficiency of replacing the battery unit 500 are improved. Thereby, the manufacturing cost of the moving body is reduced and the operation cost of the moving body is also reduced.
  • the main control unit 300 has the same function as the battery ECU 101. You may have.
  • the battery system 711 according to the first or second embodiment can be used as the battery system 711 of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery system provided with a battery unit, a housing body configured so as to be capable of housing the battery unit, and a connection function part. The battery unit includes one or a plurality of battery cells, and an external connector. The battery cell(s), the external connector, and the connection function part form a serial connection in a state in which the battery unit is housed in the housing body. The connection function part breaks the serial connection in tandem with a removal action in which the battery unit is removed from the housing body.

Description

バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置、バッテリユニットおよび収容体Battery system, electric vehicle, moving body, power storage device, power supply device, battery unit and container
 本発明は、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置、バッテリユニットおよび収容体に関する。 The present invention relates to a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, a battery unit, and a container.
 充放電可能な二次電池が、種々の分野に渡って利用されている。例えば、二次電池は、ハイブリッド電動車両(HEV)、バッテリ電動車両(EV)、家庭用の電力貯蔵システムまたは事業所用の電力貯蔵システムの電源として用いられる。このような電力貯蔵システムは、例えば建屋の外側または内側に設置されたラック内に複数の二次電池を組み込み、ラック内に組み込まれた複数の二次電池が互いに電気的に連結された組電池構造を有する。 Rechargeable secondary batteries are used in various fields. For example, the secondary battery is used as a power source for a hybrid electric vehicle (HEV), a battery electric vehicle (EV), a household power storage system, or a business power storage system. Such an electric power storage system includes, for example, an assembled battery in which a plurality of secondary batteries are incorporated in a rack installed outside or inside a building, and the plurality of secondary batteries incorporated in the rack are electrically connected to each other. It has a structure.
 特許文献1に記載の電力貯蔵システムは、電気室と電池室とが筐体内に設けられた構成を有する。電気室の内部には電力変換装置および保護回路等が収められている。電池室の内部では複数のモジュール電池がラックに収容される。各モジュール電池においては、4個の二次電池がケースに収容される。4個の二次電池は複数の帯状の配線を介して直列接続される。さらに、一端側の二次電池の正極に一の配線の一端部が接続され、その配線の他端部がケースの外部に引き出される。同様に、他端側の二次電池の負極に他の配線の一端部が接続され、その配線の他端部がケースの外部に引き出される。ケースから引き出された一の配線の他端部および他の配線の他端部が、ケースの外部で露出する。 The power storage system described in Patent Document 1 has a configuration in which an electric room and a battery room are provided in a casing. A power converter, a protection circuit, and the like are housed inside the electrical chamber. A plurality of module batteries are accommodated in a rack inside the battery chamber. In each module battery, four secondary batteries are accommodated in a case. The four secondary batteries are connected in series via a plurality of strip-shaped wires. Furthermore, one end of one wiring is connected to the positive electrode of the secondary battery on one end side, and the other end of the wiring is drawn out of the case. Similarly, one end of another wiring is connected to the negative electrode of the secondary battery on the other end side, and the other end of the wiring is drawn out of the case. The other end of one wiring drawn from the case and the other end of the other wiring are exposed outside the case.
特開2005-243580号公報JP 2005-243580 A
 上記の電力貯蔵システムの組み立て時およびメンテナンス時には、作業者はモジュール電池のケースの外部で露出した配線の端部に触れないようにモジュール電池を取り扱わなければならない。そのため、未熟な作業者が電力貯蔵システムの組み立ておよびメンテナンスを行うと作業効率が低下する。 [1] During assembly and maintenance of the above power storage system, an operator must handle the module battery so as not to touch the exposed end of the wiring outside the module battery case. Therefore, when an unskilled worker performs assembly and maintenance of the power storage system, the work efficiency decreases.
 本発明の目的は、安全性を確保しつつ収容体に対するバッテリユニットの収容および取り外しの作業効率を向上させることを可能にするバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置、バッテリユニットおよび収容体を提供することである。 An object of the present invention is to provide a battery system, an electric vehicle, a movable body, a power storage device, a power supply device, and a battery unit that can improve the working efficiency of housing and removing the battery unit from the housing while ensuring safety. And providing a container.
 本発明に係るバッテリシステムは、1または複数のバッテリセルおよび外部と接続される外部コネクタを含むバッテリユニットと、バッテリユニットが収容可能に構成される収容体と、接続機能部とを備え、バッテリユニットが収容体に収容された状態で1または複数のバッテリセルと外部コネクタと接続機能部とで直列接続が形成され、接続機能部は、バッテリユニットが収容体から取り出される取り出し動作に連動して直列接続を切断するものである。 A battery system according to the present invention includes a battery unit including one or a plurality of battery cells and an external connector connected to the outside, a container configured to be able to accommodate the battery unit, and a connection function unit. Is connected in series with the one or a plurality of battery cells, the external connector, and the connection function unit, and the connection function unit is connected in series with the operation of taking out the battery unit from the container. Disconnects the connection.
 本発明によれば、安全性を確保しつつ収容体に対するバッテリユニットの収容および取り外しの作業効率を向上させることが可能になる。 According to the present invention, it is possible to improve the work efficiency of housing and removing the battery unit from the housing while ensuring safety.
第1の実施の形態に係る電源装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power supply device which concerns on 1st Embodiment. 第1の実施の形態に係るバッテリユニットの一構成例を示す模式的平面図である。It is a typical top view which shows the example of 1 structure of the battery unit which concerns on 1st Embodiment. 図1のバッテリラックの斜視図である。It is a perspective view of the battery rack of FIG. 図2のバッテリユニットが図3のバッテリラックの収容スペース内に収容される状態を示す模式的平面図である。FIG. 4 is a schematic plan view showing a state in which the battery unit of FIG. 2 is housed in the housing space of the battery rack of FIG. 3. 第1の実施の形態に係るバッテリシステムの一変形例を示す模式的平面図である。It is a schematic plan view which shows the modification of the battery system which concerns on 1st Embodiment. 第2の実施の形態に係るバッテリユニットの一構成例を示す模式的平面図である。It is a schematic plan view which shows one structural example of the battery unit which concerns on 2nd Embodiment. 図6のバッテリユニットが第2の実施の形態に係るバッテリラックに収容される状態を示す模式的平面図である。FIG. 7 is a schematic plan view showing a state in which the battery unit of FIG. 6 is housed in a battery rack according to a second embodiment. 図7のスライド部材および固定溝の詳細を説明するための図である。It is a figure for demonstrating the detail of the slide member of FIG. 7, and a fixing groove. 第2の実施の形態に係るバッテリシステムの第1の変形例を示す模式的段面図である。It is a typical step view which shows the 1st modification of the battery system which concerns on 2nd Embodiment. 第2の実施の形態に係るバッテリシステムの第2の変形例を示す模式的段面図である。It is a typical step view which shows the 2nd modification of the battery system which concerns on 2nd Embodiment. 第3の実施の形態に係るバッテリユニットの一構成例を示す模式的平面図である。It is a typical top view which shows one structural example of the battery unit which concerns on 3rd Embodiment. 図11のバッテリユニットを備える電動自動車の構成を示すブロック図である。It is a block diagram which shows the structure of an electric vehicle provided with the battery unit of FIG.
 [1]第1の実施の形態
 第1の実施の形態に係るバッテリシステム、電力貯蔵装置、電源装置、バッテリユニットおよび収容体について図面を参照しながら説明する。
[1] First Embodiment A battery system, a power storage device, a power supply device, a battery unit, and a container according to a first embodiment will be described with reference to the drawings.
 図1は第1の実施の形態に係る電源装置の構成を示すブロック図である。図1に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、バッテリシステム711およびシステムコントローラ712を備える。バッテリシステム711は、複数のバッテリユニット500およびバッテリラック750を含む。本例のバッテリシステム711においては、複数のバッテリユニット500がバッテリラック750に収容される。本実施の形態では、バッテリラック750が収容体の例である。複数のバッテリユニット500は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。まず、バッテリユニット500の構成について説明する。電源装置700の構成および動作の詳細については第1の実施の形態の項目(3-1)で説明する。 FIG. 1 is a block diagram showing the configuration of the power supply device according to the first embodiment. As illustrated in FIG. 1, the power supply device 700 includes a power storage device 710 and a power conversion device 720. The power storage device 710 includes a battery system 711 and a system controller 712. The battery system 711 includes a plurality of battery units 500 and a battery rack 750. In the battery system 711 of this example, a plurality of battery units 500 are accommodated in the battery rack 750. In the present embodiment, the battery rack 750 is an example of a container. The plurality of battery units 500 may be connected to each other in parallel, or may be connected to each other in series. First, the configuration of the battery unit 500 will be described. Details of the configuration and operation of the power supply device 700 will be described in item (3-1) of the first embodiment.
 (1)バッテリユニットの構成
 図2は第1の実施の形態に係るバッテリユニット500の一構成例を示す模式的平面図である。図2に示すように、バッテリユニット500は、主として複数(本例では4個)のバッテリモジュール100a,100b,100c,100d、サービスプラグ510、コンタクタ512、HV(High Voltage;高圧)コネクタ511、筐体550および通信接続部CCを備える。
(1) Configuration of Battery Unit FIG. 2 is a schematic plan view showing a configuration example of the battery unit 500 according to the first embodiment. As shown in FIG. 2, the battery unit 500 mainly includes a plurality (four in this example) of battery modules 100a, 100b, 100c, and 100d, a service plug 510, a contactor 512, an HV (High Voltage) connector 511, a housing. The body 550 and the communication connection part CC are provided.
 複数のバッテリモジュール100a~100dは、それぞれ複数のバッテリセル10および検出回路20を含む。各バッテリモジュール100a~100dにおいては、扁平な略直方体形状を有する複数(例えば18個)のバッテリセル10が、積層された状態で一方向に並ぶように配置される。複数のバッテリセル10を挟むように略板形状を有する一対の端面枠92a,92bが配置された状態で、複数のバッテリセル10および一対の端面枠92a,92bが一体的に固定される。一方の端面枠92aに検出回路20が取り付けられる。 The plurality of battery modules 100a to 100d each include a plurality of battery cells 10 and a detection circuit 20. In each of the battery modules 100a to 100d, a plurality of (for example, 18) battery cells 10 having a flat and substantially rectangular parallelepiped shape are arranged so as to be aligned in one direction in a stacked state. The plurality of battery cells 10 and the pair of end surface frames 92a, 92b are integrally fixed in a state where the pair of end surface frames 92a, 92b having a substantially plate shape are disposed so as to sandwich the plurality of battery cells 10. The detection circuit 20 is attached to one end face frame 92a.
 各バッテリセル10の上面にプラス電極およびマイナス電極が設けられる。隣接する2個のバッテリセル10間で、一方のバッテリセル10のプラス電極と他方のバッテリセル10のマイナス電極とが近接し、一方のバッテリセル10のマイナス電極と他方のバッテリセル10のプラス電極とが近接する。この状態で、近接する2個の電極にバスバーBが取り付けられる。互いに近接する一方のバッテリセル10のプラス電極および他方のバッテリセル10のマイナス電極へのバスバーBの取り付け、ならびに互いに近接する一方のバッテリセル10のマイナス電極および他方のバッテリセル10のプラス電極へのバスバーBの取り付けが交互に繰り返され、複数のバッテリセル10が複数のバスバーBにより直列接続される。 A positive electrode and a negative electrode are provided on the upper surface of each battery cell 10. Between two adjacent battery cells 10, the positive electrode of one battery cell 10 and the negative electrode of the other battery cell 10 are close to each other, and the negative electrode of one battery cell 10 and the positive electrode of the other battery cell 10 are Close to each other. In this state, the bus bar B is attached to two adjacent electrodes. The bus bar B is attached to the positive electrode of one battery cell 10 and the negative electrode of the other battery cell 10 that are close to each other, and the negative electrode of one battery cell 10 and the positive electrode of the other battery cell 10 that are close to each other The mounting of the bus bar B is alternately repeated, and the plurality of battery cells 10 are connected in series by the plurality of bus bars B.
 フレキシブルプリント回路基板(以下、FPC基板と略記する。)50が複数のバスバーBに共通して接続される。FPC基板50は、主として絶縁層上に複数の導体線が形成された構成を有し、屈曲性および可撓性を有する。FPC基板50は検出回路20に接続される。これにより、検出回路20が、各バッテリセル10のプラス電極およびマイナス電極に接続される。検出回路20は、例えばASIC(Application Specific Integrated Circuit:特定用途向け集積回路)からなる。各検出回路20は、例えば各バッテリモジュール100a~100dの複数のバッテリセル10の電圧、電流および温度の検出等を行う。 A flexible printed circuit board (hereinafter abbreviated as FPC board) 50 is connected to a plurality of bus bars B in common. The FPC board 50 has a configuration in which a plurality of conductor wires are mainly formed on an insulating layer, and has flexibility and flexibility. The FPC board 50 is connected to the detection circuit 20. Thereby, the detection circuit 20 is connected to the plus electrode and the minus electrode of each battery cell 10. The detection circuit 20 is composed of, for example, an ASIC (Application Specific Integrated Circuit). Each detection circuit 20 detects, for example, the voltage, current, and temperature of the plurality of battery cells 10 of each of the battery modules 100a to 100d.
 なお、本例の検出回路20は、例えば上記のいずれかのバスバーBに設けられた図示しないシャント抵抗の両端の間の電圧を検出することにより、その検出結果に基づいて複数のバッテリセル10に流れる電流を検出することができる。 The detection circuit 20 of this example detects, for example, a voltage between both ends of a shunt resistor (not shown) provided in any of the above-described bus bars B, so that a plurality of battery cells 10 are based on the detection result. The flowing current can be detected.
 また、本例の検出回路20は、例えば各バッテリモジュール100a~100dにおける任意のバッテリセル10の表面に図示しない温度センサ(熱電対等)が取り付けられる場合に、温度センサにより得られる情報に基づいてその任意のバッテリセル10の表面温度を検出することができる。 In addition, the detection circuit 20 of this example is based on information obtained by a temperature sensor when a temperature sensor (thermocouple or the like) (not shown) is attached to the surface of an arbitrary battery cell 10 in each of the battery modules 100a to 100d, for example. The surface temperature of any battery cell 10 can be detected.
 バッテリモジュール100a~100d、サービスプラグ510、HVコネクタ511およびコンタクタ512は、箱型の筐体550内に収容される。筐体550は、絶縁性材料により形成された側面部550a、背面部550b、側面部550cおよび前面部550dを有する。側面部550a,550cは互いに平行であり、背面部550bおよび前面部550dは互いに平行でありかつ側面部550a,550cに対して垂直である。 The battery modules 100a to 100d, the service plug 510, the HV connector 511, and the contactor 512 are accommodated in a box-shaped housing 550. The housing 550 includes a side surface portion 550a, a back surface portion 550b, a side surface portion 550c, and a front surface portion 550d formed of an insulating material. The side surface portions 550a and 550c are parallel to each other, and the back surface portion 550b and the front surface portion 550d are parallel to each other and perpendicular to the side surface portions 550a and 550c.
 筐体550内において、バッテリモジュール100a,100bは、バッテリセル10の積層方向に沿って互いに間隔をおいて並ぶように配置される。また、バッテリモジュール100c,100dは、バッテリセル10の積層方向に沿って互いに間隔をおいて並ぶように配置される。以下、互いに間隔をおいて並ぶように配置されたバッテリモジュール100a,100bをモジュール列T1と呼び、互いに間隔をおいて並ぶように配置されたバッテリモジュール100c,100dをモジュール列T2と呼ぶ。 In the housing 550, the battery modules 100a and 100b are arranged so as to be spaced apart from each other along the stacking direction of the battery cells 10. Further, the battery modules 100c and 100d are arranged so as to be spaced apart from each other along the stacking direction of the battery cells 10. Hereinafter, the battery modules 100a and 100b arranged to be spaced apart from each other are referred to as a module row T1, and the battery modules 100c and 100d arranged to be spaced apart from each other are referred to as a module row T2.
 筐体550内において、側面部550aに沿いかつ近接するようにモジュール列T1が配置され、側面部550cに沿いかつ近接するようにモジュール列T2が配置される。それにより、モジュール列T1とモジュール列T2とが互いに並列に配置される。 In the housing 550, the module row T1 is disposed along and close to the side surface portion 550a, and the module row T2 is disposed along and close to the side surface portion 550c. Thereby, the module row T1 and the module row T2 are arranged in parallel to each other.
 本実施の形態において、サービスプラグ510は、第1の実施の形態の項目(2-1)で説明するオンオフ切替部764(図4)によりオン状態およびオフ状態が切り替えられる。サービスプラグ510がオン状態になると、バッテリユニット500内でバッテリモジュール100aとバッテリモジュール100dとの間の直列接続が形成される。サービスプラグ510がオフ状態になると、バッテリモジュール100aとバッテリモジュール100dとの間の直列接続が切断される。サービスプラグ510がオン状態となり、バッテリモジュール100aとバッテリモジュール100dとの間で直列接続が形成されることにより、HVコネクタ511に電圧が発生する。サービスプラグ510がオフ状態となり、バッテリモジュール100aとバッテリモジュール100dとの間で直列接続が切断される、すなわち電気的経路が電気的に遮断されることにより、HVコネクタ511に電圧が発生しない。例えば、サービスマンが保守のために作業する際等に、サービスマンがサービスプラグ510をオフ状態にし、バッテリモジュール100aとバッテリモジュール100dとの間の直列接続を切断させる。 In this embodiment, the service plug 510 is switched between an on state and an off state by an on / off switching unit 764 (FIG. 4) described in the item (2-1) of the first embodiment. When the service plug 510 is turned on, a series connection between the battery module 100a and the battery module 100d is formed in the battery unit 500. When the service plug 510 is turned off, the serial connection between the battery module 100a and the battery module 100d is disconnected. The service plug 510 is turned on and a series connection is formed between the battery module 100a and the battery module 100d, whereby a voltage is generated in the HV connector 511. The service plug 510 is turned off, and the series connection is disconnected between the battery module 100a and the battery module 100d, that is, the electrical path is electrically cut off, so that no voltage is generated in the HV connector 511. For example, when the service person works for maintenance, the service person turns off the service plug 510 and disconnects the serial connection between the battery module 100a and the battery module 100d.
 サービスプラグ510が、バッテリモジュール100bと隣り合うように筐体550の背面部550bに設けられる。また、HVコネクタ511が、バッテリモジュール100cと隣り合うように筐体550の背面部550bに設けられる。さらに、コンタクタ512が、バッテリモジュール100cと筐体550の背面部550bとの間に設けられる。 A service plug 510 is provided on the back surface portion 550b of the housing 550 so as to be adjacent to the battery module 100b. Further, the HV connector 511 is provided on the back surface portion 550b of the housing 550 so as to be adjacent to the battery module 100c. Further, a contactor 512 is provided between the battery module 100c and the back surface portion 550b of the housing 550.
 バッテリモジュール100a,100b,100c,100dの各々においては、端面枠92aに隣り合うバッテリセル10のプラス電極の電位が最も高く、端面枠92bに隣り合うバッテリセル10のマイナス電極の電位が最も低い。バッテリモジュール100aの端面枠92aが前面部550dに向けられ、バッテリモジュール100bの端面枠92bが側面部背面部550bに向けられる。バッテリモジュール100cの端面枠92aが側面部背面部550bに向けられ、バッテリモジュール100dの端面枠92bが前面部550dに向けられる。 In each of the battery modules 100a, 100b, 100c, and 100d, the potential of the positive electrode of the battery cell 10 adjacent to the end face frame 92a is the highest, and the potential of the negative electrode of the battery cell 10 adjacent to the end face frame 92b is the lowest. The end surface frame 92a of the battery module 100a is directed to the front surface portion 550d, and the end surface frame 92b of the battery module 100b is directed to the side surface portion rear surface portion 550b. The end surface frame 92a of the battery module 100c is directed to the side surface portion rear surface portion 550b, and the end surface frame 92b of the battery module 100d is directed to the front surface portion 550d.
 バッテリモジュール100aの低電位電極10B(最も低電位のマイナス電極10b)とバッテリモジュール100bの高電位電極10A(最も高電位のプラス電極10a)とが電力線D21を介して互いに接続される。バッテリモジュール100cの低電位電極10Bとバッテリモジュール100dの高電位電極10Aとが電力線D22を介して互いに接続される。 The low potential electrode 10B (the lowest potential negative electrode 10b) of the battery module 100a and the high potential electrode 10A (the highest potential positive electrode 10a) of the battery module 100b are connected to each other via the power line D21. The low potential electrode 10B of the battery module 100c and the high potential electrode 10A of the battery module 100d are connected to each other via the power line D22.
 バッテリモジュール100aの高電位電極10A、バッテリモジュール100bの低電位電極10B、バッテリモジュール100cの高電位電極10Aおよびバッテリモジュール100dの低電位電極10Bには、導電性の中継部材TMがそれぞれ取り付けられる。バッテリモジュール100aの高電位電極10Aに取り付けられた中継部材TMは電力線D23を介してサービスプラグ510に接続され、バッテリモジュール100dの低電位電極10Bに取り付けられた中継部材TMは電力線D24を介してサービスプラグ510に接続される。 A conductive relay member TM is attached to the high potential electrode 10A of the battery module 100a, the low potential electrode 10B of the battery module 100b, the high potential electrode 10A of the battery module 100c, and the low potential electrode 10B of the battery module 100d. The relay member TM attached to the high potential electrode 10A of the battery module 100a is connected to the service plug 510 via the power line D23, and the relay member TM attached to the low potential electrode 10B of the battery module 100d is serviced via the power line D24. Connected to plug 510.
 バッテリモジュール100bの低電位電極10Bに取り付けられた中継部材TMは電力線D25aを介してコンタクタ512に接続され、バッテリモジュール100cの高電位電極10Aに取り付けられた中継部材TMは電力線D26aを介してコンタクタ512に接続される。コンタクタ512は、電力線D25b,D26bを介してHVコネクタ511に接続される。コンタクタ512は、電力線D25aと電力線D25bとを電気的に接続しまたは電気的に分離するスイッチ、および電力線D26aと電力線D26bとを電気的に接続しまたは電気的に分離するスイッチのうちの少なくとも一方を備える。 The relay member TM attached to the low potential electrode 10B of the battery module 100b is connected to the contactor 512 via the power line D25a, and the relay member TM attached to the high potential electrode 10A of the battery module 100c is connected to the contactor 512 via the power line D26a. Connected to. Contactor 512 is connected to HV connector 511 through power lines D25b and D26b. The contactor 512 includes at least one of a switch for electrically connecting or electrically separating the power line D25a and the power line D25b, and a switch for electrically connecting or electrically separating the power line D26a and the power line D26b. Prepare.
 コンタクタ512が電力線D25aと電力線D25bとの間に設けられるスイッチのみを有する場合、電力線D26aおよび電力線D26bはコンタクタ512に接続されなくてもよい。同様に、コンタクタ512が電力線D26aと電力線D26bとの間に設けられるスイッチのみを有する場合、電力線D25aおよび電力線D25bはコンタクタ512に接続されなくてもよい。 When the contactor 512 has only a switch provided between the power line D25a and the power line D25b, the power line D26a and the power line D26b may not be connected to the contactor 512. Similarly, when the contactor 512 includes only a switch provided between the power line D26a and the power line D26b, the power line D25a and the power line D25b may not be connected to the contactor 512.
 コンタクタ512が電力線D25aと電力線D25bとの間に設けられるスイッチと、電力線D26aと電力線D26bとの間に設けられるスイッチとを備える場合、2つのスイッチは同じタイミングでオンまたはオフされる。 When the contactor 512 includes a switch provided between the power line D25a and the power line D25b and a switch provided between the power line D26a and the power line D26b, the two switches are turned on or off at the same timing.
 バッテリユニット500がバッテリラック750(図1)に収容された状態で、HVコネクタ511が電力変換装置720(図1)に電気的に接続される。一方、バッテリユニット500がバッテリラック750(図1)から取り出された状態で、HVコネクタ511が電力変換装置720(図1)から電気的に分離される。 HV connector 511 is electrically connected to power converter 720 (FIG. 1) while battery unit 500 is housed in battery rack 750 (FIG. 1). On the other hand, the HV connector 511 is electrically separated from the power converter 720 (FIG. 1) in a state where the battery unit 500 is taken out from the battery rack 750 (FIG. 1).
 サービスプラグ510は、バッテリユニット500(図1)がバッテリラック750(図1)に収容される収容動作に連動して、オンオフ切替部764(図4)によりオフ状態からオン状態に切り替えられる。上記のように、オン状態では、バッテリモジュール100aとバッテリモジュール100dとの間に直列接続が形成される。一方、サービスプラグ510は、バッテリユニット500(図1)がバッテリラック750(図1)から取り出される取出し動作に連動して、オンオフ切替部764(図4)によりオン状態からオフ状態に切り替えられる。上記のように、オフ状態では、バッテリモジュール100aとバッテリモジュール100dとの間の直列接続が切断される。上記の収容動作および取出し動作の詳細は第1の実施の形態の項目(2-1)で説明する。 The service plug 510 is switched from the off state to the on state by the on / off switching unit 764 (FIG. 4) in conjunction with the housing operation in which the battery unit 500 (FIG. 1) is housed in the battery rack 750 (FIG. 1). As described above, in the on state, a series connection is formed between the battery module 100a and the battery module 100d. On the other hand, the service plug 510 is switched from the on state to the off state by the on / off switching unit 764 (FIG. 4) in conjunction with the removal operation in which the battery unit 500 (FIG. 1) is taken out from the battery rack 750 (FIG. 1). As described above, in the off state, the series connection between the battery module 100a and the battery module 100d is disconnected. Details of the storing operation and the extracting operation will be described in item (2-1) of the first embodiment.
 コンタクタ512がオンされた状態では、バッテリモジュール100bの低電位電極10Bが電源線D25a,D25bを介してHVコネクタ511に接続されるとともに、バッテリモジュール100cの高電位電極10Aが電源線D26a,D26bを介してHVコネクタ511に接続される。 When the contactor 512 is turned on, the low potential electrode 10B of the battery module 100b is connected to the HV connector 511 via the power supply lines D25a and D25b, and the high potential electrode 10A of the battery module 100c is connected to the power supply lines D26a and D26b. To the HV connector 511.
 それにより、サービスプラグ510およびコンタクタ512がオンされた状態で、バッテリモジュール100a,100b,100c,100dから電力変換装置720(図1)に電力が供給される。または、サービスプラグ510およびコンタクタ512がオンされた状態で、電力変換装置720(図1)からバッテリモジュール100a,100b,100c,100dに電力が供給され、充電が行われる。コンタクタ512がオフされると、バッテリモジュール100bとHVコネクタ511との接続およびバッテリモジュール100cとHVコネクタ511との接続が切断される。 Thereby, power is supplied from the battery modules 100a, 100b, 100c, and 100d to the power conversion device 720 (FIG. 1) with the service plug 510 and the contactor 512 turned on. Alternatively, with the service plug 510 and the contactor 512 turned on, power is supplied from the power conversion device 720 (FIG. 1) to the battery modules 100a, 100b, 100c, and 100d, and charging is performed. When the contactor 512 is turned off, the connection between the battery module 100b and the HV connector 511 and the connection between the battery module 100c and the HV connector 511 are disconnected.
 なお、本実施の形態では、必ずしもバッテリユニット500にコンタクタ512が設けられなくてもよい。この場合、バッテリモジュール100bの低電位電極10Bに取り付けられた中継部材TMが電力線D25aを介してHVコネクタ511に接続され、バッテリモジュール100cの高電位電極10Aに取り付けられた中継部材TMが電力線D26aを介してHVコネクタ511に接続される。 In the present embodiment, the contactor 512 is not necessarily provided in the battery unit 500. In this case, the relay member TM attached to the low potential electrode 10B of the battery module 100b is connected to the HV connector 511 via the power line D25a, and the relay member TM attached to the high potential electrode 10A of the battery module 100c is connected to the power line D26a. To the HV connector 511.
 バッテリモジュール100aの検出回路20とバッテリモジュール100bの検出回路20とは、通信線P21を介して互いに接続される。バッテリモジュール100aの検出回路20とバッテリモジュール100dの検出回路20とは、通信線P22を介して互いに接続される。バッテリモジュール100cの検出回路20とバッテリモジュール100dの検出回路20とは、通信線P23を介して互いに接続される。 The detection circuit 20 of the battery module 100a and the detection circuit 20 of the battery module 100b are connected to each other via a communication line P21. The detection circuit 20 of the battery module 100a and the detection circuit 20 of the battery module 100d are connected to each other via a communication line P22. The detection circuit 20 of the battery module 100c and the detection circuit 20 of the battery module 100d are connected to each other via a communication line P23.
 筐体550の背面部550bには、システムコントローラ712(図1)との接続のための通信接続部CCが設けられる。バッテリモジュール100bの検出回路20は通信線P24を介して通信接続部CCに接続される。 A communication connection portion CC for connection with the system controller 712 (FIG. 1) is provided on the back surface portion 550b of the housing 550. The detection circuit 20 of the battery module 100b is connected to the communication connection part CC via the communication line P24.
 筐体550の背面部550bにおいて、モジュール列T1,T2間の通気路R1の延長線上に、通気口591が形成される。また、側面部550aに近接する背面部550bの位置および側面部550cに近接する背面部550bの位置に、通気口592がそれぞれ形成される。 In the back surface portion 550b of the housing 550, a vent hole 591 is formed on the extension line of the vent path R1 between the module rows T1 and T2. In addition, vents 592 are formed at the position of the back surface portion 550b close to the side surface portion 550a and the position of the back surface portion 550b close to the side surface portion 550c.
 (2)バッテリシステムについて
 (2-1)バッテリユニットの設置
 上記のように、図1のバッテリシステム711においては、複数のバッテリユニット500がバッテリラック750に収容される。図3は、図1のバッテリシステム711の斜視図である。図3では、図1のバッテリシステム711の複数のバッテリユニット500およびバッテリラック750が斜視図で表されている。図3に示すように、バッテリラック750は、側面部751,752、上面部753、底面部754、背面部755および複数の仕切り部756からなる。側面部751,752は互いに平行に上下に延びる。側面部751,752の上端部を互いに連結するように上面部753が水平に延び、側面部751,752の下端部を互いに連結するように底面部754が水平に延びる。側面部751の一側辺および側面部752の一側辺に沿うように側面部751,752に対して垂直に背面部755が上下に延びる。上面部753と底面部754との間において、複数の仕切り部756が上面部753および底面部754に対して平行に互いに等間隔で設けられる。
(2) Battery System (2-1) Installation of Battery Unit As described above, in the battery system 711 of FIG. 1, a plurality of battery units 500 are accommodated in the battery rack 750. FIG. 3 is a perspective view of the battery system 711 of FIG. 3, a plurality of battery units 500 and a battery rack 750 of the battery system 711 in FIG. 1 are shown in a perspective view. As shown in FIG. 3, the battery rack 750 includes side portions 751 and 752, a top surface portion 753, a bottom surface portion 754, a back surface portion 755, and a plurality of partition portions 756. The side surface portions 751 and 752 extend vertically in parallel with each other. The upper surface portion 753 extends horizontally so as to connect the upper end portions of the side surface portions 751 and 752 to each other, and the bottom surface portion 754 extends horizontally so as to connect the lower end portions of the side surface portions 751 and 752 to each other. A back surface portion 755 extends vertically up and down perpendicular to the side surface portions 751 and 752 along one side of the side surface portion 751 and one side of the side surface portion 752. Between the top surface portion 753 and the bottom surface portion 754, a plurality of partition portions 756 are provided in parallel to the top surface portion 753 and the bottom surface portion 754 at equal intervals.
 上面部753、複数の仕切り部756および底面部754の間には、複数の収容スペース757が設けられる。各収容スペース757は、バッテリラック750の前面(背面部755と反対側の面)に開口する。図2のバッテリユニット500は、ラック750の前面から各収容スペース757内に収容される。 A plurality of storage spaces 757 are provided between the top surface portion 753, the plurality of partition portions 756, and the bottom surface portion 754. Each accommodation space 757 opens to the front surface (surface opposite to the back surface portion 755) of the battery rack 750. The battery unit 500 of FIG. 2 is accommodated in each accommodation space 757 from the front surface of the rack 750.
 図4は、図2のバッテリユニット500が図3のバッテリラック750の収容スペース757内に収容される状態を示す模式的平面図である。図4に示すように、バッテリラック750の背面部755にバッテリユニット500の背面部550bが対向するように、バッテリユニット500がバッテリラック750の収容スペース757内に収容される。 FIG. 4 is a schematic plan view showing a state in which the battery unit 500 of FIG. 2 is accommodated in the accommodation space 757 of the battery rack 750 of FIG. As shown in FIG. 4, the battery unit 500 is housed in the housing space 757 of the battery rack 750 such that the back surface portion 550 b of the battery unit 500 faces the back surface portion 755 of the battery rack 750.
 バッテリラック750の背面部755には、収容スペース757毎に、冷却用ファン761、2つの通気口762、通信接続部763、オンオフ切替部764および電力接続部765が設けられる。 The rear surface 755 of the battery rack 750 is provided with a cooling fan 761, two vent holes 762, a communication connection unit 763, an on / off switching unit 764, and a power connection unit 765 for each storage space 757.
 冷却用ファン761は、バッテリユニット500の通気口591と対向する位置に設けられる。通気口762は、バッテリユニット500の通気口592と対向する位置に設けられる。通信接続部763は、バッテリユニット500の通信接続部CCと対向する位置に設けられる。オンオフ切替部764は、バッテリユニット500のサービスプラグ510と対向する位置に設けられる。電力接続部765は、バッテリユニット500のHVコネクタ511と対向する位置に設けられる。通信接続部763は、システムコントローラ712と電気的に接続される。電力接続部765は、電力変換装置720と電気的に接続される。 The cooling fan 761 is provided at a position facing the vent 591 of the battery unit 500. The vent 762 is provided at a position facing the vent 592 of the battery unit 500. The communication connection unit 763 is provided at a position facing the communication connection unit CC of the battery unit 500. The on / off switching unit 764 is provided at a position facing the service plug 510 of the battery unit 500. The power connection portion 765 is provided at a position facing the HV connector 511 of the battery unit 500. The communication connection unit 763 is electrically connected to the system controller 712. The power connection unit 765 is electrically connected to the power conversion device 720.
 図4においては、バッテリユニット500の複数のバッテリモジュール100a~100d、サービスプラグ510、HVコネクタ511、オンオフ切替部764および電力接続部765の接続関係が理解しやすいように、図2のコンタクタ512および複数の通信線P21~P24の図示を省略するとともに、複数のバッテリモジュール100a~100dの高電位電極10Aおよび低電位電極10B、ならびに電力線D21,D22,D23,D24,D25a,D25b,D26a,D26bを太い実線で模式的に図示する。 In FIG. 4, the contactor 512 of FIG. 2 and the battery module 100a to 100d of the battery unit 500, the service plug 510, the HV connector 511, the on / off switching unit 764, and the power connection unit 765 are easily understood. The illustration of the plurality of communication lines P21 to P24 is omitted, and the high potential electrode 10A and the low potential electrode 10B of the plurality of battery modules 100a to 100d and the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b are provided. This is schematically illustrated by a thick solid line.
 また、図4に示すように、サービスプラグ510は、第1端子510Aおよび第2端子510Bを含む。HVコネクタ511は、第1端子511Aおよび第2端子511Bを含む。また、オンオフ切替部764は第3端子764Aおよび第4端子764Bを含む。電力接続部765は、第3端子765Aおよび第4端子765Bを含む。オンオフ切替部764は導電性材料からなる。オンオフ切替部764においては、第3端子764Aおよび第4端子764Bが一体的に構成される。 Further, as shown in FIG. 4, the service plug 510 includes a first terminal 510A and a second terminal 510B. The HV connector 511 includes a first terminal 511A and a second terminal 511B. The on / off switching unit 764 includes a third terminal 764A and a fourth terminal 764B. The power connection portion 765 includes a third terminal 765A and a fourth terminal 765B. The on / off switching unit 764 is made of a conductive material. In the on / off switching unit 764, the third terminal 764A and the fourth terminal 764B are integrally configured.
 本実施の形態では、サービスプラグ510およびオンオフ切替部764が接続機能部の例であり、サービスプラグ510が被接触部の例であり、オンオフ切替部764が接触部材および導電性部材の例であり、サービスプラグ510のオン動作が直列接続が形成される例であり、サービスプラグ510のオフ動作が直列接続が切断される例である。また、HVコネクタ511が外部コネクタの例であり、サービスプラグ510の第1端子510Aおよび第2端子510Bが第1および第2の端子の例である。さらに、サービスプラグ510を備えるバッテリユニット500がバッテリユニットの例であり、オンオフ切替部764を備えるバッテリラック750が収容体の例であり、冷却用ファン761が冷却装置の例である。 In the present embodiment, service plug 510 and on / off switching unit 764 are examples of connection function units, service plug 510 is an example of a contacted portion, and on / off switching unit 764 is an example of a contact member and a conductive member. The ON operation of the service plug 510 is an example in which a serial connection is formed, and the OFF operation of the service plug 510 is an example in which the serial connection is disconnected. Further, the HV connector 511 is an example of an external connector, and the first terminal 510A and the second terminal 510B of the service plug 510 are examples of first and second terminals. Furthermore, the battery unit 500 including the service plug 510 is an example of a battery unit, the battery rack 750 including the on / off switching unit 764 is an example of a container, and the cooling fan 761 is an example of a cooling device.
 また、本実施の形態において、収容動作とは、例えばバッテリユニット500をバッテリラック750の外部から収容スペース757内に挿入し、バッテリユニット500の背面部550bをバッテリラック750の背面部755に近接させることにより、バッテリユニット500をバッテリラック750に収容する動作をいう。 In the present embodiment, the accommodating operation refers to, for example, inserting the battery unit 500 into the accommodating space 757 from the outside of the battery rack 750 and bringing the back surface portion 550b of the battery unit 500 close to the back surface portion 755 of the battery rack 750. By this, the operation | movement which accommodates the battery unit 500 in the battery rack 750 is said.
 さらに、取り出し動作とは、例えば収容スペース757内に存在するバッテリユニット500を収容スペース757内から引き抜くことにより、バッテリユニット500をバッテリラック750の外部に取り出す動作をいう。 Further, the removal operation refers to an operation of taking out the battery unit 500 to the outside of the battery rack 750 by, for example, pulling out the battery unit 500 existing in the storage space 757 from the storage space 757.
 バッテリユニット500がバッテリラック750の収容スペース757に収容される上記の収容動作に連動して、サービスプラグ510の第1端子510Aおよび第2端子510Bがそれぞれオンオフ切替部764の第3端子764Aおよび第4端子764Bに接続される。すなわち、サービスプラグ510にオンオフ切替部764が接触する。それにより、サービスプラグ510の第1端子510Aと第2端子510Bとが電気的に接続され、サービスプラグ510がオンされる。その結果、バッテリユニット500の複数のバッテリモジュール100a~100dが直列接続される。この場合、バッテリユニット500がバッテリラック750の収容スペース757に収容された状態で、電力線D21,D22,D23,D24,D25a,D25b,D26a,D26b、サービスプラグ510、オンオフ切替部764、複数のバスバーB(図2)および中継部材TM(図2)が、複数のバッテリモジュール100a~100dおよびHVコネクタ511を電気的に接続する電気的経路を収容動作に連動して自動的に形成する。 In conjunction with the above housing operation in which the battery unit 500 is housed in the housing space 757 of the battery rack 750, the first terminal 510A and the second terminal 510B of the service plug 510 are respectively connected to the third terminal 764A and the third terminal 764A of the on / off switching unit 764. Connected to 4 terminals 764B. That is, the on / off switching unit 764 contacts the service plug 510. Thereby, the first terminal 510A and the second terminal 510B of the service plug 510 are electrically connected, and the service plug 510 is turned on. As a result, the plurality of battery modules 100a to 100d of the battery unit 500 are connected in series. In this case, in a state where the battery unit 500 is housed in the housing space 757 of the battery rack 750, the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b, the service plug 510, the on / off switching unit 764, a plurality of bus bars. B (FIG. 2) and the relay member TM (FIG. 2) automatically form an electrical path for electrically connecting the plurality of battery modules 100a to 100d and the HV connector 511 in conjunction with the housing operation.
 また、バッテリユニット500がバッテリラック750の収容スペース757に収容される収容動作に連動して、HVコネクタ511の第1端子511Aおよび第2端子511Bが、電力接続部765の第3端子765Aおよび第4端子765Bにそれぞれ接続される。それにより、HVコネクタ511の第1端子511Aおよび第2端子511Bがそれぞれ電力変換装置720に接続される。このとき、上記のように、サービスプラグ510がオンされるので、複数のバッテリモジュール100a~100dおよびHVコネクタ511が電気的に接続され、バッテリユニット500の複数のバッテリモジュール100a~100dと電力変換装置720との間で電力の授受が可能となる。 Further, in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the accommodating space 757 of the battery rack 750, the first terminal 511A and the second terminal 511B of the HV connector 511 are connected to the third terminal 765A and the Each is connected to 4 terminals 765B. Accordingly, the first terminal 511A and the second terminal 511B of the HV connector 511 are connected to the power conversion device 720, respectively. At this time, as described above, since the service plug 510 is turned on, the plurality of battery modules 100a to 100d and the HV connector 511 are electrically connected, and the plurality of battery modules 100a to 100d of the battery unit 500 and the power conversion device are connected. Power can be exchanged with 720.
 さらに、バッテリユニット500がバッテリラック750の収容スペース757に収容される収容動作に連動して、バッテリユニット500の通信接続部CCとバッテリラック750の通信接続部763とが接続される。バッテリモジュール100a~100dの検出回路20は通信線P21~P24を介して通信接続部CCに接続される。したがって、バッテリモジュール100a~100dの検出回路20とシステムコントローラ712とが通信可能に接続される。 Further, the communication connection part CC of the battery unit 500 and the communication connection part 763 of the battery rack 750 are connected in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the accommodating space 757 of the battery rack 750. The detection circuits 20 of the battery modules 100a to 100d are connected to the communication connection part CC via the communication lines P21 to P24. Therefore, the detection circuit 20 of the battery modules 100a to 100d and the system controller 712 are connected to be communicable.
 一方、バッテリユニット500がバッテリラック750の収容スペース757から取り出される取り出し動作に連動して、サービスプラグ510の第1端子510Aおよび第2端子510Bがそれぞれオンオフ切替部764の第3端子764Aおよび第4端子764Bから引き抜かれる。すなわち、サービスプラグ510からオンオフ切替部764が離間する。それにより、サービスプラグ510の第1端子510Aと第2端子510Bとの間の電気的経路が遮断され、サービスプラグ510がオフされる。その結果、バッテリユニット500のバッテリモジュール100a,100bと、バッテリモジュール100c,100dとの間の直列接続が切断される。すなわち、バッテリユニット500のバッテリモジュール100a,100bと、バッテリモジュール100c,100dとが取り出し動作に連動して自動的に互いに電気的に分離される。したがって、第1端子511Aと第2端子511Bとの間に電圧が発生しない。なお、バッテリモジュール100a,100bからなる直列回路の総電圧およびバッテリモジュール100c,100dからなる直列回路の総電圧は、バッテリモジュール100a,100b,100c,100dからなる直列回路の総電圧の約半分とすることができる。 On the other hand, the first terminal 510A and the second terminal 510B of the service plug 510 are respectively connected to the third terminal 764A and the fourth terminal 764A of the on / off switching unit 764 in conjunction with the extraction operation in which the battery unit 500 is extracted from the storage space 757 of the battery rack 750. It is pulled out from the terminal 764B. That is, the on / off switching unit 764 is separated from the service plug 510. Thereby, the electrical path between the first terminal 510A and the second terminal 510B of the service plug 510 is cut off, and the service plug 510 is turned off. As a result, the series connection between the battery modules 100a and 100b of the battery unit 500 and the battery modules 100c and 100d is disconnected. That is, the battery modules 100a and 100b and the battery modules 100c and 100d of the battery unit 500 are automatically and electrically separated from each other in conjunction with the take-out operation. Accordingly, no voltage is generated between the first terminal 511A and the second terminal 511B. The total voltage of the series circuit composed of the battery modules 100a and 100b and the total voltage of the series circuit composed of the battery modules 100c and 100d are about half of the total voltage of the series circuit composed of the battery modules 100a, 100b, 100c and 100d. be able to.
 また、バッテリユニット500がバッテリラック750の収容スペース757から取り出される取り出し動作に連動して、HVコネクタ511の第1端子511Aおよび第2端子511Bがそれぞれ電力接続部765の第3端子765Aおよび第4端子765Bから引き抜かれる。それにより、HVコネクタ511の第1端子511Aおよび第2端子511Bが電力変換装置720から電気的に分離される。したがって、バッテリユニット500の複数のバッテリモジュール100a~100dと電力変換装置720との間で電力の授受が行われない。 Further, in conjunction with the take-out operation in which the battery unit 500 is taken out from the storage space 757 of the battery rack 750, the first terminal 511A and the second terminal 511B of the HV connector 511 are respectively connected to the third terminal 765A and the fourth terminal 765A of the power connection portion 765. It is pulled out from the terminal 765B. Thereby, the first terminal 511 </ b> A and the second terminal 511 </ b> B of the HV connector 511 are electrically separated from the power converter 720. Therefore, power is not exchanged between the plurality of battery modules 100a to 100d of the battery unit 500 and the power conversion device 720.
 さらに、バッテリユニット500がバッテリラック750の収容スペース757から取り出される取り出し動作に連動して、バッテリユニット500の通信接続部CCがバッテリラック750の通信接続部763から引き抜かれる。それにより、通信接続部CCと通信接続部763とが電気的に分離される。 Furthermore, the communication connection part CC of the battery unit 500 is pulled out from the communication connection part 763 of the battery rack 750 in conjunction with the take-out operation in which the battery unit 500 is taken out from the storage space 757 of the battery rack 750. Thereby, the communication connection part CC and the communication connection part 763 are electrically separated.
 バッテリユニット500がバッテリラック750の収容スペース757内に収容された状態で、冷却用ファン761により、通気口591を通して筐体550内に冷却気体が導入される。これにより、筐体550内でバッテリモジュール100a~100dの各バッテリセル10(図2)の熱が冷却気体により吸収される。筐体550内で熱を吸収した冷却気体は、筐体550の通気口592およびバッテリラック750の通気口762を通して排出される。このようにして、バッテリモジュール100a~100dの各バッテリセル10が冷却される。 In a state where the battery unit 500 is accommodated in the accommodation space 757 of the battery rack 750, the cooling gas is introduced into the housing 550 through the vent 591 by the cooling fan 761. As a result, the heat of each battery cell 10 (FIG. 2) of the battery modules 100a to 100d is absorbed by the cooling gas in the housing 550. The cooling gas that has absorbed heat in the housing 550 is discharged through the vent 592 of the housing 550 and the vent 762 of the battery rack 750. In this way, each battery cell 10 of the battery modules 100a to 100d is cooled.
 本実施の形態では、バッテリラック750に冷却用ファン761が設けられることにより、バッテリユニット500毎に冷却用ファンを設ける必要がない。それにより、バッテリシステム711のコストが低減される。なお、各バッテリユニット500の筐体550内に冷却気体を導入することが可能であれば、各バッテリユニット500に冷却用ファンが設けられてもよい。 In this embodiment, since the cooling fan 761 is provided in the battery rack 750, there is no need to provide a cooling fan for each battery unit 500. Thereby, the cost of the battery system 711 is reduced. Note that each battery unit 500 may be provided with a cooling fan as long as the cooling gas can be introduced into the housing 550 of each battery unit 500.
 本例では、全てのバッテリユニット500が1つのバッテリラック750に収容されるが、全てのバッテリユニット500が複数のバッテリラック750に分けて収容されてもよい。また、全てのバッテリユニット500にそれぞれ対応する複数のバッテリラック750を用意し、全てのバッテリユニット500がそれぞれ対応する複数のバッテリラック750に個別に収容されてもよい。 In this example, all the battery units 500 are accommodated in one battery rack 750, but all the battery units 500 may be accommodated in a plurality of battery racks 750. Alternatively, a plurality of battery racks 750 corresponding to all of the battery units 500 may be prepared, and all of the battery units 500 may be individually accommodated in the plurality of battery racks 750 respectively corresponding to the battery racks 750.
 (2-2)バッテリシステムに関する効果
 本実施の形態に係るバッテリシステム711においては、バッテリユニット500が収容体としてのバッテリラック750から取り出される取り出し動作に連動してオンオフ切替部764によりサービスプラグ510がオン状態からオフ状態に変更され、バッテリモジュール100a,100bと、バッテリモジュール100c,100dとの間の直列接続が切断される。すなわち、バッテリモジュール100a,100bとバッテリモジュール100c,100dとの間の電気的経路が遮断される。
(2-2) Effect on Battery System In the battery system 711 according to the present embodiment, the service plug 510 is connected by the on / off switching unit 764 in conjunction with the take-out operation in which the battery unit 500 is taken out from the battery rack 750 as a container. The on-state is changed to the off-state, and the series connection between the battery modules 100a and 100b and the battery modules 100c and 100d is disconnected. That is, the electrical path between the battery modules 100a and 100b and the battery modules 100c and 100d is blocked.
 これにより、バッテリユニット500がバッテリラック750に収容されていないときには、外部コネクタとしてのHVコネクタ511と複数のバッテリモジュール100a~100dとを電気的に接続する電気的経路が形成されない。したがって、バッテリユニット500がバッテリラック750に収容されない状態で、HVコネクタ511に電圧が発生しない。その結果、バッテリユニット500の取り扱いが容易となり、バッテリシステム711の組み立ておよびメンテナンスの作業効率が向上する。 Thus, when the battery unit 500 is not accommodated in the battery rack 750, an electrical path for electrically connecting the HV connector 511 as an external connector and the plurality of battery modules 100a to 100d is not formed. Therefore, no voltage is generated in the HV connector 511 in a state where the battery unit 500 is not accommodated in the battery rack 750. As a result, handling of the battery unit 500 is facilitated, and the work efficiency of assembly and maintenance of the battery system 711 is improved.
 バッテリユニット500が収容体としてのバッテリラック750に収容される収容動作に連動してオンオフ切替部764によりサービスプラグ510がオフ状態からオン状態に変更され、バッテリモジュール100a,100bと、バッテリモジュール100c,100dとの間の直列接続が形成される。このとき、電力線D21,D22,D23,D24,D25a,D25b,D26a,D26b、サービスプラグ510、オンオフ切替部764、複数のバスバーBおよび中継部材TMからなる電気的経路が形成され、この電気的経路により複数のバッテリモジュール100a~100dおよび外部コネクタとしてのHVコネクタ511が電気的に接続される。 The service plug 510 is changed from the off state to the on state by the on / off switching unit 764 in conjunction with the housing operation in which the battery unit 500 is housed in the battery rack 750 as the housing body, so that the battery modules 100a and 100b, A series connection with 100d is formed. At this time, an electrical path including the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b, the service plug 510, the on / off switching unit 764, the plurality of bus bars B, and the relay member TM is formed. Thus, the plurality of battery modules 100a to 100d and the HV connector 511 as an external connector are electrically connected.
 これにより、バッテリユニット500がバッテリラック750に収容されることにより、外部コネクタとしてのHVコネクタ511と複数のバッテリモジュール100a~100dとサービスプラグ510およびオンオフ切替部764とで直列回路が構成される。この場合、作業者はサービスプラグ510のオン操作およびオフ操作を個別に行う必要がない。したがって、バッテリシステム711の組み立ておよびメンテナンスの作業効率がさらに向上する。 Thus, when the battery unit 500 is accommodated in the battery rack 750, the HV connector 511 as the external connector, the plurality of battery modules 100a to 100d, the service plug 510, and the on / off switching unit 764 constitute a series circuit. In this case, the operator does not need to individually turn on and off the service plug 510. Therefore, the work efficiency of assembly and maintenance of the battery system 711 is further improved.
 本実施の形態では、被接触部としてのサービスプラグ510は第1および第2の端子として互いに離間するように設けられる第1端子510Aおよび第2端子510Bを含む。また、接触部材としてのオンオフ切替部764は導電性材料からなる。 In the present embodiment, the service plug 510 as the contacted portion includes a first terminal 510A and a second terminal 510B provided as first and second terminals so as to be separated from each other. The on / off switching unit 764 as a contact member is made of a conductive material.
 本実施の形態では、バッテリユニット500がバッテリラック750の収容スペース757に収容される収容動作に連動して、外部コネクタとしてのHVコネクタ511が電力接続部765に接続される。また、バッテリユニット500がバッテリラック750から取り出される取り出し動作に連動して、HVコネクタ511と電力接続部765とが電気的に分離される。それにより、作業者は、バッテリユニット500をバッテリラック750に収容することにより、配線の接続作業を行うことなくバッテリユニット500を電力接続部765を通して外部(電力変換装置720または他のバッテリユニット500)に容易に接続することができる。また、作業者は、バッテリユニット500をバッテリラック750から取り出すことにより、配線の取り外し作業を行うことなくバッテリユニット500を外部(電力変換装置720または他のバッテリユニット500)から容易に取り外すことができる。 In the present embodiment, the HV connector 511 as an external connector is connected to the power connection portion 765 in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the accommodating space 757 of the battery rack 750. In addition, the HV connector 511 and the power connection portion 765 are electrically separated in conjunction with the removal operation for removing the battery unit 500 from the battery rack 750. As a result, the worker accommodates the battery unit 500 in the battery rack 750 so that the battery unit 500 can be externally connected to the power connection unit 765 (the power conversion device 720 or another battery unit 500) without performing wiring connection work. Can be easily connected to. In addition, the operator can easily remove the battery unit 500 from the outside (the power conversion device 720 or the other battery unit 500) without removing the wiring by removing the battery unit 500 from the battery rack 750. .
 バッテリラック750には、バッテリユニット500がバッテリラック750に収容された状態でバッテリユニット500を冷却するための冷却用ファン761が設けられる。この場合、バッテリユニット500に冷却用ファン761を設ける必要がないので、バッテリユニット500のコストが削減される。 The battery rack 750 is provided with a cooling fan 761 for cooling the battery unit 500 in a state where the battery unit 500 is accommodated in the battery rack 750. In this case, since it is not necessary to provide the cooling fan 761 in the battery unit 500, the cost of the battery unit 500 is reduced.
 第3の実施の形態の項目[3-1]で説明するように、各バッテリモジュール100a~100dの検出回路20により検出される電圧、電流および温度に関する情報に基づいて、各バッテリモジュール100a~100dの充放電制御を行うとともに、各バッテリモジュール100a~100dの異常を検出する処理を行いつつ、通信制御部として各バッテリモジュール100a~100dの検出回路20と外部装置(後述する図12の主制御部300)との間で通信を行うバッテリECU101(図11)がある。バッテリラック750には、上記の冷却用ファン761に加えてバッテリECU101(図11)が設けられてもよい。この場合、バッテリユニット500に、バッテリECU101(図11)を設ける必要がないので、バッテリユニット500のコストが削減される。 As described in item [3-1] of the third embodiment, each of the battery modules 100a to 100d is based on the information about the voltage, current, and temperature detected by the detection circuit 20 of each of the battery modules 100a to 100d. And a detection circuit 20 of each of the battery modules 100a to 100d and an external device (a main control unit of FIG. 12 to be described later) as a communication control unit while performing a process of detecting an abnormality of each of the battery modules 100a to 100d. There is a battery ECU 101 (FIG. 11) that communicates with the computer 300. The battery rack 750 may be provided with a battery ECU 101 (FIG. 11) in addition to the cooling fan 761 described above. In this case, since it is not necessary to provide the battery ECU 500 (FIG. 11) in the battery unit 500, the cost of the battery unit 500 is reduced.
 バッテリユニット500の背面部550bにおいては、サービスプラグ510およびHVコネクタ511が通気口591を挟んで設けられる。そのため、サービスプラグ510とHVコネクタ511との間に一定の間隔が設けられる。これにより、バッテリユニット500がバッテリラック750から取り出された状態で、作業者がサービスプラグ510の第1端子510Aまたは第2端子510Bと、HVコネクタ511の第1端子511Aまたは第2端子511Bとの両方に触れることが防止される。 In the back surface portion 550b of the battery unit 500, a service plug 510 and an HV connector 511 are provided with a vent 591 interposed therebetween. Therefore, a certain interval is provided between the service plug 510 and the HV connector 511. Thereby, in a state where the battery unit 500 is taken out from the battery rack 750, the operator can connect the first terminal 510A or the second terminal 510B of the service plug 510 with the first terminal 511A or the second terminal 511B of the HV connector 511. Touching both is prevented.
 (3)電源装置について
 (3-1)構成および動作の詳細
 図1の電源装置700の構成および動作について詳細を説明する。図1のシステムコントローラ712は、システム制御部の例であり、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。システムコントローラ712は、複数のバッテリユニット500がバッテリラック750に収容された状態で、各バッテリユニット500内の複数のバッテリモジュール100a~100d(図2)の検出回路20(図2)にそれぞれ接続される。各バッテリモジュール100a~100dの検出回路20により検出された電圧、電流および温度がシステムコントローラ712に与えられる。システムコントローラ712は、各検出回路20から与えられた電圧、電流および温度に基づいて各バッテリセル10(図2)の充電量を算出し、算出された充電量に基づいて電力変換装置720を制御することにより、各バッテリユニット500に含まれる複数のバッテリセル10の放電または充電に関する制御を行う。
(3) Power Supply Device (3-1) Configuration and Operation Details The configuration and operation of the power supply device 700 in FIG. 1 will be described in detail. The system controller 712 in FIG. 1 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer. The system controller 712 is connected to the detection circuits 20 (FIG. 2) of the battery modules 100a to 100d (FIG. 2) in each battery unit 500 in a state where the battery units 500 are accommodated in the battery rack 750. The The voltage, current and temperature detected by the detection circuit 20 of each of the battery modules 100a to 100d are given to the system controller 712. The system controller 712 calculates the charge amount of each battery cell 10 (FIG. 2) based on the voltage, current, and temperature given from each detection circuit 20, and controls the power conversion device 720 based on the calculated charge amount. By doing so, control regarding discharging or charging of the plurality of battery cells 10 included in each battery unit 500 is performed.
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710のバッテリシステム711に接続される。DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が、電源装置に接続される外部の例である。 The power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722. The DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b. The input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system 711 of the power storage device 710. The input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1. The input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system. The power output units PU1, PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2. Other power systems include, for example, commercial power sources or solar cells. The power output units PU1, PU2 and other power systems are external examples connected to the power supply device.
 DC/DCコンバータ721およびDC/ACインバータ722がシステムコントローラ712によって制御されることにより、バッテリシステム711に含まれる複数のバッテリセル10の放電および充電が行われる。 The DC / DC converter 721 and the DC / AC inverter 722 are controlled by the system controller 712, whereby the plurality of battery cells 10 included in the battery system 711 are discharged and charged.
 バッテリシステム711の放電時には、バッテリシステム711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。 When the battery system 711 is discharged, the power supplied from the battery system 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721 and further DC / AC (direct current / alternate current) converted by the DC / AC inverter 722. .
 DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。電力出力部PU1から外部に直流の電力が出力され、電力出力部PU2から外部に交流の電力が出力される。DC/ACインバータ722により交流に変換された電力が他の電力系統に供給されてもよい。 The power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. The power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2. The electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
 バッテリシステム711の放電時に、システムコントローラ712は、算出された充電量に基づいてバッテリシステム711の放電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム711に含まれる複数のバッテリセル10(図2)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも小さくなると、システムコントローラ712は、バッテリシステム711の放電が停止されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過放電が防止される。 When the battery system 711 is discharged, the system controller 712 determines whether to stop discharging the battery system 711 based on the calculated charge amount, and controls the power conversion device 720 based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 2) included in the battery system 711 becomes smaller than a predetermined threshold, the system controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge of the system 711 is stopped. Thereby, overdischarge of each battery cell 10 is prevented.
 一方、バッテリシステム711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721からバッテリシステム711に電力が与えられることにより、バッテリシステム711に含まれる複数のバッテリセル10(図2)が充電される。 On the other hand, when the battery system 711 is charged, AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722 and further DC / DC (DC / DC) is converted by the DC / DC converter 721. DC) converted. When power is supplied from the DC / DC converter 721 to the battery system 711, the plurality of battery cells 10 (FIG. 2) included in the battery system 711 are charged.
 バッテリシステム711の充電時に、システムコントローラ712は、算出された充電量に基づいてバッテリシステム711の充電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム711に含まれる複数のバッテリセル10(図2)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも大きくなると、システムコントローラ712は、バッテリシステム711の充電が停止されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過充電が防止される。 When charging the battery system 711, the system controller 712 determines whether to stop charging the battery system 711 based on the calculated charge amount, and controls the power conversion device 720 based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 2) included in the battery system 711 is larger than a predetermined threshold, the system controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that charging of the system 711 is stopped. Thereby, overcharge of each battery cell 10 is prevented.
 (3-2)電力貯蔵装置および電源装置に関する効果
 本実施の形態に係る電源装置700においては、電力変換装置720がバッテリセル10と外部との間で電力変換を行う。システム制御部としてのシステムコントローラ712が、電力変換装置720を制御することにより、バッテリシステム711のバッテリセル10の充電または放電に関する制御を行う。それにより、電力貯蔵装置710において、バッテリセル10の劣化、過放電および過充電を防止することができる。また、上記のバッテリユニット500が用いられるため、安全性が確保されつつバッテリシステム711の組み立ておよびメンテナンスの作業性が向上する。したがって、電源装置700の製造コストが低減されるとともに、電源装置700の運用コストも低減される。
(3-2) Effects Regarding Power Storage Device and Power Supply Device In power supply device 700 according to the present embodiment, power conversion device 720 performs power conversion between battery cell 10 and the outside. A system controller 712 as a system control unit controls the power conversion device 720 to perform control related to charging or discharging of the battery cell 10 of the battery system 711. Thereby, in the power storage device 710, deterioration, overdischarge, and overcharge of the battery cell 10 can be prevented. Further, since the battery unit 500 described above is used, the workability of assembly and maintenance of the battery system 711 is improved while ensuring safety. Therefore, the manufacturing cost of the power supply device 700 is reduced, and the operation cost of the power supply device 700 is also reduced.
 (4)第1の実施の形態の変形例
 (4-1)図5は、第1の実施の形態に係るバッテリシステム711の一変形例を示す模式的平面図である。図5では、変形例に係るバッテリユニット500がバッテリラック750の収容スペース757内に収容される状態が示される。図5のバッテリシステム711が図1のバッテリシステム711と異なる点について説明する。
(4) Modified Example of First Embodiment (4-1) FIG. 5 is a schematic plan view showing a modified example of the battery system 711 according to the first embodiment. FIG. 5 shows a state in which the battery unit 500 according to the modification is housed in the housing space 757 of the battery rack 750. Differences between the battery system 711 in FIG. 5 and the battery system 711 in FIG. 1 will be described.
 図5のバッテリシステム711においては、バッテリユニット500の複数のバッテリモジュール100a~100dの端面枠92a(図2)にそれぞれ複数の検出回路20が取り付けられる代わりに、バッテリラック750の背面部755に1つの検出回路766が取り付けられる。検出回路766は、通信接続部763に電気的に接続されるとともに、システムコントローラ712に電気的に接続される。 In the battery system 711 of FIG. 5, instead of attaching the plurality of detection circuits 20 to the end surface frames 92a (FIG. 2) of the plurality of battery modules 100a to 100d of the battery unit 500, 1 is attached to the back surface portion 755 of the battery rack 750. Two detection circuits 766 are attached. The detection circuit 766 is electrically connected to the communication connection unit 763 and is also electrically connected to the system controller 712.
 この場合、複数のバッテリモジュール100a~100dに設けられる複数のFPC基板50(図2)がハーネス等の図示しない配線部材を介して通信接続部CCに接続される。これにより、上記の収容動作に連動してバッテリユニット500の通信接続部CCとバッテリラック750の通信接続部763とが接続されることにより、検出回路766が複数のバッテリモジュール100a~100dの全てのバッテリセル10のプラス電極およびマイナス電極に接続される。 In this case, a plurality of FPC boards 50 (FIG. 2) provided in the plurality of battery modules 100a to 100d are connected to the communication connection portion CC via a wiring member (not shown) such as a harness. As a result, the communication connection portion CC of the battery unit 500 and the communication connection portion 763 of the battery rack 750 are connected in conjunction with the above-described housing operation, whereby the detection circuit 766 is connected to all of the battery modules 100a to 100d. The battery cell 10 is connected to the plus electrode and the minus electrode.
 これにより、検出回路766は、例えば各バッテリモジュール100a~100dの複数のバッテリセル10の電圧、電流および温度の検出等を行う。検出回路766により検出された電圧、電流および温度がシステムコントローラ712に与えられる。 Thereby, the detection circuit 766 detects, for example, the voltage, current, and temperature of the plurality of battery cells 10 of each of the battery modules 100a to 100d. The voltage, current, and temperature detected by the detection circuit 766 are supplied to the system controller 712.
 この場合、バッテリラック750に検出回路766が設けられることにより、バッテリモジュールごとに検出回路20を設ける必要がない。それにより、バッテリユニット500のコストが低減される。 In this case, since the battery rack 750 is provided with the detection circuit 766, it is not necessary to provide the detection circuit 20 for each battery module. Thereby, the cost of the battery unit 500 is reduced.
 (4-2)図1の電源装置700について、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。 (4-2) With respect to the power supply device 700 of FIG. 1, if the power supply device 700 and the outside can supply power to each other, the power conversion device 720 can select any of the DC / DC converter 721 and the DC / AC inverter 722. You may have only one of them. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
 また、図1の電源装置700においては、複数のバッテリユニット500が設けられるが、これに限らず、1つのバッテリユニット500のみが設けられてもよい。 Further, in the power supply device 700 of FIG. 1, a plurality of battery units 500 are provided, but not limited to this, only one battery unit 500 may be provided.
 (4-3)本実施の形態において、冷却用ファン761は各バッテリユニット500の筐体550内に冷却気体を導入するために用いられる。これに限らず、冷却用ファン761は各バッテリユニット500の筐体550内の雰囲気を吸引してバッテリラック750の外部に排出するように動作してもよい。この場合、バッテリユニット500がバッテリラック750の収容スペース757内に収容された状態で、筐体550内の雰囲気が通気口591を通してバッテリラック750の外部に排出される。一方、筐体550の外部の雰囲気がバッテリラック750の通気口762および筐体550の通気口592を通して筐体550の内部に導入される。このようにして、筐体550の内部とバッテリラック750の外部との間で気体が循環することにより、バッテリモジュール100a~100dの各バッテリセル10が冷却される。 (4-3) In the present embodiment, the cooling fan 761 is used to introduce cooling gas into the housing 550 of each battery unit 500. Not limited to this, the cooling fan 761 may operate to suck the atmosphere in the housing 550 of each battery unit 500 and discharge it to the outside of the battery rack 750. In this case, the atmosphere in the housing 550 is discharged to the outside of the battery rack 750 through the vent 591 in a state where the battery unit 500 is housed in the housing space 757 of the battery rack 750. On the other hand, the atmosphere outside the casing 550 is introduced into the casing 550 through the vent 762 of the battery rack 750 and the vent 592 of the casing 550. In this manner, the gas circulates between the inside of the housing 550 and the outside of the battery rack 750, whereby each battery cell 10 of the battery modules 100a to 100d is cooled.
 (4-4)バッテリユニット500内の複数のバッテリセル10を冷却するための構成は上記の例に限られない。 (4-4) The configuration for cooling the plurality of battery cells 10 in the battery unit 500 is not limited to the above example.
 例えば、バッテリユニット500内に複数のバッテリセル10に接するようにユニット側冷媒配管を取り付ける。また、バッテリユニット500に取り付けられたユニット側冷媒配管の一端にガスケットを含む冷媒流入接続口を設け、ユニット側冷媒配管の他端にガスケットを含む冷媒流出接続口を設ける。さらに、バッテリラック750に、冷媒ポンプ、その冷媒ポンプに接続されるとともにバッテリユニット500の冷媒流入接続口を接続可能に構成されたラック側冷媒配管、およびその冷媒ポンプに接続されるとともにバッテリユニット500の冷媒流出接続口を接続可能に構成されたラック側冷媒配管を設ける。 For example, a unit side refrigerant pipe is attached in the battery unit 500 so as to contact the plurality of battery cells 10. In addition, a refrigerant inflow connection port including a gasket is provided at one end of the unit side refrigerant pipe attached to the battery unit 500, and a refrigerant outflow connection port including a gasket is provided at the other end of the unit side refrigerant pipe. Further, the battery rack 750 is connected to the refrigerant pump, the refrigerant pump and the rack side refrigerant pipe configured to be connectable to the refrigerant inflow connection port of the battery unit 500, and the battery unit 500 connected to the refrigerant pump. A rack side refrigerant pipe configured to be connectable to the refrigerant outflow connection port is provided.
 この場合、バッテリユニット500の冷媒流入接続口および冷媒流出接続口の各々をラック側冷媒配管に接続することにより、バッテリユニット500内のユニット側冷媒配管とバッテリラック750の冷媒ポンプとの間で冷媒の循環経路が構成される。冷媒ポンプによりバッテリユニット500の冷媒流入接続口に冷却水等の冷媒が流入すると、冷媒はユニット側冷媒配管を通過して冷媒流出接続口から流出する。これにより、ユニット側冷媒配管に接する複数のバッテリセル10が冷却される。 In this case, by connecting each of the refrigerant inflow connection port and the refrigerant outflow connection port of the battery unit 500 to the rack side refrigerant pipe, the refrigerant is connected between the unit side refrigerant pipe in the battery unit 500 and the refrigerant pump of the battery rack 750. The circulation path is configured. When a refrigerant such as cooling water flows into the refrigerant inflow connection port of the battery unit 500 by the refrigerant pump, the refrigerant passes through the unit side refrigerant pipe and flows out from the refrigerant outflow connection port. Thereby, the some battery cell 10 which contact | connects unit side refrigerant | coolant piping is cooled.
 (4-5)本実施の形態において、バッテリユニット500を構成するバッテリモジュールは1個であってもよい。また、各バッテリモジュール100a~100dは、1個のバッテリセル10により構成されてもよい。さらに、複数のバッテリモジュール100a~100dを構成するバッテリセル10の数は、バッテリモジュールごとに異なってもよい。 (4-5) In the present embodiment, the battery unit 500 may include one battery module. Further, each of the battery modules 100a to 100d may be constituted by one battery cell 10. Further, the number of battery cells 10 constituting the plurality of battery modules 100a to 100d may be different for each battery module.
 (4-6)上記の各バッテリモジュール100a~100dにおいては、複数のバッテリセル10が複数のバスバーBにより直列接続される。これに限らず、各バッテリモジュール100a~100dにおいて、複数のバッテリセル10の全部が並列接続されてもよいし、複数のバッテリセル10が直列および並列の組み合わせにより接続されてもよい。この場合、バッテリモジュール100a~100dの各々が請求項におけるバッテリセルとして機能する。 (4-6) In each of the battery modules 100a to 100d, a plurality of battery cells 10 are connected in series by a plurality of bus bars B. Not limited to this, in each of the battery modules 100a to 100d, all of the plurality of battery cells 10 may be connected in parallel, or the plurality of battery cells 10 may be connected in a combination of series and parallel. In this case, each of the battery modules 100a to 100d functions as a battery cell in the claims.
 (4-7)バッテリユニット500は直列接続されたn(nは2以上の自然数)個のバッテリセル10、並列接続されたn個のバッテリセル10、または直列および並列の組み合わせで接続されたn個のバッテリセル10を含んでもよい。この場合、例えばn個のバッテリセル10の複数の電極のうち最も高い電位の電極とHVコネクタ511の第1端子511Aとの間、またはn個のバッテリセル10の複数の電極のうち最も低い電位の電極とHVコネクタ511の第2端子511Bとの間にサービスプラグ510が接続機能部として設けられてもよい。 (4-7) The battery unit 500 includes n battery cells 10 connected in series (n is a natural number of 2 or more), n battery cells 10 connected in parallel, or n connected in series and parallel. One battery cell 10 may be included. In this case, for example, the lowest potential among the electrodes having the highest potential among the plurality of electrodes of the n battery cells 10 and the first terminal 511 </ b> A of the HV connector 511, or among the plurality of electrodes of the n battery cells 10. A service plug 510 may be provided as a connection function unit between the first electrode and the second terminal 511B of the HV connector 511.
 (4-8)バッテリユニット500はi(iは2以上の自然数)個のバッテリセル10の塊およびj(jは2以上の自然数)個のバッテリセル10の塊を含んでもよい。この場合、i個のバッテリセル10は、直列接続されてもよいし、並列接続されてもよい。または、i個のバッテリセル10は、直列および並列の組み合わせで接続されてもよい。同様に、j個のバッテリセル10は、直列接続されてもよいし、並列接続されてもよい。または、j個のバッテリセル10は、直列および並列の組み合わせで接続されてもよい。この場合、例えばi個のバッテリセル10の塊とj個のバッテリセル10の塊との間にサービスプラグ510が接続機能部として設けられてもよい。 (4-8) The battery unit 500 may include a cluster of i (i is a natural number of 2 or more) battery cells 10 and a cluster of j (j is a natural number of 2 or more) battery cells 10. In this case, the i battery cells 10 may be connected in series or in parallel. Alternatively, i battery cells 10 may be connected in a combination of series and parallel. Similarly, j battery cells 10 may be connected in series or in parallel. Alternatively, j battery cells 10 may be connected in a combination of series and parallel. In this case, for example, a service plug 510 may be provided as a connection function unit between a cluster of i battery cells 10 and a cluster of j battery cells 10.
 なお、i個のバッテリセル10の複数の電極のうち最も低い電位の電極とj個のバッテリセル10の複数の電極のうち最も高い電位の電極とが接続される場合には、i個のバッテリセル10の複数の電極のうち最も高い電位の電極とHVコネクタ511の第1端子511Aとの間、またはj個のバッテリセル10の複数の電極のうち最も低い電位の電極とHVコネクタ511の第2端子511Bとの間にサービスプラグ510があってもよい。また、バッテリユニット500は、上記の2つのバッテリセル10の塊(i個のバッテリセル10およびj個のバッテリセル10)に限らず、3つ以上のバッテリセル10の塊を有してもよい。その場合、例えば接続機能部(例えばサービスプラグ510)は、それらのバッテリセル10の塊のいずれかの間に存在する。 When the electrode having the lowest potential among the plurality of electrodes of i battery cells 10 and the electrode having the highest potential among the plurality of electrodes of j battery cells 10 are connected, i batteries The electrode having the highest potential among the plurality of electrodes of the cell 10 and the first terminal 511A of the HV connector 511, or the electrode having the lowest potential among the plurality of electrodes of the j battery cells 10 and the first of the HV connector 511. A service plug 510 may be provided between the two terminals 511B. The battery unit 500 is not limited to the above-described two battery cell 10 blocks (i battery cells 10 and j battery cells 10), and may include three or more battery cell 10 blocks. . In that case, for example, the connection function unit (for example, the service plug 510) exists between any of the masses of the battery cells 10.
 [2]第2の実施の形態
 第2の実施の形態に係るバッテリシステムについて、第1の実施の形態に係るバッテリシステム711と異なる点を説明する。
[2] Second Embodiment A battery system according to a second embodiment will be described while referring to differences from the battery system 711 according to the first embodiment.
 (1)構成
 図6は第2の実施の形態に係るバッテリユニット500の一構成例を示す模式的平面図である。図6に示すように、本実施の形態に係るバッテリユニット500は、図2のバッテリユニット500の構成に加えて、スライド部材90を備える。また、図6のバッテリユニット500においては、図2のバッテリユニット500の構成とは異なり、サービスプラグ510が、バッテリモジュール100aと隣り合うように筐体550の前面部550dに設けられる。サービスプラグ510に対向するように、スライド部材90が前面部550dに設けられる。
(1) Configuration FIG. 6 is a schematic plan view showing a configuration example of the battery unit 500 according to the second embodiment. As shown in FIG. 6, the battery unit 500 according to the present embodiment includes a slide member 90 in addition to the configuration of the battery unit 500 of FIG. In the battery unit 500 of FIG. 6, unlike the configuration of the battery unit 500 of FIG. 2, the service plug 510 is provided on the front surface portion 550d of the housing 550 so as to be adjacent to the battery module 100a. A slide member 90 is provided on the front surface portion 550d so as to face the service plug 510.
 図7は、図6のバッテリユニット500が第2の実施の形態に係るバッテリラックに収容される状態を示す模式的平面図である。図7においては、バッテリユニット500の複数のバッテリモジュール100a~100d、サービスプラグ510、HVコネクタ511および電力接続部765の接続関係が理解しやすいように、図6のコンタクタ512および複数の通信線P21~P24の図示を省略するとともに、複数のバッテリモジュール100a~100dの高電位電極10Aおよび低電位電極10B、ならびに電力線D21,D22,D23,D24,D25a,D25b,D26a,D26bを太い実線で模式的に図示する。 FIG. 7 is a schematic plan view showing a state in which the battery unit 500 of FIG. 6 is accommodated in the battery rack according to the second embodiment. In FIG. 7, the contactor 512 and the plurality of communication lines P21 in FIG. 6 are easy to understand the connection relationship among the plurality of battery modules 100a to 100d, the service plug 510, the HV connector 511, and the power connection unit 765 of the battery unit 500. The illustration of P24 is omitted, and the high potential electrode 10A and the low potential electrode 10B and the power lines D21, D22, D23, D24, D25a, D25b, D26a, and D26b of the plurality of battery modules 100a to 100d are schematically illustrated by thick solid lines. Illustrated in FIG.
 図7に示すように、本実施の形態に係るバッテリラック750においては、側面部751の内側に、スライド部材90の一部を嵌合可能な固定溝90gが形成される。本実施の形態では、上記のスライド部材90および固定溝90gが固定機構の例である。スライド部材90および固定溝90gについて詳細を説明する。 As shown in FIG. 7, in the battery rack 750 according to the present embodiment, a fixing groove 90g into which a part of the slide member 90 can be fitted is formed inside the side surface portion 751. In the present embodiment, the slide member 90 and the fixing groove 90g are examples of the fixing mechanism. Details of the slide member 90 and the fixing groove 90g will be described.
 図8は、図7のスライド部材90および固定溝90gの詳細を説明するための図である。図8(a)にバッテリラック750の収容スペース757にバッテリユニット500が収容された状態を示すバッテリシステム711の側面図(前面図)の一部が示され、図8(b)に図8(a)のA-A線断面図が示される。 FIG. 8 is a diagram for explaining the details of the slide member 90 and the fixing groove 90g of FIG. FIG. 8A shows a part of a side view (front view) of the battery system 711 showing a state in which the battery unit 500 is housed in the housing space 757 of the battery rack 750, and FIG. A sectional view taken along line AA of a) is shown.
 図8(a),(b)に示すように、本例のスライド部材90は、断面矩形の棒状部材である。スライド部材90は、前面部550dに平行かつ側面部550a,550c(図7)に直交する方向へ移動可能に前面部550dに取り付けられる。これにより、スライド部材90は前面部550d上の第1の位置p1および第2の位置p2の間で移動可能となっている。スライド部材90が第1の位置p1にある状態で、スライド部材90の全体が前面部550d上に位置する。一方、スライド部材90が第2の位置p2にある状態で、スライド部材90の一部が前面部550dの一側辺(側面部550aおよび前面部550dが互いに交差する側辺)から突出する。 As shown in FIGS. 8A and 8B, the slide member 90 of this example is a rod-shaped member having a rectangular cross section. The slide member 90 is attached to the front surface portion 550d so as to be movable in a direction parallel to the front surface portion 550d and perpendicular to the side surface portions 550a and 550c (FIG. 7). Thereby, the slide member 90 is movable between the first position p1 and the second position p2 on the front surface portion 550d. With the slide member 90 in the first position p1, the entire slide member 90 is located on the front surface portion 550d. On the other hand, in a state where the slide member 90 is in the second position p2, a part of the slide member 90 protrudes from one side of the front surface portion 550d (the side where the side surface portion 550a and the front surface portion 550d intersect each other).
 バッテリラック750の固定溝90gは、収容スペース757内にバッテリユニット500が配置された状態で、スライド部材90に対向する位置に形成される。これにより、スライド部材90が第1の位置p1にある状態で収容スペース757内にバッテリユニット500が配置され、スライド部材90が第1の位置p1から第2の位置p2に移動されることにより、バッテリラック750の固定溝90g内に前面部550dの一側辺から突出するスライド部材90の一部が嵌合される。それにより、バッテリユニット500がバッテリラック750内に配置された状態で、バッテリユニット500がバッテリラック750に固定される。 The fixing groove 90g of the battery rack 750 is formed at a position facing the slide member 90 in a state where the battery unit 500 is disposed in the accommodation space 757. Thereby, the battery unit 500 is arranged in the accommodation space 757 in a state where the slide member 90 is in the first position p1, and the slide member 90 is moved from the first position p1 to the second position p2. A part of the slide member 90 protruding from one side of the front surface portion 550d is fitted into the fixed groove 90g of the battery rack 750. Thereby, the battery unit 500 is fixed to the battery rack 750 in a state where the battery unit 500 is disposed in the battery rack 750.
 図8(a),(b)に示すように、バッテリユニット500のサービスプラグ510は、第1端子510A、第2端子510Bおよび端子支持部510Cから構成される。第1端子510Aには図6および図7の電力線D23が接続され、第2端子510Bには図6および図7の電力線D24が接続される。端子支持部510Cは絶縁性材料からなる。端子支持部510Cは、互いに間隔をおいて上下に並ぶように第1端子510Aおよび第2端子510Bを前面部550dに固定する。このとき、第1端子510Aおよび第2端子510Bの一部(図8(a)のハッチングが施された部分)が前面部550dの外部に露出する。 As shown in FIGS. 8A and 8B, the service plug 510 of the battery unit 500 includes a first terminal 510A, a second terminal 510B, and a terminal support 510C. The power line D23 of FIGS. 6 and 7 is connected to the first terminal 510A, and the power line D24 of FIGS. 6 and 7 is connected to the second terminal 510B. The terminal support portion 510C is made of an insulating material. The terminal support portion 510C fixes the first terminal 510A and the second terminal 510B to the front surface portion 550d so as to be aligned vertically with a space therebetween. At this time, part of the first terminal 510A and the second terminal 510B (the hatched part in FIG. 8A) is exposed to the outside of the front surface part 550d.
 図8(a),(b)に示すように、スライド部材90は、本体部91および金属板92からなる。本体部91は絶縁性材料からなる。断面矩形の棒状部材からなる本体部91の一部に切り欠きが設けられている。切り欠きが形成された本体部91の部分に金属板92が嵌め込まれる。 As shown in FIGS. 8A and 8B, the slide member 90 includes a main body 91 and a metal plate 92. The main body 91 is made of an insulating material. A cutout is provided in a part of the main body 91 made of a rod-shaped member having a rectangular cross section. A metal plate 92 is fitted into the portion of the main body 91 where the notch is formed.
 本実施の形態では、スライド部材90が第1の位置p1にある状態で金属板92がサービスプラグ510に対向せず、スライド部材90が第2の位置p2にある状態で金属板92がサービスプラグ510に対向するように、スライド部材90が前面部550dに取り付けられる。 In the present embodiment, the metal plate 92 does not face the service plug 510 when the slide member 90 is at the first position p1, and the metal plate 92 is at the service plug when the slide member 90 is at the second position p2. The slide member 90 is attached to the front surface portion 550d so as to face 510.
 この場合、スライド部材90が第1の位置p1にある状態で金属板92がサービスプラグ510の第1端子510Aおよび第2端子510Bから離間し、第1端子510Aと第2端子510Bとの間の電気的経路が遮断され、サービスプラグ510がオフされる。その結果、バッテリユニット500のバッテリモジュール100a,100b(図7)と、バッテリモジュール100c,100d(図7)との間の直列接続が切断され、バッテリモジュール100a,100bと、バッテリモジュール100c,100dとが互いに電気的に分離される。したがって、HVコネクタ511において、第1端子511Aと第2端子511Bとの間に電圧が発生しない。また、バッテリモジュール100a,100bからなる直列回路の総電圧およびバッテリモジュール100c,100dからなる直列回路の総電圧はバッテリモジュール100a,100b,100c,100dからなる直列回路の総電圧の約半分である。そのため、スライド部材90が第1の位置p1にある状態では、バッテリユニット500内に発生する電圧が通常の使用時に発生する電圧の半分となる。 In this case, the metal plate 92 is separated from the first terminal 510A and the second terminal 510B of the service plug 510 with the slide member 90 in the first position p1, and between the first terminal 510A and the second terminal 510B. The electrical path is interrupted and the service plug 510 is turned off. As a result, the series connection between the battery modules 100a and 100b (FIG. 7) of the battery unit 500 and the battery modules 100c and 100d (FIG. 7) is disconnected, and the battery modules 100a and 100b, the battery modules 100c and 100d, Are electrically isolated from each other. Accordingly, in the HV connector 511, no voltage is generated between the first terminal 511A and the second terminal 511B. The total voltage of the series circuit composed of the battery modules 100a and 100b and the total voltage of the series circuit composed of the battery modules 100c and 100d are about half of the total voltage of the series circuit composed of the battery modules 100a, 100b, 100c and 100d. Therefore, when the slide member 90 is in the first position p1, the voltage generated in the battery unit 500 is half of the voltage generated during normal use.
 一方、スライド部材90が第2の位置p2にある状態で金属板92がサービスプラグ510の第1端子510Aおよび第2端子510Bに接触し、第1端子510Aと第2端子510Bとが電気的に接続され、サービスプラグ510がオンされる。その結果、バッテリユニット500の複数のバッテリモジュール100a~100dの間で直列接続が形成される。この場合、電力線D21,D22,D23,D24,D25a,D25b,D26a,D26b(図6)、サービスプラグ510の第1端子510A(図8)、サービスプラグ510の第2端子510B(図8)、金属板92(図8)、複数のバスバーB(図6)および中継部材TM(図6)が、複数のバッテリモジュール100a~100dおよびHVコネクタ511を電気的に接続する電気的経路を形成する。 On the other hand, with the slide member 90 in the second position p2, the metal plate 92 contacts the first terminal 510A and the second terminal 510B of the service plug 510, and the first terminal 510A and the second terminal 510B are electrically connected. Connected and the service plug 510 is turned on. As a result, a series connection is formed between the plurality of battery modules 100a to 100d of the battery unit 500. In this case, the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b (FIG. 6), the first terminal 510A (FIG. 8) of the service plug 510, the second terminal 510B (FIG. 8) of the service plug 510, The metal plate 92 (FIG. 8), the plurality of bus bars B (FIG. 6), and the relay member TM (FIG. 6) form an electrical path that electrically connects the plurality of battery modules 100a to 100d and the HV connector 511.
 本実施の形態では、サービスプラグ510およびスライド部材90が接続機能部の例であり、サービスプラグ510が被接触部の例であり、スライド部材90の金属板92が接触部材の例であり、HVコネクタ511が外部コネクタの例である。また、スライド部材90およびバッテリラック750の固定溝90gが固定機構の例である。さらに、サービスプラグ510およびスライド部材90を備えるバッテリユニット500がバッテリユニットの例である。 In the present embodiment, the service plug 510 and the slide member 90 are examples of connection function units, the service plug 510 is an example of a contacted portion, the metal plate 92 of the slide member 90 is an example of a contact member, and HV The connector 511 is an example of an external connector. Further, the slide member 90 and the fixing groove 90g of the battery rack 750 are examples of the fixing mechanism. Furthermore, the battery unit 500 including the service plug 510 and the slide member 90 is an example of a battery unit.
 また、スライド部材90の一部が固定溝90gに嵌合された状態が固定状態の例であり、スライド部材90が固定溝90gから外れた状態が解除状態の例である。さらに、バッテリユニット500がバッテリラック750内に配置された状態でスライド部材90が第1の位置p1から第2の位置p2に移動する移動動作が第1の切り替え動作の例であり、バッテリユニット500がバッテリラック750内に配置された状態でスライド部材90が第2の位置p2から第1の位置p1に移動する移動動作が第2の切り替え動作の例である。 Further, a state where a part of the slide member 90 is fitted in the fixing groove 90g is an example of a fixed state, and a state where the slide member 90 is detached from the fixing groove 90g is an example of a released state. Further, the moving operation in which the slide member 90 moves from the first position p1 to the second position p2 in a state where the battery unit 500 is disposed in the battery rack 750 is an example of the first switching operation. An example of the second switching operation is a moving operation in which the slide member 90 moves from the second position p2 to the first position p1 in a state where is disposed in the battery rack 750.
 上記の図6~図8の例では、スライド部材90がバッテリユニット500の前面部550dに設けられる。これに限らず、スライド部材90がバッテリラック750の側面部751に設けられてもよい。また、収容スペース757内にバッテリユニット500が配置された状態で、スライド部材90に対向するバッテリユニット500の側面部550aの部分に固定溝90gが形成されてもよい。この場合においても、収容スペース757内にバッテリユニット500が配置された状態で、スライド部材90を移動させ、スライド部材90の一部を固定溝90gに嵌合する。これにより、バッテリユニット500がバッテリラック750に固定される。 6 to 8, the slide member 90 is provided on the front surface portion 550d of the battery unit 500. However, the slide member 90 may be provided on the side surface 751 of the battery rack 750. Further, the fixing groove 90g may be formed in the side surface portion 550a of the battery unit 500 facing the slide member 90 in a state where the battery unit 500 is arranged in the accommodation space 757. Also in this case, the slide member 90 is moved in a state where the battery unit 500 is disposed in the accommodation space 757, and a part of the slide member 90 is fitted into the fixed groove 90g. Thereby, the battery unit 500 is fixed to the battery rack 750.
 上記の図6~図8の例では、サービスプラグ510が第1端子510Aおよび第2端子510Bを有し、スライド部材90の金属板92が第1端子510Aおよび第2端子510Bに接触することによりサービスプラグ510がオン状態になる。また、スライド部材90の金属板92が第1端子510Aおよび第2端子510Bから離間することによりサービスプラグ510がオフ状態になる。 In the example of FIGS. 6 to 8 described above, the service plug 510 has the first terminal 510A and the second terminal 510B, and the metal plate 92 of the slide member 90 comes into contact with the first terminal 510A and the second terminal 510B. The service plug 510 is turned on. Further, the service plug 510 is turned off by separating the metal plate 92 of the slide member 90 from the first terminal 510A and the second terminal 510B.
 これに限らず、サービスプラグ510は、スライド部材90が第1の位置p1から第2の位置p2に移動する移動動作に連動して電力線D23と電力線D24との間を電気的に接続し、スライド部材90が第2の位置p2から第1の位置p1に移動する移動動作に連動して電力線D23と電力線D24との間を電気的に分離するスイッチにより構成されてもよい。この場合、スライド部材90に金属板92を設ける必要がない。 Not limited to this, the service plug 510 electrically connects between the power line D23 and the power line D24 in conjunction with a moving operation in which the slide member 90 moves from the first position p1 to the second position p2. The member 90 may be configured by a switch that electrically separates the power line D23 and the power line D24 in conjunction with a moving operation in which the member 90 moves from the second position p2 to the first position p1. In this case, it is not necessary to provide the metal plate 92 on the slide member 90.
 (2)バッテリシステムに関する効果
 本実施の形態において、収容動作にはスライド部材90が第1の位置p1から第2の位置p2に移動する移動動作が含まれる。また、取り出し動作にはスライド部材90が第2の位置p2から第1の位置p1に移動する移動動作が含まれる。
(2) Effects related to the battery system In the present embodiment, the housing operation includes a moving operation in which the slide member 90 moves from the first position p1 to the second position p2. The take-out operation includes a moving operation in which the slide member 90 moves from the second position p2 to the first position p1.
 バッテリユニット500が収容体としてのバッテリラック750内に配置された状態で、収容動作における第1の切り替え動作として固定機構であるスライド部材90が第1の位置p1から第2の位置p2へ移動される動作に連動してサービスプラグ510がオンされる。この場合、バッテリユニット500のバッテリモジュール100a,100b(図7)と、バッテリモジュール100c,100d(図7)との間の直列接続が形成される。それにより、電力線D21,D22,D23,D24,D25a,D25b,D26a,D26b、サービスプラグ510の第1端子510A、サービスプラグ510の第2端子510B、金属板92、複数のバスバーBおよび中継部材TMからなる電気的経路が形成され、この電気的経路により複数のバッテリモジュール100a~100dおよびHVコネクタ511が電気的に接続される。同時に、スライド部材90が第1の位置p1から第2の位置p2へ移動される動作に連動してバッテリユニット500がバッテリラック750に固定される。 In a state where the battery unit 500 is disposed in the battery rack 750 as a container, the slide member 90 that is a fixing mechanism is moved from the first position p1 to the second position p2 as the first switching operation in the housing operation. The service plug 510 is turned on in conjunction with the operation. In this case, a series connection between the battery modules 100a and 100b (FIG. 7) of the battery unit 500 and the battery modules 100c and 100d (FIG. 7) is formed. Thereby, the power lines D21, D22, D23, D24, D25a, D25b, D26a, D26b, the first terminal 510A of the service plug 510, the second terminal 510B of the service plug 510, the metal plate 92, the plurality of bus bars B, and the relay member TM. A plurality of battery modules 100a to 100d and the HV connector 511 are electrically connected by the electrical path. At the same time, the battery unit 500 is fixed to the battery rack 750 in conjunction with the movement of the slide member 90 from the first position p1 to the second position p2.
 一方、バッテリユニット500が収容体としてのバッテリラック750内に配置された状態で、取り出し動作における第2の切り替え動作として固定機構であるスライド部材90が第2の位置p2から第1の位置p1へ移動される動作に連動してサービスプラグ510がオフされる。この場合、バッテリモジュール100a,100bとバッテリモジュール100c,100dとの間の直列接続が切断され、バッテリモジュール100a,100bと、バッテリモジュール100c,100dとの間の電気的経路が遮断される。同時に、スライド部材90が第2の位置p2から第1の位置p1へ移動される動作に連動してバッテリユニット500がバッテリラック750から取り外し可能にされる。 On the other hand, in the state where the battery unit 500 is disposed in the battery rack 750 as the container, the slide member 90 as the fixing mechanism is moved from the second position p2 to the first position p1 as the second switching operation in the take-out operation. The service plug 510 is turned off in conjunction with the moved operation. In this case, the serial connection between the battery modules 100a and 100b and the battery modules 100c and 100d is cut, and the electrical path between the battery modules 100a and 100b and the battery modules 100c and 100d is cut off. At the same time, the battery unit 500 can be detached from the battery rack 750 in conjunction with the movement of the slide member 90 from the second position p2 to the first position p1.
 このように、スライド部材90が第2の位置p2にある場合にバッテリユニット500がバッテリラック750に固定され、スライド部材90が第1の位置p1にある場合にバッテリユニット500がバッテリラック750内に固定されない。そのため、サービスプラグ510がオンされた状態で、作業者はバッテリラック750からバッテリユニット500を取り出すことができない。したがって、電圧が発生しているHVコネクタ511に作業者が触れることはない。一方、サービスプラグ510がオフされた状態で、作業者はバッテリラック750からバッテリユニット500を取り出すことができる。したがって、作業者がHVコネクタ511に触れる可能性のある状態では、HVコネクタ511に電圧は発生しない。その結果、作業者の作業効率が向上する。 Thus, when the slide member 90 is in the second position p2, the battery unit 500 is fixed to the battery rack 750, and when the slide member 90 is in the first position p1, the battery unit 500 is in the battery rack 750. Not fixed. Therefore, the operator cannot take out the battery unit 500 from the battery rack 750 in a state where the service plug 510 is turned on. Therefore, the worker does not touch the HV connector 511 where the voltage is generated. On the other hand, the operator can take out the battery unit 500 from the battery rack 750 with the service plug 510 turned off. Therefore, no voltage is generated in the HV connector 511 in a state where the operator may touch the HV connector 511. As a result, the work efficiency of the worker is improved.
 (3)第2の実施の形態の第1の変形例
 図9は、第2の実施の形態に係るバッテリシステムの第1の変形例を示す模式的段面図である。図9(a)では、第1の変形例に係るバッテリユニット500がバッテリラック750の一の収容スペース757内に収容される途中の状態が示される。図9(b)では、第1の変形例に係るバッテリユニット500がバッテリラック750の一の収容スペース757内に収容された後の状態が示される。以下、図9のバッテリシステム711が図7のバッテリシステム711と異なる点について説明する。
(3) First Modification of Second Embodiment FIG. 9 is a schematic step view showing a first modification of the battery system according to the second embodiment. FIG. 9A shows a state in which the battery unit 500 according to the first modification is being accommodated in one accommodation space 757 of the battery rack 750. FIG. 9B shows a state after the battery unit 500 according to the first modification is accommodated in one accommodation space 757 of the battery rack 750. Hereinafter, differences between the battery system 711 in FIG. 9 and the battery system 711 in FIG. 7 will be described.
 本例のバッテリユニット500は、図6~図8のバッテリユニット500の構成に加えて、蓋部590および一対の回転部材80を備える。蓋部590は矩形の板部材からなり、図6の筐体550の上部を覆うように構成される。一対の回転部材80は、それぞれ略L字形状を有する。また、一対の回転部材80は、前面部550dに近接する蓋部590の2箇所の隅部近傍に、それぞれ支持軸89により回転可能に取り付けられる。筐体550の内部においては、サービスプラグ510が、バッテリモジュール100a(図6)と筐体550の前面部550dとの間に設けられる。また、本実施の形態では、サービスプラグ510は、電力線D23(図6)と電力線D24(図6)との間を電気的に接続するとともに電気的に分離することが可能なスイッチにより構成される。また、このスイッチは、上記の一対の回転部材80の回転動作に連動してオン状態およびオフ状態が切り替えられるように構成される。 The battery unit 500 of this example includes a cover 590 and a pair of rotating members 80 in addition to the configuration of the battery unit 500 of FIGS. The lid portion 590 is made of a rectangular plate member and is configured to cover the upper portion of the housing 550 of FIG. Each of the pair of rotating members 80 has a substantially L shape. In addition, the pair of rotating members 80 are attached to the vicinity of two corners of the lid portion 590 adjacent to the front surface portion 550d so as to be rotatable by the support shafts 89, respectively. Inside the housing 550, a service plug 510 is provided between the battery module 100a (FIG. 6) and the front surface portion 550d of the housing 550. In the present embodiment, service plug 510 is configured by a switch that can electrically connect and electrically isolate power line D23 (FIG. 6) and power line D24 (FIG. 6). . The switch is configured to be switched between an on state and an off state in conjunction with the rotational operation of the pair of rotating members 80.
 本変形例のバッテリラック750においては、側面部751の内側に、回転部材80の一部を差し込むことが可能な固定溝80gが形成される。固定溝80gはバッテリラック750の仕切り部756(図8)に直交するスライド面758aおよび当接面758bを含む。スライド面758aおよび当接面758bは互いに対向する。スライド面758aは当接面758bよりもバッテリラック750の背面部755から離れた場所に位置する。スライド面758aは背面部755に対して傾斜し、当接面758bは背面部755に平行である。本例では、上記の回転部材80および固定溝80gが固定機構として機能する。回転部材80および固定溝80gについて詳細を説明する。 In the battery rack 750 of this modification, a fixing groove 80g into which a part of the rotating member 80 can be inserted is formed inside the side surface portion 751. The fixing groove 80g includes a slide surface 758a and a contact surface 758b orthogonal to the partition portion 756 (FIG. 8) of the battery rack 750. The slide surface 758a and the contact surface 758b face each other. The slide surface 758a is located farther from the back surface portion 755 of the battery rack 750 than the contact surface 758b. The slide surface 758 a is inclined with respect to the back surface portion 755, and the contact surface 758 b is parallel to the back surface portion 755. In the present example, the rotating member 80 and the fixing groove 80g function as a fixing mechanism. Details of the rotating member 80 and the fixed groove 80g will be described.
 図9(a),(b)に示すように、各回転部材80は長軸部81および短軸部82からなる。長軸部81および短軸部82は、支持軸89を中心として回転可能である。 As shown in FIGS. 9A and 9B, each rotating member 80 includes a long shaft portion 81 and a short shaft portion 82. The long shaft portion 81 and the short shaft portion 82 can rotate around the support shaft 89.
 図9(a)に示すように、バッテリユニット500が収容スペース757内に収容される途中で、各回転部材80の短軸部82の先端部分が固定溝80g内に差し込まれる。この状態で、図9(a)に太い矢印qで示すように、例えば作業者により一対の回転部材80の長軸部81が互いに近づくように回転される。この場合、各固定溝80gの内部では、各短軸部82の先端部が当接面758aに向かってスライド面758a上を移動する。これにより、図9(a)に太い矢印rで示すように、バッテリユニット500が収容スペース757内で背面部755に向かって移動する。 As shown in FIG. 9A, in the middle of the battery unit 500 being housed in the housing space 757, the tip portion of the short shaft portion 82 of each rotating member 80 is inserted into the fixed groove 80g. In this state, as indicated by a thick arrow q in FIG. 9A, for example, the operator rotates the long shaft portions 81 of the pair of rotating members 80 so as to approach each other. In this case, in each fixed groove 80g, the tip of each short shaft portion 82 moves on the slide surface 758a toward the contact surface 758a. Thereby, as shown by the thick arrow r in FIG. 9A, the battery unit 500 moves toward the back surface portion 755 in the accommodation space 757.
 このとき、バッテリユニット500には背面部755に向かう強い押圧力が発生する。それにより、バッテリユニット500の背面部550bに設けられた通信接続部CCおよびHVコネクタ511が、それぞれバッテリラック750に設けられた通信接続部763および電力接続部765に強い押圧力により確実に差し込まれる。 At this time, a strong pressing force toward the back surface portion 755 is generated in the battery unit 500. Accordingly, the communication connection portion CC and the HV connector 511 provided on the back surface portion 550b of the battery unit 500 are securely inserted into the communication connection portion 763 and the power connection portion 765 provided in the battery rack 750, respectively, with a strong pressing force. .
 その後、図9(b)に示すように、各固定溝80gの内部で、短軸部82の一部が当接面758bに当接し、バッテリユニット500が収容スペース757内に収容される。それにより、バッテリユニット500がバッテリラック750内に配置された状態で、バッテリユニット500がバッテリラック750に固定される。 After that, as shown in FIG. 9B, a part of the short shaft portion 82 abuts against the abutting surface 758b inside each fixing groove 80g, and the battery unit 500 is accommodated in the accommodating space 757. Thereby, the battery unit 500 is fixed to the battery rack 750 in a state where the battery unit 500 is disposed in the battery rack 750.
 本変形例では、サービスプラグ510のスイッチが一対の長軸部81が互いに近づくように回転される回転動作に連動してオフ状態からオン状態となるように構成される。 In the present modification, the switch of the service plug 510 is configured to be switched from the off state to the on state in conjunction with a rotation operation in which the pair of long shaft portions 81 are rotated so as to approach each other.
 バッテリユニット500がバッテリラック750から取り外される場合には、一対の長軸部81が互いに離れるように回転される。これにより、固定溝80gの内部から短軸部82の先端部分が引き抜かれるとともに、バッテリユニット500が収容スペース757内から引き出される。 When the battery unit 500 is removed from the battery rack 750, the pair of long shaft portions 81 are rotated away from each other. Thereby, the tip end portion of the short shaft portion 82 is pulled out from the inside of the fixed groove 80g, and the battery unit 500 is pulled out from the storage space 757.
 本変形例では、サービスプラグ510のスイッチが一対の長軸部81が互いに離れるように回転される回転動作に連動してオン状態からオフ状態となるように構成される。 In this modification, the switch of the service plug 510 is configured to be switched from the on state to the off state in conjunction with the rotation operation in which the pair of long shaft portions 81 are rotated so as to be separated from each other.
 本変形例では、サービスプラグ510が接続機能部の例であり、回転部材80および固定溝80gが固定機構の例である。また、各回転部材80の短軸部82が固定溝80gの当接面758bに当接する状態が固定状態の例であり、各回転部材80の短軸部82が固定溝80gの当接面758bから離間した状態が解除状態の例である。さらに、一対の長軸部81が互いに近づくように回転する動作が第1の切り替え動作の例であり、一対の長軸部81が互いに離れるように回転する動作が第2の切り替え動作の例である。さらに、サービスプラグ510を備えるバッテリユニット500がバッテリユニットの例である。 In this modification, the service plug 510 is an example of a connection function unit, and the rotating member 80 and the fixing groove 80g are examples of a fixing mechanism. Further, the state in which the short shaft portion 82 of each rotating member 80 is in contact with the contact surface 758b of the fixed groove 80g is an example of a fixed state, and the short shaft portion 82 of each rotating member 80 is the contact surface 758b of the fixed groove 80g. The state separated from the is an example of the release state. Further, the operation of rotating the pair of long shaft portions 81 so as to approach each other is an example of the first switching operation, and the operation of rotating the pair of long shaft portions 81 so as to be separated from each other is an example of the second switching operation. is there. Furthermore, the battery unit 500 including the service plug 510 is an example of a battery unit.
 本例においては、一対の長軸部81が互いに近づくように回転されることによりバッテリユニット500がバッテリラック750に固定され、サービスプラグ510がオフ状態からオン状態になる。一方、一対の長軸部81が互いに離れるように回転されることによりバッテリユニット500がバッテリラック750から取り出し可能になり、サービスプラグ510がオン状態からオフ状態になる。そのため、サービスプラグ510がオン状態である場合に、作業者はバッテリラック750からバッテリユニット500を取り出すことができない。したがって、電圧が発生しているHVコネクタ511に作業者が触れることはない。一方、サービスプラグ510がオフ状態である場合に、作業者はバッテリラック750からバッテリユニット500を取り出すことができる。したがって、作業者がHVコネクタ511に触れる可能性のある状態では、HVコネクタ511に電圧は発生しない。その結果、作業者の作業効率が向上する。 In this example, the battery unit 500 is fixed to the battery rack 750 by rotating the pair of long shaft portions 81 so as to approach each other, and the service plug 510 is turned on from the off state. On the other hand, when the pair of long shaft portions 81 are rotated away from each other, the battery unit 500 can be removed from the battery rack 750, and the service plug 510 is changed from the on state to the off state. Therefore, when the service plug 510 is in the on state, the operator cannot take out the battery unit 500 from the battery rack 750. Therefore, the worker does not touch the HV connector 511 where the voltage is generated. On the other hand, when the service plug 510 is in the off state, the operator can take out the battery unit 500 from the battery rack 750. Therefore, no voltage is generated in the HV connector 511 in a state where the operator may touch the HV connector 511. As a result, the work efficiency of the worker is improved.
 本変形例では、バッテリユニット500がバッテリラック750内に配置された状態で、一対の長軸部81の位置関係を固定するための部材が取り付けられてもよい。この場合、バッテリユニット500がバッテリラック750内により強く固定される。 In this modification, a member for fixing the positional relationship between the pair of long shaft portions 81 may be attached in a state where the battery unit 500 is disposed in the battery rack 750. In this case, the battery unit 500 is more firmly fixed in the battery rack 750.
 本変形例において、回転部材80の形状は上記の略L字形状に限られない。回転部材80は、回転することによりバッテリユニット500をバッテリラック750に固定することができるのであれば、他の任意の形状および構造を有してもよい。 In the present modification, the shape of the rotating member 80 is not limited to the substantially L shape described above. The rotating member 80 may have any other shape and structure as long as it can fix the battery unit 500 to the battery rack 750 by rotating.
 (3)第2の実施の形態の第2の変形例
 図10は、第2の実施の形態に係るバッテリシステムの第2の変形例を示す模式的段面図である。図10(a)では、第2の変形例に係るバッテリユニット500がバッテリラック750の一の収容スペース757内に収容される途中の状態が示される。図10(b)では、第2の変形例に係るバッテリユニット500がバッテリラック750の一の収容スペース757内に収容された後の状態が示される。以下、図10のバッテリシステム711が図9のバッテリシステム711と異なる点について説明する。
(3) Second Modification of Second Embodiment FIG. 10 is a schematic step view showing a second modification of the battery system according to the second embodiment. FIG. 10A shows a state in which the battery unit 500 according to the second modification is being accommodated in one accommodation space 757 of the battery rack 750. FIG. 10B shows a state after the battery unit 500 according to the second modification is accommodated in one accommodation space 757 of the battery rack 750. Hereinafter, differences between the battery system 711 in FIG. 10 and the battery system 711 in FIG. 9 will be described.
 本変形例のバッテリユニット500は、図2のバッテリユニット500の構成に加えて、図9の例と同じ蓋部590および一対の回転部材80を備える。筐体550の内部においては、図2の例と同様に、サービスプラグ510が筐体550の背面部550bに設けられる。 The battery unit 500 of this modification includes the same lid portion 590 and a pair of rotating members 80 as those of the example of FIG. 9 in addition to the configuration of the battery unit 500 of FIG. Inside the housing 550, the service plug 510 is provided on the back surface portion 550b of the housing 550, as in the example of FIG.
 また、本変形例では、図4の例と同様に、バッテリラック750の背面部755に導電性部材としてオンオフ切替部764が設けられる。さらに、本変形例のバッテリラック750においては、図9の例と同じ固定溝80gが形成される。本変形例においても、上記の回転部材80および固定溝80gが固定機構として機能する。 Further, in the present modification, as in the example of FIG. 4, an on / off switching portion 764 is provided as a conductive member on the back surface portion 755 of the battery rack 750. Furthermore, in the battery rack 750 of this modification, the same fixing groove 80g as that of the example of FIG. 9 is formed. Also in this modified example, the rotating member 80 and the fixing groove 80g function as a fixing mechanism.
 本変形例においても、図10(a)に示すように、バッテリユニット500が収容スペース757内に収容される途中で、各回転部材80の短軸部82の先端部分が固定溝80g内に差し込まれ、一対の回転部材80の長軸部81が互いに近づくように回転される。これにより、バッテリユニット500の背面部550bに設けられた通信接続部CC、サービスプラグ510およびHVコネクタ511が、それぞれバッテリラック750に設けられた通信接続部763、オンオフ切替部764および電力接続部765に強い押圧力により確実に差し込まれる。 Also in this modified example, as shown in FIG. 10A, the tip portion of the short shaft portion 82 of each rotating member 80 is inserted into the fixing groove 80g while the battery unit 500 is housed in the housing space 757. Then, the long shaft portions 81 of the pair of rotating members 80 are rotated so as to approach each other. Thereby, the communication connection part CC, the service plug 510, and the HV connector 511 provided on the back surface part 550b of the battery unit 500 are respectively connected to the communication connection part 763, the on / off switching part 764, and the power connection part 765 provided in the battery rack 750. It is securely inserted by a strong pressing force.
 その後、図10(b)に示すように、各固定溝80gの内部で、短軸部82の一部が当接面758bに当接し、バッテリユニット500が収容スペース757内に収容される。それにより、バッテリユニット500がバッテリラック750内に配置された状態で、バッテリユニット500がバッテリラック750に固定される。 Thereafter, as shown in FIG. 10B, a part of the short shaft portion 82 abuts against the abutting surface 758b inside each fixing groove 80g, and the battery unit 500 is accommodated in the accommodating space 757. Thereby, the battery unit 500 is fixed to the battery rack 750 in a state where the battery unit 500 is disposed in the battery rack 750.
 この収容動作に連動して、バッテリユニット500の通信接続部CC、サービスプラグ510およびHVコネクタ511が、それぞれバッテリラック750に設けられた通信接続部763、オンオフ切替部764および電力接続部765に接続される。この接続時においては、バッテリユニット500がバッテリラック750に収容される収容動作に連動して、サービスプラグ510の第1端子510Aおよび第2端子510Bがオンオフ切替部764に差し込まれることにより、サービスプラグ510がオフ状態からオン状態になる。 In conjunction with this accommodating operation, the communication connection part CC, the service plug 510 and the HV connector 511 of the battery unit 500 are connected to the communication connection part 763, the on / off switching part 764 and the power connection part 765 provided in the battery rack 750, respectively. Is done. At the time of this connection, the first plug 510A and the second plug 510B of the service plug 510 are plugged into the on / off switching portion 764 in conjunction with the housing operation in which the battery unit 500 is housed in the battery rack 750. 510 goes from the off state to the on state.
 バッテリユニット500がバッテリラック750から取り外される場合には、一対の長軸部81が互いに離れるように回転される。これにより、固定溝80gの内部から短軸部82の先端部分が引き抜かれるとともに、バッテリユニット500が収容スペース757内から引き出される。 When the battery unit 500 is removed from the battery rack 750, the pair of long shaft portions 81 are rotated away from each other. Thereby, the tip end portion of the short shaft portion 82 is pulled out from the inside of the fixed groove 80g, and the battery unit 500 is pulled out from the storage space 757.
 この取り出し動作に連動して、バッテリユニット500の通信接続部CC、サービスプラグ510およびHVコネクタ511が、それぞれバッテリラック750に設けられた通信接続部763、オンオフ切替部764および電力接続部765から電気的に分離される。この分離時においては、バッテリユニット500がバッテリラック750から取り出される取り出し動作に連動して、サービスプラグ510の第1端子510Aおよび第2端子510Bがオンオフ切替部764から引き抜かれることにより、サービスプラグ510がオン状態からオフ状態になる。 In conjunction with this removal operation, the communication connection part CC, the service plug 510 and the HV connector 511 of the battery unit 500 are electrically connected from the communication connection part 763, the on / off switching part 764 and the power connection part 765 provided in the battery rack 750, respectively. Separated. During this separation, the first plug 510A and the second plug 510B of the service plug 510 are pulled out from the on / off switching unit 764 in conjunction with the pulling-out operation in which the battery unit 500 is pulled out from the battery rack 750, whereby the service plug 510 Changes from on to off.
 本変形例では、サービスプラグ510およびオンオフ切替部764が接続機能部の例であり、サービスプラグ510が被接触部の例であり、オンオフ切替部764が接触部材および導電性部材の例であり、回転部材80および固定溝80gが固定機構の例である。サービスプラグ510の第1端子510Aおよび第2端子510Bが第1および第2の端子の例であり、オンオフ切替部764が導電性部材の例である。また、各回転部材80の短軸部82が固定溝80gの当接面758bに当接する状態が固定状態の例であり、各回転部材80の短軸部82が固定溝80gの当接面758bから離間した状態が解除状態の例である。さらに、一対の長軸部81が互いに近づくように回転する動作が第1の切り替え動作の例であり、一対の長軸部81が互いに離れるように回転する動作が第2の切り替え動作の例である。さらに、サービスプラグ510を備えるバッテリユニット500がバッテリユニットの例であり、オンオフ切替部764を備えるバッテリラック750が収容体の例である。 In this modification, the service plug 510 and the on / off switching unit 764 are examples of connection function units, the service plug 510 is an example of a contacted unit, and the on / off switching unit 764 is an example of a contact member and a conductive member. The rotating member 80 and the fixing groove 80g are examples of the fixing mechanism. The first terminal 510A and the second terminal 510B of the service plug 510 are examples of first and second terminals, and the on / off switching unit 764 is an example of a conductive member. Further, the state in which the short shaft portion 82 of each rotating member 80 is in contact with the contact surface 758b of the fixed groove 80g is an example of a fixed state, and the short shaft portion 82 of each rotating member 80 is the contact surface 758b of the fixed groove 80g. The state separated from the is an example of the release state. Further, the operation of rotating the pair of long shaft portions 81 so as to approach each other is an example of the first switching operation, and the operation of rotating the pair of long shaft portions 81 so as to be separated from each other is an example of the second switching operation. is there. Furthermore, the battery unit 500 including the service plug 510 is an example of a battery unit, and the battery rack 750 including the on / off switching unit 764 is an example of a container.
 本変形例においても、上記の第1の変形例と同様に、作業者がHVコネクタ511に触れる可能性のある状態では、HVコネクタ511に電圧は発生しない。その結果、作業者の作業効率が向上する。 Also in this modification, as in the first modification described above, no voltage is generated in the HV connector 511 in a state where the operator may touch the HV connector 511. As a result, the work efficiency of the worker is improved.
 [3]第3の実施の形態
 第3の実施の形態に係るバッテリシステム、電動車両、移動体およびバッテリユニットについて図面を参照しながら説明する。
[3] Third Embodiment A battery system, an electric vehicle, a moving body, and a battery unit according to a third embodiment will be described with reference to the drawings.
 [3-1]バッテリユニット
 まず、第3の実施の形態に係るバッテリユニットについて、第1の実施の形態と異なる点を説明する。図11は、第3の実施の形態に係るバッテリユニット500の一構成例を示す模式的平面図である。図11に示すように、第3の実施の形態に係るバッテリユニット500は、図2のバッテリユニット500の構成に加えてバッテリECU101を備える。
[3-1] Battery Unit First, the difference of the battery unit according to the third embodiment from the first embodiment will be described. FIG. 11 is a schematic plan view showing a configuration example of the battery unit 500 according to the third embodiment. As shown in FIG. 11, a battery unit 500 according to the third embodiment includes a battery ECU 101 in addition to the configuration of the battery unit 500 of FIG.
 バッテリECU101は、バッテリモジュール100bと筐体550の背面部550bとの間に設けられる。本実施の形態では、バッテリモジュール100bの検出回路20が通信線P24を介してバッテリECU101に接続され、バッテリECU101が通信線P25および通信接続部CCを介して後述する電動車両の主制御部300(図12)に接続される。 The battery ECU 101 is provided between the battery module 100b and the back surface portion 550b of the housing 550. In the present embodiment, the detection circuit 20 of the battery module 100b is connected to the battery ECU 101 via the communication line P24, and the battery ECU 101 is connected to the main control part 300 (described later) via the communication line P25 and the communication connection part CC. 12).
 本実施の形態において、各バッテリモジュール100a~100dの検出回路20は、例えば各バッテリセル10の電圧、電流および温度に関する情報を他のバッテリモジュール100a~100dまたはバッテリECU101に与える。以下、これらの電圧、電流および温度に関する情報をセル情報と呼ぶ。 In the present embodiment, the detection circuit 20 of each of the battery modules 100a to 100d gives information on the voltage, current and temperature of each battery cell 10 to the other battery modules 100a to 100d or the battery ECU 101, for example. Hereinafter, the information on the voltage, current, and temperature is referred to as cell information.
 バッテリECU101は、例えば各バッテリモジュール100a~100dから与えられたセル情報に基づいて各バッテリセル10の充電量を算出し、その充電量に基づいて各バッテリモジュール100a~100dの充放電制御を行う。 The battery ECU 101 calculates the charge amount of each battery cell 10 based on, for example, cell information given from each battery module 100a to 100d, and performs charge / discharge control of each battery module 100a to 100d based on the charge amount.
 また、バッテリECU101は、各バッテリモジュール100a~100dの検出回路20から与えられたセル情報に基づいて各バッテリモジュール100a~100dの異常を検出する。バッテリモジュール100a~100dの異常とは、例えば、バッテリセル10の過放電、過充電または温度異常等である。 Further, the battery ECU 101 detects an abnormality of each of the battery modules 100a to 100d based on the cell information given from the detection circuit 20 of each of the battery modules 100a to 100d. The abnormality of the battery modules 100a to 100d is, for example, overdischarge, overcharge or temperature abnormality of the battery cell 10.
 このように、バッテリECU101は、各バッテリモジュール100a~100dの充放電制御を行うとともに、各バッテリモジュール100a~100dの異常を検出する処理を行いつつ、通信制御部として各バッテリモジュール100a~100dの検出回路20と外部装置(後述する図12の主制御部300)との間で通信を行う。なお、バッテリECU101は、バッテリユニット500内に設けられる代わりに、図1のバッテリラック750に設けられてもよい。 In this way, the battery ECU 101 performs charge / discharge control of each of the battery modules 100a to 100d and performs processing for detecting an abnormality of each of the battery modules 100a to 100d, and detects each of the battery modules 100a to 100d as a communication control unit. Communication is performed between the circuit 20 and an external device (main control unit 300 in FIG. 12 described later). The battery ECU 101 may be provided in the battery rack 750 of FIG. 1 instead of being provided in the battery unit 500.
 [3-2]電気自動車
 (1)構成
 図12は、図11のバッテリユニット500を備える電動自動車の構成を示すブロック図である。図12に示すように、電動自動車600は、車体610を備える。車体610に、上で述べてきたバッテリシステム711、電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、回転速度センサ606および主制御部300が設けられる。バッテリシステム711は、図11のバッテリユニット500およびバッテリラック750を含む。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。
[3-2] Electric Vehicle (1) Configuration FIG. 12 is a block diagram showing a configuration of an electric vehicle including the battery unit 500 of FIG. As shown in FIG. 12, the electric automobile 600 includes a vehicle body 610. The vehicle body 610 is provided with the battery system 711, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, the rotation speed sensor 606, and the main control unit 300 described above. The battery system 711 includes the battery unit 500 and the battery rack 750 of FIG. When motor 602 is an alternating current (AC) motor, power conversion unit 601 includes an inverter circuit.
 バッテリシステム711は、電力変換部601を介してモータ602に接続されるとともに、主制御部300に接続される。主制御部300には、図11のバッテリECU101から各バッテリモジュール100a~100dの各バッテリセル10の充電量およびバッテリモジュール100a~100dの異常等が与えられる。また、主制御部300には、アクセル装置604、ブレーキ装置605および回転速度センサ606が接続される。主制御部300は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。  The battery system 711 is connected to the motor 602 via the power converter 601 and also connected to the main controller 300. The main control unit 300 is given a charge amount of each battery cell 10 of each of the battery modules 100a to 100d, an abnormality of the battery modules 100a to 100d, and the like from the battery ECU 101 of FIG. In addition, an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 300. The main control unit 300 includes, for example, a CPU and a memory, or a microcomputer. *
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。運転者によりアクセルペダル604aが操作されると、アクセル検出部604bは、運転者により操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部300に与えられる。 The accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a. When the accelerator pedal 604a is operated by the driver, the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、運転者によるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。運転者によりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部300に与えられる。 The brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver. When the brake pedal 605a is operated by the driver, the operation amount is detected by the brake detection unit 605b. The detected operation amount of the brake pedal 605a is given to the main control unit 300.
 回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部300に与えられる。 Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
 主制御部300には、バッテリモジュール100a~100dの各バッテリセル10の充電量、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、ならびにモータ602の回転速度等が与えられる。主制御部300は、これらの情報に基づいて、バッテリモジュール100の充放電制御ならびに電力変換部601の電力変換制御を行う。 The main control unit 300 is given the charge amount of each battery cell 10 of the battery modules 100a to 100d, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, the rotation speed of the motor 602, and the like. The main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
 例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム711から電力変換部601にバッテリモジュール100a~100dの電力が供給される。 For example, when the electric vehicle 600 is started and accelerated based on the accelerator operation, the power of the battery modules 100a to 100d is supplied from the battery system 711 to the power conversion unit 601.
 さらに、主制御部300は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。 Further, the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
 上記の制御信号を受けた電力変換部601は、バッテリシステム711から供給された電力を駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。 The power conversion unit 601 that has received the control signal converts the power supplied from the battery system 711 into power (drive power) necessary to drive the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリモジュール100a~100dの充電に適した電力に変換し、バッテリモジュール100a~100dに与える。それにより、バッテリモジュール100a~100dが充電される。 On the other hand, when the electric automobile 600 is decelerated based on the brake operation, the motor 602 functions as a power generator. In this case, the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery modules 100a to 100d and supplies the power to the battery modules 100a to 100d. Thereby, the battery modules 100a to 100d are charged.
 (2)電動車両における効果
 本実施の形態に係る電動車両である電動自動車600は、上記のバッテリシステム711と、バッテリシステム711からの電力により駆動されるモータ602と、モータ602の回転力により回転する駆動輪603とを備える。
(2) Effects in Electric Vehicle Electric vehicle 600 that is an electric vehicle according to the present embodiment is rotated by the above-described battery system 711, motor 602 driven by electric power from battery system 711, and the rotational force of motor 602. Driving wheel 603 for carrying out the operation.
 この電動自動車600においては、バッテリシステム711からの電力によりモータ602が駆動される。そのモータ602の回転力によって駆動輪603が回転することにより、電動自動車600が移動する。 In this electric automobile 600, the motor 602 is driven by the electric power from the battery system 711. When the driving wheel 603 rotates by the rotational force of the motor 602, the electric automobile 600 moves.
 この電動車両には、図11のバッテリユニット500を含むバッテリシステム711が用いられる。上述のように、バッテリシステム711においては、バッテリユニット500がバッテリラック750に収容される収容動作に連動して図11のサービスプラグ510が自動的にオンし、バッテリユニット500がバッテリラック750から取り出される取り出し動作に連動して図11のサービスプラグ510が自動的にオフする。これにより、安全性が確保されつつバッテリシステム711の組み立て、メンテナンスおよびバッテリユニット500の交換を行う際の作業性が向上する。したがって、電動自動車600を組み立てる作業効率およびバッテリユニット500の交換の作業効率が向上する。それにより、電動自動車600の製造コストが低減されるとともに、電動自動車600の運用コストも低減される。 For this electric vehicle, a battery system 711 including the battery unit 500 of FIG. 11 is used. As described above, in the battery system 711, the service plug 510 in FIG. 11 is automatically turned on in conjunction with the accommodating operation in which the battery unit 500 is accommodated in the battery rack 750, and the battery unit 500 is removed from the battery rack 750. The service plug 510 in FIG. 11 is automatically turned off in conjunction with the take-out operation. Thereby, workability at the time of assembling and maintaining the battery system 711 and replacing the battery unit 500 is improved while ensuring safety. Therefore, the work efficiency of assembling the electric vehicle 600 and the work efficiency of replacing the battery unit 500 are improved. Thereby, the manufacturing cost of the electric vehicle 600 is reduced, and the operation cost of the electric vehicle 600 is also reduced.
 [3-3]他の移動体の構成および動作
 (1)構成
 バッテリシステム711が船、航空機、エレベータまたは歩行ロボット等の他の移動体に搭載されてもよい。
[3-3] Configuration and Operation of Other Mobile Body (1) Configuration The battery system 711 may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
 バッテリシステム711が搭載された船は、例えば、図12の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。この場合、船体が移動本体部に相当し、モータが動力源に相当し、スクリューが駆動部に相当する。なお、船は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して船体の加速を停止することにより、水の抵抗によって船体が減速する。このような構成において、モータがバッテリシステム711からの電力を受けてその電力を動力に変換し、変換された動力によってスクリューが回転されることにより船体が移動する。 A ship equipped with the battery system 711 includes, for example, a hull instead of the vehicle body 610 in FIG. 12, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull. In this case, the hull corresponds to the moving main body, the motor corresponds to the power source, and the screw corresponds to the drive unit. The ship does not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop the acceleration of the hull, the hull is decelerated due to the resistance of water. In such a configuration, the motor receives electric power from the battery system 711 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
 バッテリシステム711が搭載された航空機は、例えば、図12の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。なお、船および航空機は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して加速を停止することにより、水の抵抗または空気抵抗によって機体が減速する。 An aircraft equipped with the battery system 711 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 12, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. Ships and aircraft do not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop acceleration, the airframe is decelerated due to water resistance or air resistance.
 バッテリシステム711が搭載されたエレベータは、例えば、図12の車体610の代わりに籠を備え、駆動輪603の代わりに籠に取り付けられる昇降用ロープを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 The elevator equipped with the battery system 711 includes, for example, a saddle instead of the vehicle body 610 in FIG. 12, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
 バッテリシステム711が搭載された歩行ロボットは、例えば、図12の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 The walking robot equipped with the battery system 711 includes, for example, a torso instead of the vehicle body 610 in FIG. 12, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. A deceleration input unit is provided instead of.
 これらの移動体においては、モータが動力源に相当し、船体、機体、籠および胴体が移動本体部に相当し、スクリュー、プロペラ、昇降用ロープおよび足が駆動部に相当する。動力源がバッテリシステム711からの電力を受けてその電力を動力に変換し、駆動部が動力源により変換された動力により移動本体部を移動させる。 In these moving bodies, the motor corresponds to the power source, the hull, the fuselage, the anchor and the trunk correspond to the moving main body, and the screw, the propeller, the lifting rope and the foot correspond to the driving section. The power source receives electric power from the battery system 711 and converts the electric power into motive power, and the drive unit moves the moving main body portion with the motive power converted by the power source.
 (2)他の移動体における効果
 本実施の形態に係る移動体は、上記のバッテリシステム711と、移動本体部と、バッテリシステム711のバッテリセル10からの電力を移動本体部を移動させるための動力に変換する動力源と、動力源により変換された動力により移動本体部を移動させる駆動部とを備える。
(2) Effects in Other Moving Body The moving body according to the present embodiment is configured to move the moving main body unit from the battery system 711, the moving main body unit, and the power from the battery cell 10 of the battery system 711. A power source that converts power into power and a drive unit that moves the moving main body by the power converted by the power source are provided.
 この移動体においては、バッテリシステム711からの電力が動力源により動力に変換され、その動力により駆動部が移動本体部を移動させる。 In this moving body, the electric power from the battery system 711 is converted into power by a power source, and the drive unit moves the moving main body by the power.
 この移動体には、図11のバッテリユニット500を含むバッテリシステム711が用いられるため、安全性が確保されつつバッテリシステム711の組み立て、メンテナンスおよびバッテリユニット500の交換を行う際の作業性が向上する。したがって、移動体を組み立てる作業効率およびバッテリユニット500の交換の作業効率が向上する。それにより、移動体の製造コストが低減されるとともに、移動体の運用コストも低減される。 Since the battery system 711 including the battery unit 500 of FIG. 11 is used for this moving body, the workability at the time of assembling and maintaining the battery system 711 and replacing the battery unit 500 is improved while ensuring safety. . Therefore, the work efficiency of assembling the moving body and the work efficiency of replacing the battery unit 500 are improved. Thereby, the manufacturing cost of the moving body is reduced and the operation cost of the moving body is also reduced.
 (3)移動体の変形例
 図12の電動自動車600または他の移動体において、各バッテリユニット500にバッテリECU101(図11)が設けられる代わりに、主制御部300がバッテリECU101と同様の機能を有してもよい。この場合、図12のバッテリシステム711として、第1または第2の実施の形態に係るバッテリシステム711を用いることができる。
(3) Modified Example of Moving Body In the electric vehicle 600 of FIG. 12 or another moving body, instead of providing each battery unit 500 with a battery ECU 101 (FIG. 11), the main control unit 300 has the same function as the battery ECU 101. You may have. In this case, the battery system 711 according to the first or second embodiment can be used as the battery system 711 of FIG.
 10 バッテリセル
 10B 低電位電極
 10A 高電位電極
 20,766 検出回路
 50 FPC基板
 80 回転部材
 80g,90g 固定溝
 81 長軸部
 82 短軸部
 89 支持軸
 90 スライド部材
 91 本体部
 92 金属板
 92a,92b 端面枠
 100a,100b,100c,100d バッテリモジュール
 101 バッテリECU
 300 主制御部
 500 バッテリユニット
 510 サービスプラグ
 510A,511A 第1端子
 510B,511B 第2端子
 510C 端子支持部
 511 HVコネクタ
 512 コンタクタ
 550 筐体
 550a,550c 側面部
 550b 背面部
 550d 前面部
 590 蓋部
 591,592 通気口
 610 車体
 601 電力変換部
 602 モータ
 603 駆動輪
 604 アクセル装置
 605 ブレーキ装置
 606 回転速度センサ
 700 電源装置
 710 電力貯蔵装置
 711 バッテリシステム
 712 システムコントローラ
 720 電力変換装置
 721 DC/DCコンバータ
 722 DC/ACインバータ
 721a,721b,722a,722b 入出力端子
 750 バッテリラック
 751,752 側面部
 753 上面部
 754 底面部
 755 背面部
 756 仕切り部
 757 収容スペース
 758a スライド面
 758b 当接面
 761 冷却用ファン
 762 通気口
 763 通信接続部
 764 オンオフ切替部
 765 電力接続部
 764A,765A 第3端子
 764B,765B 第4端子
 B バスバー
 CC 通信接続部
 D21~D24,D25a,D25b,D26a,D26b 電力線
 p1 第1の位置
 p2 第2の位置
 P21~P25 通信線
 PU1,PU2 電力出力部
 R1 通気路
 T1,T2 モジュール列
 TM 中継部材
DESCRIPTION OF SYMBOLS 10 Battery cell 10B Low potential electrode 10A High potential electrode 20,766 Detection circuit 50 FPC board 80 Rotating member 80g, 90g Fixed groove 81 Long shaft part 82 Short shaft part 89 Support shaft 90 Slide member 91 Main body part 92 Metal plates 92a, 92b End face frame 100a, 100b, 100c, 100d Battery module 101 Battery ECU
DESCRIPTION OF SYMBOLS 300 Main control part 500 Battery unit 510 Service plug 510A, 511A 1st terminal 510B, 511B 2nd terminal 510C Terminal support part 511 HV connector 512 Contactor 550 Case 550a, 550c Side surface part 550b Rear surface part 550d Front surface part 590 Cover part 591 592 Vent 610 Car body 601 Power converter 602 Motor 603 Drive wheel 604 Accelerator device 605 Brake device 606 Rotational speed sensor 700 Power supply device 710 Power storage device 711 Battery system 712 System controller 720 Power converter 721 DC / DC converter 722 DC / AC Inverter 721a, 721b, 722a, 722b Input / output terminal 750 Battery rack 751, 752 Side surface portion 753 Top surface portion 754 Bottom surface portion 7 5 Rear part 756 Partition part 757 Housing space 758a Sliding surface 758b Abutting surface 761 Cooling fan 762 Ventilation hole 763 Communication connecting part 764 On / off switching part 765 Power connecting part 764A, 765A Third terminal 764B, 765B Fourth terminal B Bus bar CC Communication connection part D21 to D24, D25a, D25b, D26a, D26b Power line p1 First position p2 Second position P21 to P25 Communication line PU1, PU2 Power output part R1 Air passage T1, T2 Module row TM Relay member

Claims (12)

  1.  1または複数のバッテリセルおよび外部と接続される外部コネクタを含むバッテリユニットと、
     前記バッテリユニットが収容可能に構成される収容体と、
     接続機能部とを備え、
     前記バッテリユニットが前記収容体に収容された状態で前記1または複数のバッテリセルと前記外部コネクタと前記接続機能部とで直列接続が形成され、
     前記接続機能部は、前記バッテリユニットが前記収容体から取り出される取り出し動作に連動して前記直列接続を切断するように構成される、バッテリシステム。
    A battery unit including one or more battery cells and an external connector connected to the outside;
    A container configured to accommodate the battery unit; and
    With a connection function unit,
    In the state where the battery unit is accommodated in the container, the one or more battery cells, the external connector, and the connection function unit are connected in series,
    The said connection function part is a battery system comprised so that the said serial connection may be cut | disconnected in connection with the extraction operation | movement from which the said battery unit is taken out from the said container.
  2.  前記接続機能部は、前記バッテリユニットが前記収容体に収容される収容動作に連動して前記直列接続を形成するように構成される、請求項1記載のバッテリシステム。 The battery system according to claim 1, wherein the connection function unit is configured to form the series connection in conjunction with a housing operation in which the battery unit is housed in the housing body.
  3.  前記接続機能部は、
     前記バッテリユニットに設けられる被接触部と、
     前記被接触部に接触されることによりまたは前記被接触部から離間されることにより、前記直列接続を形成または切断する接触部材とを含む、請求項1または2記載のバッテリシステム。
    The connection function unit
    A contacted portion provided in the battery unit;
    The battery system according to claim 1, further comprising: a contact member that forms or disconnects the series connection by being brought into contact with the contacted part or being separated from the contacted part.
  4.  前記被接触部は、互いに離間するように前記バッテリユニットに設けられる第1および第2の端子を含み、
     前記接触部材は、前記バッテリユニットが前記収容体に収容された状態で前記第1および第2の端子に接触することにより、前記第1の端子と前記第2の端子とを電気的に接続するように前記収容体に設けられる導電性部材である、請求項3記載のバッテリシステム。
    The contacted portion includes first and second terminals provided in the battery unit so as to be separated from each other,
    The contact member electrically connects the first terminal and the second terminal by contacting the first and second terminals in a state where the battery unit is accommodated in the container. The battery system according to claim 3, which is a conductive member provided in the container.
  5.  前記バッテリユニットが前記収容体内に配置された状態で前記バッテリユニットを前記収容体に固定する固定状態と前記バッテリユニットを前記収容体から取り出し可能にする解除状態とに切り替え可能な固定機構をさらに備え、
     前記収容動作は、前記固定機構が前記解除状態から前記固定状態に切り替えられる第1の切り替え動作を含み、
     前記取り出し動作は、前記固定機構が前記固定状態から前記解除状態に切り替えられる第2の切り替え動作を含み、
     前記接続機能部は、前記収容動作における前記第1の切り替え動作に連動して前記直列接続を形成するとともに前記取り出し動作における前記第2の切り替え動作に連動して前記直列接続を切断するように構成される、請求項1~4のいずれか一項に記載のバッテリシステム。
    A fixing mechanism capable of switching between a fixed state in which the battery unit is fixed to the container and a release state in which the battery unit can be removed from the container in a state where the battery unit is disposed in the container; ,
    The accommodating operation includes a first switching operation in which the fixing mechanism is switched from the released state to the fixed state,
    The take-out operation includes a second switching operation in which the fixing mechanism is switched from the fixed state to the released state,
    The connection function unit is configured to form the series connection in conjunction with the first switching operation in the accommodating operation and to disconnect the series connection in conjunction with the second switching operation in the take-out operation. The battery system according to any one of claims 1 to 4, wherein:
  6.  前記1または複数のバッテリセルに関する情報を検出する検出回路と、
     前記バッテリユニットが前記収容体に収容された状態で前記バッテリユニットを冷却するための冷却装置と、
     前記バッテリユニットが前記収容体に収容された状態で前記検出回路と電気的に接続されるとともに外部装置に接続され、前記検出回路と前記外部装置との間で通信を行う通信制御部とをさらに備え、
     前記冷却装置および前記通信制御部は、前記収容体に設けられた、請求項1~5のいずれか一項に記載のバッテリシステム。
    A detection circuit for detecting information relating to the one or more battery cells;
    A cooling device for cooling the battery unit in a state in which the battery unit is accommodated in the container;
    A communication control unit that is electrically connected to the detection circuit in a state in which the battery unit is accommodated in the container and is connected to an external device, and performs communication between the detection circuit and the external device; Prepared,
    The battery system according to any one of claims 1 to 5, wherein the cooling device and the communication control unit are provided in the container.
  7.  請求項1~6のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
    The battery system according to any one of claims 1 to 6,
    A motor driven by power from the battery system;
    An electric vehicle comprising drive wheels that are rotated by the rotational force of the motor.
  8.  請求項1~6のいずれか一項に記載のバッテリシステムと、
     移動本体部と、
     前記バッテリシステムからの電力を前記移動本体部を移動させるための動力に変換する動力源と、
     前記動力源により変換された動力により前記移動本体部を移動させる駆動部とを備える、移動体。
    The battery system according to any one of claims 1 to 6,
    A moving body,
    A power source that converts electric power from the battery system into power for moving the moving main body;
    A moving body comprising: a drive unit that moves the moving main body unit by power converted by the power source.
  9.  請求項1~6のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムの前記バッテリセルの充電または放電に関する制御を行うシステム制御部とを備える、電力貯蔵装置。
    The battery system according to any one of claims 1 to 6,
    And a system control unit that performs control related to charging or discharging of the battery cell of the battery system.
  10.  外部に接続可能であり、
     請求項9記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記システム制御部により制御され、前記電力貯蔵装置の前記バッテリシステムの前記バッテリセルと前記外部との間で電力変換を行う電力変換装置とを備える、電源装置。
    Can be connected to the outside,
    The power storage device according to claim 9,
    A power supply device comprising: a power conversion device that is controlled by the system control unit of the power storage device and performs power conversion between the battery cell of the battery system of the power storage device and the outside.
  11.  収容体に収容可能に構成され、
     1または複数のバッテリセルと、
     外部と接続される外部コネクタと、
     接続機能部とを備え、
     当該バッテリユニットが前記収容体に収容された状態で前記1または複数のバッテリセルと前記外部コネクタと前記接続機能部とで直列接続が形成され、
     前記接続機能部は、当該バッテリユニットが前記収容体から取り出される取り出し動作に連動して前記直列接続を切断するように構成される、バッテリユニット。
    Configured to be accommodated in a container,
    One or more battery cells;
    An external connector connected to the outside;
    With a connection function unit,
    In the state where the battery unit is accommodated in the container, the one or more battery cells, the external connector, and the connection function unit form a series connection,
    The connection function unit is a battery unit configured to disconnect the series connection in conjunction with an extraction operation in which the battery unit is extracted from the container.
  12.  1または複数のバッテリセル、外部と接続される外部コネクタおよび被接触部を含むバッテリユニットを収容可能に構成され、
     前記バッテリユニットが当該収容体に収容された状態で前記被接触部に接触する接触部材とを備え、
     前記バッテリユニットが当該収容体に収容された状態で前記1または複数のバッテリセルと前記外部コネクタと前記被接触部と前記接触部材とで直列接続が形成され、
     前記接触部材は、前記バッテリユニットが当該収容体から取り出される取り出し動作に連動して前記バッテリユニットの前記被接触部から離間されることにより前記直列接続を切断するように構成される、接続機能付き収容体。
    One or a plurality of battery cells, configured to accommodate a battery unit including an external connector connected to the outside and a contacted portion,
    A contact member that contacts the contacted part in a state where the battery unit is accommodated in the container;
    In the state where the battery unit is housed in the housing body, the one or more battery cells, the external connector, the contacted portion, and the contact member form a series connection,
    The contact member is configured to disconnect the series connection by being separated from the contacted portion of the battery unit in conjunction with an extraction operation in which the battery unit is extracted from the container. Container.
PCT/JP2012/074323 2011-09-27 2012-09-24 Battery system, electric vehicle, moving body, power storage device, power source device, battery unit, and housing body WO2013047399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211140 2011-09-27
JP2011211140A JP2014232566A (en) 2011-09-27 2011-09-27 Battery system, electric vehicle, mobile, power unit, battery unit and housing body

Publications (1)

Publication Number Publication Date
WO2013047399A1 true WO2013047399A1 (en) 2013-04-04

Family

ID=47995432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074323 WO2013047399A1 (en) 2011-09-27 2012-09-24 Battery system, electric vehicle, moving body, power storage device, power source device, battery unit, and housing body

Country Status (2)

Country Link
JP (1) JP2014232566A (en)
WO (1) WO2013047399A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601953A (en) * 2016-12-19 2017-04-26 南京九致信息科技有限公司 Electricity-exchange battery bin device with heat dissipation system for electric vehicle
WO2018123577A1 (en) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Rack type power source device
CN110391370A (en) * 2018-04-18 2019-10-29 本田技研工业株式会社 Battery packaging body
US10490789B2 (en) 2015-11-04 2019-11-26 Murata Manufacturing Co., Ltd. Electric storage device, electric storage device assembly, electric and electronic apparatus, electric moving means and electric power system, and method of assembling electric storage device assembly
JP2020091137A (en) * 2018-12-04 2020-06-11 株式会社アドバンテスト Derivation unit storage body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443268B2 (en) * 2015-08-31 2018-12-26 株式会社デンソー Control device for rotating electrical machine
JP6660128B2 (en) * 2015-09-17 2020-03-04 矢崎エナジーシステム株式会社 Alarm
JP6782435B2 (en) * 2016-03-10 2020-11-11 パナソニックIpマネジメント株式会社 Power storage device
US9991699B2 (en) * 2016-05-02 2018-06-05 Microsoft Technology Licensing, Llc Enablement of device power-on with proper assembly
JP7175590B2 (en) * 2017-05-22 2022-11-21 株式会社東芝 Battery pack and battery board
FR3067862A1 (en) * 2017-06-14 2018-12-21 Renault S.A.S DEVICE FOR ENCAPSULATING AND DISCONNECTING THE POWER OF A BATTERY
KR20210030090A (en) * 2019-09-09 2021-03-17 주식회사 엘지화학 Battery rack and energy storage system comprising the battery rack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027860U (en) * 1988-06-28 1990-01-18
JPH0528976A (en) * 1991-07-17 1993-02-05 Matsushita Electric Ind Co Ltd Battery unloading apparatus
JPH06310114A (en) * 1993-04-28 1994-11-04 Toshiba Corp Short-circuiting preventing mechanism for battery pack
WO2003098719A1 (en) * 2002-04-23 2003-11-27 Matsushita Electric Works, Ltd. Battery-driven electric apparatus
WO2011089910A1 (en) * 2010-01-20 2011-07-28 三洋電機株式会社 Battery module, electric vehicle provided with same, mobile object, battery system, power storage device, and power source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027860U (en) * 1988-06-28 1990-01-18
JPH0528976A (en) * 1991-07-17 1993-02-05 Matsushita Electric Ind Co Ltd Battery unloading apparatus
JPH06310114A (en) * 1993-04-28 1994-11-04 Toshiba Corp Short-circuiting preventing mechanism for battery pack
WO2003098719A1 (en) * 2002-04-23 2003-11-27 Matsushita Electric Works, Ltd. Battery-driven electric apparatus
WO2011089910A1 (en) * 2010-01-20 2011-07-28 三洋電機株式会社 Battery module, electric vehicle provided with same, mobile object, battery system, power storage device, and power source device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490789B2 (en) 2015-11-04 2019-11-26 Murata Manufacturing Co., Ltd. Electric storage device, electric storage device assembly, electric and electronic apparatus, electric moving means and electric power system, and method of assembling electric storage device assembly
CN106601953A (en) * 2016-12-19 2017-04-26 南京九致信息科技有限公司 Electricity-exchange battery bin device with heat dissipation system for electric vehicle
CN106601953B (en) * 2016-12-19 2023-04-18 南京九致信息科技有限公司 Electric automobile trades electric battery compartment device with cooling system
WO2018123577A1 (en) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Rack type power source device
JPWO2018123577A1 (en) * 2016-12-26 2019-10-31 パナソニックIpマネジメント株式会社 Rack power supply
CN110391370A (en) * 2018-04-18 2019-10-29 本田技研工业株式会社 Battery packaging body
CN110391370B (en) * 2018-04-18 2022-04-29 本田技研工业株式会社 Accumulator package
JP2020091137A (en) * 2018-12-04 2020-06-11 株式会社アドバンテスト Derivation unit storage body
JP7281273B2 (en) 2018-12-04 2023-05-25 株式会社アドバンテスト extractor container

Also Published As

Publication number Publication date
JP2014232566A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2013047399A1 (en) Battery system, electric vehicle, moving body, power storage device, power source device, battery unit, and housing body
JP6160729B2 (en) Battery module
US20230006266A1 (en) Vehicle energy-storage systems
WO2011089910A1 (en) Battery module, electric vehicle provided with same, mobile object, battery system, power storage device, and power source device
US10500980B2 (en) Modular battery pack system with series and parallel charging and propulsion modes
JP2012248299A (en) Battery module, battery system, electric vehicle, mobile object, power storage device and power supply device
KR101199102B1 (en) Battery system, electric vehicle, movable body, power storage device, and power supply device
US9329239B2 (en) Battery system, electric-powered vehicle, movable equipment, power storage device, and power source apparatus
WO2012042913A1 (en) Battery module, battery system comprising same, electric vehicle, mobile body, electric power storage device, electric power supply device, and electric device
JP5735098B2 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
JP5133330B2 (en) Battery unit for vehicle
US20140117754A1 (en) Hv-battery, in particular traction battery for a vehicle
US9586498B2 (en) Battery for work vehicle and battery-type work vehicle
WO2011093105A1 (en) Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment
JP2010055973A (en) Battery box for railway vehicle, and railway vehicle
US9487096B2 (en) Charging device
WO2012147331A1 (en) Battery module, battery system, electric vehicle, moving body, power storage device, and power supply device
JP4992264B2 (en) Assembled battery
WO2012029319A1 (en) Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus
JP5008782B1 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
US10916758B2 (en) Electrical system with de-energizing bus bars
CN113169405A (en) Electrical system with thermal protection
WO2012029231A1 (en) Voltage detection circuit and battery system equipped with same, electric vehicle, moving body, electric power storage device, and power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP